
 
 

Delft University of Technology

Verifying national inventory-based combustion emissions of CO2 across the UK and
mainland Europe using satellite observations of atmospheric CO and CO2

Scarpelli, Tia R.; Palmer, Paul I.; Lunt, Mark; Super, Ingrid; Droste, Arjan

DOI
10.5194/acp-24-10773-2024
Publication date
2024
Document Version
Final published version
Published in
Atmospheric Chemistry and Physics

Citation (APA)
Scarpelli, T. R., Palmer, P. I., Lunt, M., Super, I., & Droste, A. (2024). Verifying national inventory-based
combustion emissions of CO2 across the UK and mainland Europe using satellite observations of
atmospheric CO and CO2. Atmospheric Chemistry and Physics, 24(18), 10773–10791.
https://doi.org/10.5194/acp-24-10773-2024
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.5194/acp-24-10773-2024
https://doi.org/10.5194/acp-24-10773-2024


Atmos. Chem. Phys., 24, 10773–10791, 2024
https://doi.org/10.5194/acp-24-10773-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Verifying national inventory-based combustion
emissions of CO2 across the UK and mainland Europe

using satellite observations of atmospheric CO and CO2

Tia R. Scarpelli1,a, Paul I. Palmer1,2, Mark Lunt1,b, Ingrid Super3, and Arjan Droste3,4

1School of GeoSciences, University of Edinburgh, Edinburgh, UK
2National Centre for Earth Observation, University of Edinburgh, Edinburgh, UK

3Department of Air quality and Emissions Research, TNO, Utrecht, the Netherlands
4Department of Water Management, Delft University of Technology, Delft, the Netherlands

anow at: Carbon Mapper, Pasadena, CA, USA
bnow at: Environmental Defense Fund, Perth, Australia

Correspondence: Paul I. Palmer (pip@ed.ac.uk)

Received: 15 February 2024 – Discussion started: 12 March 2024
Revised: 17 July 2024 – Accepted: 14 August 2024 – Published: 26 September 2024

Abstract. Under the Paris Agreement, countries report their anthropogenic greenhouse gas emissions in na-
tional inventories, which are used to track progress towards mitigation goals, but they must be independently
verified. Atmospheric observations of CO2, interpreted using inverse methods, can potentially provide that ver-
ification. Conventional CO2 inverse methods infer natural CO2 fluxes by subtracting a priori estimates of fuel
combustion from the a posteriori net CO2 fluxes, assuming that a priori knowledge for combustion emissions
is better than for natural fluxes. We describe an inverse method that uses measurements of CO2 and carbon
monoxide (CO), a trace gas that is co-emitted with CO2 during combustion, to report self-consistent combustion
emissions and natural fluxes of CO2. We use an ensemble Kalman filter and the GEOS-Chem atmospheric trans-
port model to explore how satellite observations of CO and CO2 collected by the TROPOspheric Monitoring
Instrument (TROPOMI) and Orbiting Carbon Observatory-2 (OCO-2), respectively, can improve understanding
of combustion emissions and natural CO2 fluxes across the UK and mainland Europe in 2018–2021. We assess
the value of using satellite observations of CO2, with and without CO, above what is already available from the
in situ network. Using CO2 satellite observations leads to small corrections to a priori emissions that are incon-
sistent with in situ observations, due partly to the insensitivity of the atmospheric CO2 column to CO2 emission
changes. When we introduce satellite CO observations, we find better agreement with our in situ inversion and
a better model fit to atmospheric CO2 observations. Our regional mean a posteriori combustion CO2 emission
ranges from 4.6–5.0 Gta−1 (1.5 %–2.4 % relative standard deviation), with all inversions reporting an overes-
timate for Germany’s wintertime emissions. Our national a posteriori CO2 combustion emissions are highly
dependent on the assumed relationship between CO2 and CO uncertainties, as expected. Generally, we find bet-
ter results when we use grid-scale-based a priori CO2 : CO uncertainty estimates rather than a fixed relationship
between the two species.
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1 Introduction

More than 40 % of the cumulative net CO2 emissions from
1850 to 2019 have occurred since 1990, resulting in a global
mean surface temperature rise of 0.45 °C (IPCC, 2022). If the
2019 emission rate continues to 2030, we will have exhausted
the remaining carbon budget to keep global mean tempera-
tures within 1.5 °C and depleted a third of the remaining car-
bon budget for 2 °C (IPCC, 2022). These estimates assume
that the land biosphere and ocean will continue to respond to
changes in climate as they do today. The most effective lever
at our disposal to rapidly reduce atmospheric concentrations
of CO2 is a commensurately large, rapid, and targeted reduc-
tion in emissions, as recognized by the Paris Agreement. A
clearer understanding of the national importance of individ-
ual CO2 emitting sectors is needed to develop effective emis-
sion mitigation policies. Similarly, global to regional observ-
ing networks are needed to verify the effectiveness of these
policies to reduce national emissions from individual sectors.
Here, we focus on the potential of satellite observations to
verify changes in combustion emissions of CO2 across the
UK and mainland Europe.

Under the Paris Agreement, countries annually report es-
timates of their anthropogenic greenhouse gas emissions
in national inventories, typically with a lag of more than
12 months, as an approach to establish and track progress
towards emission mitigation goals. These inventory-based
estimates use bottom-up methods that typically rely on na-
tional activity data (e.g. power plant fuel consumption) and
country-specific emission factors (e.g. CO2 emissions per
unit of fuel consumed); the corresponding emission uncer-
tainties are related to the underlying datasets and methodolo-
gies. To set effective national emission mitigation targets and
track progress, it is important to estimate CO2 combustion
emissions accurately in these inventories, including accurate
estimates of their uncertainties.

Observations of atmospheric CO2 provide an independent
evaluation of reported bottom-up CO2 flux estimates (e.g.
Peylin et al., 2013). A top-down approach uses these atmo-
spheric measurements to infer the most likely a posteriori
distribution of CO2 fluxes that would explain the observa-
tions, accounting for uncertainties associated with the mea-
surements of the method. An atmospheric transport model is
used to relate the gridded a priori estimates of CO2 fluxes
to 4-D distributions of atmospheric CO2 concentrations. An
observation operator is then applied to this 4-D distribution,
which describes how a particular instrument samples the at-
mosphere at a given time and place. The resulting model
atmospheric CO2 measurements are then confronted with
the observations, and the a priori flux estimates are adjusted
to minimize any model–observation differences, resulting in
a posteriori flux estimates that are consistent with a priori
and measurement information. Ground-based in situ obser-
vations from the pan-European measurement network have
been used extensively to estimate regional net CO2 fluxes

(e.g. Scholze et al., 2019; Ramonet et al., 2020; Rödenbeck
et al., 2020; Thompson et al., 2020).

Separating the combustion and natural components of the
net a posteriori CO2 flux estimates is non-trivial, which has
resulted in a range of approaches being developed by re-
searchers (e.g. Konovalov et al., 2016; Boschetti et al., 2018;
Yang et al., 2023; Feng et al., 2024). The most common ap-
proach is to assume we have near-perfect knowledge of an-
thropogenic emissions, subtract these a priori emission es-
timates from the net a posteriori values, and then interpret
the residual as fluxes from the natural biosphere to com-
pare with inventory estimates (e.g. White et al., 2019; Deng
et al., 2022). The spatial and temporal information on both
emissions and uncertainties is often highly uncertain but also
needed to interpret atmospheric measurements (Super et al.,
2020; Oda et al., 2023). There is also now a greater focus on
estimating changes in anthropogenic emissions, as countries
introduce policies to decarbonize their economies.

With this impetus in mind, there is an urgent need to de-
velop and evaluate robust methods that separate the combus-
tion and natural influences on changes in atmospheric CO2
at city scale (e.g. Silva et al., 2013; Reuter et al., 2019;
Goldberg et al., 2019; Yang et al., 2023) and national scale
(Palmer et al., 2006) using additional observations of trace
gases co-emitted during the combustion process, e.g. CO and
NO2. Previous work has focused on using ground-based or
aircraft in situ measurements of CO2 and co-emitted trace
gases (see references above), but we need to understand how
we best use satellite observations to estimate anthropogenic
emissions of CO2, particularly in the context of the billion-
euro investment in the Copernicus CO2 Monitoring Mission,
CO2M (Sierk et al., 2021).

Observations of atmospheric CO2 collected by satellites
have the advantage of global spatial coverage, subject to
cloud cover, and have been used to constrain CO2 flux es-
timates on the spatial scale of thousands of kilometres (e.g.
Chevallier et al., 2014, 2019; Feng et al., 2017; Palmer et
al., 2019; Byrne et al., 2023). To date, few studies have fo-
cused on using these data to constrain CO2 flux estimates
over mainland Europe or the UK because there is less infor-
mation about surface CO2 on those spatial scales from the
current generation of CO2 satellites (OCO-2 and GOSAT)
than the in situ measurement networks. This is in part be-
cause satellite observations of the atmospheric column of
CO2 are less sensitive to CO2 surface fluxes compared to
in situ measurement networks. It is widely anticipated that
the significant increase in the volume and spatial coverage of
data collected by CO2M will dramatically increase the com-
petitiveness of satellite observations for estimating national-
scale emissions across mainland Europe and the UK. CO2M
will focus on quantifying anthropogenic emissions of CO2
and methane and will form part of the European measure-
ment and verification support capacity (Janssens-Maenhout
et al., 2020). It will likely consist of three satellites, each with
a push-broom imaging spectrometer that has an across-track
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swath of ∼ 250 km with a spatial resolution of 4 km2 (Sierk
et al., 2021).

In this study, we quantify the ability of current satellite
observations of CO2 and CO to constrain country-scale com-
bustion and non-combustion CO2 flux estimates across the
UK and mainland Europe. We use atmospheric CO2 obser-
vations from the NASA OCO-2 instrument and CO observa-
tions from the ESA TROPOspheric Monitoring Instrument
(TROPOMI) to estimate monthly CO2 fluxes for 2018–2021.
Our work is part of a larger effort to develop rigorous meth-
ods to evaluate nationally reported CO2 emissions using in
situ and satellite observations. In the next section, we de-
scribe the methods we use to infer simultaneously combus-
tion and natural fluxes of CO2 using OCO-2 and TROPOMI
data. Section 3 describes our results. We conclude the paper
in Sect. 4.

2 Data and methods

Here, we describe the measurements we use to infer CO2
fluxes across the UK and mainland Europe; the GEOS-Chem
atmospheric chemistry transport model that describes the re-
lationship between a priori inventories, atmospheric chem-
istry and transport, and the observed atmospheric concentra-
tions of CO2; and the ensemble Kalman filter that is used to
infer CO2 fluxes from a priori knowledge and the measure-
ments. We describe the results from three inversions. For the
first inversion we independently estimate a posteriori emis-
sions of CO and CO2. For the second and third inversions we
assume combustion CO and CO2 emission errors are corre-
lated and report jointly estimated a posteriori CO and CO2
fluxes. For the second inversion we assume a perfect corre-
lation between these emissions errors and for the third inver-
sion we use emission error correlations that are determined
from sector-based errors in the bottom-up emission inventory
(Super et al., 2024).

2.1 Satellite and in situ observations

For CO2, we use observations of the atmospheric CO2
column-averaged dry-air mole fraction (XCO2) from the
OCO-2 satellite, launched in 2014 (Crisp et al., 2017; El-
dering et al., 2017). We use OCO-2 ACOS v10r data for
2018–2021 (OCO-2 Science Team et al., 2020a; Taylor et al.,
2023). For CO, we use XCO observations from TROPOMI,
July 2018–December 2021, aboard the Sentinel-5P satellite,
launched in 2017 (Veefkind et al., 2012; for CO retrieval:
Vidot et al., 2012; Landgraf et al., 2016). For both satellite
products, we filter observations as recommended in the prod-
uct user guide, including a strict quality assurance flag value
of > 0.75 for TROPOMI XCO. We remove glint observa-
tions and those over the oceans and collate satellite columns
and averaging kernels to a 0.25°× 0.3125° spatial grid to
match model output (Fig. 1). To compare our model output
to the satellite observations, we first sampled the model at

the overpass time and location of each instrument. We then
interpolate our model pressure levels to the satellitepressure
levels and apply the scene-dependent retrieval averaging ker-
nel to our 3-D model concentration fields. Different instru-
ment sensitivities to CO and CO2, described by their averag-
ing kernels, are taken into account in the inversion framework
described below.

We use in situ observations for 2018–2021 (Fig. 1). We use
the DECC surface measurement network in the UK (Stanley
et al., 2018; O’Doherty et al., 2024; O’Doherty et al., 2024)
and the ICOS measurement network for Europe (ICOS RI
et al., 2022). We retain in situ observations collected be-
tween 09:00 and 18:00 LT – to avoid instances when tall
tower inlets sit above a shallow boundary layer – and then
time-average to 3-hourly intervals to match our GEOS FP
model meteorology. All in situ sites have CO2 observations,
but some sites are missing CO observations. We additionally
remove observations when the atmosphere is not well mixed.
We consider the atmosphere to be well mixed when the stan-
dard deviation of CO2 concentrations across the lowest five
vertical model levels is smaller than 0.3 ppm; this subjective
value is based on 3 times the measurement precision of in
situ measurements.

Figure 1 also shows European sites from the Total Car-
bon Column Observing Network (TCCON). Five sites are
within our domain, including Bremen (Germany; Notholt et
al., 2022), Karlsruhe (Germany; Hase et al., 2023), Nicosia
(Cyprus; Petri et al., 2022), Orléans (France; Warneke et al.,
2022), and Paris (France; Té et al., 2022). We use the TC-
CON observations as an independent comparison for our in-
version results.

2.2 Forward model description

The forward model H describes the relationship between a
priori flux estimates of CO2 and CO and the atmospheric ob-
servations. We use the GEOS-Chem atmospheric chemistry
transport model to relate surface fluxes of CO2 and CO to
4-D atmospheric concentrations. We then sample these con-
centration fields at the time and location of measurements.
In the case of satellite observations, we also use the scene-
dependent averaging kernel to describe the instrument verti-
cal sensitivity to changes in CO2 and CO. Resulting sampled
model atmospheric values can then be compared with obser-
vations:

y =H · x, (1)

where y denotes the observation vector and x denotes the
state vector that includes our a priori CO2 and CO flux esti-
mates.

We use the GEOS-Chem version 12.5.2 atmospheric
chemistry and transport model which we run at 0.25°×
0.3125° resolution for a nested European domain (−15 to
35° E longitude and 34 to 66° N latitude) with 47 vertical
levels. GEOS-Chem is driven by GEOS FP meteorological
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Figure 1. Annual mean CO2 and CO observed by satellite and in situ networks across Europe for 2018–2021. Satellite observations of
XCO2 and XCO are from OCO-2 and TROPOMI, respectively, and in situ observations are from the DECC and ICOS networks. The red X
marks in the in situ CO plot show the locations of four out of the five TCCON sites for which we use XCO2 and XCO data to evaluate our
inversions; the fifth site, based in Cyprus, is located outside the figure domain. The observations are filtered as stated in the text, and satellite
observations are shown at 0.25°× 0.3125° resolution. TROPOMI observations only include observations after July 2018.

re-analyses fields from the NASA Global Modelling and As-
similation Office (GMAO) global circulation model.

Our a priori flux estimates (x) include all sources con-
tributing to observed atmospheric CO2 and CO. Equation (2)
shows the sources for CO2 including combustion emis-
sions (CO2

Combust), non-combustion fluxes (both biogenic
and non-combustion anthropogenic sources; CO2

Bio), and
background CO2 that is transported to and from our do-
main (CO2

Trans). Atmospheric CO sources include combus-
tion emissions (COCombust), transport (COTrans), and produc-
tion of CO through oxidation (COChem), as shown in Eq. (3).

CO2 = CO2
Trans
+CO2

Combust
+CO2

Bio (2)

CO= COTrans
+COCombust

+COChem (3)

For our 2018–2021 a priori fluxes, we use a combination of
regional and global inventories (Fig. 2). Combustion emis-
sions for both species (CO2

Combust and COCombust) are from
the TNO (Nederlandse Organisatie voor Toegepast Natuur-
wetenschappelijk Onderzoek; Netherlands Organisation for
Applied Scientific Research) GHGco v5.0 emission inven-
tory at 0.1°× 0.05° resolution (Super et al., 2020; Kuenen
et al., 2022) with national totals based on emissions reported
in national inventories and extrapolated from 2019 to more
recent years; 2019 represents the latest year for which we
have air pollution and greenhouse gas inventories (Kuenen
et al., 2022). We apply scaling factors provided by TNO to
reflect monthly, hourly, and daily patterns in emissions by

sector, with the same scaling factors used for each year. Our
combustion source also includes biomass burning emissions
from the GFAS v1.2 inventory (Kaiser et al., 2012). Non-
combustion fluxes (CO2

Bio) include ocean fluxes from the
NEMO-PISCES model (Lefèvre et al., 2020), lateral car-
bon fluxes related to crop removal (Deng et al., 2022), and
hourly terrestrial biosphere fluxes at 1/120°× 1/60° reso-
lution produced by the VPRM model following methods
described by Gerbig (2021) driven by ERA5 meteorology.
We include non-combustion (e.g. fugitives) anthropogenic
emissions from the TNO inventory in our non-combustion
fluxes. Fugitive emissions of CO2 are typically very small,
e.g. emissions that escape from agricultural greenhouses en-
riched with CO2.

For our nested domain, we use lateral boundary conditions
for CO2 (CO2

Trans) from the Copernicus Atmosphere Mon-
itoring Service (CAMS) inversion-optimized global green-
house gas analysis with assimilation of in situ observa-
tions (Chevallier, 2020). Our boundary conditions for CO
(COTrans) are from the CAMS global reanalysis (Inness et
al., 2019). We use the CAMS fields at their provided tem-
poral resolution (3-hourly) and re-grid them to the GEOS-
Chem horizontal spatial resolution of 2°×2.5° so we can use
them as boundary conditions for our finer-resolution nested
model, centred over Europe. Because the vertical resolution
of GEOS-Chem does not align with CAMS, we translate the
CAMS native vertical resolution to our 47 model layers using
linear interpolation of logarithmic pressure values. We fill in

Atmos. Chem. Phys., 24, 10773–10791, 2024 https://doi.org/10.5194/acp-24-10773-2024
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Figure 2. Annual mean emissions for 2018–2021 in the a priori inventories. Combustion emissions (CO2
combust, COcombust) are from the

TNO inventory, while biogenic fluxes (CO2
bio) are from the VPRM model (negative values indicate a CO2 sink).

the species concentrations at the lowest or highest pressure
level in CAMS for the top or surface of the atmosphere, re-
spectively, when the GEOS-Chem pressure levels go beyond
the bounds of CAMS.

We treat the relationship between surface fluxes and con-
centrations (Eq. 1) as linear (e.g. a doubling of emissions
leads to a doubling of the atmospheric signal). To linearize
the CO simulation, we use offline chemistry terms to rep-
resent the chemical production of CO (COChem). CO is pri-
marily produced by oxidation of methane and non-methane
volatile organic compounds by the hydroxyl radical (OH),
so we generate the production terms using offline 3-D loss
fields of OH generated from a previous GEOS-Chem full-
chemistry simulation (Fisher et al., 2017).

2.3 Inverse model description

For our inversion, we use the ensemble Kalman filter (EnKF)
approach as discussed in detail by others (e.g. Peters et al.,
2005; Hunt et al., 2007; Feng et al., 2009; Liu et al., 2016).
We specifically follow the methods derived by Hunt et al.
(2007) and summarized by Liu et al. (2016) for the local en-
semble transform Kalman filter (LETKF).

We solve the inversion in ensemble space rather than for
the state vector elements. For each state vector element, we
have an ensemble of potential scale factors that follow our
prescribed error statistics. For each assimilation time period
(over which we ingest observations), we solve for the mean
a posteriori state vector (xa) that represents the mean of our
N ensemble members (where we use N = 100):

xa = xb+K
(
yobs− y

b
)
, (4)

where xa and xb are the means across ensemble members
for our a posteriori and a priori state vectors, respectively.
We use error statistics, as described in Sect. 2.4, to generate
the a priori state vector ensemble members. yobs is the obser-
vation vector, and each element of yb is the mean of model-
predicted concentrations across N ensemble members. For
the nth ensemble member (xbn), the model-predicted concen-
trations are ybn =H (xbn).

K describes our Kalman gain matrix that regulates the de-
gree to which any disagreement between model and obser-
vation will adjust the state vector. We determine K using the
matrix xb, which describes the difference between the en-
semble members and their mean, and the matrix yb, which
describes the difference between the model-predicted con-
centrations and their mean:

https://doi.org/10.5194/acp-24-10773-2024 Atmos. Chem. Phys., 24, 10773–10791, 2024
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K= xbP̃a(yb)TR−1, (5)

where the nth column of xb is xbn−x
b and the nth column of

yb is ybn− y
b (each column representing an ensemble mem-

ber). R is the observation error covariance matrix, which in-
cludes the errors from our forward model, from estimates
based on prior studies, and from observations. For CO2, we
use an a priori model error of 1.5 ppm for the satellite in-
version (Feng et al., 2017) and 3 ppm for the in situ inver-
sion (within the range of Monteil et al., 2020, and White
et al., 2019). For CO, we use an a priori model error of 15
and 20 ppb for the satellite and in situ inversions, respec-
tively (Northern Hemisphere CO column and surface mole
fraction model–observation differences from Bukosa et al.,
2023). For the observations, we use the errors as provided for
the satellite or in situ network, averaged to the model resolu-
tion. We generate the off-diagonal covariance for R based on
the spatial and temporal proximity of observations following
an exponential decay with spatial and temporal length scales
of 100 km and 4 h, respectively; these values are based on our
preparatory work (not shown) using this model definition.

The P̃a matrix is a representation of the a posteriori error
covariance in ensemble space:

P̃a =
[
(N − 1)I+ (yb)TR−1yb

]−1
, (6)

where I is an identity matrix and N is our number of ensem-
ble members. P̃a is used to determine the a posteriori ensem-
ble members (xa), where the nth column of xa is xan− x

a ,
and the error covariance matrix (Pa):

xa = xb
[
(N − 1)̃Pa

]1/2
, (7)

Pa = xa(xa)T (N − 1)−1. (8)

We use an assimilation window of 2 weeks and a lag window
of 1 month, accounting for the impact of historical emissions
on our assimilation period. This means that the state vector
for each time step includes scale factors for the assimilation
window and lag window. Our preparatory work revealed that
using a lag window longer than a month did not significantly
impact our results because signals by that time have decayed
substantially (not shown). We perform our inversion sequen-
tially, using the a posteriori scale factors for a given assimi-
lation window to update the a priori scale factors for the next
lag window over the same date range. To avoid unrealisti-
cally small prior uncertainties, we apply a 10 % error infla-
tion when we update the a priori state vector.

The benefit of the LETKF is that we can localize the in-
version so that each state vector element is only influenced
by a subset of observations. For our inversions using in situ
observations, we localize by distance so that each state vec-
tor element that represents a grid-scale variable is only in-
fluenced by observations within a 1000 km range. We chose
that upper limit as a compromise to ensure we included ob-
servations that had the most sensitivity to the emissions and

to discard observations with much smaller sensitivities that
potentially could introduce spurious correlations.

2.4 Description of inverse model experiments

We test different approaches to investigate the usefulness of
satellite observations for evaluating CO2 combustion emis-
sions. The approaches vary in the observations that are used
and the representation of error covariances for our a priori
estimates. For each type of inversion, we compare our satel-
lite inversion results to comparable inversions using in situ
observations.

In the inversions, instead of solving for CO2 or CO fluxes,
we solve for scale factors that scale up or scale down the
source terms from Eqs. (2) and (3). We first assume that our
a priori scale factors are all equal to 1. We solve for a posteri-
ori scale factors that, when applied to our source terms, will
result in modelled atmospheric CO2 or CO concentrations in
better agreement with observations.

For our first approach (CO2-only), we perform a CO2-only
inversion that assimilates CO2 observations. Our state vector
includes scale factors for the sources of Eq. (2):

xco2 =
(
xTrans

co2 ,xBio
co2,x

Combust
co2

)
, (9)

where xBio
co2 and xCombust

co2 are a vector of scalers, common
to all inversions, with each element applying to a non-
combustion or combustion grid cell at 0.5°× 0.625° resolu-
tion (Appendix A). The four transport scale factors for CO2
(and four for CO), described by xTrans

co2 , common to all our in-
version calculations, apply to the four lateral boundary con-
ditions of the nested model domain.

In our second approach (joint CO2 : CO), we perform a
joint CO2 : CO inversion that assimilates both CO2 and CO
observations. For the joint inversion, we assume there is
100 % correlation for the CO2 and CO combustion emission
errors. This means any adjustment made by our inversion
to the CO2 combustion scale factors will also apply to the
CO scale factors and vice versa. We can then use a common
combustion scaling term for both species in our state vector
(xCombust). We do not account for the atmospheric CO2 pro-
duction from the oxidation of CO and other reduced carbon
species (Suntharalingam et al., 2005). Our state vector also
includes four scale factors for lateral boundary transport of
each species (as described above). For CO we also include
two scale factors to the state vector for the chemistry terms
(xChem

co ), describing the secondary production of CO from
the oxidation of methane and non-methane volatile organic
compounds. The two scale factors reflect differences in their
emission distributions and atmospheric lifetimes. The CO2
and CO state vectors are described as

xco2 =
(
xTrans

co2 ,xBio
co2,x

Combust
)
, (10)

Atmos. Chem. Phys., 24, 10773–10791, 2024 https://doi.org/10.5194/acp-24-10773-2024
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xco =
(
xTrans

co ,xChem
co ,xCombust

)
. (11)

For our first two approaches, we assume an a priori uncer-
tainty of 20 % (relative standard deviation) for the combus-
tion scale factors (xCombust). We use an a priori uncertainty
of 50 % for the non-combustion scale factors (xBio

co2) and 5 %
for the atmospheric transport and chemistry scale factors.
These are informed estimates based on our previous work,
e.g. Feng et al. (2017). For our non-combustion and combus-
tion scale factors, we generate error covariances for nearby
grid cells that exponentially decay with increasing distance.
Our method for generating the error covariance matrix based
on these uncertainties is described in detail in Appendix A.

We acknowledge that the assumption of 100 % error cor-
relation for CO2 and CO combustion emissions is likely to
be a gross overestimate, but it serves as an illustrative upper
limit for our calculations. For example, we may underesti-
mate CO emissions due to an underestimate of incomplete
combustion activities, and this will not translate to the same
underestimate in CO2.

For our third approach (TNO CO2 : CO), we test this as-
sumption by solving for the CO2 and CO combustion scaling
terms separately:

xco2 =
(
xTrans

co2 ,xBio
co2,x

Combust
co2

)
, (12)

xco =
(
xTrans

co ,xChem
co ,xCombust

co

)
. (13)

We call this our TNO approach because we use estimates of
the uncertainties in the TNO emission inventory to create our
error covariance matrix (Super et al., 2024). We increase the
provided uncertainties by a factor of 3 to make them more
comparable with our other simulations. This results in a mean
grid-scale CO2 combustion uncertainty of 18 %, though there
is greater variability in grid cell uncertainties compared to
our other approaches. We expect higher correlation between
CO2 and CO gridded emissions in regions where the same
spatial product (e.g. road network maps) is used to distribute
emissions for both species and that spatial product has high
uncertainties. The spatial products and how they are used to
distribute air pollutant emissions are described by Kuenen et
al. (2022).

3 Results and discussion

First, we describe the comparison between our a priori and
a posteriori model simulations against observations. We then
report our a posteriori CO2 fluxes for Europe and its con-
stituent countries and the UK.

3.1 Inversion performance

Our a priori CO2 emissions are already consistent with data
from the five relevant TCCON sites (locations shown in

Fig. 1; Pearson correlation coefficient R = 0.87) and in situ
(R = 0.76) and satellite (R = 0.84) observations. The model
has a small, positive relative mean bias compared to TCCON
(0.7 %) and a very small bias compared to in situ and satel-
lite observations (0.2 %). Table A1 reports a statistical sum-
mary of the model–observation comparisons. The satellite in-
versions show improvement for the model–satellite fit (R =
0.92–0.95), as expected, and the model–in situ fit (R = 0.80–
0.82). Similarly, the in situ inversions improve model–in situ
fit (R = 0.83–0.84) and to a lesser extent the model–satellite
fit (R = 0.85–0.87).

In general, including CO and TNO uncertainty estimates
improves the model–observation fit and reduces the mean
bias. For example, the satellite joint CO2 : CO (R = 0.93)
and TNO (R = 0.92) inversions show the greatest improve-
ment in fit with TCCON. The one exception is that the mean
bias compared to TCCON is slightly larger with CO (0.3 %–
0.5 %) compared to CO2-only (0.2 %–0.4 %), a small differ-
ence that is likely a result of introducing the CO : CO2 error
correlation. The TCCON CO2 bias is seasonal (not shown),
with the a priori model showing no bias in July–August and
a positive bias of 1–4 ppm for the rest of the year. The in situ
inversions reduce the mean bias for March–June by 1 ppm,
and this improvement lines up with a reduction in the bio-
sphere sink for these inversions (discussed later). We also
compare our a priori and a posteriori fields with TROPOMI
CO, but the improvement is marginal. The Pearson correla-
tion coefficient between the a posteriori model and in situ
data increases by 4 % for the joint CO2 : CO inversion and
by 5 % for the TNO joint inversion. For a similar comparison
but using satellite data, the correlation coefficient increases
by 6 % for the joint CO2 : CO inversion and by 4 % for the
TNO joint inversion.

We also assess inversion performance by the degree of
uncertainty reduction for the a posteriori CO2 combustion
emission estimates. Table 1 shows a posteriori uncertainties
for our domain-scale CO2 combustion emissions. The reduc-
tions in relative uncertainty achieved at the domain scale for
all inversions are small (6 %–12 %), with the CO2-only and
TNO satellite inversions showing no reduction. The TNO in-
versions show smaller reductions in uncertainty (0 %–6 %)
compared to the joint inversions (8 %–12 %), but they also
start with a lower a priori uncertainty at 1.6 % (relative stan-
dard deviation, RSD= sample standard deviation / sample
mean) compared to 2.4 % for non-TNO a priori uncertain-
ties.

At the national scale, we see the greatest uncertainty re-
duction in CO2 combustion emissions for the top 10 emit-
ting countries when satellite CO observations or in situ CO2
measurements are included and the non-TNO uncertainties
are used (Tables A2 and A3). The average uncertainty reduc-
tions for the joint satellite and CO2-only in situ inversions are
11 % and 9 %, respectively. This is not surprising given the
greater number of observations provided by these two plat-
forms and increased sensitivity to surface fluxes compared
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Table 1. Average domain CO2 combustion emissions for 2018–
2021.

Mean (Gta−1) RSDa (%)

Emission Changea

A priorib 4.9 2.4
TNO a priorib 4.9 1.6
Satellite

CO2-only 4.9 – 2.4
Joint CO2 : COc 4.6 H 2.1
TNO CO2 : COc 4.8 – 1.6

In situ
CO2-only 4.8 H 2.2
Joint CO2 : CO 5.0 N 2.2
TNO CO2 : CO 4.9 – 1.5

a The arrows indicate the change in the mean from the a priori emission
estimate. Downward-pointing arrows show a decrease, the upward-pointing
arrow shows an increase, and dashes show no change. RSD stands for relative
standard deviation. b The a priori uncertainty labelled as “A priori” is for the
CO2-only and joint inversions, so we also include the a priori uncertainty for the
TNO inversion. c The joint and TNO satellite inversions only include July
2018–December 2021. The a priori combustion emission for this period is
4.8 Gt a−1, so we show no change for the TNO a posteriori emissions.

to OCO-2. Including in situ CO observations in the inver-
sion does not improve the national-scale uncertainty reduc-
tion. Because we use lower a priori uncertainties in the TNO
inversion (national scale 2 %–10 % RSD) compared to the
other inversions (6 %–14 % RSD), fewer countries have re-
duced uncertainties for the TNO inversion, though a posteri-
ori uncertainties are reduced in the Netherlands (2 %) for in
situ and satellite observations compared to a priori uncertain-
ties (3 %).

3.2 Emission estimates for the UK and mainland Europe

Table 1 shows our mean domain-scale (includes the UK and
mainland Europe) combustion emissions for 2018–2021. The
inversions show a small decrease or no change from the a pri-
ori emissions (4.9 Gta−1), except for the joint satellite and in
situ inversions that show a larger decrease (4.6 Gta−1) and an
increase (5.0 Gta−1) from the a priori emission estimates, re-
spectively. Figure 3 shows that the joint satellite inversion de-
creases combustion emissions year-round for all years, with
the greatest decreases in winter. The TNO satellite and in
situ and CO2-only in situ inversions also show decreases in
the winter and early spring (Figs. 3 and 4), providing more
confidence in this scaling down of emissions.

In contrast, the joint in situ inversion is higher than the a
priori values for all months and all years (Fig. 4). This pat-
tern is not reflected in our other inversion approaches and
is likely, in part, due to the model underestimating the fine-
scale variability in CO compared to what is measured at some
in situ sites combined with the use of a common scale factor
for both CO and CO2, leading to an over-correction upward
of combustion emissions. For example, we find that remov-

ing a single site close to an urban region in northern Italy
(Ispra ICOS site) reverses the sign of scaling in the region
from an increase to a decrease. The disagreement between
satellite and in situ CO2 : CO inversions is less pronounced
for the TNO inversions because the separation of CO2 and
CO in our state vector prevents the CO underestimates from
heavily influencing the CO2 combustion emissions.

Figure 3 shows a slight (1 %) decrease in mean a priori
combustion emissions from 2018 to 2021, and all satellite
and in situ inversion results show a similar trend (Figs. 3
and 4). The mean a priori non-combustion (biogenic) CO2
sink shows a slight increase (1 %) for 2018–2021, and the
inversion results show a similar (satellite; Fig. 3) or greater
increase (in situ; Fig. 4) in the CO2 sink. Figure 4 shows the
monthly mean biogenic CO2 sink is weakened for the in situ
inversions, mostly in summer, whereas Fig. 3 shows almost
no change in the sink for the satellite inversions (also listed in
Table A4), indicating that the CO2 in situ observations, due
to the coverage and sensitivity they provide, are needed for
constraining biogenic flux estimates.

The differences between a posteriori and a priori annual
emissions for all inversions except the joint satellite inversion
are not statistically significant and remain within the 1σ un-
certainties of the a priori estimate. The inter-annual trends are
also smaller in magnitude than the a posteriori uncertainties,
making it difficult to assess if CO2 combustions in Europe
have decreased from 2018 to 2021. For the joint satellite and
in situ inversions, we assumed that CO was a strong tracer
for CO2 combustion emissions on this regional scale by us-
ing a common scale factor, but we find that this assumption
leads to more extreme, likely unrealistic, divergence from the
a priori emission estimates, in disagreement with the other
inversion results. This reflects the difficulties of using CO as
a tracer for CO2 combustion emissions at regional scales and
the importance of error characterization.

3.3 National-scale emission estimates

Figure 5 shows national CO2 combustion emissions for the
top 10 emitting countries in our European domain (also listed
in Tables A2 and A3). Germany is the highest emitter, with
an a priori emission of 821 Tga−1. Most inversions show
a decrease in Germany’s emissions (717–806 Tga−1), ex-
cept for the in situ joint inversion, which shows an increase
(830 Tga−1), and the CO2-only inversion, which shows lit-
tle change from the a priori estimate (819 Tga−1). The other
top emitting countries, including Poland, the UK, France,
Italy, Spain, Belgium, the Czech Republic, the Netherlands,
and Romania, show emission decreases for the satellite joint
(3 %–17 %) and TNO (0 %–4 %) inversions. The in situ CO2-
only and TNO inversions generally show only small changes
(< 1 %) in national emissions except for a 4 % national emis-
sion decrease in the Netherlands and Belgium for the CO2-
only inversion.
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Figure 3. Annual and monthly mean European CO2 combustion and non-combustion emissions inferred from satellite inversions for 2018–
2021. The non-combustion emissions include biogenic and non-combustion anthropogenic emission sources. The top row (a, b) shows annual
mean CO2 flux estimates by inversion type, with errors bars showing the 1σ errors except for the a priori errors which are shown as a shaded
region. The bottom row (c, d) shows monthly mean fluxes for 2018–2021. The TNO and joint inversions only include July 2018–December
2021 for combustion and 2019–2021 for non-combustion. Please note the differences in the range used for the y axes.

Figure 4. The same as Fig. 4 but for in situ inversions.

The joint inversions show the largest changes in national
emissions but in opposite directions. In contrast, the TNO
inversions show smaller changes from the a priori emission
estimates (in part, due to the lower a priori uncertainties) and
better agreement, including agreement in Germany where

there is greater divergence from the a priori estimate (2 %
decrease for both TNO inversions).

Despite the national-scale disagreements for some inver-
sions, we find regional corrections to combustion emissions
are consistent for all inversions. Figure 6 shows that the pop-

https://doi.org/10.5194/acp-24-10773-2024 Atmos. Chem. Phys., 24, 10773–10791, 2024



10782 T. R. Scarpelli et al.: Using satellite data to verify combustion emission estimates of CO2

Figure 5. Annual mean a priori and a posteriori CO2 combustion emissions by country for satellite (a) and in situ (b) inversions. We show the
top 10 emitting countries in our European domain with emissions averaged over 2018–2021. The TNO and joint satellite inversion averages
do not include dates prior to July 2018.

Figure 6. Annual mean CO2 combustion emissions difference (a posteriori minus a priori) for satellite (a–c) and in situ (d–f) inversions,
2018–2021, shown at the native model resolution of 0.25°× 0.3125°. The TNO and joint satellite inversion averages do not include dates
prior to July 2018.

ulated North Rhine-Westphalia region in western Germany
shows a posteriori CO2 combustion emission estimates are
smaller than a priori values for all inversions. The TNO and
CO2-only inversions show mixed corrections in Poland, with
TNO inversions showing the best agreement. Most inver-
sions, including both TNO inversions, show an increase in
emissions near Milan and Vienna, but over other major cities

like Paris, Madrid, and London there is less agreement in the
sign and magnitude of the emissions changes.

The differences in the joint inversions are due to contrast-
ing corrections to CO emissions that carry over into the CO2
emissions. Figures A1 and A2 show that the in situ joint in-
version shows decreases for high-emitting regions in Europe
for winter and spring, but this is mostly offset by large emis-
sion increases in summer and fall. In contrast, the satellite
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Figure 7. As Fig. 5 but for non-combustion CO2 flux estimates. The TNO and joint satellite inversion averages do not include 2018. The
non-combustion emissions include biogenic and non-combustion anthropogenic emission sources.

Figure 8. As Fig. 6 but for non-combustion CO2 flux estimates. The TNO and joint satellite inversion averages do not include 2018. The
non-combustion emissions include biogenic and non-combustion anthropogenic emission sources.

joint inversion shows decreases for all seasons. For the TNO
inversion, there is less disagreement between the seasonal
emissions corrections for CO2, but there are disagreements in
CO corrections. Figure A3 shows the CO corrections for the
TNO inversion generally occur at the national scale, and we
know there is low error correlation between the two species
at the national scale (Super et al., 2024), so it is not surprising
that these corrections do not carry over to CO2. The improve-
ment in the agreement between our a posteriori CO emissions
and TROPOMI and in situ CO measurements, relative to our

a priori emissions, is larger than for the similar compari-
son using CO2. This reflects the larger assumed CO errors.
A posteriori CO estimates agreed better with these measure-
ments for the joint CO2 : CO and the TNO inversions, with
the TNO inversion performing slightly better.

Figure 7 shows national non-combustion (biogenic) emis-
sions for the countries in Fig. 5. All countries show a net
sink, with France having the largest net sink. The in situ in-
versions tend to decrease (lessen) the CO2 sink for all coun-
tries and reduce uncertainties. Figure 8 shows the spatial pat-
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tern in the flux changes is consistent for all in situ inver-
sions. In contrast, the national CO2 biogenic fluxes show lit-
tle change from the a priori emission estimates for the satel-
lite inversions, highlighting the importance of in situ CO2
observations for constraining biogenic flux estimates. For all
inversions, the CO2 sink in northern Germany is strength-
ened (more negative fluxes) and it is weakened in southern
Germany and Switzerland, though there are conflicting cor-
rections in surrounding regions such as France and north-
ern Italy. These disagreements may be due to the differing
observing capacities with satellites having seasonal limita-
tions due to snow and clouds. We find low a posteriori error
correlations between national-scale combustion and biogenic
fluxes (mostly R < 0.1, except for Germany R =−0.2), in-
dicating that the disagreement in in situ and satellite a pos-
teriori biogenic fluxes will not carry over into combustion
emission estimates.

4 Conclusions

We find that using CO2 satellite observations from OCO-2
alone cannot reproduce a posteriori European CO2 fluxes in-
ferred from the European in situ CO2 measurement network.
The satellite observations (CO2-only) do not show signifi-
cant combustion emissions changes from our a priori esti-
mates, whereas when we use in situ CO2 or CO2 and CO
satellite observations, we see greater divergence from the a
priori emissions. This is likely due to in situ data being more
sensitive to emissions and to coverage provided by the cur-
rent generation of satellites being insufficient to significantly
update the state vector. We find that the in situ network is
still essential for constraining biogenic fluxes, though we
also find low correlation between combustion and biogenic
fluxes, indicating that our inability to constrain the biogenic
flux estimate using satellites does not prevent the estimation
of combustion emissions at the national scale using satellite
observations.

All our inversions indicate that CO2 combustion emissions
for regions of Germany are overestimated in winter, and most
inversions show this overestimate extends to other countries
in Europe. We also find that the in situ inversions show a
smaller summertime European CO2 sink, which is not shown
for the satellite inversions. We find that the existing observa-
tional networks are not able to significantly reduce the errors
for our European or national emission estimates to the extent
necessary for distinguishing inter-annual emission trends that
represent only a few percent of total emissions.

When using CO as a tracer for CO2 combustion emissions
in our inversion system, we find that our interpretation of in-
version results is highly dependent on the assumptions of a
priori error correlation between CO and CO2. The use of a
CO : CO2 inversion system can potentially improve our abil-
ity to track CO2 combustion emissions provided we have
well-characterized error correlations between the two species

which may require broad measurement-based studies to de-
termine the error correlations specific to a source and region.
This suggests that the increase in observational capacity for
CO2 and co-emitted trace gases promised by the Copernicus
CO2 Monitoring (CO2M) satellite mission has the potential
to improve our ability to constrain national combustion emis-
sion estimates provided that the error correlations for CO2
combustion emissions and the co-emitted species are strong
and well characterized using empirical data.

In general, the improvements in model–observation fit are
small, and we do not see a significant reduction in uncer-
tainties compared to our a priori estimates. This is expected
because we have extensive knowledge about sector emis-
sions that underpin these regional inventories, reflected in
the small uncertainties associated with combustion emission
estimates across the UK and mainland Europe. The use of
CO observations and TNO error estimates leads to better
agreement between satellite and in situ inversions and the
best model–observation fit, though including CO does not re-
duce the model bias compared to TCCON and likely reflects
the need for in situ CO2 observations for reducing biases re-
lated to biogenic fluxes. Despite the sensitivity of our a pos-
teriori emission estimates to the choice of a priori CO2 and
CO uncertainties, the joint and TNO satellite inversions per-
form similarly when compared to TCCON. This highlights
the need for not only further satellite observing capacity but
also improved ground-based networks for evaluating satel-
lites and the usefulness of including co-emitted species ob-
servations.

Appendix A: Description of an a priori ensemble
generation

For the a priori ensemble perturbations that represent our
state vector (xbn for the nth ensemble member), we gener-
ate an ensemble of scale factors based on the desired er-
ror statistics, described in Sect. 2.3. For the combustion and
non-combustion scale factors, we solve for scale factors on a
0.5°× 0.625° resolution grid (double our nested model res-
olution). Each ensemble member is then a grid of perturba-
tions that we will apply to our emissions grid. To generate
the ensemble members, we first generate an error covariance
matrix (P):

P= P′ ·
(
e−

D
100 ·P′

)
,

where P′ is a diagonal matrix with the variance for each state
vector element along its diagonal. Covariance between grid
cells is based on the spatial proximity between each grid cell
and its neighbor, with distances between grid cells repre-
sented by the matrix D. The influence of neighboring grid
cells decreases with distance following an exponential decay
with a length scale of 100 km, assuming isotropy.

We then perform a Cholesky decomposition on P. We gen-
erate each a priori ensemble member by applying a random
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perturbation vector with mean zero and standard deviation
equal to 1 (η) to the decomposed matrix (L) and adding 1
(which is the assumed a priori mean of all ensemble mem-
bers):

xbn = 1+L · η.

The TNO emissions inventory is constructed by allocating
national emissions to a grid using a spatial map of activity
data (e.g. a population map), so the uncertainty in the grid-
ded emission estimate is a combination of the uncertainty in
the national emissions and the uncertainty in the spatial prod-
uct used to distribute emissions. We use uncertainty estimates
for the national emissions, uncertainties for the spatial prod-
ucts, and estimates of the correlation of uncertainties for the
two species to generate an ensemble of gridded emissions
by sector, following a Monte Carlo approach. This method
is described in Super et al. (2024). We use the emissions en-
semble to generate an error covariance matrix (P) and follow
the steps outlined in the main text.

Table A1. Fit of a priori and a posteriori modelled CO2 compared to observations for 2018–2021a.

Correlation coefficient Relative mean bias (%)

In situ TCCONb Satellite In situ TCCON Satellite

A priori 0.76 0.87 0.84 0.2 0.7 0.2
Satellite inversions

CO2-only 0.81 0.90 0.92 −0.2 0.4 −0.1
Joint CO2 : CO 0.80 0.93 0.95 −0.2 0.5 < 0.05
TNO CO2 : CO 0.82 0.92 0.95 −0.1 0.5 < 0.05

In situ inversions
CO2-only 0.83 0.85 0.85 −0.4 0.2 −0.2
Joint CO2 : CO 0.84 0.85 0.86 −0.3 0.4 −0.1
TNO CO2 : CO 0.84 0.86 0.87 −0.3 0.3 −0.1

a We use the Pearson correlation coefficient and relative mean bias (the means of the a posteriori and a priori
difference divided by the a priori emission estimates) as measures of fit. b Five sites are within our domain (Fig. 2),
including Bremen (Germany), Karlsruhe (Germany), Nicosia (Cyprus), Orléans (France), and Paris (France).

Table A2. Annual mean national CO2 combustion emissions (Emis; Tga−1) and relative standard deviations (RSD; %) for 2018–2021
satellite inversions.

Country Country abbreviation Prior CO2-only Jointa TNOa,b

Emis RSD Emis RSD Emis RSD Emis RSD PRSD

Germany DEU 821 7 819 7 717 6 806 6 6
Poland POL 361 9 362 9 336 8 358 5 5
United Kingdom GBR 351 9 352 9 335 8 345 5 6
France FRA 342 6 343 6 327 5 338 2 2
Italy ITA 326 7 325 7 291 6 314 5 5
Spain ESP 242 6 242 6 233 5 239 4 4
Belgium BEL 137 14 137 14 116 13 136 4 4
Czech Republic CZE 113 11 113 11 102 10 111 3 3
Netherlands NLD 112 13 112 13 93 12 112 2 3
Romania ROU 97 8 97 8 95 8 93 10 10

a The satellite inversions that include CO only show means for July 2018–December 2021. b The a priori uncertainties for TNO differ from the CO2-only
and joint inversions, so we list the TNO a priori uncertainties (PRSD) as well. The higher a posteriori error for Romania is due to the error inflation factor
used in the sequential inversion.
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Table A3. Annual mean national CO2 combustion emissions (Emis; Tga−1) and relative standard deviations (RSD; %) for 2018–2021 in
situ inversionsa.

Country Country abbreviation CO2-only Joint TNO

Emis RSD Emis RSD Emis RSD

Germany DEU 796 6 830 6 802 6
Poland POL 360 8 380 8 361 5
United Kingdom GBR 353 8 356 8 352 6
France FRA 342 5 353 5 342 2
Italy ITA 327 6 336 6 328 5
Spain ESP 243 6 243 6 243 3
Belgium BEL 132 13 139 12 137 4
Czech Republic CZE 112 10 119 10 113 3
Netherlands NLD 107 12 112 12 112 2
Romania ROU 97 8 98 8 97 9

a Only the a posteriori emissions are shown. The a priori emissions and uncertainties are listed in Table A2.

Table A4. Domain mean CO2 non-combustion emissions for 2018–2021a.

Mean (Gt a−1) RSD (%)

A priori −3.0 14
Satellite

CO2-only −3.0 14
Joint CO2 : COb

−3.0 14
TNO CO2 : COb

−3.0 14
In situ

CO2-only −2.8 14
Joint CO2 : CO −2.8 14
TNO CO2 : CO −2.8 14

a The non-combustion emissions include biogenic and non-combustion
anthropogenic emission sources. b Joint and TNO inversion satellite
results only include 2019–2021. The a priori non-combustion flux is
the same for this period (−3.0 Gt a−1).

Figure A1. Seasonal mean a posteriori and a priori CO2 combustion emissions difference for satellite inversions for 2018–2021. The
inversions including CO satellite observations do not include emissions differences prior to July 2018.
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Figure A2. Same as Fig. A1 but for in situ inversions.

Figure A3. Same as Fig. A1 but for CO in satellite and in situ inversions.
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