
Using Self-Encryption to safeguard data security in Fabric’s smart contract

Chaiwon Park1

Supervisor(s): Dr.Kaitai Liang11

1EEMCS, Delft University of Technology, The Netherlands
c.park-3@student.tudelft.nl, kaitai.liang@tudelft.nl

Abstract
A rise in the use of blockchain systems implies
an increase in smart contract usage. Blockchain
systems can easily be found these days, most no-
tably in cryptocurrencies and financial manage-
ment. Furthermore, the Internet of Things (IoT) is
being developed with blockchain, since blockchain
ensures trust in IoT data and adds great flexibil-
ity. However, as with any other system, an increase
in usage means the security of the blockchain sys-
tem is becoming a more important aspect and an
interesting area of research. Additionally, several
pieces of research suggest that the smart contract is
the most vulnerable component of the blockchain.
In this paper, a simple prototype for a blockchain-
based image encryption scheme for the Internet of
Things will be implemented. This prototype will be
implemented using Hyperledger Fabric Smart Con-
tract and Self-Encryption scheme. Results will pro-
pose that the encryption method implemented in the
smart contract is secure enough against any other
malicious users.

1 Introduction
1.1 Motivation
Security has always been an important factor to be considered
in any industry, but especially web security as the number of
web users increased enormously over time. The blockchain
is regarded by some as the most revolutionary technologi-
cal invention since the dawn of the internet; the foundation
of’ Web3.0’, then to proceed in the future of the internet [1].
However, with the increase of decentralised applications run-
ning on blockchains, security is becoming a more important
aspect. Merging this idea with the IoT, the core idea of the
blockchain system, its decentralised nature makes it ideal for
IoT. In particular, usage of smart contracts for IoT device stor-
age and provisioning. The blockchain system can also pro-
vide transparency, traceability and security of the data that is
transmitted within IoT networks. The role of smart contracts
in IoT systems is to achieve the following goals:

• Share data more securely across stakeholders
• Verify identification and authentication

• Reduce costs by eliminating the intermediaries

Hyperledger Fabric is one of the most popular per-
missioned blockchain architecture of any other blockchain
framework. What makes the Hyperledger Fabric popular
is that the peers can easily manage the transactions on the
ledger, therefore it is faster than any other permissioned
blockchains.

By Benhamouda et al. [2], putting private data on the
ledger comes with an inherent dilemma. How can the data
saved on the ledger be safe if everyone can see the same
ledger? A common solution in many systems is to only en-
cryption of the private data while keeping the data itself under
the control of the party that owns it.
From the security perspective, analysis on four intercon-
nected components of Hyperledger Fabric is done; the con-
sensus, the chaincode, the network and its privacy preserva-
tion mechanisms, in possible attacks and leakage of data.

In this paper, specifically, the security of the smart contract
will be discussed. According to Brotsis et al. [3], smart con-
tracts are prone to code errors and inconspicuous vulnerabili-
ties, while their accuracy and security can be violated by ma-
licious programmers by means of exploits. The possible risks
that derive from the platform’s features or misunderstanding
of the common practices can lead to inconsistencies to the
peers’ ledger:

• Range query risks
Queries methods to access the Fabric’s state databases
and obtain private data are not executed again in the val-
idation phase and can lead to phantom reads 1, in which
the dirty data can not be detected.

• Chaincode sandboxing
Hyperledger Fabric’s chaincode is executed in an iso-
lated Docker container and provides sufficient privi-
leges. However, a malicious user could exploit vulnera-
ble peers, install malicious software and execute attacks.

• Log injection
Any corruption of the log messages possibly averts them
from being executed automatically and allow the at-
tacker to view the processed logs.

1A Phantom read occurs when one user is repeating a read oper-
ation on the same records but has new records in the results set.

Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering



Figure 1 shows the number of attacks to different compo-
nents of the blockchain.

Figure 1: The number of attacks to different components [4]

1.2 Research Questions
A smart contract takes the largest proportion of the number
of attacks, which shows that a smart contract is vulnerable.
Therefore in this project, the vulnerability of the smart con-
tract will be solved by combining Self-Encryption and Hy-
perledger Fabric Smart Contract. To answer the main ques-
tion, "How can the Hyperledger Fabric Smart Contract be im-
proved by Self-Encryption?". The following sub-questions
have to be answered:

• What is Hyperledger Fabric Smart Contract?
• What is the definition of the Self-Encryption?
• How can Self-Encryption enhance the security of the

Smart Contract?
Since a blockchain system and privacy of the data is of

great interest for the researchers, there are existing research
done.

1.3 Approach
W. Khan and Y. Byun [5] proposed a permissioned private
blockchain-based result to secure the image encryption. In
this scheme, the cryptographic pixel values of an image are
stored on the blockchain, assuring the privacy and security
of the image data. Encrypted results show that the proposed
scheme is largely effective for data leakage averting and se-
curity.

Zheng et al. [6] proposed attribute-based encryption with
outsourced decryption in the blockchain. The article pro-
posed the combination of blockchain and IPFS, also the us-
age of the outsourced decryption, therefore decryption does
not happen within the smart contract.

Based on the current research and works done, the pro-
totype of a file upload system that could be used in an IoT
system to securely transfer the data will be implemented via
merging self-encryption and Hyperledger Fabric’s smart con-
tract, combined with IPFS.

In Section 2, the background of how blockchain works in
general and more specifically permissioned blockchain tech-
nology, Hyperledger Fabric framework. Additionally, details

about the encryption method used in this research, namely
self-encryption and an explanation on how the chosen self-
encryption library works. Section 3, contains a description
of the research methodology, explaining what will be done to
answer the research questions and why the following meth-
ods are chosen. Section 4 contains an exposition of the main
ideas; the development of a theory, the analysis of the prob-
lem and some theoretical analysis. In Section 5, the results of
the implemented tool will be discussed. Section 6 contains
the reflection on the ethical aspects of this research and a dis-
cussion of the reproducibility of your methods. In Section 7,
a summary of the main research question and the answers to
the questions can be found. Furthermore, discussion of open
issues, improvements and new questions that arise from this
work.

2 Background
2.1 Blockchain and Hyperledger Fabric
A blockchain is a distributed database that is shared among
the nodes of a computer network. As a database, a blockchain
stores information electronically in digital format [7].

The most widely recognised application of blockchain is
the Bitcoin cryptocurrency. Bitcoin is classified as public
permission-less blockchain technology, which means the net-
work is public and participants interact anonymously. How-
ever, for enterprise use, more requirements need to be consid-
ered, most importantly participants must be identified/identi-
fiable and networks need permission. Such problems could
be solved using Hyperledger Fabric.

Blockchain technology, especially Hyperledger Fabric
consists of three components; a distributed ledger, consen-
sus algorithm and smart contracts. Hyperledger Fabric is an
open-source enterprise-grade permissioned distributed ledger
technology platform [8]. The fabric has a highly modular
and configurable architecture, also it supports pluggable con-
sensus protocols which enable the platform to be more effec-
tively customised to fit particular use cases and trust models.

The key elements of the blockchain network/Hyperledger
Fabric framework are as follows:

• Peer
Peer is a fundamental element of the network. A
blockchain network is composed of peer nodes, each
can hold copies of ledgers and copies of smart con-
tracts. A peer can be created, started, stopped, recon-
figured and even deleted. As it is a host for ledgers and
chaincodes, applications and administrators must inter-
act with a peer if they want to access ledgers and chain-
codes. These communications between applications and
peers are completed via channels, which is a mechanism
by which a set of components within a blockchain net-
work can communicate and transact privately [9].

• Ledger
Specifically, in Hyperledger Fabric, a ledger is com-
prised of two distinct parts:

– World State is a database that saves current val-
ues of a set of ledger states. It can be modified



frequently as states can be created, updated and
deleted.

– Blockchain, all the changes in the current world
state are recorded on a transaction log. However, it
is different from the world state as it is immutable.
Therefore, blockchain determines the world state
[10].

• Orderer
As Hyperledger Fabric is permissioned unlike many
other blockchains, a node is called an orderer feature
in the Hyperledger Fabric. An orderer does transaction
ordering, along with other orderer nodes forming an or-
dering service so that any block validated by the peer
is guaranteed to be final and correct. Additionally, it
also maintains the list of organisations that are allowed
to create channels [11].

• Smart Contracts and Chaincode
The most important element of the Hyperledger Fab-
ric in this project, Smart Contract/Chaincode. Usually,
smart contracts and chaincode refer to the same thing,
except that a chaincode is typically used by administra-
tors to group related smart contracts for deployment. A
smart contract defines the transaction logic that controls
the lifecycle of a business object contained in the world
state, which generates new facts that are added to the
ledger [12].

Figure 2: Simple Hyperledger Fabric transaction sequence diagram

Figure 2 shows the transaction flow of a standard asset
change. As both peers must endorse any transaction, the
client requests transaction for both peer 1 and peer 2. Then,
each peer verifies the proposed transaction, then the chain-
code is executed against the current state database and pro-
pose the response. After that, the response proposed from
the previous step is inspected and verifies the peer signatures.
Finally, the peers receive verified transactions, create blocks

of transactions per channel. Once these transactions are vali-
dated and committed, the ledger will be updated.

2.2 Self-Encryption

Self-Encryption is a version of convergent encryption with an
additional obfuscation step. It is a unique encryption method,
as it has no separate keys unlike any other encryption method,
where encryption methods usually have a separate public key
and private key. It uses its file as the key to encrypt. The
Self-Encryption library by the Maidsafe [13] is used in this
research.

The following figure 3 briefly shows the encryption steps.
First, the file is split into a minimum of three chunks, the
number of chunks increases as the file size increases. Then
each file chunk will be encrypted using AES 256. Lastly, file
chunks are obfuscated via XOR operation between encrypted
chunk and randomly chosen hash value of another chunk, i.e.
excluding its hash value.

Figure 3: Encryption Steps

A more detailed overview of how the encryption method
works is as follow [14]:

1. Split a file into several chunks, Cn.

2. Take the hash of each chunk, Hcn .

3. Use [key size] CCn−1 as the key, use [next bytes iv size]
Cn−1 as the Initialisation Vector (IV).

4. Create obfuscation chunk, OBFCn by concatenating
the hashes of other chunks, Cn, [unused part of] Cn−1

and Cn−2.

5. Run encryption cypher on chunks Cn, to produce ran-
dom chunks, Crandom.

6. Data is considered to be randomised and of the same
length as input data.

7. Obfuscation chunk, OBFCn is also random output, but
of length less than the input data.

8. Now take OBFCn(repeated) XOR Crandom to produce
output data.

9. Rename each with the hash of the new content and save
these hashes.

Data map is the most important concept of this self-
encryption scheme. The data map is used to decrypt the data.
The data map contains the information about the file chunks,
Cn. The following table is an example of the structure of the
data map [14]:



Figure 4: Data map

The names of all the encrypted chunks are in the right col-
umn and all keys and IVs are stored in the left column. The
file hash, fh = H(H(C1) + H(C2) + ... H(Cn−1))5 identi-
fies the data element and acts as the unique key for this file.
Thus, in the process of decryption, a data map is used as a
lookup table to check which one of the encrypted chunks was
encrypted with the hash value, which is the unique key. It is
necessary to decrypt the chunk and merge them back to the
normal file format.

The pseudocode below briefly describes how the self-
encryption library works.

procedure ENCRYPTION(file_in_bytes)
hashes← HashFunction(file_in_bytes)
pki← get_pad_key_and_iv(hash_of_chunks)
compressed_file ←

brotli_compression(file_in_bytes)
encrypted_content← AES(compressed_file)

In the encryption step, symmetric encryption, namely AES
in this library is used. The encryption key (or password) and
the Initialisation Vector (IV) are required to perform encryp-
tion. In hashing step, file chunks and hash function, namely
SHA is used. In this implementation, it is assumed that a suf-
ficiently secure algorithm is acting as a hash function which
means that there are little or no collisions. In cryptogra-
phy, secure hashing is an important aspect as the more secure
hashing is the more infeasible to generate or modify a plain-
text.

3 Methodology
At the starting point of the research project, thorough research
on the tools that are going to be used to implement a merged
system of self-encryption and Hyperledger Fabric smart con-
tract was done. Three preeminent tools will be used for the
implementation, Hyperledger Fabric and Self-Encryption Li-
brary [15] and InterPlanetary File System (IPFS) 2.

In this implementation, the test-network sample v2.2.2
from the fabric-samples [16] repository will be used. Within
the test network, Docker 3 v19.03.8 is being used for the in-
teraction between each node and user with a Fabric network.
Additionally, smart contracts can be written in Go, JavaScript
or TypeScript. JavaScript will be used to write the smart con-
tract in this project, due to high compatibility with the Hyper-
ledger fabric’s smart contract and IPFS.

2https://ipfs.io
3https://www.docker.com

The Self-Encryption Library will be outsourced, in a way
that the user has to encryption and decrypt outside the test
network, due to a technical problem running the library on
the Docker container.

Furthermore, InterPlanetary File System (IPFS) will be
used to store the data map for security purposes. The func-
tion of uploading the file to the IPFS will be implemented in
the smart contract. IPFS is chosen to store the data map since
the data map needs to be stored off-chain and should not be
accessible other than the validated user.
When a file is added to IPFS, the file is split into smaller
chunks, cryptographically hashed and given a unique finger-
print called a content identifier (CID) [17].

4 Secure Enhancement for Smart Contract
using Self-Encryption

This section contains a description of the methods/algo-
rithms. The file the user wishes to upload on the ledger will
be encrypted so that it is not accessible on the ledger and
the encrypted data itself is meaningless. Figure 5 shows how
users use the self-encryption library, interact with the smart
contract and IPFS.

Figure 5: Prototype diagram

In this implementation, there are two parties involved. One
who uploads the file and another one who needs the file, thus
need to download or retrieve the file from this application.
First, the party who uploads the file, user A encrypts the file
using the self-encryption library on the local machine. Up-
load both file chunks and data map to the system. Then, user
A executes a query to initialise the ledger, which saves only
file chunks to the ledger. Once more user A executes a query
to upload the data map to the IPFS, which will return the CID.
Lastly, user A provides the CID to the trusted party, user B.
User B uses this CID to retrieve the data map, then uses the
same application to retrieve file chunks. Finally, user B can
decrypt the file.

4.1 Encryption Method
It was not feasible to run the Rust program on the Hyper-
ledger Fabric test network, which is running on the Docker.
Therefore, it is required for the user to encrypt the file within
the local machine using the Self-Encryption library provided.

https://ipfs.io
https://www.docker.com


Then, the file chunks and data map should be uploaded to the
Docker containers. Details on the possible improvement will
be mentioned in section 6.

4.2 Implementation
The implementation extends the asset-transfer-
basic/chaincode-javascript [16], provided from the Hy-
perledger Fabric and test network. The implemented
prototype can be found from Github 4, under directory
/self-encryption-chaincode/lib/assetTransfer.js.

The basic workflow of this whole system is:
1. Bring up the test network and create the channel
2. Package the smart contract
3. Install the chaincode package
4. Approve a chaincode definition
5. Commit the chaincode definition to the channel
6. Invoke the chaincode

Figure 6 presents the detailed workflow of the implemented
prototype between the user, application, peers, orderer, smart
contract, ledger and external database (IPFS).

Figure 6: Workflow diagram

The user has to upload the encrypted files and data map to
the peer Docker container due to technical problems. More
details will be discussed in section 6. Other processes are all
discussed in section 2.

Details on functionalities implemented in the smart con-
tract will be explained. There are two main functionalities
within this smart contract. First, initialise the ledger and
add the file/data into the ledger. Refer to code listing 1,
function getFileContents in line 12-30. It retrieves the
file chunks and read the contents as the buffer byte array.
Then, it is saved as a File in one of the assets and saved
in the ledger, excluding the data map. A user can query
the ledger on the command line to get the list of all the
files added to the channel ledger, using this command
peer chaincode query -C mychannel -n basic -c '{"
Args":["GetAllAssets"]}'. This is how the file chunks
are saved in the ledger; "File":"[{"filename":"3d20
b45c49191b7fe0db46cbcdb3f00f12506e6ec7289de9c719

55bcfa88c3d0","content":{"type":"Buffer","data"

4https://github.com/chaiwon59/self-encryption-fabric

:[35,251,91,206,80,74,192,208,246,6,150,27,163,115,

... ]}}]. There are a few possible ways to handle the data
map:

• Save the data map in the ledger

• Save the data map in the IPFS

Referring to code listing 2, PutDataMapToIPFS function puts
the data map in the IPFS server. Line 4, the package ipfs-
http-client is needed to connect to the running IPFS node.
Then, line 5, actually connects to the daemon API server,
which is saved as an IPFS object. Line 11-15 execute com-
mands on the ipfs object. This function can be called with the
command peer chaincode query -C mychannel -n basic
-c '{"Args":["PutDataMapToIPFS"]}'. This query com-

mand returns (base)chaiwonpark@Chaiwons-MacBook-Pro
test-network %peer chaincode query -C mychannel -n

basic -c '{"Args":["PutDataMapToIPFS"]}'QmeHdzTp8

Ebef8MJuqKTj1LmpDwCuBq77NsjsLx3PdZhi5. This function
returns the hash value which allows the user to retrieve the
data map via the link https://gateway.ipfs.io/ipfs/{CID}.
Then, the data map will be automatically downloaded to a
user’s local machine.

5 Results and Analysis
5.1 Results and Findings
When the file chunks and data map are stored in the ledger,
the plain text, which is saved in buffer byte array will be
absurd as shown in Subsection 4.2. The testing of this
prototype was conducted using different types of data set,
JPEG, plain text, Docx file and JSON file. Additionally, data
sets are real-world examples to produce more realistic test
outputs for future works and compatibility. The tests were
taken on MacBook Pro 2020, 1,4 GHz Quad-Core Intel Core
i5 with 16 GB memory on macOS version 11.6.1. The results
of the performance analysis may differ in different hardware.

Non-encrypted file
JPEG file
The normal file will be saved as buffer byte array just like
encrypted file. The byte array itself may be absurd. However,
using fs.writeFileSync("filename.jpg",byte_array)
(JavaScript function) will return the image file. For example,
byte array <Buffer ff d8ff e000104a 4649 46 00 01 0
1 01 01 2c 012c 0000 ff e10f f545 78 69 66 00 00 49

49 2a 0008 00 00 00 02 00 32 01 02 00 14 00 00 00 26 0

0 ...76916more bytes> will return the example images
used.
JSON file
A not-encrypted JSON file is saved in ledger as buffer array.
When command peer chaincode query -C mychannel -
n basic -c '{"Args":["GetAllAssets"]}' is executed,
the result ,"File":[{"content":{"data":[91,10,32,32,
123,10,32,32,34,110,97,109,101,34,58,34,66,111,98,

34,44,10,32,32,34,100,101,118,105,99,101,34,58,34,

103,111,111,103,108,101,32,104,...],"type":"Buffer

"},"filename":"example_data"}] will be returned. It is
saved as buffer array just like JPEG file. However, using

https://github.com/chaiwon59/self-encryption-fabric


such function of JavaScript {bufferArray}.toString()
will return [{ "name":"Bob","device":"google home","
date":"2022-01-18T13:45:00.000Z","command":"Turn

on spotify"},...]. Therefore, the saved data might not
be coherent, but there is way to produce data which user
uploaded.
Docx file
A non-encrypted Docx file is saved in the ledger as a buffer
array just like any other data type, thus not comprehensible
just looking at the data saved in the ledger. However, us-
ing such JavaScript function, fs.writeFileSync("path/to/
destination",buffer_array_saved_in_ledger) returns the
exact Docx file uploaded.
Plaintext
A non-encrypted plaintext is saved in the ledger as a buffer ar-
ray too. However, equally, to the Docx file, an exact plaintext
file could be returned using the existing JavaScript function.

As discussed, the non-encrypted file does not achieve data
confidentiality or secure data sharing.

Encrypted file with the data map stored in the ledger
Both file chunks and data map are saved as buffer byte arrays.
Converting the file chunks and data map using the JavaScript
function returns 7.

Figure 7: Error converting file

Thus, a malicious user can not retrieve any information
from the data saved in the ledger. However, if the malicious
user is aware of the self-encryption tool, decryption is not a
problem since all the necessary data can be retrieved from
the ledger. Hence, this method achieves security to a certain
degree but is not ideal. This applies to all the other data
sets/types used for testing in this paper.

Encrypted file with the data map stored in the IPFS
As previous results, files will be saved as a buffer byte array.
However, the data map will be uploaded to the IPFS as men-
tioned in section 3. Once the file sender uploads the encrypted
file and executes the PutDataMapToIPFS command, CID will
be returned. Then this CID can be handed over to the user
who wants to open the file, that user can access the data map
using this CID which enables decryption of the file.

For analytical purposes, the performance of the smart con-
tract with encrypted files and without encrypted files will be
compared. The performance analysis will be completed un-
der two categories; execution time and the size of the files.

Figure 8 shows the comparison of the execution time
of ledger initialisation between encrypted files and non-
encrypted files. The difference in execution in time is almost

twice longer for the encrypted file, the main reason being the
uploading of the data map to IPFS.

5.2 Analysis
Security Analysis
The practical side of the security analysis was done in the pre-
vious results section, when a malicious user has access to the
ledger, how could the saved data be manipulated. Addition-
ally, uploading the data map to the Docker container does not
abate security. Since only trusted users should be allowed to
control the Docker daemon, which allows the user to share a
directory between the Docker host and a guest container only
under consent or if required [18]. Thus, Docker containers
are secure by default. In this section, more theoretical proof
of the security of self-encryption will be discussed.

The self-encryption scheme is reduced to the discrete
logarithm problem in chosen-ciphertext attacks. If there
exists an adversary that can break the chosen-ciphertext
attacks security of the self-encryption scheme, then the
challenger can make use of the adversary to solve the discrete
algorithm problem, which is assumed to be hard. Thus the
existence of such an adversary is not possible. Mathematical
and formal proof can be found in [19].

Performance Analysis
Conducive to conduct accurate and realistic results, a large
JSON file is used at the same time as simple test data set. A
JSON file is chosen as it is a common data type that needs to
be handled in the IoT system.

Simple data set
Figure 8 shows the comparison of the execution time of
the command to initialise ledger and to upload data map to
IPFS (if necessary) between encrypted file and non-encrypted
file. Uploading of the encrypted file takes longer than non-
encrypted file due to the key management, which is uploading
data map to the IPFS in this case. This result is inevitable as
IPFS adds another layer of the process which leads to longer
execution time even though uploading to IPFS takes a few
hundred milliseconds.

Figure 8: Execution time comparison (simple data set)



Figure 9: File size comparison (simple data set)

Figure 9 shows the file size comparison between non-
encrypted files and encrypted files with the different file for-
mats. The size of the encrypted files is all the same no matter
what the size of the original (non-encrypted files) are, due
to the Brotli 5 compression method implemented in the self-
encryption (more information can be found in 2.2. However,
extremely small files need to be split into chunks and data
map, therefore the size may be larger.
Real-world example: JSON file [20]
In this scenario, the result was the complete opposite of the
previous case. The execution time of the encrypted files was
enormously smaller, almost 1/10 of the non-encrypted files.
The reason is, self-encryption substantially decreases the file
size as shown in figure 11 due to the compression. This con-
siderable difference in file size makes the time of uploading
data map to IPFS trivial and initialising ledger more signif-
icant factor. As the time to initialise the ledger and the file
size are proportional to each other, non-encrypted file takes
longer.

Figure 10: Execution time comparison (large JSON file)

5Brotli is a compression algorithm developed by Google and is
primarily used by web servers and content delivery networks.

Figure 11: File size comparison (large JSON file)

The file size was an important aspect in this performance
analysis since the execution time is proportional to the file
size. This led to an interesting result that non-encrypted file
needs a longer execution time to successfully conduct the
function or query executed by the user. However, this is only
the case when using an extremely large data set. The dif-
ference in execution time between simple example data sets
and real-world examples was huge. In using encrypted sce-
narios, a real-world example was almost five times more than
the simple data set. In using non-encrypted, the difference
was even larger, where the real-world example was approxi-
mately a hundred times slower.

In this paper, simple performance analyses, such as execu-
tion time and file size measurements were taken place. How-
ever, different tests such as latency, error rates and throughput
could have been conducted as well [21] [22].

6 Responsible Research
This section includes two subsections; Research Integrity and
Reproducibility. The research Integrity part describes how
the research was conducted in a way that this paper includes
incorporates trusted methods and the findings in research.
The reproducibility section describes how the implemented
prototype is reproducible.

6.1 Research Integrity
A number of journals, websites and research papers were
thoroughly studied and inspired this research. All resources
were referenced correctly and cited on the necessary parts.
This research paper contains the handling of the data set. All
the data sets used for testing the implemented prototype is
either self-made or the original author was cited. These test
data sets do not include any personal or confidential informa-
tion. Any quotation or rephrased paragraphs are referenced
therefore readers can trace back to the sources. Additionally,
since the implementation is based on source code, the source
is properly cited on the Github README file.



6.2 Reproducibility
The implementation of this research is based on the sample
network from Hyperledger Fabric [16], which applies to the
Hypereldger Fabric v 2.2.2. The code is reproducible if the
source code is properly cited and referenced. As mentioned
above, the completed implementation can be found in the
Github repository.

7 Conclusions and Future Work
7.1 Conclusions
In this research project, one of the encryption methods,
specifically self-encryption was merged into the smart con-
tract to implement the prototype of uploading a file to
the ledger ensuring data confidentiality and security. Self-
encryption enhances the security of the data in the Fabric’s
smart contract as the results discussed in section 5. This pro-
totype could be extended to implement or create a blockchain
application where external files are commonly used, where
the security of the files is essential.

7.2 Future Work
Due to the limited time constraint, there are several possible
improvements that could have been done better.

First of all, the encryption method itself could have been
implemented in the smart contract. The following methods to
import this library into the smart contract then encrypt the file
within the test network were attempted:

• Convert the Self-Encryption Rust library into Node.js 6

library

• Running the smart contract as an external service as pro-
vided from the Hyperledger Fabric to make the Docker
Rust runnable environment.

• Build separate Docker container for the Self-Encryption
library, which will enable Docker containers to commu-
nicate through a network connection

• Build the Docker containers for encryption library and
smart contract Docker

However, the attempted methods caused errors and could not
be fixed within the given time constraint. It is not a big prob-
lem for the core functionality of the smart contract but it in-
creases the usability for the application user.

Additionally, CID management could be improved via sev-
eral different methods. Currently, the data map is handled via
putting it in the IPFS. Although it ensures the security of the
data map, the CID needs to be given to the verified user who
wishes to retrieve the data map. The CID may be leaked in
this process. Encrypting the data map within the smart con-
tract using symmetric encryption methods such as AES, RSA,
etc. However, this will add another aspect to manage as the
way to transfer the decryption key needs to be decided.

Finally, more advanced encryption, namely attribute-based
encryption [23] [24] could be used to securely escrow the CID
to another user.

6https://nodejs.org/en/

References
[1] “History of blockchain,” Jun. 2021. [Online]. Avail-

able: https://www.tradefinanceglobal.com/blockchain/
history-of-blockchain/

[2] F. Benhamouda, S. Halevi, and T. Halevi, “Supporting
private data on hyperledger fabric with secure multi-
party computation,” IBM J. Res. Dev., vol. 63, no. 2/3,
pp. 3:1–3:8, Mar. 2019.

[3] S. Brotsis, N. Kolokotronis, K. Limniotis, G. Bendiab,
and S. Shiaeles, “On the security and privacy of hy-
perledger fabric: Challenges and open issues,” in 2020
IEEE World Congress on Services (SERVICES). IEEE,
Oct. 2020.

[4] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, “Smart
contract security: A software lifecycle perspective,”
IEEE Access, vol. 7, pp. 150 184–150 202, 2019.

[5] P. W. Khan and Y. Byun, “A blockchain-based secure
image encryption scheme for the industrial internet of
things,” Entropy (Basel), vol. 22, no. 2, p. 175, Feb.
2020.

[6] H. Zheng, J. Shao, and G. Wei, “Attribute-based encryp-
tion with outsourced decryption in blockchain,” Peer
Peer Netw. Appl., vol. 13, no. 5, pp. 1643–1655, Sep.
2020.

[7] A. Hayes, “Blockchain explained,” Investopedia.
[Online]. Available: https://www.investopedia.com/
terms/b/blockchain.asp

[8] “Introduction¶.” [Online]. Available: https:
//hyperledger-fabric.readthedocs.io/en/release-2.2/
whatis.html

[9] “Peers¶.” [Online]. Available: https:
//hyperledger-fabric.readthedocs.io/en/release-2.2/
peers/peers.html

[10] “Ledger¶.” [Online]. Available: https:
//hyperledger-fabric.readthedocs.io/en/release-2.2/
ledger/ledger.html

[11] “The ordering service¶.” [Online]. Avail-
able: https://hyperledger-fabric.readthedocs.io/en/
release-2.2/orderer/ordering_service.html

[12] “Smart contracts and chaincode¶.” [Online]. Avail-
able: https://hyperledger-fabric.readthedocs.io/en/
release-2.2/smartcontract/smartcontract.html

[13] “Providing privacy, security and freedom.” [Online].
Available: https://maidsafe.net/

[14] D. Irvine, “Self encrypting data - maidsafe,” 2015. [On-
line]. Available: https://docs.maidsafe.net/Whitepapers/
pdf/SelfEncryptingData.pdf

[15] Maidsafe, “Maidsafe/self_encryption: File self en-
cryptor,” GitHub. [Online]. Available: https:
//github.com/maidsafe/self_encryption

[16] Hyperledger, “Hyperledger/fabric-samples,” GitHub.
[Online]. Available: https://github.com/hyperledger/
fabric-sample

https://nodejs.org/en/
https://www.tradefinanceglobal.com/blockchain/history-of-blockchain/
https://www.tradefinanceglobal.com/blockchain/history-of-blockchain/
https://www.investopedia.com/terms/b/blockchain.asp
https://www.investopedia.com/terms/b/blockchain.asp
https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatis.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatis.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatis.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/smartcontract/smartcontract.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/smartcontract/smartcontract.html
https://maidsafe.net/
https://docs.maidsafe.net/Whitepapers/pdf/SelfEncryptingData.pdf
https://docs.maidsafe.net/Whitepapers/pdf/SelfEncryptingData.pdf
https://github.com/maidsafe/self_encryption
https://github.com/maidsafe/self_encryption
https://github.com/hyperledger/fabric-sample
https://github.com/hyperledger/fabric-sample


[17] “Ipfs powers the distributed web,” https://ipfs.io/#how,.
[18] “Docker security,” Docker Documentation. [Online].

Available: https://docs.docker.com/engine/security/
[19] S. S. D. Selvi, A. Paul, S. Dirisala, S. Basu, and C. P.

Rangan, “Sharing of encrypted files in blockchain made
simpler,” in Mathematical Research for Blockchain
Economy. Cham: Springer International Publishing,
2020, pp. 45–60.

[20] “Json-iterator/test-data: Sample json file for testing,”
GitHub, Dec 2016. [Online]. Available: https://github.
com/json-iterator/test-data

[21] Q. Nasir, I. A. Qasse, M. Abu Talib, and A. B. Nassif,
“Performance analysis of hyperledger fabric platforms,”
Secur. Commun. Netw., vol. 2018, pp. 1–14, Sep. 2018.

[22] J. Dreyer, M. Fischer, and R. Tönjes, “Performance
analysis of hyperledger fabric 2.0 blockchain platform,”
in Proceedings of the Workshop on Cloud Continuum
Services for Smart IoT Systems. New York, NY, USA:
ACM, Nov. 2020.

[23] S. Wang, K. Liang, J. K. Liu, J. Chen, J. Yu, and W. Xie,
“Attribute-based data sharing scheme revisited in cloud
computing,” IEEE trans. inf. forensics secur., vol. 11,
no. 8, pp. 1661–1673, Aug. 2016.

[24] P. Zhang, Z. Chen, J. K. Liu, K. Liang, and H. Liu, “An
efficient access control scheme with outsourcing capa-
bility and attribute update for fog computing,” Future
Gener. Comput. Syst., vol. 78, pp. 753–762, Jan. 2018.

https://ipfs.io/#how 
https://docs.docker.com/engine/security/
https://github.com/json-iterator/test-data
https://github.com/json-iterator/test-data


A Appendix

A.1 Code Listings

Listing 1 Initialising Ledger

1 const stringify = require('json-stringify -deterministic');
2 const sortKeysRecursive = require('sort-keys-recursive');
3 const { Contract } = require('fabric-contract-api');
4 const fs = require('fs');
5 const path = require('path');

7 let topDir = '/etc/hyperledger/fabric/chunk_store_test/';

9 let fileList = () =>
10 fs.readdirSync(topDir);

12 function getFileContents(dir) {
13 const array = [];
14 fileList().forEach(filename => {

16 if(!filename.includes('data_map')){
17 // get current file name
18 const name = path.parse(filename).name;

20 const content = fs.readFileSync(dir + filename);

22 let element = {};

24 element.filename = name;
25 element.content = content;
26 array.push(element);
27 }
28 });
29 return array;
30 }

32 class AssetTransfer extends Contract {

34 async InitLedger(ctx) {

36 const assets = [
37 {
38 ID: 'asset1',
39 Color: 'blue',
40 Size: 5,
41 Owner: 'Tomoko',
42 AppraisedValue: 300,
43 File: JSON.stringify(getFileContents(topDir)),
44 },
45 ];

47 for (const asset of assets) {
48 asset.docType = 'asset';
49 // example of how to write to world state deterministically
50 // use convetion of alphabetic order
51 // we insert data in alphabetic order using 'json-stringify -deterministic ' and

'sort-keys-recursive '



52 // when retrieving data, in any lang, the order of data will be the same and
consequently also the corresonding hash

53 await ctx.stub.putState(asset.ID, Buffer.from(stringify(sortKeysRecursive(
asset))));

54 }
55 }
56 }

Listing 2 Putting DataMap to IPFS

1 const { Contract } = require('fabric-contract-api');
2 const fs = require('fs');
3 const path = require('path');
4 const IPFS = require('ipfs-http-client');
5 const ipfs = new IPFS.create({ host: 'ipfs.infura.io', port: 5001, protocol: 'https'});

7 class AssetTransfer extends Contract {
8 async PutDataMapToIPFS() {
9 const getDataMap = () =>

10 fs.readFileSync('/etc/hyperledger/fabric/chunk_store_test/data_map');
11 const addFile = async () => {
12 console.log('addFile called');
13 const file = { path: 'testfile', content: Buffer.from(getDataMap())};
14 const filesAdded = await ipfs.add(file);
15 return filesAdded.cid.toLocaleString();
16 };
17 return await addFile();
18 }
19 }


	Introduction
	Motivation
	Research Questions
	Approach

	Background
	Blockchain and Hyperledger Fabric
	Self-Encryption

	Methodology
	Secure Enhancement for Smart Contract using Self-Encryption
	Encryption Method
	Implementation

	Results and Analysis
	Results and Findings
	Analysis

	Responsible Research
	Research Integrity
	Reproducibility

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix
	Code Listings


