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Abstract: Mathematical human controller (HC) models are widely used in tuning manual
control systems and for understanding human performance. Typically, quasi-linear HC models
are used, which can accurately capture the linear portion of HCs’ behavior, averaged over a long
measurement window. This paper presents a deep learning HC skill-level evaluation method that
works on short windows of raw HC time signals, and accounts for both the linear and non-linear
portions of HC behavior. This deep learning approach is applied to data from a previous skill
training experiment performed in the SIMONA Research Simulator at TU Delft. Additional
human control data is generated using cybernetic HC model simulations. The results indicate
that the deep learning evaluation method is successful in predicting HC skill level with 85-90%
validation accuracy, but that training the classifier solely on simulated HC data reduces this
accuracy by 15-25%. Inspection of the results especially shows a strong sensitivity of the classifier
to the presence of remnant in the simulated training data. In conclusion, these results reveal
that current quasi-linear HC model simulations, and in particular the remnant portion, do not
adequately capture real time-domain HC behavior to allow effective training-data augmentation.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Quantifying human manual control skill level is difficult.
Cybernetics has shown to be a useful tool to assess skill
level (Pool and Zaal, 2016; Pool et al., 2016), but most
methods suffer from the fundamental limiting assumption
that the human controller (HC) is constant over a sub-
stantial time interval, ignoring any ‘fast’ changes in control
behavior (Mulder et al., 2018). Although efforts have been
made to model time-varying HC behavior (Zaal and Sweet,
2011; Duarte et al., 2017; Rojer et al., 2019), capturing
short-duration behavioral variations from inherently noisy
data remains challenging (Mulder et al., 2018).

Traditionally, cybernetics describes HCs’ behavior as a
combination of linear and non-linear signals (McRuer and
Jex, 1967). The latter, also known as remnant, is difficult
to model and is often ignored in cybernetic evaluations
(Pool et al., 2016). However, this non-linear portion of
the control behavior changes as HCs gain more experience
(Wijlens et al., 2020) and therefore contains information
that is useful for the evaluation of HC skill level. Deep
learning methods may be the key to a more complete real-
time assessment of HC skill level. The automatic feature
extraction capability of deep learning on raw time series
could enable the use of the full range of HC behavior —
both linear and non-linear — for skill level predictions.

Although recent years have shown numerous investigations
of Machine Learning (ML) for identifying HC behavior
(Nittala et al., 2018; Saleh et al., 2017; Jain et al., 2016;
Tango and Botta, 2013), the assessment of differences in
skill level has remained largely untouched. Furthermore,

most proposed approaches (Xi et al., 2019) require manual
feature engineering and are most accurate when using 60
s of data, falling into the same time range where ‘classic’
cybernetic methods are also effective (Mulder et al., 2018).

The overarching goal of this project is to develop an
HC skill level classification method using deep learning.
For this, deep convolutional neural networks (CNNs) are
trained to classify raw time series of manual control
behavior as either ‘skilled’ or ‘unskilled’. Experimental
‘real’ human-in-the-loop data from a previously conducted
compensatory pitch tracking experiment by Pool et al.
(2016) were used to train and validate our classifier. The
main classification results will be presented elsewhere.

In this paper we investigate the effects of applying a
classifier trained on simulated HC data generated from
cybernetic model simulations to real HC data. ML meth-
ods work better when the number and quality of the
data for learning and testing increases. However, perform-
ing human-in-the-loop experiments can be expensive and
time-consuming. As generating more ‘human-like’ data
using cybernetic models may significantly reduce the need
for experiments, in this paper we analyze whether such
artificial data indeed enables training an effective classifier.

2. CLASSIFICATION RATIONALE
2.1 Classification problem

In our research, we treat HC skill level assessment as a
Time Series Classification (TSC) problem. Namely, a time
series X is fed to a classifier that predicts the probability P
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that X belongs to class Y. In the context of this research,
X is a Multivariate Time Series (MTS) containing raw
time signals of HC behavior: i.e., the tracking error e, the
controlled element (CE) output z, and the HC control
signal u, see Fig. 1. The corresponding class variable Y
is a binary label that indicates whether the HC is a skilled
(‘trained’, Y7) or unskilled (‘untrained’, Y5) controller. The
classifier labels the data observed in a (small, moving)
window, as belonging to a skilled or unskilled HC.

Window size

, i P(Yy)
' J|\\ FaWaN P(Yz)
~\/ [~ ZSp

Fig. 1. HC skill level classification scheme.

HCs’ skill level is of course not a binary property, but
rather a quantity that varies along a continuous scale.
It is difficult, however, to exactly define skill level and
the definition of ground truth scalar values would heavily
depend on assumptions. Hence, in this paper we treat skill
level as a binary property, depending on the amount of
experience the HC has had in the control task at hand.

2.2 Input preprocessing

Fig. 1 also illustrates the used window slicing (Cui et al.,
2016) technique, which takes a time series T with N time
steps T = {t1,...,tn} and produces multiple (shorter)
‘slices’ defined as S;.; = {t;,tiy1,...,t}, 1 <i<j<N.
The size of each slice is set here to 1.2 s, a value found
through empirical optimization. Window slicing is benefi-
cial for two reasons. First, a classifier trained on short time
series samples can also predict based on short measured
snippets of HC behavior. This allows for near real-time
classification, enabling applications such as sliding scale
autonomy or skill deterioration warnings. Second, with a
larger set of smaller snippets of time-series data, effec-
tively more training data become available. Increasing the
amount of training data (“data augmentation”) helps to
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avoid overfitting and improves generalizability (Le Guen-
nec et al., 2016). This data augmentation aspect of window
slicing is further enhanced by overlapping consecutively
sliced windows by 90%. For example: a time series of 90
s provides 75 non-overlapping 1.2 s samples, whereas 741
samples of the same size are obtained with 90% overlap.

2.8 Network structure

A deep artificial neural network was used to classify the
raw time signals of the HC behavior. Deep learning for
TSC has shown to achieve performance comparable to
state-of-the-art TSC methods (Wang et al., 2017; Fawaz
et al., 2019) with the added benefit of not requiring manual
feature engineering. In this paper, a convolutional Resid-
ual Network (ResNet) is used. This class of networks,
developed by He et al. (2015), contains ‘shortcut’ residual
connections that ease some of the difficulties in training
deep networks, whilst maintaining their capacity for en-
hanced accuracy (Simonyan and Zisserman, 2015). Differ-
ent architectures — i.e., Long Short-Term Memory, Fully
Convolutional Networks, and InceptionTime — were also
tested, however, all were found to be 5-10% less accurate.

Wang et al. (2017) implemented ResNet for TSC using
1D convolutional layers. Fig. 2 shows the implementation
through residual blocks containing three convolutional
layers — with an equal number of kernels K per block,
but with varying kernel sizes L per layer — each followed
by a Batch Normalization (BN) and Rectified Linear Unit
(ReLU) activation layer. A shortcut connection combines
the input of the first convolutional layer with the output
of the third (last) convolutional layer, before passing it
through the final BN 4+ ReLU layer. The depth d of the
network equals the number of residual blocks. Using grid
search optimization it was found that the hyperparameter
settings proposed by Wang et al. (2017) are optimal for
the HC classification task: network depth d = 3, number
of filters K = {64, 128,128}, kernel sizes L = {8, 5, 3}.

3. METHOD
8.1 Experimental data

The data used here for the classification of HC skill
level are from a previous experiment performed in the
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Fig. 2. Network structure of the Residual Network.
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SIMONA Research Simulator at TU Delft (Pool et al.,
2016). The experiment studied the effects of simulator
motion feedback on the training of multimodal skill-based
HC behavior, for which 24 fully task-naive participants
underwent training in a compensatory pitch tracking task
designed for multimodal HC behavior identification, see
Fig. 3. Each participant completed a total of 100 training
runs and 75 evaluation runs, with each run providing 81.92
s of measurement data recorded at 100 Hz.

Ounly the training phase data of Pool et al. (2016) are
used for this project as they include measurements of
both inexperienced HC behavior (at the start of training)
and ezperienced behavior (at the end of training). While
Pool et al. (2016) collected data from two 12-participant
groups who were trained in either a fixed- or a moving-base
simulator, for this paper only the fixed-base experiment
data are used. This allows for using a single-channel HC
model for the cybernetic data generation, as discussed
in Section 3.2. The experimental data set contains time
traces from 12 participants, who each performed 100
tracking runs, totaling 98,304 s of HC tracking data. For
our classifier training, the first 20 training runs of each
participant are labeled as ‘skilled’ (Y1) and the last 20 are
labeled as ‘unskilled’ (Y3). This value of 20 was empirically
found to ensure distinct ‘skilled” and ‘unskilled’ samples.
The in-between tracking runs (21-80) are not used.

external \/\/\/\
disturbance
target trajectory 1
e P u X
Py M Y
— r==p i
compensatory : HC aircraft
display : dynamics

Fig. 3. The pitch angle compensatory tracking task.

Fig. 3 illustrates the pitch tracking task, where e indicates
the tracking error, u the HC output, and x the CE output
(here the aircraft pitch angle). The dotted line connecting
x directly to the HC is only active if motion feedback is
provided. The tracking task requires the HC to follow a
target pitch angle as accurately as possible, while rejecting
an additional disturbance signal placed on the CE. The CE
dynamics were the elevator-to-pitch dynamics of a Cessna
Citation I, using a reduced-order linearized model:
s+ 0.99

I =10.62
0.5. (5) s (52 + 2.58s + 7.61)

(1)

The target- and disturbance signals, f; and f4, are both
a sums of 10 sines with different excitation frequencies,
wy and wy, respectively. In the experiment, five different
realizations of the f; and f; signals — with identical
sinusoid frequencies and amplitudes, but with different
phase settings — are used in a balanced and randomized
order to ensure participants do not learn the signals. For
the complete details of the used f; and f; settings, please
refer to (Pool et al., 2016). The combined target-following
and disturbance-rejection task enables reliable separation
and identification of the HC response to visual and motion
cues and was based on a number of previous studies that
successfully identified multi-channel HC behavior (Zaal
et al., 2009). An example of the time traces recorded

during a tracking run are shown in Fig. 4. Throughout
this paper, only e, é, u, and @ are used as input features
for the classification model, as these inputs yielded the
best classification performance.

10 20 30 40 50 60 70 80 90
Time, s

Fig. 4. Example time traces of one tracking run.
3.2 Cybernetic HC simulations

HC model

visual response
+

controlled
dynamics

stick gain +
S &)
S 3Ot

u

Fig. 5. Quasi-linear HC simulation model; remnant is
modeled as colored noise n..

Model structure ~ The HC model simulations are per-
formed using a quasi-linear model proposed for this pitch
tracking task by Pool et al. (2016), see Fig. 5. Since Pool
et al. used this same model to evaluate the experiment data
that are used in this paper, the model parameters — except
the remnant parameters — of each subject were readily
available for simulation. The visual response H,, (s) of the
HC model is given by Eq. (2). Because HCs generate lag
at frequencies below the CE’s short-period mode natural
frequency, but exert lead equalization at higher frequen-
cies, a squared lead term is included to capture these HC
dynamics (Pool et al., 2011). In total, the visual response
model of Eq. (2) contains six model parameters: the (vi-
sual) gain K, the lead time constant Tj..q, the lag time
constant Tj.q, the time delay 7,, and the neuromuscular
dynamics modeled as a second-order mass-spring-damper
(McRuer and Jex, 1967) with natural frequency wy,,, and
damping ratio Cum,.

(Tlead5 + 1)2

H =K ST H, 2
po (5) v Tiags + 1 nm (8) (2)

———

human response peuromuscular
equalization delay dynamics
2
W,

Hypp (s) = e (3)

52 + 2CumWnms + Wiy,

Remnant model HC remnant n., see Fig. 5, is modeled
as filtered white noise injected at the e signal, see Eq. (4).
As proposed by Levison et al. (1969), a first-order low-pass
filter (Eq. (5)) is used to generate the colored noise.
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Spn, (jw) = |Hy (Jw)|2 Sww (jw)

1
H, (jw) = Kyp————
(] ) 1+ Tn,lag.jw

(4)
()

The parameters K, and T}, ;4 are estimated from the ex-
periment data of Pool et al. (2016) using the methodology
described in (Van der El et al., 2019). This involves fitting
the model of Eq. (5) to an estimated S,,, PSD using a
least squares cost function, see Fig. 6. To decrease noise in
the PSD estimate, .Sy,,, was averaged over five consecutive
tracking runs. This results in K, and T, ;44 estimates for
each participant across sets of five consecutive runs.

10 ; 1
s 2
N 107 E | Hy | _|0'191+0.33-s|
= prrotom®y Q.;_’)Q
Ng) 1= model fit i 68\’?
FO:U 107 (o) Sml (jwt) " ‘EJ
10t S Gwy)
1= : : .
107! 10° 10" 102

w, rad/s

Fig. 6. Example of fitting the low-pass filter remnant model
to an estimated remnant spectrum.

Model simulations  To facilitate a direct comparison of
classification performance on ‘real’ HC and simulated cy-
bernetic HC model data, the model explained in Sec-
tion 3.2 is used to generate a matched simulated counter-
part of each real HC tracking run from all participants in
the data set (i.e., 12x 100 simulated tracking runs). This is
done using the linear HC model parameters estimated for
all experimental tracking runs by Pool et al. (2016) and, for
simulated data with remnant, the 5-run average estimated
remnant model parameters we obtained as described in
Section 3.2.2. With this approach, we ensure that all linear
and non-linear HC behavior variations that occur during
training in the experiment data are also present in the sim-
ulated data, to the extent possible with current cybernetic
methods. Furthermore, the variation in f; and f; signal
realization (see Section 3.1) is also matched perfectly be-
tween simulated and experimental tracking runs to avoid
artifacts in classifier training. Finally, for simulated data
that includes remnant, a different realization of white
noise w (fixed random seeds) is used to generate a unique
remnant signal for every run according to Eq. (4).

While a matched simulated equivalent of all tracking runs
from all participants in the experiment is generated, see
also Section 4.1, for classifier training again only the first
20 and last 20 runs of each simulated HC are used to rep-
resent ‘unskilled” and ‘skilled” HC behavior, respectively.
As an indication of HC and remnant model parameter dif-
ferences between ‘unskilled” and ‘skilled’ samples, Table 1
lists the means and standard deviations of all HC simula-
tion parameters across all (simulated) participants. Please
note that these values are provided here only for reference:
for generating the simulation data the (unaveraged) values
for all 12 individual participants and all runs were used.

4

181

Table 1. Mean and standard deviation of all
cybernetic HC model simulation parameters
for ‘unskilled” and ‘skilled” samples.

Symbol Unit Mean Standard deviation
"Unskilled”  ’Skilled”  ’Unskilled’  ’Skilled’
K, - 2.54 3.02 0.93 0.94
Tiead S 0.58 0.44 0.22 0.11
Tiag s 2.44 1.39 1.59 0.62
Ty s 0.28 0.21 0.15 0.05
Wnm rad/s 10.86 10.01 5.22 2.63
Cnm - 0.51 0.27 0.42 0.13
K, - 0.68 0.37 0.55 0.17
T lag s 1.04 0.72 0.86 0.59

3.8 Classifier training and validation

The effectiveness of the cybernetic data augmentation
method for classifier training was empirically tested. This
is done by training the optimized deep learning model
using an 80%/20% training/validation data split, where
the 20% validation data are always real HC data, see
Fig. 7. For training the classifier, three different training
cases are considered:

e ‘Real HC data’: the baseline case, where the classifier
is trained on the remaining 80% real HC data.

o ‘Simulated HC data with remnant’: where the classi-
fier is trained on a matched 80% simulated HC data
set that also includes simulated remnant.

o ‘Simulated HC data without remnant’: where the
classifier is trained on the same 80% simulated HC
data, but excluding the simulated remnant.

To ensure a fair comparison, the matched simulated coun-
terparts of the real HC data, i.e., those generated with
the HC model and remnant parameters estimated from
the same trials of real HC data, were used for the second
and third cases. This also ensures there can never be
any overlap between simulated HC training data and the
‘real’ HC validation data. Furthermore, to obtain a reliable
indication of classification performance, the three cases
were compared for 30 different randomly split 80%/20%
distributions of the training and validation data. In all
cases, both the training and validation data sets contained
50% ‘unskilled’ and 50% ‘skilled’ samples.

°
Real 30x 20% >
HC dutag Split alidatio
data |
Sim. with

80%

é . .
remn.’:mt”:,“,,1 > \NIN Training
data

Validation

accuracy
_—

Sim. without
]
remnant &5 >

Classifier

Fig. 7. Overview of classifier training and validation ap-
proach, with 30 different random 80%/20% distribu-
tions of the training/validation data.

4. RESULTS
4.1 Simulated data verification

To verify whether our simulated HC data accurately rep-
resents the measured HC data, the variance of the tracking
error o2 and the control input o2 of these real and artificial
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tracking runs are shown in Fig. 8. Overall, Fig. 8 shows an
accurate match between simulation and experiment data,
with equivalent absolute values, trends, and spread in the
real and artificial data set with remnant. Furthermore,
the simulated data with remnant (red markers in Fig. 8)
matches the ‘real’ HC data (blue markers) at very high ac-
curacy, while for the simulations without remnant (purple
markers) both 02 and o2 are underestimated, as expected.

3.5
@] Real HC data
3.0 1 ®  Avg. of real HC data
25 Sim. with remnant
N ) ®  Avg. of sim. with remnant
O 5 .
© 207@ Sim. without remnant
b 1.5 LY N X Avg. of sim. without remnant
1.0 1
0.5 ek e ieienierdersiuatert:7;
14
12 A
0 T 1 T T T T
0 20 40 60 80 100
Run index

Fig. 8. Comparison of e and w variances for simulated and
real HC data.

4.2 Classification performance

The results of the analysis described in Section 3.3 are
shown in Fig. 9, where each marker represents one of the
30 random 80%/20% train/validation splits. The vertical
axis shows the validation accuracy when training with
the respective data sets and validating on real HC data.
The horizontal axis indicates the bias of the trained
model, expressed as the percentage of samples classified
as ‘skilled’. This bias should be 50% for an unbiased
classifier, as we ensured that the validation data are evenly
distributed between both classes.

Fig. 9 shows that when training and validating on real
HC data (blue markers), a consistent validation accuracy
between 85-90% is achieved. Furthermore, around 50% of
the samples is classified as ‘skilled’ /‘unskilled’, as expected
due to the ensured class-balance in the validation data.
Overall, these results thus indicate that accurate and
unbiased classification of HC skill level can be achieved
with our approach. However, when training the same
classifier on simulated data and validating on real HC
data, a consistent drop in accuracy and increased spread
is observed from Fig. 9. Training on simulated HC data

L

= i
>'; 80 N :
3 ! s
§ « ® : l.. ® g
< 70 R ¢ @
g X x B K X X l“. .
3 X X X7 xx
';'; 60 1 Training data X

® Real HC data

® Sim. with remnant

509 X  Sim. without remnant
30 40 50 60 70

Percentage of samples classified as skilled (bias), %

Fig. 9. Testing the effectiveness of cybernetic data aug-
mentation by training the model on simulated data—
with- and without remnant—and validating it on real
HC data. Each marker represents a random 80%/20%
distribution of train/validation data.

without remnant (purple markers) results in a validation
accuracy of approximately 65%, while the inclusion of
simulated remnant (red markers) increases this to around
70%. While this is a notable drop in accuracy compared
to training on real HC data, these results do confirm that
the non-linear remnant in HC data is also ‘learned’ by the
classifier and directly influences its predictions. In addition
to the reduced accuracy, Fig. 9 also shows that when
training on simulated HC data the classifier’s outcome is
less consistent across the 30 times the classifier trained,
especially in terms of the percentage of samples classified
as ‘skilled’. This stronger sensitivity to the (random)
selection of the validation data suggests that the classifiers
trained on simulation data are less robust to the inherent
between-subject differences in HC data than when real HC
data is used for training.

When using simulated training data without remnant, the
classifier does not learn to incorporate remnant in its skill-
level predictions. This implies that any remnant present
in the real HC validation data may result in classification
uncertainty, which is consistent with the lower accuracy
and increased spread seen in the purple markers in Fig. 9.
The wide-spread outcomes for the percentage of identified
‘skilled’/‘unskilled’ samples seem to indicate an interaction
with the inherently different overall skill levels present
in experimental data sets obtained from multiple HCs;
Fig. 8 shows a clear overlap in 02 and o2 at the beginning
and end of training. Without remnant also ‘knowing’ of
accompanying variations in remnant, this overlap may
increase classifier outcome variability and its dependency
on the selected validation samples. While Fig. 9 shows that
HC simulation data without remnant does not result in
an effective classifier, further investigation of the slight
bias towards ‘unskilled’ classification may be of interest
to guide cybernetic data augmentation improvements.

The bias towards ‘skilled’ predictions seen for the clas-
sifier trained on simulated data with remnant may be
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explained by the method used for the remnant simula-
tion, see Section 3.2.2. Using time-invariant colored noise
as remnant (Levison et al., 1969) likely more accurately
matches the remnant of ‘skilled’ HCs than that of ‘un-
skilled” HCs; trained HCs show more consistent overall
behavior, whereas untrained HCs will have more erratic
and time-varying contributions to their remnant (McRuer
and Jex, 1967). This can explain why the trained classi-
fier can effectively identify ‘skilled” HC data, but is less
successful in recognizing ‘unskilled’ data, resulting in the
observed bias towards ‘skilled” predictions. This result sug-
gests that the state-of-the-art remnant model implemented
in this paper does not fully cover the complex non-linear
behavior of real HCs in the time domain. More research
is needed to enhance the effectiveness of this cybernetic
data augmentation method through improved remnant
modeling. For example, a key improvement may lie in the
use of ‘generative neural networks’ to simulate a realistic
and more non-linear remnant contribution that can be
combined with classical linear cybernetic HC simulations.

5. CONCLUSIONS

This paper introduces a deep learning approach for binary
classification of human controller (HC) skill level based on
short (1.2 s) time signals of control behavior. Specifically,
the extent to which additional, artificial, training data
generated from state-of-the-art cybernetic HC model sim-
ulations can be used for classifier training is investigated.
The results highlight a strong sensitivity of the classifier
to the presence of remnant in the training data. While
classifiers trained fully on experiment data attained an
accuracy of 90%, training the same classifier on simu-
lated HC data resulted in a 15%-25% accuracy reduction
and a consistent bias towards one of the classes. Overall,
these results indicate that current quasi-linear HC model
simulations, and especially the state-of-the-art in remnant
modeling, do not sufficiently capture the intricacies of real
time-domain HC data to enable truly effective simulated
data augmentation for classifier training.
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