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Abstract
The vine pair-copula construction can be used to fit flexible non-Gaussian multivariate distri-
butions to a mix of continuous and discrete variables. With multiple classes, fitting univariate
distributions and a vine to each class lead to posterior probabilities over classes that can be
used for discriminant analysis. This is more flexible than methods with the Gaussian and/or
independence assumptions, such as quadratic discriminant analysis and naive Bayes. Some
variable selection methods are studied to accompany the vine copula-based classifier because
unimportant variables can make discrimination worse. Simple numerical performance met-
rics cannot give a full picture of how well a classifier is doing. We introduce categorical
prediction intervals and other summary measures to assess the difficulty of discriminating
classes. Through extensive experiments on real data, we demonstrate the superior perfor-
mance of our approaches compared to traditional discriminant analysis methods and random
forests when features have different dependent structures for different classes.

Keywords Classification · Copula · Feature selection · Prediction interval ·
Statistical learning · Vine

1 Introduction

When data consist of observations with feature vectors from different class labels, a classifi-
cation method fits models to a training set and aims at assigning out-of-sample observations
to their correct classes.

Among classification methods, discriminant analysis methods estimate the class densities
of a feature vector given class labels and assign an observation to a class where the estimated
density is the highest; probabilities for different classes at a given feature vector x∗ are
based on the relative values of the densities at x∗ for the classes. These methods are useful
when one does not have a useful way to visualize the data feature vectors in different classes
based on projections. They partition the feature space into regions where different classes are
more probable and can providemore interpretability than non-discriminant analysismethods.
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Density estimation within classes is based on different assumptions, and linear/quadratic
discriminant analysis based on the multivariate Gaussian assumption is one of the earliest
methods. Non-discriminant analysis methods form probability prediction equations for a
class as a function of the features; these include multinomial logistic regression and random
forest.

The most flexible parametric method for the construction of multivariate non-Gaussian
distributions with a mix of continuous and discrete variables is the vine pair-copula con-
struction for the dependence structure combined with univariate models for each variable;
references are Joe (2014); Panagiotelis et al. (2017); Czado (2019). Software, for example, R
packagervinecopulib (Nagler&Vatter, 2022b), exists to handle continuous and discrete
variables. In this paper, we use this construction to estimate the joint density in each class; we
call this the vine copula-based classifier and combine the method with diagnostics to assess
the difficulty of the classification problem. This includes categorical prediction intervals for
three or more classes andmisclassification rates based on these intervals. Summary measures
of classification performance include area under the receiver operating characteristic (ROC)
curve, out-of-sample negative log-likelihood score, and misclassification rates based on the
prediction intervals.

In classification problems with many measured variables or features, there are likely
to be some variables that are noisy or redundant. Further, including all measured features
might not lead to the best classification performance based on predefined metrics in all
classification methods. Hence, it is important to have variable or feature selection methods
to avoid overfitting and worsening performance (Tang et al., 2014; Li et al., 2017). In this
paper, we propose two feature selection methods. One is a filtering method based on a mutual
information-based criterion without fitting densities to classes, while the other is a wrapper
method using a sequential forward selection to add features to the vine models.

To illustrate our new methodology, we perform extensive analyses on a data set of music
genres provided by Spotify because it is a large data set with ten genres and many features,
with some quantitative and non-quantitative.

Some genres are easier to discriminate than others. Using different subsets of genres and
features to compare methods, we illustrate the usefulness of diagnostics to show how and
when vine classification can provide improved performance.

The rest of the paper is organized as follows: Sect. 2 introduces vine copula constructions,
and Sect. 3 explains vine copula-based classifiers. We provide extensive data analyses in
Sect. 4 and conclude with a discussion in Sect. 5.

2 Vine Copula Constructions

A d-dimensional copula is a d-dimensional distribution function with U (0, 1) univariate
margins. Sklar’s theorem (Sklar, 1959) allows to express a d-dimensional distribution in
terms of a d-dimensional copula and its univariate margins. Let X = (X1, . . . , Xd)� ∈ R

d

be a d-dimensional random vector with distribution F and univariate marginal distributions
F1, . . . , Fd . The copula C associated with F satisfies F(x) = C(F1(x1), . . . , Fd(xd)). For
absolutely continuous variables, the density f can be written as

f (x) = c
(
F1(x1), . . . , Fd(xd)

) × f1(x1) × · · · × fd(xd), (1)

where c is the dth order mixed partial derivative of C .
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There are many bivariate parametric copula families that can cover the full range of
positive dependence with a variety of tail dependence and asymmetry properties; some of
these extend to the full range of negative dependence. However, there is no general approach
to obtaining equations corresponding to d-variate parametric copula families with flexible
dependence and tail properties.

The d-dimensional construction is based on sequential mixtures of univariate conditional
distributions in Joe (1996), and Sections 3.8 and 3.9 of Joe (2014) use d(d − 1)/2 bivariate
copulas as building blocks. The theory of regular vines in Bedford and Cooke (2001, 2002)
provides all possible sequences of mixing conditional distributions.

There is a graph, as explained in Section 3.9.2 of Joe (2014) and Section 5.2 of Czado
(2019), associated with the construction known as a vine tree structure V = (T1, . . . , Td−1)

on d elements if it meets that (i) T1 is a tree with node set V1 = {1, . . . , d} and edge set
E1, (ii) Tl is a tree with node set V� = E�−1 for � = 2, . . . , d − 1, and (iii) an edge is
allowed to connect two nodes in T�+1 if their associated edges in T� have a shared node in
Tl . Using recursions from the construction, the joint density f (x) = f (x1, . . . , xd) from the
vine construction for d continuous variables has the form:

f (x) =
d−1∏

l=1

∏

e∈El

cea ,eb;De

(
Fea |De (xea |xDe ), Feb|De

(
xeb |xDe )

∣
∣xDe )

d∏

p=1

f p(x p), (2)

where the edge e = {ea, eb, De} has two conditioned variables indexed by ea and eb and a
conditioning set of variables indexed in the set De. If the set {ea, eb}∪De has cardinality �+1,
the edge is in tree �. The bivariate copula density cea ,eb;De associated with this edge is used to
link the univariate conditional distributions Fea |De and Feb|De . The conditional distribution
function of [Xea |XDe = xDe ], which is Fea |De (·|xDe ), is obtained via a recursion. For tree
1, De is an empty set, and Fea |De and Feb|De are univariate marginal distributions.

For a pair-copula construction with a mix of discrete and continuous variables, there is a
similar decomposition after replacing cea ,eb;De by c̃ea ,eb;De with a slightly different formwhen
coupling with one or two discrete variables; more details can be seen in Section 2.2 of Chang
and Joe (2019). This has been implemented in, for example, R package rvinecopulib
(Nagler & Vatter, 2022b).

For models for the d-dimensional density f (x), parametric or non-parametric families
can be used for each cea ,eb;De , e ∈ E1 ∪ · · · ∪ Ed−1 and each f p , p ∈ {1, . . . , d}. Diagnostic
plots can help decide on models for f p and cea ,eb;De = cea ,eb for e ∈ E1 (tree 1). Parametric
models are typically used unless non-unimodality is seen in histograms, or unusual cloud
shapes are seen in scatterplots.

For the estimation of Eq. 2 with a sample x1, . . . , xn of size n, a sequential approach
(Joe & Xu, 1996) is used, starting with an estimation of univariate distributions. Then,
transforms are made via the estimated univariate cumulative distribution functions: with
xi = (xi1, . . . , xid), uip = F̂p(xip) for a continuous pth variable and also u−

i p = F̂p(x−
i p)

for a discrete pth variable, where we define Fp(x−
p ) = Pr(X p < x p). We refer to the n

resulting u vectors as copula data. Vine copula algorithms (e.g., Dißmann et al. 2013) decide
on choices of copula families sequentially from tree 1, then tree 2, and so on. The estimated
pair copulas in tree � are used in higher-order trees.

Example 2.1 Consider three absolutely continuous random variables X1, X2, X3 with
respective densities f1, f2, f3 and joint density f123 associated with the copula density c123.
By a factorization, we have

f123(x1, x2, x3) = f12|3(x1, x2|x3) f3(x3). (3)
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By Sklar’s theorem, for x3 in the support of F3, there is a copula C12;3(·; F3(x3)) such that
F12|3(x1, x2|x3) = C12;3(F1|3(x1|x3), F2|3(x2|x3); F3(x3)) because F12|3(·|x3) is a bivari-
ate distribution with margins Fp|3(·|x3) for p = 1, 2. The set of copulas {C12;3(·; F3(x3)}
summarizes the conditional dependence between the first and second variables given the
third one. Differentiation with respect to x1, x2 leads to:

f12|3(x1, x2|x3) = c12;3(F1|3(x1|x3), F2|3(x2|x3); F3(x3)) f1|3(x1|x3) f2|3(x2|x3). (4)

Likewise, from copula C13 and C23 associated with F13 and F23 respectively, we can express
f1|3 and f2|3 via Eq. 1

f p|3(x p|x3) = f p3(x p, x3)/ f3(x3) = cp3(Fp(x p), F3(x3)) f p(x p), p = 1, 2.

Next, substitute the above into Eq. 4 and combine with Eq. 3 to get:

f123(x) = c12;3(F1|3(x1|x3), F2|3(x2|x3); F3(x3))
2∏

p=1

cp3(Fp(x p), F3(x3))
3∏

p=1

f p(x p). (5)

c123(F1(x1), F2(x2), F3(x3))=c12;3(F1|3(x1|x3), F2|3(x2|x3); F3(x3))
2∏

p=1

cp3(Fp(x p), F3(x3)).

(6)

One can show that F1|3(x1|x3) = ∂C1,3(F1(x1),u3)
∂u3

|u3=F3(x3). Further, Eqs. 5 and 6 can
be constructed using a different factorization in Eq. 3 (e.g., condition on the first or second
variable).

If these pair copulas are Gaussian, the vine copula corresponds to a Gaussian copula,
and the pair copulas do not depend on the value of the conditioning variable (e.g., c12;3
in Eq. 6 satisfies c12;3(v1, v2; F3(x3)) = c12;3(v1, v2)). When using the vine copula as a
parsimonious model and as a generalization of the Gaussian copula, the pair copulas in
trees 2 and higher are assumed not to depend on the values of the conditioning variables.
This is called the simplifying assumption.

3 Classification Using Vine Copulas

For notation,we assume there are k classes and d variables or features. The number of features
d varies when a feature selection method is used. For the vine copula-based classifier, we
use a training set from each class j ∈ {1, . . . , k} to estimate a density f j of form Eq. 2 with
the simplifying assumption described in Sect. 2.

Section 3.1 discusses the importance of the univariate modeling step and introduces nota-
tion for the prediction probabilities over classes and the single-class prediction. There are a
number of extra considerations and diagnostics when the number of classes k is more than
2. Section 3.2 summarizes methods for feature selection, including our new wrapper method
based on a vine copula-based classifier. Section 3.3 introduces categorical prediction inter-
vals as a diagnostic to help understand which classes are harder to discriminate. Section 3.4
summarizes several performance measures that will be used in the data application in Sect. 4.

3.1 Prediction Probabilities After Estimation of Models by Class

It is important that good choices of univariate distributions are made for individual variables
in each class and checked for adequacy of fit with Q-Q plots (for continuous variables). In
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previous applications, we have sometimes found the need for 3-parameter and 4-parameter
families for variables with unimodal histograms and boxplots that show skewness and a
variety of tail weights. These include skew-t (Jones & Faddy, 2003), skew-normal (Azzalini,
1985), and generalized gamma outlined in Section A.3 of Klugman et al. (2010). When no
low-dimensional parametric family provides a good fit, kernel density estimation, e.g., R
package kde1d (Nagler & Vatter, 2022a), can be used after variables have been transformed
to avoid extreme skewness.

Assume the training data set consists of n j observations for class j . Let xp, j =
(x1,p, j , . . . , xn j ,p, j )

� denote the pth feature vector in the j th class for p = 1, . . . , d , and
j = 1, . . . , k. For the vine copula-based classifier, after the set of joint density function { f̂ j }
for d features are separately estimated by class for a training set, posterior probabilities for
a feature vector x∗ are based on relative densities using prior class probabilities π j :

π̂ j (x∗) = P̂r(class = j |x∗) = π j f̂ j (x∗)
/ k∑

�=1

π� f̂�(x∗), j = 1, . . . , k. (7)

For a single class prediction, the vector x∗ would be assigned to the class as

γ (x∗) = argmax j π̂ j (x∗). (8)

In most applications, it is best to use π j = k−1 to avoid majority classes in the data have
higher prediction probabilities (such as with non-discriminant classification methods).

The theoretical counterpart of Eq. 7with f̂a replaced by fa fora ∈ {1, . . . , k} is invariant to
a common (over classes) monotone increasing transform of any variable because the Jacobian
term for the transform cancels from the numerator and denominator. However, since Eq. 7 is
not invariant to monotone transforms, good preprocessing transforms are needed with data
to get more reliable density estimates.

Vine copula classifiers have been used in limited settings in some published articles.
Chen (2014) restricts to the D-vine structure, which is a boundary class of regular vines and
has a limited choice of parametric bivariate copula families; there is no detailed discussion
of fitting univariate distributions. Carrera et al. (2016) also use the D-vine structure for a
5-class problem with a limited choice of parametric bivariate copula families and assume
univariate Gaussian distributions for individual variables. Nagler and Czado (2016) have a
2-class example to illustrate the use of bivariate copulas based on kernel density estimation
when scatterplots suggest that the usual parametric bivariate copula families are inadequate.
Also, Schellhase and Spanhel (2018) showed the usage of non-simplified vine copulas in a
2-class classification. Carrera et al. (2019) also allows for all regular vines, but there are no
details of exploratory data analysis and feature extraction based on images for their 2-class
example of dunes and non-dunes.

The vine-based classification procedure can also be applied to a subset of d available
features, or one can start with vine copula constructions based on 3 ≤ d1 < d features and
add extra features if performance measures based on {π̂ j (x∗)}, over x∗ in a validation set,
improve with additional features.

In addition to the above discussion of the estimation of vine copula models and univariate
densities, there are issues with feature selection approaches and performance evaluations,
especially for k ≥ 3. These are discussed in the following subsections.
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3.2 Feature Selection: Filtering andWrapper

Some features might not be needed for classifiers, i.e., excluding them improves the perfor-
mance and leads to more parsimony and greater computational efficiency. We develop two
feature selection approaches for vine copula-based classifiers — we refer to these as a filter-
ing method and a wrapper method, using the terminology of Guyon and Elisseeff (2003).
The former uses the (conditional) mutual information of features given classes and does not
depend on the classification method. The latter uses the classifier’s accuracy at each iteration
and performs sequential forward feature selection.

Filtering

Filtering methods use the information in features without fitting any classification models.
However, their performance varies bymodels and data sets (Bommert et al., 2020).We assess
how well a filtering method does for vine copula-based classifiers for comparisons.

Let X be a discrete or continuous feature with probability mass function or density fX

and let Y be a discrete class label random variable with probability mass function fY . Let
their joint density be fXY . The mutual information for X and Y is given by

I (X , Y ) =
∫

fXY (x, y) log

(
fXY (x, y)

fX (x) fY (y)

)
dν(x, y)

=
∫

fXY (x, y) log

(
fX |Y (x |y)

fX (x)

)
dν(x, y),

(9)

where ν is a product measure involving counting measure if X is discrete and Lebesgue
measure if X is continuous. Equation 9 can be regarded as the amount of information the
variable X has about Y . For applications, Eq. 9 is simpler to compute as a double summation
of the continuous variable X discretized into an ordinal variable; otherwise, (kernel) density
estimation is needed for fX and fX |Y . Our experience is that the discretization tends to lead
to smaller values but does not change the importance ranking of features. When X and Y are
independent, e.g., the feature X is uninformative for classification, Eq. 9 is zero.

Next, let Z be a random vector of discrete and continuous random variables with density
fZ and suppose (X , Y , Z) has the joint density fXY Z and marginal densities fX Z and fXY .
The conditional mutual information between X and Y given Z is

I (X , Y |Z) =
∫

fXY Z (x, y, z) log
(

fXY |Z (x, y|z)
fX |Z (x |z) fY |Z (y|z)

)
dν(x, y, z). (10)

In comparison to the mutual information in Eq. 9, the conditional mutual information in
Eq. 10 measures the information the variable X provides about the variable Y conditioned on
Z. If the set of features Z has been selected, Eq. 10 summarizes the information the additional
feature X provides about the class label Y . Similar to Eq. 9, for applications, Eq. 10 is simpler
to compute via a multiple sum if the features have been discretized into ordinal variables.

A filtering method might stop adding features to a classifier when it reaches the specified
number of features. Alternatively, since conditional mutual information avoids choosing
strongly associated features, another approach for stopping can be adding all features X
whose conditional mutual information is higher than a specified threshold after Z reaches
the dimension of 3.

We remark that different filtering methods, as analyzed in Bommert et al. (2020), can be
applied and compared for vine copula-based classifiers.
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Wrapper

Filtering features for classification might lead to different performances by models since
filtering does not account for model fits. To overcome such a drawback and tailor the feature
selection to a classifier, wrapper methods are applied; they consider how a classifier performs
sequentially and iteratively. In this section, we proposeAlgorithm 1 as awrapper for selecting
features in vine copula-based classifiers.

We assume that each variable has been transformed to remove extreme skewness (and
orders of magnitude variability) before exploratory data analysis and applications of classi-
fication methods. For the pth variable with values xp = (xp,1, . . . , xp,k)

� over k classes,
we define

xs
p = (xs

p,1, . . . , x
s
p,k)

� = [xp − μ̂p]/σ̂p, (11)

where μ̂p, σ̂p are respectively the sample mean and standard deviation of xp (values of all k
classes). Next, a dissimilarity measure is defined and applied to these scaled values.

The algorithm depends on a dissimilarity measure m for two vectors of data values a and
b. We will use the simply defined measure based on the sample quartiles:

m(a, b) = |F̂−1
a (0.25)− F̂−1

b (0.25)+ F̂−1
a (0.5)− F̂−1

b (0.5)+ F̂−1
a (0.75)− F̂−1

b (0.75)|/3,
(12)

where F̂−1
a and F̂−1

b are empirical quantile functions of a and b, respectively. Thus, it
measures the lack of overlap in the central 50% boxes of two side-by-side boxplots. If the
central 50% box of one boxplot is nested within the central 50% box of the other, then this
dissimilarity measure is small. Further, if there is a location shift from a to b so that quantiles
shift by the same amount, m(a, b) is the same as the location shift. If the distribution of a is
within the distribution of b, and the two medians are the same, m(a, b) is close to 0.

Example 3.1 Suppose a feature from two classes x1 = (x1,1, x1,2)� has 20 observations
with 8 from class 1 and 12 from class 2: x1,1 = (4.7, 6.2, 9.0, 13.7, 3.8, 13.6, 14.2, 10.3)�
and x1,2 = (9.8, 1.9, 3.9, 3.5, 10.6, 6.4, 11.8, 8.0, 11.0, 14.9, 6.3, 11.9)�. After scaling the
feature of 20 observations, its 25%, 50%, and 75% quantiles from the first class are −0.737,
0.219, and 1.212, respectively. The quantiles’ average is 0.231. Those from the second class
are −0.768, 0.031, and 0.606, respectively. The average at the given quantile levels is −0.044.
Then Eq. 12 leads to m(xs

1,1, x
s
1,2) = 0.275.

Thealgorithm initially chooses two features for classification and then adds further features
based on a criterion that uses information on misclassified observations based on previously
selected features.

Even though a random choice for the initial selection is possible, there is no guarantee that
the selected features are useful for classification. Instead, we propose to select the starting
features by assessing the dissimilarity of values for the pth feature across k classes based
on the evaluation of the sum Mp of m(·, ·) in Eq. 12 over all pairs of classes, i.e., Mp =
∑k−1

i=1
∑k

j=i+1 m(xs
p,i , x

s
p, j ) where xs

p,i and xs
p, j represent the values of the scaled pth

feature in classes i and j , respectively, as given in Eq. 11.
The first two selected features have the largest two values of Mp . Over many classes, this

choice matches the visualization of side-by-side boxplots of each feature over all classes.
We may initially select more than two features, but starting with two ensures the classifier
considers the pairwise dependence structure among features.
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Additionally, the initial selection for our wrapper Algorithm 1 considers univariate dis-
similarity across classes and might not reveal features that have marginal similarity across
classes but still are important for classification, e.g., conditionally given another feature. For
such cases, a filtering method can be considered.

However, Algorithm 1 is flexible in the dissimilarity measure. This measure could be
defined in Eq. 12 or a modification, incorporating the sum of the absolute values of differ-
ences in the three quartiles. We recommend the following: first, examine some univariate
and bivariate plots of variables by classes; then, develop a dissimilarity measure that can
effectively quantify the class differences observed in these plots.

Example 3.2 Continuing from Example 3.1, assume that there are two more features with
x2 = (x2,1, x2,2)� and x3 = (x3,1, x3,2)�. The data vectors are:
x2,1 = (14.1, 4.0, 10.1, 2.8, 4.7, 6.4, 1.2, 6.4)�,
x2,2 = (13.2, 5.8, 7.7, 9.4, 7.9, 3.6, 12.6, 10.4, 12.1, 2.5, 11.1, 6.8)�,
x3,1 = (12.5, 10.1, 12.0, 8.7, 8.4, 12.1, 1.3, 7.7)�, and
x3,2 = (11.3, 10.7, 7.7, 13.1, 7.1, 4.4, 2.0, 2.4, 5.4, 8.3, 10.3, 6.7)�. To decide which two
features should be selected initially among three (d = 3), our algorithm calculates the
dissimilarity among classes through scaled features xs

p = (xs
p,1, x

s
p,2)

� for p = 1, 2, 3.
This leads to m(xs

2,1, x
s
2,2) = 0.862 and m(xs

3,1, x
s
3,2) = 0.626. Since x2 and x3 provide the

highest dissimilarity across classes, they are selected as the initial two features.

Vine copulas are then fitted to get f̂ j for each class from which predicted class labels via
Eq. 8 can be obtained, starting with the two selected features. Then, additional features are
added one at a time until a stopping criterion holds.

Let the class label based on Eq. 8 be γ
(t)
i for the i th observation in iteration t , which is

compared with the true labels {γi } for all observations. We can identify the misclassified
observations in class j and let xs Mis,(t)

p, j be the set of misclassified (scaled) values for the pth
feature.

A pth feature with the large dissimilarity of xs Mis,(t)
p, j and xs

p, j ′ for j 	= j ′, based onm(·, ·)
in Eq. 12, is considered as an addition.

The p(t)th feature which maximizes such sum of dissimilarity over relevant pairs of
classes is selected for the next vine copula models with the selected feature set F (t). Hence,
our wrapper algorithm aims to choose a feature through which our classifier may assign the
misclassified observations of the previous iteration to their true class while preserving its
current classification power.

Information or cross-validation-based criteria involving performance measures can be
used to decide if a wrapper method-based classifier stops adding features.

Example 3.3 Continuing from Example 3.2, after fitting vine copula models using the second
and third features, assume that four observations of class 1 are assigned to class 2, whereas
others are assigned to their true class; suppose these have values 4.7, 6.2, 9.0, and 13.7
for the first feature. Their corresponding scaled values are denoted by xs Mis,(1)

1,1 . To decide
if we select the first feature or others or stop, we measure the dissimilarity between the
misclassified observations of class 1 and the observations of class 2 across the first feature, i.e.,
m(xs Mis,(1)

1,1 , xs
1,2). If we had the fourth feature that could be a candidate for the selection, we

would measure m(xs Mis,(1)
4,1 , xs

4,2), where xs Mis,(1)
4,1 corresponds to the scaled fourth feature

values of the misclassified observations of class 1. Then, if it holds m(xs Mis,(1)
1,1 , xs

1,2) >

m(xs Mis,(1)
4,1 , xs

4,2), the first feature would be selected and vice versa.
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Algorithm 1 A wrapper feature selection method for vine-based classifiers.

Input: Training set xp = (xp,1, . . . , xp,k )� and the corresponding scaled data with the zero mean and

unit variance xs
p = (xs

p,1, . . . , x
s
p,k )� for p = 1, . . . , d, the total number of classes k, true class labels of

observations γi for i = 1, . . . , n, a dissimilarity measure between two (univariate) distributions m(., .)

Output: A vine copula-based classifier with selected features
Obtain the copula data
up, j = F̂p, j (xp, j ) or up, j = F̂p, j (x

−
p, j ) for p = 1, . . . , d and j = 1, . . . , k

Dissimilarity function for feature selection
vineclassWrap(a, b, classLabelset1, classLabelset2){

M ← 0
for j ∈ classLabelset1 do

for j2 ∈ classLabelset2 \ j do
M ← M + m(a[class == j], b[class == j2])

end for
end for
return M }

Initialize selection of two features
p1 = argmaxp=1,...,dvineclassWrap(xs

p, xs
p, {1, . . . , k}, {1, . . . , k})

p2 = argmaxp={1,...,d}\p1vineclassWrap(xs
p, xs

p, {1, . . . , k}, {1, . . . , k})
Set F (0) ← {p1, p2} and t ← 0
Fit vine copula models & selection of other features
while a stopping criterion is not satisfied do

Fit a vine copula model V(t)
j to the data uF (t), j = {up, j : p ∈ F (t)} and get estimated density f̂ j for

j = 1, . . . , k.

Estimate the class labels γ
(t)
i via Eq. 8 for the i th observation, i = 1, . . . , n.

Identify misclassified observations in each class j , i.e., γ
(t)
i 	= γi and γi = j for i = 1, . . . , n,

and denote the scaled values for each feature p by xs Mis,(t)
p, j for j = 1, . . . , k. Define xs Mis,(t)

p =
(xs Mis,(t)

p,1 , . . . , xs Mis,(t)
p,k )�.

Identify class labels with the misclassified observations J (t) = { j : cardinality(xs Mis,(t)
p, j ) > 0, ∀p}.

Update t ← t + 1, p(t) = argmaxp={1,...,d}\F (t−1) vineclassWrap(xs Mis,(t)
p , xs

p, J (t), {1, . . . , k}).
Check if a stopping criterion is satisfied. If not, update F (t) ← F (t−1) ∪ p(t)

end while

3.3 Categorical Prediction Intervals

Suppose there are k classes and the prediction probability vector of a classification method
with d features for an out-of-sample casewith feature vector x∗ is π̂ = π̂(x∗) = (π̂1, . . . , π̂k)

for the k classes based on Eq. 7. The point prediction of the class is based on the modal
probability γ = γ (x∗) = argmax j π̂ j , as in Eq. 8. This summarization can lose information
when comparing different methods because it does not take into account whether the modal
probability is near 1 (easy discrimination) or near 1/k (difficult discrimination).

Prediction intervals, however, can be used to quantify the uncertainty in the classification.
Any method that outputs prediction probabilities for different classes can be used to get
modal predictions and prediction intervals. This also covers most machine learning methods,
such as random forests. A longer categorical prediction interval indicates more difficulty for
discrimination, implying more uncertainty.

Let ( j1, . . . , jk) be a permutation of (1, . . . , k) so that π̂ j1(x
∗) ≥ π̂ j2(x

∗) ≥ · · · ≥
π̂ jk (x

∗). For k−1 < 1−α < 1 and level 1−α, a 100(1−α)% categorical prediction interval
with q classes derived from π̂(x∗) is the smallest ordered set Jq = ( j1, . . . , jq) of classes
for which

∑q
r=1 π̂ jr (x

∗) ≥ 1 − α.
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Let π̂γ be the modal probability. Consider 50% and 80% prediction intervals:

• If π̂γ ≥ 0.80, then the 80% and 50% prediction intervals are both (γ ).
• If 0.50 ≤ π̂γ < 0.80, then the 50% prediction interval is (γ ) and the 80% interval is

(γ, j2, . . .), where additional classes are added based on the next fewest largest prediction
probabilities in π̂ to exceed 0.80.

• If π̂γ < 0.50, then the 50% interval is (γ, j2, . . .), where additional classes are added
based on the next fewest largest prediction probabilities in π̂ to exceed 0.50.

If the 50% interval has more than one class, it indicates that x∗ is in the part of the feature
space where more than one class have comparable density values. If the 80% interval has
just one class, it indicates that x∗ is in part of the feature space where one class has a much
larger density than other classes.

3.4 PerformanceMeasures

In this section, we summarize some performance measures used to compare different classi-
fication methods or the same method with different subsets of features.

One summary of the classification performance for two classes is through a receiver
operating characteristic (ROC) curve. The curve illustrates the true positive rate on the y-
axis versus the false positive rate on the x-axis at different thresholds by a classification
method. For instance, a random guess corresponds to a point on the diagonal line, whereas
the perfect classification is represented by a horizontal line at y = 1. The area under the ROC
curve, called AUC, is one numeric summary of the classification method’s performance. The
multiclass AUC, called (m)AUC, is the average of the associated pairwise AUCs of the k
classes (Hand & Till, 2001). The hardest pair to discriminate can be identified by the index
of the minimum of such AUCs. Nevertheless, the AUC does not reflect the uncertainty in the
classification in contrast to categorical prediction intervals defined in Sect. 3.3; see Sect. 4.3.1
for examples.

Hence, we introduce misclassification rates and average lengths of categorical predic-
tion intervals. While the latter represents the uncertainty and difficulty of the discrimination,
the former reflects the misclassification rates at different coverage levels. Let n j,test be
the number of cases in the test set with true class ji and 100(1 − α)% categorical pre-
diction interval J1−α,i for the i th case. Let ntest = ∑k

j=1 n j,test . For class j at level
1− α, the misclassification rate is [∑i : ji = j I ( j /∈ J1−α,i )]/n j,test , and the average length is
[∑i : ji = j cardinality(J1−α,i )]/n j,test . Further, themaximummisclassification rate with
the corresponding class highlights which class is hardest to discriminate at different levels.

Another performance measure is the out-of-sample negative log-likelihood score (Czado
et al., 2009) given by −n−1

test
∑

i∈test set log π̂ ji (x
∗
i ) when there are ntest cases in the test set,

and the i th case has feature vector x∗
i and is in class ji .

Note that there is also some loss of information from numerical summaries compared with
tables of categorical prediction intervals.

4 Application: Spotify Song Genres

In this section, we apply our vine copula-based classifier and feature selection approaches to
a real data set and compare their classification performance with competing methods.

The link https://www.kaggle.com/datasets/vicsuperman/prediction-of-music-genre (vis-
ited on August 2022) has a data set that contains information about some songs on Spotify.
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The original data set has 50,005 songs (observations), ten genres (classes), and 18 fea-
tures (variables). The continuous feature, tempo, has around 10% missing observations, and
another one, duration, does not change among songs, so we do not consider them in our
analyses. After further data cleaning of missing observations and obvious errors, such as
the negative popularity, there are 49,306 observations, eight remaining continuous features,
and ten classes. The continuous features are acousticness, dance, energy, liveness, loudness,
popularity, speechiness, and valence, while instrumentalness is transformed to be a discrete
quantitative variable, and mode is a binary variable. Categorical features, like key and non-
quantitative features, artist name, song title, song identification number, and data extraction
date, are also not used in our analyses. Our interest is to see how well the genres can be
classified based on quantitative features.

The ten classes are Alternative, Anime, Blues, Classical, Country, Electronic, Hip-Hop,
Jazz, Rap, and Rock. More information describing the data set is in Appendix A.

For the detailed analyses, we take 50 random samples with 500 × k observations, where
k denotes the number of genres in an analysis, over all continuous features to compare
discriminant analysismethodswith different number of genres regarding log-likelihood score,
misclassification rate, and feature selection. Since the number of observations is similar across
classes, our samples can be considered balanced. We work with continuous features for a
simpler introduction to vine copula-based classifiers, but the vine method also works for
a combination of continuous and discrete variables. While comparing our methods with
random forests, we add the binary categorical variable, mode, and instrumentalness as a
binned variable in our analyses.

We separate our data into learning, validation, and test setswith corresponding percentages
of 60, 20, and 20. We call the combination of learning and validation sets training sets and
use 80% of the data for training and 20% for testing.

We run all computations on 20 nodes CPU with Intel Xeon Platinum 8380H Processor
with around 8 GB RAM, running R version 4.2.2. A parallelization is applied to estimate
classes’ density by a discriminant method and select variables for random forests.

We remark that the posterior probabilities in test sets werewell defined by the vinemethod,
including the kernel density estimation; thus, the zero density when calculating Eq. 7 was
avoided. Otherwise, the bandwidth parameters of the kernel density estimation should be
adjusted as proposed by Nagler and Czado (2016).

Next, Sects. 4.1 and 4.2 summarize exploratory data analysis and vine copula-based clas-
sifier steps, respectively. For one random sample with a subset of genres, Sect. 4.3 has some
comparisons of the vine copula-based classifiers with other discriminant methods and shows
applications and interpretations of categorical prediction intervals. Section 4.4 compares vine
copula-based classifiers with feature selection to random forests (a non-discriminant analysis
method).

4.1 Exploratory Data Analysis

The number of observations ranges from 4459 in Classical to 5000 in Hip-Hop and Rap (see
Table 7 in Appendix A). The estimated strength of the pairwise dependence measured by
Kendall’s tau among continuous features varies by a pair of features and genre, as shown in
Table 8 in Appendix A.

Figure 2 in Appendix A shows that the features acousticness, liveness, loudness, and
speechiness are skewed for Rock, and a similar result applies to other classes. Since the
univariate density estimation can be affected by skewness, we transform them using the logit
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transform for acousticness, liveness, and speechiness and a cube root transform for loudness
after converting to all negative combined over all classes. We scale the popularity into [0,1]
by dividing the values by 100. The resulting transformed features are referred to as tacoustic,
tlive, tloud, tspeech, and tpopular (see Fig. 3 in Appendix A).

The binary variable, mode, can help discriminate Country songs from others as seen in
Table 9 in Appendix A. Moreover, even though instrumentalness can take values between
zero and one, it is zero for 30% of the songs, and some genres, such as Hip-Hop and Rap,
have a smaller proportion of zeros. Therefore, we bin as [0, 0.00001], (0.00001, 0.20], (0.20,
1], calling the associated discrete variable with three levels as tinstrumental. Table 9 in
Appendix A shows that Anime, Blues, Classical, Electronic, and Jazz are different from
other genres regarding the distribution of tinstrumental.

Some pairs of classes might be hard to discriminate, making the classification problem
hard. For its initial overview, we propose a procedure described in Appendix A. Accordingly,
the overlap measure matrix in Table 10 in Appendix A shows that Rap and Hip-Hop are hard
to discriminate, whereas Rap and Anime might be well separated. Additionally, Alternative
has the highest overlap measure summed over other classes, showing that discriminating it
from others is harder. The reverse applies to Classical.

4.2 Step-By-Step: Vine Copula-Based Classifiers

Selection and Estimation of Vine Copula Models

Weestimate the univariate densities of continuous featureswith kernel density estimates using
the R package kde1d (Nagler & Vatter, 2022a) for ease of coding with 80 (8 features×10
genres) univariate distributions. Moreover, we empirically estimate the cumulative distribu-
tion functions of discrete variables and retain their left-sided and right-sided limits. Then, we
obtain the corresponding copula data using the associated cumulative distribution functions.

We fit vine copula models to the copula data, following the approach (Dißmann et al.,
2013) proposed for selecting and estimating vine copula models, as implemented in the R
package rvinecopulib (Nagler &Vatter, 2022b).We use parametric pair-copula families
available in the package.

Feature Selection

We apply (conditional) mutual information defined in Eqs. 9 and 10 to filter features. For
continuous variables X and Z, we compared two implementations. First, we discretize the
variables into ordinal variables, where each category out of four has equal frequency for
Eqs. 9 and 10, and allow the random vector Z to have one, two or three variables. Second, we
have density estimation methods for Eqs. 9 and 10 using 1-dimensional and 2-dimensional
numerical integration, respectively, with Z being a scalar in Eqs. 10. The latter is a check
on the effect of discretization of continuous variables. The discretization approach, which
is numerically simpler, leads to smaller (conditional) mutual information values, but the
rankings of the next feature to add are the same in the two approaches. Thus, we continue
with only the discretization for the filtering approach. We mainly use the filtering approach
to choose three or four features because higher-dimensional tables become sparser.

We stop selecting further features with our wrapper algorithm if the selected feature in a
given iteration does not improve the (m)AUC in the validation set. However, the improvement
value in the (m)AUC can be taken as a tuning parameter. Alternative stopping criteria can be
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based on other performance measures in Sect. 3.4. Even though we use a single performance
measure for the criterion for feature selection, we make comparisons of different subsets of
features using more than one performance measure.

4.3 Comparison of Discriminant Analysis Methods

In this section, we compare four discriminant analysis methods for f̂ j in Eqs. 7 using equal
class probabilities π j :

1. NB-gauss: naive Bayes with the misspecified assumption of stochastically independent
features, with univariate Gaussian densities for each feature in each class as implemented
in the R package naivebayes (Majka, 2019).

2. NB-kde: naive Bayes with the misspecified assumption of stochastically independent
features, with univariate densities for each feature estimated via kernel density estimation
as implemented in the R package kde1d.

3. QDA: quadratic discriminant analysis, with the misspecified assumption of multivariate
normal density for each class as implemented in the R package mclust (Scrucca et al.,
2016).

4. Vine: vine copula distributions, most flexible in handling non-Gaussian dependence.

4.3.1 Summaries for Categorical Prediction Intervals

For illustrations of categorical prediction intervals and comparisons of four discriminant
analysis methods, the song genre data set allows us to take different subsets of genres and
features. We have mainly considered detailed examples with four genres because summary
tables of categorical prediction intervals take much more space with five or more genres.

If the chosen genres and features are quite different in side-by-side boxplots of features by
genres, all four methods perform well, and there is not much to distinguish the methods; an
example are with genres of Anime, Classical, Electronic, and Rap using features of tpopular,
acousticness, and dance. If the selected features are weak in dependence, vine-based classi-
fiers and naive Bayes with density estimation perform similarly, and the other two methods
might be a little worse. If the dependence of the features seen in plots is quite different from
multivariate Gaussian, then QDA performs worse than vine-based classification, as shown
in Fig. 1 in Sect. 4.3.2 and Fig. 4 in the Appendix B.

The performance of the methods can be more greatly differentiated if the Spearman or
Kendall correlation matrices have more variability over the selected features. With this latter
criterion, we choose a random sample of 2000 observations among the four classes of Anime,
Classical, Electronic, and Jazz using features of dance, energy, speechiness, and valence. The
number of cases is 1600 for the training set and 400 for the test set. Details below show that
the vine method is the best in this case.

Summary Tables for Anime, Classical, Electronic, and Jazz

Tables 1 and 2 summarize 50% and 80% categorical prediction intervals for the methods
of vine and naive Bayes with density estimation in the classification of Anime, Classical,
Electronic, and Jazz using features of dance, energy, tspeech, and valence. Tables for the other
twomethods are not included to save space. However, Table 3 compares the four discriminant
analysis methods from the summary tables of prediction intervals. The tables for prediction
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Table 1 50% prediction intervals (vine and naive Bayes with kernel density) for a test set of 400 and a training
set of 1600 from a random subset with four genres A=Anime, C=Classical, E=Electronic, and J=Jazz, and
using the features of dance, energy, speechiness, and valence

Vine: 50% prediction intervals

Labels A AC AE AJ C CA CJ E EA EJ J JA JC JE Total

A 42 2 4 3 17 1 0 4 1 0 7 3 0 1 85

C 9 0 0 2 82 1 3 1 0 0 6 2 0 0 106

E 7 1 5 5 1 1 0 75 5 2 11 2 0 3 118

J 8 1 2 2 10 1 1 9 0 2 4 6 4 2 3 91

Total 66 4 11 12 110 4 4 89 6 4 70 11 2 7 400

Naive Bayes with density estimation: 50% prediction intervals

Labels A AC AE AJ C CA CJ E EA EJ J JA JC JE Total

A 26 1 5 1 21 0 0 11 1 2 7 6 1 3 85

C 8 0 0 2 80 1 2 0 0 0 6 6 1 0 106

E 7 0 8 3 2 0 0 63 6 5 16 5 0 3 118

J 8 0 1 2 13 1 2 13 2 2 39 3 1 4 91

Total 49 1 14 8 116 2 4 87 9 9 68 20 3 10 400

An interval AC means that Anime has a modal probability less than 0.50, and the second largest posterior
probability is for Classical, and the total of these posterior probabilities exceeds 0.50

Table 2 80% prediction intervals (vine and naive Bayes with kernel density) for the same set-up as in Table 1

Vine: 80% prediction intervals

Labels A AC ACE ACJ AE AEC AEJ AJ AJE C CA CAE CAJ CJ CJA

A 10 1 2 1 25 2 3 5 2 9 6 0 2 1 0

C 4 1 0 0 2 0 0 1 3 65 5 0 3 11 2

E 0 0 1 0 8 0 3 4 2 0 1 1 0 0 0

J 2 0 0 1 6 0 1 3 0 4 2 0 1 4 1

Total 16 2 3 2 41 2 7 13 7 78 14 1 6 16 3

Labels E EA EAJ ECJ EJ EJA J JA JAC JAE JC JCA JE JEA Total

A 2 2 1 0 0 0 0 9 0 1 0 0 0 1 85

C 0 0 0 1 0 0 1 4 1 1 0 0 1 0 106

E 39 22 1 0 18 2 0 3 0 1 0 0 11 1 118

J 4 3 0 0 3 1 9 15 1 1 2 2 23 2 91

Total 45 27 2 1 21 3 10 31 2 4 2 2 35 4 400

Naive Bayes with density estimation: 80% prediction intervals

Labels A ACE AE AEC AEJ AJ AJC AJE C CA CAJ CJ CJA

A 0 1 29 0 1 1 0 1 18 3 0 0 0

C 1 0 5 1 0 0 2 1 69 5 1 5 3

E 0 0 9 1 5 0 1 2 1 1 0 0 0

J 0 0 8 0 0 3 0 0 7 4 2 0 3

Total 1 1 51 2 6 4 3 4 95 13 3 5 6
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Table 2 continued

Labels E EA EAJ EJ EJA J JA JAC JAE JCA JE JEA Total

A 1 10 0 2 1 0 6 1 6 1 1 2 85

C 0 0 0 0 0 0 6 1 4 1 1 0 106

E 17 25 3 25 4 0 4 0 5 0 14 1 118

J 1 2 1 11 2 3 12 1 1 1 26 3 91

Total 19 37 4 38 7 3 28 3 16 3 42 6 400

An interval ACJ means that Anime has a modal probability of less than 0.80, and the second and third largest
posterior probability is for Classical and Jazz respectively and the sum of these three probabilities is needed
to exceed 0.80

intervals can provide information about the ease or difficulty of class discrimination, as
well as performance by class, and they also provide the uncertainty in discrimination by
methods. This type of information is lost in overall performance measures, such as overall
misclassification rate and average AUC. In other words, prediction intervals highlight which
classes have densities that overlap more. Also, a summary of pairwise AUC and multiAUC
is in Table 4 for comparison.

Comparison of Methods Regarding Categorical Prediction Intervals

The summaries in Tables 1 to 3 show, for the case of these four genres and four features,
that vine-based classifier is the best method, followed by QDA, while the two naive Bayes
methods perform much worse. Likewise, in other cases, such as with genres of Anime, Hip-
Hop, Rap, Rock, and features with moderate non-Gaussian dependence, the vine method
is overall the best, and QDA is worse than that based on misclassification rates. The pair
(Hip-Hop, Rap) turns out to be the pair of genres that is most difficult to distinguish. When
this pair is included in a subset of four genres, it can lead to some cases of 80% intervals
that have all four genres (that is, all class prediction probabilities near 0.25). More details of
such comparison are given in Sect. 4.3.2. Nonetheless, for the genres of Anime, Classical,
Electronic, and Jazz with the selected features, the 80% categorical prediction intervals have
at most three genres.

It is rare for one method to dominate another for performance measures in all classes. In
Tables 1 to 3, the vine method has a shorter average prediction interval length and smaller

Table 3 Summary statistics based on tables like in Tables 1 and 2 for all four methods

50% Misclass 50% Avglen 80% Misclass 80% Avglen
vine nbke nbga QDA vine nbke nbga QDA vine nbke nbga QDA vine nbke nbga QDA

A 0.341 0.529 0.553 0.271 1.18 1.24 1.37 1.22 0.141 0.259 0.282 0.176 1.93 1.94 1.98 1.79

C 0.189 0.208 0.179 0.226 1.08 1.11 1.06 1.13 0.160 0.170 0.160 0.160 1.44 1.47 1.31 1.43

E 0.237 0.280 0.237 0.280 1.20 1.25 1.30 1.13 0.068 0.059 0.076 0.102 1.77 2.03 2.03 1.71

J 0.341 0.418 0.495 0.352 1.20 1.20 1.22 1.19 0.231 0.242 0.264 0.209 1.91 2.03 2.04 1.88

avg 0.277 0.359 0.366 0.282 1.16 1.20 1.23 1.17 0.150 0.182 0.196 0.162 1.76 1.87 1.84 1.70

The abbreviations are Misclass = misclassification rates for 50% and 80% intervals and Avglen = average
length of 50% and 80% intervals. Smaller misclassification rates are better. The last row has averages over the
first four rows. Abbreviations for the methods are: nbke for NB-kde; nbga for NB-gauss
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Table 4 Pairwise and multi AUC,
(m)AUC, for a random subset
with 1600 in training set and 400
in a test set with four genres:
A=Anime, C=Classical,
E=Electronic, and J=Jazz

Method Pairwise AUC mAUC
AC AE AJ CE CJ EJ multi

vine 0.862 0.856 0.811 0.984 0.892 0.817 0.873

nbke 0.833 0.746 0.745 0.981 0.893 0.754 0.828

nbga 0.806 0.689 0.684 0.967 0.881 0.735 0.797

QDA 0.835 0.838 0.812 0.973 0.885 0.819 0.862

misclassification rates compared with naive Bayes methods for at least three of the four
genres. For vine versus QDA, there is some trade-off that one method is better than the other,
depending on the genre. For performance measures of average misclassification rates and
prediction interval lengths, the vine-based classifier performs better than QDA, except for an
average length of 80% prediction intervals. Table 4 has condensed information from pairwise
AUC values. It suggests that the vine-based classifier is the best regarding the (m)AUC and
discriminates pairs of genres better than the other methods with pairwise AUCs, except for
the pairs (Classical, Jazz), (Electronic, Jazz), and (Anime, Jazz), where the difference of
pairwise AUC values for the vine and the best methods are very small.

The summaries in the tables show that there are cases where Anime, Electronic, and Jazz
are difficult to distinguish. For example, in the 80% intervals, the set {A, E, J} as a triplet
in one of the six orders occurs in a fraction of 27/400 = 0.0675 in the test set with the
vine method, and there is a fraction of 168/400 = 0.420 with a subset of two of these three
genres. Hence, Classical is easier to distinguish among the four genres.

On inspection, all methods can predict over 80% on an incorrect class, indicating that
some parts of the feature space are difficult for classification. The vine method and QDA are
best based on tendency or shorter intervals with fewer misclassifications.

Further analyses with other subsets of genres and features show that including more
features in discriminant analysis is sometimes better for all performance measures. This
motivates our algorithms in Sect. 3.2; see Sects. 4.3.2 and 4.4 for more illustrations of feature
selection. Also note that the NB-kde, NB-gauss, and QDA performance would be worse if
transforms were not made for the features with skewed and bounded distributions.

4.3.2 Comparison of Methods Regarding Log-Likelihood Score, Misclassification Rate,
and Feature Selection

Four Genres’ Discrimination

In classifying Anime, Hip-Hop, Rap, and Rock, which include non-Gaussian dependence
among some pairs of features and pairs of classes being easy, moderate, and hard to discrim-
inate as given in Table 10 in Appendix A, Fig. 1 illustrates that the vine method with the four
filtered features estimates higher posterior probabilities in the correct classes than the others
as reflected in its lower negative log-likelihood scores. The reverse applies to QDA using all
features. Moreover, applying feature selection, on average, results in more certainty toward
the true class assignment of the observations, i.e., higher estimated posterior probabilities, for
all methods. The average negative log-likelihood score is 267.61, with a standard deviation
of 20.38, using the vine method and all features.

The vine method with feature selection provides lower misclassification rates for the 50%
prediction interval than using all features, at least in 75% of the replicates. Even though
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Fig. 1 Comparison of the classification performancemeasures of themethods on test sets in classifyingAnime,
Hip-Hop, Rap, and Rock with the vine method using all continuous features out of 50 replicates. The value per
replicate in the y-axis is calculated by the difference of the given method&feature selection from that of the
vine method using all features. vinefilter(tVars=3/tVars=4): vine method using filtered three/four features,
vinewrap(tune=0.000/tune=0.025): vine method using wrapper feature selection with 0.000/0.025 tun-
ing parameter (improvement inmAUC), NB_kdefilter(tVars=4)/NB_gaussfilter(tVars=4)/QDAfilter(tVars=4):
naive Bayes with univariate Gaussian densities/kernel density estimates/quadratic discriminant analysis using
filtered four features,NB_kdeall/NB_gaussall/QDAall = naiveBayeswith univariateGaussian densities/kernel
density estimates/quadratic discriminant analysis using all features. Smaller values of the negative log-
likelihood score and misclassification rate are better
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our wrapper algorithm with the non-zero tuning parameter, which checks the improvement
in mAUC in a validation set to stop adding features, usually has the worst log-likelihood
among the vine methods, it has better misclassification rates for the 50% prediction interval.
Accordingly, the average length for the 50% prediction interval is, on average, the highest
for our wrapper algorithm with the non-zero tuning parameter.

It shows that its estimated posterior probabilities for the true classes are lower than the
other methods, but it better identifies the feature space where the classes have similar density
values. Using all features with the vine method leads to the average misclassification rate
(for the 50% prediction interval) of 0.28 with a standard deviation of 0.02.

NB-kde has similar log-likelihood scores and misclassification rates for the 50% predic-
tion interval as NB-gauss using all features. However, the feature selection provides better
measures for NB-kde than NB-gauss. Also, modeling a Gaussian dependence for a set of fea-
tures, i.e., QDA, provides worse results than assuming independence, i.e., NB-gauss. Since
pairwise plots of features suggest that the Gaussian dependence assumption does not hold,
mostly with Anime or Hip-Hop, such a result might be expected.

As another classification performance measure, the maximum misclassification rate for
the 50% prediction interval is the lowest for our wrapper algorithm with the non-zero tun-
ing parameter, discriminating the classes better. Out of 50 replicates, the wrapper finds the
class with the maximum misclassification rate as Hip-Hop and Rap in 27 and 23 replicates,
respectively. However, it has a mean of 0.48 and a standard deviation of 0.06, showing that
a random guess may be better sometimes for the hardest class discrimination. Still, it is the
best method regarding this measure, among others considered.

Table 11 inAppendix B lists the selected feature indices by our filtering andwrappermeth-
ods. The first two selected features, which provide, on average, more univariate dissimilarity
across classes, are tpopular and tspeech in all replicates. Figure 3 in Appendix A supports that
Anime songs are less popular than Rock and Rap songs. Moreover, Hip-Hop and Rap songs
contain fewer words than Rock songs. Hence, Anime and Rock are marginally well separa-
ble from the others and each other through the initial two features. Hip-Hop and Rap are the
hardest to discriminate from each other, but the two features provide more dissimilarity than
others.

Then, our methods always choose the feature dance, which has the highest conditional
mutual information with the class label given tpopular and tspeech. In addition, the misclas-
sified observations by the vine method using tpopular and tspeech are classified better by
adding the third feature, dance, into the method than by adding the others. Next, the most
selected fourth features by the filtering and wrapper methods are valence (32 replicates) and
energy (23 replicates), respectively.

Ten Genres’ Discrimination

Figure 4 in Appendix B shows that vine copula-based classifiers using all features or selected
features by the wrapper method of the zero tuning parameter, which selects features until
mAUC does not improve in a validation set, discriminate ten genres better than the others
regarding the negative log-likelihood score. Similar results about themisclassification rates of
the 50% prediction intervals hold for the ten genres’ discrimination, except that vine methods
using all features have smaller rates than the Naive Bayes methods using all features. Thus,
as the number of genres to classify increases, the vine methods’ advantage over Naive Bayes
increases.
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4.4 Comparison of a Non-Discriminant Method: Random Forests

Fernández-Delgado et al. (2014) conclude that random forest-based approaches outperform
hundreds of classifiers regarding classification accuracy, including neural networks, and
Speiser et al. (2019) point out that the feature selection method proposed by Genuer et
al. (2010) for random forests, called VSURF, usually performs better than other methods.
Thus, we compare our vine copula-based classifier with random forests implemented in the
R packages randomForest (Liaw &Wiener, 2002) and VSURF (Genuer et al., 2019). We
work with the packages’ default specifications.

For ten genres and eight continuous features, a vine-based classifier and random forest
(using all features) discriminate Classical better than the other genres as shown in Table 5,
consistentwith our explanatory data analysis. Themethods’misclassification rate for the 50%
prediction interval for Classical and Rock is, on average, less than 17% and 24% percent,
respectively. However, the associated average length for Classical is less than 1.26 for both
methods, that for Rock is 2.19 for vines and 2.64 for random forest. Thus, the methods
are more uncertain in the discrimination of Rock than that of Classical. In over half of the
replicates, the random forest assigns the Rock’s observations into three genres in the 50%
prediction intervals. We remark that there is a trade-off of shorter prediction intervals and
slightly higher misclassification rates in the methods’ comparison.

Using eight continuous features, the average (m)AUC performances of random forests
and vine copula-based classifiers are similar in the discrimination of four and ten genres in
Table 6. Nevertheless, the vine method using the wrapper with a tuning parameter of zero
is the best performer regarding the (m)AUC in both analyses. That method adds features
in vine models until no further improvement in mAUC in a validation set is present. The
same result applies while considering the minimum pairwise AUC. Further, all vine methods
have a better minimum pairwise AUC than random forests. Thus, it shows that the vine
methods discriminate the two classes {Hip-Hop, Rap} having similar density values better
than random forests. Further, the feature of tlive was selected neither by our wrapper with
zero tuning parameter nor by the random forest-specific variable selection, VSURF, in our
replicates for the discrimination of ten genres. Thus, the tlive feature need not be recorded

Table 5 Average summary statistics using the eight continuous features in ten genres’ discrimination out of
50 replicates

Genre 50% Misclass 50% Avglen
vine RandomForest vine RandomForest

Alternative 0.33 (0.04) 0.25 (0.05) 1.75 (0.08) 2.31 (0.08)

Anime 0.29 (0.04) 0.22 (0.05) 1.15 (0.03) 1.38 (0.07)

Blues 0.47 (0.05) 0.34 (0.04) 1.43 (0.06) 1.86 (0.05)

Classical 0.16 (0.04) 0.13 (0.04) 1.09 (0.03) 1.25 (0.05)

Country 0.40 (0.06) 0.35 (0.06) 1.66 (0.07) 2.15 (0.07)

Electronic 0.40 (0.05) 0.32 (0.05) 1.40 (0.05) 1.87 (0.08)

Hip-Hop 0.40 (0.05) 0.27 (0.06) 1.43 (0.06) 1.83 (0.07)

Jazz 0.47 (0.05) 0.36 (0.05) 1.52 (0.05) 2.00 (0.06)

Rap 0.51 (0.05) 0.34 (0.07) 1.52 (0.07) 1.89 (0.08)

Rock 0.23 (0.04) 0.16 (0.04) 2.19 (0.07) 2.64 (0.08)

The numbers in parentheses are the corresponding empirical standard errors. The abbreviations are Misclass =
misclassification rates and Avglen = average length of 50% intervals. Smaller misclassification rates are better
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for song genre discrimination, and music experts should consider replacing it with another
feature that can better discriminate between Hip-Hop and Rap.

VSURF has the best negative log-likelihood score in the discrimination of ten genres
using eight continuous features. Thus, the VSURF discriminates the observations in their
true classes with higher probabilities than the other methods. The same result holds for
the vine method using the wrapper with a tuning parameter of zero among the vine-based
classifiers for ten genre discrimination. However, the vine method with filtering four features
is the best performer of the negative log-likelihood score in classifying four genres using
eight continuous features. Moreover, VSURF performs better than filtering features with
(conditional) mutual information for random forests in all cases regarding the three measures
analyzed in Table 6.

The estimated dependence strength among pairs of features is mostly low in classes in
Table 8 in Appendix A. However, as the strength increases, vine copula-based classifiers are
more likely to outperform random forests similar to the prediction tasks, as shown in Sahin
and Czado (2024), where the main interest is to predict a continuous response using vine
copulas and selecting the relevant features. Thus, to analyze the impact of dependent features
on random forests and the vine method, we run them using the three dependent features,
tacoustic, energy, and tloud, in the discrimination of four genres. Then, the vine method, on
average, discriminates classes better than random forests regarding the (m)AUC, minimum
pairwise AUC, and negative log-likelihood scores as seen in Table 6. Even though three
weakly dependent features, dance, tspeech, and valence, are considered in the discrimination,
a vine-based classifier is better than a random forest. A reason might be that random forests
need more features to discriminate the classes better.

While our wrapper with the zero tuning parameter selects 4.46 features, on average, in the
discrimination of four classes, the number increases to 6.72 in the discrimination of ten classes
out of eight features. Likewise, VSURF selects more features to discriminate ten classes than
four classes. Hence, models in our data example need more features to discriminate more
classes. Still, eliminating features improves the discrimination accuracy compared to using
all features, as reflected in the negative log-likelihood score and minimum pairwise AUC by
our wrapper algorithm with the zero tuning parameter.

On average, the computation time of vine and random forests is 4.19 and 1.90 s, respec-
tively, using eight continuous features to classify ten genres. Moreover, in the same analysis,
while the filtering on the vine takes less than one second, the wrapper runs around 9.52 s.
Since the latter fits the vine models at each step, such computation time can be expected.
For this case, the VSURF gives the highest average computation time of 38.20 s. Like our
wrapper algorithm for vine-based classifiers, tailoring feature selection to a specific method
comes with a trade-off of higher computational cost and better performances.

When considering two discrete variables, tinstrumental and mode, with eight continuous
features, for the ten genres’ discrimination in vine-based classifiers, the multi AUC given in
Table 6 increases by 0.01 through the selected features by our wrapper but not through filter-
ing and using all features. The former is because (conditional) mutual information does not
identify tinstrumental and mode within the most important four features in most replicates.
While the average number of selected variables by our wrapper slightly increases with the
inclusion of tinstrumental and mode, the wrapper method does not select mode at all and
replaces tacoustic with tinstrumental in most replicates. Since tacoustic differs for Classical,
Jazz, and Electronic but tinstrumental is different for five genres as shown in Appendix A,
such a result can be expected. Further, our wrapper methods slightly improve the negative
log-likelihood scores by adding tinstrumental. But, compared to using only eight continuous
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features, modeling ten features together decreases the vine method’s performance regarding
the (m)AUC and negative log-likelihood score, on average. This shows the importance of
selecting features for vine-based classifiers. Moreover, Appendix A shows that tinstrumen-
tal and mode have a similar distribution for Hip-Hop and Rap. Thus, adding tinstrumental
and/or mode into vine-based classifiers does not impact their minimum pairwise AUC.More-
over, the misclassification rates still vary across genres, highlighting the distinct impact of
tinstrumental on Blues, Jazz, and Electronic and that of mode on Country.

Discriminant analysis via the vine copula-based classifier is more interpretable than ran-
dom forests. The vine copula-based classifier can lead to smooth functions of {π̂ j (x) : x ∈
feature space, j ∈ {1, . . . , k}}, and one could (maybe through projections) interpret different
parts of the feature space that favors different classes. Random forests have good classifi-
cation performance, but the conditional probability vector (π̂RF ( j |x) : j = 1, . . . , k) is
piecewise constant with a finite number of trees. Thus, if one attempts to study the behavior
as a function of x by choosing out-of-sample vectors in a grid, one can see that the function
can have many up-and-down jumps locally.

5 Conclusion

We propose a vine copula-based classifier, which is a flexible method for estimating a non-
Gaussian multivariate density with a combination of continuous and discrete variables and
selects relevant features for classification tasks with proposed filtering and wrapper methods.
With estimated posterior probabilities, we define categorical prediction intervals for classi-
fication. Then, we extract additional summary statistics, such as the misclassification rate
and the average length of 50% prediction intervals by class. Such statistics provide further
insights into the classification problem, such as the pair of classes that are most difficult to
discriminate.

We show that naive Bayes (NB) and quadratic discriminant analyses (QDA) methods
perform worse when assumptions of independent features and/or Gaussian distributions are
far from holding. Further, unlike the vine method, NB-gauss and QDA cannot work with a
combination of continuous and discrete variables. On the other hand, NB-kde can be extended
to having discrete variables by using estimated probability mass functions (or frequency table
in the training set) to replace kernel density estimation.

In addition, in our Spotify data analysis, vine copula classifiers require additional fea-
tures to discriminate between a larger number of classes effectively. However, eliminating
certain features improves the overall classification performance compared to using all fea-
tures. Moreover, we show that the pair of genres (Hip-Hop, Rap) is the most challenging to
discriminate. Hence, music experts should consider incorporating an alternative feature to
differentiate between Hip-Hop and Rap more effectively. The songs’ popularity score (tpop-
ular) and the number of spoken words (tspeech) are selected as important by vine methods
in discriminating song genres: Anime, Hip-Hop, Rap, and Rock.

Further, in our data example, the vine method and random forests have comparable clas-
sification accuracy, but the discriminant analysis through vines leads to smoother prediction
probabilities over the feature space. Moreover, random forests need more computational
memory than the vine copula-based classifier since each fitted tree needs to be saved for
the forests for out-of-sample use. Moreover, over- and under-sampling can be a problem
for random forests, whereas vine copula-based classifiers can perform well with unbalanced
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data sets if the number of observations per class is adequate for their fits, e.g.,≥ 300, and the
number of features ≥ 2.

Through data analysis, our wrapper algorithm shows how tailoring feature selection to
a specific classifier can improve classification performance despite the increased compu-
tational cost. Therefore, an embedded method for the vines, which integrates feature and
model selection steps, or a hybrid feature selection for the vine copula-based classifiers,
which combines the filtering and wrapper methods, may be proposed and compared with
our methods. Also, different stopping criteria can be investigated from the wrapper method.
Future research can focus on extending our concept of dissimilarity to bivariate distributions
by defining a central 50% region based on multivariate depth measures.

As a limitation of our method, we remark that we have mainly tested our methodology
for monotonically related variables. Further research is on the agenda for data set analyses
with non-monotone relationships between variables.

Appendix A: Data Description

Acousticness is a confidence measure of whether a song is acoustic. The higher the value,
the higher the confidence that the song is acoustic. Dance shows how suitable a song is
for dancing based on a combination of musical elements, including tempo, rhythm stability,
beat strength, and overall regularity. The high dance values indicate a good danceable song.
Energy represents a perceptual measure of intensity and activity, with high values associated
with fast and loud songs. Instrumentalness shows whether a track has vocals, with low
values corresponding to more words. Liveness describes the presence of an audience in the
recording, where high values indicate more audiences. Loudness gives the loudness of a
track in decibels. How many streams within a certain period a song has is reflected in its
popularity. Mode represents the modality of a track, either as major with the value of one
or as minor with the value of zero. Speechiness describes the presence of spoken words
in a song. The values in [0.00, 0.33] likely represent songs with non-speech; [0.33, 0.66]
describes songs that may contain music and speech; [0.66, 1.00] are songs with only spoken
words. Valence is a musical positiveness conveyed by a song. The songs with high valence
sound happier, while songs with low valence sound more negative. More details about the
features are given by Spotify at the link https://developer.spotify.com/documentation/web-
api/reference/get-audio-features (visited on August 2022). The range of continuous features,
except for loudness and popularity, is [0,1], whereas loudness and popularity have values in
[-48,4] and [1, 100], respectively.

Table 7 The number of observations classified by genre in the data set

Genre Number of observations Genre Number of observations

Alternative 4995 Electronic 4973

Anime 4979 Hip-Hop 5000

Blues 4969 Jazz 4973

Classical 4459 Rap 5000

Country 4959 Rock 4999
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Fig. 2 Histogram of acousticness (left), liveness (left), speechiness (left), loudness (left), and transformed
acousticness (right), transformed liveness (right), transformed speechiness (right) using the logit transform
and transformed loudness (right) using the cube root transform in Rock

Table 8 Estimated Kendall’s τ matrix of continuous features for Anime and Hip-Hop

Popularity Acoust Dance Energy Liveness Loudness Speech Valence

Anime

Popularity 1.000 −0.078 0.036 0.110 0.021 0.153 0.029 0.069

Acoust −0.078 1.000 −0.035 −0.558 −0.149 −0.454 −0.237 −0.246

Dance 0.036 −0.035 1.000 0.115 −0.028 0.133 −0.053 0.376

Energy 0.110 −0.558 0.115 1.000 0.197 0.675 0.394 0.342

Liveness 0.021 −0.149 −0.028 0.197 1.000 0.171 0.102 0.090

Loudness 0.153 −0.454 0.133 0.675 0.171 1.000 0.269 0.347

Speech 0.029 −0.237 −0.053 0.394 0.102 0.269 1.000 0.107

Valence 0.069 −0.246 0.376 0.342 0.090 0.347 0.107 1.000

Hip-Hop

Popularity 1.000 0.022 0.037 −0.023 −0.035 0.053 −0.064 0.016

Acoust 0.022 1.000 −0.083 −0.109 −0.007 −0.094 0.069 0.060

Dance 0.037 −0.083 1.000 −0.112 −0.128 −0.003 −0.024 0.103

Energy −0.023 −0.109 −0.112 1.000 0.114 0.474 0.014 0.217

Liveness −0.035 −0.007 −0.128 0.114 1.000 0.045 0.074 0.020

Loudness 0.053 −0.094 −0.003 0.474 0.045 1.000 −0.064 0.117

Speech −0.064 0.069 −0.024 0.014 0.074 −0.064 1.000 0.074

Valence 0.016 0.060 0.103 0.217 0.020 0.117 0.074 1.000
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Fig. 3 Boxplots of transformed continuous features in each class

Table 9 Distribution of the discrete features, mode and tinstrumental, across genres; the genre names in
Table 7 are shortened

Value Alt Ani Blu Cla Cou Ele HHo Jaz Rap Roc

Mode 0 3163 3087 3537 2955 4326 2677 2777 2633 2763 3697

1 1832 1892 1432 1504 633 2296 2223 2340 2237 1302

Tinstrumental 1 2019 1883 1249 210 3273 416 3737 821 3745 2114

2 2506 1410 3007 864 1652 2129 1181 1821 1193 2470

3 470 1686 713 3385 34 2428 82 2331 62 415

A.1 Simple Procedure to Evaluate if a Pair of Classes Is Hard to Discriminate

For a pair of classes A and B, fit a logistic regression with response I (class = B) and
feature vector x for a training set to get logit

(
P̂r(class = B)

) = β̂�
ABx. Consider two sets

of linear predictions {β̂�
ABxi : i ∈ class A} and {β̂�

ABxi : i ∈ class B}. With density
estimate gA, gB for these sets of projections to (−∞,∞), the overlap of these two densities
is

∫ ∞
−∞ min{gA(z), gB(z)}dz. If such predictions are close to each other for two classes,

classification is a hard task or the best separation of the classes in nonlinear.
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Table 10 Overlap measure matrix by genres whose names in Table 7 are shortened

Alt Ani Blu Cla Cou Ele HHo Jaz Rap Roc

Alt 0.000 0.106 0.240 0.092 0.522 0.370 0.308 0.333 0.325 0.426

Ani 0.106 0.000 0.451 0.259 0.159 0.290 0.022 0.242 0.022 0.031

Blu 0.240 0.451 0.000 0.200 0.401 0.360 0.067 0.574 0.062 0.114

Cla 0.092 0.259 0.200 0.000 0.100 0.142 0.018 0.263 0.017 0.045

Cou 0.522 0.159 0.401 0.100 0.000 0.343 0.160 0.477 0.168 0.343

Ele 0.370 0.290 0.360 0.142 0.343 0.000 0.154 0.393 0.133 0.133

HHo 0.308 0.022 0.067 0.018 0.160 0.154 0.000 0.129 0.862 0.195

Jaz 0.333 0.242 0.574 0.263 0.477 0.393 0.129 0.000 0.107 0.155

Rap 0.325 0.022 0.062 0.017 0.168 0.133 0.862 0.107 0.000 0.262

Roc 0.426 0.031 0.114 0.045 0.343 0.133 0.195 0.155 0.262 0.000

Appendix B: Results

Table 11 Selected continuous
feature indices by filtering (top)
and wrapper with the tuning
parameter of zero (bottom) with
the corresponding number of
selections out of 50 replicates in
classifying Anime, Hip-Hop,
Rap, and Rock

Feature indices # sel

1, 7, 3 50

1, 7, 3, 8 32

1, 7, 3, 4 14

1, 7, 3, 2 2

1, 7, 3, 6 2

1, 7, 3 13

1, 7, 3, 4, 8 11

1, 7, 3, 8 8

1, 7, 3, 4 5

1, 7, 3, 8, 4 3

(1, 7, 3, 4, 6, 8), (1, 7, 3, 8, 2, 4, 6), (1, 7, 3, 2, 4) 1

(1, 7, 3, 4, 5), (1, 7, 3, 4, 5, 6), (1, 7, 3, 4, 6, 2) 1

(1, 7, 3, 4, 8, 2, 6, 5), (1, 7, 3, 8, 6, 2) 1

(1, 7, 3, 4, 8, 5), (1, 7, 3, 4, 8, 6, 5) 1

Feature indices are (1) tpopular, (2) tacoustic, (3) dance, (4) energy, (5)
tlive, (6) tloud, (7) tspeech, and (8) valence
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Fig. 4 Comparison of the classification performance measures of the methods on test sets in classifying
ten genres with the vine method using continuous features out of 50 replicates. The value per repli-
cate in the y-axis is calculated by the difference of the given method&feature selection from that of the
vine method using all features. vinefilter(tVars=3/tVars=4): vine method using filtered three/four features,
vinewrap(tune=0.000/tune=0.025): vine method using wrapper feature selection with 0.000/0.025 tuning
parameter, NB_kdefilter(tVars=4)/NB_gaussfilter(tVars=4)/QDAfilter(tVars=4): naive Bayes with univari-
ate Gaussian densities/kernel density estimates/quadratic discriminant analysis using filtered four features,
NB_kdeall/NB_gaussall/QDAall = naive Bayes with univariate Gaussian densities/kernel density esti-
mates/quadratic discriminant analysis using all features. Smaller values of negative log-likelihood score and
misclassification rate are better
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