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Abstract

In this report the method of Markov chain Monte Carlo maximum
likelihood estimation was used to estimate parameters in the Ising model
and the exponential random graph model. The method and the models
where described mathematically and problems that occurred during the
estimation process where discussed. A package that executes the method
was built in programming language Julia and is tested on precision. It
was concluded that the precision is high in most situation and that, in
these situations, the speed of convergence of the estimation can be found
in the results.

1



Contents

1 Introduction 3

2 Mathematical background 5
2.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The Curie-Weiss model . . . . . . . . . . . . . . . . . . . 5
2.1.2 Exponential random graph models . . . . . . . . . . . . . 6
2.1.3 General model . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . 12
2.2.3 Maximum likelihood estimation . . . . . . . . . . . . . . . 12
2.2.4 Markov chain Monte Carlo maximum likelihood estimation 15

3 Approach 16
3.1 Steps in the Glauber dynamics . . . . . . . . . . . . . . . . . . . 16

3.1.1 Curie-Weiss model . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Exponential Random Graph Model . . . . . . . . . . . . . 16

3.2 Global maximum of the log-likelihood functions . . . . . . . . . . 18
3.2.1 Example: the log-likelihood function for the one-dimensional

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Proofs for concavity of the log-likelihood functions . . . . 22
3.2.3 Proofs for the global maximum of the log-likelihood function 24

4 Results 27
4.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Curie-Weiss model . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 n vs θ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Glauber steps vs θ̂ . . . . . . . . . . . . . . . . . . . . . . 29
4.2.3 ψ vs θ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 ERGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.1 n vs θ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 Glauber steps vs θ̂ . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 ψ against θ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Discussion 41

References 43

2



1 Introduction

Lately, the application of statistical models for networks are becoming more
and more interesting. The few billion people in the world have never been
this connected in history and this social system can be seen as an enormous
construction of dots and lines. Examples of applications of network models in
this field can be found in [RPKL07]. Furthermore, artificial intelligence and
machine-learning are hot topics that correspond with a lot of knowledge of
neural networks. Take [SHM+16] for example. A neural networks can also be
found in our brain, which is so complex that we hardly know anything about
the overall process at all. An application of networks can be found in [SHL11].
Though a lot of interesting applications of networks are known, it is necessary to
start with the fundamentals of these networks. In this report the focus will be
the most basic networks, their properties in context of the exponential random
graph model (ERGM) and the method of Markov chain Monte Carlo maximum
likelihood estimation (MCMCMLE).

The only networks that are considered are undirected networks, so only ver-
tices and connections between those vertices without direction. In networks
certain properties can be looked at. (Such as the number of edges, triangles,
stars, sub networks, etc.) The ERGM is a statistical model that analyses net-
works. In the model it is assumed that the group of networks with a fixed
amount of vertices follow a probability distribution. This probability distribu-
tion depends on one or more properties of the networks. The importance of a
property is scaled with a vector of parameters.

In the end it is desired to estimate the parameters of a network, because it
will then be possible to compare different networks in a statistical way. Since the
amount of networks with a fixed number of vertices can be extremely large, it
is necessary to sample from the probability distribution in a more efficient way.
MCMCMLE is a method that finds the most likely values for the parameters of a
network making use of a smart way to sample from the probability distribution.

A motive for this report is the extension of my own knowledge of this subject.
I think it is a fascinating component of mathematics and it is known that it has
a lot of direct and indirect applications. Another goal is to write a package in a
programming language that executes the method of MCMCMLE. The software
can be found in [Bos17a] and [Bos17b]. The programming language is chosen
because of its high performance (See [BKSE12]) and it is called Julia. Finally,
some questions concerning the method and the package are answered. Can the
method always been carried out? How precise are the results of the package?
Are the results in line with the expectation?

First a more simple version of the ERGM, the Curie-Weiss model, and the
ERGM itself are discussed. The Curie-Weiss model is a form of the Ising model,
a well known model in the world of physics. It will help understanding both
models in a easier way. The section is followed by a mathematical introduction
to the method of MCMCMLE. The mathematical idea behind Markov chains,
Monte Carlo and maximum likelihood estimation will be presented separately.
In the next section some lemmas necessary to make the model mathematical
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correct are given and proved. After that the results of the Julia program are
given in the form of diagrams. Finally in the conclusion and discussion the
results will be discussed and future research will be suggested.
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2 Mathematical background

In this report two models are studied: the Curie-Weiss model and the expo-
nential random graph model (ERGM). In this section it will first be examined
what both models mean. How do they work? What are the properties of the
models? It will be noticed that both models are quite similar. The second part
of the section will elaborate more on the method we are going to use. In steps
Markov chains, Markov chain Monte Carlo and maximum likelihood estimation
will be treated.

2.1 Models

2.1.1 The Curie-Weiss model

In this model a set of a fixed amount of d vertices is given. In context of the
model the vertices are called kernels. The kernels have a positive or a negative
spin indicated by S = {+1,−1} and are represented by the vertices of the set
V . V has d elements. We consider the complete graph/network on the vertices
from V . Each combination of positive and negative kernels from V is called a
configuration and it represents a spin system of atom kernels. The set Ω of all
configurations is called the state space and is given by

Ω = SV = {+1,−1}V .

There are |S||V | = 2d elements in Ω. By |V | we mean the number of elements
in set V .

In the model it is assumed that a configuration is a random outcome following
a probability distribution p on the set Ω of all configurations. Below we will
describe the form of p.

In the model each kernel is connected with each other kernel and they have
influence on each other. If, for example, almost all kernels have a positive
spin (+1), there is a very high probability that a randomly chosen kernel will
become/stay positive.

Each configuration x ∈ Ω has a certain amount of energy in the system,
given by

H(x) = − 1

2d

d∑
i,j=1

xixj

found in [LPW09]. Here xi represents the sign of kernel i of configuration
x ∈ Ω, so xi is an element of S. The summation runs through all combinations
of vertices in V including the combination of vertices with itself. It follows that
the energy in configuration x is higher when less pairs of vertices coincide in
sign and H(x) < 0. The probability distribution p on Ω is given by

pθ(x) =
e−θH(x)

Z(θ)
, x ∈ Ω. (1)
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([LPW09] page 43). Here θ is a parameter that can be seen as the inverse of
temperature. Physically θ ≥ 0 holds, but in our model negative values for θ
are tolerated. Z(θ) is a normalisation function assuring that pθ is a probability
distribution and is given by

Z(θ) =
∑
x∈Ω

e−θH(x). (2)

2.1.2 Exponential random graph models

In the ERGM model we consider a state space Ω of networks with d vertices,
similar to the Curie-Weiss model. Now, however, it is variable whether an edge
in the network is present, indicated by S = {0, 1}. Ω is defined by all possible
networks that can be constructed with a fixed amount of d vertices. That is

Ω = {(V,E) : #V = d},

where (V,E) is a network with vertices in vertex set V and edges in edge set E.
Note that only undirected networks are considered, though the model works in
a similar way with directed networks.

The number of possible edges in a network of d vertices is given by d(d−1)
2 .

It follows that the number of elements in Ω is given by |V ||E| = 2
d(d−1)

2 .
As before it is assumed that a network y ∈ Ω is a random outcome following

a probability distribution p.
To construct the probability distribution on Ω we first define the following

vector of functions:

s(x) = [s1(x) s2(x) . . . sq−1(x) sq(x)]T

Here s : Ω→ Rq is a function.

Example Let s1 be the function that counts the number of edges in a network
(see figure 1). s1 is defined by

s1(x) =
1

2

∑
i,j∈V

xij , x ∈ Ω.

with

xij =

{
1, if graph x has an edge between vertices i and j

0, else.

For s2 . . . sq we count other structures in a network, such as triangles and
n-stars of varying order. (See figure 1 and [RPKL07] page 183.) Note that these
functions all play a similar role in the ERGM as the function H(x) plays in the
Curie-Weiss model.
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Figure 1: A network with four edges; one triangle through vertices 1, 2 and 4;
one 3-star on vertex 2; five 2-stars, two on vertices 1 and 4 and three on vertex
2.

The probability distribution p on Ω is given by

pθ(x) =
exp[θ · s(x)]

Z(θ)
, x ∈ Ω. (3)

Here θ is a vector of parameters that defines the weight of the functions s1, . . . , sq
and Z(θ) is the same normalisation function to ensure that pθ is a probability
distribution. It is given by

Z(θ) =
∑
y∈Ω

exp[θ · s(y)]. (4)

2.1.3 General model

In summary, both models that where discussed are based on the same principle.
In general a set Ω with a certain amount of elements is given. This set is called
the state space of the model. It is assumed that the structure of x ∈ Ω can be
described by a (vector of) function(s) denoted by s or H given by

H : x→ R or s : x→ Rq.

Furthermore it is assumed that each element x of Ω is a random outcome
following distribution

pθ(x) =
exp[θ · s(x)]

Z(θ)
.

pθ(x) can also be notated as p(x|θ).
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2.2 Methods

2.2.1 Markov chains

In this section Markov chains are being introduced. Much of the information in
this paragraph can be found in [LPW09] on pages 3, 4 and 8.

Markov chains In a Markov chain process, in time it is moved between the
elements (states) of a finite set (state space), say Ω. When the Markov process
is at y ∈ Ω, the next step is determined by a probability distribution p(y, ·) on
Ω. These probabilities can be put into a matrix P that is called the transition
matrix of the Markov chain in question. See the next example.

A Markov chain will be defined in a more formal way now.

Definition 2.1. (See page 2 of [Nor98].) We say that (Yn)n≥0 is a Markov
chain with initial distribution λ and transition matrix P if

1. Y0 has distribution λ;

2. for n ≥ 0, conditional on Yn = y, Yn+1 has distribution (pyz : z ∈ Ω) and
is independent of Y0, . . . , Yn−1.

This last point is called the Markov property. It means that state z at time
t + 1 is determined by state y at time t only, no matter what the sequence
(y0 y1 . . . yt−1) of states may be.

(Yn)n≥0 is said to be Markov(λ,P ) for short.

Example Suppose a network with two vertices is given, representing two lo-
cations and the connection between them (see figure 2) and suppose that at
t = 0 we are at location 1. Let us say that the probability to move from vertex
1 to 2 is equal to p and to move from 2 to 1 is equal to q. This means that the
probability to stay on vertex 1 is 1− p and the probability to stay on 2 is 1− q.
In matrix-form this becomes

P =

[
1− p p
q 1− q

]
.

A sequence of random variables (Y0 Y1 Y2 . . .) following the above probabili-
ties to move to/stay on a vertex is called a Markov chain with transition matrix
P .

Let i, j ∈ Ω. We say that i leads to j and write i→ j if

P (Yn = j for some n ≥ 0|Ym = i) > 0 for some m < n.

In words i→ j means that j can be reached with a positive probability within
a finite amount of steps from starting state i.

Definition 2.2. Let λ be any distribution. A Markov chain that is Markov(λ,P )
with state space Ω is irreducible when i→ j holds for all i, j ∈ Ω
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Figure 2: A network with two vertices and one edge.

Let P be a transition matrix on state space Ω. i ∈ Ω is called aperiodic if

p
(n)
ii > 0 for all sufficient large n.

Lemma 2.1. Suppose P is irreducible and has an aperiodic state i. Then, for

all states j and k, p
(n)
jk > 0 for all sufficient large n. In particular, all states are

aperiodic.

Proof. See page 41 in [Nor98].

Let P be a transition matrix on state space Ω. Distribution π is called the
stationary distribution of P if

π = Pπ

holds.

Lemma 2.2. Let P be irreducible and aperiodic, and suppose that P has an
stationary distribution π. Let λ be any distribution. Suppose that (Xn)n≥0 is
Markov(λ,P ). Then

P (Yn = j)→ πj as n→∞ for all j.

In particular,

p
(n)
ij → πj as n→∞ for all i, j.

Proof. See pages 41 and 42 in [Nor98].

Example (continued) Suppose that the vector

µt = [P (Yt = 1|Y0 = 1), P (Yt = 2|Y0 = 1)] (5)
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Figure 3: Source: [LPW09] page 4. Three plots of the probability to be at
location 1 (starting on location 1). (a) p = q = 0.5, (b) p = 0.2 and q = 0.1, (c)
p = 0.95 and q = 0.7.

is defined. It follows that µ1 = µ0P and µ2 = µ0P
2 etc. In general µt = µ0P

t

holds.
Figure 3 suggests that eventually π = πP holds for certain distribution π.

We will take the limit of µt.
lim
t→∞

µt = π.

π is called the stationary distribution of matrix P . In this case π is given by

π(1) =
p

p+ q
and π(2) =

q

p+ q
.

In general the same can be done. Again let λ be any distribution. let
(Y0 Y1 Y2 . . .) be Markov(λ,P ) with state space Ω. Let µt be a row vector with
the distribution of Yt:

µt(y) = P (Yt = y) for all y ∈ Ω. (6)

When µt+1 is constructed, matrix P is used:

µt+1(z) =
∑
y∈Ω

P (Yt = y)P (y, z) =
∑
y∈Ω

µt(y)P (y, z) for all z ∈ Ω. (7)

In other words
µt+1 = µtP .

This implies
µt = µ0P

t.

All Markov chains that are considered in this report are irreducible and aperi-
odic. So suppose that λ is any distribution and (Yn)n≥0 is a Markov chain used
in this report that is Markov(λ,P ) with stationary distribution π. Then

lim
t→∞

µt = π. (8)

holds.
From practical perspective it is wanted to prevent the limit from t to ∞ to

obtain the stationary distribution π. Therefore the amount of time t such that
µt is close to π is needed. This time is called the mixing time of a Markov chain.
In [DLP09] a more formal definition can be found.
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Glauber Dynamics A special form of Markov chains is called Glauber dy-
namics. Let S and V be finite sets. Let the state space Ω be given by SV . (In
the Curie-Weis model, for example, S = {1,−1} and V is the set of all kernles.)
Let π be a probability distribution on Ω. The Glauber dynamics for π is a
Markov chain with state space Ω and stationary distribution π.

Let x ∈ Ω and let v ∈ V . (In the Curie-Weiss model, by xv we mean the
sign of kernel v in configuration x.) Let xv̂ = {x1, . . . , xv−1, xv+1, . . . , xd}. A
step in the Glauber dynamics starting on x is determined by the following two
iterations:

• Choose v ∈ V uniformly.

• Choose y ∈ Ω randomly from distribution π(xv|xv̂).

In words, a step from state x ∈ Ω in the Glauber dynamics is determined by
choosing a vertex/element v ∈ V uniformly. A new state y is chosen randomly
from distribution π conditional on xv̂. This means that x and y agree on each
element of V except for v.

Before it can be confirmed that the stationary distribution of the Glauber
dynamics for π is indeed π itself, a definition and a theorem are presented.

Definition 2.3. A stochastic matrix P and distribution π is said to be in
detailed balance if

π(x)P (x, y) = π(y)P (y, x) for x, y ∈ Ω

For the next theorem and proof, see [Nor98] page 48.

Theorem 2.1. If P and π are in detailed balance, then π is invariant for P .
That is, π is the stationary distribution of the Markov chain with transition
matrix P .

Lemma 2.3. The Glauber dynamics for π has stationary distribution π.

Proof. Take x, y ∈ Ω. It follows that the transition matrix P for the Glauber
dynamics for π is given by

P (x, y) =
1

|V |
∑
v∈V

π(xv = yv|xv̂) · 1xv̂
= yv̂.

Furthermore we know that

π(x) = π(xv̂)π(xv|xv̂).

So it follows that

π(x)P (x, y) =
1

|V |
∑
v∈V

π(x)π(xv = yv|xv̂) · 1xv̂=yv̂

=
1

|V |
∑
v∈V

π(xv̂)π(xv|xv̂)π(xv = yv|xv̂) · 1xv̂=yv̂ .
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By interchanging xv and yv we obtain an expression that is equal to

π(y)P (y, x).

It can be concluded that P and π are in detailed balance. By theorem 2.1 the
stationary distribution of this Glauber dynamics is equal to π.

2.2.2 Markov chain Monte Carlo

Suppose we have probability distribution π. Sometimes direct sampling from a
probability distribution like π is hard. This can be a consequence of a compu-
tationally expansive normalisation function of the distribution. Luckily there is
another, more effective, way to sample from such a distribution.

As seen before, the Markov chains that are considered converge to a sta-
tionary distribution. Suppose a Markov chain with stationary distribution π
is given. A sample from a distribution close to π can be generated by taking
enough steps in the Markov chains. This follows from equation (8). In this way
we could create a sequence of samples from a distribution very close to π.

The process of sampling from a distribution making use of Markov chains is
called Markov chain Monte Carlo (MCMC). There are different algorithms for
the process. The one that we are using in this report is called Gibbs sampling
or the Metropolis-Hastings algorithm.

Example (ERGM) Suppose we have a Markov chain with transition matrix
P and state space Ω. Here Ω is the set of all possible graphs with vertices V from
paragraph 2.1.2. Suppose θ is given. The probability distribution corresponding
to this vector of parameters pθ is given by equation (3). Now we can generate a
network based on the parameters by making use of the Glauber dynamics with
stationery distribution pθ. For the Curie-Weiss model it works in an analogous
way.

Suppose that we repeat this process for large number of steps. After enough
outcomes we could approach the real probability distribution in equation (3)
associated with θ1, θ2, θ3 without actually calculating the Z(θ1, θ2, θ3) function.

For this method it is important to know the mixing time of the Glauber
dynamics for both models. In [DLP09] the mixing time for the Curie-Weiss
model is examined. It follows that the mixing time of the Glauber dynamics for
the Curie-Weiss model is of order d log d.

2.2.3 Maximum likelihood estimation

Suppose X1, . . . , Xn are independent and identically distributed random vari-
ables following distribution f(·|θ). Given the observed values x1, . . . , xn we can
construct the likelihood function:

L(θ;x1, . . . , xn) = f(x1, . . . , xn|θ) =

n∏
i=1

f(xi|θ). (9)
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This function is the probability of observing the given data as function of θ.
Let θ̂ be the value of θ corresponding to the global maximum of the function.
θ̂ is called the maximum likelihood estimator of equation (9) and it is the most
likely value for the parameter θ corresponding to x1, . . . , xn.

An easier way to find θ̂ is by making use of the log-likelihood function.
This function has the same maximum likelihood estimator θ̂ as the likelihood
function. The log-likelihood function is defined by

l(θ;x1, . . . , xn) = log

{
n∏
i=1

f(xi|θ)

}
=

n∑
i=1

log[f(xi|θ)]. (10)

Here we use the fact that the logarithm is an increasing function.
In general the form of the likelihood function for both the Curie-Weiss model

and the ERGM is given by

L(θ;x) = p(x|θ) =
hθ(x)

Z(θ)
(11)

where hθ(x) = exp[θ · s(x)]. It follows that the log-likelihood function is

l(θ;x) = θ · s(x)− log

∑
y∈Ω

exp[θ · s(y)]

 (12)

To find the maximum of this function, the gradient is used. However, when we
are dealing with larger networks, it is very hard to differentiate the second term
of equation (12). Therefore another way to find the maximum is needed.

The approached likelihood function Suppose a fixed and arbitrary vector
of parameters ψ is given. Then for a fixed observation x, p(x|ψ) is a constant
value. By subtracting the logarithm of this value from equation (12) nothing es-
sential is changed in l(θ;x). The function has got the same maximum likelihood

estimator θ̂. Therefore equation (12) is equivalent to

l(θ;x) = log

{
p(x|θ)

p(x|ψ)

}
= log

{
hθ(x)

hψ(x)

}
− log

{
Z(θ)

Z(ψ)

}
=(θ −ψ) · s(x)− log

{
Eψ
[
hθ(Y )

hψ(Y )

]} (13)

since

Eψ
[
hθ(Y )

hψ(Y )

]
=
Z(θ)

Z(ψ)
. (14)

(See [Gey94].) In these equations Y is a random variable with probability
distribution pψ.

Calculating the expectation in equation (13) is hardly possible when the
observed network is too large. A natural way to solve this problem is by making
use of the ’empirical’ expectation with respect to pψ denoted by En,ψ.
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Let Y1, . . . , Yn be samples from pψ generated by the method of Markov chain
Monte Carlo. En,ψ is then given by

En,ψ
[
hθ(Y )

hψ(Y )

]
=

1

n

n∑
i=1

hθ(Yi)

hψ(Yi)
.

The Monte Carlo approximation of the log-likelihood function is thus given
by

ln(θ;x) = (θ −ψ) · s(x)− log

{
1

n

n∑
i=1

exp[(θ −ψ)s(Yi)]

}
. (15)

Proposition 2.1. The maximum likelihood estimator θ̂n of equation (15) con-

verges to the maximum likelihood estimator θ̂ of equation (12) when n→∞.

Proof. It is known that the parameter set Θ = Rd, which implies that it is a
separable metric space. Furthermore the function θ 7→ hθ(x) is a continuous
function. Thirdly all Markov chains we use in the Metropolis-Hastings (Markov
chain Monte Carlo) algorithm in this report are irreducible.

These are sufficient conditions for theorem 1 ([Gey94] page 264). From
the theorem it follows that ln(θ;x) (equation (15)) hypo-converges to l(θ;x)

(equation (12)). This means that if ln(θ;x) → l(θ;x) as n →∞, than θ̂n → θ̂
as n→∞.

14



2.2.4 Markov chain Monte Carlo maximum likelihood estimation

Given x ∈ Ω, we know that it is not possible to calculate θ in a direct way
if x is too complex. This is a consequence of a normalisation function Z(θ)
that is computational expensive. Therefore the method of maximum likelihood
estimation is used.

The Glauber dynamics is used to generate a group of n samples from pψ
without knowing Z(ψ). These samples are used to calculate the empirical ex-
pectation from ln in section 2.2.3. The more samples, the better ln approximates
the original likelihood l and ln → l as n→∞ holds.

Finally the maximum likelihood estimator θ̂n of ln is found. It is known
that θ̂n → θ̂ as n → ∞. At this point the method of Markov chain Monte
Carlo maximum likelihood estimation is used to estimate the value of θ without
calculating the giant Z(θ) function.

There are still a few questions, though.

1. In this report the method of MCMCMLE is carried out by a self written
package in Julia. See [Bos17a] and [Bos17b]. This package makes use of an
optimisation function to find the maximum of the log-likelihood function.
How do we know for sure that this maximum is the global maximum of
the function and not a local maximum?

2. The Glauber dynamics makes use of steps that are repeated for a number
of times. After order d log d of steps the position of the method is inde-
pendent of the starting position for θ < 0 in the Curie-Weiss model and
the mixing time is reached. See [DLP09]. How big is this mixing time
exactly?

3. How do we calculate the probability Pθ(xv|xv̂) that is used in the Glauber
dynamics for both models?

In the next chapter among others, these questions are discussed.
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3 Approach

In section 2.2 the general and mathematical idea behind our models and method
was discussed. There was a description of the method of Markov chain Monte
Carlo maximum likelihood estimation and introduction to the Curie-Weiss model
and the exponential random graph model. In this section we are going to proof
some essential mathematical statements.

First of all, both models are discussed in context of the Glauber dynamics.
Two lemmas are given here. Secondly it is proven that under certain circum-
stances the previously mentioned likelihood function has only one maximum
which implies that our method is not calculating the wrong (local) maximum.

3.1 Steps in the Glauber dynamics

3.1.1 Curie-Weiss model

As described in section 2.2.1, to move between the elements of Ω a random
kernel is chosen uniformly and the probability for that kernel to become or stay
positive/negative is determined. Remember that xv is kernel v of configuration
x. Let xv̂ = {x1, . . . , xv−1, xv+1, . . . , xd}.

Lemma 3.1. The probability of kernel v ∈ V to become or stay positive, given
the sign of all other kernels in V , is

P (xv = 1|xv̂) =
1 + tanh[θH(x)]

2
(16)

Proof.

P (xv = 1|xv̂) =
P (xv = 1, xv̂)

P (xv̂)
=

P (xv = 1, xv̂)

P (xv = −1, xv̂) + P (xv = 1, xv̂)

=
e−θH({1,xv̂})

e−θH({−1,xv̂}) + e−θH({1,xv̂})

=
e−θs(x,v)

eθs(x,v) + e−θs(x,v)

=
1 + tanh[θH(x)]

2
.

3.1.2 Exponential Random Graph Model

To move between the elements of Ω making use of the Glauber dynamics, two
random kernels in V are chosen. After that the probability of the edge in
between the two kernels to exist, given all other edges is calculated.

In the following part of this report the vector of functions s(x) will be given
by [s1(x) s2(x)]T in context of the ERGM. s1 and s2 are respectively the func-
tions that count the number of edges and triangles in a network. It follows that
θ = [θ1 θ2]T .
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let xîj = E \ xij be the set of all existing and non-existing edges in network
x. Let ∆(xij) be the function that counts the number of triangles through edge
i ∼ j.

Lemma 3.2. The probability of edge i ∼ j, i, j ∈ V to be added to a network
x, given the (non)-existence of all other edges, is

P (xij = 1|xîj) =
1

1 + exp[−θ1 − θ2 ·∆(xij = 1)]

Proof.

P (xw = 1|xîj) =
P (xw = 1, xîj)

P (xw = 0, xîj) + P (xw = 1, xîj

=
exp[θ · s(xij = 1, xîj)]

exp[θ · s(xij = 1, xîj)] + exp[θ · s(xij = 0, xîj)]

=
1

1 + exp[θ · s(xij = 0, xîj)− θ · s(xij = 1, xîj)]

=
1

1 + exp[−θ1 + θ2(s2({xij = 0, xîj})− s2({xij = 1, xîj})]

=
1

1 + exp[−θ1 − θ2 ·∆(xij = 1)]
.
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3.2 Global maximum of the log-likelihood functions

The (Monte Carlo) log-likelihood functions considered here, equation (15) and
(12), give (an approximation of) the maximum likelihood estimator for the
vector of parameter θ. This is done by calculating the extreme value of the
function.

Because of the complex functions it is not certain whether our package in
Julia is calculating the global or a local maximum of the log-likelihood function.
To tackle this problem, it is shown that the functions have exactly one maximum.
It is proven that ln(θ;x) and l(θ;x) are concave functions with an extreme value
for θ ∈ Rd.

3.2.1 Example: the log-likelihood function for the one-dimensional
case

Before the concavity and the presence of a maximum is proven in general, we
will take a look at the Monte Carlo log-likelihood function corresponding to the
Curie-Weiss model. This function is very much the same as the one dimensional
version of the Monte Carlo log-likelihood in the ERGM. With this function the
proof is more intuitive because it is one-dimensional only.

In the Curie-Weiss model the Monte Carlo log-likelihood function is given
by

ln(θ;x) = (ψ − θ)H(x)− log

{
1

n

n∑
i=1

exp[(ψ − θ)H(Yi)]

}
. (17)

In this equation the Yi’s are the samples of pψ, making use of the Glauber
dynamics. x is the configuration we are observing. Note that substituting
s(x) for −H(x) gives us the general one dimensional Monte Carlo log-likelihood
function. In the this example we refer to equation (17) with ln(θ;x).

Let Ai = e(ψ−θ)H(Yi). It can be checked that the first and second derivative
of ln(θ;x) are given by

∂ln(θ;x)

∂θ
=−H(x) +

∑n
i=1H(Yi) ·Ai∑n

i=1Ai
and (18)

∂2ln(θ;x)

∂θ2
=−

(
∑n
i=1Ai)

(∑n
i=1H(Yi)

2 ·Ai
)

+ (
∑n
i=1H(Yi) ·Ai)

2

(
∑n
i=1Ai)

2 . (19)

Since H(x) 6= 0 for all x ∈ Ω it follows that, as long as θ, ψ ∈ (−∞,∞) holds,

n∑
i=1

Ai > 0,

n∑
i=1

H(Yi)
2 ·Ai > 0.

Therefore
∂2ln(θ;x)

∂θ2
< 0 (20)

holds as long as θ, ψ 6= ±∞. In this report the focus will be on parameters
close to the high-temperature area and ψ is an arbitrary fixed parameter that
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we choose as the value we expect θ to be a priori. It follows that θ and ψ are
not close to ±∞ and ln(θ;x) is a strictly concave function.

Lemma 3.3. Suppose Hmin = min{H(Yi) : 1 ≤ i ≤ n} and Hmax = max{H(Yi) :
1 ≤ i ≤ n}. Then ln(θ;x) has a maximum on θ ∈ R if and only if Hmin <
H(x) < Hmax holds.

Proof. Let Imin = {i : H(Yi) = Hmin} and let, in an analogous way, Imax = {i :
H(Yi) = Hmax}. It can be checked that

∂ln(θ;x)

∂θ
=

n∑
i=1

H(Yi) · pθi −H(x)

with

pθi =
exp[(ψ − θ)H(Yi)]∑
j exp[(ψ − θ)H(Yj)]

· exp[(θHmin]

exp[(θHmin]

=
exp[ψH(Yi) + θ(Hmin −H(Yi))]∑
j exp[ψH(Yj) + θ(Hmin −H(Yj))]

.

By taking the limit we obtain

lim
θ→∞

pθi =

{
1

|Imin| , if i ∈ Imin

0, else

We can conclude that

lim
θ→∞

∂ln(θ;x)

∂θ
= |Imin| ·Hmin ·

1

|Imin|
−H(x)

= Hmin −H(x)

=

{
0, H(x) = Hmin

< 0, H(x) > Hmin

.

(21)

In an analogous way we can see that

lim
θ→−∞

∂ln(θ;x)

∂θ
= Hmax −H(x)

=

{
0, H(x) = Hmax

> 0, H(x) < Hmax

.

(22)

From equation (20) we know that the first derivative of ln(θ;x) is a strictly
decreasing function. Suppose Hmin < H(x) < Hmax, from equations (21) and
(22) we can conclude that the derivative of the log-likelihood function as exactly
one root. It follows that ln(θ;x) from equation (17) has exactly one maximum
for θ ∈ R.
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Now suppose that H(x) = Hmin or H(x) = Hmax. It follows that

∂ln(θ;x)

∂θ
≥ 0 or

∂ln(θ;x)

∂θ
≤ 0

hold respectively and the function has no root for θ ∈ R. Therefore ln(θ;x) has
no maximum on R. By negating this logical sentence it is found that if ln(θ;x)
has no maximum, then H(x) = Hmin or H(x) = Hmax holds.

At this point it is proven that ln(θ;x) has a maximum if and only if H(x) is
not an extreme value. Of course the next question is, when does it occur that
H(x) = Hmax or H(x) = Hmin? This will happen with a higher probability as
the parameter θ gets bigger. In figure 4 this is shown in an intuitive way.

In this report we focus on values for θ close to 0. So the problem of no max-
imum in the log-likelihood won’t occur very often, though it can still happen.
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Figure 4: Four histograms of samples from pθ(x). In the figure it can be seen
that the bigger θ gets the higher is the probability of a configuration x with a
high −H(x) (or low energy).
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3.2.2 Proofs for concavity of the log-likelihood functions

In the remaining part of this section the proofs are given concerning concavity
and the maximum of both log-likelihood functions. With l(θ;x) we refer to
equation (11) and with ln(θ;x) to equation (15). Y1, . . . , Yn are still samples
from distribution pψ and Y is a random variable with distribution pψ. Further-
more Y (n) is the empirical random variable based on samples Y1, . . . , Yn. This
means that Y (n) is a discrete random variable with state space S = {Y1, . . . , Yn}
and pmf

pY (n)(x) =
1

n

∑
y∈S

1y(x).

Lemma 3.4. The Hessian Hl of l(θ;x) is equal to −Covθ(s(Y )).

Proof. First of all remember that the probability distribution related to this
likelihood function is

pθ(y) =
eθ·s(y)∑
z∈Ω e

θ·s(z) , y ∈ Ω.

In general, the expectation is given by

Eθ[f(Y )] =
∑
y∈Ω

pθ(y) · f(y)

Now the gradient of l(θ;x) is calculated. Suppose that Ay = exp[θ · s(y)].
We take a look at the derivative with respect to the i’th element of parameter
vector θ:

∂l(θ;x)

∂θi
= si(x)−

∑
y∈Ω si(y) ·Ay∑

z∈ΩAy
. (23)

Remember that∑
y∈Ω si(y) ·Ay∑

z∈ΩAz
=
∑
y∈Ω

si(y)
Ay∑
z∈ΩAz

=
∑
y∈Ω

si(y) · pθ(y) = Eθ[si(Y )].

Now we want to calculate the Hessian matrix, Hl. This time the derivative
of (23) with respect to θj is calculated. This gives us

∂2l(θ;x)

∂θi∂θj
= −

∑y∈ΩAy ·
∑
y∈Ω si(y)sj(y)Ay −

(∑
y∈Ω si(y)Ay

)
·
(∑

y∈Ω sj(y)Ay

)
(∑

z∈ΩAz
)2


= Eθ[si(Y )] · Eθ[sj(Y )]− Eθ[si(Y ) · sj(Y )] = −Covθ(si(Y ), sj(Y )).

It follows that Hl = −Covθ(s(Y )).

Lemma 3.5. The log-likelihood function, l(θ;x), is a strictly concave function
if Covθ(s(Y )) is positive definite for all θ.
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Proof. Suppose that Covθ(s(Y )) is positive definite for all θ. It follows that
−Hl is positive definite and −l(θ;x) is a strictly convex function. This implies
that l(θ;x) is a strictly concave function.

Similar lemmas can be proven concerning ln(θ;x).

Lemma 3.6. The Hessian Hln of ln(θ;x) is equal to −Covθ−ψ(s(Y (n))).

Proof. The proof is very analogous to that of lemma 3.4. Let

p
(n)
ψ (Yi) =

exp[ψs(Yi)]∑n
j=1 exp[ψs(Yj)]

be the empirical probability distribution defined by samples Y1, . . . , Yn.
First ln is differentiated to one of its variables to find the gradient of the

function. Suppose Ai = exp[(θ −ψ)s(Yi)]. This gives us

∂ln(θ;x)

∂θk
= sk(x)−

∑n
i=1 sk(Yi) ·Ai∑n

j=1Aj
. (24)

Again, remember that∑n
i=1 sk(Yi) ·Ai∑n

j=1Aj
=

n∑
i=1

sk(Yi)
Ai∑n
j=1Aj

=

n∑
i=1

sk(Yi) · p(n)
θ−ψ(Yi) = Eθ−ψ[sk(Y (n))]

By differentiating equation (24) with respect to θl we find

∂2ln(θ;x)

∂θk∂θl
= −

∑n
i=1Ai ·

∑n
i=1 sk(Yi)Ai − (

∑n
i=1 sk(Yi)sl(Yi)Ai) · (

∑n
i=1 sl(Yi)Ai)(∑n

j=1Aj

)2


= Eθ−ψ[sk(Y (n))] · Eθ−ψ[sl(Y

(n))]− Eθ−ψ[sk(Y (n)) · sl(Y (n))]

= −Covθ−ψ[sk(Y (n)), sl(Y
(n))].

In other words, the Hessian Hln of the Monte Carlo log-likelihood function
is equal to −Covθ−ψ(s(Y (n))).

Lemma 3.7. The Monte Carlo log-likelihood function, ln(θ;x), is a strictly
concave function if Covθ−ψ(s(Y (n))) is positive definite for all θ −ψ.

Proof. Suppose that Covθ−ψ(s(Y (n))) is positive definite for all θ−ψ. It follows
that −Hln is positive definite and −ln(θ;x) is a strictly convex function. This
implies that ln(θ;x) is a strictly concave function.
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3.2.3 Proofs for the global maximum of the log-likelihood function

We know now that (under certain conditions) both the original log-likelihood
function and the Monte Carlo log-likelihood function ln(θ;x) are strictly concave
functions. Yet it is not clear whether both functions have a maximum on Rq.
It will be proven that, under certain other conditions, this is the case.

Definition 3.1. A function f : Rn → R is said to be coercive if for every
sequence {xν} ⊂ Rn with ||xν || → ∞ as ν →∞, f(xν)→∞ as ν →∞ holds.

Proposition 3.1. The log-likelihood function, l(θ;x), has exactly one maximum
on Rq if for all θ̃ ∈ Sq−1 with ||θ̃|| = 1 there exists an y0 ∈ Ω such that
θ̃ · s(y0) > θ̃ · s(x) holds and if Covθ(s(Y (n)) is positive definite for all θ.

Proof. Suppose for all θ̃ ∈ Sq−1 with ||θ̃|| = 1 there exists an y0 ∈ Ω such that
θ̃ ·s(y0) > θ̃ ·s(x) holds. Let ||θ̃|| = 1 and θ = rθ̃, r > 0. It follows that l(θ;x)
is given by

l(θ;x) = log

{
exp[rθ̃s(x)]∑
y∈Ω exp[rθ̃s(y)]

}

≤ log

{
exp[rθ̃s(x)]

exp[rθ̃s(y0)]

}
= rθ̃(s(x)− s(y0))→ −∞, as r →∞.

(25)

This implies that the function −l is a coercive function.
Consider the superlevel sets Lα(l) = {θ ∈ Rq : l(θ;x) ≥ α, α ∈ R}. Because

l is a continuous function Lα(l) are closed sets. Lα(l) are bounded since −l is
coercive. It follows that Lα(l) are compact sets. It is known that a continuous
function on a compact set attains its extreme values on that set, therefore l on
Lα(l) reaches its maximum on Lα(l). This maximum is global and unique as a
consequence of the strict concavity of l. (See figure 5.)
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Figure 5: An example of a strictly concave function, f(x, y). If f(x, y) → −∞
as ||[x y]T || → ∞ then it has a global maximum.
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Proposition 3.2. The Monte Carlo log-likelihood function, ln(θ;x), has exactly
one maximum on Rq if for all τ̃ ∈ Sq−1 with ||τ̃ || = 1 there exists an y0 ∈
{Y1, . . . , Yn} such that τ̃ · s(y0) > τ̃ · s(x) holds and if Covθ−ψ(s(Y (n)) is
positive definite for all θ −ψ.

Proof. Let τ = θ − ψ. Take τ̃ ∈ Sq−1, ||τ̃ || = 1. Suppose there exists a
y0 ∈ {Y1, . . . , Yn} such that τ̃ s(y0) > τ̃ s(x). Now θ−ψ = τ = r · τ̃ with r > 0.
Thus ln is given by

ln(θ;x) = rτ̃ s(x)− log

{
1

n

n∑
i=1

exp[rτ̃ s(Yi)]

}
= rτ̃ s(y0) + r[τ̃ (s(x)− s(y0))]

− log

{
1

n

n∑
i=1

exp[rτ̃ (s(Yi)− s(y0))]

}
+ rτ̃ s(y0)

= r[τ̃ (s(x)− s(y0))]− log

{
1

n

n∑
i=1

exp[rτ̃ (s(Yi)− s(y0))]

}

It is easily checked that

n∑
i=1

exp[rτ̃ (s(Yi)− s(y0))] ≥
∑

s(Yi)≥s(y0)

exp[rτ̃ (s(Yi)− s(y0))].

It follows that

log

{
1

n

n∑
i=1

exp[rτ̃ (s(Yi)− s(y0))]

}

≤ log


n∑

i=1: s(Yi)≥s(y0)

exp[rτ̃ (s(Yi)− s(y0))]

 ≤ 0, as r →∞

and that
r[τ̃ (s(x)− s(y0))]→ −∞ as r →∞.

In conclusion it is found that

ln(θ;x)→ −∞, as r →∞.

Furthermore, by lemma 3.7 ln(θ;x) is a concave function. Following the same
argumentation as in the proof of proposition 3.1 it can be concluded that ln(θ;x)
has exactly one maximum.
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4 Results

In this section the results of the report are presented. At the end the result are
used to state a conclusion of the precision of the model and of the method of
MCMCMLE.

4.1 Software

The results are obtained by the Julia-package that is written to execute the
method of this research. In the code-comments there is a detailed description of
the package. In this way it is easier to follow the logical steps taken in the pro-
grams. The software can be found on software platform GitHub: See [Bos17a]
and [Bos17b] or The Curie-Weiss model software and The ERGM software for
direct hyperlinks. Make sure to read the README file first, in there it will be
explained which file is used for what.

4.2 Curie-Weiss model

In the diagrams the response variable (that is θ̂) will always be on the vertical
axis. For each data point in a diagram the package calculates a group of 30
outcomes of θ̂ behind the scenes. These outcomes are used to give the mean
and standard deviation of the group so that the precision of the estimator can
be measured.

The horizontal axis is labelled with different explanatory variables that can
be found in table 1. Only one of them at a time is the explanatory variable. The
others will be kept in place. In the next pages all results for the Curie-Weiss
model will be given.

When one runs the package, there are two options. Either a observation x
is chosen on forehand or a value for θ∗ is given to generate an observation x
making use of the Glauber dynamics for pθ∗ . This last option is more interesting
because it will show whether the package gives back a θ̂ close to θ∗ or not. On
the other hand, when x is chosen the precision of the results will be higher.

The package consists of two parts. One is making use of the Glauber dy-
namics to generate the n samples and the second one samples directly from the
probability distribution pθ. (This is only possible when d ≤ 10, otherwise pθ
will be too computational expensive.)

4.2.1 n vs θ̂

One of the things we are interested in is how precise our model is when we
calculate θ̂ based on n outcomes of the Glauber dynamics and of the exact
samples. The results can be found in figure 6.

It follows that the standard deviation gets smaller as n gets bigger when
we look at the four top plots of the figure. The samples based on the exact
distribution are a little more precise than those based on the Glauber Dynamics.
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Variable name Range when explanatory variable
d [10, 20]
n [50, 10000]
ψ [−θ∗, θ∗]
Glauber steps [10, 1000]

Table 1: Table of variables in the model that can be the explanatory variable
in a diagram. Each time only one of the variables is the explanatory variable,
the others are kept in place. θ∗ is the value for θ that is used to generate the
results.

We can conclude that a n of 1000 is high enough for a sufficient low standard
deviation.

Figure 6: Plots of n vs variance and mean of sample group for θ. The samples
are based on the Glauber dynamics (left side) and on the exact distribution
(right side). The top figures are transformed to obtain a linear relation. Values
of other variables are: d = 10, ψ = 0.5, Glauber steps = 500.
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4.2.2 Glauber steps vs θ̂

The amount of Glauber steps in the program is important. If it is too low, the
sample distribution will not be close to the original probability distribution and
the mixing time of the Glauber dynamics is not respected. The corresponding
diagrams can be found in figure 7 and 8. The results show that the SD of θ̂
decreases a little up to Glauber steps = 200. For a higher amount of steps
almost no improvement can be found.

Figure 7: Plots of the amount of steps in the Glauber dynamics (low) against
the standard deviation (above) and against the mean (below) of the group of
30 outcomes. Values of other variables are: d = 15, n = 1000, ψ = 1.1.
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Figure 8: Plots of the amount of steps in the Glauber dynamics (high) against
the standard deviation (above) and against the mean (below) of the group of
30 outcomes. Values of other variables are: d = 15, n = 1000, ψ = 1.1.
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4.2.3 ψ vs θ̂

Now it is time to see what influence the value of ψ has on the outcomes of the
program. ψ is the arbitrary parameter from equation 13 and 17.

In figure 9 the result is shown. In this diagram the observation x is chosen
on forehand to increase precision.

It can be observed that the standard deviation of θ̂ is a its lowest point if
ψ = θ. This makes perfectly sense. The mean corresponding to this point,
however is slightly lower than it should be.

Figure 9: Plots of the parameter ψ against θ̂. An observation x was given on
forehand (3 out of 15 kernels negative). The real value for theta is calculated
afterwards to compare with the results. Values of other variables: d = 15,
n = 1000, Glauber steps = 100.
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4.3 ERGM

In the diagram corresponding to this model the horizontal and vertical axis are
used for the parameters θ̂1 and θ̂2, respectively. The explanatory variable is
given in the dimension of colours.

Just like in the Curie-Weiss Model, for each data point in a diagram a group
of 30 outcomes is generated. In this way the mean and standard deviation can
be found. Now the precision of the package can be measured. In each diagram
the initial value of θ is indicated by the black dotted lines.

4.3.1 n vs θ̂

A few diagrams are given where the influence of n on the estimator can be
visualised. (See figures 10 through 13.) In the diagrams the standard deviation

of θ̂ is higher with the rising of n. Likewise the higher n the closer the smaller
the distance between the mean of θ̂ and θ.

However, when the initial value of θ2 < 0 (That is, triangles are considered
in the Glauber dynamics.), the standard deviation becomes significant higher

and only drops a little when n gets bigger. Furthermore, the means of θ̂ are
scattered in the θ1, θ2 plane. Make note of the line that is formed through the
initial value of θ.
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Figure 10: Diagram of θ1 and θ2 against n. Values for the other variables:
Glauber steps = 100, ψ = real θ
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Figure 11: Diagram of θ1 and θ2 against n. Values for the other variables:
Glauber steps = 500, ψ = real θ
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Figure 12: Diagram of θ1 and θ2 against n. Values for the other variables:
Glauber steps = 500, ψ = real θ
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Figure 13: Diagram of θ1 and θ2 against n. Values for the other variables:
Glauber steps = 500, ψ = real θ
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4.3.2 Glauber steps vs θ̂

The same is done for the amount of Glauber steps. The results can be found
in figures 14 and 15. When the parameters are 0 and especially when θ2 = 0,
a converging trend can be found in the diagram. When both parameters are
nonzero it looks like the Markov chains do not converge.

Figure 14: Diagram of θ1 and θ2 against Glauber steps. The initial values for
θ are given by the the dotted lines. Values for the other variables: n = 500,
ψ = initial θ
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Figure 15: Diagram of θ1 and θ2 against Glauber steps. The initial values for
θ are given by the the dotted lines. Values for the other variables: n = 500,
ψ = initial θ
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4.3.3 ψ against θ̂

Finally, diagrams concerning the relation between ψ1 and θ̂, and ψ2 and θ̂ are
given in figures 16 and 17. In the first diagram θ̂ closest to the real value of θ
when ψ1 = θ1, exactly like expected. Though in the second figure something
happens that is more difficult to interpret.

Figure 16: Plot of θ1 and θ2 against ψ1
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Figure 17: Plot of θ1 and θ2 against ψ2
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5 Discussion

In this report a self-written package that executes the method of MCMCMLE
for two different models was examined. The package that executes the method
for the Curie-Weiss model finds a most likely value for θ that is quite close to the
real value. The standard deviation (the precision) and mean of the estimations
against different variables in the model can be found in chapter 4. Though
the results suggest quite a high precision, there is still some randomness in the
model. Firstly, there are no conclusions that can be drawn from the results
concerning the number of Glauber steps against the precision. Secondly, the
diagrams show that the estimation is not optimal when ψ = θ while this is
expected.

In the results of the package for the ERGM a clear convergence of the esti-
mations of θ is found as n rises and as soon as θ2 remains (close to) zero. The
same convergence appears as the number of Glauber steps rises. The estimation
is at its best if ψ1 = θ1. When θ2 6= 0 it seems that no convergence of θ̂ to θ is
found as n or Glauber step rises. The outcomes of the program do form a line
through θ. This may be explained by the fact that the amount of edges and the
amount of triangles in a network are obviously correlated. As it happens this
implies that the number of combinations of θ1 and θ2 that can correspond to a
network is bigger than one.

Finally it can be stated that I, as the writer of this report, have learned a lot.
All the information in the area of mathematics, coding and researching that was
treated has been added to my own knowledge and experience. It has inspired
me to continue with this subject and to look for applications of networks that
I am interested in.

Suggestions for future research In future research it is suggested that
more information is found regarding the effect of the amount of Glauber steps
on the precision of the method. In other words, it should be made clear what
is the exact mixing time of the Glauber dynamics of both models. Secondly
it should be investigated what is the probability of a non-estimable likelihood
of θ. (That is, problems with a likelihood function without a maximum.) A
possible source for this problem is found in [RPF11]. Furthermore it is found
that the estimations of the parameters are not converging when triangles are
considered in the ERGM. Yet it is not proven whether this is known problem in
the world of ERGM and other network models or that it is a consequence of an
error in the code of the Julia-package. It is suggested to treat this subject in the
future as well. Besides that it is suggested to compare the package that execute
the method in this research to other yet existing packages for the method of
MCMCMLE. In this way it can be verified whether there are any errors left the
package. Finally in the future it is a possibility to extend the research and the
current package for directed networks and/or networks with connections that
variate in strength. (Like our brain.)
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Conclusion It can be concluded that the package that was written is quite
precise for the Curie-Weiss model and that the results are in line with the the-
oretical expectation. The package that was written for the ERGM gives some
good results as well, but something is not right when the parameter correspond-
ing to the triangles in a network is unequal to zero. Whether this is due to an
error in the package or an external factor is not clear and more research will
have to be done. In general the speed of convergence of θ̂ against n can be
found in this report in an empirical way.
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