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Tailored motivational messages are helpful to motivate people in eHealth
applications for increasing physical activity, but it is not sufficiently clear how
such messages can be effectively generated in advance. We, therefore, put
forward a theory-driven approach to generating tailored motivational messages
for eHealth applications for behavior change, and we examine its feasibility by
assessing how motivating the resulting messages are perceived. For this, we
designed motivational messages with a specific structure that was based on an
adaptation of an existing ontology for tailoring motivational messages in the
context of physical activity. To obtain tailored messages, experts in health
psychology and coaching successfully wrote messages with this structure for
personas in scenarios that differed with regard to the persona’s mood, self-
efficacy, and progress. Based on an experiment in which 60 participants each
rated the perceived motivational impact of six generic and six tailored messages
based on scenarios, we found credible support for our hypothesis that
messages tailored to mood, self-efficacy, and progress are perceived as more
motivating. A thematic analysis of people’s free-text responses about what they
found motivating and demotivating about motivational messages further
supports the use of tailored messages, as well as messages that are encouraging
and empathetic, give feedback about people’s progress, and mention the
benefits of physical activity. To aid future work on motivational messages, we
make our motivational messages and corresponding scenarios publicly available.

KEYWORDS

physical activity, behavior change, eHealth, tailoring, personalization, motivation, feedback,

monitoring

1. Introduction

Tailored motivational messages have been shown to be useful in eHealth applications for

behavior change such as ones for becoming more physically active (1–4). For example,

providing users with actionable feedback (i.e., feedback that can be acted on) in

combination with information about their progress has been found to increase intrinsic

motivation as well as adherence (5). For somebody creating an eHealth application, this

means that they need to find a way to generate motivational messages adjusted to each

combination of values for the tailoring factors that might be relevant to consider, such as

a person’s progress or motivation. Since it is likely not feasible for experts to write and

send these messages in real time after the application has been deployed, the messages

should be generated in advance.
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A common approach to generating motivational messages used

in current eHealth applications for behavior change is writing

custom and hand-crafted messages without a specific structure

(e.g., (6–10)). While this approach may lead to messages that are

effective for the specific application at hand, it is difficult for other

researchers to follow the same recipe for generating messages for a

different behavior change application. This hinders the reuse,

reproducibility, and generalizability of findings, especially when the

messages are also not publicly shared (e.g., (6–8, 11, 12)).

To obtain structured motivational messages, both data-driven

and theory-driven approaches have been employed. For example,

Tielman et al. (13) asked experts to write messages for scenarios

differing based on user trust and therapy progress in the context

of post-traumatic stress disorder therapy. The sentences in the

resulting messages were used to identify categories such as

“compliment” and “give perspective,” and new messages were

generated based on the probabilities of categories appearing for a

certain combination of tailoring factors. The resulting messages

thus do have a specific structure, but this structure is based on

data from a specific domain and may hence not be applicable to

other domains. An alternative to this data-driven approach is a

theory-driven one. Thomas et al. (14), for example, proposed

asking peers to write messages for healthy eating based on

argumentation schemes (i.e., forms of argument). Because the

resulting message structure is not tailored to a specific domain, it

can be used in different behavior change domains, thus reducing

the time needed for designing and validating messages for the new

domain. However, limited work on such theory-driven approaches

exists for generating motivational messages that are tailored.

Our goal was thus to develop and test the feasibility of a theory-

driven approach to generating tailored motivational messages. We,

therefore, asked experts in health psychology and coaching to write

motivational messages with a specific structure derived from an

ontology. To obtain tailored messages, these messages were written

for personas in scenarios that differed with regard to the mood,

self-efficacy, and progress of the persona in the context of

becoming more physically active. A variety of tailoring factors for

motivational as well as persuasive messages more generally has

been examined in previous work, including both dynamic factors

(e.g., progress (15), self-efficacy (16), states derived from the

Capability-Opportunity-Motivation-Behavior (COM-B) model

(17)) and more stable user characteristics (e.g., gender (18), need

for cognition (19), physical activity identity (20)). In line with our

goal, we chose three factors that have been shown to be relevant in

previous work and not necessarily the most important factors.

Progress was chosen to make progress feedback possible, which can

help users keep a positive mindset about physical activity (15),

increase users’ motivation to reach their goal behavior (21), and

make messages more interesting (22) and thus more likely to be

processed in detail (23) and with a persistent impact (24); mood

and self-efficacy were primarily chosen because they can affect how

messages and feedback, in particular, are processed. Specifically,

mood has been shown to affect how a user processes messages (25)

and feedback regarding behavior change (26, 27), and self-efficacy

influences how a user absorbs message content (28) and is

persuaded by differently framed messages for behavior change (16).
Frontiers in Digital Health 02
Mood and self-efficacy can thus affect how effective different

motivational messages are. Furthermore, mood and self-efficacy

both influence physical activity and are influenced by it (26, 29,

30). This can be taken into account in motivational messages for

physical activity if a user’s mood and self-efficacy are known.

To validate our resulting messages, we conducted an

experiment in which 60 participants each rated the perceived

motivational impact of six tailored and six generic messages

based on scenarios. Our hypothesis was that the tailored

messages are perceived as more motivating than the generic

ones. To improve motivational messages in the future, we further

qualitatively analyzed people’s free-text responses about what

they find motivating and demotivating about motivational

messages. Our results support the feasibility of theory-based

generation and the use of messages tailored to mood, self-

efficacy, and progress. To aid future work on motivational

messages, we make the scenarios and resulting 60 tailored and 12

generic motivational messages publicly available (31).
2. Method

Our experiment was run from December 2021 to January 2022.

The Human Research Ethics Committee of Delft University of

Technology granted ethical approval for the research (Letter of

Approval number: 1814) and the experiment was pre-registered

on the Open Science Framework (OSF) (32).
2.1. Experimental design

The study was set up as a double-blind within-subjects

experiment. The within-subjects factor was the type of message

that participants rated for a hypothetical scenario. In the control

condition, participants rated generic messages; in the experimental

condition, they rated messages tailored to progress, mood, and

self-efficacy. To mitigate order and learning effects, ABBA

counterbalancing (33) was performed when assigning tailored or

generic messages to participants. Furthermore, the progress, mood,

and self-efficacy of the persona used in the hypothetical scenarios

were counterbalanced with a modified Latin square.
2.2. Materials

The online crowdsourcing platform Prolific and the survey

platform Qualtrics were used to recruit participants and host the

questionnaires.

Scenarios. 30 hypothetical scenarios were designed to elicit

motivational messages from experts. The scenarios were created

by combining three levels of mood, two levels of self-efficacy,

and five levels of progress (2� 3� 5 ¼ 30). Each scenario had a

persona with a specific mood, self-efficacy, and progress level of

their physical activity program. The list of scenarios can be

found in our online repository. Two independent coders labeled

each scenario with a mood, self-efficacy, and progress level to
frontiersin.org
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evaluate whether each scenario had a distinguishable mood, self-

efficacy, and progress level. We obtained substantial to almost

perfect agreement (34) for mood (k ¼ 0:73), self-efficacy

(k ¼ 0:73) and progress (k ¼ 0:96).

Motivational messages. Using the framework by Op den

Akker et al. (27) as inspiration, we created an ontology to model

tailored motivational messages for physical activity coaching

based on their intention (i.e., why the message is sent) and

content (i.e., what is in the message) (Figure 1). The message

structure (Figure 2) consists of the components feedback,

argument, reinforcement, and suggestion following the model by

Op den Akker et al. (27), which was created as a model of

tailoring for real-time physical activity coaching applications

based on a survey of the literature and of messages used in

previous studies. Two health psychologists with experience in

behavioral change coaching and developing eHealth applications

for increasing physical activity were recruited from the network

of the authors to write tailored motivational messages for the 30

hypothetical scenarios based on this ontology for a total of 60
FIGURE 1

The ontology used for generating tailored motivational messages to improve
(27), we have added the components of qualitative and quantitative feedba
suggestion, argument, and reinforcement components.

FIGURE 2

Message structure for messages with (A) encourage and (B) neutral intentions b
to do (more) physical activity, whereas a neutral intention acknowledges a u
consistently achieving their goals, they need not be reminded frequently a
reinforcement components can then be used for messages with neutral inten
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messages. The psychologists were asked to consider the people in

the scenarios as their clients or patients and write the messages

as if they were motivating them to improve their physical activity

levels. Along with the tailored messages, the psychologists were

asked to write six generic messages each to motivate people to

increase their physical activity regardless of their mood, self-

efficacy, or progress. The psychologists were instructed to write

all messages using the message structure depicted in Figure 2 if

possible. All messages are provided in our online repository.
2.3. Measures

We tested our main hypothesis using the following measure:

Perceived motivational impact of messages. For each

message, participants rated the perceived motivational impact on

an 11-point scale from �5 (“Very demotivating” ) to 5 (“Very

motivating”), adapted from the one by de Vries et al. (35). A

higher value thus indicates a higher perceived motivational impact.
physical activity. Based on the ontology developed by Op den Akker et al.
ck, while retaining the encourage and neutral intentions as well as the

ased on Op den Akker et al. (27). An encourage intention encourages users
ser’s progress and informs them to keep up the good work. If a user is
bout the arguments to stay active, and hence only the feedback and
tions.
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In addition, we collected the following measures for

exploratory research:

Motivating and demotivating factors of messages. Participants

were asked to provide free-text answers to the questions “How would

a message motivate you to do physical activity?” and “How would a

message demotivate you from doing physical activity?” The questions

were adapted from the ones by Fukuoka et al. (36).
2.4. Participants

We conducted a power analysis for repeated measures, within-

factors ANOVA with 6 repeated measurements per condition (i.e.,

12 measurements in total), a small effect size (f ¼ 0:18) (37), an

alpha of 0.05, and a power of 0.90 to obtain a target sample size

for our Bayesian analysis. The result was a sample size of 30.

This estimate was conservative, as Bayesian analyses require no

more samples than the corresponding frequentist ones (38). We

also decided to add an additional 30 participants for a total of 60

if we had sufficient funds left after the first 30 participants had

completed the study. This was done to increase the power, as

well as to get more responses for the qualitative analysis. The

decision to include more participants was taken without looking

at experimental data.

To be eligible, participants had to meet the following criteria:

1. have an approval rate of �95% on the crowdsourcing platform

Prolific to obtain participants with reliable submissions (39),

2. speak English fluently, and

3. have at least 10 previous submissions on Prolific, to avoid low-

effort or low-quality submissions (as recommended by Prolific

to recruit active and committed users (40)).

60 participants completed the study out of a total of 121 who

started it. If participants passed at least half of the four and two

attention check questions added in the two sections of the

questionnaire respectively (i.e., the pre-questionnaire and

scenario-rating sections), gave informed consent, and passed the

pre-screener validation about English fluency, they were

approved and paid according to the minimum payment rules on

Prolific (i.e., five pounds sterling per hour). Participants were

informed that their responses to the questionnaire would not

affect their payment in any way unless it violated the conditions

mentioned above. This served to mitigate biases such as the ones

mentioned by Draws et al. (41), specifically loss aversion and

self-interest bias. Participant characteristics such as age and

gender are provided in the Supplementary Material. Participants

on Prolific are nationals of or live in member countries of the

Organisation for Economic Co-operation and Development

(OECD) with the exception of Turkey, Lithuania, Colombia, and

Costa Rica and the addition of South Africa (42).
1We used normal priors with m ¼ 0 and s ¼ 10 for both the general mean

and the fixed effect for tailoring. The full model specification can be found

in the online repository (31).
2.5. Procedure

The study consisted of a questionnaire divided into two sections:

† a pre-questionnaire section to collect data on user

characteristics, and
Frontiers in Digital Health 04
† a scenario-rating section in which participants were given 6

hypothetical scenarios with motivational messages intended to

motivate the persona in the scenario per condition, for a total of

12 scenarios. To mitigate order effects and learning effects,

ABBA counterbalancing was used when assigning tailored or

generic messages. For each scenario, participants were asked to

rate how motivating they would find the messages for themselves

if they were the persona in the scenario. After the scenarios,

participants were given two free-text questions about what they

find motivating and demotivating in a motivational message.

2.6. Data preparation and analysis strategies

The data collected from the experiment was preprocessed by

(1) removing data from participants whose submissions were not

approved based on the earlier described criteria, and (2)

anonymizing the data. The data and analysis script are available

online (31) allowing to reproduce the analyses in a Docker

container as recommended for Bayesian analyses by van de

Schoot et al. (43).

We conducted a multi-level (i.e., hierarchical) Bayesian analysis

using version 2.13 of the rethinking package (44). We fitted a model

to a general mean, a random intercept for each participant, and a

fixed effect for tailoring using diffuse priors based on the ones by

McElreath (44).1 We fit a t-distribution to our output variable,

which is the perceived motivational impact of the messages. Using

a prior sensitivity analysis to assess the impact of different settings

for the priors, we found that the posterior probability of our main

hypothesis holding remained unchanged for the tested priors.

Based on the fitted model, we computed the posterior probability

that our hypothesis was true. More precisely, we calculated the

posterior probability that the fixed effect for tailoring was greater

than zero. This posterior probability was evaluated based on the

guidelines by Chechile (38) and their extension to posterior

probabilities of less than 0.5 by Andraszewicz et al. (45). We also

report the 95% Highest Posterior Density Interval (HPDI) for

estimators, with an HPDI being “the narrowest interval containing

the specified probability mass” (44).

In addition, we performed a thematic analysis (46) of

participants’ free-text responses about what they find motivating

and demotivating about motivational messages for physical

activity. After familiarizing herself with the data, RG created an

initial coding scheme and coded all responses according to this

scheme. This means that codes were largely created inductively.

To assess the reliability of the coding, KP was trained on 20

responses for motivating factors and 10 responses for

demotivating factors before independently coding all remaining

responses based on the coding scheme. Afterward, the coding

scheme was refined by RG and KP, and coding disagreements
frontiersin.org
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were resolved by means of discussion. The updated coding scheme

was thus developed by multiple researchers, which has been

described as a way to increase the validity of qualitative research

(47). To evaluate the reliability of this updated coding scheme,

we conducted a second round of double coding with NA. After

being trained on 20 responses each for motivating and

demotivating factors, NA coded all remaining responses. We

obtained fair to moderate agreement (34) based on a Cohen’s k

of 0.40 for motivating and 0.46 for demotivating factors. In our

analysis, we consider only those codes with at least moderate

agreement (i.e., a Cohen’s k of at least 0.41). For these codes that

we consider in our analysis, the agreement is substantial to

almost perfect based on a Cohen’s k of 0.69 for motivating and

0.81 for demotivating factors. The final coding scheme together

with the corresponding Cohen’s k values can be found in the

Supplementary Material.
3. Results

3.1. Perceived motivational impact of
tailored vs. generic messages

Figure 3A compares the sample motivational impact of the

two message types. It shows that the sample mean perceived

motivational impact is higher for tailored (M ¼ 2:33,

SD ¼ 2:11) than for generic messages (M ¼ 1:32, SD ¼ 2:29).

Quantifying this by means of our Bayesian analysis shows that

the perceived motivational impact of tailored messages is 1.02

(SD ¼ 0:13) scale points higher than the one of generic

messages. The corresponding 95%-HDPI ranges from 0.76 to

1.28, with >99.999% of the credibility mass favoring the higher

motivational impact of tailored messages (Figure 3B).

According to the guidelines by Chechile (38), this can be

qualified, or can be “bet on,” as our hypothesis being virtually

certainly true.
FIGURE 3

Perceived motivational impact of generic vs. tailored motivational messages
(B) Posterior density for the fixed effect of tailoring.
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3.2. Exploratory analysis: motivating and
demotivating factors of messages

We identified four themes describing what participants found

motivating and demotivating in a message (Figure 4).

Tailored or generic. The most frequent theme was whether a

message is tailored to a particular user’s situation, or contains

cliched, empty platitudes. Tailored messages were perceived as

motivating, with 17% of the responses about motivating factors

containing references to having personalized information in a

message. On the other hand, messages with empty, cliched

platitudes, or which conveyed a false sense of positivity, were

reported to be demotivating. 40% of the responses about

demotivating factors mentioned these attributes of generic

messages. This is also demonstrated by the answer of P56 when

asked about demotivating factors of a message: “If the message is

generalized, I would rather not hear it at all and have an

automated system, not a doctor, say it to me.” And when asked

about motivating factors, P56 said: “If the message is specific to

my own situation, so it seems more personal and tailored to

myself, I would hear it with greater care and would adopt it easier.”

Intention. The intention of the message is the primary

takeaway the message has. Encouraging and empathetic messages

were the most commonly mentioned motivating factors here,

appearing in 40% and 17% of the responses. On the other hand,

messages that focus on failures or missed goals (22%) or lack

empathy (10%) were seen as demotivating. P44 reported this

when asked about what motivates them: “It must have some kind

of encouragement for me, to make me understand that I can do

it and I have what it takes.” Notably, however, too much

empathy was also seen as demotivating by 7% of participants.

Goal-related information. Goal-related information

encompasses all information related to a user’s physical activity

goals. In motivating factors, the most commonly recurring sub-

themes in goal-related information were receiving information on

one’s progress toward a goal (20%), learning about the benefits
. (A) Sample motivational impact ratings for the two types of messages.
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of physical activity (17%) as well as alternatives for goals and ways

to be physically active (17%), and setting personalized goals (10%).

Conversely, a demotivating factor was a lack of feedback regarding

goals (8%). P18, for example, reported this when asked about

demotivating factors: “A message would demotivate me by not

validating any progress made, not being understanding of my

needs and not providing alternative solutions to reach my goals.”

Message structure. The structure of the message, specifically

length and content style, was mentioned by a handful of

participants. The responses about the message structure were

conflicting, with short and long messages seen as demotivating in

an equal percentage of responses (3%). For instance, P36

reported this when asked about demotivating factors: “…i don’t

like long, misdirected messages.” P31, on the other hand,

mentioned the following: “It is short and not personal.

Completely random advice which does not help with my

problem.” Overall it thus seems that participants agreed on not

wanting generic, misdirected messages, and associated either

short or long messages with this. This matches the observation

that concise messages were seen as motivating.
4. Discussion

Based on 60 participants each rating the perceived motivational

impact of six generic and six tailored messages based on scenarios,

we find that messages tailored to a user’s mood, self-efficacy, and

progress are perceived as more motivating than generic ones.
Frontiers in Digital Health 06
This is in line with existing work which shows that tailored

messages have modest success in motivating users in the context

of health behavior change (1–4). Our results also complement

existing research individually linking mood (48), self-efficacy

(28), and progress (5) directly to motivation.

The thematic analysis of the motivating and demotivating

factors of messages further revealed that motivation and de-

motivation had common but complementary themes. For

instance, goal-related information was a theme that was

discovered in both motivating and demotivating factors, where

participants found information about their progress and the

benefits of physical activity motivating. A less-frequently

mentioned factor was personalized goal-setting. On the other

hand, participants found a lack of feedback demotivating. These

results can be seen as validating the design of our messages, as

the inclusion of progress and feedback was a key component of

the design. Several of these themes have also been found in

previous qualitative studies on motivation for physical activity.

Kappen et al. (49), for instance, saw in the context of an eight-

week physical activity intervention for older adults that people

were motivated to do physical activity by “accomplishing a goal,”

which included being inspired by the in-app progress reports as

well as by hitting pedometer targets. And participants of the

physical and psychological intervention for breast cancer

survivors by Sebri et al. (50) were primarily motivated to engage

in physical activity by the benefits of physical activity such as

improving their physical well-being. The fact that not all of the

themes from previous studies on motivation for physical activity
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(e.g., enjoying outdoors (49)) appeared in our study suggests,

however, that what people find motivating in general and in

motivational messages may not necessarily be the same.

Furthermore, participants highlighted that messages pertaining to

their own situation (i.e., tailored messages) would be motivating,

whereas cliched, generic messages would be demotivating. It stands

to reason that motivating and demotivating factors are two sides of

the same coin. The observation that tailored messages are perceived

as motivating supports our quantitative findings as well as previous

qualitative findings on motivation for physical activity. Albers et al.

(51), for example, saw in the context of examples from other people

shown in a goal-setting dialog for physical activity that examples

from people that participants could relate to, and were thus

perceived as tailored to the participant, were perceived as motivating.
4.1. Limitations

The main limitation of our study is that participants rated the

perceived motivational impact of the messages for themselves if they

were the personas in hypothetical scenarios instead of in real

situations. To minimize the risk involved in the experiment such as

the risk of injury, and due to the restrictions around Covid-19, we

regarded the hypothetical scenarios as a good alternative to a real-

world evaluation. Such scenarios have, for example, also successfully

been used in studies by De Vries et al. (52) and Tielman et al. (13)

to evaluate tailored motivational messages. Nevertheless, it is unclear

how well our scenario-based findings generalize to other scenarios as

well as users who are themselves in the situations described by the

scenarios. To obtain a more accurate assessment of the messages’

motivational impact, the messages would ideally be shown to users

when they have made similar progress in their physical activity, or

have a similar mood or self-efficacy. Conducting such a study also

with other users besides crowd workers may further enhance the

generalizability of the findings.

Another limitation is that only the perceived motivational impact

of the messages was measured, and not the impact of the messages on

users’ physical activity. As stated in the COM-B model (30),

motivation is only one of the three predictors of behavior, with

opportunity and capability being the other two. Nevertheless,

motivation has been shown to be a good predictor of behavior

change (53–55), with the advantage of being easier to measure and

being less noisy of a signal than actual behavior. Notably, even

motivation can be talked about in terms of automatic vs. reflective

according to the COM-B model (30). In our study, we considered

solely reflective motivation, in which a user is actively and

consciously involved in motivation, as opposed to automatic

motivation, which is a result of impulsive, habitual, or drive-related

behavior. However, the messages could also affect automatic

motivation by, for example, influencing people’s self-identity (30).

Furthermore, our evaluation of the tailored motivational

messages was based on comparing them to expert-written generic

messages. Since the tailored messages tended to be more detailed

than the generic ones, it could be that the higher perceived

motivational impact of the tailored messages is partially due to

their higher level of detail or larger number of characters. To rule
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this out, one could compare tailored messages that match scenarios

to tailored messages that do not match scenarios. An example of

the latter is a message written for a confident persona being

evaluated on a scenario with a persona with low confidence.

However, given that congratulating a person with low confidence

for their high confidence is unlikely to be very motivating, we

regarded generic messages as a stronger baseline.
4.2. Directions for future work

This research could be extended by automatically detecting a

user’s state to tailor the messages and adapt content accordingly,

as has been done based on affect by Grawemeyer et al. (56) in

the context of student learning support. Similarly, Yang et al.

(57) used sensors to automatically detect negative affect and send

corresponding messages in the context of smoking cessation. To

obtain more effective motivational messages, users’ responses to

the messages could as a next step be recorded to learn what

kinds of messages users prefer. Current work on reinforcement

learning for determining the best time to send a message (58)

and adapting the framing of messages for inducing healthy

nutritional habits (59) makes the idea of tailoring messages by

automatically adapting to user state variables a feasible next step.

Second, our ontology and resulting message structure can be used

by developers of eHealth applications to automatically generate

messages, similar to the work by Tielman et al. (13), Ghosh et al.

(60) and Thomas et al. (14). For example, given a set of motivational

messages like ours, new messages can be generated by combining

the components from different messages. The fact that messages

written based on the ontology can be broken down into components

also makes it easier for future researchers to understand and

reproduce our work. With the ontology given, messages can be

obtained from crowd-workers as well, as demonstrated by De Vries

et al. (52), making message generation cheap as well as time- and

resource-efficient. Directly comparing different approaches to

generating tailored motivational messages in terms of time and

resource efficiency as well as effectiveness would also be worthwhile.

Thirdly, we only considered messages represented in text form.

However, other types of representation such as images (61), videos

(62), or even emoticons (63) are possible. For example, auditory

feedback was used in a study by Singh et al. (64) to motivate

people with chronic pain to be more physically active, and audio,

visual, and haptic representations of motivational messages were

proposed by Op den Akker et al. (27). Comparing how these

various types of representation affect motivation and behavior is

an interesting direction for future work. For instance, Symons

et al. (65) found based on an exploratory study that people

preferred GIFs over text reminders and pictures for being

motivated to take a brisk walk in a difficult moment. As with the

message content, the message representation could also be

automatically adapted based on user feedback.

A fourth direction for future work is to tailor the messages to

further factors besides mood, self-efficacy, and progress. In the

context of persuasive messages more generally, both other

dynamic factors (e.g., states derived from the COM-B model
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(17)) and more stable user characteristics (e.g., personality (18, 66),

cultural background (67), regional factors (68), age (18)) have been

shown to affect the effectiveness of different persuasive strategies.

As the number of factors increases, so does the cost of collecting

(expert-written or crowdsourced) messages tailored to these

factors. However, not all of these factors are equally relevant.

Albers et al. (20), for example, saw in the context of preparing

for quitting smoking that dynamic factors could better predict

people’s behavior after persuasive attempts than more stable user

characteristics. First gaining a thorough understanding of which

factors matter is thus important (20).
4.3. Conclusion

In conclusion, we provided a systematic theory-driven way to

generate structured motivational messages with the help of experts

that is feasible and can thus be used by developers of other eHealth

applications for behavior change. Based on a scenario-based

evaluation, we found credible support for our hypothesis that

messages tailored to mood, self-efficacy, and progress are perceived

as more motivating than generic messages in the context of physical

activity coaching. Testing the combination of mood, self-efficacy,

and progress as tailoring factors is completely new, to the best of our

knowledge. A thematic analysis of people’s free-text responses about

what they find motivating and demotivating about motivational

messages provided further support for the use of tailored

motivational messages, as well as messages that are encouraging and

empathetic, give feedback about people’s progress and mention the

benefits of physical activity. Our findings thus support the use of

motivational messages tailored to mood, self-efficacy, and progress

in eHealth applications for physical activity coaching. We share our

dataset of motivational messages that can be used during various

stages of a user’s physical activity intervention, along with a set of

scenarios containing the aforementioned user state.
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