

Delft University of Technology

FPGA-embedded Linearized Bregman Iteration algorithm for trend break detection

Calliari, Felipe; Castro do Amaral, Gustavo; Lunglmayr, Michael

DOI
10.1186/s13638-020-01796-0
Publication date
2020
Document Version
Final published version
Published in
Eurasip journal on wireless communications and networking

Citation (APA)
Calliari, F., Castro do Amaral, G., & Lunglmayr, M. (2020). FPGA-embedded Linearized Bregman Iteration
algorithm for trend break detection. Eurasip journal on wireless communications and networking, 2020(1),
Article 210. https://doi.org/10.1186/s13638-020-01796-0

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1186/s13638-020-01796-0
https://doi.org/10.1186/s13638-020-01796-0

Calliari et al. EURASIP Journal onWireless Communications and
Networking (2020) 2020:210
https://doi.org/10.1186/s13638-020-01796-0

RESEARCH Open Access

FPGA-embedded Linearized Bregman
Iteration algorithm for trend break detection
Felipe Calliari1* , Gustavo Castro do Amaral1,2 and Michael Lunglmayr3

*Correspondence:
felipe.calliari@opto.cetuc.puc-rio.br
1Center for Telecommunications
Studies, Pontifical Catholic
University of Rio de Janeiro,
Marquês de São Vicente, Rio de
Janeiro, 22451-900, Brazil
Full list of author information is
available at the end of the article

Abstract
Detection of level shifts in a noisy signal, or trend break detection, is a problem that
appears in several research fields, from biophysics to optics and economics. Although
many algorithms have been developed to deal with such a problem, accurate and
low-complexity trend break detection is still an active topic of research. The Linearized
Bregman Iterations have been recently presented as a low-complexity and
computationally efficient algorithm to tackle this problem, with a formidable structure
that could benefit immensely from hardware implementation. In this work, a hardware
architecture of the Linearized Bregman Iteration algorithm is presented and tested on a
Field Programmable Gate Array (FPGA). The hardware is synthesized in different-sized
FPGAs, and the percentage of used hardware, as well as the maximum frequency
enabled by the design, indicate that an approximately 100 gain factor in processing
time, concerning the software implementation, can be achieved. This represents a
tremendous advantage in using a dedicated unit for trend break detection
applications. The proposed architecture is compared with a state-of-the-art hardware
structure for sparse estimation, and the results indicate that its performance
concerning trend break detection is much more pronounced while, at the same time,
being the indicated solution for long datasets.

Keywords: Linearized Bregman Iterations, Trend break detection, FPGA

1 Introduction
Trend break detection in the presence of noise is a broad problem that can be found
across different research fields [1–4]. For that reason, several different methodologies
have been proposed in the literature [5–7], with the ones that make use of �1 regulariza-
tion to counter the problem’s inherent high-dimensionality arguably figuring as the most
successful ones [8, 9]. Such an approach is required for highly reliable estimation results
[7]. Even though such regularization allows the problem to be solved in a computationally
efficient manner (usually associated to a complexity which is proportional to a polyno-
mial function of the number of inputs), the fact that a computer can solve the problem
does not necessarily mean that the result is achieved quickly, practically speaking. In cer-
tain contexts, achieving elapsed algorithm times in the order of seconds as opposed to
minutes may yield a substantial impact on the application [10].

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-020-01796-0&domain=pdf
http://orcid.org/0000-0002-9365-5481
mailto: felipe.calliari@opto.cetuc.puc-rio.br
http://creativecommons.org/licenses/by/4.0/

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 2 of 26

It is a widespread notion that certain problems, despite their complexity, may be accel-
erated depending on the implementation; parallel programming, in which several parts
of the same procedure are processed independently and simultaneously, is one of the
most celebrated examples [11]. Field Programmable Gate Arrays (FPGAs) are extremely
versatile hardware structures that offer the following [12–14]: great flexibility to design
high-speed high-density digital hardware, easiness of programmability and reconfigura-
tion, energy efficiency, high resource utilization, low cost, and the possibility to combine
parallel processing structures with serial control units. FPGAs have been used as a versa-
tile computing platform accelerating algorithms through dedicated and carefully designed
architectures in a wide range of fields [15] such as cryptography [16], image processing
[17], and machine learning [18].

1.1 Motivation and contributions

Recently, Linearized Bregman Iterations (LBI), a class of implementation-efficient and
low-complexity algorithms, have been presented as an extremely attractive solution for
trend break detection [1]. There, it was shown that the LBI algorithm outperforms the
classical LASSO solution in the specific problem of trend break detection for fiber fault
analysis. In this case, the better performance can be attributed to two factors. First, it is
well known that combined L1/L2 regularization terms can handle problems where esti-
mation vectors with correlated elements are expected better than the LASSO solution
[19] and the problem at hand is expected to have such correlations. Second, the strict
convexity when using a combined L1/L2 term in the cost function has been reported
to improve the convergence behavior of sparse estimation algorithms [20]. Furthermore,
both the structures of the trend break detection problem and of the LBI algorithm allow
for simple hardware units, relying mainly on adders and efficient memory management,
to conduct the core procedure, thereby avoiding hardware-complex multiplication and
division operations [21]. In [1], the focus is on the detection of trend breaks associated
to fiber faults: to ensure robustness of network operation, detection of such faults must
be remedied as fast as possible; this, in turn, creates a demand for highly reliable and fast
trend break detection results, since a network operator might have several thousand opti-
cal fibers under his responsibility [22, 23], and thus, the faster data associated with one
link can be processed, the faster information about all links will be available.
The possibility of increasing the time efficiency of the algorithm due to its hardware

implementation is of great interest in this context, as pictorially presented in Fig. 1a.
Furthermore, as the measurement is often done by stand-alone Optical Time-Domain
Reflectometry (OTDR) devices, the eventual goal is to implement the processing directly
in such a device, where FPGAs are usually employed. Achieving an FPGA implementa-
tion of the detection algorithm is, then, preferable, since it would allow data acquisition
and processing to be performed in the same embedded device, as pictorially presented in
Fig. 1b.
In this work, the hardware implementation of the LBI algorithm is studied in depth

and is simulated and synthesized for different FPGAs. A novel hardware architecture is
presented, and its main processing units are discussed. VHDL simulation environments
enable a step-by-step comparison and validation of the processing stages referenced by
the computer algorithm implementation [1]. Hardware synthesis results allow determi-
nation of both device usage with different FPGA sizes and maximum clock frequency; the

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 3 of 26

Fig. 1 Motivation and applications of the proposed hardware implementation of the Linearized Bregman
Iteration algorithm. Depicted in a is the scenario where a centralized optical fiber network manager must
deal with several links simultaneously, and being able to expedite the measurement is beneficial. DT TX, data
transmission unit; PLM, physical layer monitoring unit. Depicted in b is the combination of a data acquisition
hardware for the PLM (adapted from [10]) along with the data processing hardware implementation of the
LBI algorithm. The optical pulse generation (PG) unit launches a probing pulse into the fiber, while the data
acquisition system, together with an optical circulator and an optical pulse detection (PD), acquires the
reflected optical power and produces a fiber profile

latter, combined with the average number of clock cycles per iteration loop, makes total
processing time calculation possible for different problem instance sizes. A reduction fac-
tor on the elapsed algorithm time of approximately 100 is achieved, which represents a
substantial upgrade and warrants usage of dedicated hardware for trend break detection.
The main overall contributions of this work are discriminated below:

• Speed-ups of the order of 100 times in the hardware implementation with respect to
the software implementation of the LBI algorithm for trend break detection. The
speed-ups are solely attributed to the hardware architecture and the usage of
parallel-pipelined arithmetic units (such as the so-called pipelined adder tree) and to
efficient memory organization and control, since no loss of performance is identified
between hardware and software implementations.

• A comprehensive analysis of the hardware architecture, including the main
processing and control units that allow for the algorithm structure to be
implemented in hardware. This analysis provides a straightforward means to
determining the total number of clock cycles necessary for the algorithm to elapse.

• A software implementation of the algorithm that has been validated bit-wise with
respect to the hardware implementation, thereby allowing for the results of the
proposed implementation to be verified in a simulated environment.

• Comparison, with respect to both performance and hardware characteristics, of the
proposed hardware implementation with state-of-the-art hardware implementations

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 4 of 26

of the Orthogonal Matching Pursuit algorithm, which is used in the context of sparse
estimation and finds widespread interest in the current literature.

The paper is divided as follows. In Section 3, a brief review of the LBI algorithm
for trend break detection is performed, including the structure of the candidate matrix
and the pseudocode based on which the hardware architecture is developed. Section 4
presents the digital hardware architectural concept as well as focused descriptions of its
main units; the estimated number of clock cycles until the algorithm elapses is derived
based on this architecture. In Section 5, comparative results between the simulated hard-
ware implementation and its Julia-based software counterpart are discussed. Synthesis
parameters for two target FPGAs (ALTERA CYCLONE V and ALTERA STRATIX V) are
also reported. Case studies (both for a real-world fiber profile and simulated data series)
are discussed in Section 6.1. Section 6.2 is dedicated to the comparative analysis between
the proposed architecture and a state-of-the-art algorithm in the context of trend break
detection. Finally, Section 7 concludes the paper.

2 Methods
The aim of this work was to develop and evaluate a hardware architecture to accelerate
sparse estimation for reliably solving the trend break detection problem. To evaluate the
capabilities of the proposed architecture, the following methods have been used:

• A commercially available state-of-the-art synthesis software (INTEL QUARTUS
PRIME) was used to evaluate the maximum clock frequency and the device
occupation of the design for different sizes (i.e., the number of used block RAMs in
parallel).

• An analytical description was developed and used (validated by hardware simulation)
to calculate the number of clock cycles necessary to perform the estimation tasks.

• A bit-true simulation environment was developed, and after bit-true validation
against a commercially available hardware simulation tool (Mentor Graphics
Modelsim), it was used to evaluate the performance of the proposed architecture in
large-scale simulation studies.

• The bit-true simulation results of the hardware implementation are compared to
double precision floating point results in terms of their averaged squared error norms.

• A real-world dataset measured in the lab by an Optical Time-Domain Reflectometry
measurement device has been used to evaluate the algorithm, both in double
precision floating point as well as in its bit-true quantized version used in hardware.

• The LBI algorithm discussed in this work is compared to the OMP algorithm based
on simulation studies and the thereby calculated figures of merit: the precision and
the Matthews correlation coefficient.

• The LBI algorithm and the OMP algorithm are compared based on their
computational complexity analysis.

3 The Linearized Bregman Iteration algorithm for trend break detection
Under the assumption that the trend break detection problem is a sparse one, i.e., the
number of candidate vectors that describe the signal of interest is much smaller than
the number of observations, it can be cast into the combined �1/�2 problem of the
form [1]:

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 5 of 26

min
β

λ||β||1 + 1
2
||β||22 s.t. Aβ = y, (1)

where A is the dictionary, with each candidate vector stored in a column; β is the vector
containing the coefficients of the weighted linear combination of dictionary vectors that
will approximate the signal of interest represented by the data series y; and λ is a parame-
ter that adjusts the weight of the �1 versus the �2 norms in the cost function. Adaptation of
the Linearized Bregman Iteration algorithm to trend break detection has been presented
in [1] in a context where a linear trend is also expected in the signal of interest. In order
to simplify and generalize the implementation, this linear trend is not considered in the
current implementation. Incorporating the linear trend in the proposed architecture is,
however, straightforward.
Throughout the manuscript, the length, in data points, of the signal of interest y will be

defined as N, i.e., y and β are N-dimensional vectors and A is an N × N matrix. The Lin-
earized Bregman Iteration algorithm has a cyclic structure, involving, in a single iteration,
an approximate gradient descent (AGD) followed by a non-linear shrink function of the
form: shrink

(
vj, λ

) = max
(|vj| − λ, 0

) · sign (
vj

)
[24]. Due to the special structure of the

candidate dictionary matrix A for the trend break detection problem, namely:

A =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0 0
1 1 0 · · · 0 0
1 1 1 · · · 0 0
...
...
...
. . .

...
...

1 1 1 · · · 1 0
1 1 1 · · · 1 1

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

, (2)

its storage is not necessary for the AGD calculation, as the latter can be rewritten as:

v(i+1) = v(i) + ak
||ak||22

(
yk − aTk β(i)

)

= v(i) + ak
||ak||22

⎛

⎝yk −
k+1∑

s=1
βs

⎞

⎠
(3)

where the ak represent rows of the candidate matrix, the superscripted i represents the
iteration index, and the index k ∈ [1 : N] controls the cyclic re-use of rows of A as the
iteration index evolves, i.e., k = mod ((i − 1) ,N) + 1.
The ak , in turn, have an interesting structure that allows the AGD to be further opti-

mized and the calculation to be performed only for those indices where ak,j �= 0. In other
words (and also considering the fact that ||ai||22 = k),

v(i+1)
j =

{
v(i)
j + 1

k

(
yk − ∑k+1

s=1 βs

)
, ak,j = 1

v(i)
j , ak,j = 0

, (4)

which, considering computational implementation, translates into accessing and manip-
ulating only those values of vector v(k) up to index j. A final observation of the structure
of matrix A (namely, the fact that it is a square matrix) reveals that a single index k is
sufficient to control an iteration of the algorithm. The resulting procedure, presented as
pseudocode in Algorithm 1, efficiently solves the trend break detection problem with low
memory usage.

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 6 of 26

For the presented algorithm, on average, (N − 1)/2 additions per iteration are required.
This can be seen from Algorithm 1: the first iteration requires 1 addition, the second 2,
and the last N ; culminating in N · (N + 1)/2 additions for N iterations. It is interesting to
note that a single multiplication operation is necessary after the result of the summation
is performed, which greatly simplifies the procedure and avoids an overload of complex
arithmetic structures. As it has been shown in [1], Linearized Bregman Iterations lead
to less complex algorithms than alternative approaches such as the adaptive LASSO [7].
Using an FPGA, one could speed up the additions thereby speeding up a single iteration,
resulting in a speed-up of the whole algorithm. Indeed, as is shown here, this solution
allows the core algorithm to be processed within a fraction of the time it would take on a
high-end server processor.

3.1 Hardware implementation considerations of the LBI algorithm

3.1.1 The ordinary least squares final step

It is important to note that Algorithm 1 is an adaptation of the pseudocode presented in
[1], where only the computation-heavy part of the procedure is depicted. Its purpose is to
identify the relevant non-zero values of the β̂ vector that compose the output or, in other
words, reduce the dimension of the detection space focusing on the subspace spanned by
the relevant candidate vectors. After this procedure, it is usual to perform an ordinary
least square (OLS) in this reduced subspace in order to remove any biasing introduced
by the algorithm; operating on the reduced subspace found by the LBI drastically reduces
the complexity of the OLS. This step, which involves matrices transposing and inverting,
can be efficiently conducted in a standard personal computer, and even though this could
also be implemented in the same hardware structure that contains the core algorithm [1],
the goal of this work is to present the latter and the OLS step is left as a post-processing
step to be performed in a different processing unit.
With respect to the OLS post-processing, interesting functionalities of the so-called

Systems On Chip (SOC), which combine FPGAs with embedded CPUs as, for example,

Algorithm 1 Linearized Bregman Iteration for Trend Break Detection
Require:Measurement vector y, λ, βstart, vstart, L
Ensure: Estimated β̂

1: β(0) ← βstart
2: v(0) ← vstart
3: i ← 1
4: while i < L do
5: k ← mod((i − 1),N) + 1 � cyclic re-use of rows of A
6: μk ← 1

k
7: e ←

(
yk − ∑k+1

s=1 β
(i)
s

)

� instantaneous error with inner product
8: d ← μke
9: for j = 1..k do

10: v(i+1)
j ← v(i)

j + d

11: β
(i+1)
j ← shrink

(
v(i+1)
j , λ

)

12: end for
13: i ← i + 1
14: end while

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 7 of 26

in the used CYCLONE V, can be harnessed for this goal. In fact, they enable the delega-
tion of the reduced subspace OLS problem to the embedded CPU. Measurements have
been performed on the SOC contained in the CYCLONE V running Linux (Ubuntu 16.04)
on its dual-core arm processor. For typical OLS instance sizes of 15,000×20 (a reason-
able upper-bound according to [1] for a 15,000-sample fiber profile), a run-time of about
0.15 s in the Julia language has been obtained. It is noteworthy that, in contrast, running
the LBI core algorithm (typically requiring 100–200 s on a much more powerful XEON
Server processor) is practically not feasible on such an embedded CPU. However, as the
measurement results of the OLS problem show, and due to its negligible time overhead,
delegating the OLS post-processing step to an embedded CPU is indeed feasible. Once
again, even though the ordinary Kaczmarz algorithm approximately solves the OLS prob-
lem and can re-use blocks from the sparse Kaczmarz, on which the LBI algorithm is based,
thereby allowing the implementation of both in the same FPGA chip, this adaptation
would require several design add-ons, which are not the focus of this research.
In summary, the reason to presently delegate the OLS step to a CPU is threefold: first,

a CPU can easily deal with the problem in the reduced subspace identified by the core
procedure of the LBI; second, it allows this work to focus on the core structure of the LBI
algorithm; and finally, since an embedded CPU might be already available (as is the case
of the CYCLONE V studied here), performing the OLS on the CPU of a SOC might be the
more practical approach.

3.1.2 Scaling and arithmetic dynamic range

Also left as a pre-processing step is the scaling of the data vector y, which is necessary
to ensure the correct behavior of step 7 in Algorithm 1 when using the 20-bit fixed-
point format—this seemly arbitrary value will be clarified in Section 6.1 utilizing limited
arithmetic dynamic range. In other words, one must make sure that no overflows of the
arithmetic dynamic range are observed when performing the summation of β values. The
scaling is intimately connected to the available arithmetical dynamic range, which, in turn,
is connected to the memory resources of the FPGA board, thereby constituting a design-
related compromise relationship. In case of overscaling, the arithmetic dynamic range will
be hindered; to overcome this, a higher number of bits can be assigned to the data points,
which then increases the resources necessary in the FPGA board. On the other hand,
in case of underscaling, the results may overflow, creating errors that can jeopardize the
algorithm’s convergence. A scaling factor consistent with the algorithm’s convergence can
be determined according to the following considerations.
The major source for overflows is the sum calculation of β values in line 7 of

Algorithm 1. Empirical tests conducted based on the testbench developed in [1] indicated
that a scaling based on dividing the data vector y by its maximum value allowed to obtain
the results shown in Section 5 without harming overflow effects. This is due to the firmly
non-expansive property [25] of the shrink function as well as the negative feedback of
the error between

∑k+1
s=1 β(i)

s and yk (line 7 of Algorithm 1). To clarify the negative feed-
back effect, one could multiply both sides of line 7 by −1, i.e., −e = yk − ∑k+1

s=1 β(i)
s . This

procedure would require μk , in line 10, to also be multiplied by −1.
The algorithm can, then, be interpreted as a stabilizing loop on the values of v(i)

j with
the mentioned negative feedback on the deviation between the sum of β values (func-
tions of v(i)

j) and the corresponding yk , which causes overshoots of the sum of β values

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 8 of 26

to be immediately corrected in the next iterations. This leads to the fact that, even in
worst case scenarios (multiple up and down trend breaks in the measurements), the
sum of β values scarcely goes above unit, considering the abovementioned normaliza-
tion procedure. Moreover, even though its ratio of occurrence is negligible, in the case
an overshoot occurs, the excess value would be small thereby not compromising the
convergence of the algorithm, as the performance of the quantized version in Secttion
5 demonstrates. The closeness of these results to the ones obtained using double pre-
cision floating point shows that, practically, harming effects due to overflow can be
neglected.

4 FPGA architecture
An inherently iterative algorithm and, thus, sequential in nature, the LBI cannot have its
iterations parallelized. The operations within an iteration, on the other hand, could greatly
benefit from parallelization. The challenge is, thus, to design an architecture that allows
high parallelism but that still keeps the effort for control logic, as well as the datapath,
manageable. Parallelism in digital hardware benefits not only from parallel calculation
units but also, and sometimes more crucial, from an architecture that efficiently feeds
the required data to the calculation units in a parallel fashion. Although today’s FPGAs
typically provide a considerable number of block RAMs (BRAMs), these are implemented
in such a way that the number of BRAMs is reduced in exchange for extensive individual
memory depth as it is beneficial for many applications.
For the current architecture, this represents a trade-off: while the values of β and v

benefit from parallel access, the values of y are preferably accessed in sequential order, and
at the same time, using dedicated BRAMs for y would limit the scalability and flexibility
of the algorithm. For this reason, a combined parallel adder tree and parallel multiplexer
tree architecture have been implemented for convenient parallel access to the estimation
variables (β and v) involved in the core calculations of the algorithm as well as efficient
data routing of the values of y.
As already mentioned, even though the iterative nature of the Linearized Bregman

Iteration algorithm does not allow for parallelization over the iterations, two core oper-
ations that permit parallel pipelining can be identified within a single iteration, as
presented in Algorithm 1: the summation of k entries of the vector β and the processing
(including update, shrinkage, and storage) of vectors v and β . By instantiating paral-
lel memory structures, both operations that represent computational bottlenecks of the
algorithm’s iterations can be optimized. On the one hand, the summation can be effi-
ciently performed in a so-called parallel adder tree (PAT) (logarithmic number of time
steps) given that the data can be accessed in parallel. On the other hand, parallel pro-
cessing of the data in vectors v and β can also be accelerated if load/storage can be
performed in parallel. Since the algorithm relies on the computation of several iterations
to converge, optimizing these two procedures allows for substantial gains in processing
time.

4.1 Memory structure

In order to harness the parallel speed-up of the PAT, the entries of vector β must also
be accessed in parallel, which can be accomplished through the instantiation of parallel
block RAMs (BRAMs). The data storage is structured as follows:

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 9 of 26

BRAM(1) BRAM(2) BRAM(M)

t
�
⏐
⏐
⏐

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

β[TM + 1] β[TM + 2] · · · β[TM + M]
...

... · · · ...
β[2M + 1] β[2M + 2] · · · β[2M + M]
β[M + 1] β[M + 2] · · · β[M + M]

β[1] β[2] · · · β[M]

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

,

−−−−−→
m

(5)

where M is the number of parallel BRAMs available in the FPGA. In such a structure, a
single arbitrary BRAM, saym, will contain the entries:

[m + tM] ∀t ∈[0;T] ,m ∈[1;M] : T =
⌈
N
M

⌉
,

where the ceiling operator is denoted by �·	.
Vector β , however, is not the only vector stored throughout processing: vectors y and

v are also necessary. Since all these contain the same number N of entries, the data is
sectioned such that the address depth of each BRAM is divided into three slices with
address pointers (ap) associated with β (βap), y (yap), and v (vap); βap is arbitrarily set to
zero. Under this rationale, entries of vectors v and y would appear at addresses t + vap
and t + yap, respectively, even though, for simplicity, only entries of vector β are shown
in Eq. 5. Using this data storage structure, all positions [tM + 1 : tM + M] of either
vectors can be accessed from parallel BRAMs within a clock cycle; such data segment will
henceforth be referred to as a parallel row, with t the parallel row pointer following its
definition in Eq. 5. A block diagram of the digital hardware architecture depicting a single
BRAM and including themajor structures of the LBI algorithm hardware implementation
is presented in detail in Fig. 2.
Apart from the PAT, a Pipelined Multiplexer Tree (PMT) is used to select the specific

value of the data series y, namely y(k), from which the result of the partial summation

Fig. 2 Hardware implementation of a single BRAM slice in the LBI core structure. The parallel structures are
pictorially depicted in three-dimensional depth. The Pipelined Multiplexer Tree (PMT) is synchronized to the
PAT such that, after a summation, the correct value of y is ready for subtraction. The value of μk—refer to
Algorithm 1—is calculated in a pipelined CORDIC structure

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 10 of 26

of β is subtracted from (refer to line 7 of Algorithm 1). The architecture of the PMT is
such that the number of stages meets that of the PAT, so synchronization between the
two outputs is naturally ensured. Furthermore, the selection key that acts on each stage
of the PMT is derived from the cyclic iteration index, k.
The value of μk = 1

k , which involves a computation-heavy division, has been dele-
gated to a pipelined CORDIC structure instead of a Look-Up Table (LUT) since the goal
is to delegate the BRAMs for storage of vectors β , v, and y. The stages of the pipeline are
pre-filled before the iterations are started, requiring a number of clock cycles equal to its
length for complete fill-up: this number has been chosen to be F = 20, providing an accu-
rate estimation of the results of 1/k. Moreover, stage propagation is enabled at each new
iteration, ensuring that the correct value is always available without limiting the number
of clock cycles per iteration. The reason behind choosing the pipelined CORDIC struc-
ture instead of a LUT for the 1/k calculation is, then, threefold: (i) preventing memory
to be reserved for data other than the vectors β , v, and y; (ii) no negative implications on
the maximum clock frequency of the design, as evidenced by the Place and Route results
of the full structure—refer to Section 5; and (iii) no negative influence on the number of
clock cycles for each iteration since the initial F clock cycles are not a part of the iteration
but, rather, of the initialization step.
Based on this memory structure, the amount of clock cycles necessary to complete the

calculation of d (lines 5 to 8 in Algorithm 1) depends both on the number of data points
and on the depth of the PAT, which, in turn, depends on the number of instantiated (or
available) parallel BRAMs in the hardware structure. For an arbitrary iteration cycle, with
cyclic index k, the equation that relates these values to the total number of clock cycles is
C′
r =

⌈
k
M

⌉
+ �log2M	, where the subscript refers only to the reading and processing of β

values up to the output of the PAT. Taking into account also the subsequent subtraction
and multiplication steps—refer to Fig. 2—each taking one clock cycle, the total number
of clock cycles amounts to Cr = t̂ + �log2M	 + 2, where t̂ =

⌈
k
M

⌉
denotes the maximum

value of t during an iteration.

4.2 PAT input control

Even though a parallel row is accessible at each clock cycle due to the parallel instantia-
tion of the BRAMs, clearly not all values in the row will be used during a given iteration
with index k. For that reason, a multiplexer (PAT inputMUX in Fig. 2) is connected imme-
diately after the BRAM output with its remaining input connected to a null value. Due
to the additive identity property of zero, the output of the multiplexer can be directed to
the PAT without the corruption of the result while accommodating the parallel storage
structure.
The selection signal that controls the PAT input MUX is derived based on the fact that

replacing BRAM outputs by zero is only necessary during the last parallel row access,
i.e., when t =

⌈
k
M

⌉
= t̂. Selection is, thus, based on an auxiliary counter that records

the aforementioned value and on a so-called unary code (or thermometer code), which
encodes the last column index that contributes to the sum. Figure 3 depicts the control
unit responsible for handling the BRAM input address and selection of PAT inputs.
A NEW ITER strobe generated by the control unit and the clock signal are the necessary

inputs. The cyclic iteration index counter k is implemented through a simple counter
with parallel load dependent on the comparison with the signal length N. The unary code

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 11 of 26

Fig. 3 Iteration control architecture. Only the selection form = 1 is depicted for clarity. The unary code is
used since, at a new iteration k, all the outputs from 1 to k should be made available, i.e., the difference
between the iteration k and the iteration k + 1 is the habilitation of output k + 1; the unary code produces
the required output with a minimal footprint

propagates at each new iteration, and when the (M + 1) th stage is reached, it auto-resets
while also incrementing the t̂ counter. The unary code acts on PAT input MUX when
t = t̂ and the different address pointers are combined with the counter t to produce the
correct BRAM address.

4.3 β and v storage

An indispensable step of the algorithm is the correct storage of the vectors β and v after
processing. According to Algorithm 1, all the elements of vector β are processed by the
shrink function right after processing of the vector v. As previously pointed out, acceler-
ation of the storage procedure tackles one of the algorithm’s bottlenecks. Both the facts
that the BRAMs allow for writing and reading from two independently addressed ports
and that if λ is set to zero in the shrink function it implements the identity transformation
have been harnessed to perform data storage optimization, as it is detailed as follows.
One of the BRAM’s ports (taken as B without loss of generality in Fig. 2) is responsible

for reading the values of v from the memory while the other port (A) is responsible for
storing the values of β and v. The addresses are controlled such that, on the first clock
cycle, values of v in a parallel row are read (through port B), processed in the 20-bit full
adder, and sent to the shrink function with λ = 0. Therefore, at the following clock cycle,
the stable value of v can be stored (through port A) at the same time as the value of λ is
changed in the shrink function and processes the values of v being read (through port B).
In the third clock cycle, a stable value of β is stored (through port A) while the values of
v from the following parallel row are accessed (through port B), initiating a new storage
cycle for a subsequent parallel row.
The net number of clock cycles per parallel row storage is, thus, two if one does not

compute the very first and last accesses; therefore, the number of clock cycles necessary
at an arbitrary iteration with cyclic index k is Cs = 2

⌈
k
M

⌉
+ 2 = 2t̂ + 2. Two extra clock

cycles are also necessary for the handshaking protocol between the iteration control unit

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 12 of 26

(presented in Fig. 3)—whose control over the BRAMs address is relieved—and the writing
unit that takes over control and stores vectors β and v, i.e., C′

s = 2t̂ + 4.
The loading to and from the BRAM (either before starting the algorithm or after the

analysis is performed) is performed via a Shift-Register that controls the Memory Enable
of each of the BRAMs and routes the addresses and data ports to I/O ports of the entity.
This way, data can be streamed and connected directly to all the input ports of the BRAMs
while the addresses and Memory Enables ensure the correct loading of the values. Two
extra clock cycles are necessary, one at the beginning of the streaming and one in the
end, so the Shift-Registers are correctly initialized. Furthermore, to store and later access
all three vectors, this streaming procedure must be repeated three times, sequentially,
thereby creating the necessity of extra 2(2 + 3N) clock cycles for loading to and from
the BRAMs. When compared to the number of clock cycles required by the iterations,
however, it becomes clear that this number is negligible and has not been included in the
clock cycle analysis at the end of the section. The data transfer hardware described above,
which only corresponds to a small device utilization overhead, is included in the synthesis
results of the next section.

4.4 Master FSM

In order to control all the aforementioned steps of the design, a so-called master Finite
State Machine (FSM) is implemented. The states, transitions, and strobes depicted in
Fig. 4 ensure the correct evolution of the algorithm. The FSM starts at an idle state and,
based on an init strobe, evolves to the loading state, where control of the BRAMs is
granted to the streaming structure. Once loading is done, the state evolves to the CORDIC
initialization (for 1/k calculation) and, after that, to the iteration control state. This state
initializes a counter, which saturates at the total value of iterations L; in case the counter
value is below L, the state evolves first to the β summation (subsequently triggering a
NEW ITER strobe—refer to Fig. 2) and, then, to the storage of β and v; if, however, the
counter value is equal to L, the iterations are done, and unloading can start. Finally, after
unloading is performed, the FSM returns to the idle state, where it waits for an upcoming
init strobe.

4.5 Total clock cycle estimation

After analysis of the PAT processing and the data storage structure, the total number
of clock cycles for an iteration can be determined. According to the previous analysis,
combining Cs, the number of clock cycles necessary for storage with the determined Cr,
the number of clock cycles necessary for the partial summation of β in the PAT, and the
necessary operations to determine y, the total number of clock cycles spent in an arbitrary
iteration with index k is CT = 3(t̂ + 2) + ⌈

log2M
⌉
.

The total number of clock cycles taken by the algorithm to elapse can be easily derived
from this equation by summation over L, the total number of iterations:

C=F+
L∑

i=1

[
3

(⌈
((i − 1)%N) + 1

M
+2

⌉)
+⌈

log2M
⌉
]
. (6)

The factor F in Eq. 6 accounts for pre- and post-processing instructions performed by the
control unit such as master resets, granting control over the BRAMs, and, most impor-
tantly, preemptively filling up the pipelined CORDIC that calculates μk . However, as will

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 13 of 26

Fig. 4 Block diagram of the master Finite State Machine that controls the steps necessary for correct data
processing with the core algorithm structure depicted in Fig. 2. A simplified block diagram of the iteration
control unit of Fig. 3 is also presented

be described in the next section, the value of F is much smaller than the total number of
clock cycles taken by the core procedure.
Figure 5 presents the dependence of the total number of clock cycles until the algorithm

elapses with both the number of available parallel BRAMs for a fixed number of data
points and with the number of data points for a fixed number of available BRAMs. In both
cases, the iterations per data point (defined as L/N) are fixed at 650, a realistic value that
will be discussed in further sections. Considering a maximum clock frequency achievable
in the target FPGA to be around 100 MHz, a 10,000-point data series would be processed
in less than 2 s, which represents an approximately 100 gain factor when compared to the
Julia implementation reported in [1].
The results of Fig. 5a provide an interesting analysis point: a stagnation of the con-

tribution of M, as it increases, to the decrease of the number of clock cycles necessary
for the algorithm to elapse. As Eq. 6 indicates, the impact of M in the total num-
ber of clock cycles is of the form 1/M. Therefore, as M increases, its contribution to
decreasing C becomes relatively marginal. Moreover, it is important to note that there
is also a second part in the term inside the summation of Eq. 6, which scales up with
M, i.e., �log2M	. Therefore, as the 1/M term reaches a relative stagnation with higher
M, the contribution of the �log2M	 term grows, which balances out for high values of
M creating the observed stagnation, which is visually pronounced in Fig. 5 due to the
logarithmic scale.

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 14 of 26

Fig. 5 Estimate of total number of clock cycles necessary for the algorithm to elapse considering the
presented architecture. a Dependence with respect to the number of available parallel BRAMs for a fixed
number of 10,000 data points and 650 iterations per data point. The gray-shaded areas highlight the
transition between powers of 2, which manifests as sharp increases in the calculated value of C. b
Dependence with respect to the number of data points for a fixed number of available BRAMs and 650
iterations per data point. The highlighted curve corresponds to 2000 BRAMs, which is the maximum available
for the largest target FPGA studied here

5 Validation and synthesis
Comparison between the software-defined hardware implementation of the Linearized
Bregman Iteration algorithm using the architecture presented in the previous section and
its software implementation counterpart [1] permits validating the former. In order to
provide a bit-true validation, the SFIXED standard used in the VHDL simulation was
implemented in Julia allowing one to accompany, step-by-step, the evolution of the algo-
rithm on both platforms and identify any discrepancies. Due to the fact that the rounding
procedure is the same for both, no such discrepancies were observed; the fixed point Julia
simulation code outputs exactly the same values as of the hardware implementation. The
validation of the hardware implementation and the demonstration of its equivalence to
the Julia SFIXED implementation create a versatile tool to estimate the performance of
the FPGA results on a software environment.
For the simulation of the hardware implementation, the MODELSIM VHDL simulation

environment was employed. In such an environment, both the evolution of the algorithm

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 15 of 26

as well as the number of clock cycles necessary to run each iteration can be extracted, so
the results of Eq. 6 can also be ascertained. Even though an extremely reliable and versatile
tool, VHDL simulation offers a drawback in terms of running time: simulating a high
number of BRAMs or a large dataset can be extremely time-consuming. For this reason,
a predetermined set of parameters (data points, iterations, and number of BRAMs) were
chosen to showcase the validity of the hardware implementation.
Table 1 contains the information regarding the simulation of the hardware structure

under the different parameter conditions, where B stands for the number of BRAMs, and
L and N follow the previously defined notation. The estimated number of clock cycles
based on Eq. 6 that appear in Table 1 takes into account the required F = 21 extra clock
cycles for initialization and control, but excludes the up/down loading steps of data into
and out of the BRAMs. The asterisk in the last column indicates that 2048 BRAMs are
actually above the 2000 maximum available number of BRAMs with 20 bit-wide data
entries in the target ALTERA STRATIX V FPGA, but could be implemented in a larger
device.
The results of Table 1 are in excellent agreement with the expectations, which translate

into the following: validation of the hardware implementation as well as a demonstration
of its equivalence to the Julia SFIXED software implementation, and verification of the
validity of Eq. 6, which, in turn, is a validation of the results of Fig. 5. The concluding step
of this section is, then, to synthesize the hardware so that the maximum achievable clock
frequency can be extracted. As previously commented, the clock frequency, combined
with the total number of clock cycles necessary for the algorithm to elapse, can be used
to estimate the amount of time the algorithm will take to execute. Furthermore, as a by-
product of the synthesis results, it is possible to assess the percentage of FPGA resources
occupied by the architecture, which, in turn, provides the means for selecting the target
FPGA for hardware implementation. The results are summarized in Table 2, where the
INTEL QUARTUS PRIME synthesis software was used. It is important to note that, due
to the complexity of the Place and Route (PAR) problem, it is not reasonable to assume
that the synthesis software will always find the global optimum. Therefore, the results of
Table 2 should be interpreted as lower bounds of the optimal achievable clock frequency
for each design instance and the discrepancies in these to be within the uncertainty of the
PAR procedure.

Table 1 VHDL simulation–validation

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 16 of 26

Ta
b
le

2
Ta
rg
et

FP
G
A
s’
sy
nt
he

si
s
an
d
tim

in
g
re
su
lts
.P
ro
ce
ss
in
g
tim

es
ca
lc
ul
at
ed

fo
rN

=
10
,0
00

an
d
w
ith

L
=

6.
5

×
10

6

St
ra
ti
x
V
:5
SG

SM
D
5K

2F
40

C
2

C
yc
lo
n
e
V
:5
C
SX

FC
6D

6F
31

C
6

B
RA

M
s

A
LM

s
Re

g
is
te
rs

M
em

or
y
[b
it
s]

M
ax

.C
lk
.

Pr
oc

.
A
LM

s
Re

g
is
te
rs

M
em

or
y
[b
it
s]

M
ax

.C
lk
.

Pr
oc

.

ou
to

f1
72

,6
00

ou
to

f4
1,
24

6,
72

0
Fr
eq

.[
M
H
z]

ti
m
e
[s
]

ou
to

f4
1,
91

0
ou

to
f5

,6
62

,7
20

Fr
eq

.[
M
H
z]

ti
m
e
[s
]

10
24

13
5,
57
1
(7
9%

)
88
,9
38

20
,9
71
,5
20

(5
1%

)
10
9.
9

1.
91

−1
−1

−1
−1

−1
51
2

68
,1
35

(3
9%

)
45
,5
95

10
,4
85
,7
60

(2
5%

)
16
6.
97

1.
78

−1
−1

−1
−1

−1
25
6

36
,0
98

(2
1%

)
25
,1
47

5,
24
2,
88
0
(1
3%

)
17
3.
28

2.
78

36
,5
48

(8
7%

)
24
,7
41

2,
62
1,
44
0
(4
6%

)
81
.1
3

5.
94

12
8

19
,1
96

(1
1%

)
13
,8
39

2,
62
1,
44
0
(6
%
)

18
2.
12

4.
70

20
,1
78

(4
8%

)
13
,4
75

1,
31
0,
72
0
(2
3%

)
95
.3
7

8.
98

16
49
82

(3
%
)

40
12

32
7,
68
0
(<

1%
)

18
2.
35

33
.8
3

50
00

(1
2%

)
39
28

16
3,
84
0
(3
%
)

92
.9
4

66
.3
7

4
34
35

(2
%
)

29
25

81
,9
20

(<
1%

)
18
7.
86

13
0.
08

34
27

(8
%
)

29
29

40
,9
60

(<
1%

)
91
.7
3

26
6.
40

1 D
es
ig
n
to
o
la
rg
e
to

fit
in
to

de
vi
ce

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 17 of 26

Up to 1024 BRAMs could be instantiated in the STRATIX V, with as high as 109 MHz
maximum clock frequency yielding a 1.91-s processing time for 10,000-long data series
considering 650 iterations per sample (overall, 6.5 million iterations). This result repre-
sents a 100 speed-up factor in processing time with respect to software implementations
under the same data conditions but running on a INTEL XEON CPU E5-2690 V4 at 2.6
GHz and 512 GB RAM [1], a major achievement, which advocates for the dedicated hard-
ware solution applied to the trend break detection problem. It is also interesting to note
that, for a smaller FPGA, the CYCLONE V, a ∼ 16 gain factor with respect to the soft-
ware implementation was achieved, which is interesting in the sense that smaller FPGAs
exhibit, generally, significantly lower costs, but could still deliver processing times in the
range of a few seconds.
The results from Table 2 also indicate that a compromise between instantiation of a

higher number of BRAMs (which reduces the total number of clock cycles necessary for
the algorithm to elapse as determined by Eq. 6) and the maximum achievable clock fre-
quency exists. In fact, the processing time for 512 instantiated BRAMs was lower than
that of 1024 because the gain in clock frequency superseded that of the reduction of clock
cycles. Again, it should be mentioned that the PAR problem is an extremely complex one
and the algorithms that solve it may not always reach the best possible solution, so the
clock frequency values obtained should be interpreted as lower bounds. Finally, to put the
results into an application proned perspective, fiber profiles as long as 50 km could be
analyzed in search for breaks in under 10 s [1].

6 Results and discussion
6.1 Case study results

Validation of the software Julia SFIXED implementation performed in Section 5 allows
one to investigate aspects of the hardware implementation in a more suitable simulation
environment. This is important due to the amount of simulation workload necessary to
yield statistically relevant results. To provide a complete overview, the analysis is split
into two steps. First, an experimental dataset extracted in a laboratory environment, with
standard measurement devices, is processed by the bit-true validated Julia SFIXED imple-
mentation and by the original 64-bit floating version of the algorithm [1]. These results
are evaluated in terms of their trend break detection capabilities or, in other words, the
performance of the two versions of the algorithm.
After analysis with real-world data, which, unfortunately, is limited to the availability

of resources in the laboratory, the second step is to submit the algorithm to simulated
datasets that contain the same features as the real-world ones; in [1], the creation of a
testbench of simulated datasets is discussed in detail, specifically in regard to noise addi-
tion, with very pronounced resemblance between the real-world and simulated results;
this, in turn, allows for statistically relevant investigation of the performance of the algo-
rithm. It should be noted that, for all the results presented in this section, the bit-width of
data points for the SFIXED format was fixed at 20, where the reason behind this will be
clarified in Section 6.1.2.

6.1.1 Analysis of a real-world dataset

The subject of the experimental analysis of the proposed hardware implementation was
chosen to be the dataset corresponding to the measurement of an optical fiber profile.

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 18 of 26

The data acquisition was performed with a so-called Optical Time-Domain Reflectome-
try (OTDR) device based on an FPGA [10]. TheOTDR provides the user with information
of the fiber’s integrity (the fiber profile) by measuring the optical power that is reflected
back from the optical fiber when a probing pulse is launched into it [26]; the result is dis-
played in logarithmic scale (dB), as depicted by the black trace in Fig. 6. This choice goes
along with the motivation of Section 1, since the acquisition system and the proposed
hardware implementation of the analysis algorithm could, potentially, coexist in the same
FPGA. The chosen fiber profile exhibits several interesting features related to fault detec-
tion: the presence of both high magnitude and low magnitude faults and faults separated
by few points.
The fact that the LBI algorithm, in its original version, provides accurate trend break

detection results had already been determined in [1] and is again verified by the red trace
in Fig. 6. The striking feature showcased in Fig. 6, however, is the fact that the bit-true
validated SFIXED version of the algorithm, the blue trace, exhibits equivalent results,
indicating that the proposed hardware implementation of the LBI algorithm using the
20-bit SFIXED format upholds the performance of its 64-bit floating point counterpart.
One important comment is regarding the linear slope component that is clearly part of
the original signal in Fig. 6. In [1], the slope component has been included in the can-
didate matrix A for completeness; however, this slope can be pre-compensated since it
is a standard value for most commercial optical fibers as specified in ITU-T G.652. In
order to maintain the LBI algorithm, as presented in Algorithm 1, general with respect
to any trend break detection problem but, at the same time, allow for data from opti-
cal fiber monitoring to be processed by this version of the algorithm, the slope has been
pre-compensated.

6.1.2 Testbench of simulated datasets

The objective of using a set of simulated datasets, and, therefore, accumulating statis-
tically relevant data (results of over 15,000 different simulated datasets were analyzed),

Fig. 6 Results of trend break detection on a testbench real-world fiber profile acquired in laboratory
conditions. Red and blue traces correspond, respectively, to the results from the 64-bit floating point and 20-
bit SFIXED bit-true versions of the LBI algorithm. The traces are vertically offset in order to highlight the correct
trend break detection, but the original baseline is the same. The inset displays a zoomed-in segment of the
profile, where faults close to one another have been correctly identified by both versions of the algorithm

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 19 of 26

is twofold: firstly, as it was mentioned in Section 3, to empirically determine the inter-
val of number of iterations per sample for which the estimation quality reaches a reliable
level and, secondly, to compare the quality of estimation between the 64-bit floating
point implementation, and the 20-bit SFIXED implementation for profiles with different
number of data points and with different number of iterations per sample.
Evaluation of the bit-width parameter has been conducted based on the limited num-

ber of possible bit-width configurations of the BRAMs in the target FPGAs considered
here; supported bit-widths for both the STRATIX V and the CYCLONE V are 10, 20, and
40 bits [27]. All three configurations have been tested, and the results are as follows. The
10-bit SFIXED implementation proved to be too limited in terms of correctly express-
ing the input data, since large discrepancies with respect to the benchmark results ran
in a personal computer with a 64-bit floating point precision have been observed. As
the bit-width was increased to 20, these discrepancies were drastically diminished, indi-
cating a more equivalent expression of the data series and, also, a sufficient arithmetical
dynamic range. Further increasing the bit-width to 40, however, did not effect any signif-
icant change in the performance of the algorithm, and since this configuration requires
twice the memory usage when compared to the 20-bit one, while also increasing the com-
plexity of the arithmetical structures in the FPGA, the value of 20 bits has been set as an
operational parameter for all the tests.
To clarify this analysis, an estimation error metric has been used, following the defini-

tion in [1]: noiseless sparse vectors with randomly sorted magnitudes (β ideal) are used to
create datasets using the candidate matrix A, to which white Gaussian noise is added; the
results of the estimation are βest, which are then compared to β ideal using the squared
error norm. The closer to zero error between the estimated and ideal vectors, the better
is the estimation. The results of such estimation error metric are depicted in Fig. 7 for
different values of L and for both the 20-bit SFIXED and the 64-bit floating point imple-
mentations; the results are extremely similar, indicating that no information is lost due to
the 20-bit SFIXED implementation. Here, the intrinsic slope of optical fiber profiles has
not been considered once again, as discussed in the previous sub-section.
From the results of Fig. 7, it is possible to conclude that the differences in estimation

between the 20-bit SFIXED and 64-bit double implementations are negligible, i.e., the
hardware implementation will have no problems achieving comparable estimation accu-
racy as the software version, e.g., in [1]. A large variety of test cases (different lengths and
fault scenarios) have also been tested, and the results point to the fact that a 20-bit fixed
point resolution provides comparable results in terms of detection performance when
compared to longer bit-length words. The conclusion, therefore, is that significant devi-
ations for other datasets are highly unlikely. Furthermore, it is important to note that, as
discussed in depth in [1], it is impractical to expect the fault detection algorithm to be
able to resolve any fault (with an arbitrary magnitude) for two main reasons: first, the
amount of information gained from identifying a fault below a certain level (say, smaller
than 0.1) is close to none, since the impact of this fault on the optical link transmission
is minimum; second, in order to achieve a level of sensitivity that allows one to identify
extremely small faults would require the processing time to be also extremely high, as also
discussed in [1]. With that being said, it can be expected, from the results, that the gain in
sensitivity from increasing the bit-length of the words beyond 20 falls within a practical
sensitivity issue and, thus, becomes irrelevant.

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 20 of 26

Fig. 7 Estimation results for both SFIXED and floating point implementations for different profile lengths and
different numbers of iterations per sample; L is simply this value multiplied by the number of points (N) in the
profile. The results are divided into two panels for ease of visualization

Furthermore, it becomes clear that, after 450 iterations per sample, the accuracy stabi-
lizes, with an averaged squared error norm value in the order of 0.5. This indicates that
the results from Fig. 5 with 650 iterations per sample are indeed realistic. Finally, this
result is also useful when interpreted along with those of Fig. 5: a compromise between
the total number of clock cycles before the algorithm elapses and the quality of the esti-
mation can be found, and in specific cases, one of these can be sacrificed (increasing the
processing time or allowing for a worse estimate) to boost the other (faster results or
extremely precise estimation). In real-world applications, the expected accuracy (given a
set of parameters including bit-length and total number of algorithm iterations) can be
determined in advance and provided to the user, so that the constraints are known a pri-
ori. If necessary, the memory word length can be adjusted such that it is larger or equal to
the bit-width that yields the desired calculation precision.

6.2 State-of-the-art hardware implementations of sparse estimation

algorithms—comparison with the proposed architecture

The LBI algorithm, in order to be suitable for tackling the trend break detection prob-
lem, was modified from its original format; the especial structure of the candidate matrix,
for instance, allowed one to derive the expressions in Eqs. 3 and 4, which greatly sim-
plify the procedure [1]. This fact prompts the natural question of whether there are other
methodologies that, even though originally intended to be used in sparse estimation,
could be steered towards the application at hand. Moreover, this would allow for a com-
parison between the herewith proposed hardware implementation of the LBI algorithm
with other similar structures. An extensive literature review on this subject reveals that,
when it comes to hardware implementations of sparse estimation methods, the majority

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 21 of 26

of the works focus on the OrthogonalMatching Pursuit (OMP) algorithm [28], which has,
thus, been the focus of this comparison.
Although an interesting approach, where efficient architectures have been proposed

such as [29, 30], OMP typically assumes that the number of non-zero entries of the vector
β—and, thus, the number of candidates that compose the signal of interest—is known.
For applications where this assumption is valid, the method is highly efficient and, in
addition, provides recovery guarantees, i.e., the certainty that, if present, the candidate
will be found. For the cases that have been described in the introductory section of this
document, however, this is a rather detrimental characteristic; for the specific case of
trend break detection associated to fiber fault detection, for instance, this assumption
would yield results that do not translate the true underlying trend of the original signal.
Furthermore, the OMP algorithm relies, for optimal performance, on a small value of the
so-calledmutual incoherence:

μ = max
i�=j

|ãiãj|
‖ãi‖2‖ãj‖2 , (7)

with ãi, ãj as the ith and jth columns of A, respectively; OMP requires the value μ to be
smaller than 1

2k−1 for guaranteed recovery of the sparse positions [31]. As one can easily
check from (2), in the case of the candidate matrix associated to trend break detection, the
value μ is close to its maximum value of 1 when it comes to close neighboring columns of
A, which could significantly decrease the OMP algorithm’s performance in this scenario.
In order to propitiate an interesting comparison and further discussion about the dis-

parities between the two algorithms and, moreover, between their respective hardware
implementations, a framework for utilizing the OMP algorithm in a trend break detection
scenario has been developed and is as follows. A sparsity factor ξ is defined, and the max-
imum number of non-zero elements within the estimation problem is determined using ξ

and the total number of points in the dataset of interest,N ; this maximum non-zero num-
ber is herewith defined as N0 = ξN . It is important to note that, since the actual number
of non-zero elements that are present in the signal of interest is not known a priori, this
approach will always be suboptimal when compared to an algorithm, such as the LBI, that
does not necessitate such information. The OMP algorithm is, then, ran normally with
N0 iteration loops while the intermediate estimation results are submitted to a consistent
information criterion for determining the best sparse approximation; the Bayesian Infor-
mation Criterion [32], which balances the squared error norm and the resulting sparsity
for model identification, has been employed. The complete procedure, dubbed OMP FOR

TREND BREAK DETECTION, is structured in Algorithm 2 and has been directly adapted
from [33].
The OMP FOR TREND BREAK DETECTION algorithm involves three main procedures,

defined in Algorithm 2, as follows. The optimization problem of line 7 allows one to find
the candidate with the highest overlap with the residual of previous iterations. This candi-
date is removed from the measured signal, and the new residual is determined (in line 11)
with an intermediate estimate (β̂ i) being generated as a by-product (in line 10). Finally, the
best intermediate estimate is found using the BIC and output as the final OMP estimate.

6.2.1 Performance comparison based on software implementation

Being a well-known algorithm in the sparse estimation community, several implementa-
tions of the OMP can be found as well as detailed explanations of the procedure; here, a

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 22 of 26

Algorithm 2OMP for Trend Break Detection
Require:Measurement vector y, Sparsity Level ξ ,
Candidate Matrix A
Ensure: Estimated β̂out
1: r0 = y
2: �0 =[]
3: �0 = {∅}
4: N0 = ξN
5: BICres = ∞

→ Innitiate OMP algorithm
6: for i = 1 : N0 do
7: λi = arg maxj=[1,N]/�i−1 |

〈
ri−1,Aj

〉 |
8: �i = �i−1

⋃{λi}
9: �i = [

�i−1 Aj
]

10: β̂ i = arg minx||y − �ix||
11: ri = y − �iβ̂ i

→ Introducing the BIC as a function
12: BICnew = BIC

(
β̂ i, i

)

13: if BICnew < BICres then
14: β̂out = β̂ i
15: BICres = BICnew
16: end if
17: end for

Cholesky-decomposition-based OMP has been used as reference [33]. In order to main-
tain consistency with respect to the Julia implementation of the LBI, the code has been
written in Julia.
The first comparison step, based on the software implementation, allows for the com-

parison of both algorithms to be analyzed. This entails, as set forth in [1], the evaluation
of figures of merit such as the precision and the Matthews correlation coefficient (MCC)
[34], where a so-called contingency table is used to derive the aforementioned figures of
merit, and revolves around the determination of so-called true positives (TP), false pos-
itives (FP), true negatives (TN), and false negatives (FN) associated with the detection
of breaks in the dataset. Assessing the performance with statistically relevant results is
an important part of the performance comparison, so the framework of the testbench of
simulated datasets, discussed in Section 6.1 B, has been once again employed. For the
results herewith presented, the maximum number of trend breaks included in the sim-
ulated datasets was five, and since the comparison is not related to timing, ξ was set as
0.01, i.e., 1% of the total number of points in the dataset. Finally, N was varied from 5000
to 15,000 so that different dataset sizes could be considered in the analysis.
As the results of Table 3 demonstrate, the performance of the OMP FOR TREND BREAK

DETECTION does not reach the performance level exhibited by the LBI, even when the
sparsity level N0 is made much larger than the actual number of breaks present in the
dataset. On the one hand, the precision indicates how confident one can be about a break
identified by the algorithm, which represents a huge impact on the application. If one
considers, for instance, an optical fiber network manager that must take actions regarding
the repairment of a cable, the cost of deploying a mobile unit creates a demand for high
precision in the analysis results. On the other hand, the MCC is an interesting figure of
merit from a theoretical point of view, since it stands for a correlation coefficient between

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 23 of 26

Table 3 Performance comparison

Algorithm Precision MCC(
TP

TP+FP

) (
TP·TN−FP·FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

)

LBI 67.3% 0.81

OMP 8.2% 0.28

the observed and predicted binary classifications; in this case, the break/no-break clas-
sification: a value of +1 corresponds to perfect prediction and a value of 0 corresponds
to random classification results. It is possible to observe, with this respect, that the LBI
algorithm is very much closer to correctly predicting the underlying trend of the dataset
(with an MCC of 0.81) than the OMP algorithm, which exhibits a low MCC value of
0.28. The conclusion of this analysis indicates that, even in case the performance of the
OMP is mantained when the structure is adapted to hardware, as has been demonstrated
in Section 5 A and B for the LBI, it will remain as a suboptimal choice for trend break
detection with respect to its performance.

6.2.2 Comparison based on hardware implementation

The in-depth description and analysis of the LBI hardware structure presented in
Section 4 allowed one to derive the total number of clock cycles taken, for a given set
of input parameters, for the algorithm to elapse. Similar analysis for the OMP is, unfor-
tunately, not available in the literature; since the focus of this document is not on the
hardware implementation of the OMP, the comparison must, then, be performed using a
different figure of merit. In [33], two interesting figures of merit are presented: the total
processing time (0.34 ms) for fixed parameters (a degree of sparsity of 36 (p1), a (p2) 256-
long measurement vector and 1024 (p3) samples), and the total number of multiplication
and addition operations as a function of p1..3. There, the data precision, in bits, was 18, as
opposed to the 20-bit SFIXED considered, here, for the LBI, which is within a comparable
range.
For the closest comparable instance size for trend break detection (1024×1024), the

hardware implementation of the LBI would elapse (considering the data in Table 2 in 64
ms, an∼200 factor with respect to the OMP). This result is, however, ambiguous and fur-
ther analysis is necessary, which has been subdivided into complexity and device usage.
Analysis of the complexity has been carried out indirectly by evaluating the total number
of multiplications necessary for both hardware architectures. The total number of mul-
tiplications necessary for the OMP increases cubically [33] in the degree of sparsity and
quadratically in the instance size, while that for the LBI increases linearly (as discussed
throughout Sections 3 and 4). Even though for small instance sizes, such as the previously
mentioned 1024×1024 problem, the OMP exhibits a total number of necessary multi-
plications much lower than the LBI, the relation quickly inverts as the instance size is
increased to, for instance, 15,000×15,000, a quite small dataset for optical fiber analysis,
and higher. This result clearly evidenciates why, in [33], the digital signal processing (DSP)
core of the target FPGA is almost at its usage limit for a relative small instance size and
the fact that, as the instance size increases, the OMP becomes a less attractive solution to
trend break detection.
Even though the target FPGAs for the architecture presented here (the ALTERA

STRATIX V) and in [33] (the XILINX VIRTEX-6) are not the same, they are in the same

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 24 of 26

range of FPGA sizes and, thus, allow for device usage comparison. For theOMP, the device
usage (where memory is included) is associated to the necessary matrix inversion for line
10 in Algorithm 2 and the storage of the candidate matrix elements. Therefore, the size
of the hardware depends on the problem size and increases tremendously if the degree of
sparsity increases; in [33], the modest p1 = 36, p2 = 256, and p3 = 1024 problem occupied
76% of the DSP slices available, 69% of the available BRAMs, and a total of 16% slices. In
the proposed LBI architecture, not only the number of occupied BRAMs is more flexible
(the architecture of the β matrix in Eq. 5 can be made more vertical or more horizontal)
but also the relative number of occupied slices is also smaller; a 128-BRAM design, which
enables up to 35,000-long datasets, for instance, would only occupy 11% of the FPGA,
and no DSP slices, which, in this case, could be reserved for other useful procedures, such
as the pre-processing mentioned in Section 3. It is interesting to mention that, according
to Eq. 6, there is a trade-off between the number of used BRAMs and the total number
of clock cycles necessary for the algorithm to elapse, which would play a role in case the
number of BRAMs was chosen to be either smaller or greater. In both cases, however, it
is clear that the overall device usage of the proposed LBI structure is much more feasible,
flexible, and economic for datasets with ≥ 10,000 points.

7 Conclusions
Trend break detection, or level-shift detection, is a problem that permeates several sci-
ence fields, and an efficient, accurate, and highly reliable processing unit to solve it is
desirable. Combining the flexible hardware design tools of Field Programmable Gate
Arrays and the efficient Linearized Bregman Iteration algorithm allowed for the devel-
opment of such a unit. The manipulation of the data storage structure as well as the
algorithm flow and control in hardware yielded an up to 100 times gain in processing time
when compared to a personal computer while maintaining all the observed qualities of
the algorithm, such as low estimation error and high level-shift detection precision. The
speed-up factor greatly depends on the memory availability in the target hardware, and
even though this specific speed-up factor has been calculated for the Stratix V FPGA, a
chip with more than 1000 BRAMs (each containing 1024 20-bit-long words) can achieve
the same speed-up level.
Due to its flexible memory structure, the proposed hardware architecture can be

implemented in different-sized FPGAs, with the main distinctions being the amount of
available dual-block RAMs andmaximum achievable clock frequency, characteristics that
are hardware-dependent. On a middle-sized chip such as the ALTERA CYCLONE V, the
hardware supports up to 256 parallel BRAMs with a maximum clock frequency of 81
MHz and a total processing time of 6 s for a 10,000-long dataset and 650 iterations per
sample. Such processing prowess can be directed towards on-line data supervision such as
optical fiber monitoring, which constitutes an exciting future point of investigation. Fur-
thermore, incorporating advanced signal processing techniques into the hardware design
in order to eliminate any pre-processing step while increasing the convergence speed is
also a sought-after goal for future studies.
Evaluation of the architecture using both real-world and simulated datasets making use

of its bit-true hardware-validated software showed that the performance is not deterio-
rated due to necessary adjustments for hardware implementation. In fact, the comparison
of the floating point and quantized versions of the algorithm yielded negligible discre-

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 25 of 26

pancies when analyzing the squared error norm of the estimation. Further comparative
analysis of the performance and hardware architecture with respect to a state-of-the-art
algorithm for sparse estimation showed that the performance of the LBI for trend break
detection is much more pronounced; at the same time, even though slower for small
instance sizes, the complexity of the LBI structure allows for manipulation of much longer
datasets, which is a necessity for trend break detection in the context of optical fiber
analysis.
In summary, the FPGA implementation of the Linearized Bregman Iteration algorithm

adapted for trend break detection, reported in the present manuscript, has fomented the
following contributions: the description of the hardware structure of the algorithm and
an efficient parallel memory access structure; the results that such an implementation
provides, with impacting gains in processing time without loss of performance; its com-
parison with state-of-the-art hardware implementations of sparse estimation algorithms
(in particular, the Orthogonal Matching Pursuit algorithm), indicating clear advantages
of the proposed architecture in terms of performance and hardware flexibility; and the
future points of investigation that it enables in the field of digital signal processing in
an FPGA, especially with respect to creating an embedded unit for data acquisition and
processing with direct applications in optical fiber analysis.

Abbreviations
AGD: Approximate gradient descent; BIC: Bayesian Information Criterion; BRAM: Block RAM; CORDIC: COordinate rotation
DIgital computer; CPU: Central processsing unit; DSP: Digital signal processing; FN: False negatives; FP: False positives;
FPGA: Field Programmable Gate Array; FSM: Finite State Machine; LASSO: Least absolute shrinkage and selection
operator; LBI: Linearized Bregman Iterations; LUT: Look-Up Table; MCC: Matthews correlation coefficient; MUX:
Multiplexer; OLS: Ordinary least square; OMP: Orthogonal Matching Pursuit; OTDR: Optical Time-Domain Reflectometry;
PAR: Place and Route; PAT: Parallel adder tree; PMT: Parallel multiplexer tree; RAM: Random access memory; SFIXED:
Signed fixed point; SOC: System On Chip; TN: True negatives; TP: True positives; VHDL: Very-high-speed integrated circuit
hardware description language.

Acknowledgements
Financial support from Brazilian agency CNPq is acknowledged by F. Calliari. This work has been supported by the
COMET-K2 “Center for Symbiotic Mechatronics” of the Linz Center of Mechatronics (LCM) funded by the Austrian federal
government and the federal state of Upper Austria.

Authors’ contributions
All authors contributed equally to this work, and read and approved the final manuscript.

Availability of data andmaterials
Data and source code are available from the corresponding author upon request.

Competing interests
The authors declare that they have no competing interests.

Author details
1Center for Telecommunications Studies, Pontifical Catholic University of Rio de Janeiro, Marquês de São Vicente, Rio de
Janeiro, 22451-900, Brazil. 2QC2DLab, Kavli Foundation, Technical University of Delft, Mekelweg 5, 2628 CC, Delft, The
Netherlands. 3Institute of Signal Processing, Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria.

Received: 24 October 2019 Accepted: 6 September 2020

References
1. M. Lunglmayr, G. C. Amaral, Linearized Bregman iterations for automatic optical fiber fault analysis. IEEE Trans.

Instrum. Meas. 68(10), 3699–3711 (2018)
2. M. Basseville, A. Benveniste, Design and comparative study of some sequential jump detection algorithms for digital

signals. Acoust. Speech Sig. Process IEEE Trans. 31(3), 521–535 (1983)
3. L. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE. 77(2),

257–286 (1989)
4. D. A. Lorenz, S. Wenger, F. Schöpfer, M. Magnor, A sparse Kaczmarz solver and a linearized Bregmanmethod for online

compressed sensing. IEEE International Conference On Image Processing (ICIP), (2014), pp. 1347–1351
5. W. S. Rea, M. Reale, C. Cappelli, J. A. Brown, Identification of changes in mean with regression trees: an application to

market research. Econ. Rev. 29(5-6), 754–777 (2010)

Calliari et al. EURASIP Journal onWireless Communications and Networking (2020) 2020:210 Page 26 of 26

6. M. Storath, A. Weinmann, L. Demaret, Jump-sparse and sparse recovery using potts functionals. IEEE Trans. Sig.
Process. 62(14), 3654–3666 (2014)

7. J. P. von der Weid, M. H. Souto, J. D. Garcia, G. C. Amaral, Adaptive filter for automatic identification of multiple faults
in a noisy otdr profile. J. Light. Technol. 34(14), 3418–3424 (2016)

8. S.-J. Kim, K. Koh, S. Boyd, D. Gorinevsky, �1 trend filtering. SIAM review. 51(2), 339–360 (2009)
9. M. Lunglmayr, M. Huemer, in Sensor Array andMultichannel Signal ProcessingWorkshop (SAM), 2016 IEEE, Efficient

linearized Bregman iteration for sparse adaptive filters and Kaczmarz solvers (IEEE, 2016), pp. 1–5
10. F. Calliari, L. E. Y. Herrera, J. P. von der Weid, G. C. Amaral, in Proceedings of the 6th International Conference on

Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, High-dynamic and high-resolution automatic
photon counting OTDR for optical fiber network monitoring. (INSTICC, 2018), pp. 82–90

11. K. J. Holyoak, Parallel distributed processing: explorations in the microstructure of cognition. Science. 236, 992–997
(1987)

12. J. Xie, P. K. Meher, M. Sun, Y. Li, B. Zeng, Z.-H. Mao, Efficient fpga implementation of low-complexity systolic Karatsuba
multiplier over gf (2m) based on nist polynomials. IEEE Trans. Circ. Syst. I: Regular Papers. 64(7), 1815–1825 (2017)

13. P. Greisen, M. Runo, P. Guillet, S. Heinzle, A. Smolic, H. Kaeslin, M. Gross, Evaluation and fpga implementation of
sparse linear solvers for video processing applications. IEEE Trans. Circ. Syst. Video Technol. 23(8), 1402–1407 (2013)

14. L. Cong, W. Xiaofu, Design and realization of an fpga-based generator for chaotic frequency hopping sequences.
IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 48(5), 521–532 (2001)

15. (W. Vanderbauwhede, K. Benkrid, eds.), High-Performance Computing Using FPGAs. (Springer, New York, NY, 2013).
https://doi.org/10.1007/978-1-4614-1791-0

16. J. Hu, W. Guo, J. Wei, R. C. C. Cheung, Fast and generic inversion architectures overGF(2m)using modified Itoh-Tsujii
algorithms. IEEE Trans. Circ. Syst. II: Express Briefs. 62(4), 367–371 (2015). https://doi.org/10.1109/TCSII.2014.2387612

17. F. Cardells-Tormo, P.-. Molinet, Area-efficient 2-d shift-variant convolvers for fpga-based digital image processing.
IEEE Trans. Circ. Syst. II: Express Briefs. 53(2), 105–109 (2006). https://doi.org/10.1109/TCSII.2005.857091

18. C. Zhang, Z. Fang, P. Zhou, P. Pan, J. Cong, in 2016 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Caffeine: towards uniformed representation and acceleration for deep convolutional neural networks,
(2016), pp. 1–8. https://doi.org/10.1145/2966986.2967011

19. T. Hastie, R. Tibshirani, M. Wainwright, Statistical Learning with Sparsity: the Lasso and Generalizations, 1st edn. (CRC
press, Monographs on Statistics and Applied Probability 143, 2015)

20. J.-f. Cai, S. Osher, Z. Shen, Fast linearized Bregman iteration for compressed sensing. Math. Comput. 78(267),
1515–1536 (2008)

21. U. Meyer-Baese, Digital signal processing with field programmable gate arrays. Vol. 65 (Springer, Berlin, 2007)
22. F. Sato, K. Tsuchiya, Y. Nagao, T. Hirama, R. Oka, K. Takahashi, Ultra-high-fiber-count optical cable for data center

applications. SEI Technical Review. 86, 45–50 (2018)
23. A. Hornsteiner, Fiber optic technology trends in data transmission: digitalization of data advance the need for

constant upgrading of data networks. Optik & Photonik. 12(4), 20–24 (2017)
24. M. Lunglmayr, B. Hiptmair, M. Huemer, in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Scaled

linearized bregman iterations for fixed point implementation, (2017), pp. 1–4. https://doi.org/10.1109/ISCAS.2017.
8050534

25. H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, H. Wolkowicz, Fixed-point algorithms for inverse
problems in science and engineering, vol. 49 (Springer Science & Business Media, 2011)

26. M. Barnoski, M. Rourke, S. Jensen, R. Melville, Optical time domain reflectometer. Applied optics. 16(9), 2375–2379
(1977)

27. IntelFPGA, High-performance computing using FPGAs (2015). https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/hb/stratix-v/stx5_51001.pdf

28. E. J. Candes, M. B. Wakin, An introduction to compressive sampling. IEEE Signal Proc. Mag. 25(2), 21–30 (2008).
https://doi.org/10.1109/MSP.2007.914731

29. X. Ge, F. Yang, H. Zhu, X. Zeng, D. Zhou, An efficient fpga implementation of orthogonal matching pursuit with
square-root-free qr decomposition. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(3), 611–623 (2019). https://doi.
org/10.1109/TVLSI.2018.2879884

30. H. Rabah, A. Amira, B. K. Mohanty, S. Almaadeed, P. K. Meher, Fpga implementation of orthogonal matching pursuit
for compressive sensing reconstruction. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(10), 2209–2220 (2015).
https://doi.org/10.1109/TVLSI.2014.2358716

31. T. T. Cai, L. Wang, Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inf. Theory. 57(7),
4680–4688 (2011)

32. G. Schwarz, et al., Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
33. H. Rabah, A. Amira, B. K. Mohanty, S. Almaadeed, P. K. Meher, Fpga implementation of orthogonal matching pursuit

for compressive sensing reconstruction. IEEE Trans. very large scale Integr. (VLSI) Syst. 23(10), 2209–2220 (2014)
34. B. W. Matthews, Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim.

Biophys. Acta Protein Struct. 405(2), 442–451 (1975)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-1-4614-1791-0
https://doi.org/10.1109/TCSII.2014.2387612
https://doi.org/10.1109/TCSII.2005.857091
https://doi.org/10.1145/2966986.2967011
https://doi.org/10.1109/ISCAS.2017.8050534
https://doi.org/10.1109/ISCAS.2017.8050534
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-v/stx5_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-v/stx5_51001.pdf
https://doi.org/10.1109/MSP.2007.914731
https://doi.org/10.1109/TVLSI.2018.2879884
https://doi.org/10.1109/TVLSI.2018.2879884
https://doi.org/10.1109/TVLSI.2014.2358716

	Abstract
	Keywords

	Introduction
	Motivation and contributions

	Methods
	The Linearized Bregman Iteration algorithm for trend break detection
	Hardware implementation considerations of the LBI algorithm
	The ordinary least squares final step
	Scaling and arithmetic dynamic range

	FPGA architecture
	Memory structure
	PAT input control
	bold0mu mumu =============== and v storage
	Master FSM
	Total clock cycle estimation

	Validation and synthesis
	Results and discussion
	Case study results
	Analysis of a real-world dataset
	Testbench of simulated datasets

	State-of-the-art hardware implementations of sparse estimation algorithms—comparison with the proposed architecture
	Performance comparison based on software implementation
	Comparison based on hardware implementation

	Conclusions
	Abbreviations
	Acknowledgements
	Authors' contributions
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

