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Abstract

The recurred idea of developing multi-rotor wind turbines has led to the need of more accurate surrogate
wake models which allow for a fast annual energy production (AEP) calculation and further understand-
ing of the aerodynamic power losses of multi-rotor wind turbines.

The present thesis develops a surrogate wake model of a multi-rotor-two turbine validated against
computational fluid dynamics (CFD) simulations of type RANS-AD. The outcome is a superposition model
of an analytical representation of the wake which base function coefficients are stored in look-up tables
as a function of the wind inflow conditions affecting the turbine. The derived surrogate model is able to
predict the overall wind farm efficiency with more than 90% accuracy while compared to the RANS-AD
model.

Towards the end of the thesis, a comparison between a single-rotor wind farm of 18 V29 turbines and
a multi-rotor wind farm composed by nine 2R-V29 turbines (hypothetical turbine) is evaluated through
RANS-AD simulations within the same wind-farm area. The energy ouput showed to be highly dependent
on the wind-farm geometry, but the wind direction average suggest that 5% more energy yield is obtained
from the multi-rotor-farm for velocities below rated speed.
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1
Introduction

Wind is a vital energy source to meet future energy needs while mitigating the effects of climate change
and ensuring energy security. It is a profitable renewable resource which is expected to keep on develop-
ing substantially all over the world.

Energy security concerns caused by Russias invasion of Ukraine have motivated countries to increas-
ingly turn to renewables such as wind and solar to reduce reliance on imported fossil fuels, whose prices
have spiked dramatically. Global renewable power capacity is now expected to grow by 2 400 GW over the
2022-2027 period, an amount equal to the entire power capacity of China today, according to [IEA, 2022].
This massive expected increase is 30% higher than the amount of growth forecasted in 2021, highlighting
how quickly governments have thrown additional policy weight behind renewables. Actual geopolitical
events in Europe have led to ambitious renewable energy targets, which account for almost 95% of the
increase in global power capacity before 2026 [IEA, 2022]. Meeting these targets demands a substantial
increase in renewable capacity in the near future, including in wind energy. This not only implies the
planning and installation of new wind farms, but also the design of more efficient ones.

Figure 1.1: Vestas 4R-V29 multi-rotor wind turbine [van der Laan et al., 2019].

The earliest concept of multi-rotor wind turbine (MRWT) dates back from 1874 where Danish multi-
rotor-two turbines were used to pump water [Verma, 2014, Baungaard, 2019]. A MRWT has several wind
turbine rotors mounted on a single support structure as seen in Figure 1.1. The initial motivation for
making multi-rotors appeared in the difficulty of making very large blades due to technology limitations,
this was overcome by modern glass composites and thus the multi-rotor idea was left aside until recently
[Verma, 2014]. Nowadays, the long blades dimension are rising manufacturing costs and limiting their
transport to be maritime exclusive. Therefore, MRWT are of interest due to two particular benefits: their
shorter blades and their faster wake recovery.

1
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Regarding the blade size, the current generation wind turbines are up-scaled into multi megawatt
range in terms of output power. However, the energy benefit from the turbine is offset by the increased
mass and cost. 18 MW wind turbines are now feasible with rotor diameters up to 260 m, according to
[Loz, 2023]. The question is, how much bigger can wind turbines get realistically? One concept worth con-
sidering, and the one that is the subject of this thesis, is to have more than one rotor on a single support
structure. Such turbines could offer the advantage of standardization, mass production, transportation
and ease of installation.

Regarding the faster wake recovery benefit, multi-rotor-turbines have shown to generate higher tur-
bulence intensity in the near wake, which triggers a faster recovery of the wake [van der Laan et al.,
2019], thus allowing for the turbine downstream to operate under a higher wind speed, thereby limiting
wake losses. Hence, the multi-rotor concept allows for higher energy efficiency and wind farms where
turbines are closer together, consequently increasing the energy density of the wind farm.

Even though the multi-rotor wind turbine concept has existed for a long time there is an absence
of multi-rotor analytical models. Therefore, it is necessary to count with an accurate analytical model
to allow a fast AEP calculation and multi-rotor wind-farm optimization; this being the first and main
objective of the present work:

Conceive an engineering model to represent the wake of a two-rotors wind turbine.
A two-rotors wind turbine is defined as having one tower and two nacelles at the same hub-height,

they are also referred as MR2 turbines. Then, the industrial partner, Vestas® , suggested a second
research question which complements the study of [van der Laan and Abkar, 2019], formulated as:

What is the power output difference between a wind farm with N MR2 turbines and a wind farm with
2N single rotor turbines if the total wind farm area and the rotor-type were to be kept equal?

In order to tackle both objectives, the thesis is structured as follows: the present chapter introduces
key concepts and the literature review of existing engineering wake models, chapter 2 explains the CFD
setup, governing equations and used meshes. Then, chapter 3 conceives a surrogate model based on
approximating the hub height wake profile of a single MR2 turbine with chosen base functions and storing
their coefficients in look-up tables. Thereafter, chapter 4 obtains a method to merge the single MR2 wakes
obtained previously. Afterwards, chapter 5 tests the developed surrogate model in a wind-farm scenario
and compares it to engineering models that are currently used within the industry. Then, chapter 6
investigates a particular case of the second research question, since it compares the power output of a
wind farm with 18 single rotor turbines with a layout of nine MR2 turbines. Finally, the whole thesis is
concluded in chapter 7.

1.1. Global and local coordinate systems
Two Cartesian coordinate systems are used along the present report, a global coordinate system (x, y, z)
which is located at the centroid of the simulated wind farm and a local coordinate system (x̂, ŷ, ẑ). Both
z = 0 and ẑ = 0 planes are coincident with the top of the aerodynamic roughness height z0, which is
defined as the height with null mean velocity as seen in Figure 1.2.

(a) Local coordinate system.

  

(b) Global z component which is equivalent to
the local ẑ component. Courtesy of Mads

Baungaard.

Figure 1.2: coordinate system description
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1.2. Self-similarity
Since the main objective of the present project is to develop an engineering model, some analytical models
will be presented along the way and thus it is necessary to understand the concept of self-similarity.

A flow quantity, Φ, is self similar if the shape is the same in any scale [Pope, 2000]. Considering
a turbine operating at a constant thrust coefficient CT and subjected to a turbulent flow with constant
ambient turbulence intensity at hub height at hub height, I∞. Some existing analytical wake models
define the velocity deficit as a function of the downstream distance from the turbine x̂ and the radial
distance from the turbine’s horizontal axis r̂ as:

Φ(x̂, r̂)= U∞−Uw(x̂, r̂)
U∞

= ∆U
U∞

, (1.1)

where U∞ is the inflow velocity and Uw is the wake velocity at a given (x̂, r̂) distance from the turbine.
Defining the scaled variable:

ξ= r̂
σ(x̂)

, (1.2)

where σ is the characteristic wake width which is a function of the downstream distance from the turbine
(x̂). Then, the velocity deficit Φ(x̂, r̂) is self-similar if it can be expressed as the multiplication of two
independent functions, F1 and F2, that depend on x̂ and ξ respectively, as:

Φ(x̂,ξ)=F1(x̂)×F2(ξ). (1.3)

Therefore, if we sample the wake at any given downstream distance, the wake will conserve its shape.

1.3. State of the art
In this section, the state of knowledge in the domain of wake velocity deficit, turbulent intensity and
wake superposition will be established by revising the existing literature. This will be the starting point
to build up the methodology that will lead to the aim of the present work, to characterize the wake of a
double rotor wind turbine (MR2).

The chapter is structured as follows, subsection 1.3.1 introduces the atmospheric boundary layer,
subsection 1.3.2 presents the existing engineering or analytical wake models for the velocity deficit of an
horizontal axis wind turbine and subsection 1.3.4 presents the analytical models for the added turbulence.

1.3.1. Atmospheric Boundary Layer structure
The atmospheric boundary layer (ABL) is our main wind resource located in the lower region of the
troposphere. The physics of the ABL is influenced by: geostrophic winds, aerodynamic roughness height
z0, Coriolis effects and thermal conditions.

Figure 1.3: wind speed distribution and regions of the ABL [Satyam and Bin-Khalid, 2019].

As seen in Figure 1.3, the ABL is divided in three zones defined by [Kaimal and Finnigan, 1994] as:

• The laminar layer: is the region directly in contact with the earth which is defined by the rough-
ness height z0 and highly dominated by viscous effects. Assuming a constant shear stress τ equal
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to the wall shear stress τw = √
uτ/ρ, where uτ is the viscous velocity, by dimensional analysis we

get:
z+ = u+, (1.4)

where z+ = zuτ/ν, u+ = u/uτ, u is the mean velocity of the first vertical cell element which center’s
distance to the wall is z [Pope, 2000], ν is the kinematic viscosity and uτ is the friction velocity
defined as: uτ = ρτ2

w. Thus, within this viscous sub-layer (laminar layer) the velocity varies linearly
with the distance from the wall. This relationship agrees with the experiments for z+ < 5 [Sumer
and Fuhrman, 2020]. Therefore, the height of the laminar layer δl is defined as

δl = 5
ν

uτ
, (1.5)

which is much smaller than the aerodynamic roughness length z0.
• The surface layer: which typically accounts for 10% of the ABL where the log-wind profile is

valid. The latter can be derived through dimensional analysis assuming that the shear stress is
still constant τ≈ τw, and neglecting viscous and thermal effects, thus obtaining

u+ = 1
κ

ln
(

z+ z0

z0

)
, (1.6)

where κ is the Von Kármán constant [Pope, 2000].
• The Ekman layer: is the top zone of the ABL, which is mainly driven by the geostrophic winds

that are governed by pressure gradients and Coriolis forces.

Furthermore, the thermal stability will affect the velocity and turbulence of the ABL. There are three
different cases of thermal stability: stable, neutral and unstable. The thermal conditions may vary as a
function of the daytime, cloud condition and sun albedo. In a stable atmosphere the vertical variation of
temperatures tend to reduce the turbulence, while in an unstable condition the turbulence is increased.
For a neutral condition the temperature has no effect on the turbulence. These aspects of the thermal
stability are characterized by the potential temperature θ which is defined as:

θ = T + gz
Cp

, (1.7)

where T is the air temperature, g the acceleration due to gravity, z the height and Cp the specific heat of
the air under constant pressure. Thus, the thermal effects are defined as:

• Stable if ∂θ
∂z > 0

• Neutral if ∂θ
∂z = 0

• Unstable if ∂θ
∂z < 0

Within the scope of this work, a neutral atmospheric condition will be considered in order to focus on the
wind shear generated turbulence.

Wind profile of a neutral atmospheric surface layer
The neutral atmospheric surface layer (ASL) hypothesis defines a logarithmic wind profile
[Kaimal and Finnigan, 1994] described for our selected coordinate system1 as:

U(z)= uτ

κ
ln

(
z+ z0

z0

)
, (1.8)

where z0 is the roughness height, κ= 0.4 is the Von Karman constant.

1.3.2. Analytical models of the wake velocity deficit
Several analytical wake models have been used to predict the velocity deficit within wind farms due to
their simplicity and low computational cost. Starting from inviscid models that employ the 1D axial
momentum theory and vortex cylinder models to derive the Betz limit and so estimate the wake deficit
[Hansen, 2008]. Then, the load distribution on the rotor and velocity deficit was refined by applying blade
element momentum (BEM) theory and vortex systems models [Glauert, 1935, Branlard and Gaunaa,
2015].

1If z=0 were taken at the ground level instead of the top of the roughness height z0, then the log-profile would be U(z) =
uτ
κ ln

(
z

z0

)
.
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Figure 1.4: Schematic of the Jensen velocity deficit model. Image from [Bastankhah and Porté-Agel, 2014].

Top-hat model
Figure 1.4 shows one of the pioneering analytical model, the Jensen top-hat profile proposed by [Jensen,
1983], which is only based on the conservation of mass and assumes a uniform velocity deficit of the wake:

∆U
U∞

= U∞−Uw

U∞
= 1−√

1−CT(
1+ 2kwakex

D0

)2 , (1.9)

where U∞ is the freestream velocity, Uw the wake velocity, CT the thrust coefficient, kwake is a constant
called the rate of wake expansion, D0 the rotor diameter and x is the downwind distance from the turbine.

A top-hat model derived from both the mass and momentum conservation equations is then proposed
by [Frandsen et al., 2006], where the normalized velocity deficit is expressed as:

∆U
U∞

= 1
2

(
1−

√
1−2

A0

Aw
CT

)
, (1.10)

where A0 is the rotor area (located at x = 0) and Aw(x) is the wake area. Jensen assumed A0 = Aw(x = 0),
however Frandsen assumes Aw(x = 0)=βA0 where β is a function of CT as

β= 1
2

1+√
1−CT√

1−CT
. (1.11)

Gaussian model
Since many experiments and research studies observed a self similar Gaussian like behaviour of the
velocity deficit of the wake of a turbine [Chamorro and Porté-Agel, 2009], an axis-symmetric Gaussian
far-wake model was proposed by [Bastankhah and Porté-Agel, 2014], where the velocity deficit is defined
as:

∆U
U∞

= CG(x̂/D0)×exp
(
−1

2

(
r̂/D0

σG

)2)
, (1.12)

where x̂ is the axial distance from the turbine, σG is the characteristic wake width (standard deviation of
the Gaussian) and r̂ is the radial distance from the rotor’s horizontal axis.

As seen, the Gaussian model express the velocity deficit as the product of the maximum velocity deficit
CG(x̂/D0) and a shape function that depends on r̂/(D0σG) thus being self-similar.

Expressing Equation 1.12 in Cartesian coordinates and replacing CG and σG by the functions derived
in [Bastankhah and Porté-Agel, 2014], we get

∆U
U∞

=

1−
√√√√√1− CT

8
(
k∗ x̂

D0
+ε

)2

×exp

−1
2

(
ŷ

D0

)2 +
(

ẑ
D0

)2
)(

k∗ x̂
D0

+ε
)2

 , (1.13)

where x̂, ŷ, ẑ are the streamwise, lateral and vertical coordinates based on the local coordinate system of
the turbine respectively. The wake growth is defined by σ= k∗ x̂/D0 +ε, where ε= 0.25

√
β and k∗ is the

wake growth rate which is linearly proportional to the turbulence intensity I.
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Figure 1.5: Gaussian profile (n = 2, blue color) and super-Gaussian (n = 5, green color) profiles for two wake width σ values.

Super-Gaussian model
So far, no analytical wake model has been exclusively developed for multi-rotor wind turbines, but some
models meant for single rotor turbines might be able to represent multi-rotor wakes as well. Since multi-
rotor wakes tend to a top-hat shape in the near wake, we will then introduce the super-Gaussian wake
model.

Figure 1.5 shows high order Gaussian functions that resembles to a top-hat in the center of the wake
but decays as a Gaussian in its extremes. The high-order Gaussian model proposed by [Blondel and
Cathelain, 2020] describes the velocity deficit as:

∆U
U∞

= CSG

(
x̂

D0

)
×exp

[
−1

2
(r̂/D0)n

σ2
SG

]
, (1.14)

where CSG is the maximum velocity deficit, σSG is the wake width and n is the Gaussian order. It is
expected for n to smoothly converge to the Gaussian profile in the far wake. This event, when the wake
profile converge to a self-similar Gaussian, symbolises the transition to the far wake.

1.3.3. Velocity deficit superposition models
This section presents four wake superposition models since most commonly wind turbines are part of a
whole wind farms and thus interact with neighbouring wakes.

Analogous to the point source pollutant dispersion, the following linear superposition method pre-
sented by [Lissaman, 1979] is proposed:

U∞−Ui

U∞
=

N∑
k

U∞−Uk,i

U∞
, (1.15)

where N is the total number of wind turbines, U∞(z) is the freestream velocity, Ui is the velocity at the
turbine i and Uk,i is the velocity deficit of turbine k at the location of the turbine i. Later, a superposition
of energy deficit is proposed by [Katic et al., 1986] as

U∞−Ui

U∞
=

√∑N
k (U∞−Uk,i)2

U∞
. (1.16)

By doing so, Katic expect to “conserve the mean kinetic energy deficit” which is a debatable argument due
to the turbulent dissipation of mean kinetic energy.
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Since the two superposition methods presented so far are referenced to U∞, the accumulation of many
wakes can lead to nonphysical negative velocities. Thus [Voutsinas et al., 1990] proposed the following
linear superposition model

U∞−Ui

U∞
=

N∑
k

Uk −Uk,i

U∞
, (1.17)

where Uk is the velocity immediately upstream the turbine. Analogously, [Niayifar and Porté-Agel, 2016]
proposed the following quadratic superposition

U∞−Ui

U∞
=

√∑N
k (Uk −Uk,i)2

U∞
, (1.18)

where they also make use of the local velocity Uk at the turbine k.

1.3.4. Analytical models of the wake added turbulence
Most wake deficit models presented make use of the wake width σ which depends itself on the turbulence
intensity I. Thus, it is indispensable to also model the added turbulence intensity in order to model the
wake velocity deficit.

The added turbulence intensity I+ is calculated as proposed in [Crespo and Hernandez, 1996]

I+ =
√

I2 − I2∞, (1.19)

where I∞ is the ambient turbulence intensity which depends on the vertical distance z due to the atmo-
spheric boundary layer profile (ABL), and I is the turbulence intensity in the wake of the studied turbine.
Since an Eddy viscosity model is employed to approximate the Reynolds stress tensor, the turbulence is
assumed to be isotropic and thus the wake turbulence intensity, I, is computed as

I =

√
1
3

(
u′u′+v′v′+w′w′

)
U∞

, (1.20)

where the primed variables refer to the oscillating velocity component of Reynolds’ decomposition. Re-
placing the Reynolds stress components with the turbulent kinetic energy, k = 0.5u′

iu
′
i, in Equation 1.20

we get

I =
√

2
3 k

U∞
, (1.21)

where U∞(z) is the mean inflow velocity. The present thesis will refer to the turbulence intensity I as the
total turbulence intensity of Equation 1.21.

Analogous to the velocity deficit, the added turbulence model proposed by [Crespo and Hernandez,
1996] adopts a top-hat shape and follows this proportionality

I+ ∝ 1
x̂C1

, (1.22)

where C1 > 0 is a model constant.
A similar top-hat model proposed by [Frandsen, 2007] follows the function

I+ =
(
C2 +C3

x̂√
CT

)−1

, (1.23)

where C2 and C3 are model constants.
A self-similar double Gaussian profile proposed by [Ishihara and Qian, 2018] defines the turbulence

intensity I+ on the horizontal plane z = zhub as

I+ = 1
C4(CT )+C5(I0) x̂+C6(CT , I0) (1+ x̂/D0)−2 ×[

k1

(
r̂

D0

)
exp

(
−1

2
( ŷ/D0 −0.5)2

σ2

)
+k2

(
r̂

D0

)
exp

(
−1

2
( ŷ/D0 +0.5)2

σ2

)]
,

(1.24)
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where C4,C5 and C6 are model variables that depend on CT and I∞, and k1 and k2 are variables depen-
dent of the normalized radial position r̂/D0.

Overall, there is no agreement of the axial scaling of the added turbulent intensity I+ ∝ x̂−a, meaning
that the three exposed models all make use of a different a exponent.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
ŷ/D0 [-]
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Figure 1.6: turbulence intensity I profile of a single rotor V29 turbine sampled at hub height (z = zh). RANS simulation run with
U∞ = 8 m/s and I∞ = 8.4% at hub height.

Figure 1.6 shows the wake turbulence intensity I of a single rotor V29 wind turbine sampled at hub
height zh. The profile in the near wake presents two peaks that then merge in the far wake which decays
following a self-similar Gaussian profile as observed by [Kermani et al., 2013, Stein and Kaltenbach,
2019]. Therefore, the following double Gaussian function was proposed by [Lingkan and Buxton, 2023]
to fit the turbulence intensity profile

Iw = C1

(
x̂

D0

)
×exp

[
−1

2
( ŷ/D0 − yc1)2

σ2
1

]
+C2

(
x̂

D0

)
×exp

[
−1

2
( ŷ/D0 − yc2)2

σ2
2

]
, (1.25)

where C1, C2, yc1, yc2, σ1, σ2 are model variables that depend on the downstream position x̂.

1.3.5. Added turbulence intensity superposition methods
The superposition of turbulence intensity (or turbulent kinetic energy or wind speed standard deviation)
has been less studied by the literature. Most of the reviewed papers employ a linear or square summation.
Some other studies [Argyle et al., 2018, Niayifar and Porté-Agel, 2016] have shown positive results by
only considering the turbulence intensity of the immediate upstream turbine wake, as:

I i =
√

I2∞+ I2
+,i, (1.26)

where the turbulence intensity of the wake of the ith turbine, I i, is computed from the ambient turbulence
intensity I∞ and the added turbulence intensity of the turbine itself I+,i.

On the other hand, an empirically based I superposition method proposed by [Wessel et al., 2007]
take into account all of the upstream turbines as:

I i = I∞+
√√√√ N∑

i
I2
+,i, (1.27)

where N is the total amount of wind turbines.
A similar superposition method proposed by [Lingkan and Buxton, 2023] includes the ambient turbu-

lent intensity within the square root as:

I i =
√√√√I2∞+

N∑
i

I2
+,i. (1.28)



2
Simulation setup

The analytical model developed in this project is based on higher fidelity RANS-AD CFD models solved
on EllipSys3D, a finite volume solver of the Technical University of Denmark (DTU) initially developed
by [Michelsen, 1992, Michelsen, 1994, Sørensen, 1995] in FORTRAN, and configured through the python
interface, PyWakeEllipSys (PWE).

As a summary of this chapter, RAND-AD CFD simulations are carried out on EllipSys3D over a flat
terrain with homogeneous roughness length. The turbulence model employed is k-ε- fP [van der Lann
et al., 2015]. The inflow conditions correspond to an atmospheric surface layer of neutral stability.

First, the RANS governing equations are presented for a steady, incompressible and high Reynolds
condition, together with the used turbulence model. Thereafter, the used boundary conditions are pre-
sented with the simulated wind turbines and the final part of this chapter is dedicated to the mesh
parameters and its mesh-independence study.

2.1. Governing equations and turbulence model
Throughout this project we will assume constant density and viscosity of the air. Furthermore, since
the simulated speeds are lower than Mach 0.3, we assume the flow to be incompressible. Thus, our
governing equations consist of one equation for the conservation of mass and three for the conservation
of momentum.

The mass equation can be re-written using Einstein notation as:

∂ui

∂xi
= 0, (2.1)

where ui is the velocity vector and xi is the Cartesian coordinates, both values are dimensionless and have
been normalized with the characteristic velocity U and the characteristic length scale L , respectively,
i.e. ui = ũi/U and xi = x̃i/L , where the tilde denotes the dimensional flow variable.

In a similar way, the momentum equation can be written dimensionless as:

L

UT

∂(ui)
∂t

+ ∂(uiu j)
∂x j

= ( fv)i −
∂p
∂xi

+ 1
Re

∂2ui

∂x j∂x j
, (2.2)

where Re =L U /ν is the Reynolds number, fv is the dimensionless volumetric force
(
fv = f̃vL /

(
ρU 2))

, p
is the dimensionless static pressure

(
p = p̃/

(
ρU 2))

.
Assuming U = L /T , where T is the characteristic time scale, and neglecting the Reynolds number

(since it is based on the rotor diameter, L = D0, which tends to be large), Equation 2.2 can be reformulated
as:

∂(ui)
∂t

+ ∂(uiu j)
∂x j

= ( fv)i −
∂p
∂xi

, (2.3)

which is independent of the Reynolds number. In fact, the Reynolds number is based on the rotor diameter
since the wind turbines are modelled by actuator disks and we are only interested in the larger scales. If
the airflow over the turbine blades were to be resolved, then the chord length would probably be chosen
as characteristic length. Therefore, if all the external forces scale with ρU 2/L and U = L /T then the
Navier-Stokes momentum equations are independent of the characteristic scales of velocity U and length
L [van der Laan et al., 2020].

The full derivation of the governing equations can be found in [Kundu et al., 2015] and the non-
dimensionalization and scaling law used is further explained in [van der Laan et al., 2020].

9
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2.1.1. RANS
Applying the Reynolds average decomposition where we define each time dependent variable ϕ as the
sum of the averaged variable ϕ and a fluctuating component ϕ′:

ϕ(xi, t)=ϕ(xi)+ϕ′(xi, t), (2.4)

then, time averaging the previously defined governing equation and considering steady conditions, we
get the following non-dimensional RANS equations:

∂ui

∂xi
= 0, (2.5)

u j
∂ui

∂x j
+

∂u′
iu

′
j

∂x j
=

(
fv

)
i
− ∂p

∂xi
, (2.6)

where −u′
iu

′
j is the dimensionless Reynolds stress tensor, which will be modeled by the turbulence model.

2.1.2. Turbulence model k-ε- fP
The k-ε- fP model [van der Lann et al., 2015] is an eddy viscosity model introduced to overcome the poor
modeling of velocity gradients areas (i.e. wind turbine wakes) by introducing the turbulence scale limiter
fP to the standard k-ε model, thus limiting the overshoot of turbulent viscosity νt in areas of high shear.

The Reynolds stress tensor −u′
iu

′
j is modeled through the Boussinesq hypothesis as:

−u′
iu

′
j = νt

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
kδi j, (2.7)

where k = 1
2 u′

iu
′
i is the turbulent kinetic energy and νt is the turbulent viscosity which is modeled as:

νt = Cµ fP
k2

ε
, (2.8)

where ε is the turbulent dissipation, Cµ = 0.03 (for a neutral ASL) and fP is defined as a function of the
shear parameter σ:

fP (σ/σ̃)= 2 f0

1+
√

1+4 f0 ( f0 −1)
(
σ
σ̃

)2
, f0 = CR

CR −1
, (2.9)

where the shear parameter, σ, is defined as σ ≡ k
ε

√(
∂ui
∂x j

)2
, and CR = 4.5 and σ̃ = 1/

√
Cµ [van der Lann

et al., 2015].
Moreover, the model adds the two following transport equations:

Dk
Dt

= ∂

∂xi

[(
v+ vt

σk

)
∂k
∂xi

]
+P −ε,

Dε

Dt
= ∂

∂xi

[(
v+ vt

σϵ

)
∂ε

∂xi

]
+ (

Cε,1P −Cε,2ε
) ε

k
, (2.10)

where P = −u′
iu

′
j
∂ui
∂x j

is the turbulent production term and σk,σε,Cε,1 and Cε,2 are empirical constants
defined in Table 2.1 calibrated to describe a neutral atmospheric boundary layer.

Table 2.1: model constants [van der Lann et al., 2015].

Cε,1 Cε,2 σk σε

1.21 1.92 1.00 1.30

2.2. Inflow model of an atmospheric surface layer
The inlet and top patches inflow profiles follow the analytical1 neutral atmospheric surface layer (first
10% of the ABL) in equilibrium with the turbulence model meaning that the inflow profile is a solution of

1PWE also offers the option of first converging the vertical profile on a 1D precursor CFD simulation making use of the same
vertical finite-volume discretization as in the 3D mesh, in order to account for the numerical error and start with a fully evolved
vertical profile [van der Laan and Sørensen, 2017]. However, the present work directly uses the analytical log-law as inflow profile,
thus causing a profile development at the beginning of the simulation.
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the RANS equations. Thus, no thermal effects are taken into account and the velocity profile is dictated
by the adiabatic log-law derived through dimensional analysis:

U = uτ

κ
ln

(
z+ z0

z0

)
, (2.11)

where U is the mean stream-wise velocity, κ= 0.4 is the Von Kármán constant, z0 the roughness length, z
the height and uτ is the friction velocity, defined as uτ =

√
τw/ρ, where τw is the wall shear stress and ρ is

the fluid density. Thereafter, the turbulent kinetic energy k and turbulent dissipation rate ε are derived
from the governing equation ([Sumner and Masson, 2012] for full derivation):

k = u2
τ√
Cµ

, (2.12)

ε= u3
τ

κ(z+ z0)
, (2.13)

where the eddy viscosity coefficient Cµ = 0.03 is adapted for atmospheric applications by [Sørensen, 1995].
The roughness length, z0, is then defined by the reference turbulence intensity, Iref, measured at the

reference height, zref, as follows:

I(z)=
√

2
3 k

U(z)
Equation 2.12−−−−−−−−−−−−−−→ I(z)=

√
2
3

uτ

4
√

CµU(z)
Equation 2.11−−−−−−−−−−−−−−→ I(z)=

√
2
3

1
4
√

Cµ���U(z)
���U(z)κ

ln
(

z+z0
z0

) , (2.14)

Iref(zref)=
√

2
3

κ

4
√

Cµ ln
(

zref+z0
z0

) , (2.15)

z0 = zref

[
exp

(√
2
3

κ

4
√

CµIref

)
−1

]−1

. (2.16)

Hence, the inflow model only needs a reference height zref and a reference turbulence intensity Iref in
order to set z0 [van der Laan et al., 2021].

2.3. Boundary conditions
The inlet and top patches have Dirichlet conditions for the velocity U⃗ , turbulent kinetic energy, k, and the
dissipation of turbulent kinetic energy, ε; and the outlet has a Neumann condition for the same variables.
A periodic boundary condition is applied to the sides (north and south faces of the box-domain) and a
rough-wall condition is assigned to the bottom wall with a uniform roughness length, z0, which is defined
by the inflow I∞ at a given height.

In all cases the yaw is zero, meaning that the flow is aligned with the actuator disk normal vector.

Table 2.2: summary of the flat-box boundary conditions. ZG stands for zero gradient (∇ϕ= 0).

p [-] U [-] k [-] ε [-]

Inlet (west face) and top face ZG Uin(z) kin εin(z)
Outlet (east face) 0 ZG ZG ZG
North and South faces periodic
Bottom face ZG rough-wall k0 ε0

Table 2.2 summarizes the applied boundary conditions on the six faces of the flat-box domain. Do note
that Ellipsys3D models the flow from west (inlet) to east (outlet) and the whole wind farm rotates when
different wind directions are studied. The inlet boundary condition (west face) and top face of the domain
follow a logarithmic profile for a neutral atmospheric condition, which neglects Coriolis forces. Thus, the
velocity is governed by

Uin(z)= uτ

κ
ln

(
z+ z0

z0

)
. (2.17)
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According to the velocity profile, the turbulent kinetic energy is specified as a constant value given by

kin = u2
τ√
Cµ

, (2.18)

while the dissipation of turbulent kinetic energy, ε, is given by

εin = u3
τ

κ(z+ z0)
, (2.19)

and replacing by Equation 2.18, we get

εin =
C0.75

µ k1.5

κ(z+ z0)
, (2.20)

thus, resulting in the following expression for the eddy viscosity

νt = Cµ fP
k2

ε

Equation 2.18−−−−−−−−−−−−−−→
Equation 2.19

νt = fPκ(z+ z0)uτ. (2.21)

Figure 2.1: wall adjacent cells in accordance with Ellipsys reference system [Baungaard, 2019].

The velocity boundary condition is implemented through the wall skin friction, τw, as described in
[Peric, 1985]:

τw = ρu2
τ

Equation 2.17−−−−−−−−−−−−−−→ τw = ρuτ

 U(zp)κ

ln
(

z+z0
z0

)
 Equation 2.18−−−−−−−−−−−−−−→ τw = ρ

[√
kin

4
√

Cµ

] U(zp)κ

ln
(
∆z+z0

z0

)
 ,

(2.22)
where zp is the vertical distance in between the first cell-center and the wall, and ∆z is the height of the
first cell as seen in Figure 2.1. Hence, knowing τw, the velocity at the first cell-center is imposed so as to
comply

τw = (µ+µt)
∂U
∂z

∣∣∣
zn

, (2.23)

where µt is the dynamic Eddy viscosity, and the gradient is computed at the top of the first cell adjacent
to the wall, at height z = zn as per Figure 2.1.

Regarding the turbulent kinetic energy, k, as stated in [Sørensen et al., 2007], it is assumed that the
production of k is in balance with the dissipation of it and that the shear stress in the first cell close to
the wall is constant, thus τw =µ ∂U

∂z −ρu′w′.
The boundary condition of ε at the wall complies with:

ε1 =
u3
τ

κ(zp + z0)

uτ=
√

kin
p

Cµ−−−−−−−−−−−−−−→ ε1 =
k1.5

in C0.75
µ

κ(zp + z0)
, (2.24)
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where the subscript 1 refers to the value at the first vertical cell and zp is the distance from the wall to
the center of the latter cell.

Regarding the wind turbines, each rotor is replaced by stiff permeable disks which input a pressure
jump on the cells of the domain as a function of the averaged speed through the disk itself 〈U〉AD .

2.4. Solver
The RANS equations are solved by EllipSys3D, which is a finite volume flow solver originally developed
by [Sørensen, 1995, Michelsen, 1992] and still under continuous development by [DTU Wind and Energy
Systems, 2023].

The QUICK scheme [Leonard, 1979] is employed to discretize the advection terms of the transport
equations and the second-order-central-difference scheme is used for the diffusion term. The SIMPLE
sequential solving algorithm [Patankar, 1980] is used to solve the three momentum equations, the equa-
tion for k and the transport equation fro ε, while also including the Poisson equation2. Moreover, in order
to avoid a velocity-pressure decoupling, the Rhie-Chow algorithm is used in EllipSys3D [Réthoré and
Sørensen, 2012].

In order to speed up the convergence of the numerical integration process, a grid-sequencing strategy
is used [Michelsen, 1992]. Therefore, first a coarse grid (twice as coarse) simulation will be solved until
all the residuals3 fall below the defined threshold of 10−5 before mapping the solution to the finest grid
and iterate until the residuals fall below the cutoff residual once again. The latter mesh-swap is thus
responsible for the residual jump of Figure 2.2.

The CFD simulations of the present project are considered as converged when all the residuals of the
finest mesh fall bellow 10−5.
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Figure 2.2: residual behaviour of the RANS CFD simulations with a two stages grid sequencing algorithm.

2The Poisson equation is obtained from applying the divergence operator on both sides of the momentum equation and replacing
with the mass conservation equation (∇·U).

3The local imbalance of a conserved variable is computed for each cell of the control volume and the residual in PyWakeEllipSys
is then the L1-norm of all the cells’ imbalance of the studied variable.
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2.5. Wind turbines

0

0

Figure 2.3: front view sketch of the 4R-V29 wind turbine taken from [van der Laan et al., 2019] and the illustrative 2R-V29.

The PyWakeEllipsys (PWE) workflow is tested and validated with the 4R-V29 turbine from Vestas® . The
latter workflow validation can be found in Appendix A. Then, a fictitious wind turbine referred as the
2R-V29 is used as MR2 turbine to derive the wake model and compute the wind farm analysis and its
comparison with single V29 turbines. The 2R-V29 turbine consist of two V29 rotors located on the same
plane and at the hub height: zh = 44.27 m. Both rotors are distanced a distance of 31.02 m (as in the
4R-V29 turbine).

Finally, a single rotor Vestas® V29 turbine with the same hub height (zh = 44.27 m) as the 2R-V29 is
employed in order to address the second research question of the present thesis which aims to study the
power output difference in between a single-rotor wind farm and a multi-rotor-farm where the number of
rotors and total farm-area are conserved.

Table 2.3: technical specification of the 4R-V29 turbine the fictitious 2R-V29 turbine and the V29 turbine used throughout the
project.

Wind turbine 4R-V29 2R-V29 V29

Diameter D0 [m] 29.2 29.2 29.2
Hub height zh [m] 59.5 and 29.04 44.27 44.27
Horizontal distance between rotors axis [m] 31.02 31.02 -
Yaw angle [◦] 0 0 0
Toe-out angle [◦] 0 0 -
Maximum rotation speed [rpm] 41.3 41.3 41.3
Cut-in wind speed [m/s] 4 4 4
Cut-out wind speed [m/s] 25 25 25

2.6. Actuator disk
This project makes use of actuator disks to represent the wind turbines. Therefore, the rotor is replaced
by a permeable stiff disk that introduces both the thrust and tangential forces generated by each wind
turbine as a function of the local flow through the disk. In EllipSys-3D, the actuator disk method is based
on the algorithm described in [Réthoré et al., 2014, Troldborg et al., 2015], where a discrete body force is
represented as pressure jumps on the cell faces.

Based on the AD grid study carried by [Baungaard, 2019], the AD polar grid is discretized with
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Figure 2.4: single rotor V29 turbine performances. The thrust and power coefficients have been normalized by their optimal
values (obtained below rated wind speed) due to confidentiality reasons.

64 elements along the rotor radius (NR = 64) and 64 elements along the azimuthal axis (Nθ = 64) to
distribute both the normal and tangential forces based on the local air velocity and the airfoil data of the
turbine.

The applied method is described as method III in PWE, which takes as input the blade aerodynamic
data: CT (U∞, r), CP (U∞, r) and the tip speed ratio λ(U∞). Additionally, a calibration simulation is run be-
forehand in order to correctly model the forces of the turbines that are operating in the wake of upstream
rotors. For example, when a turbine operates in the wake of another, then the freestream velocity vari-
able, U∞, of the shaded turbine is unknown. Therefore, after the calibration process the CT coefficient
is saved as a function of the average velocity through the actuator disk of the respective turbine, 〈UAD〉,
instead of U∞. Hence, the following scaling is applied:

C∗
T = CT

(
U∞

〈UAD〉
)2

= T
1
2ρA0U2∞

(
U∞

〈UAD〉
)2

= T
1
2ρA0U2

AD

, (2.25)

C∗
P = CP

(
U∞

〈UAD〉
)3

= P
1
2ρA0U3∞

(
U∞

〈UAD〉
)3

= P
1
2ρA0U3

AD

, (2.26)

where T is the thrust, P is the power, ρ is the air density and A0 is the actuator disk area (rotor area).
The calibration simulation consist of one actuator disk which is run through all its wind speed, U∞, range
to then extract 〈UAD〉 and compute C∗

T and C∗
P . Finally, C∗

T , C∗
P and rpm are available in a look up table

as function of 〈UAD〉 and will be accessed by PWE [DTU Wind and Energy Systems, 2023] during the
simulations if the force control flag is activated.

2.7. Mesh
This thesis makes use of structured meshes with a flat terrain of constant roughness whose parameters
are schematized in Figure 2.5. It can include up to two refinement boxes signaled in blue (wind turbine
wake refinement box) and in magenta (wind farm scales refinement box). When different wind directions
are simulated, the mesh is kept unchanged, the wind direction is always aligned with the x-axis, and
the position of the actuator disks is rotated with respect to the wind farm centroid. Thus, the wind farm
rotates with respect to its centroid which coincides with the origin of the mesh coordinate system.
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Figure 2.5: structured grid parameters [DTU Wind and Energy Systems, 2023].

Regarding the turbine wake refinement box, the inner-most refinement box, the grid spacing is de-
noted by ∆1 and the upstream, downstream, side boundaries and height of the box are denoted by m1w,
m1e, m1n,s and mz respectively. PWE also allows for a wind-farm wake refinement box, magenta refine-
ment box of Figure 2.5, which will not be used in this project.

Regarding the higher resolution towards the rough-wall boundary condition of the bottom face, the
first cell height (closest cell to the wall) is defined by z1.

2.7.1. Mesh dependency study
A mesh dependency study is performed for an inflow conditions where the wake deficit is the largest,
hence, at high CT and low turbulence intensity, I∞. The latter case is chosen in order to evaluate different
mesh resolutions and select the coarsest mesh that gives an acceptable error. This is a key process in order
to run cost efficient simulations whose results are mesh independent.

In order to evaluate the worst case scenario, the mesh independence study is run with a 2R-V29
turbine subjected to U∞ = 8 m/s and I∞ = 5% at z = zhub. The used mesh and refined domain are specified
in Table 2.5, except for the number of cells per diameter, NCD = D0/∆1, used within the refinement box,
which effect will be studied in the present section. The variable D0 denotes the diameter of one of the
rotors of the turbine i.e. D0 = 29.2 m for both the single-rotor V29 turbine and the multi-rotor 2R-V29
turbine or 4R-V29.

Grids
The actuator disk (AD) forces are input from a 2D polar grid with a uniform azimuthal and radial dis-
cretization with Nθ elements along the azimuth and NR elements along the radius of the rotor. Then, the
polar grid forces are extrapolated to the Cartesian mesh where the rotor diameter is discretized with NCD
cells in each direction and the grid spacing in the refined domain is denoted as ∆1, hence NCD = D0/∆1.
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Order analysis

Table 2.4: Actuator disk and mesh resolution used for the order analysis.

Grid level (n) NCD = D0/∆1 hn

1 16 1
2 8 2
3 4 4

The same simulation is run on three different mesh resolutions (grid levels) to estimate the error decrease
order when the mesh resolution is increased. Table 2.4 shows the evaluated mesh resolutions.
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Figure 2.6: evaluation of different grid levels for a single 2R-V29 turbine located at x=0, subjected to U∞ = 8 m/s and I = 5% at
hub height.

Figure 2.6 shows the velocity deficit at hub height for the three different grid levels modelled. The
disk averaged velocity deficit 1

A0

∫
∆U
U∞ dA is chosen as the basis for the order analysis, where A0 is the

rotor disk area. Thus, the discretization error ϵn is estimated by the following Taylor expansion:

ϵn =
[

1
A0

∫
∆U
U∞

dA
]

n
−

[
1

A0

∫
∆U
U∞

dA
]

exact
= g1hn + g2h2

n + g3h3
n +O (h4

n), (2.27)

where n is the grid level. Figure 2.7 shows the multi-order analysis for the three evaluated grid levels
and their respective error ϵn compared to the Richardson extrapolation [Richardson, 1911]. For x > 5D0,
the lower the grid level, the lower the error; thus showing a convergence toward the exact solution.

The third grid level (n=1) represents the peak velocity deficit shifted in the axial direction and also
presents the highest error. This explains why in the very near wake, 2D0 < x < 5D0 the coarser mesh
seems to be the most accurate. With a ϵ1 = 13% at x = 5.2D0, despite being the most computational
expensive grid, the n = 1 grid is chosen to run the single MR2 turbine RANS-AD simulations since it
presents an error ϵ1 < 15 % in the down-wind zone of interest (2< x/D0 < 20).
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Figure 2.7: multi order analysis of three grid levels for a single 2R-V29 turbine located at x=0, subjected to U∞ = 8 m/s and
I = 5% at hub height.
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2.7.2. Single multi-rotor turbine simulation
In the case of a single multi-rotor turbine being simulated, a refinement box is used to better capture the
wake of the turbine since the axial velocity and turbulent kinetic energy fields will later be used to fit
the base functions as part of the analytical surrogate model. Based on Figure 2.5, the mesh outer bounds
and the refinement box dimensions are shown in Table 2.5, thus giving an outer domain of 110D0 ×
110D0×50D0 (length × width × height) analogous to the domain used in [van der Laan et al., 2019]. The
described domain results in a blockage ratio for a single 4R-V29 turbine of π/(110×50) = 0.057% and a
blockage ratio of 0.5π/(110×50)= 0.028% for a 2R-V29 turbine.

Table 2.5: Single turbine mesh geometrical parameters normalized by one rotor diameter D.

PWE variable Normalized variable

Outer
domain

grid_radius_D 55
grid_zlen_D 50

First cell height z1 grid_zFirstCell_D 0.5
Grid growth ratio grid_r 1.2

AD polar resolution
Nθ adgrid_ntheta 64
NR adgrid_nr 64

Refinement box
Wake domain

NCD = D0/∆1 grid_cells1_D 16
m1w grid_m1_w_D 3
m1n grid_m1_n_D 5
m1e grid_m1_e_D 20
m1s grid_m1_s_D 5

Height of the wake refinement box grid_zWakeEnd_D 3

2.7.3. Four inline turbines simulations
Regarding the simulation of four multi-rotor turbines in a row with a uniform turbine inter-spacing
S = [3,5,7,9]D0, the mesh outer bounds are expanded to 1000D0 × 1000D0 × 50D0 (length x width x
height) analogous to the domain used in [van der Laan and Abkar, 2019]. The described domain results
in a blockage ratio for an inline row of 2R-V29 turbines of (π/2)/(1000×50)= 3.1×10−3%.

Table 2.6: Four inline MR2 turbines mesh geometrical parameters normalized by one rotor diameter D0.

PWE variable Normalized variable

Uniform turbine inter-spacing S/D0 - [3, 5, 7, 9]

Outer
domain

grid_radius_D 500
grid_zlen_D 50

First cell height z1 grid_zFirstCell_D 0.5
Grid growth ratio grid_r 1.2

AD polar resolution
Nθ adgrid_ntheta 64
NR adgrid_nr 64

Refinement box
Wake domain

NCD = D0/∆1 grid_cells1_D 16
m1w grid_m1_w_D 1.5×S+2
m1n grid_m1_n_D 5
m1e grid_m1_e_D 1.5×S+20
m1s grid_m1_s_D 5

Height of the wake refinement box grid_zWakeEnd_D 3
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2.7.4. Wind farm simulations
This section presents two types of wind-farm layout configuration, a 3×3×MR2 wind farm sketched in
Figure 2.8a and a 18×SR wind farm layout of Figure 2.8b.

A 3×3 wind farm configuration of MR2 turbines of the type 2R-V29 spaced a distance S in between
towers is subjected to different wind directions and wind speeds in order to test the analytical wake model
under non-aligned and partly-overlapping wake conditions.

Then, 18 single rotor wind turbines (18×SR) of the type V29 are located within a square of equal area
than the 3×3×MR2 wind farm of Figure 2.8a with a layout defined according to the packing theory of
congruent non-overlapping circles [Lubachevsky and Graham, 2004].

This last set of 18×SR turbine simulations is studied to answer whether it’s better to locate 18 rotors
as single-rotor turbines or in a MR2 configuration.

(a) 3×3×MR2 wind farm layout. (b) 18×SR wind farm layout.

Figure 2.8: Multi-rotor and single rotor layouts where the total wind farm area, 4S2, and the number of rotors is kept equal.

In order to reduce the CPU demand, the wind farm simulations have been run using 8 cells to dis-
cretize the rotor diameter, NCD = 8, instead of 16. This will result in a maximum of 23% difference of the
velocity deficit in comparison to the Richardson extrapolation as seen in subsection 2.7.1.

Table 2.7: wind farm mesh geometrical parameters normalized by one rotor diameter D0.

PWE variable Normalized variable

Spatial scale parameter S/D0 - [5, 7]

Outer
domain

grid_radius_D 500
grid_zlen_D 50

First cell height z1 grid_zFirstCell_D 0.5
Grid growth ratio grid_r 1.2

AD polar resolution
Nθ adgrid_ntheta 64
NR adgrid_nr 64

Refinement box
Wake domain

NCD = D0/∆1 grid_cells1_D 8
m1w grid_m1_w_D

p
2×S+5

m1n grid_m1_n_D
p

2×S+3
m1e grid_m1_e_D

p
2×S+20

m1s grid_m1_s_D
p

2×S+3
Height of the wake refinement box grid_zWakeEnd_D 3



3
2R-V29 wake and model fitting

This section studies the wake of a single MR2 turbine and fits the different proposed analytical base func-
tions to the MR2 wakes obtained through RANS-AD simulations. First, a set of RANS-AD simulations
of a single MR2 turbine are run for a range of ambient turbulence intensities, I∞, and freestream speed,
U∞, to then map both a double-Gaussian profile and a high order Gaussian model (super-Gaussian) to the
velocity deficit, ∆U /U∞. Furthermore, the super-Gaussian base function is also used to map the added
turbulence intensity, I+, at the hub height plane, z = zh.

Figure 3.1: local coordinate system which origin is located at the base of the turbine of interest.

Throughout the present report, the origin of the main Cartesian coordinate system is located at the
centroid of the studied wind farm, where x is always pointing in the direction of U∞, and z is pointing
upward. Figure 3.1 shows the local reference system which is characterised by (x̂, ŷ, ẑ), and defines spacial
coordinates with respect to the turbine of interest.

First a set of RANS simulations are run for a range of freestream wind speeds, U∞, and turbulence
intensities, I∞, measured at the hub height, zh. Then, for each simulation and axial position, x̂, the
velocity deficit profile, ∆U /U∞, is fitted with both a high order Gaussian function and a double Gaussian

base function. The added turbulence intensity, I+ =
√

I2 − I2∞, on the other hand, is only mapped with
the high order Gaussian base function, since it showed the best fit in comparison to the double-Gaussian
shape and a tetra-Gaussian function. The latter being inspired from the research of [Lingkan and Buxton,
2023] who found that the turbulence intensity of a single-rotor wake adopts a double-Gaussian shape;
ergo the author of the present thesis believed that two rotors, one next to the other, should generate a
turbulence intensity shaped as a tetra-Gaussian function, but no positive results were found while trying
to fit a function with few degrees of freedom (fitting coefficients). Consequently only the super-Gaussian
function is presented and used to fit the added turbulence intensity profile of the 2R-V29 turbine.

21
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Finally, the base function coefficients are stored in look-up tables (LUT) as a function of the wind
conditions: U∞, I∞ and as a function of the local axial distance x̂. Furthermore, the power produced by
the MR2 turbine is also included in the LUT as a function of U∞ and I∞ so as to allow for wind farm
optimizations. The LUT building instructions are summarized in algorithm 2 of section 4.1.

Reynolds-number similarity of the wind farm simulations can be used to reduce the number of itera-
tions by running wind speed flow cases consecutively because only local changes needs to be recalculated
after the first simulation has converged

3.1. RANS of a single MR2
A set of RANS-AD simulations are run with a combination of ambient turbulence intensities,
I∞ = [5, 10, 15, 20, 30]%, and wind speeds1, U∞ = [4, 5, 6, 7, 8, 10, 13, 16] m/s, at hub height for a
single MR2 turbine (2R-V29) standing in the middle of the domain described in subsection 2.7.2. Due to
the Reynolds number independence of the RANS equations explained in section 2.1, it is then not needed
to model all wind speeds in PyWakeEllipSys, but only the ones with different CT , CP and tip-speed-ratio,
λ [van der Laan et al., 2022]. Thus, resolving the time averaged velocity, (U ,V ,W), the averaged pressure,
p, the dissipation of turbulent kinetic energy, ε, and the turbulent kinetic energy, k = 0.5u′

iu
′
i. The wake

turbulence intensity, I, is computed as

I =
√

2
3 k

U∞
, (3.1)

and the added turbulence intensity is calculated as

I+ =
√

I2 − I2∞. (3.2)

Furthermore, the velocity deficit is defined as:

∆U
U∞

= U −U∞
U∞

. (3.3)

Since the analytical model is developed for the hub height plane (z = zh), both the velocity field, U ,
and the turbulent kinetic energy, k, are sampled at hub height.

3.2. Analytical model fitting
From EllipSys3D, we resolve the wake of a single MR2 turbine for a range of U∞ and I∞. In this section
each wake is sampled at hub height for each local axial position ranging from two diameters upstream
the turbine until 50 diameters downstream2 (−2D0 < x̂ < 50D0) and the selected base-functions are fitted
to the wake. Then the function coefficients are saved in a look-up table as a function of the axial position,
x̂, U∞ and I∞.

From the list of models presented in subsection 1.3.2, the following two base functions have shown
the best fit of the velocity deficit ∆U /U∞ profile:

Super Gaussian
∆U
U∞

= CSG ×exp

(
−1

2
ŷnSG

σ2
SG

)
, (3.4)

Double Gaussian
∆U
U∞

= CDG ×
(
exp

(
−1

2
( ŷ−nDG (arm/D0))2

σ2
DG

)
+exp

(
−1

2
( ŷ+nDG (arm/D0))2

σ2
DG

))
, (3.5)

where the arm/D0 variable is the normalized distance from the MR2 centroid to the rotors’ axis; and
CSG , σSG , nSG , CDG , σDG and nDG are function coefficients that are fitted for each x̂ position using the

1The latter wind speeds correspond to a turbine CT = [0.818, 0.813, 0.812, 0.814, 0.811, 0.73, 0.36, 0.184].
2Do note that the refinement box extends up to 20D0 east of the wind turbine as defined in subsection 2.7.2. Hence, we expect a

poorer resolution of the far-wake past this point.
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Trust Region Reflective non-linear least squares algorithm [Branch et al., 1999] built in the python li-
brary scipy.optimize.curve_fit. The outcome of the latter fitting process is illustrated at three downstream
positions in Figure 3.3. It is seen that both functions tend to a second order Gaussian in the far-wake.

The super-Gaussian base function is also used to fit the added turbulence intensity, I+, which is
illustrated at three downstream positions in Figure 3.4. As observed, the I+ also tends to a second-order-
Gaussian in the far-wake.

Therefore, the fitted model coefficient are stored in look-up tables as a function of the local axial
position x̂, and the freestream variables I∞ and U∞ seen by the turbine at hub height zh.

3.3. Power relationship with U∞ and I∞
Since the power produced by a turbine is a quantity of interest used to optimize wind farm layouts, the
power produced by the 2R-V29 turbine is saved in a look-up table as a function of the U∞ and I∞.

Figure 3.2 shows the variation of 〈U〉AD and power extracted from the RANS-AD simulation as a
function of U∞ and I∞. We thus observe that for a given I∞, there is a monotonic growth of the 〈U〉AD
and power with U∞. Figure 3.2b shows the normalized power produced by the 2R-V29 turbine for the
range of U∞ and I∞ used to train the model. The fact that the power is more sensitive to variations of
U∞ than I∞ will later be taken into account in section C.2 to opt for a better accuracy of the wake velocity
model over the turbulence intensity model.
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Figure 3.2: sampled parameters of a single 2R-V29 turbine as a function of I∞ and U∞ at hub height.
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Figure 3.3: velocity deficit, ∆U /U∞, of the 2R-V29 turbine sampled at three different downstream positions for the RANS
simulation and both the fitted super-Gaussian and double-Gaussian models.
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4
Wake superposition model

In chapter 3, the following three sets of function coefficients (C,σ and n) are stored in look-up tables
Ψ(U∞, I∞, x̂) as a function of the axial position x̂ and the ambient conditions I∞ and U∞ at zh:

• The super-Gaussian coefficients that fit the velocity deficit ∆U
U∞ of a single 2R-V29 turbine wake.

• The double-Gaussian coefficients that fit the velocity deficit ∆U
U∞ of a single 2R-V29 turbine wake.

• The super-Gaussian coefficients that fit the added turbulence intensity I+ of a single 2R-V29 tur-
bine wake.

Furthermore, the power output of the single 2R-V29 turbine is stored in an additional look-up table
Ψ(U∞, I∞) as a function of the I∞ and U∞ at zh.

The present chapter derives a wake superposition model in order to represent the accumulated wake
of four aligned 2R-V29 turbines.

4.1. Superposition method
Figure 4.1 sketches the superposition algorithm which following steps are run from the most upstream
turbine, i = 1, gradually moving up to the most down-wind turbine, i = N:

1 Initialize ∆U /U∞ and I+ of the hub height plane, z = zh, as zero.

2 Sample the velocity U∞,1 and turbulence intensity I∞,1 of the two segments1 that result from inter-
secting the 2R-V29 turbine rotors with the hub height plane, and average i.e. U∞,1 = 〈U〉AD,zh,1 and
I∞,1 = 〈I〉AD,zh,1. Both U∞,1 and I∞,1 then represent the freestream ambient wind conditions seen
by the first turbine (i = 1) at hub height.

3 Access the look-up table (LUT) with both U∞,1 and I∞,1 to obtain the produced power, P1, the
velocity deficit, ∆U

U∞,1
, and the added turbulent intensity, I+1 , of this first MR2 turbine. The teal

colored variables represent variables extracted from the LUT.

4 Reconstruct the accumulated wake by linearly summing the velocity deficit as

∆U
U∞

=
1∑

i=1

∆U
U∞,i

U∞,i

U∞
, (4.1)

and the added turbulence intensity as

I = I∞+
√√√√ 1∑

i=1
I2
+,i. (4.2)

5 Move on to the second upstream turbine position (i = 2) to then sample and compute:
U∞,2 = 〈U〉AD,zh,2 and I∞,2 = 〈I〉AD,zh,2.

6 Access the look-up table (LUT) with both U∞,2 and I∞,2 to obtain: P2, ∆U
U∞,2

and I+2 .

1In geometry, a segment is a continuous line bounded in between two defined end-points that contains all the points that are on
the line and in between the end-points.
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7 Reconstruct the accumulated wake by linearly summing the velocity deficit as

∆U
U∞

=
2∑

i=1

∆U
U∞,i

U∞,i

U∞
, (4.3)

and the added turbulence intensity as

I = I∞+
√√√√ 2∑

i=1
I2
+,i. (4.4)

8 etc.

Figure 4.1: graphical representation of the superposition algorithm used to build the accumulated wake of a wind farm composed
of 2R-V29 turbines.
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Both variables U∞,i and I∞,i refer to the freestream atmospheric variables seen by the ith turbine
at hub height. Hereunder, algorithm 1 presents the complete step by step description to construct an
accumulated wake from the set of individual MR2 wakes stored in the look-up tables, Ψ.

Algorithm 1: MR2 wake superposition modus operandi.
input :Look up tables Ψ(I∞,U∞, x̂) generated by algorithm 2, inflow wind conditions and MR2

turbine locations within the wind farm.
output :Accumulated velocity deficit field ∆U /U∞ and added turbulence intensity I+ at z = zh.

1 Initialize the velocity U and turbulence intensity I field with the inflow conditions U∞ and I∞
respectively;

2 Sort the wind turbines WTs by their axial position x;
3 N=0;
4 for WTi in WTs do
5 N=N+1;
6 Sample and compute the freestream wind conditions seen by the MR2 turbine i as:

U∞,i = 〈U〉AD,zh,i and I∞,i = 〈I〉AD,zh,i, where the operator 〈 〉AD,zh,i refers to the average of
the two geometrical segments obtained by intersecting both actuator disks of the ith MR2
turbine with the hub height plane (z = zh);

7 Obtain the velocity deficit ∆U
U∞,i

, the added turbulence intensity, I+i , and the power, Pi, of the

ith turbine from the look-up table: Ψ(U∞,i, I∞,i, x̂);

8 Linearly superpose the velocity deficit as ∆U
U∞ =∑N

i=1
∆U

U∞,i

U∞,i
U∞ ;

9 Superpose the turbulence intensity as: I = I∞+
√∑N

i=1 I2
+,i;

10 end

Since the model only resolves the hub height plane, the sampling methods: U∞,i = 〈U〉AD,zh,i and
I∞,i = 〈I〉AD,zh,i are chosen as representative of the wind turbine operating conditions after having com-
pared three different sampling methods in section C.1. Then, the linear velocity superposition model is
defined after comparing two models: linear sum and the root of squared sum in section C.3. Finally, the
turbulence intensity superposition model is selected so as to better predict the wake velocity, despite over-
predicting the wake turbulence intensity. The latter since the output power of the MR2 turbine is more
sensitive to the velocity than to the turbulence intensity as seen in Figure 3.2b. The complete study of
three different turbulence intensity superposition methods is addressed in section C.2. The fully defined
surrogate model is now tested for an aligned row of four 2R-V29 turbines in section 4.2 and for a 3×3
wind farm in chapter 5.

4.2. Four 2R-V29 turbines inline
The present section tests the fully defined surrogate model for a row of four aligned 2R-V29 wind turbines
with a varying range of turbines inter-spacing, 3D0 ≤ S ≤ 9D0, subjected to a range of atmospheric U∞
and I∞. Table 4.1 presents the sampling and superposition methods used to merge the single wakes,
where the teal colored variables represent variables extracted from the look-up tables.

Table 4.1: surrogate model setup to handle wake superposition. N is the total number of MR2 turbines.

U∞,i sampling method 〈U〉AD,zh,i
I∞,i sampling method 〈I〉AD,zh,i

I+ superposition method I = I∞+
√∑N

i=1 I2
+,i −→ I+ =

√
I2 − I2∞

∆U /U∞ superposition method
∑N

i=1

[
∆U

U∞,i

]
U∞,i
U∞

This section tests two combinations of look-up table surrogate model based on the following functions:

• Super-Gaussian ∆U
U∞ LUT + super-Gaussian I+ LUT

• Double-Gaussian ∆U
U∞ LUT + super-Gaussian I+ LUT
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Both the super-Gaussian LUT model and the double-Gaussian model are compared to the higher fidelity
RANS simulations where two main parameters are selected as representative of the model accuracy:

• the wind farm power, and
• the wake profile at the potential 5th turbine location.

Figure 4.2 shows the normalized power output of the four MR2 turbines obtained through the sur-
rogate models and compared to the RANS simulation for an inflow condition of U∞ = 8 m/s, thus at
maximum loading (CT ). As expected, the wake velocity deficit recovers faster for higher I∞ thus allowing
down-wind turbines to produce more power.

0.0

0.1

0.2

0.3

0.4

s=
3D

0
 P

/P
ra

te
d

I = 5.0 % I = 10.0 %

RANS super-Gaussian double-Gaussian

I = 15.0 %

0.0

0.1

0.2

0.3

0.4

s=
5D

0
 P

/P
ra

te
d

0.0

0.1

0.2

0.3

0.4

s=
7D

0
 P

/P
ra

te
d

1 2 3 4
Turbine N

0.0

0.1

0.2

0.3

0.4

s=
9D

0
 P

/P
ra

te
d

1 2 3 4
Turbine N

1 2 3 4
Turbine N

Figure 4.2: power output normalized by the rated power of each 2R-V29 turbine for an inflow condition of U∞ = 8 m/s as a
function of the inter-spacing distance, S, and the turbulence intencity, I∞, at hub height.

The relative power error of each turbine i is computed as

ERRPi ,model =
|Pi,RANS −Pi,model|

Pi,RANS
, (4.5)

where Pi is the output power of the ith MR2 turbine. Moreover, the whole wind farm relative error is
computed as

ERRWFP,model =
|∑N

i=1 Pi,RANS −Pi,model|∑N
i=1 Pi,RANS

, (4.6)
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where N is the total number of 2R-V29 turbines i.e. N = 4.

Table 4.2: ERRWFP,super-Gauss [%] for
U∞ = 8 m/s at zh.

I∞ [%]
5 10 15

in
te

r-
sp

ac
in

g 3D0 2.0 0.9 4.8
5D0 5.4 2.7 8.0
7D0 3.3 3.3 6.6
9D0 1.3 4.6 4.8

Table 4.3: ERRWFP,double-Gauss [%] for
U∞ = 8 m/s at zh.

I∞ [%]
5 10 15

in
te

r-
sp

ac
in

g 3D0 2.6 0.8 4.7
5D0 5.5 2.6 8.0
7D0 3.9 3.3 6.6
9D0 1.7 4.6 4.8

Table 4.2 shows the relative error of the total wind farm power predicted by the LUT model based
on the super-Gaussian function for ∆U /U∞. Analogously, Table 4.3 shows the relative error for the LUT
model based on the double-Gaussian function. Both models show similar power outputs and thus similar
errors with an average error of approximately 4%. These similarities are expected since both double-
and super-Gaussian velocity deficits tend to a second-order Gaussian function in the far-wake as seen in
Figure 4.3 which shows the velocity deficit profile at an hypothetical fifth turbine location.
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Figure 4.3: velocity deficit profile at the axial position of the potential 5th MR2 turbine. The RANS profile is compared to the
∆U /U∞ LUT model based on the super-Gaussian function and the ∆U /U∞ LUT model based on the double-Gaussian function.
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Figure 4.3 shows the velocity deficit profile at the location of the potential fifth turbine if the inter-
space distance were to be kept equal. It is seen that both super-Gaussian and double-Gaussian models
predict similar wake profiles at this location. Compared to the higher fidelity RANS simulation, there
is an over-estimation of ∆U /U∞ for I∞ = 5% and a slight under-estimation at high I∞ and greater inter-
spaces.

At I∞ = 5% there is an under-estimation of the wake recovery. In order to find out the cause of the
∆U /U∞ over-estimation, the accumulated wake obtained at U∞ = 8 m/s, I∞ = 5% and S = 3D0 (worst case
scenario) is sketched in Figure 4.4. As it is expected, the added turbulence intensity I+ is overestimated
due to the used turbulence intensity superposition selected in section C.2. Therefore, the ∆U /U∞ over-
estimation of the accumulated wake might be due to the velocity deficit superposition method, which may
not be linear in the very near wake2. Similar results were found in [Gunn et al., 2016] where the linear
superposition of single-rotor wakes leads to an overestimation of the velocity deficit.

At I∞ = 15%, the wake ∆U /U∞ is under-predicted for the higher inter-spacing distances i.e. S = 9D0.
The latter, might be attributed to the over-prediction of the wake turbulence intensity which triggers a
faster wake recovery compared to the RANS simulations. This over-estimation of the wake recovery is
also causing the over-prediction of output power seen in Figure 4.2 for I∞ = 15%.

2Very near wake since the distance of 3D0 is accounted from tower to tower, thus there is a minimum physical clearance of 1D0
between rotor tips.
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Figure 4.4: wake of four aligned MR2 turbines distanced 3D0 and subjected to U∞ = 8 m/s and I∞ = 5%. The top row is obtained from RANS simulations, the second row correspond to the ∆U /U∞
LUT model with the super-Gaussian base function and the third row corresponds to the LUT model with the double-Gaussian base function.



5
Multi-rotor wind farm modeling

So far, two combinations of analytical surrogate wake model based on look-up tables have been derived
and compared against higher fidelity RANS simulations of a set of four aligned MR2 turbines modeled
for a range of inter-spacing distances, and a range of U∞ and I∞, where an accuracy greater than 90 %
(in comparison to RANS) has been observed while computing the total output power of the four aligned
turbines.

This chapter aims to test the derived LUT surrogate models in a wind-farm environment for a generic
squared layout of 3×3 MR2 wind turbines of the type 2R-V29. In order to do so, RANS-AD simulations are
run for a range of turbine inter-spacing S = [5,7]D0 subjected to I∞ = 5% and a range of U∞ = [8,10,13,16]
m/s at zh as summarized in Table 5.1. For the sake of shortening the computational time, only the lowest
turbulence intensity, I∞ = 5%, is evaluated and eight cells are used to discretize one rotor diameter
(NCD = 8) within the wake refinement box instead of 16.

The mesh implemented in the present section is described in subsection 2.7.4. To study the influence
from the 360◦ wind directions on the wind farm, we took advantage of the wind farm rotational-symmetric
layout [van der Laan et al., 2022] and thus saved computational time by only modelling a span of 90◦.

Table 5.1: simulated configurations for the 3×3×MR2 wind farm layout.

Inter-spacing S [m] 5D0 7D0
Modelled wind directions [◦] [0, 10, 20, 30, 40, 50, 60, 70, 80] [0, 15, 30, 45, 60, 75]
U∞ [m/s] [8,10,13,16]
I∞ [%] 5

To estimate the performances of the LUT surrogate models in comparison to already existing engi-
neering models applied in the industry, the Park2 model and the turbo-Gaussian-deficit are included in
the analysis.

5.1. Existing engineering wake models
This section introduces two engineering wake models, the PARK2 and the turbo-Gaussian model, both
traditionally implemented in the industry to quickly iterate in between different wind farm designs i.e.
to maximize the power output.

Park2
Park2 is the revised wind farm wake model derived by DTU Wind Energy [Rathmann et al., 2018]. The
model makes use of the classical top-hat velocity deficit profile

∆Ui(x̂)=U∞,i

[
1−

√
1−CT

(
U∞,i

)][
D0

Dwake
i x̂

]2

, (5.1)

where U∞,i is the freestream velocity felt by the ith turbine. Then, CT is the thrust coefficient and D0 is
the turbine rotor diameter i.e. D0 = 29.2 m for the V29 turbine. Moreover, the wake diameter Dwake

i at a
relative distance x̂ from the turbine rotor is defined as

Dwake
i (x̂)= D0 +2kx̂, (5.2)
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where k = 0.06 is the calibrated wake expansion coefficient according to [Rathmann et al., 2018].
When wakes are combined, the local incident wind speed Ui is used to compute each wake deficit, and

the partial overlap of the ith wake upstream of turbine j is taken into account within the linear sum of
the velocity:

U j =U∞−
N+

j∑
i
∆Ui(x̂ j)

Aoverlap
i, j

A0
, (5.3)

where N+
j is the number of rotors located up-wind turbine j, x̂ j is the axial distance from turbine i to

turbine j, Aoverlap
i, j is the overlapping area of the wake i on the rotor j; and A0 is the V29 rotor area

defined as A0 =πD2
0/4 for the present thesis.

Turbo-Gaussian-deficit
Also known as the TurbOPark model, it is based on the Gaussian wind speed deficit of [Bastankhah and
Porté-Agel, 2014] presented in Equation 1.3.2

∆Ui (x̂)=U∞,iCi (x̂)exp

[
− r̂2

2σ2
w,i (x̂)

]
, (5.4)

where x̂ is the axial distance from the local ith turbine’s reference system, r̂ is the local radial distance,
and the characteristic wake width of the ith turbine wake is defined as

σw,i (x̂)
D0

= ϵi + AI∞
β

√(
α+βx̂/D0

)2 +1−
√

1+α2 − ln


(√(

α+βx̂/D0
)2 +1+1

)
α(p

1+α2 +1
)(
α+βx̂/D0

)


 , (5.5)

where α = c1I∞, β = c2I∞/
√

CT,i(U∞,i). c1 = 1.5 and c2 = 0.8 according to [Frandsen, 2007], the wake
expansion calibration parameter A = 0.04 according to [Nygaard et al., 2020], and the initial wake width
at x̂ = 0 is defined as

ϵi = 0.25

1+
√

1−CT
(
U∞,i

)
2
√

1−CT
(
U∞,i

)


1/2

. (5.6)

Finally, the peak deficit variable Ci is defined as

Ci (x̂)= 1−
√√√√1− CT,i

(
U∞,i

)
8

(
σw,i (x̂) /D0

)2 . (5.7)

5.2. Multi-rotor wind farm results
Figure 5.1 shows the RANS and engineering models predicted efficiency of the 3× 3 MR2 wind farm
spaced S = 5D0, subjected to I∞ = 5% and U∞ = 8 m/s at hub height. The left side corresponds to the
modelled 90◦, and the right side contains the same information but symmetrically rotated.

The total efficiency η of the wind farm as a function of the wind speed and wind direction, is computed
as

η(U∞,WD)= 1
N

N∑
i=1

Pi (WD)
Prated

, (5.8)

where N is the total amount of rotors, P is the modelled output power and Prated is the rated power of the
rotor, i.e. the rated power of the Vestas® V29 turbine.

For the sake of brevity, only the most dissimilar case (S = 5D0 and U∞ = 8 m/s at zh) is shown in
Figure 5.1, and the model performances with respect to RANS simulations are compared for S = 5D0 in
Table 5.2. However, the full set of results can be found in Appendix D.
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Figure 5.1: wind farm efficiency as a function of the wind direction for the 3×3 MR2 wind farm spaced S = 5D0 and subjected to
I∞ = 5% and U∞ = 8 m/s at hub height. Results obtained from both double- and super-Gaussian LUT models, Park2 and

Turbo-Gaussian-deficit models, all compared against higher fidelity RANS simulations. The left plot is a zoom of the right plot and
the wind farm layout is shown with cyan dots.

Based on the efficiency, the wind farm power output difference in between the surrogate models and
the RANS model is compared for each wind speed, U∞, as:

Emodel (U∞,WD)=
∑N

i=1 Pmodel,i (WD)−∑N
i=1 PRANS,i (WD)∑N

i=1 PRANS,i (WD)
, (5.9)

where N is the total amount of wind turbines and Pi refers to the power produced by the ith turbine.
Moreover, in order to obtain a global performance of the model, an average over all the RANS-modelled-
wind-directions is computed for each wind speed, U∞, as

Emodel, AVG(U∞)=
∑360◦

WD=1◦
[∑N

i=1 Pmodel,i (WD)−∑N
i=1 PRANS,i (WD)

]∑360◦
WD=1◦

∑N
i=1 PRANS,i (WD)

. (5.10)

Table 5.2: Emodel [%] and Emodel, AVG [%] for the 3×3×MR2 layout with S = 5D0.

Model Double-Gassian LUT Super-Gassian LUT N.O. Jensen Turbo-Gaussian
U∞ [m/s] 8 10 13 16 8 10 13 16 8 10 13 16 8 10 13 16

W
in

d
di

re
ct

io
n

[◦
]

0 -1.1 -0.7 0.2 -0.4 -1.2 -0.8 0.1 -0.3 -20.9 -16.3 -0.9 -3.3 -36.6 -37.1 -28.9 -4.5
10 -2.4 -1.9 0.0 0.2 -2.8 -2.6 -0.5 0.3 -17.3 -14.3 -4.8 -2.3 -16.2 -15.8 -9.6 -2.2
20 -1.3 -1.6 -0.7 0.2 -2.0 -2.4 -0.9 0.2 -14.7 -12.3 -5.3 -2.0 -15.5 -14.1 -6.7 -2.0
30 -0.5 -0.8 -1.1 0.1 -1.4 -1.5 -1.2 0.1 -14.4 -12.2 -5.1 -2.1 -12.3 -10.7 -5.4 -2.1
40 -0.2 -0.5 -1.1 0.2 -0.4 -0.7 -1.1 0.2 -17.3 -14.6 -5.5 -2.1 -15.0 -13.1 -5.8 -2.1
50 -0.4 -0.8 -1.2 0.2 -0.6 -0.9 -1.2 0.2 -17.4 -14.8 -5.6 -2.1 -15.1 -13.2 -5.9 -2.1
60 -0.6 -0.7 -1.0 0.1 -1.4 -1.5 -1.2 0.1 -14.4 -12.2 -5.1 -2.1 -12.4 -10.7 -5.4 -2.1
70 -1.2 -1.5 -0.7 0.2 -1.9 -2.2 -0.9 0.2 -14.6 -12.2 -5.3 -2.0 -15.3 -13.9 -6.7 -2.0
80 -2.2 -1.7 0.1 0.2 -2.6 -2.3 -0.4 0.3 -17.1 -14.0 -4.6 -2.3 -16.0 -15.5 -9.5 -2.2

AVG -1.1 -1.1 -0.6 0.1 -1.6 -1.7 -0.8 0.1 -16.3 -13.5 -4.8 -2.3 -16.6 -15.3 -9.1 -2.4
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As shown in Table 5.2, both LUT surrogate models are an order of magnitude more accurate than the
Park2 and Turbo-Gaussian models with generic calibrated constants. Qualitatively, this is an expected
result since the LUT surrogate models make use of more data from the 2R-V29 turbine i.e. a whole set
of individual 2R-V29 wakes run for a range of U∞ and I∞, while the Park2 and turbo-Gauss models only
use the CT (U∞) curve of the single-rotor V29 turbine. Nonetheless, this analysis shows the quantitative
gains of using a more complex surrogate model as it is the case of both double- and super-Gaussian based
LUT models.

Both LUT models estimations are in good agreement with RANS results. The greatest difference
takes place for the smallest turbine inter-space S = 5D0, U∞ = 8 m/s and WD= 280◦ with a 2.8% (super-
Gaussian model) and 2.4% (double-Gaussian model) underestimation of the total power produced by the
wind farm. Figure 5.2 shows the velocity deficit for the latter condition. At WD= 10◦ the second and
third row of MR2 turbines are partially operating in the wake of the upstream turbines, thus leading
to a non-uniform loading of both V29 rotors of the MR2 turbine. Looking at the zoomed-in area of the
top-right MR2 turbine, it is seen that within the RANS simulation, the upper rotor operates at a higher
CT since its 〈U〉AD is greater than the lower rotor which operates in a wake, and thus at a lower CT .
On the other hand, since both LUT surrogate models are build on even base functions1 and trained on
a uniform atmospheric surface layer (ASL) inflow profile, the models cannot represent the asymmetric
loading of the MR2 turbine. Instead, they sample both segments resulting from the intersection of the
two rotor disks with the z = zh plane, average the velocity and apply a symmetric wake. Therefore, the
models evenly distribute the load in between the two rotors, hence overloading the shaded rotor and thus
leading to an excessive velocity deficit as seen on Figure 5.2.
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Figure 5.2: velocity deficit of the 3×3 MR2 wind farm spaced S = 5D0, subjected to I∞ = 5% and U∞ = 8 m/s from WD= 10◦ at
hub height. ∆U /U∞ obtained from RANS simulations and both double- and super-Gaussian LUT surrogate models. The white

coloring represents out of scale velocities.

1A function F is even if F ( ŷ)=F (− ŷ)



6
Single-rotor wind farm vs. multi-rotor

wind farm

This final chapter evaluates whether the total power output of a wind farm is greater by installing nine
multi-rotor turbines of the type 2R-V29 or 18 single rotor turbines of the type V29 if the total wind farm
area were to be kept equal.

The mesh implemented in the present section is described in subsection 2.7.4. For the comparison to
be fair, both layouts are optimised to maximise the minimum distance in between turbines within the
same outer square area of 4S2. Since both wind farms are composed of 18 Vestas® V29 rotors, both wind
farms have the same total rated power.

For the added turbulence intensity, I+, of the turbines to lead the wake recovery instead of I∞, the
lowest ambient turbulence intensity, I∞ = 5%, is evaluated for a range of space factors1 S = [5,7]D0
and U∞ = [8,10,13,16] m/s at zh as summarized in Table 6.1. Indeed, higher ambient turbulence in-
tensities, I∞, would foster the wake recovery, thus homogenizing the accumulated wakes generated by
different types of turbines. To represent every wind direction influence (360◦) on both wind farms, we
took advantage of the wind farm rotational-symmetric layout [van der Laan et al., 2022] and thus saved
computational time by only modelling a span of 90◦ for the multi-rotor wind farm and a sweep of 180◦ for
the single-rotor wind farm.

Table 6.1: simulated configurations for both the 3×3×MR2 wind farm layout and the 18×SR layout.

Space factor S [m] 5D0 7D0
Modelled wind directions [◦] [0, 10, 20, 30, 40, 50, 60, 70, 80] [0, 15, 30, 45, 60, 75]
U∞ [m/s] [8,10,13,16]
I∞ [%] 5
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Figure 6.1: wind farm efficiency as a function of the wind direction for the 18 single-rotor wind farm with S = 5D0, subjected to
I∞ = 5% and U∞ = 8 m/s at zh. The left plot is a zoom of the right plot and the wind farm layout is shown with cyan dots.

1Throughout the present chapter the variable S is referred as the characteristic space factor since for the single-rotor farm it
does not represent the inter-spacing in between the V29 turbines.
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6.1. Single-rotor wind farm results
This section presents the total power efficiency of the single-rotor wind farm obtained from RANS-AD
simulations.

Since the actuator disks input both an axial and tangential load, the wake rotates. Hence, there is a
180◦ rotational symmetry of the flow of the single-rotor farm. Therefore, only the wind directions of the
left image of Figure 6.1 are modelled and then accordingly rotated in order to complete the 360◦ wind
directions.

Due to the turbines layout, there is a higher number of turbines shading each other or tower align-
ment for (0◦, 56◦20′, 90◦, 123◦40′)×n180◦ for n ∈N, hence expecting lower wind farm efficiencies around
these specific wind directions (WD) as seen in Figure 6.1. Specially for 56◦20′ and 123◦40′ where two
rows of five turbines and two rows of three turbines get aligned.

6.2. Power output comparison
Figure 6.2 sketches the total wind farm efficiency for different wind directions and two studied spacing
factors, S = [5,7]D0. In order to compare the power gain of the multi-rotor wind farm over the single-rotor
wind farm, the power gain, AMR, is computed as

AMR (U∞,WD)=
∑NMR

i= j PMR, j (WD)−∑NSR
i=1 PSR,i (WD)∑NSR

i=1 PSR,i (WD)
, (6.1)

where PMR, j refers to the power of the jth multi-rotor turbine, PSR,i refers to power of the ith single-rotor
turbine, NMR = 9 is the total number of 2R-V29 turbines and NSR = 18 is the total number of V29 turbines.
Table 6.2 and Table 6.3 compare the power gain AMR for S = 5D0 and S = 7D0 respectively as a function
of the wind direction (WD) for the studied wind speeds.

Then, assuming a uniform wind direction probability, the total power gain of the multi-rotor wind
farm is compared with respect to the single-rotor wind farm performances for each studied wind speed,
U∞, as

AMR, total (U∞)=
∑360◦

WD=1◦
[∑NMR

i= j PMR, j (WD)−∑NSR
i=1 PSR,i (WD)

]
∑360◦

WD=1◦
∑NSR

i=1 PSR,i (WD)
. (6.2)

Table 6.2: AMR [%] and AMR, total [%], power gain of the
MRWF compared to the SRWF for S = 5D0.

U∞ [m/s]
8 10 13 16

W
in

d
di

re
ct

io
n

[◦
]

0 10.6 10.8 9.3 0.2
10 1.7 -0.3 -2.6 0.0
20 6.8 6.6 0.9 -0.1
30 12.9 12.1 1.5 -0.2
40 2.5 1.7 -0.2 0.0
50 27.7 26.1 7.4 -1.4
60 46.2 44.6 16.5 -1.5
70 12.0 10.8 1.2 -0.2
80 -4.8 -5.6 -2.9 0.3
90 -9.9 -9.4 -4.8 0.3
100 -4.6 -5.3 -2.7 0.3
110 12.1 10.9 1.2 -0.2
120 46.9 45.5 17.5 -1.6
130 26.9 25.1 6.6 -1.3
140 2.6 1.8 -0.2 0.0
150 13.0 12.2 1.6 -0.2
160 6.7 6.4 0.9 -0.1
170 1.6 -0.3 -2.7 0.0

AMR, total 10.6 9.7 2.4 -0.3

Table 6.3: AMR [%] and AMR, total [%], power gain of the
MRWF compared to the SRWF for S = 7D0.

U∞ [m/s]
8 10 13 16

W
in

d
di

re
ct

io
n

[◦
]

0 7.6 7.7 5.1 0.2
15 1.9 1.6 0.6 0.0
30 10.5 9.1 0.9 -0.1
45 -3.4 -4.4 -1.1 0.4
60 38.4 35.7 8.0 -1.5
75 4.6 4.1 0.8 -0.1
90 -9.6 -9.0 -3.1 0.4

105 4.7 4.2 0.8 -0.1
120 39.2 36.8 8.8 -1.6
135 -3.5 -4.5 -1.1 0.4
150 10.6 9.3 1.0 -0.2
165 1.7 1.3 0.5 0.0

AMR, total 7.5 6.7 1.7 -0.2
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Figure 6.2: multi- and single-rotor wind farm efficiency for different U∞ as a function of the wind direction for two spacing
factors S = [5,7]D0. Results obtained from RANS simulations.
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The teal colored power gains that are greater than 20% observed around WD≈ 56◦ and WD≈ 124◦
of Table 6.2 and Table 6.3 are due to the previously mentioned high tower alignment of the single-rotor
wind farm around those wind directions, which can be visualized in Figure 6.3. Due to the shorter
distance in between turbines and the turbine alignment, the single-rotor wind farm operating under this
particular condition reaches higher velocity deficits, ∆U /U∞, than the multi-rotor wind farm under the
same conditions.
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Figure 6.3: velocity deficit of both multi- and single-rotor wind farms with S = 5D0 for I∞ = 5% and U∞ = 8 m/s at z = zh from
WD= 60◦. Results obtained from RANS simulations.

In general, the more rotors operate in the free-stream, the higher is the wind farm performance, as
seen for the WD= 90◦ condition of Figure 6.4, where the multi-rotor wind farm has six rotors facing the
undisturbed incoming wind, while the single-rotor wind farm has seven. Thus, leading to 9.9% higher
power production for the single-rotor wind farm.
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Figure 6.4: first row represents the hub height velocity deficit, ∆U /U∞, and the second row sketches the hub height added

turbulence intensity, I+ =
√

2
3 k/U2∞− I2∞, of the multi-rotor wind farm (left) and the single-rotor wind farm (right) with S = 5D0,

subjected to I∞ = 5% and U∞ = 8 m/s at z = zh coming from WD= 90◦. Results obtained from RANS simulations. The shaded area
is further analyzed in Figure 6.5.

The WD= 90◦ case is unique due to the fact that every turbine is separated an S distance in between
each other in the axial direction of the wind. So, the axial velocity and turbulence is further studied for
this particular case along the shaded area of Figure 6.4.
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Figure 6.5: RANS predicted wake recovery of the shaded area of Figure 6.4. The first plot represents the actuator disk averaged
streamwise velocity deficit and the second sketches the actuator disk averaged added turbulence intensity.

Figure 6.5 shows the actuator disk averaged velocity deficit and added turbulence intensity along
the shaded area of Figure 6.4. The streamwise distance is normalized by D0 and not by the equivalent
diameter Deq =p

2D0 of the 2R-V29 turbine. Thus, under this scaling, the accumulated single-rotor wake
recovers faster than the multi-rotor wake. Nonetheless, the multi-rotor wake adds more turbulence from
the second turbine onward (x > 0D0) and thus recovers at a higher rate for x > 8D0.

Figure 6.6 shows the peculiar case when both wind farms with a spacing factor S = 7D0 are subjected
to WD= 45◦, which is a layout symmetry condition for the multi-rotor wind farm. This condition gives an
average speed of 5.55 m/s for the multi-rotor wind farm and 5.63 m/s for the single-rotor wind farm. Thus,
leading to a 3 % lower energy production for the multi-rotor farm as seen in Table 6.3. In this case, due
to the closer distance of the single-rotor turbines, we observe a greater interaction in between the wakes,
specially for the added turbulent intensity I+.
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Figure 6.6: first row represents the hub height velocity deficit, ∆U /U∞, and the second row sketches the hub height added

turbulence intensity, I+ =
√

2
3 k/U2∞− I2∞, of both wind farms with S = 7D0 for I∞ = 5% and U∞ = 8 m/s at z = zh from WD= 45◦.

Results obtained from RANS simulations.
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Since the RANS-AD disk simulations were run with a Cartesian grid resolution of eight cells per rotor
diameter (NCD = 8), the differences of the order of 1% seen at U∞ = 16 m/s are not further studied. In
general terms, we can conclude that above the wind farm rated speed, there is no noticeable difference in
between the total power output of both studied wind farms. Moreover, since above rated speed there is a
surplus of energy, the wake effects tend to be less harmful since the pitch of the shaded turbines can be
turned towards the wind to increase the turbine CT and Cp.

6.3. Discussion
The multi-rotor layout has shown a total power gains of up to 10% in comparison to the single-rotor wind
farm, mainly because the multi-rotor-farm has a lower combination of tower alignments. Furthermore,
when turbines get aligned, there is usually a greater physical distance for the wake to recover in between
the MR2 turbine-towers than in the single-rotor configuration where inter-spacings are generally smaller.
The latter condition leads to higher interaction in between the turbines of single-rotor wind farms, which
is seen in general as a more spread added turbulence intensity, I+, in comparison to the multi-rotor-
farm. Additionally, one of the reasons for the multi-rotor-farm to be more efficient is because there are
always at least six rotors facing the undisturbed wind due to the MR2 turbine inherent yawing property
of simultaneously facing two rotors towards the incoming wind.

It is worth noticing that the total power gain of the multi-rotor layout increases when the space factor,
S, is decreased from seven to five. Therefore, the generic multi-rotor wind farms studied layout promises
higher energy yields for velocities below rated speed and congested layouts with a small tower-inter-
spacing.



7
Conclusion

A set of individual time-averaged wakes of an hypothetical 2R-V29 turbine are resolved by RANS-AD
simulations for a range of ambient turbulence intensities, I∞, and inflow velocities, U∞, based on a
logarithmic inflow profile. Then, for every atmospheric condition, two selected base functions named
super- and double-Gaussian were used to approximate the velocity deficit, ∆U /U∞, at hub height for
each axial position from the turbine. Moreover, the super-Gaussian function was used to approximate

the added turbulence intensity, I+ =
√

I2 − I2∞, at hub height as a function of the axial position as well.
Consequently, look-up tables (LUT) were built with the fitting coefficients of the chosen base functions
and the power output of the 2R-V29 turbine, using U∞ and I∞ as indexes. This way, either the velocity

deficit, ∆U
U∞

∣∣∣
i
, or the wake added turbulence intensity, I+i , on the hub height plane of a 2R-V29 turbine i

can be reconstructed by knowing the corresponding freestream conditions seen by the turbine: U∞,i and
I∞,i. The base functions have shown to accurately represent the wake of an individual 2R-V29 turbine
for x > 3D0 with greater discrepancies for lower ambient turbulent intensity, I∞.

Subsequently, a wake superposition method was conceived so as to accurately model of the wake ve-
locity deficit despite over-predicting I+, since the power output of the turbine is more sensitive to the
velocity than to the turbulence intensity. Thus, in order to better estimate the wind turbine efficiency,
the accurate modeling of ∆U /U∞ is prioritized. This latter mindset leads to a turbulence intensity su-
perposition model I = I∞+

√∑N
i I2

+,i which overestimates the added turbulence intensity if represented

as: I+ =
√

I2 − I2∞. Hence, suggesting that the representation of I+ might not be correct, for example:
I+ = I − I∞ may represent better the added turbulence intensity within the accumulated wake for the
chosen turbulence superposition model, but this formulation of I+ requires further study to address its
effects on the velocity deficit. So, while looking for a suitable approximation to represent the merged
wakes, it has been found that there is an intrinsic relationship in between the ambient turbulence inten-
sity, I∞, and the added turbulence intensity of the wakes, I+i . Furthermore, the way I+ is accumulated
in a merged wake i.e. by the sum of squares, might not be the same the I∞ is added i.e. by linear sum, to
reconstruct the turbulence intensity field I. Nonetheless, it is clear that the way I+ is defined will have
an effect on how the added turbulence intensity of singular turbines, I+i , are superposed in between them
in a wind farm scenario.

Once the superposition methods were addressed, the derived surrogate hub height wake model based
on analytical functions which coefficients are stored in look-up tables is tested in two different scenarios.
First, a layout of four aligned 2R-V29 turbines is studied for a range of turbine inter-spacing, U∞ and I∞,
where the total wind farm power is estimated with a 94% accuracy for I∞ = 5% and 92% accuracy for I∞ =
15%. The latter is due to an over-estimation of the wake recovery which causes a surplus of output power
from the LUT surrogate models in comparison to the power predicted by RANS simulations. Regarding
the difference at low I∞, there is an under-estimation of the wake velocity deficit which increase for lower
turbine inter-spacings, thus sighting that the velocity superposition may not be linear in the near wake
of the turbine i.e. x ≤ 3D0.

Finally, the LUT surrogate models were compared against the RANS model and existing engineering
models in a 3×3 2R-V29 turbine layout for different wind directions and two different turbine’s inter-
spacing S = 5D0 and S = 7D0. The LUT models outcome are in agreement with RANS results, with a
maximum wind farm efficiency error of 3% when down-wind turbines are partially shaded by the wake
of upstream turbines, thus operating under non-uniform loading conditions. The latter effect is intrinsic
to the LUT surrogate models due to the fact that they are based on even analytical functions and trained
under a uniform atmospheric surface layer inflow. Thus, in order to correctly represent non-uniform

43
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loading with the chosen analytical functions, these base functions would need more than three degrees of
freedom, for example, currently the super-Gaussian function has the following three degrees of freedom:
the profile amplitude, the standard deviation and the Gaussian order, but none of them de-centers the
profile from the rotors’ position. Therefore, it would be interesting to further study how to model and
train a new surrogate model able to represent a non-uniform loading.

As a result of the comparison between the LUT surrogate models with the engineering models cur-
rently in use in the industry, the derived surrogate models have shown to be an order of magnitude more
accurate than both the Park2 and turbo-Gaussian-deficit model while comparing the total wind farm ef-
ficiency for different wind speeds and wind directions. Despite being more computational expensive, the
surrogate LUT models offer a more accurate prediction of the velocity deficit and thus would improve
wind-farm optimization processes oriented toward maximizing the energy yield of a wind farm.

Finally, a layout of 18×V29 turbines and one of 9×2R-V29 turbines within the same wind farm area
were RANS-AD modelled. In order to get two comparable cases, a uniform wind probability was chosen
and the turbines were located so as to maximize the minimum distance in between each tower. The
wind direction average of the specific studied case showed that 5% more energy yield is obtained from
the multi-rotor-farm for velocities below rated speed. In general, the multi-rotor wind farm has shown
a greater energy yield for velocities below the rated-farm-speed, mainly due to the fact that there are
fewer combinations of turbine alignments in a multi-rotor-farm compared to a single-rotor-farm layout
with twice as many towers.

7.1. Future work
The present thesis gave an insight of the multi-rotor wake modelling and its complex interaction within
wind-farms. This last section will now expand on project sections that can further be studied.

Since the whole 3D wake velocity and turbulence field is available from RANS models, a 3D analytical
function can be used to map or fit the wake, in a similar way to what has been done on the 2D hub height
plane in the present thesis. Regarding the chosen fitting base function, the more degrees of freedom,
the more complex and asymmetric can possibly be the fitted wake. However, this would challenge the
fitting algorithm, thus requiring an in depth study of the wake mapping process and maybe foresee the
application of machine learning principles.

Regarding the accumulated wake within a wind-farm, further studies can be carried on the observed
non-linear superposition of the velocity in the near-wake of multi-rotor turbines, since during this thesis
the I+ superposition method proposed by [Wessel et al., 2007] is implemented to overcome the low wake
recovery predicted by the linear velocity superposition for low I∞. Moreover, additional analysis can be
pursued on the interaction of the turbulence intensity added by the turbines with the ambient turbulence
intensity, which is closely related to how I+ is defined.

Finally, the comparison between the multi-rotor and single-rotor wind farms has shown to be highly
dependent on the tower layout and wind probability distribution, and hence further study focused on a
specific location and wind conditions is required to draw a definitive conclusions.
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A
Test-run with a single Vestas 4R-V29

The present section is used as a test-run to learn how to use PyWakeEllipsys [DTU Wind and Energy
Systems, 2023] and cross-check the CFD results with the reference RANS-AD [van der Laan et al., 2019].

The inlet conditions correspond to a neutral ASL explained in section 2.2 with the following parame-
ters:

• U∞ = 11.5 m/s at zref

• I∞ = 8.4 % at zref

• zref = zhub, 1+zhub, 2
2 = 44.27 m

The simulation of this section has been run with the mesh described in subsection 2.7.2 and the AD
airfoil calibration force method explained in section 2.6. Just like the reference simulation settings, the
AD has been discretized with NCD = D0/∆1 = 20 cells within one V29 rotor diameter.

Figure A.1: profiles of stream-wise velocity at three heights and three downstream distances compared to RANS-AD results from
[van der Laan et al., 2019].
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Regarding the results, the wake velocity profile normalized with the corresponding U∞ according to
the atmospheric surface layer (ASL) is shown in Figure A.1, where the maximum difference with the
reference simulation is of 2.8%. Moreover, Figure A.2 shows the turbulence intensity profile with 2.4%
maximum discrepancy with the results from [van der Laan et al., 2019].

Figure A.2: profiles of stream-wise turbulence intensity at three heights and three downstream distances compared to RANS
results from [van der Laan et al., 2019].

Being that the difference with the reference paper are lower than 3%, the PyWakeEllipSys workflow
is then considered valid to pursue further RANS-AD simulations of multi-rotor-two (MR2) wind turbines.
It is believed that the discrepancies are due to a change in the implementation of the airfoil loading
within EllipSys. Nonetheless, further investigation with PyWakeEllipSys v0.1 (released on May 2019) is
required in order to confirm the latter statement.



B
2R-V29 wake model

The current appendix presents the algorithm used to generate the look-up tables and compares some
wakes derived by RANS simulations and the conceived surrogate models.

B.1. Algorithm used to build the look-up tables Ψ(I∞,U∞, x̂)
As a summary of the present section, every step realized to store the base function coefficients in look-up
tables Ψ(I∞,U∞, x̂) is stated in algorithm 2.

Algorithm 2: Algorithm to generate the look-up tables of the surrogate wake model.
input :MR2 turbine airfoil data and geometrical specifications.
output :Ψ(I∞,U∞, x̂): look up tables of the base function coefficients for the velocity deficit,

∆U /U∞, and added turbulence intensity, I+, as a function of the relative position x̂ and
wind inflow conditions (U∞ and I∞ at zh).

1 for I∞ in [5,10,15,20,30]% do
2 for U∞ in [4,5,6,7,8,10,13,16] m/s do
3 RUN: RANS-AD simulation of a single MR2 turbine in EllipSys3D;
4 Sample the hub height field;
5 Compute the velocity deficit ∆U /U∞ = U∞−U

U∞ ;

6 Compute the added turbulence intensity I+ =
√

I2 − I2∞;

7 Fit either the super-Gaussian or double-Gaussian base function to the velocity deficit ∆U
U∞

for each axial position (x̂) and save the fitted coefficients in a look-up table Ψ (x̂, U∞, I∞)
as a function of: x̂, U∞ and I∞.;

8 Fit the super-Gaussian base function to the added turbulence intensity I+ for each axial
position (x̂) and save the fitted coefficients in a look-up table Ψ (x̂, U∞, I∞).;

9 Save the output power of the MR2 turbine in a look-up table Ψ (U∞, I∞).;
10 end
11 end

B.2. Surrogate model compared to RANS model on a single 2R-
V29 turbine

The following two functions are used to model the wake profile for each given axial position, x̂, ambient
turbulent intensity, I∞, and inflow speed, U∞ at hub height:

Super Gaussian
∆U
U∞

= C×exp
(
−1

2
ŷn

σ2

)
, (B.1)

Double Gaussian
∆U
U∞

= C×
(
exp

(
−1

2
( ŷ−n arm/D0)2

σ2

)
+exp

(
−1

2
( ŷ+n arm/D0)2

σ2

))
, (B.2)
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where the arm/D0 variable is the normalized distance from the MR2 centroid to the rotors’ axis and C, σ
and n are function coefficients that are fitted for each x̂ position using the Trust Region Reflective non-
linear least squares algorithm [Branch et al., 1999] built in the python library scipy.optimize.curve_fit.
The outcome of the latter fitting process of the velocity deficit, ∆U /U∞, is illustrated at three downstream
positions in Figure B.1. Furthermore, the coefficients of the super-Gaussian function that fits ∆U /U∞ are
stated in Table B.1, and the coefficients of the double-Gaussian function in Table B.2.

The super-Gaussian base function is also used to fit the added turbulence intensity, I+, which is
illustrated at three downstream positions in Figure B.2. Moreover, the latter function coefficients used
are stated in Table B.3.

It is seen that all studied surrogate functions tend to a second order Gaussian in the far wake. The
super-Gaussian order tends to two, and the double-Gaussian ŷ shift tends to zero, thus merging both
Gaussians.
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Figure B.1: velocity deficit, ∆U /U∞, of the 2R-V29 turbine sampled at three different downstream positions for the RANS
simulation and both the super-Gaussian and double-Gaussian models.
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Table B.1: super-Gaussian function coefficients: C, σ and n that fit the velocity deficit, ∆U /U∞, as a function of x̂, U∞ and I∞.

I∞ [%] U∞ [m/s] (CT [-])
x = 3D0 x = 5D0 x = 7D0

C σ n C σ n C σ n

5
8 m/s (CT = 0.81) 0.42 1.27 7.58 0.31 1.17 4.87 0.23 1.21 3.86

13 m/s (CT = 0.36) 0.19 1.08 9.29 0.17 1.03 6.44 0.14 1.03 4.79
16 m/s (CT = 0.18) 0.09 0.87 8.6 0.08 0.94 6.25 0.07 0.97 4.56

10
8 m/s (CT = 0.81) 0.33 1.08 4.87 0.24 1.07 3.26 0.18 1.13 2.75

13 m/s (CT = 0.36) 0.14 0.99 4.61 0.11 0.97 3.07 0.09 0.99 2.55
16 m/s (CT = 0.18) 0.07 0.95 4.11 0.05 0.95 2.86 0.04 0.97 2.44

15
8 m/s (CT = 0.81) 0.27 1.02 3.21 0.2 1.06 2.41 0.16 1.13 2.16

13 m/s (CT = 0.36) 0.12 0.97 2.74 0.09 1.0 2.09 0.07 1.1 2.0
16 m/s (CT = 0.18) 0.06 0.96 2.31 0.05 1.05 2.0 0.04 1.2 2.0

20
8 m/s (CT = 0.81) 0.23 1.01 2.56 0.16 1.08 2.12 0.13 1.19 2.0

13 m/s (CT = 0.36) 0.1 0.97 2.18 0.07 1.1 2.0 0.06 1.26 2.0
16 m/s (CT = 0.18) 0.05 1.01 2.0 0.04 1.21 2.0 0.03 1.41 2.0

25
8 m/s (CT = 0.81) 0.19 1.02 2.31 0.14 1.13 2.05 0.11 1.27 2.0

13 m/s (CT = 0.36) 0.09 1.0 2.07 0.06 1.17 2.0 0.05 1.35 2.0
16 m/s (CT = 0.18) 0.04 1.05 2.0 0.03 1.28 2.0 0.02 1.49 2.0

30
8 m/s (CT = 0.81) 0.17 1.04 2.22 0.12 1.19 2.03 0.09 1.35 2.0

13 m/s (CT = 0.36) 0.07 1.03 2.05 0.05 1.23 2.0 0.04 1.42 2.0
16 m/s (CT = 0.18) 0.04 1.08 2.0 0.02 1.33 2.0 0.02 1.55 2.0

Table B.2: double-Gaussian function coefficients: C, σ and n that fit the velocity deficit, ∆U /U∞, as a function of x̂, U∞ and I∞.

I∞ [%] U∞ [m/s] (CT [-])
x = 3D0 x = 5D0 x = 7D0

C σ n C σ n C σ n

5
8 m/s (CT = 0.81) 0.43 0.43 1.08 0.3 0.48 1.09 0.21 0.54 1.14

13 m/s (CT = 0.36) 0.21 0.38 1.06 0.18 0.4 1.05 0.14 0.45 1.05
16 m/s (CT = 0.18) 0.11 0.34 1.05 0.09 0.38 1.04 0.07 0.43 1.04

10
8 m/s (CT = 0.81) 0.32 0.46 1.06 0.2 0.55 1.1 0.14 0.65 1.17

13 m/s (CT = 0.36) 0.14 0.44 1.04 0.09 0.53 1.05 0.07 0.63 1.07
16 m/s (CT = 0.18) 0.06 0.44 1.03 0.04 0.55 1.03 0.03 0.65 1.04

15
8 m/s (CT = 0.81) 0.23 0.54 1.08 0.14 0.7 1.12 0.1 0.88 1.11

13 m/s (CT = 0.36) 0.09 0.57 1.06 0.05 0.89 0.51 0.04 1.1 0.01
16 m/s (CT = 0.18) 0.04 0.66 1.04 0.02 1.05 0.01 0.02 1.2 0.01

20
8 m/s (CT = 0.81) 0.17 0.63 1.08 0.1 0.88 1.02 0.06 1.19 0.02

13 m/s (CT = 0.36) 0.06 0.82 0.53 0.04 1.1 0.02 0.03 1.26 0.01
16 m/s (CT = 0.18) 0.03 1.01 0.01 0.02 1.21 0.01 0.01 1.41 0.02

25
8 m/s (CT = 0.81) 0.13 0.72 1.07 0.08 1.01 0.86 0.05 1.27 0.02

13 m/s (CT = 0.36) 0.05 0.9 0.49 0.03 1.17 0.01 0.02 1.35 0.02
16 m/s (CT = 0.18) 0.02 1.05 0.01 0.02 1.28 0.01 0.01 1.49 0.02

30
8 m/s (CT = 0.81) 0.11 0.78 1.06 0.06 1.07 0.88 0.05 1.35 0.02

13 m/s (CT = 0.36) 0.04 0.95 0.47 0.03 1.23 0.02 0.02 1.42 0.02
16 m/s (CT = 0.18) 0.02 1.08 0.02 0.01 1.33 0.01 0.01 1.55 0.02
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Figure B.2: added turbulence intensity, I+ =
√

I2 − I2∞, of the 2R-V29 turbine sampled at three different downstream positions
for the RANS simulation and the super-Gaussian model for I+.
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Table B.3: super-Gaussian function coefficients: C, σ and n that fit the added turbulence intensity, I+, as a function of x̂, U∞
and I∞.

I∞ [%] U∞ [m/s] (CT [-])
x = 3D0 x = 5D0 x = 7D0

C σ n C σ n C σ n

5
8 m/s (CT = 0.81) 0.12 3.01 7.88 0.14 2.27 5.26 0.14 2.16 4.22

13 m/s (CT = 0.36) 0.04 2.69 7.59 0.05 2.26 5.81 0.06 2.03 4.69
16 m/s (CT = 0.18) 0.03 1.96 6.8 0.03 1.84 5.34 0.03 1.85 4.61

10
8 m/s (CT = 0.81) 0.13 1.95 4.16 0.13 1.86 3.3 0.12 1.94 2.99

13 m/s (CT = 0.36) 0.05 2.01 4.3 0.05 1.97 3.57 0.05 1.95 3.14
16 m/s (CT = 0.18) 0.03 1.92 4.4 0.03 1.95 3.7 0.03 1.94 3.27

15
8 m/s (CT = 0.81) 0.13 1.56 2.4 0.12 1.71 2.32 0.11 1.85 2.26

13 m/s (CT = 0.36) 0.06 1.81 2.0 0.05 1.94 2.0 0.05 2.09 2.0
16 m/s (CT = 0.18) 0.03 2.51 2.0 0.03 2.72 2.0 0.03 2.94 2.0

20
8 m/s (CT = 0.81) 0.12 1.63 2.17 0.11 1.79 2.14 0.1 1.93 2.09

13 m/s (CT = 0.36) 0.05 2.15 2.0 0.05 2.33 2.0 0.05 2.52 2.0
16 m/s (CT = 0.18) 0.03 3.23 2.0 0.03 3.55 2.0 0.03 3.87 2.0

25
8 m/s (CT = 0.81) 0.11 1.71 2.12 0.1 1.88 2.09 0.09 2.0 2.03

13 m/s (CT = 0.36) 0.05 2.33 2.0 0.05 2.54 2.0 0.05 2.71 2.0
16 m/s (CT = 0.18) 0.03 3.68 2.0 0.03 4.1 2.0 0.03 4.31 2.0

30
8 m/s (CT = 0.81) 0.1 1.77 2.1 0.09 1.94 2.07 0.08 2.07 2.0

13 m/s (CT = 0.36) 0.05 2.47 2.0 0.04 2.68 2.0 0.04 2.81 2.0
16 m/s (CT = 0.18) 0.03 4.16 2.0 0.03 4.56 2.0 0.03 4.44 2.0



C
Wake superposition model

The present chapter is structured as follows: section C.1 compares different U∞,i and I∞,i sampling
methods, which are used to map the freestream velocity and turbulence intensity seen by the ith MR2
turbine, and later used to access the look-up table i.e. Ψ(U∞,i, I∞,i). Finally, section C.2 and section C.3
evaluate different turbulence intensity and velocity superposition methods, respectively. The complete
superposition model is depicted in algorithm 1 and the final model is tested in section 4.2.

C.1. Computing I∞,i and U∞,i from the z = zh plane
Since the analytical wake model has been developed for the hub height (zh) horizontal plane, we then
need a form of representing the freestream wind conditions seen by the ith turbine: U∞,i and I∞,i, by
using information from the z = zh plane exclusively. Thus, different methods are compared with RANS
simulations and the mean square error (MSE) in between the studied methods and the higher fidelity
RANS simulations is computed.

C.1.1. Computing I∞,i
This section answers how to compute the freestream turbulence intensity seen by the ith turbine, I∞,i,
by evaluating the following three methods:

Method A. I∞,i = 〈I〉AD,zh,i, computing the averaged turbulence intensity of the two segments that
result from the intersection of both actuator disks (AD) of the MR2 turbine with the hub
height plane z = zh.

Method B. I∞,i = I
∣∣∣
MR centroid,i

, hence the turbulence intensity of the multi-rotor centroid represents

the turbulence intensity of the whole turbine.
Method C. I∞,i = I∞ directly taken from the inflow condition. Thus, all the turbines are subjected to

the same ambient hub height turbulence intensity, I∞.

All three methods are tested under the same conditions specified in Table C.1, were the velocity
deficit,

[
∆U /U∞,i

]
, and the added turbulence intensity, I+i , of each turbine are taken from the look-up

tables generated in chapter 3, using as index:

• U∞,i = 〈U〉AD,zh,i, the average velocity of the two segments resulting from the intersection of both
actuator disks (AD) with the hub height plane (z = zh) sampled at the location of the ith turbine.

• I∞,i defined by the tested method
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Table C.1: analytical surrogate model setup to test different turbine freestream turbulence intensity, I∞,i , sampling methods. N
is the total amount of MR2 turbines.

I∞,i sampling method
Method A
I∞,i = 〈I〉AD,zh,i

Method B

I∞,i = I
∣∣∣
MR centroid,i

Method C
I∞,i = I∞

U∞,i sampling method 〈U〉AD,zh,i
Tower inter-spacing 7D0
U∞ [m/s] [8,10,13,16]
I∞ [%] [5,10,15]

I+ superposition method I+ =
√∑N

i=1 I2
+,i

∆U /U∞ superposition method ∆U /U∞ =∑N
i=1

[
∆U

U∞,i

]
U∞,i
U∞

2
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Figure C.1: hub height velocity deficit of 4 turbines distanced 7D0 from each other and subjected to U∞ = 8 m/s and I∞ = 5%. The
first row is RANS modelled and the second, third and fourth are obtained through the LUT model using different representations

of I∞,i . The white colouring means that the velocity deficit is out of the colour-bar scale.

Figure C.1 shows the computed wake of the super-Gaussian model compared to the RANS-AD simu-
lation for U∞ = 8 m/s and I∞ = 5%. As observed in the second contour plot, assuming that every turbine
operates in a free-stream flow of constant turbulence intensity I∞,i = I∞ leads to a sub-estimation of the
actual turbulence intensity and thus to slower wake recoveries which is seen as higher velocity deficits.
Method A and B account for a more turbulent wake since they use the in-situ turbulence intensity, com-
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pared to method C, which supposes that all the turbines operate at I∞, see Figure C.1. It is then observed
that higher turbulence intensity sensed at the turbine location triggers a faster wake recovery and thus
a lower ∆U /U∞ if the turbulence intensity is sampled with method A or B rather than method C.

In order to compare which method is best in the whole range of U∞ and I∞ studied, the mean square
error of the velocity deficit obtained by the three studied methods is computed against the RANS velocity
deficit for the domain observed in Figure C.1 (−15< x/D < 25, −2< y< 2 on the z = zh plane):

MSE(∆U /U∞)= 1
40D

∫25D

−15D

1
4D

∫2D

−2D

[
∆U
U∞

∣∣∣
RANS

− ∆U
U∞

∣∣∣
Model

]2

(x,y,zh)
dydx, (C.1)

where D is equivalent to the diameter of a single V29 rotor, D0.
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(a) Method A: I∞,i = 〈I〉AD,zh ,i
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(b) Method B: I∞,i = I|centroid,i
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(c) Method C: I∞,i = I∞

Figure C.2: mean square error (MSE) of the velocity deficit, ∆U /U∞, of the super-Gaussian LUT surrogate model with three
different representations of I∞,i , compared with the higher fidelity RANS simulation at the hub height plane, z = zhub, for

−15< x/D < 25 and −2< y/D < 2.

The main difference in between the studied methods takes place at high loading (high CT , thus low
U∞) and low ambient turbulence intensity, I∞. Furthermore, there is no significant MSE difference in
between sampling a single point at the multi-rotor centroid (method B) or computing 〈U〉AD,zh (method
A).

As a conclusion, due to its dependence on multiple points, I∞,i = 〈U〉AD,zh,i (method A) is chosen as
representative of the turbulence intensity felt by the whole turbine. It is in fact preferred to compute I∞,i
as an average of values instead of depending on a single sampling point.

C.1.2. Computing U∞,i
Based on the previous study, the freestream velocity seen by the ith turbine (U∞,i), that will then be
used to access the wake look-up table, is computed as the velocity average of both segments that result
from intersecting the two actuator disks (AD) of the MR2 turbine with the hub height plane (z = zh), i.e.
U∞,i = 〈U〉AD,zh,i.

C.2. I+ superposition model
In chapter 3 the velocity deficit, ∆U /U∞, and the added turbulence intensity, I+ =

√
I2 − I2∞, of the flow

around a single turbine were saved in look up tables Ψ (U∞, I∞) as a function of the freestream velocity,
U∞, and freestream turbulence intensity, I∞, at hub height for all the fitted axial positions. By repre-
senting the freestream wind conditions with both U∞,i = 〈U〉AD,zh,i and I∞,i = 〈I〉AD,zh,i, it is now possible
to access the wake look-up table of any ith 2R-V29 turbine of a wind farm as: Ψ

(
U∞,i, I∞,i

)
and obtain1

the power, Pi, the velocity deficit, ∆U
U∞,i

, and added turbulence intensity, I+,i. Do note that the freestream
wind conditions felt by a single MR2 turbine (i = 1) are still equivalent to the ambient wind conditions at
hub height i.e. U∞,1 =U∞ and I∞,1 = I∞.

The present section evaluates the following three wake added turbulence intensity superposition mod-
els:

1The teal colored variables refer to variables obtained from Ψ.
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Method A. Taking into account the added turbulence intensity, I+i , generated by the directly up-
stream turbine i only:

I+ = I+i .

Method B. Quadratic sum of the I+ of all the N upstream turbines by the method proposed by
[Lingkan and Buxton, 2023]:

I+ =
√√√√ N∑

i=1
I2
+,i.

Method C. Superposing the I+ of all the N upstream turbines by the method proposed by [Wessel
et al., 2007]:

I = I∞+
√√√√ N∑

i=1
I2
+,i −→ I+ =

√
I2 − I2∞.

The evaluated methods were proposed based on empiricism, thus lacking a theoretical background.
By applying

√∑N
i=1 I2

+,i, both methods B and C are summing the turbulent kinetic energy in between

the wind turbines wakes. The difference lies in the fact that method B sums I2∞ to I2+, while method C
linearly sums I∞ to

√∑N
i=1 I2

+,i in order to compute I.
Four MR2 turbines spaced 7D0 are modelled with three different I+ superposition models and com-

pared to higher fidelity models (RANS-AD). The used parameters are detailed in Table C.2 where both
I+i and

[
∆U /U∞,i

]
are obtained from the look-up tables of the super-Gaussian surrogate model fitted in

chapter 3.

Table C.2: analytical surrogate model setup to test different I+i superposition models. N is the total amount of rotors

I+ superposition method
Model A
I+i

Model B√∑N
i=1 I2

+,i

Model C

I = I∞+
√∑N

i=1 I2
+,i

I+ =
√

I2 − I2∞

U∞,i sampling method 〈U〉AD,zh,i
I∞,i sampling method 〈I〉AD,zh,i
Tower inter-spacing 7D0
U∞ [m/s] [8,10,13,16]
I∞ [%] [5,10,15]
∆U /U∞ superposition method ∆U /U∞ =∑N

i=1
∆U

U∞,i

U∞,i
U∞

Figure C.3 shows the velocity deficit field, ∆U /U∞, and the added turbulent intensity, I+, at hub
height for four MR2 turbines separated 7D0 and subjected to U∞ = 8 m/s and I∞ = 5 %. The top row
consist of the reference RANS-AD simulation, and the second, third and fourth rows velocity fields are
obtained through the analytical surrogate model by making use of the three different I+i superposition
models. Then, the wake profile is sampled at each turbine location and at the hypothetical location of a
fifth turbine to evaluate the model performances.

It is observed that the I+ superposition model C predicts best the velocity deficit at the location of
a potential fifth aligned turbine. However, surprisingly, this model over-predicts I+. In fact this over-
prediction of I+ triggers a faster wake recovery, thus resulting in a good approximation of the accumu-
lated velocity deficit ∆U /U∞.
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(a) ∆U /U∞ profile on the z = zh plane.
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(b) I+ profile on the z = zh plane.

Figure C.3: wake of four aligned MR2 turbines distanced 7D0 in between each other and subjected to U∞ = 8 m/s and I∞ = 5%. On the left we observe the hub height velocity deficit, ∆U /U∞, while
the right side figures represent the added turbulence intensity at hub height. The top contour plots are obtained from RANS-AD simulations, the second, third and fourth row plots are obtained

through the analytical surrogate model using the three different I+i superposition methods. The white colouring means that the velocity deficit is out of the colour-bar scale.
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In order to compare all three models along the evaluated range of U∞ and I∞, the mean squared error
of each analytical velocity deficit field, ∆U /U∞, is computed against the higher fidelity RANS simulation
as per Equation C.1 and it is represented in Figure C.4. Analogously, the mean square error (MSE) of the
added turbulence intensity field, I+, is computed as

MSE(I+)= 1
40D

∫25D

−15D

1
4D

∫2D

−2D

[
I+RANS − I+Model

]2
(x,y,zh) dydx, (C.2)

where D ≡ D0, and I+Model corresponds to the added turbulence intensity obtained by the studied method
(either A, B or C) at the location (x, y, zh). The mean square error of all three methods is shown in
Figure C.5 as a function of U∞ and I∞ at hub height. For all methods, the low U∞ (high CT ) and low I∞
case is the most challenging to predict its velocity deficit. As observed in Figure C.3b, the B superposition
model predicts better I+ however model C represents better the ∆U /U∞ despite over-predicting I+. The

latter effect is related to the way we are representing the added turbulence intensity, I+ =
√

I2 − I2∞,
as introduced by [Crespo and Hernandez, 1996]. Nonetheless, if the turbulence intensity were to be
computed as: I+ = I− I∞, then the superposition method C may accurately represent I+ and method B
would be off. However, further studies are needed to evaluate its impact on ∆U /U∞.
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(a) Model A: I+ = I+i .
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Figure C.4: mean square error (MSE) of the velocity deficit, ∆U /U∞, of the super-Gaussian model computed with three different
I+i superposition models compared to the higher fidelity RANS simulation at the plane z = zhub for −15< x/D < 25 and

−2< y/D < 2.
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(a) Model A: I+ = I+i .
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Figure C.5: mean square error (MSE) of the added turbulence intensity, I+, of the super-Gaussian model computed with three
different I+i superposition models compared to the higher fidelity RANS simulation at the plane z = zhub for −15< x/D < 25 and

−2< y/D < 2.

In Figure 3.2b of section 3.3 we noticed that the power produced by the MR2 turbine is more sensitive
to velocity changes U∞,i than to I∞,i, thus model C is selected since it approximate best the velocity field.
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Hence, the added turbulence intensity of each turbine i, I+,i, is superposed as

I = I∞+
√√√√ N∑

i=1
I2
+,i −→ I+ =

√
I2 − I2∞. (C.3)

C.3. ∆U /U∞ superposition model
In a wind farm context, inner wind-turbines are often shaded by upstream turbines and their wakes
merge together. The present section evaluates the following two velocity deficit, ∆U /U∞, superposition
models:

• Linear sum: proposed by [Voutsinas et al., 1990], where each individual velocity deficit obtained
from the look up table is superposed as:

∆U
U∞

=
N∑

i=1

[
∆U

U∞,i

]U∞,i

U∞
, (C.4)

where N is the total number of MR2 turbines.
• Sum of squares: proposed by [Niayifar and Porté-Agel, 2016], where each individual velocity

deficit is superposed as

∆U
U∞

=
√√√√ N∑

i=1

{[
∆U

U∞,i

]U∞,i

U∞

}2
. (C.5)

Both methods claim to conserve some properties of the flow, for instance the linear sum claims to
conserve the flow momentum, while the sum of squares claims to conserve the energy of the flow. Never-
theless, these relationships haven’t been proved so far [Bastankhah et al., 2021].

Four MR2 turbines spaced 7D0 are modelled with two different ∆U /U∞ superposition models and
compared to higher fidelity RANS-AD models. The used parameters are detailed in Table C.3, where both
I+i and

[
∆U /U∞,i

]
are obtained from the look-up tables of the super-Gaussian model fitted in chapter 3.

Table C.3: analytical surrogate model setup to test different ∆U /U∞ superposition models.

∆U /U∞ superposition method
Linear sum∑N

i=1

[
∆U

U∞,i

]
U∞,i
U∞

Sum of squares√∑N
i=1

{[
∆U

U∞,i

]
U∞,i
U∞

}2

U∞,i sampling method 〈U〉AD,zh,i
I∞,i sampling method 〈I〉AD,zh,i
Tower inter-spacing 7D0
U∞ [m/s] [8,10,13,16]
I∞ [%] [5,10,15]

I+ superposition method I = I∞+
√∑N

i=1 I2
+,i −→ I+ =

√
I2 − I2∞

Figure C.6 shows the velocity deficit, ∆U /U∞, at hub height of a RANS simulation and the two studied
velocity superposition method for U∞ = 8 m/s and I∞ = 10 %. Then, both models are compared against
the higher fidelity RANS results and the mean squared error in between the surrogate model and the
RANS model velocity deficit is computed as per Equation C.1.

Figure C.7 shows the mean square error for the whole range of U∞ and I∞ studied. It is observed
that the sum of squares model under-predicts the velocity deficit, thus the linear sum is chosen due to
its lower mean squared error in comparison to the RANS simulations. The observed behaviour is aligned
with the drawn conclusion of [Crespo et al., 1999] who observe that the linear sum estimated a greater
velocity deficit than the quadratic sum.
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Figure C.6: hub height velocity deficit, ∆U /U∞, for four MR2 turbines separated S = 7D0 from each other and subjected to
U∞ = 8 m/s and I∞ = 10% at hub height. The top contour plot is obtained from RANS-AD simulations, the second and third are

obtained through the analytical surrogate model using two different velocity superposition methods.
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(a) Linear sum model.
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(b) Sum of squares model.

Figure C.7: mean square error (MSE) of the velocity deficit, ∆U /U∞, predicted by the super-Gaussian model computed with two
different superposition models compared to the higher fidelity RANS simulation at the plane z = zhub for −15< x/D < 25 and

−2< y/D < 2.



D
Multi-rotor wind farm model vs RANS,

additional results

The present appendix compiles all the results obtained from analyzing a 3×3 MR2 wind farm composed
of 2R-V29 multi-rotor turbines uniformly spaced a distance S = [5,7]D0, subjected to I∞ = 5% and a range
of U∞ = [8,10,13,16] m/s at hub height.

Figure D.1 shows the wind farm efficiency as a function of the wind direction for a range of wind
speeds for a turbine inter-spacing S = 5D0. The U∞ = 16 m/s case isn’t plotted since most of the turbines
operate at rated power.

The relative error compared to the RANS simulations is computed as:

Emodel (WD)=
∑N

i=1 Pmodel,i (WD)−∑N
i=1 PRANS,i (WD)∑N

i=1 PRANS,i (WD)
, (D.1)

where N is the total amount of wind turbines and Pi refers to the power produced by the ith turbine.
Then, the average value is computed as

Emodel, AVG =
∑360◦

WD=1◦
[∑N

i=1 Pmodel,i (WD)−∑N
i=1 PRANS,i (WD)

]∑360◦
WD=1◦

∑N
i=1 PRANS,i (WD)

, (D.2)

hence, first computing the average power produced by the wind farm along all the wind directions and
then computing the relative difference in between the averaged power obtained by the surrogate model
and the RANS simulations.Table D.1 compares the super- and double-Gaussian LUT models, the Park2
and the turbo-Gaussian-deficit models against higher fidelity RANS results for the characteristic distance
S = 5D0, which wind-farm efficiency is shown in Figure D.1. Analogously, Table D.2 compares the models
for the characteristic distance S = 7D0 shown in Figure D.2.

Table D.1: Emodel [%] and Emodel, AVG [%] for the 3×3×MR2 layout with S = 5D0.

Double-Gassian LUT Super-Gassian LUT Park2 Turbo-Gaussian
U∞ [m/s] 8 10 13 16 8 10 13 16 8 10 13 16 8 10 13 16

W
in

d
di

re
ct

io
n

[◦
]

270 -1.1 -0.7 0.2 -0.4 -1.2 -0.8 0.1 -0.3 -20.9 -16.3 -0.9 -3.3 -36.6 -37.1 -28.9 -4.5
280 -2.4 -1.9 0.0 0.2 -2.8 -2.6 -0.5 0.3 -17.3 -14.3 -4.8 -2.3 -16.2 -15.8 -9.6 -2.2
290 -1.3 -1.6 -0.7 0.2 -2.0 -2.4 -0.9 0.2 -14.7 -12.3 -5.3 -2.0 -15.5 -14.1 -6.7 -2.0
300 -0.5 -0.8 -1.1 0.1 -1.4 -1.5 -1.2 0.1 -14.4 -12.2 -5.1 -2.1 -12.3 -10.7 -5.4 -2.1
310 -0.2 -0.5 -1.1 0.2 -0.4 -0.7 -1.1 0.2 -17.3 -14.6 -5.5 -2.1 -15.0 -13.1 -5.8 -2.1
320 -0.4 -0.8 -1.2 0.2 -0.6 -0.9 -1.2 0.2 -17.4 -14.8 -5.6 -2.1 -15.1 -13.2 -5.9 -2.1
330 -0.6 -0.7 -1.0 0.1 -1.4 -1.5 -1.2 0.1 -14.4 -12.2 -5.1 -2.1 -12.4 -10.7 -5.4 -2.1
340 -1.2 -1.5 -0.7 0.2 -1.9 -2.2 -0.9 0.2 -14.6 -12.2 -5.3 -2.0 -15.3 -13.9 -6.7 -2.0
350 -2.2 -1.7 0.1 0.2 -2.6 -2.3 -0.4 0.3 -17.1 -14.0 -4.6 -2.3 -16.0 -15.5 -9.5 -2.2

AVG -1.1 -1.1 -0.6 0.1 -1.6 -1.7 -0.8 0.1 -16.3 -13.5 -4.8 -2.3 -16.6 -15.3 -9.1 -2.4
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Table D.2: Emodel [%] and Emodel, AVG [%] for the 3×3×MR2 layout with S = 7D0.

Double-Gassian LUT Super-Gassian LUT Park2 Turbo-Gaussian
U∞ [m/s] 8 10 13 16 8 10 13 16 8 10 13 16 8 10 13 16

W
in

d
di

re
ct

io
n

[◦
] 270 -0.2 -0.7 -1.2 -0.6 -0.7 -1.1 -1.3 -0.6 -22.3 -18.6 -3.2 -3.4 -40.3 -40.6 -29.5 -4.1

285 -0.7 -1.2 -1.2 0.2 -1.0 -1.6 -1.2 0.3 -14.1 -12.2 -5.6 -1.8 -11.1 -9.6 -5.3 -1.8
300 -0.2 -0.5 -1.1 0.1 -0.4 -0.6 -1.1 0.1 -12.2 -10.6 -5.4 -1.9 -14.7 -13.7 -7.2 -1.9
315 0.4 0.3 -1.3 -0.0 0.4 0.3 -1.4 -0.0 -16.2 -13.1 -5.0 -2.4 -30.2 -29.6 -18.1 -2.4
330 -0.2 -0.4 -1.1 0.1 -0.4 -0.5 -1.1 0.1 -12.2 -10.5 -5.4 -1.9 -14.6 -13.6 -7.1 -1.9
345 -0.6 -1.1 -1.2 0.2 -0.9 -1.4 -1.2 0.3 -14.1 -12.1 -5.6 -1.8 -10.8 -9.3 -5.3 -1.8

AVG -0.3 -0.6 -1.1 0.0 -0.5 -0.8 -1.2 0.0 -14.8 -12.6 -5.1 -2.2 -19.2 -18.3 -11.9 -2.3

As a general observation, all the models under-estimate the wind farm efficiency and the surrogate
models based on look-up tables are an order of magnitude more accurate than the traditional engineering
models i.e. Park2 and turbo-Gauss.

As expected, the LUT surrogate models present a wind direction rotational symmetry of 45◦ since they
do not represent the rotation of the wake, and their higher discrepancies with RANS occurs when rotors
are non-uniformly loaded. The latter condition happens when down-wind turbines operates partially in
the wake of upstream turbines. The surrogate LUT models fail to represent the asymmetrical loading
that takes place while partially operating in the wake of an upwind turbine since the higher-order Gaus-
sian function and the double-Gaussian function selected as base functions for the surrogate model are
both even functions and the model is trained under a uniform atmospheric surface layer profile.
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Figure D.1: efficiency of a 3 MR2 wind farm with 2R-V29 turbines spaced S = 5D0. Results obtained from both super- and
double-Gaussian LUT models, Park2 and turbo-Gaussian deficit model. All surrogate models are compared against higher order

RANS-AD simulations (red crosses) and the MR2 wind farm layout is sketched in cyan.
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Figure D.2: efficiency of a 3 MR2 wind farm with 2R-V29 turbines spaced S = 7D0. Results obtained from both super- and
double-Gaussian LUT models, Park2 and turbo-Gaussian deficit model. All surrogate models are compared against higher order

RANS-AD simulations (red crosses) and the MR2 wind farm layout is sketched in cyan.


	Nomenclature
	Introduction
	Global and local coordinate systems
	Self-similarity
	State of the art
	Atmospheric Boundary Layer structure
	Analytical models of the wake velocity deficit
	Velocity deficit superposition models
	Analytical models of the wake added turbulence
	Added turbulence intensity superposition methods


	Simulation setup
	Governing equations and turbulence model
	RANS
	Turbulence model k–fP

	Inflow model of an atmospheric surface layer
	Boundary conditions
	Solver
	Wind turbines
	Actuator disk
	Mesh
	Mesh dependency study
	Single multi-rotor turbine simulation
	Four inline turbines simulations
	Wind farm simulations


	2R-V29 wake and model fitting
	RANS of a single MR2 
	Analytical model fitting
	Power relationship with U and I

	Wake superposition model
	Superposition method
	Four 2R-V29 turbines inline

	Multi-rotor wind farm modeling
	Existing engineering wake models
	Multi-rotor wind farm results

	Single-rotor wind farm vs. multi-rotor wind farm
	Single-rotor wind farm results
	Power output comparison
	Discussion

	Conclusion
	Future work

	Bibliography
	Test-run with a single Vestas 4R-V29
	2R-V29 wake model
	Algorithm used to build the look-up tables (I, U, )
	Surrogate model compared to RANS model on a single 2R-V29 turbine

	Wake superposition model
	Computing I,i and U,i from the z=zh plane
	Computing I,i
	Computing U,i

	I+ superposition model
	U/U superposition model

	Multi-rotor wind farm model vs RANS, additional results

