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Abstract. With the increased need for renewable energy, new offshore wind farms are being
developed at an unprecedented scale. However, as the costs of offshore wind energy are still too
high, design optimization and new innovations are required for lowering its cost. The design
of modern day offshore wind turbines relies on numerical models for estimating ultimate and
fatigue loads of the turbines. The dynamic behavior and the resulting structural loading of
the turbines is determined for a large part by its structural properties, such as the natural
frequencies and damping ratios. Hence, it is important to obtain accurate estimates of these
modal properties. For this purpose stochastic subspace identification (SSI), in combination with
clustering and statistical evaluation methods, is used to obtain the variance of the identified
modal properties of an installed 3.6MW offshore wind turbine in idling conditions. It is found
that one is able to obtain confidence intervals for the means of eigenfrequencies and damping
ratios of the fore-aft and side-side modes of the wind turbine.

1. Introduction
With an increasing awareness that the world cannot sustain the ever growing use of fossil fuels
on the long run, a transition has started towards the use of renewable energy sources. Wind
energy has great potential of meeting this sustainable energy need, where especially offshore
wind energy resources appear to be suited for generating large quantities of wind energy. Other
than their onshore relatives, offshore wind farms generate significantly less public opposition,
which is often due to noise, visual pollution and the already intensive use of the land itself.

Unfortunately, the development and construction of large scale offshore wind farms is not
yet economically viable without subsidy schemes from governments. In order for offshore wind
energy to become one of the main energy sources of the future, significant efforts need to be
made for lowering the cost of offshore wind power. Part of this cost-saving should be realized
by lowering the capital expenses, for instance by optimizing the structural designs of offshore
wind turbines and by eliminating undesired over-conservatism in the design.

In the design of wind turbines there are strong assumptions made on the individual damping
contributions from soil, hydrodynamic and structural damping. As the aerodynamic damping
directly follows from the (nonlinear) aerodynamics in the aero-elastic models used for design
and analysis, this is not set as a specific input variable, but rather follows from the operational
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conditions and applied aerodynamic models. Due to the uncertainties on the actual values of the
individual damping contributions, conservative estimates are used, that are often lumped into the
structural damping ratios of the structural model of the wind turbine. With these conservative
assumptions in the design phase, it could be the case that the actual system is significantly
over-designed. Therefore, research has to be done for finding the true parameters of the actual,
installed, offshore wind turbine. With better knowledge of the true system parameters, future
designs can be less conservative, which may lead to lower overall costs. In addition, lifetime
extensions and/or upgrades can potentially lower the cost of electricity of existing wind farms.

An interest has been developed, over the last couple of years, into estimating the structural
parameters of offshore wind turbines using large sets of measurement data obtained from
actual installed offshore wind turbines (OWTs). Classical experimental techniques, such as
Experimental Modal Analysis (EMA) [1], are seldom used as they require that one measures the
input forces to the system, such that the transfer functions of the system can be determined.
It’s not hard to imagine that it is physically impossible to measure the exact input forces on a
structure as large and complex as an offshore wind turbine. Not to mention that these forces
actually follow from a complex interplay between structure, wind and waves.

Hence, generally two experimental approaches, used to experimentally obtain modal
properties of an OWT, can be distinguished. Firstly, by forcing a stop of the turbine and
quickly pitching the blades of the turbine, the trust force is removed, thereby obtaining an
inverse step-function type of excitation [2, 3]. Obviously, the input is not a perfect inverse
step, as one has to take into account the maximum pitch speed and the fact that the turbine
is still excited by unknown aero- and hydrodynamic forces. Secondly, one can accept the fact
that there are unknown inputs and go for an “output-only” identification, using Operational
Modal Analysis (OMA) methods [4, 5, 6, 7, 8], an idea that was already used over twenty years
ago on a vertical axis onshore turbine [9]. However, a number of assumptions are made in
these approaches, such as a linear-time-invariant system and white-noise excitation, which are
in practise only partly met.

A novel approach is presented in this paper, in which an operational modal analysis (OMA)
technique, based on stochastic subspace identification (SSI), is combined with automated
clustering techniques and statistical analysis of the results, in order to obtain the confidence
intervals of the means of the eigenfrequencies and the corresponding damping ratios.

Firstly, the different methods that are combined are briefly discussed in section 2. Secondly,
the measurment data obtained from the Burbo Bank wind farm and some pre-processing steps
are discussed in section 3. This is followed by a presentation of, and discussion on, the obtained
results in section 4. Finally, from the results a number of conclusions are drawn in section 5.

2. Operational modal analysis, clustering and statistical analysis
2.1. Operational modal analysis and stochastic subspace identification
The Stochastic Subspace Identification method is an evolution of the Subspace Identification
(SI), which is widely used in system and control engineering. It is able to find numerically reliable
state-space models (with a predefined model order) for dynamic systems directly from measured
data. In fact, it can be shown that unbiased estimates are obtained if one has an infinite amount
of data points [10]. As the identification is performed in presence of measurement and system
noise, the so called SSI Past Outputs Multivariable Output-Error StatesPace (PO-MOESP)
method is used for this purpose, as was also done in [8].

One of the main features of this method, and the reason for using it here, is that one is able to
improve the identified model by combining multiple data sets obtained in similar conditions, as
is depicted in figure 1. Due to continuously changing environmental conditions (as is the case for
wind turbines) it is virtually impossible to get a single, long enough, measurement with constant
conditions. Hence, by using multiple short measurements with similar conditions, one is able
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to use the different data batches to get the “best” possible identified model. These methods

Measured:
N samples

Identification step 
(SSI PO-MOESP)

Model (A,C)

Figure 1: Multiple data sets are used to estimate a single model using the PO-MOESP method.

are available in the LTI System Identification Toolbox [11] developed at the Delft Center for
Systems and Control, which was for that reason also used in this research. As the purpose of the
current paper is not to outline the SSI method, and its variant that was used for this research,
the reader is referred to [12, 13, 10].

2.2. Applied approaches for obtaining confidence intervals
In earlier work, presented in [8], a statistical analysis was performed by evaluating the variance
of the eigenfrequencies and associated damping ratio’s over the different identified model orders.
However, using different model orders for obtaining an estimate of the variance of the results
is not the best approach imaginable. This is due to the fact that one is in fact comparing
different models obtained from the same data, instead of comparing similar models identified
from different batches of data. Hence, the former can be interpreted as a convergence study into
the model order of the identified models.

This work employs two different methods for obtaining the desired statistical results. Firstly,
use is made of a bootstrap-method in order to estimate the variance of the system parameters
as seen in [14] and discussed in section 2.2.1. Although the bootstrap is a precise method, it is
not guaranteed to be accurate, which means that a biased result might be found. The second
approach taken uses multiple data sets, where use is made of a so-called leave-one out analysis.
This allows to find estimates of the confidence interval, while still taken as much data as possible
into account for the identification step, as is discussed in section 2.2.2.

2.2.1. Bootstrapping approach
In the bootstrapping approach applied here (see figure 2), a subset of the available measured

time series (i.e. P samples, as depicted in the figure) corresponding to a specific set of
environmental and operational conditions are used to identify the best model possible, as was
briefly discussed in section 2.1. Using the identified model, one is able to synthesize new time
series of “measurement” data (synthesized samples), using a random noise excitation source.
Note that one can synthesize as many samples as desired, with the desired “measurement” length,
as the identified model is a Linear-Time-Invariant (LTI) model and hence, one no longer has to
be aware of changing environmental and operational conditions. By performing an identification
for all generated data samples (assuming n samples: 1 ≤ l ≤ n), one obtains n × s identified
models (Al,m, Cl,m state space matrices), where m (2 ≤ m ≤ s) defines the model order. In
order to find the poles and modes of these identified models, the eigenvalue problems are solved.(

Al,m − λ̃l,m,kI
)
x̃l,m,k = 0

φ̃l,m,k = Cl,mx̃l,m,k,
(1)

where φ̃l,m,k denotes the kth mode and λ̃l,m,k the associated pole. By comparing the poles
obtained from sample l for the different model orders, the physical (i.e. stable) poles and modes
(λl,m,k, φl,m,k) can be separated from the noise poles, as is discussed in section 2.3.1. Now,
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as only the poles corresponding to a certain model order (m = 40) are used for the statistical
analysis, one ends up with n sets of modes and poles (Λl, Φl). The clustering step is discussed
in more detail in section 2.3.2. Note that one can determine the eigenfrequencies and modal
damping ratios direct from the complex poles [15]. Now, by determining the mean and standard
deviation within the Fore-Aft and Side-Side clusters one can easily compute the confidence
intervals of the means of the eigenfrequencies and corresponding modal damping ratios.

Subset 
measured:
P samples

Synthetic 
sample

Synthetic 
sample

Synthetic 
sample

Identification step 
(SSI)

Identification step 
(SSI)

Identification step 
(SSI)

Eigenvalue 
analysis

Selection of stable 
poles

Selection of stable 
poles

Selection of stable 
poles

Clustering of poles
Statistical 
evaluation

Confidence 
intervals

Eigenvalue 
analysis

Eigenvalue 
analysis

Identification step 
(SSI)

Model (A,C)
Synthesize 

samples

Λ1, Φ1 Λ2, Φ2 Λn, Φn

Figure 2: Flowchart of the applied Bootstrapping approach.

A great advantage of the bootstrapping approach is that (in theory) one only requires a
single measurement to perform the statistical analysis. Obviously, the limited amount of data
will affect the quality of the model identified, which could thus introduce a bias in the results.

2.2.2. Leave-one-out analysis
The leave-one-out approach is visualized in figure 3, where one can clearly see that the second

part of the procedure is equal to the second part of the bootstrap procedure (see figure 2), hence
for the explanation on this part the reader is referred to section 2.2.1. The first steps in the
approach are different though. Firstly, instead of identifying one single model from all available
data batches, n subsets of data batches (N −M samples) are selected randomly from the full
set. Subsequently, the identification step, using the SSI PO-MOESP method, eigenvalue analysis
and selection of stable poles (as described in section 2.2.1) are performed for all these n subsets.
By subsequently applying the hierarchical clustering (section 2.3.2) and statistical analysis, the
confidence intervals for the mean of the damping and eigenfrequencies can be obtained.

A clear downside of this approach is that one requires large amounts of data in order to have
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Measured:
N samples

Leave-one-out-
analysis

N-M 
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N-M 
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N-M 
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Identification step 
(SSI)

Identification step 
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Identification step 
(SSI)

Eigenvalue 
analysis
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Selection of stable 
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Selection of stable 
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Clustering of poles
Statistical 
evaluation

Confidence 
intervals

Eigenvalue 
analysis

Eigenvalue 
analysis

Λ1, Φ1 Λ2, Φ2 Λn, Φn

Figure 3: Flowchart of the approach based on the leave-one-out analysis.

sufficient subsets (i.e.) samples for the statistical analysis. The advantage however, is that the
method is able to find unbiased results.

2.3. Automated clustering of modal results
Clustering methods are used for two reasons. Firstly, a clusterings algorithm is applied on
the stability plot, in order to identify the physical poles from the mathematical or noisy
poles. Secondly, clustering is needed to identify similar poles which come forward out of the
identification routines. In this research two clustering methods have been applied.

2.3.1. Selection of stable poles
The first clustering (or selection) method applied is the Moving window, which is applied to

find the stable poles from the stability plot of a single data sample as is shown in figure 4. Here
the frequencies of the identified poles are shown for the different model orders. For each of the
“tails” in the plot the mean of the poles is determined, after which it is checked whether the
pole at each model order falls within a certain range w.r.t. to this mean.

2.3.2. The hierarchical clustering method
The second method is the hierarchical clustering method, this method is used for identifying

and binning similar poles (and modes) from the identifications performed on different data
batches, thereby enabling the statistical analysis using the method proposed in [16]. The distance
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Figure 4: Example of a stability diagram obtained from measurement data acquired at an
average wind speed of 1.7 m/s. Note that the damping values are shown in percentage of
critical. (source: [8])

norm used in the hierarchical clustering method presented in [16] is adjusted to correct for the
closely spaced frequencies of the identified poles. By squaring the modeshape similarity in this
distance norm, more emphasis is put on differences in mode shapes. The adjusted distance norm
is found in Eq. (2).

di,j =
|fi − fj |
fj

+ (1−MACi,j)
2 , (2)

where di,j denotes the distance between poles i and j, fi, fj denote the eigenfrequencies and the
MAC denotes the Modal Assurance Criterion, which shows the correlation between modeshape
i and j by means of an indicator that can take a value between 0 (no correlation) and 1 (perfect
correlation) [17]. Note that the clustering is performed by collecting poles which are “close” to
each other (i.e. below a certain predefined tolerance: di,j < tol) in a cluster.

3. Measurement data from the Burbo Banks Wind Farm
Firstly, it is introduced from which wind farm and turbine the used measurement data is
obtained. In addition to this, a brief introduction to the different measurement channels that
were available is given and the pre-processing steps before the identification are discussed.

3.1. Turbine # 16 in the Burbo Banks wind farm
The data obtained from the idling Burbo Bank turbine number 16 (BB16) are used in this
paper. The Burbo Bank windfarm, owned by DONG Energy, is an operational offshore wind
farm of the west coast of England, close to Liverpool in the Irish sea. It consists of 25 Siemens
SWT-3.6-107 turbines, each with a rated power of 3.6 MW and equipped with a rotor that has a
diameter of 107m. The wind farm has been inaugurated on 18 Oktober 2007 and has ever since
been providing electricity for about 80 thousand households. The site, its location and BB16
are shown in figure 5. It was chosen to use the data from turbine number 16 as it is equipped
with additional instrumentation for monitoring and analysis purposes. Considering the position
of the wind farm it is reasonable to expect that the wind and the wave excitations are mainly
from the west side, which is the oceanic side of the wind farm. The available information for
the sea conditions indicate a typical wave period of Tw = 7− 10[s] with an averaged significant
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Figure 5: Location of the Burbo Banks offshore wind farm directly of the coast of Liverpool,
United Kingdom (left), where the measurement data was obtained from turbine 16 (indicated
on the right).

wave height of Hw = 5[m]. Maximum waves height of Hmax = 10[m] are registered in extreme
conditions. As a consequence the highest wave excitations are expected in the frequency range
of fw = 0.1− 0.15[Hz].

3.2. Selection of measurement data
Several sensors were available on the offshore wind turbine. Firstly, a bi-directional accelerometer
was installed in the back-end of the nacelle. In addition a number of strain gauges at the tower
top, which measure the bending moments and the torsional moment, and strain gauges at the
tower bottom, that measure the bending moments, were available.

The measurement data from these sensors is sampled at 25[Hz] and stored. As this wind
farm has already been operating for a couple of years, large amounts of data are available for
analysis. Using the synchronized measurements of the generator speed, several blocks where
found where the turbine is idling. The turbines can be in idling mode if the wind speeds are too
low, or due to planned maintenance and/or system malfunctions, therefore measurement data
in different environmental conditions could be extracted from the database. Note that for the
identification results presented, data has been filtered out for average wind speeds between 0
and 5 m/s and pitch angles ≥ 78◦ and only data from the bi-directional accelerometer has been
taken into account.

4. Results on test turbine
For both the leave-one-out and the bootstrap method, set out in section 2, the resulting
eigenfrequencies and damping ratios corresponding to the first two modes of the idling turbine
are shown in figures 6a and 6b and table 1. The distribution of the identified eigenfrequencies
and damping values for the Fore-Aft modes are visualized using the boxplots in figure 6a. Similar
for the Side-Side modes, the results for both methods are shown in figure 6b. From these figures
it is clear that a very narrow spread is found in case of the eigenfrequencies, for instance all
the samples for the Fore-Aft mode are within a band of ±2.5% in the case of the multi-sample
analysis.

Note that in order to make the distinction between the two modes one must perform the
clustering as was discussed in section 2.3. Also note that number of identified poles within
each cluster does not coincide with the number of data sets. This indicates the difficulty of
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Table 1: Resulting mean µ? and standard deviation σ? of the (normalized) eigenfrequencies ω
[-] and damping ratios ζ in logarithmic decrement [-] for the Fore-Aft and Side-Side modes.

Fore-Aft µω [-] σω [-] µζ [-] σζ [-] nr points
Bootstrap 0.9679 0.0113 0.2083 0.0708 470
Multi-sample 1.0000 0.0078 0.1617 0.0360 455

Side-Side µω [-] σω [-] µζ [-] σζ [-] nr points
Bootstrap 1.0112 0.0110 0.1772 0.0737 418
Multi-sample 0.9973 0.0137 0.2317 0.0510 463

automatically clustering the modes, as one expects to find one Fore-Aft and one Side-Side mode
from each data set. Thereby showing that outliers have already been eliminated during the
hierarchical clustering process.
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(a) Fore-Aft mode
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Figure 6: Identified normalized eigenfrequencies [-] and damping ratios in logarithmic decrement
[-], for both bootstrap and multi-sample analysis, clustered to Fore-Aft and Side-Side modes.

Table 2: 95 % Confidence intervals for the mean values of the normalized eigenfrequencies ω [-]
and damping ratios ζ in logaritmic decrement, for both the Fore-Aft and Side-Side mode.

Fore-Aft Fore-Aft
Method µω [-] µζ [-]
Bootstrap [0.9669, 0.9690] [0.2019, 0.2147]
Multi-sample [0.9993, 1.0007] [0.1584, 0.1650]

Side-Side Side-Side
Method µω [-] µζ [-]
Bootstrap [1.0101, 1.0123] [0.1701, 0.1842]
Multi-sample [0.9960, 0.9986] [0.2270, 0.2363]
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The number of iterations used in the bootstrap procedure is chosen such that such that the
number of identified poles within each cluster, for the different identification routines, is within
the same range. This was done such that the two methods could be compared with one another.
The resulting means and standard deviations corresponding to the performed identifications are
shown in table 1. These statistical properties are used to produce the 95% confidence intervals,
as shown in figure 2.

Note that, although the ranges of the confidence intervals listed in table 2 are comparable,
there are clear offsets between confidence intervals obtained using the Bootstrap and multi-
sample approaches. This clearly indicates that both methods show a similar precision, although
not the same accuracy. It is also clear that the offsets between the confidence intervals for the
identified eigenfrequencies are relatively small, whereas they are relatively large for the damping
ratios obtained. This also indicates that it is harder to obtain reasonably accurate estimates of
the damping ratios, than it is to obtain these for the eigenfrequencies.

As was stated in the brief introduction of the SSI method, it can obtain unbiased estimates in
case one uses infinite amounts of data. Note that it is of course practically impossible to collect
and process infinite amounts of data, but as the multi-sample approach used much more data
for obtaining the confidence interval, it can be concluded that this method has generated a more
trustworthy result. Hence, the results from the bootstrap show a clear bias, which is due to the
fact that significantly less measurement data was used in the identification. In conclusion, in
the case that only a small amount data is available, the bootstrap method is able to provide a
reasonable estimate of the spread in damping values and eigenfrequencies obtained. Only for
more accurate results, the number of data sets should be increased in the identification routine
and a multi-sample approach is to be advised.

5. Conclusions and recommendations
Firstly it was found that, due to the fact that the modes of interest are closely spaced, both in
terms of frequency and damping, more emphasize has to be put on the mode shape correlation
in the hierarchical clustering. Nonetheless, the number of data points in the clusters were lower
than the total amount of samples used. Hence, the clustering methods and/or distance norm
applied are to be improved in order to accurately cluster all modes and enable an accurate,
efficient and fully automatic processing of the identification results.

Secondly, when comparing the results from the multiple sample analysis to the bootstrap
approach, it is clear that the spread found in the multiple sample analysis is of similar precision
as that of the bootstrap results. Next to this, it was found that the accuracy of the multi-sample
analysis over the bootstrap result is higher. This could be explained by the fact that all data
samples where used in the multiple sample approach and only a subset of the data available
was used to update the initial identification performed in the bootstrap analysis. Nonetheless it
should be noted that the bootstrap is a precise method, but it is not guaranteed to be accurate,
which means that a biased result might be found, as was the case here.

It is shown that one is able to find the confidence interval for the mean of the damping ratios
of the first two modes of the wind turbine. Note that for the eigenfrequencies the obtained
spread in results is very small, thereby indicating that one is able to accurately estimate the
eigenfrequencies, whereas improvements are to be made for the estimation of the damping ratios.
It is believed that by vastly increasing the number of measurements used for the analysis,
together with a more precise selection of the different operational conditions (in terms of for
instance wind speeds, operational states and/or pitch angle), the differences in operational
conditions within the data used can be minimized. This is believed to reduce the spread in the
results found.

Future work will be to perform these analyses for all possible operational conditions, thereby
obtaining a mapping between damping ratios and eigenfrequencies on the one hand and the
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operational conditions on the other, such that these results can be used for validating and/or
updating of aero-elastic design models. Following this approach, one can start identifying the
assumptions which lead to over-conservatism in design, such that these lessons can be taken into
account for future wind farms. At the same time, by taking into account the actual structural
properties of installed wind turbines, reassessments of their lifetime can be performed.
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