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Abstract

Urban Energy Modeling (UEM) provides a comprehensive approach to urban planning, helping to create
sustainable, resilient, and energy-efficient cities that meet the needs of current and future generations.
The key inputs for UEM methodologies and tools are the geometry of the building stock and its ther-
mophysical properties. In the Netherlands, the 3DBAG provides the building stock geometry, while
the thermophysical properties can be approximated using energy consumption estimates specific to each
residential building type from the IEE project TABULA. However, a challenge arises as open data on res-
idential building types at a national level is currently not readily available, necessitating the development
of a method to infer this information from other accessible data sources.

In response to similar successful studies, this thesis also focuses on utilising machine learning to address
this challenge. Support Vector Machine (SVM) and Random Forest (RF) algorithms were tested and
compared. These algorithms were trained using data on the residential building types obtained from the
Rijssen-Holten energy testbed and EP-online, with the latter requiring preprocessing to obtain the rele-
vant information. Additionally, 25 features derived from cadastral data and building geometry underwent
a selection process to identify the essential features for accurate classification of building types.

Eight models were trained and applied across eight case studies, containing subsets of the Netherlands
representative for the whole country. The combined results were analyzed to determine necessary features,
required data, and the most suitable machine learning approach for this research.

The results revealed that features such as adjacency to other buildings, width, and volume in LoD2.2
correlated the most with Dutch residential building types. However, critical features like the number of
storeys, the presence of an open porch, or galleries were not available as open data, even though they
directly relate to the definition of certain residential building types.

This thesis presented successful models, demonstrating accuracies between 61.1% and 98.5%, and bal-
anced accuracies ranging from 51.6% to 94.2%. Importantly, performance differences were observed in
various case studies, particularly in distinguishing accuracy between multi-dwelling and single-dwelling
houses. Despite the longer tuning and training time, the suitability and accuracy of the RF models
generally outperformed the SVM models.

These findings highlights the capacity of machine learning to attain robust classification outcomes for the
Dutch building stock when trained on representative datasets. Nevertheless, it is emphasized that the
accuracy of results is contingent on data quality, and difficulties may arise in scenarios involving intricate
buildings with multiple components and ambiguous classification rules.
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1 | Introduction

The 17 Sustainable Development Goals are a universal call to action to end poverty, protect the planet
and improve the lives and prospects of everyone and everywhere. These goals are adopted by all 193
Member States of the United Nations as part of the 2030 Agenda for Sustainable Development (United
Nations, 2015b). From these 17 Sustainable Development Goals, number 11 concerns making cities
and human settlements inclusive, safe, resilient, and sustainable. And, stresses the importance of cities
and settlements to improve living standards and decrease energy consumption (United Nations, 2015a;
Ferrando et al., 2020). One of the most pressing challenges that cities face today is the levels of urban
energy consumption. Cities occupy only 3 percent of the Earth’s land but account for 60 to 80 percent of
all energy consumption. To decrease urban energy consumption, and to achieve Sustainable Development
Goal 11, energy in cities must be better managed and the cities’ design must be optimised. Many Urban
Energy Modeling (UEM) methodologies and tools have been developed to do so. However, if UEM is not
applied, cities may not have an accurate understanding of their energy use and may miss opportunities
for energy savings. For example, a city may not realise that a significant portion of its energy use
is coming from inefficient buildings or outdated infrastructure. This could lead to the city continuing
to invest in expensive, unsustainable energy sources rather than investing in energy-efficient upgrades
or renewable energy. Two main inputs required for these UEM methodologies and tools are first, the
building stock geometry and secondly, the thermophysical properties associated with the entities in the
geometry (Ferrando et al., 2020).

The 3DBAG is an open data set containing 3D models of the building stock of the Netherlands at multiple
levels of detail. This dataset is generated by combining two open data sets: the building data from the
Register of Buildings and Addresses (BAG) and the height data from the National Height Model of the
Netherlands (AHN) (Peters et al., 2022). However, the 3DBAG lacks building data on thermophysical
properties, which are required for UEM, for example, the construction characteristics of buildings such
as materials, size, and order of construction layers.

On the other hand, the IEE project TABULA defined residential building typologies for 13 European
countries, where each national typology consists of a classification scheme to group buildings according to
their size, age, and other parameters. The TABULA WebTool then provides an online calculation of the
exemplary buildings representing the building types and displays their energy-related features (Episcope,
2012). These exemplary buildings can be used to give an estimation of the energy consumption of a
building stock by classifying its buildings into the residential building typologies, substituting the need
for thermophysical properties of each building of a building stock.

Recent studies such as "3D Building Metrics for building morphology" and "Global Building Morphology
Indicators" (Labetski et al., 2022; Biljecki & Chow, 2022) introduce metrics calculated from building
models that could potentially be used as features for a machine learning algorithm to classify certain
building types.

The master thesis aims to infer the types of residential buildings from the building stock of the Netherlands
in the 3DBAG using feature engineering and machine learning, as a way to add thermophysical properties
to the residential buildings, which can then be used in UEM. This master thesis is divided into two
main parts, firstly to calculate and evaluate the accuracy assessment of the introduced features (feature
engineering) extracted from the 3D building models from the 3DBAG; secondly to implement machine
learning methods to calculate the building type of residential buildings on the IEE project TABULA
residential building typologies for the Netherlands.
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1.1 Research questions

The goal of this master thesis is to develop a method to infer the residential building type from the
3DBAG. To achieve this goal machine learning will be used. Multiple combinations of attributes will be
considered to be used as features to get accurate building type predictions. These features will primarily
be extracted from the 3DBAG, for geometrical features. But, other datasets will also be considered, for
example, the BAG for cadastral features. Furthermore, additional data will be needed containing the
building types to be used as ground truth for machine learning.

Based on this the main research question can be formulated as follows:

To what extent can machine learning correctly classify the building stock of
The Netherlands?

To answer the main research question the following sub-questions are defined:

• What features are needed to infer the building types of the buildings of the 3DBAG?

• What data is required?

• Which (combination of) machine learning algorithm is the most suitable to be used for the classi-
fication of the building stock of the Netherlands, with regards to the size and nature of the data
used, the availability of computational resources, the interpretability of the results and the desired
level of accuracy?

1.2 Scope

The scope of this thesis in inferring the residential building type from 3DBAG is outlined as follows:

• The geographic extent will be the Netherlands since the 3DBAG only contains the building stock
of the Netherlands. However, only a subset representative of the whole of the Netherlands will be
used to test the method in this thesis. But, the method introduced is expected to be replicated for
the whole country or different parts of the country (different subsets).

• Only the residential building types will be considered since the classification performed is to be
used with the energy-related features from the IEE project TABULA for UEM. The classification
will be based on the method employed by the Dutch cadastre (The Kadaster), but expanded in this
thesis by also including the subtypes of apartment blocks.

• Furthermore, the 3D Building Metrics will be employed to obtain features, however, only a selection
of metrics are considered due to the complexity of a number of the introduced metrics. Also, the
data used to obtain the features and the ground truth will solely be open data.

• Lastly, the machine learning algorithms considered in this thesis are selected with regards to the cri-
teria set in the third sub-question. As such, Support Vector Machine and Random Forest algorithms
are selected and will be compared in this thesis.
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1.3 Outline

This thesis comprises six main chapters. In Chapter 2, the background and relevant prior research
pertaining to this thesis are presented. The Dutch residential building types and different classification
systems of these types are introduced, as well as the machine learning algorithms used. Additionally,
indicators and metrics introduced in GBMI and 3DBM are presented. Lastly, the chapter explores a
previous application of machine learning similar to the research topic of this thesis.

Chapter 3 offers an overview of the method employed to be able to answer the research questions.
Subsequently, Chapter 4 delves into the details of the implementation of the method, while also describing
the case studies defined in this thesis. Chapter 5 then presents the results derived from the implementation
of the method, comparing the performance of the obtained prediction models on the case studies. In
Chapter 6 these results are then further discussed and analysed.

Lastly, Chapter 7 concludes this thesis by giving a research overview, where the research questions are
presented once more and are answered. Followed by a discussion of the limitations of this thesis and
recommendations for future research.
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2 | Theoretical background and related work

2.1 Theoretical background

2.1.1 Dutch residential building types
To classify a building from the 3DBAG dataset into one of the residential building types specified in
the IEE project TABULA, the criteria used to differentiate each residential building type needs to be
examined first. These criteria, defining how one residential building type differs from another, can then
be used as features for machine learning algorithms to classify the buildings into their residential building
type.

The IEE project TABULA classifies the residential buildings of all participating countries into four
generic building types: single-family houses, terraced houses, multi-family houses, and apart-
ment blocks. These generic building types are then further divided into building types specific to the
Netherlands: detached single-family houses and semi-detached single-family houses (twee-onder-
een-kap), middle-row terraced houses (tussenwoning) and end-house terraced houses (hoekwon-
ing), common staircase with galleries apartment block and common staircase without gal-
leries apartment block, and lastly maisonettes. Each type is also classified based on their year of
construction: before 1964, between 1965 and 1974, between 1975 and 1991, between 1992 and 2005, and
after 2006. Each generic building type and subdivision building type has its own exemplary building for
each construction year class with its energy-related features (Episcope, 2014). See Figure 2.1 below for
the diagram of this classification made by the IEE project TABULA.

Figure 2.1: TABULA classification diagram.

Figure 2.2: Voorbeeldwoningen 2011 classification diagram.
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Additionally, the brochure Voorbeeldwoningen 2011 published by Agentschap NL (2011) describes refer-
ence dwellings with their energy-related features and the impact of refurbishment measures with the same
building types as the IEE project TABULA (see Table 2.1), but with a less hierarchical distinction (see
Figure 2.2). For example, there are no generic building types, and the distinction between a middle row
and end house terraced house is not made, but specific building properties are given for front-back
facades and side facades. Also, for some of the building types, the number of floors and the floor area for
each building type are specified. While in the TABULA the number of floors is not specified and some
of the referenced floor areas are estimated (Episcope, 2013). See figure 2.3 for examples showcasing the
Dutch residential building types mentioned in IEE project TABULA and Voorbeeldwoning 2011.

Voorbeeldwoningen 2011 IEE project TABULA
Vrijstaande woning Detached
2 onder 1 kap woning Semi-detached
Rijwoning Terraced house
Maisonettewoning Maisonette
Galerijwoning Common staircase with galleries
Portiekwoning Common staircase without galleries
(Overig) flatwoning Multi-family house

Table 2.1: Same building types between Voorbeeldwoningen and IEE project TABULA.

a Detached b Semi-detached c Terraced house

d Maisonette
e Common staircase with gal-
leries

f Common staircase without
galleries

g Multi-family house

Figure 2.3: Examples of the Dutch residential building types (Rijksdienst voor Ondernemend Nederland,
2023).

Moreover, the Kadaster (2015) utilises a classification system somewhat similar to that of the Voorbeeld-
woningen 2011 and the IEE project TABULA. Like the IEE project TABULA, the Kadaster makes a
distinction between middle-row and end-row terraced houses. However, it does not differentiate between
various types such as multi-family houses, maisonettes, apartment blocks with common stair-
cases and galleries, and apartment blocks with common staircases but without galleries.
Instead, all these are collectively classified as apartments in the Kadaster’s classification system.
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The Kadaster (2015) elaborates on the classification process of the building types using a flowchart. This
classification process classifies a building by linking its address to an exemplary building type or reference
dwelling type. This flowchart can be found in Figure 2.4.

Figure 2.4: Flowchart of the Kadaster’s classification process of buildings.

From this flowchart, the residential building types of the Netherlands can be defined:

• Single-family houses (See Figure 2.5):
– Detached single-family houses (DH) are buildings with 1 dwelling and no neighbouring

buildings with dwellings.
– Semi-detached single-family houses (SDH) are buildings with 1 dwelling. And 1 neigh-

bouring building with dwellings, and that neighbouring building has no other neighbouring
buildings.

– End house terraced houses (EH) are buildings with 1 dwelling. And 1 neighbouring build-
ing with dwellings, and that neighbouring building has more than 1 neighbouring building.

– Middle-row terraced houses (TH) are buildings with 1 dwelling and more than 1 neigh-
bouring building with dwellings.

• While apartments are buildings with more than 1 dwelling.
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Figure 2.5: Top view 2D illustration of the single-family houses.

According to the Kadaster (2015), using their classification process in 2014 there were less than 1 million
classified as non-residential from the 8.5 million addresses in the Netherlands. And less than 3000 ad-
dresses which were not classified. The reason for these unclassified addresses is, overlapping buildings in
the BAG dataset, (neighbouring) buildings with the same addresses and buildings which were not in use
(for example, buildings for sale). There were also errors propagated from errors in the BAG. For example,
a building missing data on its dwelling will lead to incorrectly classifying its type. A small space between
buildings can lead to classifying a building as an end house instead of a middle-row terraced house
or semi-detached single-family house.

Furthermore, the Kadaster’s classification process groups the multi-family houses, maisonettes, com-
mon staircase with galleries apartment blocks and common staircase without galleries apart-
ment blocks into a single type: apartments.

The elimination of the subdivision of the apartments was also made in the Referentiewoningen nieuw-
bouw 2013 published by Agentschap NL (2013), a brochure giving exemplary buildings to be used as a
reference for new residential buildings. But still they divide the apartments into gallery buildings and
apartment buildings, while acknowledging the significant diversity within these types and therefore the
energy-related values given are an average of the diverse subtypes.

However, Rijksdienst voor Ondernemend Nederland (2023) recently released Voorbeeldwoning 2022, rein-
troducing the subdivision of the apartments. Hence, it remains important to incorporate these apart-
ment subtypes in this thesis, as the current building stock includes these subtypes. Moreover, these
subtypes are featured again in the new Voorbeeldwoning 2022, indicating that upcoming constructions
will reference these apartment subtype buildings.

2.1.2 Machine learning
Machine learning (ML) is a powerful subfield of artificial intelligence that enables the computer to learn
and improve itself through experience and data. Instead of following explicit instructions, machine
learning uses algorithms to discover patterns and insights in data, and make predictions or perform tasks
based on them (Géron, 2019).

Machine learning can be classified into two main categories: supervised learning and unsupervised learn-
ing. The difference between the two is the input data used that a computer learns from. With supervised
learning the training data is labelled. This means that the observations in the data set each have their
descriptive variables (or features) and their desired outcome of the prediction. A model is then trained
to map the features to those predictions to accurately predict the outcome of input descriptive variables
for future observations. On the other hand, unsupervised learning does not require labelled training
data. Unsupervised models are trained with descriptive variables only, it learns patterns and determines
structures in the data without knowing beforehand (Tangirala, 2020).

Supervised learning can be further divided into two major types of supervised learning problems, which
are classification and regression. Classification aims to predict class labels, which is a categorical variable
from a predefined list. While regression aims to predict a continuous number (Müller, 2017).

It is clear that this master thesis, inferring the residential building type, is a classification problem. The
Dutch residential building types described above are the categorical variables from a predefined list which
needs to be predicted.
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The classification algorithms used in this master thesis are Support Vector Machine and Random Forest.
This is mainly due to the interpretability of these machine learning algorithms. Furthermore, Support
Vector Machines are effective in high dimensional spaces (input data having many features) while also
being memory efficient (Scikit-learn, 2023c). Random Forests are one of the most used machine learning
methods. While they are powerful, they often do not require heavy hyperparameter tuning and the
scaling of data (Müller, 2017).

Support vector machine (SVM)

Support Vector Machines are powerful supervised machine learning algorithms, which are particularly
popular for classification problems but they can also be used for regression tasks. In the case of clas-
sification problems, SVM is also called Support Vector Classification (SVC). The goal of SVMs is to
find a hyperplane that best separates data points belonging to different classes while at the same time
maximising the margin between them.

A hyperplane is the separation of data in higher dimensions, in a two-dimensional space the hyperplane is
a straight line. The margin is the distance between the hyperplane and the nearest data points from each
class, maximising this margin allows SVMs to perform better on unseen data. The nearest data points
to a hyperplane are called Support Vectors, these are crucial in determining the position and orientation
of a hyperplane. A kernel function can be used to map the data into a higher-dimensional space allowing
SVMs to handle non-linearly separable data (Cristianini & Shawe-Taylor, 2000). However, for this master
thesis, only the linear kernel is considered, since the fit time for other kernels scales quadratically with
the number of samples (or observations) which will be impractical with more than tens of thousands of
samples. Therefore linear SVC is suggested for large datasets, like the building stock of the Netherlands
(Scikit-learn, 2023p).

Random Forest (RF)

Random Forests (Breiman, 2001) are ensemble machine learning algorithms that combine multiple de-
cision trees. Decision trees are predictive models that recursively split the input dataset into subsets
based on the provided features, making decisions at each node to predict the target variable. Each tree is
trained on a different subset of the input data and using different subsets of features. This improves the
robustness and therefore the accuracy of predictions of the Random Forest. In both classification and
regression tasks, Random Forests are widely used.

Random Forests are effective due to two sources of randomness. The first source is bootstrap aggregating
(or bagging), each decision tree in a Random Forest is trained on a randomly sampled (with replacement)
subset of the training data. This introduces diversity among the decision trees. The second source is
feature randomness, at each node where the input dataset is split into smaller subsets, a random subset
of features is considered for splitting. This reduces the chance of overfitting and makes Random Forests
more robust. In Random Forest the average of the predictions of each decision tree is taken to cancel out
some of the errors. The combination of diverse decision trees reduces the variance, sometimes at the cost
of an increased bias. However, in practice, the reduction in variance is often significant enough yielding
an overall better model (Scikit-learn, 2023a).
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2.2 Related work

2.2.1 Building indicators and metrics
The Global Building Morphology Indicators (GBMI) (Biljecki & Chow, 2022) is a comprehensive com-
pilation of building form multi-scale measures resulting from a systematic literature review. It also
encompasses a methodology and a tool designed for the computation of these metrics in a database suit-
able for extensive data and comparative research. These building-level indicators, both independent and
contextual, are detailed in Table 2.2.

Concurrently, the 3D building metrics for urban morphology (3DBM) (Labetski et al., 2022) offer an
extensive array of 3D metrics that extend beyond basic building metrics, considering full 3D aspects
and intricate building shapes. These metrics (see Table 2.3) are individually computed for each building
and can be accessed through a software package that processes 3D city models, storing the metrics
systematically for data analysis. These indicators and metrics are integral to the study of urban form
and play a pivotal role in numerous large-scale research endeavours (Biljecki & Chow, 2022; Labetski et
al., 2022).

These indicators and metrics serve as essential components for classifying the building stock of the
Netherlands into residential building types. They also aid in categorising generalised apartment types
defined by the Kadaster (2015) into subdivisions from the IEE project TABULA (Episcope, 2014) and
the Voorbeeldwoningen brochure from Agentschap NL (2013). However, it is worth noting that adapting
the GBMI is needed to accommodate 3DBAG as input data, and as such, falls outside the scope of this
thesis.

Indicator Data type Unit
Footprint area Decimal m²
Perimeter Decimal m
Height Decimal m
Height to footprint area ratio Decimal m−1

Volume Decimal m³
Wall area Decimal m²
Evelope area Decimal m²
Number of vertices Integer
Complexity Decimal
Compactness Decimal
Equivalent rectangular index Decimal
Mimimum Bounding Rectangle Length Decimal m
Mimimum Bounding Rectangle Width Decimal m
Mimimum Bounding Rectangle Area Decimal m²
Orientation (azimuth) Decimal degree
Number of storeys Integer
Floor area Decimal m²
Number of neighbours Integer
Site coverage in the buffer Integer
Distance to neighbours
-Minimum Decimal
-Median Decimal
-Mean Decimal
-Maximum Decimal
-Sum Decimal
-Standard deviation (SD) Decimal
-Index of dispersion (D) Decimal
-Coefficient of variation (CV) Decimal
Neighbour footprint area (varying buffer)
-Same 8 descriptive statics as above
Ratio neighbour height to distance
-Same 8 descriptive statics as above

Table 2.2: List of indicators at the building level from the GBMI (Biljecki & Chow, 2022).
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Geometric properties

Number of vertices, Number of surfaces, Number of vertices by
semantic type (i.e. ground, roof, wall), Number of surfaces by
semantic type (i.e. ground, roof, wall), Min/Max/Range/Mean/Median
/Std/Mode height

Derived properties

Footprint perimeter, Volume, Volume of convex hull, Volume of Object-
Oriented Bounding Box, Volume of Axis-Oriented Bounding Box,
Volume of voxelised building, Length and width of the Object-
Oriented Bounding Box, Surface area, Surface area by semantic
surface, Horizontal elongation, Min/Max vertical elongation,
Form factor

Spatial distribution Shared walls, Nearest Neighbour

Space indices

Circularity/Hemisphericality, Convexity 2D/3D, Fractality 2D/3D,
Rectangularity/Cuboidness, Squareness/Cubeness, Cohesion 2D/
3D, Proximity 2D/3D, Exchange 2D/3D, Spin 2D/3D, Perimeter/
Circumference, Depth 2D/3D, Girth 2D/3D, Dispersion 2D/3D,
Range 2D/3D, Equivalent Rectangular/Cuboid, Roughness

Table 2.3: Metrics, from the 3D building metrics for urban morphology (Labetski et al., 2022), computed
per building based on category.

2.2.2 Inferring the number of floors
Finally, the journal paper "Inferring the number of floors for residential buildings" by Roy et al. (2023)
has been used as inspiration for its clear structure and the similarities to this master thesis. In this paper
Roy et al focuses on inferring the number of floors of the buildings from the 3DBAG by using supervised
machine learning techniques. The labels, in this case, are the building floor count and the features are
the building properties. Three machine learning algorithms were used in this paper: Random Forest
Regression, Gradient Boosting Regression and Support Vector Regression. And, it was identified that
inferring the number of floors is a regression problem since classification would require the training data
to include all possible floor counts that exist in reality, which would be difficult to find in practice.

However, as mentioned above in this master thesis the problem is classification, since the building needs
to be inferred to discrete residential building types and the training data can include all the possible
residential building types of the Netherlands. Nonetheless, the features considered in Roy et al’s (2023)
paper should be relevant for this master thesis as well. Since the number of floors can be considered a
feature in inferring the residential building type. The features can be subdivided into cadastral, geometric
and census features. The cadastral features were obtained from the BAG. The geometric features are
split into 2D and 3D features, where the 2D features are extracted from the BAG and the 3D features
from the 3DBAG. Lastly, the census features were obtained from the Centraal Bureau voor de Statiek
(CBS), a government agency responsible for collecting statistical information about the Netherlands. All
these features can be found in Tables 2.4, with their details and relevance. The relevances are described
for the number of floors but are applicable for the residential building type as well.
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Feature Details and relevance
1 Construction year Construction period is often related to storey height.

2 Building function
A distinction is made between residential and mixed-residential,
as the latter have been found to exhibit different proteries than
purely residential buildings.

3 Net internal area Taller buildings (with more storeys) generally have a higher
net internal area.

4 Number of units Similar to the net internal area, buildings with more storeys
generally contain more building units (for example, apartment blocks).

5 Area Dividing the net internal area by the footprint area can provide
an indication of the number of floors.

6 Perimeter In combination with area, perimeter can provide information
about the footprint shape, such as its compactness and complexity

7 No. vertices A higher number of footprint vertices could indicate a more
complex shape. Computed after simplification by Douglas-Peucker

8 No. neighbours

The number of neighbouring building centroids within 100m radius
of the footprint centroid. Buildings with many storeys are generally
surrounded by more open space. Buildings in rural areas also generally
have fewer neighbours.

9 No. adjacent buildings The number of buildings within a 0.1m buffer of each footprint. Lower
buildings in urban areas generally have more immedidate neighbours

10 Building height
Computed for the minimum, maximum, 50th and 70th roof height
percentiles. Building height is strongly related to number of floors,
especially for residential buildings.

11 Roof shape
In combination with building height, roof shape could provide
information about the likelihood that storeys are present beneath
slanted roofs.

12 Ridge vs. eave height
The difference between the height of the ridge and eaves of the roof.
Similar to roof shape, this could provide some indication of whether
storeys might be present beneath slanted roofs.

13 Roof surface area Computed for both LoD1.2 and LoD2.2 to describe building geometry.
14 Wall surface area Computed for both LoD1.2 and LoD2.2 to describe building geometry.

15 Building volume Computed for both LoD1.2 and LoD2.2.
A larger volume is somewhat linked to a larger number of floors.

16 Population per km Areas with higher population density generally have more high storey
buildings to accommodate all residents.

17 Percent multi-household Multi-household buildings, such as apartment blocks, generally have
more storeys than single family homes.

18 Average no. of cafes in 1km

The average number of cafes shows a strong link to area morphology
and could be used to distinguish central business districts from rural
and suburban areas. Other amenities were also considered but the
average number of cafes showed the clearest relationship to area
morphology.

Table 2.4: Features in Inferring the number of floors for residential buildings (Roy et al., 2023).
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3 | Method

In this chapter the method used to address the research questions will be described in a general manner
while giving examples specific to this thesis. The method consists of four main stages:

1. Data collection and preparation
2. Feature extraction and selection
3. Modelling and prediction
4. Accuracy assessment

The flowchart in Figure 3.1 shows the iterative process of the four main stages in this method.

Figure 3.1: Flowchart of method.

3.1 Data collection and preparation

First, the data required for classification needs to be collected. A semantic 3D city model is necessary to
extract geometrical features, for example, from the 3DBAG, which is the basis of this thesis. Additionally,
a cadastre database is needed to obtain data such as each building’s use, its address, and the number
of dwellings in each building. The building’s use will also allow the filtering of residential buildings. In
this thesis, the BAG is used. Labelled data is also required to provide a ground truth for the machine
learning algorithms. It needs to consist of unique building identifiers and building types.

For this thesis, the open testbed for energy applications located in the municipality of Rijssen-Holten
and the official national database containing energy labels and energy performance indicators of Dutch
buildings (EP-online) are used to create labelled data.

The Rijssen-Holten energy testbed (León-Sánchez et al., 2022) is a dataset created from the 3DBAG,
covering only the municipality of Rijssen-Holten. This dataset includes different attributes, some of which
are relevant, namely, the building type, the number of adjacent buildings, and the number of storeys of
each building. It is used to obtain the building type labels for the municipality of Rijssen-Holten.

On the other hand, EP-online (Rijksoverheid, 2023) contains the energy labels and performance of each
dwelling in the buildings of the Netherlands, and also the dwelling’s building type. This dataset is used
to get the building type labels for the rest of the Netherlands. However, the building type is given
for each dwelling in this dataset, and therefore one building can contain many dwellings with different
building types. As such, preprocessing is required to obtain the specific building type of each building
from EP-online.

Lastly, further data preparation needs to be performed, including removing demolished buildings and
standardizing the building type names originating from the different datasets. See Table 3.1 for the open
datasets used in this thesis.

Dataset name Description Version Source
3DBAG 3D building models of the building stock of the Netherlands 21.09.8 (Peters et al., 2022)
BAG National cadastral dataset 01-08-2023 (Kadaster, 2023a)
Rijssen-Holten Open testbed for energy applications, study area is located in the municipality of Rijssen-Holten 11-07-2022 (León-Sánchez et al., 2022)
EP-online Official national database containing energy labels and energy performance indicators of buildings 01-01-2023 (Rijksoverheid, 2023)

Table 3.1: Relevant datasets.
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3.2 Feature extraction and selection

Second, features which describe the properties of each building need to be extracted from the collected
data. The methodology and tools of the 3DBM will be used and expanded with features which are needed
for the classification of the residential buildings for this thesis. The required features will be determined
by definitions of each Dutch residential building type.

In this thesis, several required features can be derived from the classification process of the Kadaster,
namely the number of dwellings, the number of neighbouring buildings with dwellings and the number
of neighbouring buildings of the neighbouring building. These cadastral features can be obtained from
the BAG. The geometrical features extracted with the 3DBM from the 3DBAG will be used to further
classify the apartment residential building type into its subdivisions.

Several computed features, including the features extracted with the 3DBM, are then validated to make
sure the extracted features are correctly computed and represent the feature required for the classification.
These features will then need to be analysed and assessed to eliminate any redundant or irrelevant features,
a process known as feature selection or feature elimination. Feature selection helps with selecting a subset
of features that can provide a concise description of the training dataset, while still generating accurate
predictions (Chandrashekar & Sahin, 2014).

3.3 Modelling and prediction

Third, the classification of Dutch residential buildings in this thesis will be carried out using SVM and
RF algorithms. Before training the algorithms, data preprocessing is necessary, involving the conversion
and appropriate scaling of extracted features for machine learning. Additionally, 80% of the data will be
extracted for training, while the remaining 20% will serve for model evaluation to provide an unbiased
performance assessment.

The evaluation of model performance will involve the use of various error metrics. To determine the
most suitable machine learning approach for classifying Dutch residential buildings, the results of these
algorithms must be compared to the ground truth. This comparison is typically facilitated through the
utilisation of a confusion matrix, which includes True Positive, True Negative, False Positive, and False
Negative values, and is usually presented in a tabular format as shown in Figure 3.2. The confusion
matrix is a special kind of contingency table, which is introduced by Pearson (1904). Fawcett (2006),
among many others, adapted this to be used for organising classifiers and visualising their performance.

Figure 3.2: Confusion matrix (Fawcett, 2006), true class = label and hypothesized class = prediction
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Each prediction from a model can be one of these four types:

• True Positive (TP), is when a sample is predicted to be positive (for example, a building is predicted
to belong to a certain residential type) and its label is actually positive (for example, the building
actually belongs to that residential type).

• True Negative (TN), is when a sample is predicted to be negative and its label is actually negative.
• False Positive (FP), is when a sample is predicted to be positive, but its label is actually negative.
• False Negative (FN), is when a sample is predicted to be negative, but its label is actually positive.

With these values, several performance metrics can be computed, namely Precision, Recall and the F1
score. These metrics can be used to evaluate the performance of the models for this thesis while being
able to handle imbalanced class distributions.

Precision is the ratio of correctly predicted positive outcomes to all positive predictions made by the
model. It also represents the model’s capability to avoid misclassifying a positive sample as negative
(Scikit-learn, 2023l):

Precision =
TP

(TP + FP )
(3.1)

While, recall is the fraction of actual positives out of all positive predictions and can also be described
as the ability of the model to find all positive samples (Scikit-learn, 2023m):

Recall =
TP

(TP + FN)
(3.2)

Finally, the F1-score is the harmonic mean between the precision and recall, an F1-score of value 1
is considered the best and a value of 0 the worst. It can be described as the balanced ability of the
model to both capture positive cases (recall) and be accurate with the cases it does capture (precision)
(Scikit-learn, 2023k):

F1-score =
2(Precision ·Recall)

(Precision+Recall)
(3.3)

Furthermore, in scikit-learn (Pedregosa et al., 2011) the accuracy is computed as the weighted average of
recall. While the balanced accuracy is computed as the average recall obtained on each class, this allows
the balanced accuracy to deal with imbalanced datasets and give a better performance metric (Scikit-
learn, 2023j). Both will be used as a summation of the introduced metrics to compare the performance
of each trained model.

To optimise the performance of each model, hyperparameter tuning is necessary. Hyperparameter tuning
involves discovering the most effective combination of hyperparameters for a given model on a specific
task. These hyperparameters are configuration settings predetermined before training a machine learning
model. They govern the model’s behaviour during training and impact its performance and generalisation
on unseen data.

The process of hyperparameter tuning begins by defining a search space encompassing all potential values
or ranges for each hyperparameter. This search space is explored using stratified K-fold cross-validation
(Scikit-learn, 2023o) in combination with a randomised search (Scikit-learn, 2023n). In stratified K-fold
cross-validation, the training data is divided into smaller sets, preserving class distribution, with one fold
used for evaluation while the others are used for training.

A randomised search over parameters involves randomly sampling settings from a subset of possible pa-
rameter values or ranges. This approach offers advantages over exhaustive grid searches, such as flexibility
in setting a budget independent of the number of parameters and their possible values. Additionally, it
avoids including parameters that do not affect model performance, thereby optimising efficiency. While
there is a minimal risk of performing worse than a grid search, a randomised search enables swift param-
eter tuning while delivering the best overall model performance (Scikit-learn, 2023i).
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3.4 Accuracy assessment

In the accuracy assessment, the trained models will be used on different smaller areas of the Netherlands
to assess the performance of models on different urban fabric, which are the physical characteristics of
urban areas (for example, villages, towns and cities). These smaller areas are selected to represent the
whole of the Netherlands. To get insight on how well the models will perform if applied to the whole of
the Netherlands. These model applications will also be evaluated with the Precision, Recall, F1-score,
accuracy and balanced accuracy (Scikit-learn, 2023f, 2023d, 2023e).

Lastly, a hit-and-miss analysis will be performed, where a random sample of predictions is taken and
visualised through Google Street View to confirm whether the label was correct or not and whether the
prediction was correct or not. This will give insight into the true performance of the final models on the
classification of the residential buildings of the Netherlands. At the same time the impact of the data
available, in particular how accurate the labels of building type classification are in the Rijssen-Holten
dataset (León-Sánchez et al., 2022) and the Ep-online dataset (Rijksoverheid, 2023).
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4 | Implementation

Before implementation, the flowchart introduced by the Kadaster (2015) needs to be first adapted to
include the specific classification of apartments by IEE project TABULA (Episcope, 2012) using additional
information gathered from Voorbeeldwoningen 2011 (Agentschap NL, 2011). This flowchart can be found
in Figure 4.1.

Figure 4.1: Flowchart of the Kadaster’s classification process of buildings, expanded to include the specific
classifications of apartments (in blue).

From this flowchart, the residential building types of the Netherlands, for single-family houses and apart-
ments can be defined, see Table 4.1 below. And thereby, also define the features needed to classify the
residential building types.

Building type Definition
Single-family houses dwellings features
Detached 1 no neighbouring buildings with dwellings
Semi-detached 1 1 neighbouring building with dwellings, which has no other neighbouring building
End house terraced house 1 1 neighbouring building with dwellings, which has 1 or more other neighbouring buildings
Middle-row terraced house 1 more than 1 neighbouring building with dwellings
Apartments dwellings features
Maisonettes (See Figure 4.2 1 Its dwellings have more than 1 floor
Common staircase without galleries 1 Building has an open porch (see Figure 4.3 - left)
Common staircase with galleries 1 Building has galleries (see Figure 4.3 - right
Multi-family house 1 None of the above

Table 4.1: Features defining the Dutch residential building types.
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Figure 4.2: Maisonettes are dwellings with more than 1 floor in an apartment block.

Figure 4.3: An open porch, typical for a common staircase without galleries apartment block (left)
and galleries often have the appearance of long, threaded balconies, which lead to the entrances of the
dwellings (right).

However, the features that differentiate the apartment buildings: the number of floors per dwelling, the
building having an open porch and the building having galleries are not available or are not available
as open data. Hence, the classification of the apartment buildings will have to be done by substituting
these features with the features introduced in 3DBM (Labetski et al., 2022). Assuming that the building
form relates to each specific residential apartment building type. In total 25 features will be extracted,
see Table 4.2.
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Features Source Details and relevance
1 Number of adjacent buildings BAG See classification process of the Kadaster

2 Number of adjacent buildings
of adjacent buildings. BAG See classification process of the Kadaster

3 Year of construction BAG
Construction year might not be relevant to inferring the residential
building type, but it is relevant to determining the construction year
class of a residential building type.

4 Number of dwellings in the building BAG See classification process of the Kadaster
5 Footprint area BAG Describes the building geometry.

6 Footprint perimeter BAG Describes the building geometry and provides additional information
about the footprint shape, like the compactness and complexity.

7 Number of the vertices in footprint BAG The number of the vertices gives another indication of
the complexity of the footprint shape.

8 The number of neighbouring
buildings (radius: 25m) BAG

The number of neighbouring building centroids within a certain radius
of the footprint centroid. For example, taller buildings, like apartment
blocks generally have more open space in the surroundings.

9 The number of neighbouring
buildings (radius: 50m) BAG The same as above, but larger radius

10 The number of neighbouring
buildings (radius: 75m) BAG The same as above, but larger radius

11 The number of neighbouring
buildings (radius: 100m) BAG The same as above, but larger radius

12 Actual volume in LoD1.2 3DBAG Describes building geometry, utilising LoD1.2 of the 3DBAG
13 Convex hull volume in LoD1.2 3DBAG Describes building geometry, utilising LoD1.2 of the 3DBAG

14 Oriented bounding box width
in LoD1.2 3DBAG Describes building geometry, utilising LoD1.2 of the 3DBAG

15 Oriented bounding box length
in LoD1.2 3DBAG Describes building geometry, utilising LoD1.2 of the 3DBAG

16 Total wall surface area
in LoD1.2 3DBAG Describes building geometry, utilising LoD1.2 of the 3DBAG

17 Total roof surface area
in LoD1.2 3DBAG Describes building geometry, utilising LoD1.2 of the 3DBAG

18 Maximum height in LoD1.2 3DBAG Describes building geometry, utilising LoD1.2 of the 3DBAG
19 Actual volume in LoD2.2 3DBAG Describes building geometry, utilising LoD1.2 of the 3DBAG

20 Convex hull volume
in LoD2.2 3DBAG Describes building geometry, utilising LoD2.2 of the 3DBAG

21 Total wall surface area
in LoD2.2 3DBAG Describes building geometry, utilising LoD2.2 of the 3DBAG

22 Total roof surface area
in LoD2.2 3DBAG Describes building geometry, utilising LoD2.2 of the 3DBAG

23 Maximum height in LoD2.2 3DBAG Describes building geometry, utilising LoD2.2 of the 3DBAG

24 Height (without roof)
in LoD2.2 3DBAG Describes building geometry, utilising LoD2.2 of the 3DBAG

25 Number of storeys of the building Rijssen-
Holten Number of storeys of the building

Table 4.2: List of extracted features.

Note that several features have a LoD1.2 and LoD2.2 version. This is because the 3DBAG contains
3D geometries of the building stock of the Netherlands in LoD1.2, LoD1.3 and LoD2.2. For this thesis,
LoD1.2 and LoD2.2 geometries are considered in the feature extraction process. This is to compare the
relevance of features with different level of details.

Furthermore, the number of storeys of each building was extracted as a feature from the Rijssen-Holten
energy testbed dataset (León-Sánchez et al., 2022) as well. This feature also went through the feature
selection process. However, it did not get selected as a feature to be used in the training process. Since
the feature was among the five lowest scoring features across all the selection methods used in this
thesis (see Section 4.3.3). Also, this feature is not available in the Dutch national energy label dataset
(Rijksoverheid, 2023) and could not be extracted as a feature for areas in the Netherlands outside of
Rijssen-Holten.
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4.1 Case studies

During the implementation, several case studies were explored. The first case study was created by
using the Rijssen-Holten energy testbed dataset (León-Sánchez et al., 2022) as ground truth, since this
dataset already includes the building type of each building in Rijssen-Holten and no further preprocessing
is required to obtain the building type of each building. However, initial analysis shows that the class
distribution of the building types of the Rijssen-Holten energy testbed dataset presents a severe class
imbalance, with the smallest minority class being only 0.03% of the entire dataset, see Table 4.3. The
table shows that the majority of the classes are single-family houses: end, detached, semi-detached
and terraced houses. And that the minority of the classes (about 1%) are common staircase with
galleries, common staircase without galleries, maisonettes and multi-family houses. This is
also reflected in the housing characteristics of Rijssen-Holten, where buildings containing only 1 dwelling
make up 79% of all the buildings and buildings containing more than 1 dwelling only make up 21%
(Allecijfers.nl, 2023b).

Building type Name Count Percentage
Galerijwoning Common staircase with galleries 4 0.06%
Maisonnettewoning Maisonettes 4 0.06%
Portiekwoning Common staircase without galleries 8 0.11%
Flatwoning Multi-family house 58 0.80%
Hoekwoning End house 1452 20.06%
Vrijstaande Woning Detached 1783 24.63%
Twee-onder-een-kapwoning Semi-detached 1785 24.66%
Tussenwoning Terraced house 2145 29.63%
TOTAL 7239 100.00%

Table 4.3: Class distribution of Case Study 1 (after feature extraction).

Class distribution statistics are important in machine learning classification problems because the dis-
tribution can affect the performance of the model (Branco, Torgo, & Ribeiro, 2015). If the classes are
imbalanced, meaning one class has significantly more or fewer data records than the other classes, it can
lead to biassed model predictions towards the majority class. This is because the model can achieve
high accuracy by simply predicting the majority class for all instances while ignoring the minority class
(Weiss, 2013). However, this can be problematic if the minority class is the one of interest, like one of
the residential building types of the Netherlands.

Therefore, a second case study was created, but this case study will have to be created by using
the Dutch energy label dataset (Rijksoverheid, 2023) and preprocessing will be required to determine
the building type for each building. Delft was picked as the study area for this case study, because of
the familiarity with Delft and its buildings, which will help with determining the building types. Also,
housing characteristics for Delft show the inverse of the housing characteristics for Rijssen-Holten. 33%
of all buildings in Delft contain 1 dwelling and 67% contain more than 1 (Allecijfers.nl, 2023a).

Building type Name Count Percentage
Galerijwoning Common staircase with galleries 63 0.60%
Portiekwoning Common staircase without galleries 118 1.12%
Vrijstaande Woning Detached 253 2.39%
Twee-onder-een-kapwoning Semi-detached 552 5.22%
Maisonnettewoning Maisonettes 681 6.44%
Hoekwoning End house 1437 13.58%
Flatwoning Multi-family house 1476 13.95%
Tussenwoning Terraced house 5999 56.71%
TOTAL 10579 100.00%

Table 4.4: Class distribution of Case Study 2 (after feature extraction).

However, the class distribution for Delft is also imbalanced, but the minority classes are better represented,
see Table 4.4. In many real-world scenarios, class distribution imbalances naturally exist due to the nature
of the data being collected. For the cases of this master thesis specifically, the class distribution can be
explained by the example of a multi-family house. A multi-family house consists of many more dwellings
than 1, while a terraced house can only consist of 1 dwelling. Due to the amount of dwellings inside
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one multi-family house building the size of such a building is automatically bigger than compared to a
terraced house. Therefore, such a building will occur less in a specific demarcated area compared to a
small building like a terrace house.

Hence, models from both Case Study 1 (Rijssen-Holten) and Case Study 2 (Delft) are created and
tested on each other’s dataset. But also tested on 6 more other case studies, focussing on one of the
building types, to evaluate the effect of a severe class imbalance and less severe class imbalance. And to
also evaluate the performance of the models on different subsets of the Netherlands. Note that prediction
models are only created for Case Study 1 and 2, while Case Studies 3 through 8 are used to evaluate
these models.

Figure 4.4: Visual representation of the study area and focused building type of Case Studies 3, 4 and 5.

Case Study 3 Duivendrecht/Venserpolder is situated on the outskirts of Amsterdam and centres on
multi-family houses. It contains repeating blocks of multi-family houses evident in the map of case
study 3 in Figure 4.4.
Case Study 4 Bijlmer-Oost, focuses on common staircase apartment blocks with galleries. Figure
4.4 illustrates one such block, easily showcasing the galleries and the map shows these blocks are repeated
in the form of diagonal lines. Bijlmer-Oost is a medium-sized district in Amsterdam.
Case Study 5 Borneo-Sporenburg features two peninsulas surrounded by docklands in the Amsterdam
neighbourhood. Notably, the Czaar Peterstraat in this area primarily consists of maisonettes, see Figure
4.4.

Figure 4.5: Visual representation of the study area and focused building type of Case studies 6, 7 and 8.

23



Case Study 6 Laakkwartier is a neighbourhood in The Hague, where common staircase apartment
blocks without galleries occur frequently in the urban fabric. In Figure 4.5, these blocks can be
observed between other building types. This pattern of common staircase apartment blocks without
galleries exists throughout all the housing blocks observed on the map.
Case Study 7, Oud-Diemen/Steigereiland, focuses on semi-detached houses, terraced houses, and
end houses. Figure 4.5 depicts several semi-detached houses, easily observable on the map. Oud-
Diemen is a neighbourhood in Diemen, a town in the Netherlands.
Finally, in Case Study 8 Laren, which is a town in the Netherlands, focuses on detached houses.
These can be observed in the figure and on the corresponding map it can be seen that most of the
buildings are detached houses, see Figure 4.5.

The distribution of classes for all these cases is detailed in Table 4.5 below. It is important to note that
in Case Study 6, which is intended to focus on common staircase apartment blocks without
galleries, only 6 buildings have been classified as such, based on labels extracted from the Dutch energy
label dataset (Rijksoverheid, 2023). This count remains unchanged and is indicated by an asterisk in
the table. The reason for this is to assess whether the models can correctly identify common staircase
apartment blocks without galleries, even when there might be false positives from other building
types.

Case Study MFH Galleries Maisonette Without Galleries EH TH SDH DH
3 420 17 24 3 196 621 5 9
4 38 12 9 - 64 331 1 8
5 236 - 69 4 28 376 19 4
6 649 5 96 6* 5 86 - 4
7 49 - 6 - 103 287 69 88
8 7 - - - 2 2 25 163

Table 4.5: Class distribution of Case Studies 3 through 8.

Meanwhile, the datasets for Case Studies 2, 3, 4, 5, 7 and 8 have undergone preprocessing steps.
Specifically, SQL scripts were employed to first determine what building type a specific building should
have with different building types for each dwelling. Since the building type is given per dwelling in the
Dutch energy label dataset (Rijksoverheid, 2023) and a building can consist of one or more dwellings. The
building type extracted from EP-online might be a list of building types possibly consisting of different
building types. The building type of a building with a list of building types is determined by counting
the number of occurrences of each building type in this list, the highest number of occurrences is then
taken as the building type for that building.

Furthermore, there are also buildings with only one dwelling but the building type given for this one
dwelling is ‘twee-onder-een-kap of hoekwoning’ (semi-detached house or end house) or this one
dwelling is given the building type ‘appartement’ (apartment block) or even given as ‘NULL’. The build-
ing type is then determined by its adjacency features or manually by visual inspection using Google Street
View or by information gathered from housing websites when available. And there were also buildings
where the extracted list of building types only consisted of one entry, the building type of this one entry
is then taken as the building type. Table 4.6 shows the amount of these cases for each building for each
case study is given.

Case Study list of
building types SD or EH Apartment NULL one building type

in list TOTAL

2 1841 1719 88 33 6873 10554
3 421 200 12 1 660 1294
4 51 72 0 0 340 463
5 360 58 26 18 392 854
6 618 7 26 1 198 850
7 42 204 7 0 349 602
8 6 23 0 0 170 199

Table 4.6: Amount of each different case after extracting the building types from EP-online.
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4.2 Programming details

The method was implemented using Python and SQL, the code is available at https://github.com/
tudelft3d/ML_bldg_type. A PostgreSQL (2023) database extended with PostGIS (2023) was used in
combination with 3DCityDB (Yao et al., 2018) to store the data required for this thesis, while several
features were extracted using PostGIS functions. The features were validated by also using the PostGIS
functions and by comparing them with similar features extracted from the 3DBM.

See Figure 4.6 for an overview of the database structure used for the implementation. The Rijssen-Holten
dataset (León-Sánchez et al., 2022) and the subsets of the Netherlands (Case Studies 2 through 8)
from the 3DBAG (Peters et al., 2022) are imported to 3DCityDB in separate citydb schemas using the
3DCityDB Importer/Exporter.

The Dutch energy label dataset (EP-online) (Rijksoverheid, 2023) is imported as a .csv file into the
database as well as the features obtained from 3DBM. While the BAG dataset (Kadaster, 2023a) was
imported with the ogr2ogr command line tool (Rouault et al., 2023). These datasets are stored in the
input data schema in their specific tables.

The extracted features are then stored as training data for each case in their tables. Lastly, the training
data schema also contains the temporary tables made to validate the features for Case Study 1, which
are discussed further in this chapter.

Figure 4.6: Overview of the structure of the PostGIS database.

A connection to the database with the psycopg2 library (2023) was used to be able to perform data
preparation in the database using Python and SQL queries utilising PostGIS as well. However, the
correction of the labels of the Dutch energy label dataset (Rijksoverheid, 2023) was applied directly in
the database using SQL queries alone. These queries can also be found on the GitHub repository.

To perform the machine learning steps the open-source scikit-learn library in Python (Pedregosa et
al., 2011) is used. The library has a consistent API for different algorithms, which allows switching
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between models without a major change in the code. This consistency simplifies the development and
experimentation process. Furthermore, scikit-learn integrates other popular data science libraries in
Python, such as NumPy (Harris et al., 2020), Pandas (pandas development team, 2020), and Matplotlib
(Hunter, 2007). This facilitates data preprocessing, exploration, and visualisation tasks. The library
also provides tools for data preprocessing including feature scaling and more. Lastly, scikit-learn library
includes utilities for model evaluation, hyperparameter tuning, and model selection. This allows the
comparison of different models and the selection of the model that performs best in the specific problem
of this thesis.

4.3 Feature engineering

4.3.1 Validation
To be able to answer one of the research questions: What features are needed to infer the building types of
the buildings of the 3DBAG? The features need to be validated first, to make sure the extracted features
are correctly computed and represent the feature required for the classification. The feature validation
was also performed to test the 3DBM results. SQL queries are used for each feature validated, these
queries can be found on the GitHub repository also.

Adjacency

The adjacency features were first validated by visualising the footprints while showing these adjacency
features and the building functions. The adjacency features are then validated by visual inspection using
a Geometry Viewer. This inspection is performed by checking the adjacency features in the pop-up
balloons of randomly sampled buildings. See Figures 4.7, 4.8 and 4.9 for one of these buildings. It can be
observed that the two residential building footprints show an adjacency of one (Figure 4.7 and 4.8), while
not counting the footprint of the building with an unknown function (Figure 4.9). This is working as
intended since the code does not take buildings with unknown (or ‘Other’) functions. Buildings with the
‘Other’ function consist only of dwellings in which no people reside, like garage boxes (Kadaster, 2023b).
Therefore, the adjacency feature ignores buildings with these building functions.

Figure 4.7: Validation of adjacency feature by visualising building footprints (1/3).
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Figure 4.8: Validation of adjacency feature by visualising building footprints (2/3).

Figure 4.9: Validation of adjacency feature by visualising building footprints (3/3).
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In another example, the building ’NL.IMBAG.Pand.1742100000094682’ is inspected by again visualising
this building’s footprint together with the footprints of its adjacent buildings. The visualisation for this
inspection can be found in Figures 4.10, 4.11 and 4.12.

Figure 4.10: Visualisation of the big building together with its adjacent buildings.

Figure 4.10 shows that the big building ’NL.IMBAG.Pand.1742100000094682’ has an adjacency value of
3, while there are more than 3 footprints adjacent to it. This is because the leftmost building is not
adjacent to the big building and the two rightmost buildings have an unknown function, see Figure 4.11
for the visualisation.

Observing Figures 4.10 and 4.12 reveals that one of the building footprints overlaps with the big building,
and explains why the big building has a number of adjacent buildings of 3.

Figure 4.11: Visualisation of the big building together with its adjacent buildings, which are not taken
as adjacent.
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Figure 4.12: Visualisation of the buildings, which are taken as being adjacent to the big building.

Furthermore, in Figure 4.13 it can be observed that buildings in the same street may have a tiny space
between each other. This is why it is possible for the leftmost building in Figure 4.10 to not be adjacent
to the big building and why the buffer size of 0.10 was the right choice. However, it is still necessary to
be cognizant of the cases where footprints should be taken as adjacent, but are not taken as adjacent due
to inaccuracy of the drawing of the footprint where there is a gap in the drawn footprint but not in the
real world.

Figure 4.13: Google Street View of neighbouring buildings of the big building.
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Neighbours

The neighbours features can be validated by querying the different distance neighbour features and by
finding an example with increasingly more neighbours with each distance (see Table 4.7 for a part of
the resulting table). Then, visualising that example for each of the neighbours feature distances and
count the buildings in the visualisations, see Figure 4.14. The amount of neighbouring buildings in the
visualisations corresponds to the amount of neighbouring buildings in the table for the example.

BAG ID number of neighbouring
buildings (radius: 25m)

number of neighbouring
buildings (radius: 50m)

number of neighbouring
buildings (radius: 75m)

number of neighbouring
buildings (radius: 100m)

NL.IMBAG.Pand.1742100000005458 2 4 9 15
NL.IMBAG.Pand.1742100000007079 0 5 10 15
NL.IMBAG.Pand.1742100000004050 2 7 8 15
NL.IMBAG.Pand.1742100000007121 2 7 9 15

Table 4.7: Table showing a part of the results of the different distance neighbour features with the selected
example highlighted in bold.

Figure 4.14: Visualisation of the example building with its neighbouring buildings for each distance.
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Volume

To validate the volume features obtained from 3DBM, similar volume features are computed using Post-
GIS functions to compare with the 3DBM volume features. However, computing the volumes from the
LoD1.2 geometries obtained from the Rijssen-Holten energy testbed dataset returned errors of invalid
polygons where points are not in the same plane. The models obtained from the 3DBAG representing
the same buildings were therefore validated using val3dity (2018). Some of these returned error codes
after validating, however filtering these 3DBAG models with error codes out still returned errors of invalid
polygons while computing the volume. This is because the PostGIS volume function relies on SFCGAL
backend (Borne et al., 2023) and the SFCGAL functions related to 3D volume exhibit high sensitivity
towards tolerance for coplanarity of polygons. As a result the PostGIS volume function does not take
the models as input and returns an error.

Also, an unsuccessful attempt was made using PostGIS functions to make valid models. As well as
triangulating the 3DBAG models, this is because PostGIS triangulation functions do not work well with
vertical geometries. Hence, only a few buildings, which did not give an error of invalid polygons using
the PostGIS function, were used to compare and validate the features.

Using LoD2.2 geometries resulted in all buildings giving the same error of invalid polygons. The
‘Lod2_volume’ attribute in the Rijssen-Holten energy testbed dataset was used instead for the com-
parison of LoD2.2 volumes. A part of the table for the comparison of the volumes can be found in Table
4.8 below.

BAG ID Actual volume
LoD1 PostGIS

Actual volume
LoD1 3DBM

C. hull volume
LoD1 3DBM

Actual volume
LoD2 RH

Actual volume
LoD2 3DBM

C. hull volume
LoD2 3DBM

NL.IMBAG.Pand.1742100000000001 323.630 348.671 398.461 302.955 302.948 347.261
NL.IMBAG.Pand.1742100000000002 567.737 647.255 850.661 558.298 558.295 756.897
NL.IMBAG.Pand.1742100000000004 571.787 675.942 743.828 542.455 542.447 641.584
NL.IMBAG.Pand.1742100000000005 604.046 684.259 856.243 562.826 562.843 723.139
NL.IMBAG.Pand.1742100000000006 1128.359 1287.406 1707.087 1071.107 1071.077 1455.888
NL.IMBAG.Pand.1742100000000007 685.462 913.435 1285.164 643.845 643.857 1122.691
NL.IMBAG.Pand.1742100000000009 434.129 438.137 438.206 403.750 403.746 403.823
NL.IMBAG.Pand.1742100000000010 431.355 435.413 435.477 401.291 401.299 401.363
NL.IMBAG.Pand.1742100000000011 NULL 444.303 444.388 410.421 410.426 410.507
NL.IMBAG.Pand.1742100000000012 NULL 685.860 840.225 512.431 512.424 700.177

Table 4.8: Table for the comparison and validation of the volume features obtained from 3DBM.

Summary statistics are calculated for each column to compare to see if there are any significant differences,
see Table 4.9 below. It can be observed that from the small sample size comparison between the actual
volume LoD1.2 computed from PostGIS and 3DBM is overall larger. While the actual volume from the
Rijssen-Holten dataset and computed from 3DBM are almost the same.

Actual volume
PostGIS

Actual volume
LoD1 3DBM

C. hull volume
LoD1 3DBM

Actual volume
LoD2 RH

Actual volume
LoD2 3DBM

C. hull volume
LoD2 3DBM

Mean 593.31 678.81 844.42 617.39 617.38 782.50
Median 569.76 661.60 623.51 464.46 464.45 554.60
Range 804.73 938.73 88606.09 36937.82 36937.75 100199.034
Standard Dev. 245.04 305.34 2009.20 1152.07 1152.08 2136.45
Sample size 8 8 7166 7166 7166 7166

Table 4.9: Summary statistics of each volume feature.

In Figure 4.15 the building with ID ‘NL.IMBAG.Pand.1742100000000007’ is depicted in Google Street
View. It can be observed that this building has a garagebox and it seems that the garagebox is taken as
well in the computation for this building’s volume. The large volume difference between the computation
with the PostGIS function and 3DBM can be explained by the different geometric algorithms to calculate
volumes. Nevertheless, not enough building volumes could be calculated with the PostGIS function to
compare and prove this.
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Figure 4.15: Building with ID ’NL.IMBAG.Pand.1742100000000007’ with garage box.

Lastly, the way the convex hull volume is computed in 3DBM is shown in Figure 4.16. Several attempts
were made to compute this with PostGIS functions, but these gave an error where the given geometry was
unknown to the convex hull function. Even when the given geometries were aggregated into a geometry
collection, which is supposed to be a correct input for the convex hull function. The computation of the
convex hull of the buildings is, therefore, left outside the scope of this thesis.

It has been stated that the actual volumes should be smaller than the convex hull volumes, and never
significantly larger than the convex hull volumes. Also, the convex hull calculation is more reliable than
the actual volume calculation, since the actual volume calculation is more sensitive to errors (Labetski et
al., 2022). On these notes, the volume features obtained from 3DBM are still used in the following steps.

Figure 4.16: Visualisation of the convex hull volume from 3DBM.
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Length and width

The length and width of the oriented bounding box (obb) for each building obtained from 3DBM are
validated by multiplying the length with the width to get the area (column ’area_check’). This can then
be compared with the bounding box area computed by PostGIS functions. A part of the table for this
comparison can be found below in Table 4.10.

BAG ID obb width
LoD1 3DBM

obb length
LoD1 3DBM area_check area from

bounding box
NL.IMBAG.Pand.1742100000000001 6.486 9.876 64.049 64.080
NL.IMBAG.Pand.1742100000000002 9.780 15.354 150.164 102.282
NL.IMBAG.Pand.1742100000000004 10.156 10.566 107.317 111.455
NL.IMBAG.Pand.1742100000000005 11.140 13.135 146.316 155.425
NL.IMBAG.Pand.1742100000000006 13.140 16.397 215.448 216.373
NL.IMBAG.Pand.1742100000000007 11.313 20.907 236.516 246.673
NL.IMBAG.Pand.1742100000000009 5.981 9.062 54.199 54.213
NL.IMBAG.Pand.1742100000000010 5.975 9.063 54.150 54.166
NL.IMBAG.Pand.1742100000000011 6.005 9.063 54.425 54.726
NL.IMBAG.Pand.1742100000000012 6.264 18.461 115.632 199.668

Table 4.10: Table for validation of the oriented bounding box length and width.

Summary statistics are calculated for the area calculated from the oriented bounding box and multiplying
length with width to compare to see if there are any significant differences (see Table 4.11). It can be
observed that the mean difference is only 2.26 m². While the difference in the median is only 0.25 m².
The difference in standard deviation is 6.79 m². The difference in the computed areas can be explained
by the presence of possible complex footprint shapes, which results in the length multiplied by the width
not being the exact area of the footprint. However, the difference is so small according to the summary
statistics, hence the oriented bounding box length and width features are still used in further steps.

area from bbox area check
Mean 133.29 131.03
Median 97.80 98.05
Range 18491.43 18396.86
Standard Dev. 306.57 299.78
Sample size 7166 7166

Table 4.11: Summary statistics for area comparison to validate oriented bounding box width and length.

Surface areas

The surface areas are again validated by comparing the surface area features obtained from 3DBM with
self-computed surface areas by using PostGIS functions. However, the PostGIS function which computes
the area of an angled surface gave errors of invalid polygons as well. Again this is because of the SFCGAL
backend (Borne et al., 2023) exhibiting sensitivity towards tolerance for coplanarity of polygons.

Therefore, the LoD2.2 surface area attributes in the Rijssen-Holten dataset were used instead. Also, the
LoD1.2 surfaces could not be extracted from the Rijssen-Holten dataset since the testbed does not have
a model in that level of detail, so the LoD1.2 wall areas could not be validated. Lastly, the LoD1.2
roof area was computed from LoD2.2 roof surfaces using ST_Area(), which is a PostGIS function that
computes the area of a surface while ignoring the z-coordinates. A part of the table for this comparison
can be found in Table 4.12 below.

BAG ID Wall area
LoD1 3DBM

Roof area
LoD1 3DBM

Roof area
LoD1 PostGIS

Wall area
LoD2 3DBM

Wall area
LoD2 RH

Roof area
LoD2 3DBM

Roof area
LoD2 RH

NL.IMBAG.Pand.1742100000000001 229.380 49.690 49.690 181.441 127.500 57.585 57.585
NL.IMBAG.Pand.1742100000000002 362.092 90.919 90.920 283.065 214.883 108.261 102.552
NL.IMBAG.Pand.1742100000000004 317.608 87.990 87.990 250.217 250.217 101.520 102.071
NL.IMBAG.Pand.1742100000000005 363.043 93.670 93.670 261.748 261.748 111.722 111.722
NL.IMBAG.Pand.1742100000000006 597.947 143.141 143.141 447.241 433.273 165.107 164.886
NL.IMBAG.Pand.1742100000000007 452.623 129.676 129.676 313.733 245.746 142.241 142.240
NL.IMBAG.Pand.1742100000000009 243.296 54.165 54.165 205.281 71.094 66.203 66.203
NL.IMBAG.Pand.1742100000000010 241.936 54.109 54.109 204.152 70.087 66.056 66.056
NL.IMBAG.Pand.1742100000000011 247.116 54.025 54.025 209.489 75.618 65.942 65.941
NL.IMBAG.Pand.1742100000000012 416.351 87.304 87.304 277.007 210.303 106.594 98.797

Table 4.12: Table for the comparison of the surface areas.
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The summary statistics for this comparison can be found in Table 4.13. The LoD1.2 roof area from
3DBM is nearly identical to the LoD1.2 roof area computed with PostGIS functions. While there are
noticeable differences in the LoD2.2 wall areas obtained from 3DBM and LoD2.2 wall areas obtained from
the Rijssen-Holten dataset, the same for LoD2.2 roof areas. The reason for the differences in the surface
areas might be because a different method is used. Investigating the methods used from both sources is
however left outside the scope of this thesis. Therefore, the surface areas obtained from 3DBM are used,
since one of the aims of this thesis is to investigate how well these features perform in the classification
of the building stock of the Netherlands.

Roof area
LoD1 3DBM

Roof area
LoD1 PostGIS

Wall area
LoD2 3DBM

Wall area
LoD2 RH

Roof area
LoD2 3DBM

Roof area
LoD2 RH

Mean 99.10 99.05 250.63 187.25 121.56 118.88
Median 78.85 78.85 227.30 162.83 96.94 95.06
Range 6166.43 6166.43 6197.56 6217.87 6207.50 6166.70
Standard Dev. 145.08 144.67 194.89 204.18 153.27 149.05
Sample size 7167 7167 7167 7167 7167 7167

Table 4.13: Summary statistics for the comparison of the surface areas.

Height

To validate the height features from 3DBM the height values are reverted to the raw height values of
‘max_Z’, ‘min_Z’, and ‘ground_Z’ from ‘max_height’ and ‘min_roof_height’. These raw height values
were extracted directly from 3DBM. And were processed using the computations below:

Maximumheight inLoD1.2 = max_z_lod1− ground_z_lod1 (4.1)

Maximumheight inLoD2.2 = max_z_lod2− ground_z_lod2 (4.2)

Height (without roof) inLoD2.2 = min_z_lod2− ground_z_lod2 (4.3)

The ‘max_Z’, ‘min_Z’, and ‘ground_Z’ correspond to the height values from the 3DBAG. ‘Max_Z’
corresponds to the 3DBAG’s ‘h_dak_max’ which is the maximum elevation of the roof. ‘Min_Z’ corre-
sponds to ‘h_dak_min’ which is the minimum elevation of the roof. While ‘ground_Z’ corresponds to
‘h_maaiveld’ which is the ground elevation. Table 4.14 shows part of the comparison of the height values
from 3DBM and 3DBAG.

BAG ID h_dak
_max

max_z
_lod2

h_dak
_min

min_z
_lod2

h_
maaiveld

ground_z
_lod1

ground_z
_lod2

h_dak
_70p

max_z
_lod1

min_z
_lod1

NL.IMBAG.Pand.1742100000000001 20.486 20.430 15.669 15.462 12.712 12.712 12.712 19.705 19.729 19.729
NL.IMBAG.Pand.1742100000000002 22.123 22.052 16.757 16.760 13.876 13.876 13.876 21.030 20.995 20.995
NL.IMBAG.Pand.1742100000000003 17.969 17.922 16.702 16.710 14.084 14.084 14.084 17.536 17.521 17.521
NL.IMBAG.Pand.1742100000000004 24.077 24.048 18.585 18.656 14.983 14.983 14.983 22.652 22.665 22.665
NL.IMBAG.Pand.1742100000000005 23.458 23.433 17.761 17.813 14.956 14.956 14.956 22.311 22.261 22.261
NL.IMBAG.Pand.1742100000000006 27.233 27.167 21.209 21.383 16.895 16.895 16.895 25.903 25.889 25.889
NL.IMBAG.Pand.1742100000000007 24.715 24.682 18.243 18.353 15.445 15.445 15.445 22.514 22.489 22.489

Table 4.14: Table for the height validation.

Summary statistics are computed for this comparison as well and can be found in Table 4.15. From
this table, it can be observed that ‘h_dak_max’ is similar to ‘max_z_lod2’, since the summary metrics
only differ from each other by a decimal value. The same for ‘h_dak_min’ and ‘min_z_lod2’. Also,
the same for ‘h_maaiveld’, ‘ground_z_lod1’ and ‘ground_z_lod2’. And, as well as for ‘h_dak_70p’,
‘max_z_lod1’ and ‘min_z_lod1’. Therefore, the height values of 3DBM have been validated and are
ready to be used in the following steps.

h_dak
_max

max_z
_lod2

h_dak
_min

min_z
_lod2

h_
maaiveld

ground_z
_lod1

ground_z
_lod2

h_dak
_70p

max_z
_lod1

min_z
_lod1

Mean 21.34 21.20 17.62 17.75 14.57 14.60 14.70 20.28 20.26 20.26
Median 20.16 20.04 15.56 15.64 12.53 12.55 12.56 18.81 18.73 18.73
Mode 19.61 19.72 13.23 13.52 10.72 10.72 9.64 14.93 17.94 17.94
Range 44.05 43.92 45.54 45.69 27.79 27.79 27.79 44.40 44.40 44.40
Standard Dev. 5.88 5.98 5.75 5.84 5.54 5.54 5.63 5.79 5.80 5.80
Sample size 18330 18330 18330 18330 18330 18330 18330 18330 18330 18330

Table 4.15: Summary statistics for the comparison of the height values.
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4.3.2 Analysis
Below is the data analysis for Case Study 1 in which the ground truth was acquired from the Rijssen-
Holten energy testbed dataset (León-Sánchez et al., 2022). The same data analysis was performed for
Case Study 2 in which the ground truth was acquired from EP-online (2023). The figures from this
data analysis for Case Study 2 can be found in the Appendix (see Figure A.1, A.2 and A.3).

Correlation between attributes

The relationship between two variables is called correlation. The Pearson coefficient captures the linear
relationships between two variables (Chandrashekar & Sahin, 2014). In Figure 4.17 the Pearson’s Corre-
lation Coefficient between the features in the acquired dataset of Rijssen-Holten is shown. A coefficient
value of 1 represents a full positive correlation between the variables (for example, the yellow diagonal
line formed by the correlation of a variable with itself), a 0 represents no correlation at all between the
variables and -1 represents a full negative correlation between variables.

Figure 4.17: Correlation matrix.

Table 4.18 shows the same correlation, but expressed in values instead of colours. From these correlation
matrices, it can be observed that several features are highly correlated, namely, the number of neighbouring
buildings in the radii of 50 metres, 75 metres and 100 metres. Also, features that describe the form of
the building, such as the footprint area, footprint perimeter and the features with different levels of detail
(LoD1 or LoD2) specifically the actual volume, the convex hull volume, the wall area, the roof area and
the maximum height. Based on these findings alone it can be concluded that usage of both LoD1 and
LoD2 for certain features and the two types of volumes are not necessary. As a result, the following
features are removed: actual volume in LoD1, convex hull volume in LoD1, convex hull volume in LoD2,
wall area in LoD1, roof area in LoD1 and maximum height in LoD1.
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Figure 4.18: Correlation matrix with exact coefficient values.

Distribution of each feature

A method to visualise the distribution of each feature in the acquired Rijssen-Holten training dataset is
the usage of histograms. It provides the count of the number of observations in each bin created for the
visualisation, which allows the interpretation of the type of distribution.

See Figure 4.19, it can be observed that the number of neighbouring buildings (25m, 50m, 75m and 100m)
may have a normal distribution, while the footprint perimeter, footprint number of vertices, bounding box
length and width, and roof and wall area may have a skewed distribution.

Figure 4.19: Histograms of the features of the acquired training dataset.
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In many modelling scenarios, normal distributed features in the dataset are desirable. To map data from
any distribution to as close to a normal distribution as possible power transforms can be used (Scikit-
learn, 2023h), which are a family of parametric, monotonic transformations. This will in turn stabilise
the variance and minimise the skewness. However, this is not necessary for support vector machines
and random forests. Nonetheless, it is important to scale the data for support vector machines as the
algorithm is sensitive to the scale of the features. If the features have different scales, then the SVM may
be biassed towards features with larger values (Géron, 2019; Goodfellow et al., 2013).

4.3.3 Selection
Feature selection methods are techniques used to identify the most useful input variables for a machine
learning model to predict the target variable. In some predictive modelling problems, there may be a
large number of input variables that can slow down model development and require excessive system
memory. Moreover, including irrelevant input variables may adversely affect the performance of some
models. Feature selection methods can be divided into three categories: filter, embedded and wrapper
methods (Kuhn & Johnson, 2013; Chandrashekar & Sahin, 2014).

Filter methods use statistical techniques to evaluate the relationship between each input variable and the
target variable. The scores obtained are then used to select (filter) the input variables to be used in the
model. On the other hand, some machine learning algorithms have built-in feature selection methods that
automatically select the most relevant input variables as part of the learning process (such as random
forests). These methods are known as embedded feature selection methods. Lastly, wrapper methods
create multiple models with different subsets of input features and choose the best-performing model
based on a performance metric. These methods are not concerned with the variable types but can be
computationally expensive.

For these selection methods, the remaining highly correlated features are removed based on their rankings
and the correlation coefficient values (see Correlation between attributes in Section 4.3.2) and the
highest ranked features will be kept.

Filter

For the filter methods, the ANOVA-F score and the Mutual Information score are used, since these
are recommended for classification problems (Scikit-learn, 2023b). Analysis of Variance (ANOVA) is a
statistical method used to check the means of two or more groups that are significantly different from
each other. While the Mutual Information value measures the dependency between variables. See Table
4.16, the best scoring features are then selected while also considering their correlations with each other.
See Table 4.17 for the selected features with the ANOVA-f method and the MI (Mutual Information)
method for Case Study 1. The same selection process was performed for Case Study 2 and those
tables can be found in the Appendix (see Table A.1 and A.2).

feature name score
0 no_adjacent_bldg 4709.01
1 no_adjacent_of_adja_bldg 3902.59
7 bag_no_dwellings 985.03

14 wall_area_lod2 930.18
13 actual_volume_lod2 766.27
8 fp_area 474.81

11 obb_width_lod1 474.05
15 roof_area_lod2 442.78
9 fp_perimeter 417.50

12 obb_length_lod1 402.23
3 no_neighbours_50m 307.44
2 no_neighbours_25m 300.68
4 no_neighbours_75m 283.17
5 no_neighbours_100m 252.84

18 no_storeys 184.79
10 fp_no_vertices 147.01
16 height_max_lod2 128.25
17 height_min_roof_lod2 56.88
6 bag_construction_year 48.55

feature name score
0 no_adjacent_bldg 0.816
1 no_adjacent_of_adja_bldg 0.759

11 obb_width_lod1 0.286
15 roof_area_lod2 0.252
8 fp_area 0.235
2 no_neighbours_25m 0.201

13 actual_volume_lod2 0.193
3 no_neighbours_50m 0.174
9 fp_perimeter 0.173
6 bag_construction_year 0.167
4 no_neighbours_75m 0.163
5 no_neighbours_100m 0.148

12 obb_length_lod1 0.120
16 height_max_lod2 0.112
14 wall_area_lod2 0.098
18 no_storeys 0.097
17 height_min_roof_lod2 0.085
7 bag_no_dwellings 0.077

10 fp_no_vertices 0.067

Table 4.16: ANOVA-F score (left) and MI score (right) of the features.
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feature name
0 no_adjacent_bldg
1 no_adjacent_of_adja_bldg
7 bag_no_dwellings

14 wall_area_lod2
13 actual_volume_lod2
11 obb_width_lod1
3 no_neighbours_50m

feature name
0 no_adjacent_bldg
1 no_adjacent_of_adja_bldg

11 obb_width_lod1
8 fp_area
2 no_neighbours_50m

13 actual_volume_lod2
6 bag_construction_year

Table 4.17: ANOVA-F features (left) & MI features (right)

Embedded

For the embedded method the Random Forest impurity-based feature importances are computed.
However, these importances can be misleading for high cardinality features (many unique values) (Scikit-
learn, 2023g). This leads to impurity-based feature importances for trees, which are strongly biassed and
favour high cardinality features. However, the top features for this embedded method, while considering
their correlations, are still used in Random Forest to compare with the features from the wrapper method
described in the next paragraph. See Table 4.18 for the best-scoring features based on impurity and the
selected features. Their Case Study 2 counterparts can be found in the Appendix (see Table A.3).

feature name score
0 no_adjacent_bldg 0.314
1 no_adjacent_of_adja_bldg 0.296

11 obb_width_lod1 0.050
15 roof_area_lod2 0.041
8 fp_area 0.033
6 bag_construction_year 0.031

13 actual_volume_lod2 0.028
16 height_max_lod2 0.024
5 no_neighbours_100m 0.021
2 no_neighbours_25m 0.021
9 fp_perimeter 0.020

14 wall_area_lod2 0.020
4 no_neighbours_75m 0.019
3 no_neighbours_50m 0.019

17 height_min_roof_lod2 0.019
12 obb_length_lod1 0.018
10 fp_no_vertices 0.011
7 bag_no_dwellings 0.009

18 no_storeys 0.008

feature name
0 no_adjacent_bldg
1 no_adjacent_of_adja_bldg

11 obb_width_lod1
6 bag_construction_year

13 actual_volume_lod2
16 height_max_lod2
2 no_neighbours_25m

Table 4.18: Random Forest impurity-based feature importances (left) & impurity features (right).

Wrapper

Random Forest permutation-based feature importances are used since it does not exhibit a bias
towards high cardinality features. Permutation feature importance is a technique that measures the
impact of individual features on a model’s performance. The method involves randomly shuffling the
values of a single feature, thereby breaking the relationship between that feature and the target variable.
The resulting drop in model score indicates how much the model relies on that feature. This technique
is model-agnostic and can be calculated multiple times with various permutations of the feature, making
it a useful tool for evaluating feature importance in machine learning models.

In Table 4.19 below the ranking of the extracted features based on feature importance and the selected
features are shown. The features for the wrapper are manually selected, since apart from the adjacency
features, all other features have a minimal decrease in accuracy score when removed. The selection of
the features for this method is highly based on the correlation between the features. See Table A.4 in the
Appendix for Case Study 2 rankings and selected features.
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feature name ranking
0 no_adjacent_bldg 1
1 no_adjacent_of_adja_bldg 2
7 bag_no_dwellings 3
6 bag_construction_year 4

14 wall_area_lod2 5
11 obb_width_lod1 6
5 no_neighbours_100m 7

12 obb_length_lod1 8
8 fp_area 9

13 actual_volume_lod2 10
15 roof_area_lod2 11
17 height_min_roof_lod2 12
10 fp_no_vertices 13
16 height_max_lod2 14
2 no_neighbours_25m 15
9 fp_perimeter 16
3 no_neighbours_50m 17

18 no_storeys 18
4 no_neighbours_75m 19

feature name
0 no_adjacent_bldg
1 no_adjacent_of_adja_bldg
7 bag_no_dwellings
6 bag_construction_year

11 obb_width_lod1
14 wall_area_lod2
2 no_neighbours_25m

Table 4.19: Random Forest permutation-based feature importances (left) & permutation features (right)

4.3.4 Hyperparameter tuning
Hyperparameter tuning is performed using a randomised grid search over 75 different candidate parameter
combinations. To gain an understanding of the range of the search for each hyperparameter a validation
curve has been plotted. These curves are obtained by isolating one hyperparameter and giving it a range
to search on. The performance of each isolated hyperparameter is then evaluated by a 3-fold cross-
validation using the accuracy metric. However, the results of these curves are not representative of the
final model performance, since the hyperparameters are tuned separately in the validation curves. But it
gives an indication of the search range for hyperparameter tuning for the best performances. Balanced
accuracy has also been considered since all classes are important for this classification. But, the class
imbalance for this case study might be too severe.

SVM

Linear SVM has 7 hyperparameters (default values are in bold):

• Penalty: specifies the norm in penalization. (‘l1’ or ‘l2’)
• Loss: specifies the loss function. (‘hinge’ or ‘squared_hinge’)
• Dual: selects the algorithm to either solve the dual or primal optimization problem, dual=False is

preferred when n_samples > n_features. (True or False)
• Tol: tolerance for stopping criteria (float, 1e-4)
• C: Regularisation parameter. The strength of the regularisation is inversely proportional to C.

Must be strictly positive. (float, 1.0)
• Class_weight: Gives a weight to each class. The ‘balanced’ mode uses the values of y (target) to

automatically adjust weights inversely proportional to class frequencies in the input data. (dict or
‘balanced’ or None)

• Max_iter: The maximum number of iterations to be run. (int, 1000)

A search range of 1 to 10 with steps of 1 was defined for the tolerance (tol). While the regularisation
parameter (C) had a search range of 2.0 to 11.0 with steps of 1.0. And, the search range for the maximum
number of iterations was set to 1000 to 5000 with steps of 500. See Figure A.4 for the validation curves
using features selected with the ANOVA-F method and Figure A.5 using MI features both can be found
in the Appendix.
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Random Forest

Random Forest Classifier has 8 hyperparameters (default values are in bold):

• N_estimators: The number of trees in the forest (int, 100)
• Criterion: The function to measure the quality of a split. (‘gini’, ‘entropy’, ‘log_loss’)
• Max_depth: The maximum depth of the tree. If None, then nodes are expanded until all leaves

are pure or until all leaves contain less than min_samples_split samples. (int, None)
• Min_samples_split: The minimum number of samples required to split an internal node. (int

or float, 2)
• Min_samples_leaf : The minimum number of samples required to be at a leaf node. A split

point at any depth will only be considered if it leaves at least min_samples_leaf training samples
in each of the left and right branches. (int or float, 1)

• Max_features: The number of features to consider when looking for the best split (‘sqrt’, ‘log2’,
None or int or float)

• Bootstrap: Whether bootstrap samples are used when building trees. If False, the whole dataset
is used to build each tree. (True or False)

• Class_weight: Give a weight to each class. The ‘balanced’ mode uses the values of y (target)
to automatically adjust weights inversely proportional to class frequencies in the input data. The
‘balanced_subsample’ mode is the same as ‘balanced’ except that weights are computed based on
the bootstrap sample for every tree grown (dict or ‘balanced’ or ‘balanced_subsample’ or None)

A search range of 100 to 1000 with steps of 100 was defined for the validation curve of the number of
trees in the forest (n_estimators). The maximum depth of the tree (max_depth) had a search range
of 5 to 55 with steps of 5. And, the minimum number of samples required to split an internal node
(min_samples_split) had a search range of 2 to 62 with steps of 4. Furthermore, the search range for the
minimum number of samples required to be at a leaf node (min_samples_leaf) was defined at 0 to 50 with
steps of 5. Lastly, the search range for the number of features to consider for the best split (max_features)
was 1 to 10 with steps of 1. See Figure A.6 for the validation curves using the impurity-based features
and Figure A.7 using the permutation-based features, both also in the Appendix.
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5 | Results

For each of Case Study 1 and Case Study 2, four models were trained, resulting in a total of eight
models obtained. See Table 5.1 below for the 8 different models and their given model name.

Machine Learning algorithm Features selection method Model name
Case Study 1 Support Vector Machine ANOVA-F c1 SVM ANOVA-F

Support Vector Machine Mutual Information c1 SVM MI
Random Forest Impurity-based c1 RF impurity
Random Forest Permutation-based c1 RF permutation

Case Study 2 Support Vector Machine ANOVA-F c2 SVM ANOVA-F
Support Vector Machine Mutual Information c2 SVM MI
Random Forest Impurity-based c2 RF impurity
Random Forest Permutation-based c2 RF permutation

Table 5.1: The prediction models obtained for this thesis with their given name.

To evaluate the performance of each model on their test splits a confusion matrix was used and in turn
the Precision, Recall and F1-score were computed. The weighted average Recall is equal to the accuracy,
while the macro average Recall is equal to the balanced accuracy. The full results with tuning time,
training time, best parameters, features used, confusion matrix and the performance metrics can be
found in the Appendix (See Case Study 1 and Case Study 2 in Section A.1).

In this chapter the summary of these results are discussed. First Case Study 1 and 2 will be addressed
in Section 5.1 and 5.2. Then a comparison will be made between Case Study 1 and 2 results in Section
5.3, including the model performance of each case study on the other. Lastly, both c1 and c2 model
performances on Case Studies 3 through 8 are compared in Section 5.4.

5.1 Case Study 1

In Table 5.2 a summary of the performance of the training models for Case Study 1 on their test splits
is given. It can be observed that the accuracy for these training models is high, over 91%. However, the
balanced accuracies are significantly lower than the accuracies. This can be explained by Figure 5.1, the
classification report for the c1 SVM MI model and the c1 RF impurity model shows the effects of
an imbalance class distribution described in Section 4.1.

Model Tuning time (s) Training time (s) Accuracy Balanced accuracy
SVM ANOVA-F 25.2 1.42 0.918 0.583
SVM MI 20.43 0.35 0.917 0.571
RF impurity 426.31 2.87 0.911 0.741
RF permutation 344.27 2.48 0.918 0.652

Table 5.2: Summary of Case Study 1 model performances.

41



Figure 5.1: Classification report for the c1 SVM MI model (left) and for the c1 RF impurity model
(right).

5.2 Case Study 2

Therefore Case Study 2 was created, Table 5.3 shows the summary of the performance of the training
models for Case Study 2 on their test splits. And, in Figure 5.2 the classification report for the c2
SVM MI model and the c2 RF impurity model for this case can be found. The accuracy for these
models is noticeably lower than the accuracy of Case Study 1 models. However, the balanced accuracies
for the c2 RF models are higher. In the classification report, it can be observed that the sample sizes
are at least higher than 1, which means the evaluation of these models for these classes is at least more
reliable than the Case Study 1 models.

Model Tuning time (s) Training time (s) Accuracy Balanced accuracy
SVM ANOVA-F 112.9 7.04 0.672 0.395
SVM MI 240.39 8.75 0.389 0.330
RF impurity 996.91 14.16 0.711 0.737
RF permutation 1105.94 17.31 0.733 0.737

Table 5.3: Summary of Case Study 2 model performances.

Figure 5.2: Classification report for the c2 SVM MI model (left) and for the c2 RF impurity model
(right).

5.3 Comparison: Case Studies 1 and 2

Furthermore, Table 5.4 gives an overview of the accuracies of the models from both Case Studies 1 and
2. The accuracies are given for the classification on their test splits and on each other’s whole dataset (See
Case Study 1 predictions using c2 models and Case Study 2 predictions using c1 models in
Section A.1 in the Appendix for the full results). However, the accuracy and the balanced accuracies for
these models were lower than expected. This might be because the class distribution is still imbalanced.
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Case Study 1 Case Study 2
SVM

ANOVA-F
SVM
MI

RF
impurity

RF
permu.

SVM
ANOVA-F

SVM
MI

RF
impurity

RF
permu.

Test split
(20%)

Accuracy 91.8% 91.7% 91.1% 91.8% 67.2% 38.9% 71.1% 73.3%
Balanced
accuracy 58.3% 57.1% 74.1% 65.2% 39.5% 33.0% 73.7% 73.7%

On other case
(whole dataset)

Accuracy 55.3% 55.6% 56.6% 56.1% 60.3% 38.3% 81.2% 84.0%
Balanced
accuracy 42.0% 40.4% 40.4% 44.7% 47.6% 23.8% 58.0% 62.5%

Table 5.4: Overview of Case Study 1 and 2 models on their test splits and each other’s whole dataset.

5.4 c1 and c2 models applied on Case Studies 3 through 8

Hence, Case Studies 3 through 8 were created to test the performance of each model on each specific
building type class. In Table 5.5 an overview of the model performances on these case studies can be
found with the highest accuracy and balanced accuracy for each case highlighted in bold.

Case Study 1 Case Study 2
SVM

ANOVA-F
SVM
MI

RF
impurity

RF
permu.

SVM
ANOVA-F

SVM
MI

RF
impurity

RF
permu.

Case Study 3
flat

Accuracy 75.8% 79.5% 87.9% 82.1% 85.4% 43.7% 80.2% 90.4%
Balanced
accuracy 49.2% 50.6% 53.9% 51.6% 36.7% 24.9% 74.9% 66.7%

Case Study 4
galerij

Accuracy 85.5% 86.0% 87.7% 87.3% 80.3% 30.0% 90.3% 89.4%
Balanced
accuracy 59.6% 60.4% 64.5% 60.5% 32.3% 11.3% 78.2% 81.5%

Case Study 5
maisonnette

Accuracy 60.1% 59.9% 63.5% 61.1% 75.0% 53.4% 67.5% 69.8%
Balanced
accuracy 54.7% 49.6% 62.3% 65.5% 39.6% 26.0% 60.5% 60.6%

Case Study 6
portiek

Accuracy 17.0% 18.1% 26.7% 63.1% 82.1% 34.0% 68.5% 71.2%
Balanced
accuracy 42.8% 43.0% 44.8% 51.6% 40.2% 33.0% 68.6% 62.6%

Case Study 7
rij_2o1k

Accuracy 89.4% 83.2% 89.2% 89.0% 60.8% 27.9% 80.2% 86.0%
Balanced
accuracy 71.8% 62.8% 67.7% 67.4% 35.4% 23.9% 74.9% 78.9%

Case Study 8
vrijstaande

Accuracy 98.0% 98.5% 81.9% 98.5% 86.9% 83.4% 93.0% 93.0%
Balanced
accuracy 90.6% 94.2% 66.6% 91.4% 43.4% 28.6% 72.0% 64.2%

Table 5.5: Overview of case study 1 and 2 models on their test splits and each other’s whole dataset.

Lastly, in Table 5.6 the highest F1-score for each of these specific case studies are shown together with
the model used. The F1-score is the balanced ability of the model to both classify positive cases and be
accurate with the cases it classifies for a specific class, which in this case means how good a model is at
recognizing a specific building type class. Highlighted in bold are the models which did not have the best
accuracies, but are still best in recognizing the specific building type.

Note that for Case Study 6 the F1-score for recognizing common staircase without galleries (por-
tiekwoning) was irrelevant due to the fact manual preprocessing of the building types was not performed
on this dataset. This means some of the ‘portiekwoning’ buildings are still labelled as a different build-
ing type prior to the prediction, which then means that the F1-score does not accurately capture the
balanced ability of the model to classify the ‘portiekwoning’ buildings. Also, F1-score for Case Study
7 is the average of the F1-scores of end house (hoekwoning), terraced house (tussenwoning) and
semi-detached house (twee-onder-een-kap).

43



F1-score Model
Case study 3

flat 0.95 c2 SVM ANOVA-F

Case study 4
galerij 0.69 c2 RF impurity, c2 RF permutation

Case study 5
maisonnette 0.30 c2 RF permutation

Case study 6
portiek - -

Case study 7
rij_2o1k 0.94* c1 RF impurity, c1 RF permutation,

c2 RF permutation
Case study 8
vrijstaande 1.00 c1 SVM MI, c1 RF permutation

Table 5.6: F1-score of highest performing model for each of Case Studies 3 through 8.

6 | Discussion

In this chapter the results in Chapter 5 are further discussed. First the results of Case Studies 1 and
2 will be analysed in Section 6.1, then the c1 and c2 model performances applied to Case Studies
3 through 8 in Section 6.2. Finally, a summary of a hit-and-miss analysis on the c1 and c2 model
performances on their respective datasets is given in Section 6.3.

6.1 Case Studies 1 and 2

From Table 5.2 it can be observed that the c1 SVM MI model has the highest accuracy and lowest
tuning and training time. While the c1 RF impurity model has the highest balanced accuracy, the
tuning time is about 20 times longer compared to the SVM models. Although the computation time
needs to be taken into account while deciding the most suitable machine learning algorithm, according
to the third research subquestion. The balanced accuracy metric should be considered more important,
since the class imbalance in case study 1 is the most severe. Therefore, the most suitable algorithm in
case study 1 is the c1 RF impurity model.

Table 5.3 shows that the c2 RF permutation model is the most suitable model for Case Study
2, since the model has the highest accuracy and the highest balanced accuracy, which is even higher
than its accuracy. However, the c2 SVM models performed notably worse, both their accuracy and
balanced accuracy are lower than the c2 RF models. Which is not the case in Case study 1, where
the accuracies of c1 SVM models and c1 RF models are similar.

Table 5.4 shows the model performance of each trained model on its test splits and the other whole
dataset, c1 models on Case Study 2 dataset and vice versa. The c1 models performed noticeably worse
on the Case Study 2 dataset, with a drop in accuracy of 35% for all four models. This can be explained
by the class imbalance of the dataset the models were trained on. The models are, therefore, unable to
classify the building types that are underrepresented. This can also be observed in the classification
reports in the Appendix under Case Study 2 predictions using c1 models in Section A.1, where
the precision, recall and F1 score are zero for ‘Galerijwoning’, ‘Maisonnettewoning’ and ‘Portiekwoning’.
Similar to the results on its test split, the c2 RF permutation model performed the best on Case
Study 1 dataset, with even higher accuracy than the results on the test split but with lower balanced
accuracy.
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6.2 Model application

Table 5.5 shows the performances of the trained models on the unseen data of Case Study 3 through
8. In Case Study 3, the c2 RF impurity model has the highest balanced accuracy out of the eight
trained models. While the c1 RF impurity model from Case Study 1 performed the best out of the
c1 models.

In Case Study 4 the best performing model is the c2 RF permutation model instead of the c2 RF
impurity model. On the other hand, the c1 RF impurity model is still the best performer out of
the four c1 models applied to Case Study 4.

In Case Study 5 the c1 RF permutation model has the highest balanced accuracy, but the balanced
accuracy is lower compared to the best models in the previous cases. This can be explained with the
definition of maisonnette introduced in the expanded flowchart. Maisonettes are defined as buildings
with dwellings which have more than 1 floor, however, the data on the number of floors for each dwelling
is not available for the whole of the Netherlands. So it is not a feature in the datasets, which makes the
classification of maisonettes difficult.

The balanced accuracy of the best performer in Case Study 6 is even lower than the balanced accuracy
of the best performer in Case Study 5. This was expected, since the manual correction of the labels was
skipped for Case Study 6 to see if the models were still able to recognize common staircase without
galleries blocks (‘portiekwoning’). This was also observed in the confusion matrix and classification
report, see Figure 6.1. 370 buildings with the label ’flatwoning’ are classified as common staircase
without galleries blocks (‘portiekwoning’) instead. However, this needs to be investigated further
with a hit-and-miss analysis to confirm these findings.

precision recall f1-score support
228 49 0 0 370 0 2 Flatwoning 0.80 0.35 0.49 649
3 0 0 0 2 0 0 Galerijwoning 0.00 0.00 0.00 5
0 0 0 0 0 4 1 Hoekwoning 0.00 0.00 0.00 5
50 6 1 0 36 0 3 Maisonettewoning 0.00 0.00 0.00 96
1 0 0 0 5 0 0 Portiekwoning 0.01 0.83 0.02 6
4 1 0 12 3 54 12 Tussenwoning 0.92 0.63 0.74 86
0 0 0 1 0 1 2 Vrijstaande Woning 0.10 0.50 0.17 4

macro avg 0.26 0.33 0.20 851
weighted avg 0.7 0.34 0.45 851

Accuracy 0.340
Balanced Accuracy 0.330

Table 6.1: Confusion matrix and classification report of c2 SVM MI model on Case Study 6.

For Case Study 7, the c2 RF permutation model has the highest balanced accuracy. While the c1
SVM ANOVA-F model is surprisingly the best performer out of the four c1 models applied to Case
Study 7. This can be explained by the imbalanced class distribution in the dataset of Case Study 1.
Since the single-dwelling houses are better represented for Case Study 1, the model trained on Case
Study 1 will perform better on these single-dwelling houses compared to models trained on Case Study
2.

This is also true for Case Study 8, where the c1 SVM MI model performed the best. For the c2
models, the c2 RF impurity model has the highest accuracy and highest balanced accuracy.

From Tables 5.4, 5.5 and 5.6, it can be established that the RF models using permutation features
performed overall better than the SVM models. With c1 RF models perform better on the single-
dwelling building types: end house, terraced house, semi-detached house and detached house.
While the c2 RF models perform better on the multi-dwelling building types: multi-family house,
common staircase apartment blocks with and without galleries.
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6.3 Hit-and-miss analysis

A hit-and-miss analysis is performed to further analyse the model performances and to validate the
ground truth. In this section the summary of the findings for Case Study 1 and Case Study 2 are
discussed.

In Case Study 1, a lot of misses are because the labels given are different from what label the building
would have been given with the proposed classification rules in this thesis. This can be because different
classification rules are applied, see Figure 6.1 for an example. The label given for the building in the
example was ‘tussenwoning’ (terraced house). But, with the proposed classification rules the building
with the footprint marked with a black dot should not be considered as an adjacent building. Hence, the
prediction given by the models was ‘twee-onder-een-kap’ (semi-detached house).

Figure 6.1: Google street view of building ‘NL.IMBAG.Pand.1742100000007039’ (left) and its footprint
(right).

Other misses are because of misleading definitions for the different types of multi-family houses. Also, in
certain cases, the classification is even hard for people to do. For example, in multi-part buildings, one
part of the building might have galleries while a different part of the building might have dwellings with
2 floors (maisonnette). See Figure 6.2 for another similar example of misleading definitions.

Figure 6.2: Google street view of building ‘NL.IMBAG.Pand.1742100000005434’.

The label given for this example building is ‘portiekwoning’ (common staircase without galleries).
However, with the proposed classification rules this building should be considered a multi-family house
(‘flatwoning’). In Figure 6.2 the cause of this misclassification can be seen, it lies in the misconception of
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an open porch. The building has an open stairwell above ground level, which can be interpreted as an
open porch, but on the ground level this stairwell is closed.

Also, the manner of drawing the footprints of the buildings and their garage boxes influences the adjacency
feature, see Figure 6.3. The label here given is ‘twee-onder-een-kap” (semi-detached), which is correct.
However, the prediction made by the models is ‘tussenwoning’ (terraced house). Since the garage boxes
attached to the buildings are taken with the buildings as one, see the footprints in Figure 6.3. For other
cases or areas these footprints are drawn separately, see footprints in Figure 6.1 for example.

Figure 6.3: Google street view of building ‘NL.IMBAG.Pand.1742100000008886’ (left) and its footprint
(right).

On top of that, complex shapes of the footprints can lead to unexpected adjacencies, see Figure 6.4. The
label given was ‘vrijstaande woning’ (detached house), but the prediction given was a semi-detached
house. The complex shapes of the footprints, also because the building attachments are taken with
the building as one, led to the example building (highlighted and with number 2) being adjacent to the
building with number 23.

Figure 6.4: Google street view of building ‘NL.IMBAG.Pand.1742100000013965’ (left) and its footprint
(right).

Furthermore, for some models, the number of dwellings feature did not score well enough to be selected
in the feature selection process. This however led to misclassification of multi-family houses and
detached houses. This might be because of the imbalance in the class distribution; fewer buildings of
the multi-family house types means that the number of dwellings feature is less important.
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In Case Study 2 it becomes more apparent that some buildings were given the wrong label, some due
to the fact of human errors and some also because the definitions of some of the classes are vague or
interpreted differently.

For example, in building ’NL.IMBAG.Pand.0503100000000019’ (see Figure 6.5) the label given was ’flat-
woning’ (multi-family house), however, the correct label should have been ’galerijwoning’ (common
staircase with galleries). Since the building has galleries. The SVM models predicted this building
to be ‘portiekwoning’ (common staircase without galleries), however, the RF models were able to
predict this building correctly as ’galerijwoning’.

Figure 6.5: Google street view of building ’NL.IMBAG.Pand.0503100000000019’.

In a similar example, building ’NL.IMBAG.Pand.0503100000024958’ (see Figure 6.6) was given the label
’galerijwoning’ (common staircase with galleries), but the correct label should have been ’flatwoning’
(multi-family house). Since the building does not have galleries. However, all the models except for
the SVM MI model were able to classify it correctly as ’flatwoning’.

Figure 6.6: Google street view of building ’NL.IMBAG.Pand.0503100000024958’.

The following example showcases a multi-part building, where each part of the building can be classified
differently. See Figure 6.7 for building ’NL.IMBAG.Pand.0503100000002054’. The two ends of this
building have galleries, while the tallest centre part does not. The building type of this building is up
for discussion and can be either classified as ’galerijwoning’ (common staircase with galleries) or
’flatwoning’ (multi-family house). The label given to this building was ’galerijwoning’, however, this
building has been classified as ’flatwoning’ (multi-family house) by the models. This can be explained
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by the class distribution of Case Study 2, where there are more multi-family house than common
staircase apartment blocks with galleries. The models are therefore biased towards multi-family
houses.

Figure 6.7: Google street view of building ’NL.IMBAG.Pand.0503100000002054’.

The next example presents a building with a building type which is a combined subtype of ‘portiekwoning’
(common staircase without galleries) and ’flatwoning’ (multi-family house). See figure 6.8. The
building type of this building is also up for discussion and depends on how the building type definitions
are interpreted. And also, what the proposed classification rules are. The building was given the label
‘portiekwoning’ (common staircase without galleries). Following the proposed classification rules of
this thesis, this building should be classified as ’flatwoning’ (multi-family house). The SVM models
classified this building as ’flatwoning’ (multi-family house) accordingly, while the RF models classified
this building as ‘portiekwoning’ (common staircase without galleries).

Figure 6.8: Google street view of building ’NL.IMBAG.Pand.0503100000001549’.

EP-online (2023) was used as a basis for the ground truth of the buildings outside of Rijssen-Holten
(Case Studies 2 through 8). Manual preprocessing steps have been taken to correct some of these
errors, but some errors persist as shown in the previous examples.
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7 | Conclusion

7.1 Research overview

This thesis aimed to develop a method to infer the residential building type from the 3DBAG, the
residential building type can then be used with the IEE project TABULA to approximate the energy
consumption of a specific building. The main research question for this thesis was defined in the intro-
duction with three additional subquestions. To answer the main question the sub-questions need to be
answered first.

Sub question 1: What features are needed to infer the building types of the buildings of the 3DBAG?

From the expanded flowchart and the definition of the building types it can be concluded that the following
features are needed to infer the building types of the 3DBAG:

• the number of neighbouring buildings,
• the number of neighbouring buildings of neighbouring building,
• the number of dwellings in a building,
• building having an open porch,
• building having galleries.

However, only the following features could be extracted from open data:
• the number of neighbouring buildings,
• the number of neighbouring buildings of neighbouring building,
• the number of dwellings in a building.

The absence of an open porch feature and galleries feature had to be covered by features describing the
form of a building. Assuming that there should be a relation between the form of a building and the
building being one of the multi-dwelling types.

Furthermore, the feature selection has shown that the extracted features needed to infer the building
types of the buildings of the 3DBAG are different for each machine learning algorithm. Also, different for
each filtering method and different areas of study yield different subsets of features as well. Nonetheless
some of the features are included in most of the subsets of features, see Table 7.1. It can be observed
that the adjacency features, the oriented bounding box width and the actual volume in LoD2.2 were the
most relevant. Since it was used the most in the trained models. Lastly, the feature engineering process
showed that there is no difference in using LoD1.2 and LoD2.2 features, since the features of different
level of details are highly correlated.

Case Study 1 Case Study 2
SVM

ANOVA-F
SVM
MI

RF
impurity

RF
permu.

SVM
ANOVA-F

SVM
MI

RF
impurity

RF
permu. Count

1 Number of adjacent buildings x x x x x x x 7

2 Number of adjacent buildings of
adjacent buildings. x x x x x x 6

3 Year of construction x x x 3
4 Number of dwellings in the building x x x x x x 6
5 Footprint area x x x x 4
6 Footprint perimeter x x 2
7 Number of the vertices in footprint 0

8 The number of neighbouring
building (radius: 25m) x x 2

9 The number of neighbouring
building (radius: 50m) x x 2

10 The number of neighbouring
building (radius: 75m) 0

11 The number of neighbouring
building (radius: 100m) 0

12 Oriented bounding box width
in LoD1.2 x x x x x x x x 8

13 Oriented bounding box length
in LoD1.2 x x x 3

14 Actual volume in LoD2.2 x x x x x 5
15 Total wall surface area in LoD2.2 x x x x 4
16 Total roof surface area in LoD2.2 x 1
17 Maximum height in LoD2.2 x x x 3
18 Height (without roof) in LoD2.2 0

Table 7.1: Overview of features selected for each model.
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Sub question 2: What data is required?

A cadastre database (for example, the BAG for the Netherlands) is necessary to extract features and
building information, along with a semantic 3D city model (for example, 3DBAG) for the geometrical
features. Additionally, labelled datasets (for example, Rijssen-Holten and EP-online datasets) are needed
to provide a ground truth. However, challenges arose in feature validation and the hit-and-miss analysis,
underscoring the importance of a comprehensive dataset following proposed classification rules.

Furthermore, data on number of storeys for each dwelling can be invaluable in classifying maisonnettes.
The same can be said for data on buildings having an open porch or having galleries, for classifying com-
mon staircase apartment blocks without galleries and common staircase apartment blocks
with galleries respectively. However, only data on the number of storeys for each dwelling for Dutch
buildings exists in the form of the BAG+ (Gemeente Amsterdam, 2023). But, the BAG+ is only available
to a few cities in the Netherlands and is not open data.

Sub question 3: Which (combination of) machine learning algorithm is the most suitable to be used
for the classification of the building stock of the Netherlands, with regards to the size and nature of the
data used, the availability of computational resources, the interpretability of the results and the desired
level of accuracy?

Selecting the most suitable machine learning algorithm for classifying the Dutch building stock proved
challenging due to varying algorithm performance across case studies. While Random Forest models
generally outperformed SVM models, trade-offs between performance, tuning time, and training time
were observed. Despite the longer tuning and training time for Random Forest models, their overall
suitability, especially in terms of accuracy, was highlighted.

Main research question: To what extent can machine learning correctly classify the building stock of
the Netherlands?

The thesis showcased well-performing models with accuracies ranging from 61.1% to 98.5% and balanced
accuracies from 51.6% to 94.2%. Notably, performance varied across case studies, with distinctions in
accuracy when focusing on multi-dwelling versus single-dwelling houses. These outcomes underscored
the potential of machine learning to achieve high classification results for the Dutch building stock when
trained on representative datasets. However, the quality of results depends on data quality, and challenges
arise in scenarios involving complex buildings with multiple parts and unclear classification rules.

In summary, this research provides valuable insights into feature selection, data requirements, and al-
gorithm performance, contributing to the broader understanding of machine learning applications in
building classification.
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7.2 Limitations

Despite the high accuracy achieved by the trained models, several limitations hinder the robustness of
the approach:

• Ground truth:
– Classification Rule Differences: Discrepancies between the classification rules used in the

Rijssen-Holten dataset’s ground truth and the proposed rules impacted model performance.
Additionally, inconsistencies in the Ep-online dataset’s classification, likely due to varied con-
tributors, further complicated reliable ground truth acquisition.

– EP-online Dataset Challenges: The EP-online dataset, classified at the dwelling level,
introduced complexities, potentially resulting in the same building having multiple classifi-
cations. This inconsistency led to models being trained on inaccurately labelled buildings,
reducing overall performance and making result interpretation challenging.

– Correction Efforts: Attempts to rectify labels from the EP-online dataset were time-consuming,
requiring manual verification of thousands of buildings either in person or via Google Street
View. Despite correction efforts, the training data retained errors, affecting the model’s relia-
bility.

• Features: Certain crucial features needed to adhere to the proposed classification rules were un-
available. Notably, the absence of features such as the number of floors per dwelling, open porch
presence, and galleries hindered the complete application of the proposed classification rules.

• Feature selection: The feature selection process resulted in the creation of eight models (four
for Case Study 1 and four for Case Study 2). While deemed necessary due to severe class
imbalances and differing ground truths, assessing the performances of all eight models provided
insights into the impact of imbalanced class distributions but added analytical intricacies.

• Model assessment and results: The unreliable nature of the ground truth extended to the
results and assessments, introducing uncertainty. A misclassification in the prediction could be
compounded by inaccurate ground truth labels, prompting the need for a labour-intensive hit-and-
miss analysis.

In conclusion, the limitations outlined above underscore the challenges in achieving a robust and accurate
machine learning classification of the Dutch building stock. Addressing these limitations is essential for
enhancing the reliability and interpretability of the models and results.

7.3 Recommendations and future work

Based on the limitations of this thesis, several recommendations are provided for further research. First,
creating an improved ground truth should be explored. This could be done by establishing standardized
classification rules and ensuring consistency across the dataset. This will mitigate discrepancies in the
classification results, for example, the wrongly classified buildings because of different interpretations
of building type definitions or different classification rules. The classification rules should also include
handling cases where the building type is up for discussion, for example, multi-part buildings or buildings
where the building type is a combination of building types. This would improve the classification results,
interpretability of these results and the performance of the trained models.

Second, additional subsets of the Netherlands could be explored in the model creation and application.
To compare results, but to also address the severe class imbalance observed in Case Study 1 and Case
Study 2. Severe imbalance in class distribution could also be prevented by creating a synthetic dataset
while keeping the balance of the class distribution. However, a balanced class distribution usually does
not occur in real-world scenarios. And, could lead to unexpected class bias issues.

Third, investigate alternative sources or methods to supplement missing features, such as the number
of floors per dwelling, open porch presence, and galleries. The BAG+, for example, could be used to
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obtain the number of floors per dwelling. Furthermore, the space indices introduced in 3DBM could
also be used to better describe the form of a building and supplement the missing features. Or even,
collaborating with domain experts to explore additional relevant features. All this could contribute to a
more comprehensive classification.

Fourth, in terms of feature selection, the process described in this thesis resulted in the creation of
eight models. Unnecessarily increasing the complexity of model evaluation should be avoided. A more
incremental approach should be used, starting with one machine learning algorithm using a small number
of feature selection methods. Or several machine learning algorithms using one feature selection method
for each algorithm.

Fifth, the model assessment could be improved by developing robust validation strategies, considering
the uncertainties in ground truth, to ensure more reliable model assessments. For example, implementing
cross-validation techniques that account for potential misclassifications in the ground truth provides a
more accurate estimation of model performance.

In addition to these recommendations, possible future work can be defined as follows:

• Automated Ground Truth Correction: Investigate the development of automated algorithms
or tools to assist in the correction of ground truth labels, potentially leveraging machine learning
techniques for label verification.

• Integration of Additional Data Sources: Explore the integration of complementary data
sources to enhance the availability of critical features, improving the overall completeness of the
classification rules.

• Advanced machine learning algorithms: Investigate the applicability of more advanced ma-
chine learning algorithms, such as neural networks, to potentially capture complex relationships
and patterns within the data.

• Longitudinal Analysis: Conduct a longitudinal analysis to observe changes in the Dutch building
stock over time, potentially uncovering trends and patterns that can further refine classification
models.

• Collaboration with Stakeholders: Engage in collaborative efforts with relevant stakeholders,
including local authorities and data contributors, to establish a more standardized and consistent
classification framework.

• User-Friendly Model Interpretation: Develop user-friendly tools or interfaces that facilitate
the interpretation of model results, considering the complexities introduced by uncertain ground
truth labels.
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7.4 Reflection

• The relationship between the methodical line of approach of the Master Geomatics
and the method chosen by the student in this framework: The methodical line of approach
in the Master Geomatics program emphasizes a comprehensive understanding of geospatial data
processing and analysis. In accordance with this, the research employed machine learning techniques
for the classification of Dutch building stock. The utilisation of these methods allowed for a nuanced
exploration of spatial patterns and relationships within the dataset, aligning with the program’s
emphasis on cutting-edge methodologies.

• The relationship between the conducted research and application of the field geomat-
ics: The research outcomes hold practical implications for the field of geomatics by offering a novel
approach to classifying building types. The application of machine learning algorithms not only
enhances the efficiency of classification but also opens avenues for automating building stock analy-
ses. This not only aligns with the technological advancements promoted in the geomatics field but
also underscores the potential for real-world applications in urban planning, resource management,
and infrastructure development.

• The relationship between the project and the wider social context: The research’s findings
transcend the academic setting and contribute to addressing broader societal challenges. Accurate
classification of building types has direct implications for sustainable urban development, resource
optimization, and disaster preparedness. By providing a robust method for understanding the spa-
tial distribution of building types, the research adds value to urban planning initiatives, supporting
informed decision-making processes that ultimately benefit communities and the environment.

• Overall reflection: The research undertaken seamlessly integrates with the Master Geomatics
program’s commitment to advancing geospatial methodologies and their practical applications.
By navigating the complexities of building stock classification, the project not only contributes
to the academic discourse but also presents a tangible solution with far-reaching implications for
urban planning and societal well-being. This journey has reinforced the significance of bridging
theoretical knowledge with real-world challenges, solidifying my commitment to making meaningful
contributions in the field of geomatics.
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A | Appendix

Figure A.1: Correlation matrix for Case Study 2.

Figure A.2: Correlation matrix with exact coefficient values for Case Study 2.
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Figure A.3: Histograms of the features of the acquired training dataset for Case Study 2.

feature name score
11 obb_width_lod1 417.04
16 height_max_lod2 400.64
12 obb_length_lod1 370.06
9 fp_perimeter 351.90

14 wall_area_lod2 332.24
0 no_adjacent_bldg 318.57
7 bag_no_dwellings 275.42

13 actual_volume_lod2 228.20
1 no_adjacent_of_adja_bldg 191.52

15 roof_area_lod2 175.76
17 height_min_roof_lod2 165.79
8 fp_area 136.97
3 no_neighbours_50m 89.38

10 fp_no_vertices 86.91
2 no_neighbours_25m 84.31
4 no_neighbours_75m 82.78
5 no_neighbours_100m 72.91
6 bag_construction_year 5.45

feature name score
7 bag_no_dwellings 0.518

11 obb_width_lod1 0.397
13 actual_volume_lod2 0.369
8 fp_area 0.363

14 wall_area_lod2 0.340
9 fp_perimeter 0.325

15 roof_area_lod2 0.295
12 obb_length_lod1 0.253
16 height_max_lod2 0.235
0 no_adjacent_bldg 0.205
6 bag_construction_year 0.177
1 no_adjacent_of_adja_bldg 0.164

17 height_min_roof_lod2 0.154
10 fp_no_vertices 0.116
2 no_neighbours_25m 0.080
3 no_neighbours_50m 0.069
5 no_neighbours_100m 0.058
4 no_neighbours_75m 0.056

Table A.1: ANOVA-F score (left) and MI score (right) of the features for Case Study 2.

feature name
11 obb_width_lod1
16 height_max_lod2
12 obb_length_lod1
9 fp_perimeter

14 wall_area_lod2
0 no_adjacent_bldg
7 bag_no_dwellings

feature name
7 bag_no_dwellings

11 obb_width_lod1
13 actual_volume_lod2
8 fp_area
9 fp_perimeter

15 roof_area_lod2
12 obb_length_lod1

Table A.2: ANOVA-F features (left) & MI features (right) for Case Study 2.
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feature name score
7 bag_no_dwellings 0.152
0 no_adjacent_bldg 0.093

11 obb_width_lod1 0.088
13 actual_volume_lod2 0.078
8 fp_area 0.067

14 wall_area_lod2 0.066
1 no_adjacent_of_adja_bldg 0.060

15 roof_area_lod2 0.051
16 height_max_lod2 0.047
9 fp_perimeter 0.044

12 obb_length_lod1 0.044
17 height_min_roof_lod2 0.041
6 bag_construction_year 0.036
5 no_neighbours_100m 0.030
4 no_neighbours_75m 0.028
3 no_neighbours_50m 0.027

10 fp_no_vertices 0.026
2 no_neighbours_25m 0.023

feature name
7 bag_no_dwellings
0 no_adjacent_bldg

11 obb_width_lod1
13 actual_volume_lod2
8 fp_area
1 no_adjacent_of_adja_bldg

16 height_max_lod2

Table A.3: Random Forest impurity-based feature importances (left) & impurity features (right) for Case
Study 2.

feature name ranking
7 bag_no_dwellings 1
0 no_adjacent_bldg 2
1 no_adjacent_of_adja_bldg 3

11 obb_width_lod1 4
12 obb_length_lod1 5
8 fp_area 6

14 wall_area_lod2 7
6 bag_construction_year 8

13 actual_volume_lod2 9
17 height_min_roof_lod2 10
16 height_max_lod2 11
15 roof_area_lod2 12
2 no_neighbours_25m 13
5 no_neighbours_100m 14
3 no_neighbours_50m 15

10 fp_no_vertices 16
9 fp_perimeter 17
4 no_neighbours_75m 18

feature name
7 bag_no_dwellings
0 no_adjacent_bldg
1 no_adjacent_of_adja_bldg

11 obb_width_lod1
12 obb_length_lod1
8 fp_area

14 wall_area_lod2

Table A.4: Random Forest permutation-based feature importances (left) & permutation features (right)
for Case Study 2
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Figure A.4: Validation curves for SVM using ANOVA-F features.
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Figure A.5: Validation curves for SVM using MI features.
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Figure A.6: Validation curves for RF using impurity features.
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Figure A.7: Validation curves for RF using permutation features.
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A.1 Results

A.1.1 Case Study 1

Figure A.8: SVM using ANOVA-F features on Case Study 1 test split (0.2).

Figure A.9: SVM using MI features on Case Study 1 test split (0.2).
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Figure A.10: RF using impurity features on Case Study 1 test split (0.2).

Figure A.11: RF using permutation features on Case Study 1 test split (0.2).
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A.1.2 Case Study 2

Figure A.12: SVM using ANOVA-F features on Case Study 2 test split (0.2).

Figure A.13: SVM using MI features on Case Study 2 test split (0.2).
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Figure A.14: RF using impurity features on Case Study 2 test split (0.2).

Figure A.15: RF using permutation features on Case Study 2 test split (0.2).
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A.1.3 Case Study 1 predictions using c2 models
precision recall f1-score support

44 0 0 3 5 0 0 6 Flatwoning 0.64 0.76 0.69 58
4 0 0 0 0 0 0 0 Galerijwoning 0.00 0.00 0.00 4
6 0 548 7 3 247 110 512 Hoekwoning 0.45 0.38 0.41 1433
2 0 0 2 0 0 0 0 Maisonettewoning 0.07 0.50 0.13 4
6 0 0 0 2 0 0 0 Portiekwoning 0.11 0.25 0.15 8
4 0 24 14 7 1987 9 87 Tussenwoning 0.81 0.93 0.87 2132
2 0 537 1 1 214 103 905 Twee-onder-een-kapwoning 0.46 0.06 0.10 1763
1 0 116 0 1 7 2 1637 Vrijstaande Woning 0.52 0.93 0.67 1764

macro avg 0.38 0.48 0.38 7166
weighted avg 0.58 0.6 0.54 7166

Accuracy 0.603
Balanced Accuracy 0.476

Table A.5: Classification report of c2 SVM ANOVA-F model on Case Study 1

precision recall f1-score support
27 22 0 0 3 0 0 6 Flatwoning 0.03 0.47 0.06 58
4 0 0 0 0 0 0 0 Galerijwoning 0.00 0.00 0.00 4

246 6 0 21 24 439 3 694 Hoekwoning 0.00 0.00 0.00 1433
0 4 0 0 0 0 0 0 Maisonettewoning 0.00 0.00 0.00 4
3 5 0 0 0 0 0 0 Portiekwoning 0.00 0.00 0.00 8

356 10 2 42 20 1017 2 683 Tussenwoning 0.58 0.48 0.52 2132
224 3 0 15 9 293 4 1215 Twee-onder-een-kapwoning 0.44 0.00 0.00 1763
49 2 0 1 4 13 0 1695 Vrijstaande Woning 0.39 0.96 0.56 1764

macro avg 0.18 0.24 0.14 7166
weighted avg 0.38 0.38 0.29 7166

Accuracy 0.383
Balanced Accuracy 0.238

Table A.6: Classification report of c2 SVM MI model on Case Study 1
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precision recall f1-score support
21 32 0 1 4 0 0 0 Flatwoning 0.21 0.36 0.26 58
0 4 0 0 0 0 0 0 Galerijwoning 0.06 1.00 0.12 4
7 1 1170 17 1 36 63 138 Hoekwoning 0.92 0.82 0.87 1433
0 4 0 0 0 0 0 0 Maisonettewoning 0.00 0.00 0.00 4
0 8 0 0 0 0 0 0 Portiekwoning 0.00 0.00 0.00 8
8 1 53 18 1 1651 61 339 Tussenwoning 0.93 0.77 0.85 2132
8 5 35 11 0 83 1356 265 Twee-onder-een-kapwoning 0.90 0.77 0.83 1763

58 8 12 43 0 3 25 1615 Vrijstaande Woning 0.69 0.92 0.78 1764

macro avg 0.46 0.58 0.46 7166
weighted avg 0.85 0.81 0.82 7166

Accuracy 0.812
Balanced Accuracy 0.58

Table A.7: Classification report of c2 RF impurity model on Case Study 1

precision recall f1-score support
36 17 0 0 5 0 0 0 Flatwoning 0.46 0.62 0.53 58
0 4 0 0 0 0 0 0 Galerijwoning 0.12 1.00 0.22 4

11 3 1188 8 3 38 66 116 Hoekwoning 0.92 0.83 0.87 1433
3 1 0 0 0 0 0 0 Maisonettewoning 0.00 0.00 0.00 4
4 4 0 0 0 0 0 0 Portiekwoning 0.00 0.00 0.00 8

10 1 53 17 1 1689 58 303 Tussenwoning 0.93 0.79 0.84 2132
3 1 36 12 0 92 1392 227 Twee-onder-een-kapwoning 0.90 0.79 0.84 1763

12 1 11 0 1 4 28 1707 Vrijstaande Woning 0.73 0.97 0.83 1764

macro avg 0.51 0.62 0.52 7166
weighted avg 0.86 0.84 0.84 7166

Accuracy 0.840
Balanced Accuracy 0.625

Table A.8: Classification report of c2 RF permutation model on Case Study 1
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A.1.4 Case Study 2 predictions using c1 models
precision recall f1-score support

379 0 401 0 0 537 139 20 Flatwoning 0.69 0.26 0.37 1476
57 0 3 0 0 2 1 0 Galerijwoning 0.00 0.00 0.00 63
0 0 1351 0 0 16 67 3 Hoekwoning 0.42 0.94 0.58 1437

66 0 196 0 0 315 99 5 Maisonettewoning 0.00 0.00 0.00 681
48 0 22 0 0 39 8 1 Portiekwoning 0.00 0.00 0.00 118
1 4 1210 0 0 3428 1353 3 Tussenwoning 0.78 0.57 0.66 5999
0 2 1 0 0 11 534 4 Twee-onder-een-kapwoning 0.24 0.97 0.38 552
0 0 27 0 0 25 44 157 Vrijstaande Woning 0.81 0.62 0.70 253

macro avg 0.37 0.42 0.34 10579
weighted avg 0.63 0.55 0.54 10579

Accuracy 0.553
Balanced Accuracy 0.42

Table A.9: Classification report of c1 SVM ANOVA-F model on Case Study 2

precision recall f1-score support
344 0 369 0 3 600 118 42 Flatwoning 0.68 0.23 0.35 1476
50 0 7 0 0 2 1 3 Galerijwoning 0.00 0.00 0.00 63
0 0 1304 0 0 69 62 2 Hoekwoning 0.44 0.91 0.59 1437

59 0 174 0 1 354 80 13 Maisonettewoning 0.00 0.00 0.00 681
31 0 40 0 0 36 8 3 Portiekwoning 0.00 0.00 0.00 118
2 0 1076 0 0 3694 1226 1 Tussenwoning 0.77 0.62 0.68 5999
0 0 1 0 0 37 511 3 Twee-onder-een-kapwoning 0.25 0.93 0.39 552

17 0 26 0 0 31 39 140 Vrijstaande Woning 0.68 0.55 0.61 253

macro avg 0.35 0.40 0.33 10579
weighted avg 0.62 0.57 0.55 10579

Accuracy 0.566
Balanced Accuracy 0.404

Table A.10: Classification report of c1 SVM MI model on Case Study 2
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precision recall f1-score support
222 175 247 10 151 429 214 28 Flatwoning 0.68 0.23 0.35 1476

7 28 3 6 16 2 1 0 Galerijwoning 0.00 0.00 0.00 63
0 0 1324 0 0 18 92 3 Hoekwoning 0.44 0.91 0.59 1437

27 26 168 6 14 307 125 8 Maisonettewoning 0.00 0.00 0.00 681
31 22 12 4 14 22 12 1 Portiekwoning 0.00 0.00 0.00 118
4 0 1071 1 0 3486 1435 2 Tussenwoning 0.77 0.62 0.68 5999
0 0 1 0 0 3 546 2 Twee-onder-een-kapwoning 0.25 0.93 0.39 552
0 0 25 5 0 24 48 151 Vrijstaande Woning 0.68 0.55 0.61 253

macro avg 0.35 0.40 0.33 10579
weighted avg 0.62 0.57 0.55 10579

Accuracy 0.566
Balanced Accuracy 0.404

Table A.11: Classification report of c1 RF impurity model on Case Study 2

precision recall f1-score support
306 195 237 9 160 406 144 19 Flatwoning 0.72 0.21 0.32 1476
10 12 3 1 34 2 1 0 Galerijwoning 0.05 0.19 0.07 63
0 0 1348 0 0 18 68 3 Hoekwoning 0.47 0.94 0.63 1437

45 24 165 3 19 324 97 4 Maisonettewoning 0.23 0.00 0.01 681
62 27 5 0 6 10 8 0 Portiekwoning 0.03 0.05 0.04 118
0 0 1075 0 1 3560 1361 2 Tussenwoning 0.82 0.59 0.69 5999
0 0 1 0 0 8 541 2 Twee-onder-een-kapwoning 0.24 0.98 0.38 552
0 0 25 0 0 27 46 155 Vrijstaande Woning 0.84 0.61 0.71 253

macro avg 0.42 0.45 0.36 10579
weighted avg 0.68 0.56 0.56 10579

Accuracy 0.561
Balanced Accuracy 0.447

Table A.12: Classification report of c1 RF permutation model on Case Study 2
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