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Summary

The Earth’s climate system is changing due to increased greenhouse gas concentrations in the atmosphere.
The development of the future climate is, however, very uncertain. This uncertainty is caused by a lack of
knowledge of the Earth’s climate system and of future emissions of greenhouse gasses into the atmosphere.
Due to climate change more extreme rainfall events are expected and these events have an impact on the
(extreme) river discharges. The uncertainties in the future climate cause uncertainty in the projections of the
future extreme river discharges. For flood protection considerations, it is important to quantify the climate
uncertainties and its effects on extreme river discharges.

Projections of future changes in the climate system are typically obtained from simulations with Global
Climate Models (GCMs). These GCMs are driven by future greenhouse gas concentrations. For a better com-
parison between various studies the IPCC (International Panel on Climate Change) constructed so-called
Representative Concentration Pathways (RCPs), which are pre-defined forcing paths in time. The IPCC has
selected four different RCPs that largely span the future range in greenhouse gas concentrations. The RCPs
have a radiative forcing target level for 2100 of 2.6, 4.5, 6.0 and 8.5 W/m2 (at top of the atmosphere) and are
therefore named; RCP2.6, RCP4.5, RCP6.0 and RCP8.5, respectively. RCP2.6 is a mitigation scenario, RCP4.5
and RCP6.0 are two medium stabilization scenarios and RCP8.5 is a business-as-usual scenario.

For the Netherlands the Royal Netherlands Meteorological Institute (KNMI) constructed climate change
scenarios based on GCM projections. The four KNMI’14 climate scenarios were set up by a two-axis frame
work. One axis expresses the change in the projected global mean temperature and the other axis represents
the change in the large scale atmospheric flow, which largely determines the precipitation in and around The
Netherlands. This two-axis framework is expressed in the name of the scenarios. The so-called G-scenarios
presume a relatively small increase in global mean temperature and the W-scenarios presume a stronger tem-
perature increase. The subscript H represents a strong precipitation change and the subscript L a weak(er) in
precipitation response.

In this study the uncertainties in the discharges of the river Rhine in the Netherlands resulting from uncer-
tainties in the future climate are considered and the consequences of these uncertainties for flood protection
designs. Time series of daily precipitation and temperature of the Rhine basin are transformed into repre-
sentative time series for the climate of 2085 using the changes in the KNMI’14 climate scenarios and GCM
simulations.

The GRADE (Generator of Rainfall and Discharge Extremes) instrument has been developed for the Rhine
basin to obtain a time series of daily river discharges from daily precipitation and temperature data. This
instrument consists of three components. First, a stochastic weather generator that produces very long daily
precipitation and temperature series by sampling from much shorter series. Secondly, a hydrological model
(HBV) that transforms the precipitation and temperature series into river discharges. Thirdly, a hydrody-
namic model (Sobek) is used to simulate the routing of the largest flood waves. GRADE simulations usually
consist of 50,000 years which make these simulations computationally expensive.

GRADE was already used in combination with the four KNMI’14 scenarios. And although these four sce-
narios cover a considerable part of the climate change uncertainty, they do not cover it fully. To be able to
determine the uncertainties in future river discharges more extensively, a large number of river discharge
simulations based on various GCM projections is needed. GRADE is however computationally too expensive
for this purpose. Alternatively much shorter, i.e. 56-year, future river discharge simulations with the HBV
model were performed, based on the precipitation and temperature changes in the CMIP5 (Coupled Model
Intercomparison Project phase 5) climate model simulations. In this thesis both these short CMIP5 based dis-
charge simulations and the long KNMI’14 based HBV simulations from the GRADE instrument are used. The
CMIP5 ensemble consists of 183 climate model simulations, conducted with 29 different GCMs and driven
by the four RCPs. Although this is a sufficient amount of climate model simulations, the river simulations
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were only made for a time series of 56 years, which is not sufficient to determine the uncertainties in extreme
discharge return levels. The CMIP5 based discharge simulations are just used to determine the uncertainties
in the change in mean annual maximum discharge (dMHQ).

To assess the uncertainties in the extreme discharge return levels subsequently, relations between the
dMHQ and the changes in the T-year return levels (dHQT) are used. These relations are obtained with the
GRADE discharge simulations based on the KNMI’14 climate scenarios. From these simulations 50,000 an-
nual maximum discharges were available, which is sufficient to determine the extreme return levels. For the
relation between dMHQ and dHQT a linear relation, forced through the origin, is used. The slope of this linear
relation increases with the return period and thus each return level has its own relation.

For the quantification of the sources of uncertainty in the dMHQ’s of the CMIP5 simulations use is made
of a Linear Mixed-Effects (LME) model. An LME-model is an ANOVA (Analysis of Variance) model that in-
cludes fixed effects and random effects. The LME-model describes the variation in dMHQ as a function of
the forcing, climate model uncertainty and natural variability. The LME-model that fits the data of the 183
CMIP5 simulations best is a single-level mixed effects model with a fixed effect of the forcing, an interaction
between a random climate model effect and the forcing, and a random error representing the influence of
natural variability on dMHQ.

This LME-model is used as starting point for the determination of the uncertainties in the extreme dis-
charge return levels. For a specific return level and RCP forcing first, a random dMHQ is generated from the
LME-model (without the random error representing natural variability). Second, this dMHQ is converted into
dHQT with the relation between dMHQ and dHQT for that return level. Third, the value of dHQT is added to
HQT for the present climate, to obtain HQT for the future climate. Subsequently, a random value is drawn
from the normal distribution representing natural variability and HBV parameter (i.e. hydrological) uncer-
tainty for that return level and added to the value of HQT. And finally, this hydrological (HBV) discharge is
converted into a hydrodynamic (Sobek) discharge with a relation between HBV and Sobek discharges from
a GRADE simulation based on earlier KNMI climate scenario. With a sufficient number of realizations a dis-
tribution of the discharge of that specific return level and RCP scenario can be constructed. These steps are
repeated for various return levels and the four RCP scenarios. The distributions of the various return levels
are combined to a discharge frequency curve per RCP scenario with a 95% confidence band.

In all KNMI’14 scenario and RCP based discharge simulations of the Rhine at Lobith for 2085 there is a
systematic increase of the discharge return levels. For the 10,000-year return level the difference between
the means for RCP8.5 and RCP2.6 of 788 m3/s can be seen as the forcing scenario uncertainty. For a given
RCP scenario there is an uncertainty in the return levels due to natural variability, hydrological uncertainty
and climate model uncertainty. The uncertainty due to natural variability and hydrological uncertainty also
exists for the reference situation. The difference in width of the 95% confidence interval of the RCP scenarios
and the reference situation is the additional uncertainty caused by the different climate model responses to
an RCP scenario. For the 10,000-year return level this difference is 82, 279, 445 and 1000 m3/s for RCP2.6,
RCP4.5, RCP6.0 and RCP8.5, respectively. So for this return level the mean difference in response to the range
in RCP forcings of 788 m3/s is of similar order (in fact somewhat smaller) than increase in the uncertainty of
1000 m3/s for RCP8.5 due to climate model response uncertainty.

The range spanned by the four KNMI’14 scenarios for 2085 best corresponds with the width of the 95%
confidence range for the RCP8.5 scenario. However, for the 10,000-year return level the width of the 95% con-
fidence region of RCP8.5 becomes much larger than the range described by the KNMI’14 scenarios. For the
other three RCP scenarios the KNMI’14 scenarios are mainly located in the upper half of the 95% confidence
interval. This indicates that there is more than 50% chance that the KNMI’14 scenarios will never be exceeded
in 2085 in these RCP scenarios.

The uncertainties in future extreme river discharges due to climate change have consequences for the
water levels used for dike designs. In this study the consequences are only considered for the design water
levels for the failure mechanism overtopping at four different locations along the Rhine. This water level gives
a good indication of the relative influence of climate change on water levels for the dike designs.
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The design water level for the failure mechanism overtopping is, in good approximation, equal to the wa-
ter level with a return period equal to the safety standard of the dike section. For the determination of the
uncertainties in the design water level for a specific RCP scenario and location first a random discharge is
drawn from the discharge distribution of the RCP scenario with a return level equal to the safety standard
of the location. Subsequently, this discharge is converted into a water level by a relation between the river
discharge at Lobith (Q) and the local water level (h), the Q-h relation. With a sufficient number of realizations
a distribution of the design water level of that specific location and RCP scenario can be constructed. These
steps are repeated for the four RCP scenarios and the four locations.

The first location considered is situated along the Waal and part of dike section 42-1, which has a safety
standard of 1/10,000 per year. At this location the mean values of the design water level are 15.53, 15.60,
15.63 and 15.75 m for RCP2.6, RCP4.5, RCP6.0 and RCP8.5, respectively. The mean of the reference situation
at this location is 15.24 m, so there is an increase of 0.29 - 0.51 m for the design water level due to the RCP
forcing. The standard deviation of the design water level for the RCP scenarios is in the range of 0.25 - 0.30
m, which is of the same order as the range in the increase in the mean value for the RCP scenarios. For the
other three locations the range in the increase in the mean value is of the same order, the difference between
RCP8.5 and RCP2.6 is about 0.2 m. And also the standard deviations of each RCP scenario is in the same order.

Integration of the uncertainties in the discharge frequency curve lead to an increase of the design water
level of 0.08 to 0.13 m (depending on the RCP scenario) with respect to the mean value of the design wa-
ter level distributions per RCP scenario. This increase is somewhat different for the four locations along the
Rhine. When the results are compared for the location along the Waal (Location 1) for the RCP scenarios with
the reference situation, the design water level is 0.29 - 0.51 m higher due to the four RCP scenario forcings
and above this water level an additional height of 0.09 - 0.12 m is required for the uncertainties within an RCP
scenario.

The design water level based on the KNMI’14 scenarios is only considered for the location along the Waal
(dike section 42-1). The design water level, with the uncertainties integrated, becomes 15.60, 15.82, 16.11
and 15.91 m for 2085GH, 2085GL, 2085WH and 2085WL, respectively. The design water level for the lowest
KNMI’14 scenario (2085GH) is almost equal to the 15.62 m for the lowest RCP scenario (RCP2.6). And the de-
sign water level for the highest KNMI’14 scenario (2085WH) is 0.26 m higher than the 15.85 m for the highest
RCP scenario (RCP8.5). The design water level for the RCP8.5 scenario corresponds most closely to the one
for the KNMI’14 2085GL scenario.

This study shows that both the RCP scenario forcing and the uncertainty in the discharge return levels
lead to an increase of a few decimetres in the design water level.
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1
Introduction

1.1. Problem analysis
The causes and effects of climate change are hot topics at the moment. Many studies show the existence of
climate change [12]. There is a widespread consensus about the existence of climate change, due to increased
greenhouse gas (carbon dioxide (CO2), methane (NH4), Nitrous Oxide (N2O), etc.) concentrations in the at-
mosphere, but there is much uncertainty about the development of the future climate.

The Earth’s climate system is very complex and still not fully understood. This lack of knowledge causes a
large uncertainty in the predictions of the future development of the climate on Earth. Another source of un-
certainty is the emission of greenhouse gasses in the atmosphere. Greenhouse gas emissions largely depend
on the development of new technologies and mitigation politics. This makes it hard to predict the future
greenhouse gas concentrations in the atmosphere, and it also makes the predictions of the future climate
uncertain.

Due to climate change the sea level rises and more extreme rainfall events occur. Changes in rainfall have
an impact on river discharges. The future sea level and river discharges therefore depend on the future cli-
mate. These quantities are important for the flood protection system in The Netherlands. The dike reinforce-
ments programs make use of projections of the future sea level and river discharges. Due to the uncertainties
in the future climate these projections are also uncertain. These uncertainties need to be taken into account
in the flood protection designs and therefore it is important to know the magnitude of the uncertainties due
to climate change. In a earlier research this is already done for the sea level near the Dutch coast [27]. The un-
certainties in extreme river discharges of the Dutch rivers due to climate change are however not fully known.

For flood protection designs the current Dutch guideline makes use of the KNMI’14 climate scenarios.
This set of four scenarios is developed by the Royal Netherlands Meteorological Institute (KNMI) and de-
scribes possible ways of the climate development in The Netherlands [17]. In the flood protection guideline
the KNMI scenario is used that leads to the most extreme rive discharges. Uncertainties in this scenario are
taken into account by an additional discharge.

Future discharges of the main rivers in The Netherlands have been simulated for each of the KNMI’14
scenarios [29]. The spread in the return levels of the extreme discharges gives an indication of the magnitude
of the uncertainties. For good dike design considerations it is important to know the uncertainties in the
future river discharges better.

1



2 1. Introduction

1.2. Research goals
The first goal of this research is to determine the uncertainties in the river discharges due to climate change.
We then asses how for the extreme river discharges under the KNMI scenarios cover the spread in the dis-
charges due to the climate change uncertainties.

The second goal is to determine the consequences of these uncertainties for dike design considerations.
For this goal a range in the dimensions of a dike due to uncertainties in the river discharges has to be deter-
mined and a method to include these uncertainties in the dike design has to be found.

1.3. Research questions
Below the research questions for this research are formulated. There are three main questions, of which the
first is divided into two sub questions.

1. How large are the uncertainties in the future extreme river discharges due to climate change and what are
the consequences of these uncertainties for flood protections designs in The Netherlands?

For this question the two sub questions are:
1a. How large is the uncertainty in the extreme discharge of the Rhine at Lobith due to climate change uncer-
tainties for different discharge return levels?
1b. What are the consequences of the climate change uncertainties on the local water level corresponding to
the safety standard?

2. How are the discharge return levels for the four KNMI’14 climate scenarios situated in the probability dis-
tributions of the discharge return levels based on a large number of climate model simulations?

3. How do the results of this study compare to the currently used KNMI’14 scenarios.
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1.4. Study area
This study focusses on the upper part of the Rhine in The Netherlands. The water levels in this part of the
river depend only on the river discharge and not on the sea level.

The Rhine is, with a total length of 1230 km, the longest river in North Western Europe. The river origi-
nates in the Swiss Alps and empties in the North Sea in The Netherlands. The basin with a catchment area of
185,000 km2 is situated in nine countries. The average discharge at Lobith is 2200 m3/s and the river is fed by
rainfall, snow melt and glacier melt.

Lobith is the location where the river Rhine enters the Netherlands. The river discharges at this location
are used for the flood protection designs in The Netherlands. In this study the river discharges are also con-
sidered for this location.

Figure 1.1: Overview of the Rhine basin (source: [9])

Extreme floods in the Lower Rhine typically occur in the winter and early spring (November - April). These
are caused by a combination of multi-day precipitation over a large area, saturated soils, and little evapora-
tion. Frozen soils and snow melt may enhance the occurrence of extreme run off.
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Climate Change

2.1. Key concepts in Climate Science
The terms weather and climate are often used interchangeably, while they essentially mean something dif-
ferent. Therefore, it’s important to distinguish the meaning of weather from climate. Weather describes the
atmospheric condition at a certain place and time, with reference to parameters as temperature, pressure,
humidity and wind. But weather also describes the presence of clouds, precipitation, storms, etcetera. The
weather is generally described in short time frames, minutes to weeks.Climate is usually defined as the av-
erage weather over a period of 30 years. But it is better to define it as the statistical description in terms of
the mean and variability of relevant quantities. The relevant quantities are most often surface variables such
as temperature, precipitation and wind. The statistics for climate also describes the associated statistics (fre-
quency, magnitude, persistence, trends, etc.) of combining parameters. Climate change refers to a significant
change of the statistical climate distribution, which can be changes in the mean and/or the variability. (IPCC,
[3])

The Earth’s climate system (as shown in Figure 2.1) is forced by solar radiation from the Sun . About half
of the incoming solar shortwave radiation (SWR) is absorbed by the Earth’s surface. The rest is absorbed
of reflected by climate drivers, such as greenhouse gasses, aerosols (tiny dust particles in the atmosphere),
clouds and surface albedo (a measure for sunlight reflection). The absorbed radiation by the Earth’s surface is
later emitted as long wave radiation (LWR). Most of the outgoing LWR is absorbed by certain climate drivers,
and later emit to all directions. The downward component of this LWR adds heat to the lower layers of the
atmosphere and the Earth’s surface, this is the so called greenhouse effect. When the incoming solar energy is
nearly equal to the outgoing radiation, the temperature on Earth remains constant. This applies when there
is an energy balance in the Earth’s climate system. (IPCC, [3])

Climate change is caused by changes in the global energy budget. This can be changes in either the in-
coming solar radiation or the outgoing longwave radiation. Changes in the net incoming solar radiation
derive from changes in the Sun’s output of energy or the Earth’s surface albedo. Changes in the outgoing long-
wave radiation can result from changes in the temperature of the Earth’s surface or atmosphere or changes in
emissivity of LWR from either the atmosphere or the Earth’s surface. Changes in emissivity for the atmosphere
are predominantly caused by changes in clouds, greenhouse gases (GHGs) and aerosol concentrations. Hu-
mans influence the greenhouse gas [carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), etc.] and
aerosol concentrations by burning fossil fuels. In addition, humans are effecting both the energy and water
budget of the planet by changing the land surface. Land use changes change the characteristics of vegetation,
including its colour (which effects the surface albedo), seasonal growth (rates of evapotranspiration) and car-
bon content (reduces carbon storage in the vegetation, adds CO2 to the atmosphere). Due to the changes
induced by humans, the Earth’s energy budget is not fully in balance at the moment. (IPCC, [3])

Changes in the atmosphere, land, ocean, biosphere and cryosphere can disturb the Earth’s radiation bud-
get, producing a radiative forcing. As a response of this forcing, the Earth’s climate system will change. Com-
plex feedback mechanisms ensure that the response of the climate system is not necessarily be proportional

5



6 2. Climate Change

Figure 2.1: Main drivers of Climate Change (source: [3])

to the forcing. The feedback mechanisms can either be positive or negative. An example for a positive feed-
back is the ice-albedo feedback. When the Earth’s temperature increases, snow and ice will melt. Melting ice
results in a decrease in surface albedo. Thereby, less solar radiation is reflected and the absorbed radiation in
the Earth’s surface increases. This results in a further increase of the Earth’s temperature. Feedback mecha-
nisms operate on different time scales, ranging from hours to centuries. The different feedback mechanisms,
with varying time scales, make it difficult to predict the climate’s reaction on the forcings. (IPCC, [3])

2.2. Observed Changes in the Climate System
Observations of the climate system were done since the mid-19th century by direct measurements and re-
mote sensing from satellites. To extend some records back to hundreds or even to millions of years paleocli-
mate reconstructions were made. The obestervations and paleoclimate reconstuctions together give a com-
prehensive view of the long-term changes in the atmosphere, ocean, cryosphere and land surface. (IPCC, [13])

For the river discharges the changes in temperature and precipitation are the most important. In Figure
2.2 the observed temperatures in the period 1850 - 2012 are shown. The last three decades have been warmer
than any of the earlier decades since 1850. The total increase between the average of the period 1850-1900
and the period 2003-2012 is 0.78 °C, based on the longest dataset available (the Hadley Centre/Climatic Re-
search Unit gridded surface temperature data set 4 (HadCrut4)).

The change in precipitation since 1901 is relatively small before 1951 but considerably increases after-
wards (Figure 2.3). The observations show both positive as negative trends in precipitation change. The
positive trends were observed in the mid-latitude land areas, especially in the Northern Hemisphere. While
the negative trends were observed in dry areas, like the deserts. There is a tendency that dry areas will become
drier, while wet areas become wetter.

Other important observed changes are the loss of ice and snow mass, the increase in ocean temperature,
the rise of the sea level and the increase in greenhouse gas concentrations in the atmosphere. These are
important phenomena for the change in the climate system, but do not influence the river discharges directly.
And therefore, these phenomena are not further discussed in this research. The increase in greenhouse gas
concentrations in the atmosphere is, however, the main causer of the climate change. Predications of the
future changes in this concentrations are used to predict the future changes in the climate system, which is
further described in Section 2.3.
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Figure 2.2: Observed global mean combined land and ocean surface temperatures changes, from 1850 to 2012 from three data sets.
The data sets of HadCRUT4, MLOST and GISS are used. The top panel shows the annual mean values. The bottom panal shows the
decadal mean values, including the estimated uncertainty for one dataset (black line in top panel). The changes are relative to the mean
temperature of the period 1961-1990. (source: [13])

Figure 2.3: Maps of observed precipitation change over land from 1901-2010 and from 1951-2010 from the Global Precipitation Clima-
tology Centre (GPCC) data set. (source: [13])
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2.3. Climate Modelling
Projections of future changes in the climate system are typically obtained from simulations with Global Cli-
mate Models (GCMs). The future changes depends heavily on the future atmospheric emissions, and con-
sequently concentrations, of greenhouse gases (of which CO2 is the most known). The development of the
greenhouse gases is uncertain since it depends on the size of the world population, the fossil fuel consump-
tion per capita, technological developments and worldwide climate policy measures. It is relatively easy to
convert greenhouse gas concentrations into a so-called climate forcing (in W/m2) at the top of the atmo-
sphere where as a result of increased greenhouse gases a new radiation balance is set, resulting in a larger
globally averaged temperature near the surface. The second uncertainty involves the amount of globally av-
eraged surface temperature change, which depends on the strengths of the various positive and negative
climate feedbacks, given a specified amount of climate forcing. The larger the surface temperature response
under a unit amount of climate forcing the larger the so-called climate sensitivity of the GCM. The uncer-
tainty in future greenhouse gas emissions and concentrations can thus be converted into an uncertainty in
future climate forcing. The latter is for practical reasons preferred as a starting point for climate model pro-
jections. To describe the range in future climate forcings the Intergovernmental Panel on Climate Change
(IPCC) constructed so-called Representative Concentration Pathways (RCPs) (see Section 2.3.1 for details).

The GCMs used in this research are described in Section 2.3.2. The results of these GCM simulations have
been used to build time series of daily temperature and precipitation for the Rhine basin. The transformation
method that is needed for this, is described in Section 2.3.3.

The future changes in The Netherlands are described by climate scenarios constructed by the KNMI.
These KNMI climate scenarios were based on the GCM simulations. A description of the scenarios and the
constuction method is given in Section 2.3.4.

2.3.1. Representative Concentration Pathway
For better comparison between various studies as well as easier communication of model results, it is prefer-
able to use a common set of scenarios. The IPCC Representative Concentration Pathways (RCPs) are a set of
emission scenarios adopted by climate modellers to provide a range of possible futures for the evolution of
the atmospheric greenhouse gas emissions and concentrations. The RCPs are pre-defined paths of radiative
forcing in time (see Figure 2.4), and are used to drive the climate models.

The RCPs include the changes in all major anthropogenic greenhouse gasses. To build the RCPs observed
greenhouse gas emissions and concentrations for the historical period (1750-2005) are combined with pro-
jected greenhouse gas emissions and concentrations for the period 2005-2100. Due to, the earlier mentioned,
climate feedbacks the greenhouse concentrations are somewhat dependent on the resulting future climate,
i.e. on the temperature response. Therefore median response characteristics of models assessed in the IPCC
Fourth Assesment Report [11] are used. The RCPs are developed until 2100, beyond 2100 the RCPs are ex-
tended until 2300 by Extension Concentration Pathways (ECPs). The ECPs are based on the assumption of
either smoothly stabilizing concentrations or constant emissions.

IPCC has selected four different RCPs that largely span the future range in greenhouse gas emissions and
concentrations. The RCPs are named according to radiative forcing target level for 2100 of 2.6, 4.5, 6.0 and
8.5 W/m2 and hence respectively, RCP2.6, RCP4.5, RCP6.0 and RCP8.5. The four selected RCPs include one
mitigation scenario leading to a very low forcing level (RCP2.6), two medium stabilization scenarios (RCP4.5
and RCP6.0) and one very high base line emission scenario (RCP8.5). The development of the radiative forcing
over time for each RCP is shown in Figure 2.4.
The four scenarios are considered plausible and illustrative, without having probabilities attached to them.
More details about te description and construction of the RCPs (and ECPs) can be found in Van Vuuren et al.
[32] and Meinshausen et al. [21].

2.3.2. CMIP5 Climate Model simulations
The IPCC Fifth Assessment Report [12] makes use of the CMIP5 (the Coupled Model Intercomparison Project
phase 5) climate model simulations. In total the CMIP5 ensemble consists of 200 climate model simulations.
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Figure 2.4: Total radiative forcing of the four Representatie Concentration Pathways (RCPs) and their Extended Concentration Pathways
(ECPs) (source: [21])

For the simulation of river discharges the daily precipitation and temperature are the most important
variables. And therefore, only the simulations with both daily precipitation and temperature data for the
time-slices 1961-1995, 2021-2050 and 2071-2100 were selected from the available CMIP5 simulations for an
earlier river discharge study [29]. The same 183 simulation runs are used again in this research. Table 2.1 gives
an overview of this 183 simulations and for each GCM the number of runs per RCP. The 183 simulations runs
were conducted with 29 different GCMs. These models are Atmosphere-Ocean General Circulation Models
and are, as the name already suggests, a combination of an Atmospheric Circulation Model (ACM) and an
ocean model. A number of GCMs uses the same ACM and these GCMs may therefore have similar responses.
For this reason the GCMs are also grouped by the ACMs in the later analysis (and also in Table 2.1).

The climate models were driven by the four RCPs. But the four RCPs are not equally represented in the
CMIP5 ensemble. While there are 55 simulations forced by the RCP8.5 scenario, the RCP6.0 scenario is only
used in 29 simulations. Further, the number of independent simulations performed by a single GCM for a
particular RCP varies from 1 to 10. Such independent simulations are constructed by starting the simulations
for (slightly) different initial conditions but using exactly the same model configuration and forcing. The
difference (in response) between these simulations represent the effect of natural climate variability, which,
in turn, is due to the chaotic behaviour of the weather and the climate.
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Table 2.1: Overview of the number of climate model runs per Representative Concentration Pathway (RCP) for each Global Climate
Model (GCM) used in this study. ACM stands for Atmospheric Circulation Model used in the GCM.

GCM ACM RCP Total
2.6 4.5 6.0 8.5

ACCES1-0 HadGEM 1 1 2
ACCES1-3 GA 1 1 2
bcc-csm1-1 BCC 1 1 1 1 4
bcc-csm1–m1 BCC 1 1 1 1 4
BNU-ESM CAM 1 1 1 3
CanESM2 CanCM 5 5 5 15
CCSM4 CAM 3 3 3 3 12
CMCC-CESM ECHAM 1 1
CMCC-CM ECHAM 1 1 2
CMCC-CM5 ECHAM 1 1 2
CNRM-CM5 ARPEGE 1 1 1 3
CSIRO-Mk3-6-0 CSIRO 10 10 10 10 40
GFDL-CM3 GFDL 1 1 1 3
GFDL-ESM2G GFDL 1 1 1 1 4
GFDL-ESM2M GFDL 1 1 1 1 4
GISS-E2-R GISS 1 1
HadGEM2-CC HadGEM 1 3 4
HadGEM2-ES HadGEM 4 4 4 4 16
immcm4 INCM 1 1 2
IPSL-CM5A-LR IPSL 4 4 1 4 13
IPSL-CM5A-MR IPSL 1 1 1 1 4
IPSL-CM5B-LR IPSL-B 1 1 2
MIROC5 MIROC 3 3 1 3 10
MIROC-ESM MIROC 1 1 1 1 4
MIROC-ESM-CHEM MIROC 1 1 1 1 4
MPI-ESM-LR ECHAM 3 3 3 9
MPI-ESM-MR ECHAM 1 3 1 5
MRI-CGCM3 MRI 1 1 1 1 4
NorESM1-M CAM 1 1 1 1 4

TOTAL 45 54 29 55 183

2.3.3. Future changes in the Rhine basin
For each of the 183 CMIP5 simulations (Section 2.3.2) the Advanced Delta Change (ADC) method [31] is used
to modify (i.e. to transform) historical daily precipitation and temperature time series. These transformed
time series are then used to simulate river discharges belonging to that specific future climate (or climate
scenario). In the remainder of this section the ADC method is briefly described.

The ADC method was first developed for GCMs from the Coupled Model Intercomparison Project phase
3 (CMIP3) and later extended and applied to the 183 CMIP5 climate model runs mentioned in the previous
section [18]. In the ADC method the relative changes in the mean and extreme precipitation can be different,
and therefore more consistent with the precipitation responses in the climate model compared to the clas-
sical, or ordinary, Delta method in which the relative changes in the mean and extreme precipitation are by
definition the same (and therefore potentially at variance with the response in mean and extreme precipita-
tion as indicated by the climate model). Delta change methods are often used because of practical reasons
and since they actually avoid the need to correct for biases found in the climate model simulations. But for
any Delta change method to work properly it should reproduce the responses in the climate model in the
best possible way. In this respect the ADC method is a clear improvement compared to the classical Delta
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method. To account for seasonal and spatial differences in the precipitation and temperature differences in
the climate model, in the ADC method the precipitation and temperature changes are allowed to vary sea-
sonally and spatially as well.

Precipitation transformation
The first step in the ADC method is to extract the daily precipitation and temperature output of the global cli-
mate models from the CMIP5 dataset (see top row of Figure 2.5). Two time-frames are extracted, one for the
control period (1961-1995) and one for the future period (either 2021-2050 or 2071-2100). The spatial varia-
tion within a GCM is represented by using a (common) grid of grid cells with a resolution of 1.25° latitude and
2.0° longitude.

Extreme river discharges in the Rhine generally result from extreme multi-day precipitation amount in
the river area. In other words, it is the change in the statistics of extreme multi-day precipitation that counts
and that should be properly represented in the transformed time series. Therefore, ideally the transformation
should be based on the response in multi-day precipitation sums rather than on the response of daily pre-
cipitation amounts (alone). The statistics of the non-overlapping 5-day sums are therefore considered. The
5-day step recognizes the relevance of multi-day precipitation sums, but is small enough to be linked with
daily precipitation as well.

Figure 2.5: Schematic overview of the Advanced Delta-Change method (source: [18])
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For the transformation of the observed 5-day precipitation sums (P ) two equations are used, i.e. for pre-
cipitation sums that are smaller or larger than their 90% quantile (P90). This quantile is determined per calen-
dar month for each grid cell over the entire reference period, hence there are 12 different P90 values per grid
cell. The transformation equations to calculate the transformed 5-day sums (P∗) make use of two transfor-
mation coefficients, i.e. a and b. These coefficients are derived from the 60% and 90% quantiles of the 5-day
sum statistics. The transformation equation in the case where P exceeded the P90, also uses an excess value
(E). This is the part of the precipitation that exceeds the P90 (E = P −P90). For the transformation equation
the mean excesses for the control and future periods are used (see middle row in Figure 2.5). The coefficients
a and b and the change in the mean excess vary seasonally (per calendar month) and spatially (per grid cell).
Further, to derive the transformation coefficients (i.e. the ADC parameters) for each grid cell, the relevant
grid cell statistics are smoothed using the 8 neighbouring grid cells (in an area of 3 x 3 cells).

The GCM control period and the observations may have somewhat different statistics. To correct for those
differences a bias correction is applied. The bias correction factors are derived from the relative differences
in the quantiles P60 and P90 between the GCM control simulation and the historical (reference) observations.

For the calculation of river discharges the hydrological model HBV-Rhine is used (see Section 2.4.2 for
further details). In the HBV-Rhine model the Rhine basin is divided in 134 sub-basins. The final step in the
ADC method is to calculate the future daily precipitation at the sub-basin scale. To achieve this, for each
(common) grid cell and 5-day period a change factor R is defined. This change factor is the ratio between
the transformed 5-day sum and the corresponding original 5-day sum (in the historical record aggregated
observations), i.e. R = P∗/P (see bottom row of Figure 2.5). The daily observations in the 134 HBV sub-basins
from the historical reference period 1951-2006 are used for the final transformation. The daily precipitation
in a sub-basin is multiplied by the R-value corresponding to the (common)grid cell and 5-day period. The
individual days within a 5-day period are thereby transformed with an equal change factor. Consequently, a
dry day within a 5-day period remain dry and the wet days are scaled with R.

Temperature transformation
In addition to the precipitation transformation also a temperature transformation is needed for hydrological
modelling. The temperature transformation is the same linear transfomation as in [18]:

T ∗ = σF

σC
(T −T O)+T O +T F −T C (2.1)

applied to the observed daily temperature T , and where T ∗ represents the transformed daily temperatures;

T O , T C and T F are the calender month mean of respectively the observed, control and future temperature;
σC and σF the standard deviation of the daily control and future temperature calculated per calender month.

The means and standard deviations are determined for each common grid cell by aggregation of the ob-
servations and bilinear interpolation of the GCM temperatures. Subsequently, the transformation is applied

to daily observations for a particular sub-basin by using the common grid cell means (T O , T C , T F ) and stan-
dard deviations (σC , σF ) of the corresponding grid cell and calendar month.
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2.3.4. KNMI Climate Scenarios
Based on GCM projections KNMI has constructed climate change scenarios specifically for the Netherlands.
The so-called KNMI’06 climate scenarios were published in 2006 and were based on climate model simula-
tions described in the IPCC Fourth Assesment Report [11]. The KNMI’06 climate scenarios [16] include two
sets of four different scenarios, one set for the years around 2050 and one set for around 2100. To span a range
of changes in seasonal mean temperature and precipitation in the Netherlands the scenarios are set up by a
two-axis framework. One axis expresses the change in the projected global mean temperature and the other
axis represents the change in the large scale atmospheric flow around The Netherlands, more specifically, the
change in the strength of the western component of the atmospheric flow. These two components are se-
lected since most of the range of changes in temperature and precipitation in The Netherlands can be related
to these components. The KNMI’06 climate scenarios were constructed specifically for The Netherlands but
they were also applied in the (entire) Rhine and Meuse basins to obtain discharge projections for the Rhine
and Meuse rivers.

After the publication of the IPCC Fifth Assessment Report [12], the KNMI constructed new climate sce-
narios. These KNMI’14 climate scenarios [17] are made with the new scientific insights and climate models
from the Fifth Assessment Report. The same two-axis framework as for the KNMI’06 climate scenarios was
adopted, thus again with a distinction between the global mean temperature increase and the response of the
regional atmospheric circulation (see Figure 2.6). The scenarios were constructed for the the periods 2016-
2045, 2036-2065 and 2071-2100, respectively, ’2030’, ’2050’, and ’2085’.

Figure 2.6: Overview of the KNMI’14 scenarios (source: [17])

The KNMI’14 climate scenarios were constructed in such a way that they span a large fraction of the
spread in simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble (for fur-
ther details see Section 2.3.2). For the construction of the KNMI’14 scenarios use was made of the Global
Climate Model EC-Earth in combination with the Regional Climate Model RACMO2. An ensemble of 8 EC-
Earth simulations driven with the RCP8.5 forcing scenario, downscaled with the RACMO2 model, was used as
a basis. To construct each of the four scenarios, 5-year sub-periods were sampled from the time series of the
original 8-member ensemble. Sub-periods not shorter than 5 years are used to preserve the temporal correla-
tion structure of the original time series. The selection of the 5-yr sub-periods was based on a set of selection
criteria that match the desired changes for each of the four scenarios and that, in turn, were obtained from
(the spread in) the CMIP5 global climate model projections for respectively ’2050’ and ’2085’.
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The criteria for the G and W scenarios were set by the increase in global mean temperature. The G-
scenarios presume a small increase (1 °C in 2050 and 1.5 °C in 2085) and the W-scenarios presume a stronger
temperature increase (2 °C in 2050 and 3.5 °C in 2085). The subscript of the scenarios (L and H) is used to
span the spread in precipitation change. The subscript H represent a strong response, with wetter winters
and drier summers, and the subscript L represent a weak response with smaller changes in precipitation in
both seasons. The selection criterium for these scenarios relates to the change in winter precipitation. For
the scenarios with ’low’ change in precipitation climate (GL and WL) a winter precipitation change of 4% per
degree global warming was used. And, for the scenarios with ’high’ precipitation change (GH and WH) a win-
ter precipitation change of 8% per degree global warming was used. This criterium remains unchanged for
’2050’ and ’2085’.

For the construction of the ’2030’ scenarios a different procedure was followed. On this short projection
time scale the climate change signal is still small and this also holds for the spread between the different
ensemble members. For ’2030’ therefore a single KNMI’14 climate change scenario was constructed. This
’2030’ scenario was essentially constructed as the average of the 8 EC-Earth-RACMO2 ensemble members for
the period 2016-2045. A detailed description of the construction of the KNMI’14 climate scenarios is given in
Lenderink et al. [20].

KNMI’14 scenarios for the Rhine basin
Consistent with the KNMI’14 scenarios for The Netherlands, KNMI’14 scenarios were constructed for the
Rhine and Meuse basins as well. The aim of the KNMI’14 climate scenarios for the Rhine and Meuse basins
was that they represent a considerable amount of the CMIP5 spread in the (seasonal) changes in precipita-
tion and temperature for the Rhine and Meuse basins, as they also do for the The Netherlands. For the Rhine
basin a fifth climate scenario was constructed (WH,dry), because the most extreme KNMI’14 scenario in terms
of summer drying (WH) was not dry enough compared with the spread in the CMIP5 ensemble [19]. Never-
theless, the WH,dry scenario is not considered in this research, since we are primarily interested in the extreme
river discharges and thus extreme precipitation events and not in extreme dry periods.

Apart from the WH,dry scenario, the KNMI’14 scenarios for the Rhine and Meuse basins were based on ex-
actly the same EC-Earth-RACMO2 sampled subsets as those used for the KNMI’14 scenarios for the Nether-
lands. To apply the KNMI’14 climate scenarios to the hydrological model for the Rhine catchment (HBV-
Rhine, see Section 2.4.2), historical precipitation and temperature time series for each of the HBV-Rhine
sub-basins were transformed to the future, consistent with each of the four KNMI’14 scenarios, by making
use of the ADC method (see section 2.3.3 for further details). The essence of the ADC method is that the
relative changes in the extreme precipitation may be different from those in the mean precipitation. A prac-
tical advantage of this ADC method is that it also deals with the difference in spatial resolution between the
HBV-Rhine catchments and the climate model grid cells [29].
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2.4. Modelling from meteoroloy to river discharge
The series of daily precipitation and temperature of the CMIP5 simulations can be transformed into river dis-
charges by the GRADE (Generator of Rainfall and Discharge Extremes) instrument [9]. GRADE can provide
discharge series with a length of up to 50,000 years from precipitation and temperature series. For this trans-
lation the GRADE method made use of three components.

Component 1: Stochastic weather generator
The stochastic weather generators used for the Meuse and Rhine basins are based on nearest-neighbour re-
sampling and produce very long daily rainfall and temperature series that preserve the statistical properties
of the original (much shorter) series.

Component 2: Hydrological modelling
A hydrological model is used to transform the precipitation and temperature series into discharges. Within
GRADE use is made of the HBV (Hydrologiska Byrans Vattenbalansavdeining) rainfall-runoff model.

Component 3: Hydrological and hydrodynamic routing
This component of GRADE routes the runoff generated by HBV through the main river. First, a simplified
hydrological routing module is used in HBV, but this does not simulate well the physical processes such as
retention and flooding. Therefore, a hydrodynamic routing component is added. For this purpose, the Sobek
hydrodynamic model is used. However, only the largest flood waves are simulated with the Sobek model.
These waves are selected from the results of the built-in routing in the hydrological model. This is done,
because a full hydrodynamic simulation of the synthetic series is computationally not feasible.

2.4.1. Stochastic weather generator
The weather generators is used to generate long synthetic series of daily precipitation and temperature by
using the nearest-neighbour resampling technique [1]. In the nearest-neighbour method weather variables
like temperature and precipitation are sampled simultaneously with replacement from the historical data.
The weather generator for the Rhine and Meuse basins do not generate rainfall at a single site, but rainfall
and temperature at multiple locations simultaneously. A major advantage of resampling historical days at
multiple locations simultaneously is that both the spatial association of daily rainfall over the drainage basin
and the dependence of daily rainfall and temperature are preserved without making assumptions about the
underlying joint distributions.

To incorporate autocorrelation resampling depends on the simulated values for the previous day. One first
searches the days in the historical record that have the similar characteristics as those of the previously simu-
lated day. Those days are the so called nearest neighbours of the previously simulated day. One of those days
is selected randomly and the observed values for the day subsequent to that nearest neighbour are adopted
as the simulated values for the next day.

To find the nearest neighbours a feature vector is used. The feature vector is formed out of a small num-
ber of statistics of (standardized) weather variables. The nearest neighbours are ordered using a weighted
Euclidean distance. Only the k nearest ones from a certain time window are selected. This window is moving
and centred on the calendar day of interest. This moving window is needed to account for the seasonal vari-
ation in the dependence between variables. One of the k nearest ones is selected randomly. But before the
selection a decreasing kernel of Lall en Sharma (1996), which gives a higher weight to the closer neighbours,
is used.

For the rainfall generators for the Rhine and Meuse, the weights are taken inversely proportional to the
variance of the feature vector elements and k is set to 10. For the Rhine a 3-dimensional feature vector is used:
the daily mean temperature in the basin, the daily mean precipitation in the basin and the daily fraction of
locations with precipitation larger than 0.1 mm. For further details see Schmeits et al. [28].

The 50,000-year simulation for the Rhine made use of the historical period 1951-2008 as the base period.
The 50,000-yr simulations are constructed for the reference situation [9] and for the KNMI’14 climate sce-
narios [29]. For the KNMI’14 climate scenario use is made of the ADC method (described in section 2.3.3) to
transform the base period to the future period according the climate scenario.
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2.4.2. Hydrological modelling
To transform the precipitation, temperature and potential evapotranspiration series into discharges a hydro-
logical model is used. Within GRADE use is made of the HBV (Hydrologiska Byrans Vattenbalansavdeining)
rainfall-runoff model both for the Meuse and the Rhine. HBV is a conceptual model which means that the
model components represent the basin on a realistic way. A schematic overview of the HBV model is shown
in Figure 2.7.

The model structure can be divided into a number of routines. In the snow routine the accumulation
of snow and snow melt are determined according to the temperature. The soil routine controls which part
of the rainfall and melt water forms excess water and how much is evaporated or stored in the soil. The
runoff generation routine consists of an upper, non-linear reservoir representing fast runoff components and
a lower, linear reservoir representing base flow.

Figure 2.7: Schematic overview of the HBV rainfall-runoff model (source: [9])

To set up the HBV model the basins in the river Rhine and Meuse are subdivided into a number of sub-
basins. This division is primarily done to have the same physical characteristics within a basin, and also the
precipitation within a sub-basin can be considered as uniform. The Rhine basin is initially divided in 134 sub-
basins. But the lakes in Switzerland have an considerable effect on the discharge. Therefore, four large lakes
in Switzerland are included to the initial division of 134 sub-basins, which led to a total of 148 sub-basins [10].

The HBV model runs with a daily time step. The model input consists of daily average precipitation and
temperature for each sub-basin. The model is calibrated using the GLUE (Generalized Likelihood Uncertainty
Estimation) method, with the focus on high discharges.

2.4.3. Flood routing
The routing of flood waves from the various sub-basions through the main channels can be done by either the
hydrological flood routing in HBV or flood routing of external hydrological or hydrodynamic models, which
are fed by the simulated discharges of the HBV sub-basins.

A conceptual model as the HBV model has its limitation for flood routing, because not all the important
hydrodynamic effects are included. The level of which this type of model represents the reality depends on
the layout of the reservoirs in the model. For the extreme Rhine discharges in the HBV model in GRADE do
not represent the real discharges well, since flooding in Germany will occur which are not included in the
HBV model.

To include all the important hydrodynamic effects, such as flooding and backwater curves, an advanced
hydrodynamic model is needed. The big disadvantage of using hydrodynamic routing is that the calculation
requires a high computation time. Due to the computation time the hydrodynamic calculations are only done
for the largest flood waves. This can be the annual maximum flood peaks or flood waves with a minimum
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amount of discharge. These largest flood waves are derived from the hydrological routing results using a
three-step approach:

1. First the full synthetic series (50,000 years) are simulated with the flood routing in HBV and the largest
flood peaks at Lobith (or Borgharen for the Meuse) are selected.

2. Subsequently the corresponding flood waves are simulated again with the hydrodynamic routing, start-
ing 30 days before the moment of the peak until 20 days after the moment of the peak.

3. The results of the two are combined to get a continuous discharge series.

GRADE uses a 1D SOBEK-RE model for the hydrodynamic routing. In this model flooding areas behind the
dikes are included for the Upper Rhine (between Maxau and Kaub) and the Lower Rhine (between Bonn and
Lobith, see figure 1.1). The potential flood areas behind the dikes are modelled as retention areas that retain
water when a certain water level is reach and empties when the flood recedes. The inflow into the retention
area will stop and flow along the area, when the maximum area in the retention area is reached. If the water
level in the retention area exceeds a certain level, the water can outflow the area at a more downstream part
of the river. So, this water will by-passes the river [10].





3
Uncertainties in future River discharges

In this chapter we want to determine the uncertainties in the future river discharges, and especially the un-
certainties due to climate change. To determine these uncertainties a lot of river simulations with various
climate model data and climate scenarios are required. These river simulations are available for the CMIP5
(Coupled Model Intercomparison Project phase 5) climate model simulations. Although this is a sufficient
amount of climate model simulations, the river simulations were only made for a time series of 56 years. This
is not sufficient to determine the uncertainties in the extreme return levels, but these simulations can be used
to determine the uncertainties in the change in mean annual maximum discharge (dMHQ). In Section 3.2 the
uncertainties in dMHQ are determined.

To determine the uncertainties in the return levels subsequently, use is made of a relation between dMHQ
and the change in annual maximum discharge with return period T (dHQT). These relations are obtained
with the river simulations of the KNMI’14 climate scenarios. For these climate scenarios data sets with 50,000
annual maximum discharges were constructed, which is sufficient to determine the extreme return levels.
In Section 3.1 these data sets are described and the relations between dHQT and dMHQ for various return
periods are determined.

In Figure 3.1 a flowchart is presented. This flowchart shows all the steps that are taken to determine the
uncertainties in the river discharges with the available data sets (as described above). As can be seen in the
flowchart, the uncertainties are first determined for the HBV (hydrological) discharges (Section 3.3). This is
because the river simulations for the CMIP5 climate model data were only done with the HBV model. The
uncertainties in the Sobek (hydrodynamic) discharges (Section 3.4) are determined by converting the HBV
discharges in Sobek discharges with a relation between the discharges of these models (Section 3.4.1).
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Figure 3.1: Flow chart to build the river discharge projections. Blue rectangles show the input data from external sources, the red rectan-
gles show the progress steps and the green rectangles show the final output.
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3.1. Long time series
In this research, long time series are time series consisting of 50,000 annual maximum discharges. For the
river Rhine long time series were already produced for the reference situation [9] and the future situation
under the KNMI’14 climate scenarios [29], using the hydrological model HBV. These long time series are used
in this research to obtain a relation which can be used to assess the extreme discharges for much shorter
time series. This section first describes the long time series (Section 3.1.1) and gives thereafter the obtained
relation that can be used further in this research (Section 3.1.2).

3.1.1. KNMI’14 projections
The river discharge projections for the KNMI’14 climate scenarios [29] were made for the years 2050 and 2085.
This is due to the fact that the KNMI’14 climate scenarios are constructed for the periods around these years.
For both years a data set with 50,000 annual maximum discharges per KNMI’14 climate scenario is avail-
able. This data set is presented in Figure 3.2 as discharge frequency curves. A discharge frequency curve is
a continuous representation of annual maximum discharges as a function of their return period. The return
period corresponding to a certain annual maximum discharge is obtained by ranking the annual maximum
discharges in the generated 50,000-year sequence in increasing order. The rank in this ordered set determines
the return period.

The annual maximum discharges show rather strong random fluctuations in the upper tail of the distri-
bution. To reduce the effect of these random fluctuations a Weissman fit is applied to the discharges with
long return periods, i.e. return periods ≥ 500 years. This method makes use of the joint limiting distribution
of order statistics. The Weissman fit is also used to extrapolate the annual maximum discharges beyond a
return period of 50,000 years.

The KNMI’14 climate climate scenarios are constructed in such a way that they span a large fraction of the
spread in the CMIP5 simulations in the change in precipitation and temperature. Even though these changes
effect the river discharges, it is not clear if the distributions in Figure 3.2 also span the same fraction of the
spread in the CMIP5 simulations. The CMIP5 simulations are needed to determine the complete spread in
discharges.

Figure 3.2: Discharge - frequency curves for the Rhine at Lobith for the KNMI’14 projections, in the left figure for the KNMI’14 scenarios
around the year 2050 and in the right figure for the scenarious around the year 2085. The discharges are based on the hydrological
model HBV, without the effect of upstream flooding. For the extreme discharges (return period ≥ 500 years) the data are smoothed and
extrapolated by a Weissman fit. (source of the data: [29])
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3.1.2. Relation dMHQ - dHQ
The changes in the annual maximum discharge for a given return period (dHQT) show a linear relation with
the changes in mean annual maximum discharge (dMHQ). For the short time series, this relation can be used
to asses the change in annual maximum discharge for any return period (so, also for the extreme river dis-
charges) from their change in mean annual maximum discharge.

The data of the KNMI’14 projections (see Section 3.1.1) is used to determine this relation. The KNMI’14
projections for both 2050 and 2085 can be used for this, because they are all based on transformations of
daily precipitation and temperature for the same reference period but with different forcings. For four return
periods the data of all eight KNMI’14 projections is presented by the dots in Figure 3.3. The linear relation is
obtained by a least squares fit to these dots, forced through the origin.

Figure 3.3 shows that the slope of the linear line increases with the return period. But also the error of this
slope increases with the return period. Table 3.1 gives an overview of the slope and its standard error for the
relations presented in Figure 3.3.

In total 35 relations were fitted for return periods ranging from 1.002 to 400,000 years. The values for
intermediate return periods were obtained by linear interpolation.g

Figure 3.3: Relation between the change in mean annual maximum discharge (dMHQ) and change in annual maximum discharge
(dHQT) for four return periods. The dots represent the data from the eight KNMI’14 projections and the linear line is the least squares fit
to these dots.

Table 3.1: Overview of the slopes and standard error of the slope for the dMHQ-dHQ relations in Figure 3.3.

Return period Slope Std. error of the slope
10 1.33 0.0001
100 1.63 0.0013
1000 1.84 0.0087
10000 1.96 0.0210
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3.2. Short time series
In this research, short time series refer to time series consisting of 56 years of daily discharges. The length of
56 years relates to the longest available historical time series with both daily precipitation and temperature
data in the whole Rhine basin. This is a time series for the period 1951-2006. The daily precipitation and
temperature data is used to simulate discharges with the hydrological model HBV.

The ADC-method (as mentioned in Section 2.3.3) is used to transform this historical time series of daily
precipitation and temperature into future time series. The transformed time series of daily precipitation and
temperature are thereafter used to simulate river discharges belonging to that specific climate. For the CMIP5
climate model simulations these transformed time series were already constructed by Sperna Weiland et al.
[29].

The CMIP5 simulations consist of 183 short time series, which are used in this research to quantify the
sources of uncertainty in the changes of river discharges. First the sources of uncertainty in the dMHQ will
be quantified and with the relation found in Section 3.1.2 the uncertainties for any dHQT can be obtained.

To quantify the sources of uncertainty in dMHQ use is made of a Linear Mixed-Effects (LME) model. An
LME-model is an ANOVA (Analysis of Variance) model that includes fixed effects and random effects (see [24]
for details). The quantification of the sources of uncertainty with the LME-model is described in Section 3.2.1.
From the LME-model a probability density function of the change in mean annual maximum discharge can
be constructed, which is shown in Section 3.2.2.

3.2.1. Quantification of the sources of uncertainty
The variation in dMHQ of the 183 CMIP5 simulation runs is caused by the uncertainties in climate change
projections. These uncertainties originate mainly from three sources: natural variability, model uncertainty
and scenario uncertainty. The model uncertainty includes the incomplete knowledge of the physical pro-
cesses governing the climate system and the technical limitations in the implementation of these processes
in the climate models. The scenario uncertainty includes the uncertainty in the future forcing, comprising
the future emissions of greenhouse gasses and aerosol particles and other forcing agents like land use change.

To quantify the sources of uncertainty in the ensemble of 183 simulations an LME-model is used. Mixed-
effects models are primarely used to describe the relationship between a response variable and the uncer-
tainty around this response. Here, the same approach is used as Hanel and Buishand [7] did for the sources
of variation in changes of precipitation characteristics in the Rhine basin, where the response to the forcing
is a fixed effect and uncertainties in the climate model response and natural variability are random effects.

Linear Mixed-Effects model
The statistical LME-model describes the variation in dMHQ as a function of the forcing, model uncertainty
and natural variability. The changes in the mean annual maxima of the simulated daily discharges are based
on the GCM simulations from the CMIP5 archive for a reference period (1961-1995) and a future period (2071-
2100). Since the LME-model is fitted to the change in MHQ between these two periods, we consider the
change in the strength of the forcing for each of the four RCP scenarios. The strength of the forcing is ob-
tained from the estimated forcing for the two periods (as given by Meinshausen [21]). The median forcing
in the reference period is 0.96 W/m2. After subtraction of this value from the median forcing in the future
period the change in forcing becomes 1.67, 3.20, 4.08 and 6.32 W/m2 for RCP2.6, RCP4.5, RCP6.0 and RCP8.5,
respectively.

The fixed effect in the LME-model is the forcing. It is assumed that there is a linear relation between
dMHQ and the forcing. Figure 3.4 gives the relation between dMHQ and the forcing. The blue dots represent
the dMHQ of each GCM simulation and the red line presents the least squares fit to the mean values for each
RCP. The red line shows that there is an overall increase in dMHQ with forcing (∼151 m3/s per unit forcing).
In addition to the overall increase, also the scatter in dMHQ increases with the forcing. Except for the RCP6.0
scenario, where the scatter is smaller. This can be explained by the fact that there are much less simulations
(only 29) forced with this scenario.
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Figure 3.4: Change in mean annual maximum discharge (dMHQ) for the river Rhine at Lobith between the periods 1961-1995 and 2071-
2100 as a function of the forcing for various GCM simulations. The red line represents the overall response to the forcing.

An LME-model that includes all the phenomena observed in Figure 3.4 can be described as:

y(i , j ,k) =α0 +α1F ( j )+a0(i )+a1(i )F ( j )+ε(i , j ,k) (3.1)

where y(i , j ,k) represents dMHQ for simulation k of GCM i under RCP scenario j and F ( j ) the strength of
the forcing. The coefficients α0 and α1 are fixed constants representing the overall intercept and response to
the forcing (the red line in Figure 3.4). The coefficients a0(i ) and a1(i ) are random variables representing the
scatter around the line due to climate model uncertainty and ε(i , j ,k) is the random error term representing
natural variability. The interaction term a1(i )F ( j ) is needed to achieve that the scatter increases with the
forcing.

The model can be interpreted as linear regression model with a random interceptα0+a0(i ) and a random
slope α1 +a1(i ). A standard assumption is that a0 and a1 are normally distributed with mean zero, variances
σ2

a0
and σ2

a1
and correlation coefficient ρa . The random error term ε(i , j ,k) is also assumed to be a normally

distributed random variable, with mean zero and variance σ2
ε . The random errors are independent, except

for the changes that are based on the same GCM simulation for the present climate. These simulations show
a common natural variation during the control period, which causes a correlation ρε. In this research it is
assumed that the correlation is the same for each pair of RCPs with a common control simulation.

The random terms a0(i ) and a1(i )F ( j ) in Equation 3.1 represent the climate model uncertainty in the
sample. The effect of the Global Climate Model (GCM) on dMHQ between 1961-1995 and 2071-2100 is
demonstrated in Figure 3.5. The figure gives dMHQ for the simulations grouped by GCM for RCP4.5 (left)
and RCP8.5 (right). Both figures show a scatter in dMHQ within a specific GCM, this scatter is of the same
order of magnitude for RCP4.5 as for RCP8.5. The scatter in dMHQ within a specific GCM can be seen as
natural variability. The natural variability does not cover the total scatter in dMHQ that can be seen in Figure
3.5. There is still a scatter between the GCMs, showing the presence of a climate model effect. It is clear that
this scatter is larger for RCP8.5 than for RCP4.5, indicating an interaction between the random effect and the
forcing.

The LME-model in Equation 3.1 assumes that the random effect terms a0(i ) and a1(i )F ( j ) are indepen-
dent between the GCMs. This is questionable for the CMIP5 ensemble because a number of GCMs have the
same driving Atmospheric Circulation Model (ACM) (see Table 2.1). When the differences between GCMs can
be fully attributed to their ACM, then we have to replace GCM i by its ACM group g in Equation 3.1. A two-
level LME-model is however needed for the case that the ACM only partly explains the differences between
the GCMs. The two-level model contains random effects for both the GCM and the ACM group:

y(g , i , j ,k) =α0 +α1F ( j )+a0(g )+a1(g )F ( j )+b0(g , i )+b1(g , i )F ( j )+ε(g , i , j ,k) (3.2)

where y(g , i , j ,k) is the change in mean annual maximum discharge for simulation k of GCM i from ACM
group g under RCP scenario j and F ( j ) is again the strength of the forcing. The coefficients α0 and α1 are
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Figure 3.5: Scatter in the change in mean annual maximum discharge (dMHQ) between 1961-1995 and 2071-2100 for each GCM. In the
left figure the simulations of RCP4.5 are given and in the right figure the simulations of RCP8.5. The GCMs are sorted by the value of the
change or by the mean value of the change in the case of multiple runs.

fixed constants representing the overall intercept and response to the forcing (the red line in Figure 3.4). The
random coefficients a0(g ) and b0(g , i ) represent an effect of the ACM and GCM, respectively, the random co-
efficients a1(g ) and b1(g , i ) relate to the interaction between the ACM and GCM with forcing and ε(g , i , j ,k)
is a random error term representing natural variability.

The random coefficients a0(g ), a1(g ), b0(g , i ) and b1(g , i ) are assumed to be normally distributed with
mean zero, variances σ2

a0
, σ2

a1
, σ2

b0
and σ2

b1
, and correlation ρa (for a0 and a1) and ρb (for b0 and b1). The

random error term ε(g , i , j ,k) is also assumed to be normally distributed with mean zero and variance σ2
ε . It

is further assumed that each of the variables a0(g ), a1(g ), b0(g , i ) and b1(g , i ) are independent for different g
and i and that the level-2 random effects are independent of the level-1 random effects.

In this study 11 different statistical models are assessed (see Table 3.2 for an overview). These models
describe the processes and effects mentioned above. The models have fixed coefficients only (called m0 and
m1), single-level mixed effects considering grouping on atmospheric models (m2 to m4) or global climate
models (m5 to m7) or the two-level mixed effects (m8 to m10). Some models only include random intercept
terms (m2, m5 and m8), or only the random interaction with forcing (m3, m6 and m9), while other models
include both (m4, m7 and m10). The model parameters are estimated with the maximum likelihood method
(see Pinheiro and Bates [24] for further details).

Table 3.2: Overview of statistical models

Model Type Fixed effect Level-1 random effect Level-2 random effect Random error
m0 Fixed α0 ε(i , j ,k)
m1 Fixed α0 +α1F ( j ) ε(i , j ,k)

m2 Mixed α0 +α1F ( j ) a0(g ) ε(g , j ,k)
m3 Mixed α0 +α1F ( j ) a1(g )F ( j ) ε(g , j ,k)
m4 Mixed α0 +α1F ( j ) a0(g )+a1(g )F ( j ) ε(g , j ,k)

m5 Mixed α0 +α1F ( j ) a0(i ) ε(i , j ,k)
m6 Mixed α0 +α1F ( j ) a1(i )F ( j ) ε(i , j ,k)
m7 Mixed α0 +α1F ( j ) a0(i )+a1(i )F ( j ) ε(i , j ,k)

m8 Two-level α0 +α1F ( j ) a0(g ) b0(g , i ) ε(g , i , j ,k)
m9 Two-level α0 +α1F ( j ) a1(g )F ( j ) b1(g , i )F ( j ) ε(g , i , j ,k)
m10 Two-level α0 +α1F ( j ) a0(g )+a1(g )F ( j ) b0(g , i )+b1(g , i )F ( j ) ε(g , i , j ,k)
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Model selection
The selection of the statistical model is based on three criteria; the Akaike information criterion (AIC), a lack-
of-fit statistic and QQ-plots. The AIC gives the model that best fits of the selected models, the lack-of-fit
statistic and the QQ-plots tell something about the adequacy of the fit. The QQ-plots show if the assumption
of normally distributed coefficients is correct.

The Akaike information criterion (AIC) is defined as AIC =−2ln(L)+2q , where ln(L) is the log likelihood
and q is the number of unknown parameters. A good fit results in a large value for the likelihood and thus a
small -2ln(L). The term 2q can be thought of as a penalty for heavily parameterized models. The statistical
model with the lowest AIC is selected, as this is the model that fits best. In Table 3.3 the AIC values of all the 11
statistical models are given. The lowest value of AIC is found for the single-level model with a random effect
by GCM and without random intercept (model m6). For the models with a random intercept and slope (m4,
m7 and m10), the AIC is also given for the case where the correlation parameters ρa and ρb are set to zero.
This results in lower values of AIC. In Table 3.3 these models are presented with italicized text. The AIC of
model m7, without the correlation parameter, is very close to the lowest AIC. Model m7 is comparable with
model m6, it only has the random intercept as an additional parameter. Both models could be considered.

The lack-of-fit statistic compares the estimate of σ2
ε from the LME-model with a model-free estimate of

the variance due to natural variability (s2
nvar ). This model-free estimate is obtained from the multiple runs of

the same GCM under the same forcing scenario in the CMIP5 data. The sum of squares within these model
runs is given by

SSnvar =
∑
i j k

[y(i , j ,k)− y(i , j , ·)]2 (3.3)

where y(i , j , ·) is the average change in mean annual maximum discharge of all the available runs of GCM
i for forcing scenario j. The GCMs for which there is only one run available for the forcing scenario do not
contribute to SSnvar . The model-free estimate is given by

s2
nvar = SSnvar /d fnvar (3.4)

where d fnvar is the associated degrees of freedom:

d fnvar =
∑
i j

nrun(i , j )−∑
j

nGCM( j ) (3.5)

with nrun(i , j ) the number of available runs for GCM i under forcing scenario j and nGCM( j ) the number of
distinct GCMs for forcing scenario j . The values of the lack-of-fit statistic for each model are given in Table
3.3. A ratio of 1.00 means that there is no lack-of-fit, the closer to 1.00 the better the fit is. Following the AIC
the best LME models are model m6 and model m7, with an almost equal value for the AIC. The lack-of-fit
statistic show a better result for model m7, without the correlation parameter. The value of the lack-of-fit
statistic for model m6 is still relatively low compared to the values for most other models.

The random coefficients in the models are assumed to be normally distributed. This assumption is ver-
ified by quantile-quantile (QQ) plots. In these plots the estimated random coefficients for each GCM and
the residuals are divided by their standard deviation and then compared with the quantiles of the standard
normal distribution. For dMHQ the QQ plots are shown in Figure 3.6 for model m6 (left panel) and model m7

without the correlation parameter (right panel). The top and middle row give the QQ plots of the random co-
efficients; the random intercept a0(i ) and the random slope a1(i ). The bottom row gives the QQ plots for the
residuals ε. For both models the random slope and residuals do not indicate any substantial deviation from
the assumed normal distribution. The deviations are for model m6 slightly smaller than for model m7. The
QQ plot for the random intercept of model m7, however, indicates a substantial deviation from the assumed
normal distribution, indicating that this model may not be correct.

The results of model m6 and model m7 are very similar, they both fit the data quite well. However, the
assumption of normally distributed random coefficients is for model m6 better than for model m7. The AIC
shows a slightly better fit for model m6 than for model m7. But the lack-of-fit test gives a better result for
model m7 than for model m6. Overall it looks like model m6 is the slightly better model. This model is also
the most simple model, since it has one coefficient less. Therefore, it is chosen to use model m6.
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Table 3.3: Number of parameters (q), the Akaike information criterion (AIC) and the lack-of-fit statistic (σ2
ε/s2

nvar ) for each statistical
model. The model that fitted with the lowest AIC value is printed in bold. For the models indicated with italic font the correlation (ρa ,
ρb ) between random intercepts and slopes is set to zero.

Model q AIC σ2
ε/s2

nvar
m0

∗ 2 2862.222 2.48
m1

∗ 3 2822.915 1.99
m2 5 2778.724 1.66
m3 5 2768.878 1.64
m4 6 2770.618 1.48
m4 7 2772.982 1.48
m5 5 2773.195 1.22
m6 5 2757.328 1.19
m7 6 2757.972 1.10
m7 7 2759.639 1.10
m8 6 2775.205 1.22
m9 6 2759.306 1.23
m10 8 2759.941 1.08
m10 10 2763.738 1.10

∗ For models m0 and m1 parameters are based on an ordinary least squares fit,

assuming complete independence of the ε(i , j ,k)’s.

Model parameters
Model m6 is selected as the best model. This model is a single-level mixed effects model with an interaction
between a random climate model effect and the forcing. The parameters of the model are the fixed coeffi-
cients α0 and α1, the random slope a1(i ), the random error term ε(i , j ,k) and the correlation in the random
error term ρε for the changes that are based on the same GCM simulations for the present climate. The ran-
dom slope and random error term are assumed to be normally distributed, with mean zero and variancesσ2

a1

and σ2
ε . So, for model m6 an estimation is made for the parameters α0, α1, σ2

a1
, σ2

ε and ρε.

The estimated values of the parameters are shown in Table 3.4. The table gives the lower and upper bound
of the 95% confidence interval as well. This is an interval which contains the true parameter with a probability
of 95%.

Table 3.4: Overview of the model parameters for statistical model m6. For each parameter the estimated value and the lower and upper
bound of the 95% confidence interval are given.

Parameter Estimated value Lower bound Upper bound
α0 [m3/s] 676.20 538.92 813.48
α1 [m3/s per W/m2] 150.69 102.87 198.52
σa1 [m3/s per W/m2] 99.55 69.00 143.63
σε [m3/s] 413.61 363.45 470.70
ρε [-] 0.348 0.198 0.495

For the uncertainty analysis the uncertainty in α0, α1 and σa1 is considered. To include this uncertainty a
probability distribution for each of these parameters is needed. For the fixed coefficients α0 and α1 the 95%
confidence interval assumes that their point estimates are normally distributed. The mean and standard
deviation of the underlying normal distribution can be obtained as:

µ= [upper bound+ lower bound]/2.0 (3.6)

σ= [upper bound− lower bound]/3.92 (3.7)

The standard deviation of the random slope σa1 is not normally distributed. The confidence interval in Table
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Figure 3.6: Quantile-quantile (QQ) plots for model m6 (left) and model m7 (right). The QQ plots verify if the assumption of normally
distributed coefficients of the models is correct. The QQ plots of the random intercept a0(i ) (top), the random slope a1(i ) (middle) and
residuals ε(i , j ,k) (bottom) are given. Note that there is no random intercept in model m6.

3.4 assumes a log-normal distribution. The two parameters µ and σ of the log-normal distribution, i.e. the
mean and standard deviation of the logarithm of σa1 can be found by:

µ= [ln(upper bound)+ ln(lower bound)]/2.0 (3.8)

σ= [ln(upper bound)− ln(lower bound)]/3.92 (3.9)

The probability distributions of the parameters that are included in the uncertainty analysis are given in Table
3.5. The uncertainty analysis also requires the correlation ρ between the estimates of the fixed coefficients
α0 and α1. The maximum likelihood estimate of ρ equals -0.481. Te estimated fixed effect part of the LME-
model is a linear combination of two normally distributed estimates, which has also a normal distribution.
This distribution has mean µα0 +µα1 F ( j ) and standard deviation

p
[σ2

α0
+F ( j )2σ2

α1
+2ρσα0σα1 F ( j )]

Table 3.5: Overview of the probability distributions of the parameters of statistical model m6 that are included in the uncertainty analysis.
For each parameter the µ and σ of the distribution is given.

Parameter Distribution µ σ

α0 Normal 676.20 70.04
α1 Normal 150.69 24.34
σa1 Log-normal 4.60 0.187
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3.2.2. Change in mean annual maximum discharge
The LME-model describes the change in mean annual maximum discharge (dMHQ) in simulations for the
river Rhine at Lobith between the periods 1961-1995 and 2071-2100 as function of the forcing, including its
uncertainty. These simulations were made with the hydrological model HBV, which means that the effect of
upstream flooding is not included in these discharge simulations.

For a particular forcing a PDF (Probability Density Function) of dMHQ can be constructed by taking a
large number of random draws from the LME-model and the distributions of its parameters. This can be
done for any forcing, but in this research we stick to the four RCP forcings for 2085. Further in this research,
the natural variability component in the LME-model is not included in the simulated PDF. This component
refers to the possible differences in mean annual maximum discharges resulting from random fluctuations.
For the uncertainty analysis of the annual maximum discharges, the influence of natural variability on the
estimated return level from the GRADE-instrument is, however, of interest. This influence increases with re-
turn period (see Boogaard et al. [30]). The influence of natural variability on the return levels of the annual
maximum discharge is added in a later stage (together with the influence of the uncertainty in the HBV pa-
rameters, see Section 3.3.1).

The PDFs of dMHQ per RCP are given in Figure 3.7. As already mentioned above, these PDFs only include
the climate model uncertainty and parameter uncertainty in the LME-model. From the figure it can be seen
that the mean and standard deviation of the dMHQ increase with the forcing.

Figure 3.7: Probability density functions of the change in mean annual maximum discharge (dMHQ) between the periods 1961-1995 and
2071-2100 for the river Rhine at Lobith. The discharges are based on the hydrological model HBV. The PDF is given per RCP scenario,
and includes climate model uncertainty and the uncertainty in the LME-parameters. The natural variability is not yet included.
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3.3. HBV discharge projections
Within the GRADE-instrument the hydrological model HBV is used to transform the daily precipitation and
temperature series into daily river discharges for the river Rhine at Lobith (see Section 2.4 for further details).
The river discharges in the short time series (Section 3.2) are only simulated with the HBV model and therefore
the analysis of dMHQ (section 3.2.2) was also based on HBV discharges. This analysis forms the basis for the
determination of the uncertainties in annual maximum discharge per return period (HQT). In this section
HQT is determined for the HBV discharges.

3.3.1. Annual maximum discharge
The return levels of annual maximum discharge (HQT) at Lobith are used for flood risk assessment projects
along the Rhine in The Netherlands. Therefore, the uncertainties in HQT are of great interest for dike design
considerations. As already mentioned above, the analysis of dMHQ is used to determine the uncertainties in
HQT. In the flowchart of Figure 3.8 the steps are given, which are taken to obtain HQT. These steps can be
taken for any return period to get the PDF of the HQT with that return period.

In the fourth step samples are taken from a normal distribution that includes the natural variability and
HBV uncertainties. The standard deviation of this distribution is determined by Van den Boogaard et al.
[30]. This study shows that the natural variability and HBV uncertainties increase with the return period,
and therefore the standard deviation is given per return period. The phenomenon of an increasing natural
variability is not treated well when natural variability is added in the PDF of dMHQ. Therefore, the natural
variability term was ignored in the PDF of dMHQ and the standard deviations found by Van den Boogaard et
al. [30] are used here for the HQT instead.

1. Sample a random dMHQ from the
LME model

2. Sample a random slope from a nor-
mal distribution using the parameters
described in Section 3.1.2 to convert
dMHQ into dHQT.

3. Add the HQT of the reference situa-
tion to dHQT, to obtain HQT.

4. Sample from the normal distribu-
tion representing natural variability and
HBV uncertainties. And add this value to
HQT.

Do you have
10,000,000

realizations?

5. Build the PDF of HQT,HBV.

no

yes

Figure 3.8: Flowchart to determine the distribution of HQT,HBV for a given return period.
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As the flowchart shows, with 10,000,000 samples a PDF of the HQT is built. In Figure 3.9 the PDFs for four
return periods and the four RCPs are given. These PDFs include the climate model uncertainties, regression
uncertainties, HBV uncertainties and natural variability. From the figure it can be seen that all distributions
are very close to a normal distribution. The mean and standard deviation increase with the return period.
For a specific return period the mean and standard deviation also increase with the forcing of the RCP, these
differences are, however, much smaller than those between the return periods.

Figure 3.9: Probability density function (PDF) of the T-year return level of the annual maximum discharge (HQT) for the Rhine at Lobith
in 2085. The PDFs are given for the four RCPs and return periods of 10 years (upper left), 100 years (upper right), 1000 years (lower
left) and 10000 years (lower right). The discharges are simulated with the hydrological model HBV, upstream flooding is therefore not
included. The PDFs include the uncertainty in climate model, LME-model parameters, slope of the regression, HBV model and natural
variability.

3.3.2. HBV discharge frequency curves
To represent the various distributions of the return levels a discharge frequency curve can be used. In Figure
3.10 the discharge frequency curves for the four RCPs and the reference situation are presented. The refer-
ence situation is represented by the black line and the grey area represents a 95% confidence region for HQ.
This confidence region only includes the HBV uncertainties and natural variability (as described in Van den
Boogaard et al. [30]). The return levels for the various RCPs are given by the coloured lines, with the continu-
ous lines representing the medians of the distributions and the dashed lines the upper and lower bounds of
the 95% confidence intervals. These confidence intervals include all uncertainties described earlier.

The discharge frequency curves in Figure 3.10 show that the median and the width of the confidence
interval increase with the return period and with the forcing (which already could be seen from the PDFs in
the previous section). It is furthermore notable that the differences between the RCPs are small compared
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with the widths of the confidence intervals for HQT. The confidence interval is already wide in the reference
situation, which indicates that the natural variability and HBV uncertainties are the main source of the total
uncertainty.

Figure 3.10: HBV discharge frequency curves for the Rhine at Lobith in 2085. The discharges are simulated with the hydrological model
HBV, without the effect of upstream flooding. The grey area around the reference (black line) represents a 95% confidence region. The
dashed lines give the upper and lower bounds of the 95% confidence interval for HQT for each RCP.

Table 3.6: Overview of the discharge extremes presented in Figure 3.10 for a number of return periods in 2085.

Reference RCP2.6 RCP4.5 RCP6.0 RCP8.5
Return Median Width Median Width Median Width Median Width Median Width
period Cfd. Int. Cfd. Int. Cfd. Int. Cfd. Int. Cfd. Int.
[years] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s]
10 9669 2148 10907 2353 11215 2788 11391 3119 11842 4114
50 12404 2983 13816 3176 14168 3607 14369 3944 14884 4989
100 13452 3247 14965 3450 15340 3907 15556 4261 16108 5374
300 15042 3086 16659 3333 17062 3864 17293 4274 17881 5530
1000 16673 4095 18375 4303 18799 4769 19043 5143 19663 6324
3000 18058 5249 19815 5420 20253 5823 20503 6149 21143 7227
10000 19577 6629 21392 6774 21844 7120 22104 7408 22764 8376
30000 20962 7938 22832 8069 23296 8382 23564 8639 24244 9534
100000 22481 9402 24408 9522 24889 9805 25165 10037 25866 10859
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3.4. Sobek discharge projections
The discharge projections in Section 3.3 are based on the discharges simulated with the hydrological model
HBV. This hydrological model does not include all the important hydrodynamic effects, such as backwater
effects and upstream flooding. In the GRADE instrument the hydrodynamic model Sobek is used to simulate
the annual maximum discharges with these effects. In this research, the Sobek discharges are obtained from
the HBV discharges and the relation between HBV and Sobek discharges. This relation is obtained from ear-
lier discharge simulations with Sobek (simulations with the KNMI’06 or KNMI’14 climate scenarios).

The steps taken to obtain the distribution of the HQT based on Sobek discharges are given in the flowchart
in Figure 3.11. This flowchart does not differ much from the one for the HBV discharges (Figure 3.8), just
two extra steps are needed. The first extra step is to transform the HBV (hydrological) discharge in a Sobek
(hydrodynamic) discharge with a relation between the quantiles of the discharges of these two models, this
step is further described in Section 3.4.1. The other step is to add the additional uncertainties caused by the
Sobek model, this step is further described in Section 3.4.2.

1. Sample a random dMHQ from the
LME model

2. Sample a random slope from a nor-
mal distribution using the parameters
described in Section 3.1.2 to convert
dMHQ into dHQT.

3. Add the HQT of the reference situa-
tion to dHQT, to obtain HQT.

4. Sample from the normal distribu-
tion representing natural variability and
HBV uncertainties. And add this value to
HQT.

5. Transform the HBV discharge quantile
in a Sobek discharge quantile with the
HBV-Sobek relation

6. Add the hydraulic uncertainty to this
discharge

Do you have
10,000,000

realizations?

7. Build the PDF of HQT,Sobek.

no

yes

Figure 3.11: Flowchart to determine the distribution of HQT,Sobek for a given return period.
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3.4.1. HBV-Sobek relation
As shown in the flowchart of Figure 3.11 the Sobek (hydrodynamic) discharges are obtained by a regression
on the HBV (hydrological) discharges. For this regression a data set with both the Sobek and HBV discharges
is required. Such data sets are available for the reference situation, the KNMI’06 scenarios and the KNMI’14
scenarios.

The Sobek discharges in the Grade instrument are only simulated for the flood waves containing the an-
nual maximum discharges simulated with the HBV model. For the reference situation and the KNMI’06 sce-
narios all these flood waves are simulated. For the KNMI’14 scenarios Sobek discharges are only simulated
when the annual maximum discharges of the HBV model are larger than 10,000 m3/s. This saves a lot of time
and for discharges below 10,000 m3/s the differences between the HBV and Sobek discharges are small.

The datasets of the reference situation, the KNMI’06 scenarios and the KNMI’14 scenarios can all be used
to obtain the relation between HBV and Sobek discharges. A disadvantage of the data set of the reference situ-
ation is the limited amount of extreme discharges (QHBV > 18000 m3/s), which makes this part of the relation
more uncertain.

The KNMI’06 and KNMI’14 scenarios have more extreme discharges and are therefore more useful. The
dike design guideline in The Netherlands (Ontwerpinstrumentarium 2014 (OI2014)) made for the relation be-
tween HBV and Sobek discharges use of the KNMI’06 2100 W+ scenario. The 2100 W+ scenario is the KNMI’06
scenario with the largest increase in extreme discharges at Lobith. Hegnauer [8] fitted a non-linear relation
to the regular (HBV, Sobek) points. Although there is a clear relation between the HBV and Sobek discharges,
there is also a lot of scatter around the fitted line. This may lead to an underestimation of large return levels of
the Sobek discharges. The main difficulty of the use of this relation in our study is that we have only a sample
of return levels of the HBV discharges rather than the regular HBV discharges.

In order to obtain a suitable relation to convert the return levels of the HBV discharges into return lev-
els of the Sobek discharges we regressed the quantiles of the Sobek discharges on the quantiles of the HBV
discharges. For this purpose the highest HBV discharge of the data set is plotted against the highest Sobek
discharge of the same data set, the second highest HBV discharge against the second highest Sobek discharge,
and so on. Figure 3.12 shows the ordered data points of the KNMI’06 2100 W+ scenario. The black line is the
least squares fit to these points. For this line it is decided to use the same type of regression line as Hegnauer
did for his regression line. The regression line in Figure 3.12 is described by:

QSobek =α1 +α2 · (QHBV −α3)+α4 · ln(1+exp(α5 · (QHBV −α3))) (3.10)

where:
α1 = 12895, α2 = 0.911, α3 = 13752, α4 =−160.33, α5 = 2.8 ·10−3 (3.11)

The uncertainty of the parameters in Eq. 3.10 is not considered in this study. The robustness of this rela-
tion to climate change is also not explored.

The regression line can also be based on the data set of one of the KNMI’14 scenarios. The KNMI’14 sce-
narios show however a somewhat different relation between the quantiles of the HBV and Sobek discharges
than the KNMI’06 scenarios (see Figure 5.1). In Section 5.1 the behaviour of the KNMI’14 scenarios is further
discussed. It seems that the KNMI’06 2100W+ scenario is more plausible than the KNMI’14 2085WH, but we
also want to stay as close as possible to the OI2014. Therefore, the regression used in this research is done
with the relation of the discharge quantiles of the KNMI’06 2100 W+ as given by Equation 3.10.
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Figure 3.12: Relation between the discharges from the hydrological model HBV and the hydraulic model Sobek. Based on the ordered
data of the KNMI’06 2100 W+ projection.

3.4.2. Hydraulic uncertainty
The last uncertainty that needs to be determined is the hydraulic uncertainty in the Sobek model. This un-
certainty includes the uncertainties in the process of flooding in the Sobek model, consisting of 1) whether
emergency flood protection measures are taken or not; 2) the actual height of the dikes; 3) the volume of the
retention areas behind the dikes; 4) the failure or non-failure of the dikes after overtopping; and 5) the bot-
tom friction. In Prinsen et al. [25] for each of these sources, an estimate is made for the range and probability
distribution of the corresponding Sobek parameter values.

It is common that emergency measures are taken into account during high water levels in the Rhine. For
the discharge arriving in The Netherlands it is important to take these emergency measures into account,
since less dikes will fail and ultimately more water will flow to The Netherlands. There are no guidelines that
describe the height and location of the emergency flood protection measures, and therefore these measures
are a large source of uncertainty. Examples in the past show that in a short period a lot of sand bags can be
placed. What will happen in reality is very uncertain, it assumed that the extra dike height will be in the range
of 0 to 0.5 meter.

The height of the dikes is determined with very accurate measurement systems, but the measured height
is still uncertain. The real dike height varies with ± 0.10 meter from the measured dike height. The volume
of the retention area behind the dikes is important for the storage of the flooded water. The water that flows
into the retention area is delayed before it flows further downstream. Until the retention area is full the flood
wave will be damped, and when the retention area is full all the upstream water will flow downstream. The
volume of the retention areas is determined by height models, but these models do not include all elements
(such as obstacles) in the retention area which causes uncertainty in the total volume of the area. A realistic
assumption is that the volume of the retention area can vary in a range of± 20% around its theoretical volume.

The bottom friction is hard to determine. It cannot be measured directly and varies in time, with location
and discharge level. Experts estimated the values of the bottom friction, these values can vary in a range of ±
20% around the chosen value.

The last source of uncertainty is the failure or non-failure of the dike after overtopping. It is assumed that
the dikes won’t fail untill the water flows over the dike. After overtopping a breach in the dike will grow, but
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not in all cases. In Paarlberg [23] the effects of failure or non-failure of the dikes is described. He concludes
that there is no significant difference in the discharge at Lobith if the upstream dike will fail or not after over-
topping.

In Prinsen et al. [25] the discharge frequency curve of the Rhine discharge at Lobith is determined. In-
cluding the hydraulic uncertainty leads to higher discharge return levels, see Figure 3.13. In Hegnauer et al.
[9] the discharge frequency curve without the hydraulic uncertainty is determined. Not only the mean return
level of the discharge is higher, but also the width of the confidence interval is larger in the case where the
hydraulic uncertainty is included.

The increase in discharge return level can be explained by the fact that most of the processes that are in-
cluded for the hydraulic uncertainty do increase the discharge return level. Especially the emergency flood
protection do have a large impact on the increase of the discharge return level. The larger width of the confi-
dence interval is the logical consequence of adding extra sources of uncertainty.

Figure 3.13: Discharge frequency curves for the Rhine at Lobith for the present climate and the situation without hydraulic uncertainty
(Hegnauer et al. [9]) and the hydraulic uncertainty included (Prinsen et al. [25]) For both discharge frequency curves 95% confidence
bands are given. (source: [25])

To include the hydraulic uncertainty found in Prinsen et al. [25] an equation is formulated:

Q+ =Q−+∆Q (3.12)

where:

Q− is the discharge return level at Lobith calculated in GRADE with Sobek, without the hydraulic uncertainty.
Q+ is the discharge return level at Lobith where the hydraulic uncertainty is included.
∆Q is the Q− depended addition to the discharge return level as a result of the hydraulic uncertainty.

For ∆Q the following equation is found:

∆Q = 0 f or Q− <Q0

∆Q =α · (Q−−Q0) f or Q− ≥Q0
(3.13)

where:
Q0 = 11764.936 m3/s and α= 0.23940752 [−] (3.14)
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3.4.3. Sobek discharge frequency curves
The Sobek discharge frequency curves for the Rhine at Lobith for 2085 can be obtained by applying Equation
3.10 and Equation 3.12 to the HBV discharge quantiles (see flowchart in Figure 3.11).

The Sobek discharge frequency curves are presented in Figure 3.14. In the Sobek discharge frequency
curves the same patterns can be observed as in the HBV discharge frequency curves (Figure 3.10). However,
the median values are lower and the widths of the 95% confidence intervals are smaller for the Sobek dis-
charge frequency curves, in particular for long return periods (see also Tables 3.6 and 3.7). This can simply be
explained by the fact that the Sobek-model includes upstream flooding and therefore the discharges entering
The Netherlands are much smaller.

Figure 3.14: Sobek discharge frequency curves for the river Rhine at Lobith in 2085. The regression based on the ordered 2100W+ scenario
data (Section 3.4.1) is used to derive the return levels of the Sobek discharges from those of the HBV discharges. The grey area around
the reference (black line) represents a 95% confidence region. The dashed lines give the upper and lower bounds of the 95% confidence
intervals for HQT for each RCP.

Table 3.7: Overview of the discharge extremes presented in Figure 3.14 for a number of return periods in 2085.

Reference RCP2.6 RCP4.5 RCP6.0 RCP8.5
Return Median Width Median Width Median Width Median Width Median Width
period Cfd. Int. Cfd. Int. Cfd. Int. Cfd. Int. Cfd. Int.
[years] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s]
10 9175 1959 10303 2145 10583 2548 10745 2914 11153 3866
50 11664 2836 13082 2611 13449 2803 13486 2992 13805 3585
100 12757 2776 13854 2306 14073 2502 14198 2681 14513 3331
300 13899 1990 14830 1913 15060 2214 15193 2450 15531 3168
1000 14839 2361 15814 2465 16055 2729 16197 2945 16549 3625
3000 15632 3005 16638 3106 16888 3335 17032 3522 17400 4129
10000 16502 3801 17540 3883 17799 4080 17949 4246 18328 4801
30000 17295 4545 18365 4622 18632 4793 18784 4948 19176 5463
100000 18164 5387 19271 5464 19542 5610 19702 5758 20103 6224
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3.4.4. Comparison of the RCP PDFs with the KNMI’14 scenarios
In this section we compare the discharge frequency curves for the RCPs from the previous section, with the
ones for the KNMI’14 scenarios. The discharge frequency curves for the KNMI’14 scenarios, presented in Sec-
tion 3.1.1 (Figure 3.2), are still based on HBV (hydrological) discharges rather than on Sobek (hydrodynamic)
discharges. For a fair comparison the KNMI’14 HBV discharges are first converted into KNMI’14 Sobek dis-
charges following the same procedure as for the RCP scenarios, i.e. by applying Eqs. 3.10 and 3.12 to the
KNMI’14 HBV discharge quantiles.

Figure 3.15 shows for each RCP scenario the median and the 95% confidence band of the (Sobek) dis-
charge frequency curve together with the (Sobek) discharge frequency curves for the four KNMI’14 scenarios.
Note that the four KNMI’14 scenario curves are the same in alle four panels, but that the RCP median and its
95% confidence band differ in each panel.

The range spanned by the four KNMI’14 scenarios for 2085 best corresponds with the 95% confidence
range for RCP8.5. For the shortest return periods the range of the KNMI’14 scenarios corresponds to about
the 25% to 95% percentage points of the constructed RCP8.5 distribution and for the longest return periods
to about the 25% to 85% percentage points (see Table 3.8).

Table 3.8 can also be used to determine the probability that each KNMI’14 scenario is exceeded (or not
exceeded) given a certain RCP scenario in 2085. To illustrate this we concentrate on the 1000-year return
level. Assuming the RCP2.6 scenario there is a probability of 100−49.9 = 50.1% that the 2085GH scenario is
exceeded for this return level. Similarly, for the 2085WH scenario this probability is only 100−99.9 = 0.1%.
Assuming the RCP8.5 scenario, the same probabilities become 100−21.2 = 78.8% and 100−91.7 = 8.3%, re-
spectively. Thus even for the most extreme RCP scenario there is still a probability of ∼8% that the most
extreme KNMI’14 scenario (2085WH) is exceeded. And this probability further increases if larger return levels
(or longer return periods) are considered; it becomes e.g. 100−81.5 = 18.5% for a return period of 100,000
years, i.e. more than a doubling of the exceedance probability compared to a return period of 1000 years.

Figure 3.15: Comparison of the (Sobek) discharge frequency curve for each of the four KNMI’14 scenarios with the RCP (Sobek) discharge
frequency curve for RCP2.6 (upper left), RCP4.5 (upper right), RCP6.0 (lower left) and RCP8.5 (lower right). The grey area around the RCP
curve represents a 95% confidence region.
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Table 3.8: Return levels for each KNMI’14 scenario as percentage points of the four RCP scenarios for a number of return periods in 2085.
For example, the 10-year return level for the 2085GH scenario corresponds with the 66.2 percentage point of the 10-year return level for
the RCP2.6 scenario.

RCP2.6
Return period 2085GH 2085GL 2085WH 2085WL
[year]
10 66.2 80.3 ≥ 100.0 99.9
50 62.3 79.2 99.8 98.3
100 57.8 77.9 99.9 98.7
300 53.2 86.4 ≥ 100.0 99.6
1000 49.9 83.6 99.9 98.2
3000 47.0 84.0 99.6 95.2
10000 45.0 83.8 98.5 90.5
30000 43.8 83.4 96.9 86.3
100000 43.0 83.1 94.8 82.0

RCP4.5
Return period 2085GH 2085GL 2085WH 2085WL
[year]
10 46.7 61.1 ≥ 100.0 98.6
50 47.2 65.3 98.9 94.5
100 43.0 63.8 99.4 95.5
300 36.8 70.5 99.9 97.1
1000 36.2 70.3 99.4 94.0
3000 35.8 73.6 98.4 89.5
10000 35.7 75.4 96.4 84.1
30000 35.7 76.3 94.3 79.7
100000 35.8 77.0 91.7 75.7

RCP6.0
Return period 2085GH 2085GL 2085WH 2085WL
[year]
10 38.5 51.0 99.7 95.6
50 40.2 57.5 97.5 90.7
100 36.4 55.6 98.4 91.7
300 30.2 61.0 99.4 93.3
1000 30.4 62.3 98.6 89.6
3000 30.5 66.8 96.9 84.6
10000 31.2 70.0 94.6 79.5
30000 31.7 71.7 92.0 75.3
100000 32.1 73.1 89.4 71.7

RCP8.5
Return period 2085GH 2085GL 2085WH 2085WL
[year]
10 25.9 34.1 94.6 80.4
50 28.6 41.9 90.0 77.2
100 25.6 39.7 91.2 77.2
300 20.8 42.1 93.4 77.0
1000 21.2 44.7 91.7 73.7
3000 21.8 51.0 89.4 70.0
10000 22.8 56.1 86.6 66.2
30000 23.9 59.6 84.1 63.5
100000 24.8 62.3 81.5 60.8





4
Consequences of the climate uncertainties

for the Dike Designs

The Netherlands is protected against river floods by dikes along the rivers. The design of these dikes is highly
dependent on the extreme river discharges. The dikes need to withstand the water levels during their entire
life span, so the assessment of climate change impact on water levels is important for the design of the dikes.
In this chapter, first the flood protection system in The Netherlands is described (Section 4.1), subsequently
the uncertainties in the design water levels based on RCP climate scenarios are determined for a few dike
sections (Section 4.4) and finally the design water levels based on the RCP scenarios are compared to the
design water level based on the KNMI’14 scenarios (Section 4.6).

4.1. Flood protection system in The Netherlands
4.1.1. History
The Netherlands is a low-lying delta area and is therefor sensitive to floods from either the sea or the rivers.
The Dutch have a long history in the protection of their land against floods. The first human settlements in
the coastal areas were developed in the higher dune areas or on man-made hills, named ’mounds’. Along the
rivers, the people lived on the natural levees of the rivers. The rise of the population and increasing impor-
tance of agriculture meant that more low-lying areas were utilized. Dikes were constructed to protect these
areas. In the 16th and 17th centuries, the Dutch started to reclaim land from the water to create new areas for
agriculture and housing. Dikes were build around the water and windmills were used to drain the area. [14]

In the 20th century, a number of large scale events occurred that resulted in large-scale interventions that
have changed the Dutch system of water and flood management. In the year 1916, a storm surge flooded ar-
eas around the Zuiderzee (currently known as IJsselmeer). After this event a plan was executed to protect this
region from flooding by building the Afsluitdijk. This dam turned the Zuiderzee into a lake, the IJsselmeer, by
separating the IJsselmeer from the Wadden Sea.

In the year 1953 a storm surge was generated due to a storm on the North Sea in combination with spring
tide. It resulted in massive flooding in the south-west part of The Netherlands. The dikes failed at more than
a hundred locations, mainly caused by overtopping. The consequences were enormous, 1835 people were
killed, thousand of cattle died and billions of guilders of damages occurred. The 1953 disaster also resulted in
a change in Dutch flood management. A delta committee was formed, and this committee advised to shorten
the coastline by building dams and barriers to close off the estuaries in the south-west of the country. These
projects are called the deltaworks and were built between 1953 and 1997. The deltaworks consist of three
storm surge barriers, multiple dams and a few locks. The storm surge barrier in the Eastern Scheldt allows
part of the tidal flow in normal conditions, but the gates will be closed during storm surges. This barrier is
built instead of a dam, so the character and ecology of the estuary won’t change too much. The final project
of the deltaworks is the Maeslant storm surge barrier near Hook of Holland, which has been finished in 1997.
The barrier consists of two movable sector gates that can be floated and closed during storm surges. During
normal conditions the gates are open, so the connection between Rotterdam and the North Sea is open for
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navigation.

In the years 1993 and 1995 high discharges events occurred in the Meuse and the Rhine river systems. At
some places the dikes were just high enough to withstand the water level, but about 250,000 people had to
be evacuated. These events resulted in some emergency dike reinforcements and the room for the river pro-
gram. The principle of this program is that instead of dike reinforcements, measures are preferred to increase
the discharge capacity of the river. Examples are the introduction of bypasses, removing obstacles from the
river bed and relocating or set back of dikes. The last projects of this program have been finished in 2016. [14]

In the 21th century, no large-scale flood events have occurred so far in The Netherlands. However, some
international disasters gave insight in the vulnerability of flood defence systems and the consequences of
these disasters. A second delta committee was formed in The Netherlands, to make a plan for the flood
protection system for the coming century. The committee gave a number of recommendations, including to
update the safety standards. The new safety standards provide a more appropriate protection to the values at
risk. These safety standards were introduced in January 2017 and are further discussed in section 4.1.3.

4.1.2. Overview
The Netherlands is a low-lying country, more than 50% of the country is prone to flooding by either the sea or
the rivers. These areas are protected by flood defences. In total, the flood defence system in The Netherlands
consists of 3600 kilometres of primary flood defences. The primary flood defences prevent flooding from the
sea, rivers and large lakes. In addition, the regional flood defences exist along the waterways and canals in
polders and smaller lakes. [14]

Before 2017, the flood protection system was divided in so-called dike rings. A dike ring is a system of
flood defences and sometimes high grounds that encloses an area in order to protect it against floods. Differ-
ent types of flood defences can be part of a dike ring. In total there were a 100 dike rings in The Netherlands.
For each dike ring a safety standard was expressed by probability of exceedance of a hydraulic load that had
to be withstood safely, which can consist of water levels and waves.

Since January 2017 new safety standards have been introduced in The Netherlands. These new safety
standards are expressed as the maximum allowable failure probability of flood defences, which enables a
more complete assessment of the different failure mechanisms of a flood defence. The new safety standards
also take into account the contribution of various dike sections and structures in a dike ring, the safety stan-
dard is set for each dike section or structure. Further details about the new safety standards are given in
section 4.1.3. [14]

4.1.3. Safety Standards
Safety standards in The Netherlands are expressed by the flood risk. In flood risk management, risk is defined
as a combination of probability and consequence. The probability of a flood event is generally expressed as the
probability per unit time, mostly per year. The consequences can consist of different types of consequences,
such as material, ecological damages, injuries and fatalities. The safety standards are formulated as failure
probabilities and based on individual, societal and economic risk. [14]

The individual risk is the minimum level of safety for citizens living in The Netherlands. The individual risk
is the probability a random person loses his/her life at a certain location due to flooding. The potential loss
of life given a flood depends on the physical flood characteristic and possibilities to predict and warn for the
event, allowing time for evacuation of people. Also the number of people at risk in the flooded area is impor-
tant for the individual risk. The more people living in the area, the higher the probability in loss of life. The
acceptable individual risk in The Netherlands is set to 10-5 units.

The societal risk refers to the probability of an accident with multiple fatalities. It is often graphically repre-
sented by a FN-curve that shows the exceedance probability (F) of the potential number of fatalities (N). The
risk is acceptable if the FN-curve for a system does not exceed the limit line. This limit line is derived from
the exceedance probability of 1 fatality (base point) and the acceptance of risk (slope). These constants are
determined by decision makers.
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The economic risk is given by an optimal level of safety in terms of an economic optimization. It takes into
account the costs of increasing the safety level and reducing the risks. The economic optimization is de-
veloped and applied by Van Dantzig [4], to derive the optimal dike height for South Holland after the 1953
disaster. In the economic optimization, the total costs are determined, these costs consist of the investments
in a safer system and the net present value of the reduced risk (probability times consequences). The risk can
be reduced by constructing a safer system or limiting the damage. The investments become a function of the
failure probability of the system, since increasing the safety will lead to an increase of costs. The sum of these
two will lead to an optimum, where the total costs are the lowest (see Figure 4.1). [14]

Further information on the deriviation of the safety standards is described in the lecture notes of CIE4130
[15] and Vrijling et al. [33].

Figure 4.1: Economic Optimization; costs, risk and total costs as a function of the failure probability of the system (source: [15])

Resulting Safety Standards
The three perspectives mentioned above (individual, societal, economic risk) have been applied by the Delta
Program to propose the safety standards for primary flood defences in The Netherlands. Based on every per-
spective, a required failure probability could be determined. The most stringent one determined the safety
standard.

The safety standards are given per dike trajectory instead of per dike ring. Studies have shown that the
consequences of a dike failure strongly depend on the location of the failure. And a safety standard per dike
trajectory can be more location specific than one per dike ring.

The safety standards are divided into norm classes, intervals of the required safety standard are used to
determine the corresponding norm class. In The Netherlands two types of norm classes are used, i.e. the ’sig-
naleringswaarde’ and the ’ondergrens (maximale overstromingskans)’. If the failure probability of the flood
defence is below the signaleringswaarde action need to be taken to strengthen the flood defence, the onder-
grens is the maximum acceptable failure probability of the flood defence. The derivation of the required safety
standard is made for the signaleringswaarde, and the ondergrens is in most cases one norm class less strict.
Figure 4.2 shows minimum protection levels (the ondergrens) of the primary flood defences per trajectory in
The Netherlands.

A further description on the derivation of the safety standards in [22].
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Figure 4.2: The maximum acceptable failure probabilty per dike trajectorie (source: [22])
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4.2. Basic concepts of Flood Defences
Flood defences are hydraulic structures with the primary objective to provide protection against flooding
again the coast, rivers, lakes and other waterways. Different types of flood defences exist, such as a dike, a
dam, a storm surge barrier or a dune. Along the river the flood defence system mainly consist of dikes inter-
rupted by hydraulic structures as locks or sluices. In this research only the river section is studied, therefore
the focus of the flood defences is on the dikes only. A dike is a water retaining structure consisting of soil with
a sufficient elevation and strength to be able to retain the water under extreme circumstances.

4.2.1. Dike profile
Figure 4.3 shows the most importance elements of a typical dike. The dike profile is chosen is such a way
to prevent failure of all possible failure mechanisms. The crest level needs to be high enough to withstand
extreme water levels. For the expected wave attack a cover layer on the outside of the dike is applied, this
revetment can consist of grass, concrete elements, stones or asphalt. The outer berm can be implemented
to break and slow down the waves, and the inner berm can be applied to prevent instability and piping. The
slopes on the inside and outside have effect on the wave run-up and stability. In section 4.2.2 the failure
mechanisms are described in more detail.

The dike core and dike base consist of different type of soils. The composition depends on the location of
the dike, which soils exist in the original situation and are available, and it depends on the characteristics of
the different soils. Sand and gravel are extremely stable, but also very permeable. Peat is impermeable but is
soft, compresses easily and shrinks when it becomes dry. Clay seems the most suitable soil, it is very imper-
meable but deforms when it gets wet. Many older dikes fully consist of clay. Dikes are nowadays constructed
with different types of material, for example a dike core of sand with a clay layer as cover. The benefits of the
different soils are used. [14]

Figure 4.3: General dike profile showing the most important elements (source: [14])

The different dimensions of the dike strongly depend on the design load. Dikes along the coast look
different from the dikes along the rivers. Due to the high waves at sea the sea dikes need to have a gentle
outer slope, an outer berm and a dike revetment. The waves along the rivers are much smaller, so these
elements are not needed. For the river dikes a gentle inner slope is often applied to provide stability during
long periods of high water, which is the case during flood waves in the river. On locations where there is not
enough land to build the dike some construction, such as sheet piles, can be applied to have a stable dike
with a smaller footprint.

4.2.2. Failure mechanisms
For the design of a dike construction the various failure mechanisms needs to be considered. The definition
of failure for flood defences is the loss of the water-retaining function. Failure occurs if the load is greater
than the resistance.

An overview of the most relevant failure mechanisms is shown in Figure 4.4. Below a description of the
five most common failure mechanisms is given.
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Overflow of a dike means that the still water level is higher than the crest level of the dike. The over-
flow itself can lead to flooding of the hinterland or the water flowing down the inner slope can lead to
damage and breaching through erosion.

In case of wave overtopping the still water level remains below the crest level, but the waves will over-
flow the dike crest. Failure of the dike is similar as for overflow.

Sliding of the inner slope is a stability problem. As the water level at the outside rises, water infiltrates
leading to saturation of the dike body and to increasing pore pressures. The effective stresses reduce
and so does the shear strength of the soil, which can lead to the development of sliding planes. To
prevent for this failure mechanism a gentle inner slope or an inner berm is applied.

Micro-instability occurs when the seepage water causes the phreatic surface to rise and reach the inner
slope of a dike. In case of an impermeable cover layer on the inner slope, the increased pressure inside
the dike body can just push off that cover. In case of a permeable inner slope, internal erosion can be
initiated.

Piping (or backward internal erosion) occurs if the hydraulic gradients in the subsoil towards the land-
side are high. Due the pressure difference water can break through the impermeable cover layer of the
hinterland. Soil particles start eroding leading to channels or pipes in the subsoil. These pipes can grow
towards the water side of the dike, undermining the foundation of the dike, which can lead to collapse
or sliding of the dike body.

Figure 4.4: Overview of the most relevant failure mechanisms of flood defences (source: [14])

For the design of a dike construction each of the failure mechanisms is considered. The probability of
failure for each of the mechanisms is determined. All these probabilities combined give the total probability
of failure for the dike section, the total probability needs to be lower than the safety standard.

A detailed description of each failure mechanism is given in the International Levee Handbook [2] and
the lecture notes of CIE5314 [14].
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4.3. Method to determine the design water level for overtopping
The climate uncertainties in river discharges, as determined in Chapter 3, do have consequences for dike
designs. More specifically, these consequences for the design water levels. For a dike design all the failure
mechanisms need to be considered. In this study, however, we only consider the consequences for the de-
sign water level for the failure mechanism overtopping. Failure due to overtopping occurs when water flows
over the dike crest as a consequence of the water level in the river in combination with wave run up (due to
wind). The overtopping results in erosion of the inner slope and finally in breach. In this section the method
to determine the design water level for overtopping is described.

In the Netherlands, the allowable probability of failure is determined for a failure mechanism for a cross-
section. The starting point is the safety standard of a segment, see Section 4.2. This is translated to an allow-
able probability of failure for a failure mechanism of a segment through a so-called budget factor. This budget
factor is introduced to make sure that all failure mechanisms combined result in a failure probability that is
lower than or equal to the standard. This allowable probability of failure for a failure mechanism of a segment
is translated to an allowable failure probability of a mechanism of a cross-section using a length-effect factor.
This accounts for the length of the segment: the longer the segment, and the higher the contribution of vari-
ability in strength, the higher the probability of failure within the segment. Based on this calculated allowable
probability of failure, a design rules for all failure mechanisms are provided in [26]. Part of the design rules
are the so-called ’water level at safety standard’, which can be considered a simplification of the design water
level for various failure mechanisms.

As mentioned, failure due to overtopping occurs when water flows over the dike due to a combination of
the water level and wave run up (due to wind). Climate change does have consequences for the future water
levels in the river, but it is assumed that it has no consequences for the wave run up height (due to wind).
Therefore, for this study only the water level is of interest and the wave rune is neglected. In the remainder of
this study the design water level refers to the water level belonging to overtopping.

The design water level for overtopping can be considered with the mentioned simplification. This sim-
plification, a rule of thumb, tells that the design water level for overtopping is, in good approximation, equal
to the water level with an exceedance probability equal to the safety standard [6]. This rule of thumb is valid
for cases with a length effect factor of 1, which is a reasonable approximation for overtopping. Hence, in the
remainder of this thesis, when the design water level is mentioned, in fact is referred to the design water level
based on this rule of thumb. Which is the water level at an exceedance frequency equal to the safety standard.

The design water level can be determined with a relation between the river discharge near Lobith (Q) and
the local water level (h), the Q-h relation. This Q-h relation is different for every location along the Rhine. For
the design water level the discharge with an exceedance probability equal to the safety standard is selected
from the discharge frequency curve (Section 3.4.3) and translated into a water level with the Q-h relation.

The approach to determine the influence of climate effects on the design water level is shown in Figure
4.5. In this approach, the discharge frequency curve and the local safety standard determine the discharge
with an exceedance probability equal to the safety standard. Combined with the local Q-h relation, this gives
the water level with an exceedance probability equal to the safety standard, which is the definition of the de-
sign water level in this thesis.
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Figure 4.5: Flow chart to determine the design water level for overtopping

Case studies
In this study, the design water level will be determined for four different locations along the river Rhine in
The Netherlands. By taking multiple locations the sensitivity of the result to the location and safety standard
can be visualized. Therefore, two locations along the Waal branch and two locations along the IJssel branch
are chosen. The two locations within the same branch have different safety standards. These locations are
chosen in such a way that they lie as close as possible to each other. This ensures that the Q-h relations for
these two locations are almost similar, which makes the effect of the difference in the safety standard more
clear.

Location 1 and Location 2 are located along the Waal branch (see Figure 4.6). Location 1 is the most
downstream part of dike segment 42-1, with a safety standard of 1/10,000 per year. Location 2 is the most
upstream part of segment 41-1, with a safety standard of 1/30,000 per year. Location 3 and Location 4 are
located along the IJssel branch. These two locations are on the opposite of each other and chosen on one of
the smallest points along the IJssel branch. In this case the Q-h relations differ slightly because the locations
lie in the inside and outside of a river bend. Location 3 is located within dike segment 49-2, with a safety
standard of 1/10,000 per year. Location 4 is located within dike segment 52-1, with a safety standard of 1/3,000
per year.

Table 4.1: Overview of the locations

Location Dike segment Branch Safety Standard
[1/year]

1 42-1 Waal 1/10000
2 41-1 Waal 1/30000
3 49-2 IJssel 1/10000
4 52-1 IJssel 1/3000

In Figure 4.7 the Q-h relations of the four locations are given. It can be clearly seen that the relations for
the two locations in the Waal branche (Location 1 and Location 2) are almost the same, this is also the case
for the two locations in the IJssel branch (Location 3 and Location 4). The differences between the Waal and
IJssel branches are, however, significant.
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Figure 4.6: The four locations, used in this research, together with the safety standard at these locations.

Figure 4.7: Q-h relations for Location 1 (upper left) and Location 2 (upper right) in the Waal branch. And for Location 3 (lower left) and
Location 4 (lower right) in the IJssel branch.
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4.4. Uncertainty in design water level
This section determines the uncertainty in design water level for different RCP scenarios. The uncertainty in
design water level is the consequence of the uncertainty in the discharge return levels as presented in Section
3.4. There are two effects of climate change, modelled as RCP scenarios: the mean of the discharge increases
due to the forcing and the uncertainty increases. Both effects will be considered.

The uncertainties in the design water level are determined by sampling a discharge from the discharge
distribution with a exceedance probability equal to the safety standard (Figure 3.14), this discharge is subse-
quently translated into the local water level using the Q-h relation. With a sufficient amount of realizations,
a distribution of the local design water level can be constructed. This distribution gives an indication of the
uncertainties in the design water level. Since the safety standard and Q-h relation vary per location the results
will be different per location as well.

In this section, only the uncertainty in design water level at Location 1 will be discussed, the results for the
other three locations is presented in Section 4.5.4. The distributions are constructed per RCP scenario with
10,000,000 realizations of the design water level. Figure 4.8 shows the resulting distributions of the design
water level at Location 1 per RCP scenario. The mean values of these distributions are 15.53, 15.60, 15.63 and
15.75 m for RCP2.6, RCP4.5, RCP6.0 and RCP8.5, respectively. This represents the mean effect of the forcing.
And the standard deviation is 0.25, 0.26, 0.27 and 0.30 m for RCP2.6, RCP4.5, RCP6.0 and RCP8.5, respectively.
Note that the mean of the distributions is the mean of the results of 5 separate samplings with 10,000,000
realizations per sampling.

For the reference situation, which is the situation without climate change, the mean value of the design
water level at Location 1 is 15.24 m. So, there is an additional mean height of 0.29 - 0.50 m due to climate
change forcing. This range of additional height is the mean forcing scenario uncertainty in the design water
level.

The uncertainty in discharge return levels cause an uncertainty in the design water level given a RCP sce-
nario. The latter uncertainty is represented by the standard deviation of the design water level. This standard
deviation increases with the forcing of the RCP scenarios. This is something we have noticed for the discharge
return levels as well (Chapter 3).

Summarizing the results, there is a mean forcing effect of 0.29 - 0.5 m, depending on the RCP scenario
and a variation of 0.2 m due to forcing scenario uncertainty. Within a RCP scenario the width of the 95%
confidence interval range of the local water level is 1.00, 1.03, 1.05 and 1.17 m for RCP2.6, RCP4.5, RCP6.0 and
RCP8.5, respectively. The variability in the mean of the design water level between the RCP scenarios is thus
small compared to the variability for a given RCP scenario.
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Figure 4.8: PDF of the design water level per RCP at Location 1 (as described in Section 4.4). The dotted vertical lines indicate the design
water level with the climate uncertainties integrated (as described in Section 4.5).

4.5. Design water level with integrated uncertainties
The distributions in Figure 4.8 show the uncertainties in the design water level for Location 1 as a result of
climate change. But for the design of a dike a single value of the design water level is required. A method to
find the single value is to integrate all uncertainties in the discharge frequency curve. This results in a single
discharge frequency curve instead of a median discharge frequency curve with an uncertainty band.

4.5.1. Method to integrate the uncertainty
To build these discharge frequency curves the following steps are taken:

1. Sample the probability of exceedance (1/T) from an uniform distribution between 0 and 1;

2. Determine the mean and standard deviation of the discharge distribution of the specific RCP with a
return period (T) corresponding to the exceedance probability of step 1;

3. Sample a discharge from the normal distribution with the mean and standard deviation of step 2;

4. Repeat steps 1-3 10,000,000 times per RCP. The new discharge frequency curve (with the uncertainties
integrated) is constructed from the 10M realizations.

5. Repeat for each RCP
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4.5.2. Discharge frequency curves with integrated uncertainties
In Figure 4.9 the resulting discharge frequency curves are presented. These discharge frequency curves can
be used to determine the design water level with integrated uncertainties. The discharge with an exceedance
probability equal to the safety standard is taken from the discharge frequency curve, and transformed in the
design water level by the Q-h relation of the location.

Figure 4.9: Discharge frequency curves of the four RCPs as in Figure 3.14 but with the uncertainties integrated.

4.5.3. Results for Location 1
The safety standard for Location 1 is 1/10,000 per year. For RCP2.6, the discharge with an exceedance proba-
bility equal to this safety standard is 17957 m3/s (T=10,000 years in Figure 4.9). Based on Figure 4.7, it can be
determined that this corresponds to a local water level of 15.62 m.

The design water level with integrated uncertainties at Location 1 become 15.62, 15.69, 15.75 and 15.85
m for RCP2.6, RCP4.5, RCP6.0 and RCP8.5, respectively. These values are presented in Figure 4.8 with the
vertical dotted lines. In this figure it can be seen that these values are slightly higher than the mean of the
distribution, which is a logical consequence of integrating the uncertainties. The values of the design water
level with the integrated uncertainties corresponds with approximately the 70-percentage point of the design
water level distributions for the RCP.

Integrating the uncertainties in the discharge return levels leads to an increase of the design water level of
0.09 to 0.12 m with respect to the mean of the design water level distribution.

4.5.4. Results for the other locations
Also for the other three locations, the distribution of the design water level per RCP and the design water level
with integrated uncertainties per RCP are determined. The results for all the locations are shown in Table 4.2.
This table gives, for each location, the mean of the distribution and the design water level with integrated
uncertainties. These values are given per RCP and for the design water level with integrated uncertainties the
design water level as percentage point in its original distribution is given. The reference situation is the case
where no climate change is modelled, but where there is still the ’normal’ variability present.



4.5. Design water level with integrated uncertainties 53

The mean value of the distribution of the design water level, which is the mean climate forcing effect,
varies per RCP scenario. For Location 1 we have seen that this mean value is an increase of 0.29 - 0.50 m with
respect to the mean design water level of the reference situation. For Location 2 and 3 this range is about
the same. For Location 4 the increase is in the range of 0.14 to 0.37 m. The increase for Location 4 is lower
due to the Q-h relation, which is not a continuous relation (see Figure 4.7). The Q-h relation of Location 3
has the same shape, but the design discharges of the reference and RCPs are in the same continuous part.
The difference in mean design level of RCP8.5 and RCP2.6 is about the same for each location, so this is not
effected by the location along the Rhine or the safety standard.

Integrating the climate uncertainties of a RCP scenario require an additional water level of 0.09 - 0.12 m
to the design water level for Location 1. In Table 4.2 it can be seen that for Location 2 and 3 this range of
additional water level is about the same. Only for Location 4 this range is lower, but with a larger spread (0.04
- 0.12 m). This can also be declared by the Q-h relation of Location 4.

The last column in Table 4.2 gives the design water level (with integrated uncertainties) as the percentage
point of the original design water level distribution. This percentage point varies between 63% to 73%. The
percentage point is higher for the higher RCP scenarios and is slightly different for the four locations. The
percentage point gives an indication of the chance that this design water level water will be exceeded with
that specific RCP scenario. The percentage points indicate that there is a chance of 37% to 27% that the
design water level with the integrated uncertainties will be exceeded in 2085, when the same RCP (as used for
the design water level) scenario occurs.

Table 4.2: Overview of the design water level of each location and for all RCP scenarios.

Location Scenario
Mean design
water level [m]

Design water level with
integrated uncertainties [m]

Design water level as percentage
point in its original distribution

1 Reference 15.24
RCP2.6 15.53 15.62 67
RCP4.5 15.60 15.69 68
RCP6.0 15.63 15.75 67
RCP8.5 15.75 15.85 72

2 Reference 15.32
RCP2.6 15.61 15.72 70
RCP4.5 15.68 15.78 70
RCP6.0 15.72 15.84 70
RCP8.5 15.82 15.95 73

3 Reference 10.44
RCP2.6 10.72 10.85 67
RCP4.5 10.82 10.91 68
RCP6.0 10.87 10.95 67
RCP8.5 10.97 11.06 71

4 Reference 10.38
RCP2.6 10.52 10.56 63
RCP4.5 10.56 10.63 65
RCP6.0 10.59 10.70 65
RCP8.5 10.75 10.87 69
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4.6. Comparison of design water level with the KNMI’14 climate scenarios
The design water level based on the KNMI’14 scenarios can be obtained with the same method as is used
for the RCPs. In Section 3.4.4 the discharge frequency curves of all KNMI’14 climate scenario in 2085 are
presented. The individual KNMI’14 discharge frequency curves do by definition not include climate model
uncertainty, but there is still uncertainty involved. It is assumed that this uncertainty is equal to the uncer-
tainty for the reference situation (i.e. uncertainty in natural variability, hydrological model and hydraulic
model).

Since Table 4.5.4 shows that for three of the four locations the increase in the mean design water level
with respect to the reference situation is almost similar. The design water level for KNMI’14 is therefore only
considered for Location 1.

For the KNMI’14 scenarios we start with the discharge frequency curves of these KNMI scenarios and the
uncertainties in these curves due to natural variability and hydrological/hydraulic uncertainty. The uncer-
tainties in the discharge return levels are integrated with the same method as for the RCP scenarios described
in Section 4.5.1. This results in four new discharge frequency curves, one for each KNMI’14 scenario. From
these the discharges with a exceedance probability equal to safety standard (for Location 1 the 10,000-year
return level) are taken. With the Q-h relation for Location 1 the design water level is determined. The result-
ing design water levels for the KNMI’14 scenarios at Location 1 are presented in Figure 4.10 and Table 4.3.

The design water level of 15.60 m for the lowest KNMI’14 scenario (2085GH) is almost equal to the 15.62 m
for the lowest RCP scenario (RCP2.6). And the design water level of 16.11 m for the highest KNMI’14 scenario
(2085WH) is 0.26 m higher than the 15.85 m for the highest RCP scenario (RCP8.5). The design water level for
the RCP8.5 scenario corresponds most closely to the 15.82 m for the KNMI’14 2085GL scenario.

Table 4.3 also presents for the KNMI’14 scenarios the design water level as percentage points of the design
water level distributions for the RCPs. The associated probability gives the chance that the design water level
will not be exceeded in 2085, given that RCP scenario. It can therefore be used to say something about the
chance that the dike does not meet the safety requirements of overtopping in 2085. There is chance of 38%
that dike with the KNMI’14 GH scenario will not meet the safety standards in 2085 if RCP2.6 occurs, when
RCP8.5 occurs this chance is 65%. The WH scenario requires the highest design water level, this will therefore
be a safe solution. The chance that this design water level does not meet the safety standard in 2085 is less
than 10% for all the RCPs.

Table 4.3: Comparison between the KNMI’14 climate scenarios and RCP scenarios for the design water level at Location 1

Design water level Design water level based on the KNMI’14 scenarios
based on KNMI’14 scenarios as percentage points of the design water level distribution for
[m] RCP2.6 RCP4.5 RCP6.0 RCP8.5

GH 15.60 62 52 46 35
GL 15.82 91 85 80 67
WH 16.11 99 99 98 92
WL 15.91 90 91 88 76
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Figure 4.10: As Figure 4.8 but with the design water level for the four KNMI’14 climate scenarios (vertical lines) compared with the
distribution of the design water level of the RCPs at Location 1





5
Discussion

In this Chapter some of the methods used in this study and the consequences of these methods on the results
are discussed. Only the most relevant assumptions made in the methods are discussed. The first relevant
assumption is the use of the regression lines to determine the climate uncertainties in the future extreme
river discharges. These regression lines are easy to use and reduce the amount of work significant, but the
use of the regression lines may have consequences for the results. The regression lines are further discussed
in Section 5.1.

The second assumption is made in the method to determine the consequences of the uncertainties in
discharge return levels on the design water level. It is assumed that the design water level for the failure
mechanism overtopping gives an indication on the consequences for the required dike dimensions. In Sec-
tion 5.2 it is discussed if this a reasonable assumption.

5.1. Regression lines
Two different regression lines are used in this research (see flowchart in Figure 3.1). The first regression line
is used to determine the change in the extreme discharge for a given return period (dHQT) from the change
in the mean annual maximum discharge (dMHQ) of a data series. The other regression line is to transform
the quantile of the hydrological annual maximum discharge (HQT,HBV) into a quantile of the hydrodynamic
annual maximum discharge (HQT,Sobek). Both regression lines are discussed in the remainder of this section.

dMHQ-dHQ regression line
As already mentioned above the first regression line in this research is used to determine the dHQT for any
return period. A relation between dMHQ and dHQT, as given in Section 3.1.2, is used for this regression. Be-
low here we first discuss the decisions made for this relation and thereafter we discuss the uncertainties in
this relation.

The data used for the regression line come from the long discharge simulations for the eight KNMI’14
scenarios. These eight KNMI’14 climate scenarios (four for 2050 and four for 2085) provide the discharge
responses to eight different climate forcings. All eight simulations have a length of 50,000 years and the re-
sulting annual maximum discharges calculated with both the hydrological model HBV and hydrodynamic
model Sobek are sufficient to reliably determine both dMHQ and dHQT (for T up to 100,000 years).

The regression relation is based on the HBV annual maxima since it is used to estimate the dHQT’s from
a large ensemble of HBV simulations using the climate projections from various climate models and four dif-
ferent RCP scenarios (see Section 3.2 for details). These short HBV simulations (of only 56 years) are denoted
as the short series. From these short series dMHQ can be calculated, but they are too short to reliably deter-
mine the required dHQT.

The relation between dMHQ and dHQT is taken to be linear through the origin. It seems reasonable to
assume that if there is no change in the MHQ (no response in the mean of the annual maxima) there is also
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no change (response) in the HQT’s. It is therefore a logical assumption that the regression goes through the
origin. Figure 3.3 confirms this, in particular for the shorter return periods.

The slope of the linear relation is however uncertain, which results in an uncertainty in the dHQT as well.
To account for this uncertainty the standard error of the slope is given in Table 3.1 for four return periods. The
table shows that this standard error increases with the return level. The standard error is relatively small (even
for the long return levels) and therefore the uncertainty in dHQT due to the uncertainty in the slope of this
regression line is also small. This uncertainty is still included in the total uncertainty in HQT (see flowchart in
Figure 3.8), but compared with other uncertainties in HQT the additional uncertainty due to this regression
line is almost negligible.

Regression HBV-Sobek
Another regression line is used to obtain the Sobek (hydrodynamic) discharge from the HBV (hydrological)
discharge (see Section 3.4.1). The use of this regression line saves a lot of computationally expensive calcula-
tions with the Sobek model. This is also the reason that a HBV-Sobek regression is used in the Dutch design
guideline (Ontwerpinstrumentarium 2014 (OI2014)) as well.

As mentioned in Section 3.4.1, in this research we do not use the same regression line as used in OI2014.
The regression used in OI2014 is based on the original pairs of HBV and Sobek annual maximum discharges.
Such a regression can be used to obtain individual Sobek discharges from individual HBV discharges. How-
ever, in this study, only the quantiles of the annual maximum HBV discharges are available (the HQT) and not
the individual annual maxima. For a suitable relation to convert these quantiles it is necessary to regress the
quantiles of the Sobek discharges on the quantiles of the HBV discharges, as shown in Figure 3.12. For this
regression the data sets of both the Sobek and HBV discharges are ordered in an increasing sequence, so that
the highest Sobek discharge is plotted against the highest HBV discharge (the lowest Sobek against the lowest
HBV, etc.).

Another point of discussion is about the data set that can be best used for this regression. The regression
used in OI2014 is based on the data set of the KNMI’06 2100W+ climate scenario. This is however not the
most recent climate scenario and the data sets with both HBV and Sobek discharges are also available for the
KNMI’14 climate scenarios. The discharges of the KNMI’14 climate scenarios are also simulated with more
recent versions of the HBV and Sobek models. It’s therefore preferable to use one of the KNMI’14 climate
scenarios for the regression. There are however a few concerns about these data sets, and therefore it is better
to use the KNMI’06 scenario instead of one of the KNMI’14 scenarios.

In Figure 5.1 the relation between the quantiles of the Sobek discharges and quantiles of the HBV dis-
charges is given for the KNMI’14 2085WH scenario. What immediately stands out at this regression line is
the difference in shape compared with the regression line in Figure 3.12. The regression line in Figure 3.12
becomes less steep for large discharges, which is due to upstream flooding. Also the regression line in Figure
5.1 becomes less steep at about the same point (QHBV ∼14000 m3/s), but starts to become steep again for
the extreme discharges (QHBV ≥ 19000 m3/s). A possible explanation for this behaviour is that at a certain
point the flood plains have no more capacity and then the river discharge may further increase. A group of
experts concluded, however, that it is impossible to have such high discharges in the Rhine at Lobith [5]. It is
therefore questionable if the behaviour in the regression line in Figure 5.1 is realistic or that there are some
errors in the used models. Since it is not fully clear what causes this shape of the regression line and since the
experts have more confidence in the behaviour shown in the curve based on the KNMI’06 2100W+ scenario
(Figure 3.12), the regression line based on this scenario is used in this study.

The last thing we want to discuss is the reliability of the regression line. Figure 3.12 shows that there is
almost no scatter around the regression line. This is a result of the ordering of the data. It does not mean,
however, that the uncertainty of the regression line is small. One way to estimate this uncertainty is to resam-
ple from the original pairs of HBV and Sobek annual maximum discharges and to refit the regression relation
on the ordered resampled data. Note that resampling should not be based on the ordered data in Figure 3.12
because of their dependence.
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Figure 5.1: Relation between the discharges from the hydrological model HBV and the hydraulic model Sobek. Based on the ordered
data of the KNMI’14 2085 WH scenario.

5.2. The consequences of the climate uncertainties on design water levels
In this study only the consequences of the climate uncertainties on the design water levels for the failure
mechanism overtopping are considered. Whether these design water levels are representative for the conse-
quences of the climate uncertainties on the total dike dimensions is discussed in this section.

First, the consequences of neglecting the wave run-up in the design load for overtopping is discussed.
This design load is a combination of the water level and wave run-up (due to wind). It is, however, assumed
that the wave run-up does not change for the future climate. The change in design load for the future climate
is only caused by the change in the water level return levels. Therefore, the results for the change in design
water level and the consequences of the climate uncertainties on this design water level are the same for the
results and consequences for the design load. This means that there are no consequences for the results of
the design load if the wave run-up is neglected.

The water level is an important load parameter for most of the failure mechanisms. The return level of the
design water level differ slightly per failure mechanisms, due to the different budget factors. This study has
shown that the consequences for the design water level do not vary much per location, and thus do not vary
much for different safety standards or the return level of the design water level. The consequences of climate
change on the increase in design water level and the uncertainties in this design water level will therefore be
the same for the design water level of other failure mechanisms as it is for overtopping. However, it can not
be said that the consequences of the climate change for the other failure mechanisms are the same as for
overtopping. For overtopping the water level is the only load parameter effected by climate change. This is
not the case for all failure mechanisms. For example, the duration of the flood wave is of great interest for
piping. This duration will be different for the future climate, but is not considered in this study. Therefore,
the results of this study do not give a good indication of the consequences of climate change for piping.

The next thing to discuss is the effect of the design water level for overtopping on the dike dimensions. To
prevent failure due to overtopping there are two solutions possible; the dike can be heightened or measures to
reduce the wave rune-up can be taken. An increase in the design water level (and thus in design load) is there-
fore not always the same as the extra required dike height. In some cases it is possible to take in the additional
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design load by applying extra measures to reduce the wave run-up. In most cases, however, the dike height
need to increase due to the increase in design water level. The consequences of climate change on the design
water level therefore give a good indication for the consequences on the required dike height for overtopping.

The failure mechanism overtopping is for most of the Dutch dikes the most important. When the dike
is high enough to prevent failure due to overtopping, it is in these cases also high enough to prevent failure
due to overflow. The results for the design water level for overtopping therefore give a good indication for the
consequences of the total required dike height. However, the dike height is not the only element of a dike
cross section. Some elements do have a strong correlation with the dike height. For example, when the dike
height increases the width of the dike must increase as well to prevent stability problems. The dike height
gives an indication of the total dike dimensions, yet there are still elements which are not effected by the dike
height.

It can be concluded that the consequences of climate change on the design water level for overtopping
gives a good indication for the consequences on the design water level. The consequences for some other
failure mechanisms can be different however, since not all designs loads effected by climate change are con-
sidered in this study. The consequences for the design water level for overtopping also gives an indication for
the required dike height, but not for the dimensions of all dike elements. It is necessary to consider all the
failure mechanisms to determine the consequences for the other dike elements.
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Conclusions and Recommendations

6.1. Conclusions
This section presents the conclusions of the report. With these conclusions the research questions as given
in Section 1.3 are answered.

There are multiple sources of uncertainty in extreme river discharges. Not all these sources are the conse-
quence of climate change, some of them already exist for the river discharges of the current climate. Climate
change, however, makes the uncertainties in the river discharge larger for the future climate than for the cur-
rent climate.

The uncertainty in the river discharges of the reference situation (the current climate) is caused by natural
variability and hydrological uncertainty. Table 3.7 shows that these uncertainties in river discharges (repre-
sented by a 95% confidence range) vary per return period. For the 1000-year return level the confidence range
is 2361 m3/s, while the confidence range for the 10,000-year return level is 3801 m3/s.

In the future river discharges there are two additional sources of uncertainty, namely the forcing scenario
uncertainty and uncertainty in the response to this forcing (i.e. climate model uncertainty). The discharge
frequency curves of the river discharge in 2085 for the four different forcing (RCP) scenarios show that both
the mean response in the return levels and its uncertainty (the width of the confidence intervals) increase
with the RCP forcing. And this is consistent with the LME-model (for dMHQ) which has a fixed forcing ef-
fect and a random climate model effect that both depend on the forcing. For the 10,000-year return level
the increase with respect to the reference situation in the median value ranges from 1038 m3 for RCP2.6 to
1826 m3/s for RCP8.5. These increases do not depend much on the return period; the difference in response
between the RCP8.5 and RCP2.6 scenario is 788 m3/s for the 10,000-year return level and 735 m3/s for the
1000-year return level (Figure 3.14 and Table 3.7).

In addition to the forcing scenario uncertainty the width of the 95% confidence interval for a particular re-
turn level (and thus the uncertainty in the response) increases due to climate change as well. As already said,
also the uncertainty in the response depends on the RCP forcing (and this follows from the LME-model). For
the 10,000-year return level the width of the 95% confidence interval increases from 3883 m3/s for RCP2.6
to 4801 m3/s for RCP8.5. Compared with the 3801 m3/s for the reference situation (the current climate) this
means an increase in the width of the 95% confidence interval of 82 and 1000 m3/s for RCP2.6 and RCP8.5
respectively. The difference between this increase of 918 m3/s for the two RCPs is of the same order, and actu-
ally somewhat larger than the difference of 788 m3/s in their mean response. For other return levels a similar
result is obtained.

Figure 3.15 shows that the four KNMI’14 scenarios for 2085 fit best in the 95% confidence region of the
RCP8.5 scenario. However, for long return periods (i.e. > 10,000 years) the 95% confidence region of RCP8.5
becomes much wider than the range described by the KNMI’14 scenarios. For the other three RCP scenarios
the KNMI’14 scenarios are mainly located in the upper half of the 95% confidence interval. This indicates that
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there is a large chance (i.e. > 50%) that the KNMI’14 scenarios will never be exceeded in 2085 under these
RCP scenarios.

The uncertainties in the discharge return levels do have consequences for the water levels used for the
flood protection designs, denoted as the design water levels. For Location 1 the distributions of the design
water level for the failure mechanism overtopping have a standard deviation of 0.25, 0.26, 0.27 and 0.30 m
for RCP2.6, RCP4.5, RCP6.0 and RCP8.5, respectively. And the mean values for these distributions are 15.53,
15.60, 15.63 and 15.75 m for RCP2.6, RCP4.5, RCP6.0 and RCP8.5, respectively. The mean design water level
for the reference situation at this location is 15.24 m, so there is an increase of 0.29 - 0.50 m in the mean
design water level due to the response of the RCP scenario forcing. The mean response to the forcing and
the uncertainty in the response expressed by the standard deviation are of the same order of magnitude. For
Location 2 and Location 3 a similar range in the mean response of the design water level is found, and for
Location 4 the response is somewhat lower. Thus the different locations along the Rhine and safety standard
does not have much effect on the response in the increase in design water level.

For each RCP the uncertainties in the discharge return levels are integrated into a single value for the de-
sign water level. This resulting design water level is 0.08 - 0.13 m higher than the mean design water level for
the RCPs. This increase in design water level is of the same order for Location 1, Location 2 and Location 3.
For Locations 4 the range of this increase is somewhat large, namely 0.04 - 0.12 m.

The design water level for the KNMI’14 scenarios is only considered for Location 1. For the KNMI’14
scenarios the design water level is only determined with integrated uncertainties. Compared to the design
water levels with integrated uncertainties for the RCP scenarios, the design water level for the most extreme
KNMI’14 scenario (2085WH) is 0.26 m higher than the design water level for the most extreme RCP scenario
(RCP8.5). The design water level for the lowest KNMI’14 scenario (2085GH) is almost the same as the one for
the lowest RCP scenario (RCP2.6).

Comparing the design water level for the KNMI’14 2085WH scenario with those for the RCP scenarios,
shows that there is an exceedance probability of only 1% to 8% (depending on the RCP scenario) for this
water level in 2085. For the other KNMI’14 scenarios this exceedance probability clearly increases, with a
maximum of 65% for the KNMI’14 2085GH scenario assuming RCP8.5 (see Table 4.3).
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6.2. Recommendations
In this section we would like to recommend some points for following studies.

Determine the uncertainty of the HBV-Sobek regression.
In this study this uncertainty is not determined, but it is a methodological uncertainty that contributes to
the overall uncertainty of the future extreme river discharges. This becomes relevant in particular when the
long simulations with the new version of Sobek, that better includes flooding in the lower Rhine area, become
available. These are also the Sobek simulations that are planned to be used for the next updat of OI (OI2018).

Determine the dike dimensions when taking all the failure mechanisms into account.
In this study only the consequences of the uncertainties in the future extreme river discharges on the local
water levels were determined. The local water level is of great importance for most of the failure mechanisms
and is therefore a good first indication of the consequences of the climate uncertainty for the required dike
dimensions. But to determine the real consequences for the required dike dimensions all the failure mecha-
nisms need to be considered. This is also what is required by the Dutch design guideline.

Determine the development of the uncertainties in time.
In this study we have only considered the uncertainties in the river discharge in 2085. The forcing of the RCPs
however changes over time (see Figure 2.4), and since the uncertainties depend on the amount of forcing
these uncertainties will develop over time. For dike design consideration this change over time is interesting.
For example, when the change of the uncertainties over time is known, the chance can be computed that the
dike does not meet the safety standard any more. This can be done for each future year, while in this research
it is only done for 2085. When these chances are known they can be used to determine the dike dimensions.
For situations where it is not desirable to reinforce the dike before the end of its lifetime, the dike needs to be
designed in such a way that this chance is small during itse entire lifetime.
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