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| Kim Hendrickx?

Single-index models are popular regression models that are
more flexible than linear models and still maintain more
structure than purely nonparametric models. We consider
the problem of estimating the regression parameters under
a monotonicity constraint on the unknown link function.
In contrast to the standard approach of using smoothing
techniques, we review different “non-smooth” estimators
that avoid the difficult smoothing parameter selection. For
about 30 years, one has had the conjecture that the pro-
file least squares estimator is an \/ﬁ-consistent estima-
tor of the regression parameter, but the only non-smooth
argmin/argmax estimators that are actually known to
achieve this y/n-rate are not based on the nonparamet-
ric least squares estimator of the link function. However,
solving a score equation corresponding to the least squares
approach results in \/ﬁ-consistent estimators. We illustrate
the good behavior of the score approach via simulations.
The connection with the binary choice and current status
linear regression models is also discussed.
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1 | THE SINGLE-INDEX MODEL

Suppose that Y is a response variable and that X = (Xj, ..

., X7 is a d-dimensional covariate

(d > 1). The semiparametric single-index model is given by
Y:ylo ((ng) +6, (1)
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where € ~ Fj is a random error term with E(¢|X) = 0 almost surely, v is an unknown func-
tion, and a is an unknown regression parameter in R?. These models are more flexible than
standard linear regression models and have, on the other hand, more structure than completely
nonparametric models.

In this paper, we impose a monotonicity constraint on the link function y,. Shape-constrained
inferences have gained a lot of popularity in recent years. Several statistical applications are
based on imposing constraints that occur from the problem under study and need algorithms
for shape-constrained regression or density estimation. Monotonicity, convexity, or concavity
constraints arise naturally with consumption or production functions, growth curves, and dose
response models. A summary of nonparametric estimation under shape constraints can be found
in Groeneboom and Jongbloed (2014).

Model (1), when y is an unknown monotone function, is also known as the monotone
single-index model, and many econometric models as well as censored regression models and var-
ious duration models fit into this framework. We next describe how the binary choice model and
the current status linear regression model are special cases of the monotone single-index model
satisfying E(Y|X) = wo(al X).

The binary choice model. A widely used econometric model is the binary choice model, which
is used to describe a choice probability based on one or more covariates. The model is given by

Y:{l, if alX>e @)

0, else,

where agX presents the utility score and ¢, assumed to be independent of X, is the disturbance
term. The model can be used to predict the probability that a person decides to consume a certain
good based on the characteristics of the person. The model is a special case of the single-index
model (1) with y, equal to the (unknown) distribution function F, of ¢, since

E{Y|X}=P(Y =1|X)=P(e < a}X) =F (a}X).

The current status linear regression model. A frequently encountered problem in regression
analysis is that a variable of interest (which can be thought of as an event time) is not observed
directly but only known to lie before or after some random censoring time. This type of censored
data is known as current status data and arises commonly in reliability and survival studies espe-
cially when testing is destructive. More formally, instead of observing the vector (Y, X) asin (1), a
vector (T, A, X) is observed, where T is a censoring variable and A = 1y<r. Since

E{A|T.X} =P(A=1|T.X)=F, (T — ayX),

the current status linear regression model is a special case of the single-index model (1) with
response Y = A, covariate vector X = (T,X)T, and @, = (1, a).

The models are prototypes of semiparametric models, where one has a nonparametric com-
ponent given by the “link function” y, which is a distribution function (or 1 minus a distribution
function) in the current status regression model, and a parametric part. The difficulty of the model
is that the parametric part is “inside” the nonparametric part; one has to bypass the nonparametric
function y,, which cannot be estimated at rate \/ﬁ to get to the parametric part.

This is very different for the well-known Cox proportional hazards model for current status
data. In this case, the log likelihood is of the form

{Ai log (1 —exp {—A(Ti)e"‘gxi }) — (1 = A)A(T,)e%% } ,

n
i=1
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where A is the baseline cumulative hazard function. Now, ay does not appear in the argument of
a function F, which is not \/ﬁ estimable, and we can estimate A and a, separately. In this case, it
was shown in Huang (1996) that one can use the nonparametric maximum likelihood estimator
of A and then use profile likelihood to estimate a efficiently at rate \/ﬁ However, for the ordinary
current status regression model, it is still unknown whether a similar estimation method gives an
\/ﬁ-consistent estimate of ay.

1.1 | Identifiability

Identification of the single-index regression parameter a, (up to a scalar constant) has been
discussed in Ichimura (1993) in terms of the distribution of the regressors X. Without any fur-
ther restrictions, the parameter vector (ao, y), however, cannot be estimated in the single-index
model. This can be seen as follows. Take a,b € R and let yw* be the function defined by the
relationship y*(a + bt) = y,(¢) for all ¢ in the support of agX , then

E(Y|X) = y* (a + ba X) .

Even if the distribution of (Y,X) is known, the above model cannot be distinguished from
model (1) unless restrictions on location a and scale b are imposed. Location normalization
can be imposed by requiring that all components of X have a nondegenerate distribution. A
reparametrization of the parameter space to the set

{aeR' iy =1} or {aeR’: |lall=1a0 >0},

where || - || denotes the Euclidean norm and «y; is the first component of a,, ensures scale iden-
tification of the model. The first parametrization is used in Sherman (1993), whereas examples
of the second parametrization are found in Hirdle, Hall, and Ichimura (1993) and Hristache,
Juditsky, and Spokoiny (2001), among others. Note that in the special case of the current status
linear regression model, the first component of the covariate vector corresponds to the censor-
ing variable T with a coefficient equal to 1, and therefore, the current status regression model is
identified without further restrictions on the parameter space.

1.2 | Efficient information

The log likelihood for the model of one observation is given by

def
Caw®,9) = log { fax (v - w(@’®) fx®)}
where f, x is the conditional density of € given X = x and f is the density of X.
The partial derivative w.r.t. a of £, is given by
xy' (@' x)f]y (v - wiax)
fex (v —w(a’x)

Let {y, : n € (=1,1)} be a path in the collection {y :  is increasing}, differentiable w.r.t. n at
n = 0, and suppose

0
Efa,u/(x, y) =

v, =y forn =0

and
90| =aw
on ! n=0 .
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Then

a@x)f! (y—w(a"x))
if,,,%(x, ») = X

on =0 feax (y —w(alx)
To obtain the efficient score function, we must solve

. l {Xw'(aTX)f;,X (Y - p(@’X))

fex Y —y(a™X))

@@ X)f!y (Y - y(@’X)) } A" 1y (Y -w@X)] “

fax (Y —y(a™X) feax Y —y(a’X))

for an R-valued function a,, where a,,a € Lg(F)d (see, e.g., Huang, 1996, p. 558, for similar
computations with an R-valued function a.). This amounts to solving in a..

{Xy'(@X) - a.@’X)} £l (Y - w(a"X))"

Xyl =o.
Fox(Y — (@l X)) X

The efficient variance for « in the single-index model is derived in Newey and Stoker (1993),
Delecroix, Hirdle, and Hristache (2003), and Kuchibhotla and Patra (2017), among others. For
the general case, we get that the efficient score function is given by

_ T E{2X)X|aTX = aT
oyt o Bl |
o2(x) E{c2X)|a’X = a’x}

L;a,y/(x’ y) = 4

where 62(-) = E(¢%|X = -). We illustrate the derivation of this efficient score function in case that
£|X ~ N(0, 6%(X)). We can write
{(Xy'@"X) - a.@"X)} f1 (Y - w(a’X))’
E €
fax(Y = y(@TX))®

{y-w@x))’
o*(X)

aTX} a(aTX)] )

a(a"X)

=E l{Xy/’(aTX) -a.(a'X)}

_&le {Xy'(@"X) - a.(a"X)}
c2(X)

aTX}

=y'(@"X)E { o (X)X | aTX} — a,(a@"X)E { G_Z(X)| aTX} .

a(aTX)]

Note that

E {Xy'(@"X) — a.(a"X)}
o3(X)

This means that (3) is solved for
E{c2X)X|a’X = u}
E{o2X)a’X =u}

a.(w) = y'(w

We conclude that the efficient score function for the semiparametric single-index model if | X ~
N(0, 62(X)) is indeed given by

yov@n o {x _E{o7X)X|a’X = a’x} } |

Cow(®,y) =
wey) o2(x) E{c72(X)|a’X = a’x}



82 GROENEBOOM AND HENDRICKX
WILEY

Efficiency calculations for the binary choice model are given in Cosslett (1987), and the efficient
score function f%, F, is equal to

Capiy(v.%) = {x ~EX|a"X = a"x)} f(a"x) { F( ;Tx) - _1F( ayTx) } : (5)
where f = F’. For the current status model, the efficient score resembles the efficient score for the
binary choice model except that Y and a”x are replaced by A and ¢ — a”x, respectively (see, e.g.,
Huang & Wellner, 1993 or Murphy, van der Vaart, & Wellner, 1999).

The \/ﬁ—consistent estimators with an asymptotic normal distribution and » times the limiting
variance equal to the inverse of

E (Cay X, Y)lay X, Y)")

are called efficient estimators of a. In the single-index model without the monotonicity con-
straint on v, the efficient estimators of @y, have been constructed in Ichimura (1993) and
Delecroix et al. (2003). Klein and Spady (1993) developed an efficient quasi-maximum likeli-
hood estimator for the binary choice model. An efficient estimate for the current status linear
regression model based on a penalized maximum likelihood procedure is proposed in Murphy
et al. (1999). Inspired by this penalized estimate, an efficient penalized least squares estimate
(PLSE) is constructed for the single-index model with convex link function v, in Kuchibhotla and
Patra (2017).

1.3 | Single-index regression parameter estimators

Several estimators have been proposed in the literature that can be classified into differ-
ent groups based on the estimation algorithm. Most estimators require a nonparametric
estimator for y,. Often, smoothing procedures, such as kernel smoothers or spline func-
tions, are used to avoid discontinuous criterion functions. An example of this type is the
(weighted)-semiparametric least squares estimator (SLSE), which corresponds to minimizing the
sum of squares Z?zl (Y; — wg(agX 1)?, when y, is estimated using a kernel estimator (depend-
ing on some bandwidth h). Hérdle et al. (1993) extended the SLSE by minimizing the sum of
squares over (a, h) simultaneously to obtain optimal smoothing. Instead of estimating vy, by
a kernel smoother, spline smoothing is considered in Yu and Ruppert (2002) and Antoniadis,
Grégoire, and McKeague (2004), among others. The average derivative estimator proposed by
Hristache et al. (2001) results in a direct estimation of the regression parameter a, and, therefore,
avoids solving a hard optimization problem for M-estimators. The idea of the average derivative
method is to estimate the gradient ag y/(;(agx) of the link function using local linear smooth-
ing techniques. A similar approach is considered for the minimum average variance estimator
proposed in Xia and Hérdle (2006). Smoothing techniques are needed to allow for an efficient
estimation of a in the single-index model.

Examples of M-estimators that are not based on an estimate of y, are Manski's maximum
rank estimator (MRE) (Manski, 1975) for the binary choice model, the maximum rank correlation
estimator (MRCE) proposed by Han (1987), and the rank estimators proposed by Cavanagh and
Sherman (1998) for a more general generalized regression model under monotonicity constraints.
The convergence rate for Manski's estimator is in contrast to the other estimators discussed in
this section, somewhat disappointingly n'/? instead of the usual \/ﬁ—rate.
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1.4 | Aim of the paper

In this paper, we discuss the behavior of regression parameter estimators in the monotone
single-index model. All the estimators are obtained using tuning-parameter-free algorithms and
are derived from non-smooth and non-convex criterion functions. In Section 2, we distinguish
between two different classes of estimators.

(a) Estimators with an unknown limiting distribution that depend on the behavior of the piece-
wise constant, monotone least squares estimator (LSE) of the link function.

(b) Estimators with a known limiting distribution that converge at the parametric rate to the true
regression parameters.

Within the first class of estimators, we first discuss the profiled LSE of the regression parameter
in Section 2.1. It is proved in Balabdaoui, Durot, and Jankowski (2016) that the LSE converges
at least at the cube-root n rate, but its limiting distribution is still an open problem. Inspired by
the rank estimator proposed in Aragén and Quiroz (1995) for the current status model, we also
propose a new estimator in this class in Section 2.5.

In Section 2.2, we explain how the \/ﬁ-consistent estimators proposed in Balabdaoui,
Groeneboom, and Hendrickx (2017) for the monotone single-index model can be derived
from a score approach. For the second class of estimators, we also describe the rank estima-
tors proposed by Han (1987) and Cavanagh and Sherman (1998) in Section 2.3 and Section 2.4,
respectively.

The remainder of Section 2 is devoted to the following.

« The asymptotic properties of the estimators. In particular, we describe a general approach in
Section 2.6 for proving the asymptotic normal distribution of the estimators of the second class
(b), and we discuss, in Section 2.7, the difficulties that arise when one wants to derive the
limiting distribution of the estimators of the first class (a).

+ The computation of the estimators.

The quality of the estimators is illustrated via simulations and a real data example in Section 3
and Section 4, respectively. Although smoothing is necessary to obtain efficient estimators
in the single-index model, we want to point out that smoothing should not be the main concern
when interest is in estimating the finite-dimensional regression parameter. A slight loss of effi-
ciency is an acceptable price to pay for a tuning-free parameter procedure that is computationally
more attractive than efficient procedures (since no smoothing parameter selection is needed).
Efficient estimators are moreover often based on smoothness conditions that are stronger than
the conditions needed when smoothing techniques are avoided.

2 | ESTIMATORS OBTAINED WITHOUT SMOOTHING
TECHNIQUES

In this section, we describe different estimators for a, based on a random sample
X1,Y7), ... ,(X,,,Yy,) of size n from (X,Y), where E(Y|X) = Wo(agX) and y, belongs to the
class M of monotone functions on R. To ensure identifiability of the single-index model, we
assume that ay is a vector of regression parameters belonging to the (d — 1)-dimensional sphere
S :={aeR¢: ||a]| =1}.
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To illustrate the criterion functions associated with the different estimators, we consider a
simulated data sample from the model

Y = exp <X1/\/5+X2/\/5> +e,  X1.Xp~Ul[-1,1] and & ~ N(0,1). (6)

For each of the estimators, we include figures for the criterion function as a function of 6, where
0 is defined by (a3, @2) = (cos(#), sin(#)). In model (6), the true parameter value is 8y = = /4.

2.1 | The least squares estimator
Consider the sum of squared errors

n

Sutey) = 2 3 (Vi - w (X)), )

i=1

which can be computed for any pair (a, ) € Sz_1 X M. The LSE (&, ,) is defined by

(@n, ) 1= arg i Sn(a, ). (8)
The LSE can be obtained as follows. For a fixed @ € S;_;, order the values a”Xy, ...,a’X, in
increasing order and arrange Y3, ... , Y, accordingly. As ties are not excluded, let m = m, be the
number of distinct projections among a’X; and Z# < --- < Z2 be the corresponding ordered

values. Fori=1, ... ,m, let

n

n
1’17 = 1{aTX/=Zin} al’ld Y‘ia = Zle{aijzzlfx}/n?.
j=1 j=1

Then, well-known results from the isotonic regression theory imply that the functional y
Sn(e, ) is minimized by the left derivative of the greatest convex minorant of the cumulative sum

diagram
{(0, 0), <Zn7,2nyy;x> =1, ... ,m} : ©)
j=1 j=1

See, for example, theorem 1.1 in Barlow, Bartholomew, Bremner, and Brunk (1972) or
theorem 1.2.1 in Robertson, Wright, and Dykstra (1988). By strict convexity of w — S,(y, a),
the minimizer is unique at the distinct projections. We define the nonparametric least squares
estimator (LSE(y)) e by the monotone function that takes the values of this minimizer at the
distinct projections and is extended to a right-continuous step function outside the set of those
projections. Figure 1 shows a picture of the LSE of {4, for the model described in (6). The LSE
(@p, ¥rn) 1= (@, Wna,) is next obtained by maximizing the map a — Sy(a, ¥yo) over alla € S.

Since the cumulative sum diagram in (9) only changes when the ordering in a’X; changes,
the vector (Yo (@TX1), ..., ¥na(aTX,))T will be the same for all & for which the ranks of the a”X;
are the same. As a consequence, the criterion function @ — S, (a, ) is piecewise constant, and
the LSE (&y, ¥na, ) is not unique.
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FIGURE1 The LSE ¥, q, (black, step-wise) and the true function yy(x) = exp(x) (red, solid) in model (6) for a
sample of sizes (a) n = 100, (b) n = 1000, and (c) n = 10000

2.1.1 | The maximum likelihood estimator for the binary choice model
and the current status linear regression model

Instead of considering the LSE for the binary choice model or the current status model, we con-
sider maximizing the log likelihood of the data. In particular, for the binary choice model, the
MLE (&, F,) is defined by

(@, Fy) 1= arg phax Ly(a,F),

where F is the set of all distribution functions on R and

L.(a,F) := %Z [YilogF (a’X;) + (1 - Y)log {1-F (a"X;)}]. (10)

i=1

Using profiled log likelihood, we first obtain the minimizer of the map F — L,(a,F) over F,
which is, in fact, the same function as the minimizer of S,,(«, F). For the current status model, we
replace Y; and a”X; in the expression for L, given in (10) by A; and T; — «”X; and maximize over
R x F instead of S x F due to the identifiability of the current status regression model.

Note that in a homoscedastic model with normal error terms, the MLE for the single-index
model (1) is equivalent to the LSE. The asymptotic properties of the LSE in (8) for the monotone
single-index model and the MLE in (10) for the binary choice model and the current status model
are discussed in Balabdaoui et al. (2016), Cosslett (1983), and Murphy et al. (1999), respectively.
All estimators converge at rate n'/3, but their limiting distribution is still an open problem.

2.2 | The simple score estimator

Balabdaoui et al. (2017) developed a Z-estimator based on the derivative of the sum of
squares Sy(a, ¥ne), ignoring the non-differentiability of the LSE ., . They first consider a local
parametrization S mapping a subset of R4~! to the sphere S. Examples of such parametrizations
are the map

T
BisBos ov s Pat) (\/1 — == BB ...,ﬂd>

or the spherical coordinate system

(b1, P2, ..., Ba—1) = (cos(fr), sin(By) cos(f), sin(py) sin(f) cos(fa), ...,
sin(f,): - - sin(fg—2) cos(Ba—1), sin(fy)- - - sin(Bg—2) sin(fg—1))".
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The simple score estimator (SSE) is next obtained by a zero-crossing (in ) of
n
1 N
Zn(B) := - D TsBN X {Yi — e (a"Xi)} an
i=1

where a = S(B) and Jg € R¥4-1 is the matrix of the partial derivatives of S : R4 S :
S(B) = a. Since the LSE §,,, is the same for different a values, the score criterion (11) will have
discontinuities and an exact root of (11) does not always exist. The estimator is therefore defined
by &, = S(B,,), where B, is a point in R4! such that each component of Z, crosses through zero
at ..

The SSE is, in fact, a generalization of the related estimator for the current status linear regres-
sion model proposed in Groeneboom and Hendrickx (2017) and defined by a zero-crossing of

Zl(a) := —ZX {Ai = Foo (T - a7X5) ), (12)

where F,, is the MLE for F, when a is flxed.

2.3 | The maximum rank correlation estimator

Han's MRCE is motivated by the fact that Y; > Y; is more likely than Y; < Y; when a!X; > alX;
if y is increasing. The MRCE is defined by the maximizer of
Hy(a) = —Z{Y>Y}{aX>aX} (13)
nn—1) £
In contrast to the LSE and the SSE, estimation of the unknown link function y, is not considered
with the MRCE.

2.4 | The maximum rank estimator

Inspired by the MRCE, Cavanagh and Sherman (1998) developed a new class of rank estimators
defined by the maximizer of

Ro(a) := ZM(Y){a X >a'X;}, (14)
( l#}

where M denotes an increasing function on R. In this paper, we investigate the behavior of the
estimator when M is equal to the identity function, that is, M(y)-y, and refer to this estimator as
the MRE. Since the responses in the binary choice model and the current status model are binary,
it can be shown (see Appendix, Section A.1) that the MRCE and the MRE are equivalent in these
models. The behavior of the map @ — H,(a) and the map a — R,(a) are similar, and we do not
include pictures for the latter mapping.

2.5 | The maximum rank estimator using the least squares estimator
of y,
Aragén and Quiroz (1995) proposed two regression parameter estimators for the current status

linear regression model based on the ranks of the observations T; — a”X;. The first estimator
coincides with the MRE. The second estimator is defined by the maximizer of

Zﬁna (Ti - aTXi) {Ti - aTXl- > Tj - aTXj} )
i#j
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TABLE 1 Asymptotic variance. Monotone single-index model

Method z
SSE E [{Y - wo@iX)} {X - EXlafX)} {X - EX|a] X0} ]
MRCE E [{ZFO(Y —p(@’X)) -1} {X - EX|alX)} {X - E(X|agX)}Tgo(agX)2]
MRE E [{Y —yp(@™X)} {X - EX|alX)} {X - E(X|agX)}Tg0(agX)2]
v
SSE E [y/(;(agX) (X - ExXlalX)} {X - E(X|a§X)}T]
MRCE E [ZW(;(agX) fo¥ —wo(a™X)) {X - EX|alX)} {X - E(X|agX)}TgO(agX)]
MRE E [w(;(agX) (X - EXlalX)} {X - E(X|agX)}Tg0(agX)]

Note. SSE = simple score estimator; MRCE = maximum rank correlation estimator; MRE = maximum
rank estimator.

where F,, is the MLE (see (10)) for fixed . This motivates us to investigate the behavior of
the estimator for the monotone single-index model, referred to as the LS-MRE, defined by the

maximizer of
1 N
Ap(a) 1= ——— Z Ve (X)) {a"X; > a" X}, (15)
nn-1) oy

where .o is the LSE for fixed a. To the best of our knowledge, this estimator has not been studied
before and the asymptotic limiting distribution is still unknown. Since the LS-MRE is similar
to the LSE, an M-estimator that involves the nonparametric LSE for v, it can be expected that
similar theoretical issues appear when deriving the limiting behavior for both estimators.

2.6 | Asymptotic behavior

It has been shown in Balabdaoui et al. (2017) for the SSE, in Sherman (1993) for the MRCE, and
in Cavanagh and Sherman (1998) for the MRE that these estimators are \/ﬁ-consistent and have
an asymptotic normal distribution with an asymptotic variance that is larger than the efficient
variance. As pointed out in a footnote on p. 361 of Cavanagh and Sherman, the expression for the
asymptotic variance of the MRCE given in theorem 4 is only correct up to a factor 4. Unfortunately,
the same mistake for the MRE was made in the expression for the asymptotic variance of the MRE
given in theorem 2 of Cavanagh and Sherman.
Although no proof for the MRCE and the MRE has been published, we can prove that

V@, — ag)=aN@©O,VE, V), (16)

where V™ is the Moore-Penrose inverse of V; a sketch of the proof of (16) is given in the Appendix,
Section A.2. The reason that we have to consider generalized inverses is that the normal limiting
distributions are concentrated on the (d — 1)-dimensional subspace, orthogonal to a, and there-
fore degenerate. This is also clear from its covariance matrix V-XV~, which is a matrix of rank
d—1. The expressions for Vand X are summarized in Table 1 for the monotone single-index model
and in Table 2 for the current status linear regression model.

The limiting distributions of the LSE and the LS-MRE are still unknown. Figures 2 and 3
show a more irregular behavior of the criterion functions for the LSE and the LS-MRE compared
to the smoother criterion functions for the SSE and the MRCE, shown in Figures 4 and 5.
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TABLE 2 Asymptotic variance. Current status linear regression model

Method z

SSE E [FO(T —alX){1 - Fy(T - alX)} {X - EX|T - a!X)} {X - EX|T - agX)}T]

MR(OE E [FO(T —alX)(1 - Fy(T — aIX)} {X - EX|T - aIX)} {X - EX|T - aZX)} " go(T - agX)Z]
v

SSE E [ /(T - afX) {X - EXlaj30} {X - E&la]x)} |

MR(C)E E [fO(T —alX) {X - EX|alX)} {X - EX|alX)} go(T - agX)]

Note. SSE = simple score estimator; MRCE = maximum rank correlation estimator; MRE = maximum rank estimator.

0.8822 0.9529 1.0130
0.8719 4 0.9440 1 1.0069
0.8616 0.9350 1.0007
™
0.8513 : : : : : : : 0.9261 : i i i i i i i 0.9945 i i i i "“ i i i
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
6 0 0

(a) (b) ()

FIGURE 2 The map 0 — S,((cos(8), sin(8))”, ¥, o) (black, solid) in model (6) for a sample of sizes (a) n = 100,
(b) n = 1000, and (c) n = 10000. The vertical reference lines indicate the position of the minimizer (black, dotted)
and the true parameter value 6, = r /4 (red, dotted)

0.8301 0.7861 0.7688 ¥
V'NM’N/ %
0.8274 - 0.7841 0.7675
0.8248 0.7821 0.7661
0.8221 + : : : : : : : : 07801 ' : : : : : : : 07648 : : : : : : :
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0 0 0

(a) (b) ()

FIGURE 3 The map 0 — A,((cos(),sin (8)T)) (black, solid) in model (6) for a sample of sizes (a) n = 100,
(b) n = 1000, and (c) n = 10000. The vertical reference lines indicate the position of the maximizer (black, dotted)
and the true parameter value 6, = r /4 (red, dotted)

2.7 | Difficulties with the LSE and the LS-MRE

Deriving the limiting distributions for the LSE and the LS-MRE is challenging. One of the difficul-
ties arises from the non-differentiability of the LSE ;4 for y appearing in the criterion functions
S, and A,,. This is, for example, not the case with the efficient SLSE proposed in Ichimura (1993),
where the criterion function is given by S,, defined in (7) but with y,, replaced by a kernel estimate
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FIGURE 4 The map 6 +— Z,((cos(8), sin (9)T)) (black, solid) in model (6) for a sample of sizes (a) n = 100,
(b) n = 1000, and (c) n = 10000. The vertical reference lines indicate the position of the zero-crossing (black,
dotted) and the true parameter value 6, = z /4 (red, dotted)

0.3324 0.3379 + /,\\ 0.3393 A
0.3299 - 0.3366 - 0.3386
0.3274 - 0.3353 - 0.3379 -
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FIGURE 5 The map 6 — H,((cos(#),sin (8)T)) (black, solid) in model (6) for a sample of sizes (a) n = 100,
(b) n = 1000, and (c) n = 10000. The vertical reference lines indicate the position of the maximizer (black, dotted)
and the true parameter value 6, = 7 /4 (red, dotted)

that is two times continuously differentiable with respect to a. By considering a Z-estimator
instead of an M-estimator, this non-differentiability is somehow circumvented with the SSE.

As discussed in Groeneboom and Hendrickx (2017), the “canonical” approach to proofs that
argmax or argmin estimates of a are \/ﬁ-consistent has been provided by Sherman (1993) for
the models, considered in his paper. His theorem 1 says that ||&, — ao|| = O,(n"/2), where || - ||
denotes the Euclidean norm, if &, is the maximizer of a criterion function I',(a), with population
equivalent I'(a) and

(a) there exists a neighborhood N of ay and a constant k > 0 such that
[(e) — T(ap) < —klla — aoll?,

for ¢ € N, and
(b) uniformly over 0,(1) neighborhoods of ay,

[a(@) = Ta(@o) = (@) = T(@o) + O, (lla = oll/ v/ ) +0, (Il = o) + Op(n ™).
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Moreover, assuming a, = 0 and I'(p) = 0, he continues by making the assumption that

T (a) = —%aTVa +n2aTW, + 0,(n7Y),

where V is a positive definite matrix and W, converges in distribution to a normal distribution.
Under these circumstances, \/ﬁan also converges to a normal distribution.

If we try to apply this to our situation, we first have to deal with the fact that we have to use a
parametrization of the type introduced in Section 2.2 in order to consider full neighborhoods of
B, and nondegenerate matrices in R¢"! in the single-index model. But then, for the profile LSE
estimator f3,,, it is not clear that an expansion as given in Sherman (1993) will hold. We seem to get
inevitably an extra term of order Op(n‘Z/ 3)in (b) (with a, and a, replaced by g, and B,), which
does not fit into this framework.

On the other hand, in the expansion of our score function (11), we get that this function is in
first order the sum of a term of the form

&' (Bo)(B — Bo).

where ¢’ is the matrix, representing the total derivative of the population equivalent score
function, and a term W, of order Op(n~"/2), which gives

B.—Bo~—¢'(Bo) "' W, = 0,(n/?),

and, here, extra terms of order O,(n~%3) do not hurt.

Liand Zhang (1998), in their paper on smooth U-statistics estimators for the regression param-
eter in the current status linear regression model, conjecture in their remark 2.4 that the profile
MLE (which is similar to the LSE) will be ﬁ-convergent, but not efficient. We could not follow
their argument for this conjecture. Aragén and Quiroz (1995) have a similar conjecture for their
second estimate, based on the nonparametric MLE, but again, the argument for this conjecture
in their comment (i) in section 4 is not at all convincing. In fact, our simulations show that the
simple argmin or argmax estimates seem to be always inferior to the simple score estimates, and
the pictures of the argmin-type estimates as a function of the parameter show that the behavior
is a lot more irregular than the behavior of the score estimates. Hence, even if the argmin-type or
argmax-type estimators would be \/ﬁ—convergent, the score estimators have a better behavior.

2.8 | Computation

None of the discontinuous criterion functions in Sections 2.1-2.5 are convex. This makes the
computation of the estimators difficult. Standard optimization methods for convex loss functions
cannot be used. The discreteness of the criterion functions moreover excludes methods that take
derivative information into account since this derivative is often not defined.

For the computation of the M-estimators (LSE, MRCE, MRE, and LS-MRE), we wrote C++
programs, using the pattern search algorithm proposed by Hooke and Jeeves (1961). The latter
optimization method searches for the minimum of a loss function without requiring a gradient.
Based on an initial starting value, 2d local searches of a certain step size are made in each direction
to see if a lower loss function is obtained. The first move is made in the direction of the previous
move. If no function decrease is found, the step size is reduced. The procedure is iterated until a
convergence criterion is satisfied. The convergence of this pattern search algorithm is discussed
in Torczon (1997). The root of the set of d — 1 score functions in Section 2.2 coincides with the
minimizer of the sum of squared component score functions so that this minimization approach
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can also be used to obtain the SSE. We recognize the importance of good starting values and
improvements of the current approach are worth studying in future computational research.

3 | SIMULATIONS

To evaluate the finite sample behavior of the different estimators introduced in Section 2, we
simulate N = 5000 data sets from the model

Y=y (agX) +¢, 7)

where yy(X) = x + X3, ag; = 1/\/5, i=1,2,3,and € ~ N(0, 1), independent of X. We consider two
different distributions for the covariate vector X, X; b U[0,1] and X; psi N(,1)fori=1,2,3.

Tables 3 and 4 show the mean and n times the covariance matrix of the estimates for sam-
ple sizes n = 100, 500, 1000, 5000, and 100000 for the uniform, respectively normal, simulation
setting. For the SSE, the MRCE, and the MRE, we calculated the asymptotic variances given in
Table 1 to which n times the covariance matrix should converge. We however note that only the
uniform model satisfies the assumptions needed to prove (16). The last column in Tables 3 and
4 contains the distance between n times the covariance matrix of the estimates and the matrix
V~-XV- obtained by summing up the squared distance of the corresponding matrix elements. The
results for n times the variance of the estimates of a3 are visualized in Figure 6.

For both simulation settings, the results show the convergence of n times the covariance
matrix towards the asymptotic values for the SSE, MRCE, and MRE. The convergence rate is faster
for the SSE than for the MRCE and the MRE. The asymptotic values are smallest for the SSE in
these models, with only a small difference for the uniform setting but a larger difference in the
normal setting where the asymptotic values of the MRCE and the MRE are substantially larger
than the ones for the SSE.

For the LS-MRE, n times the covariance matrices increase with increasing sample size, sug-
gesting a slower convergence rate than the parametric \/ﬁ-rate for this estimator. Table 3 also
shows a similar increase for the LSE in the uniform model, whereas a decrease of n times the
covariance matrix for the LSE is shown in Table 4 for the normal setting. The LSE even performs
better than the MRCE and the MRE in the latter simulation model.

Finally, we also compared the estimates in the uniform model with the PLSE proposed by
Kuchibhotla and Patra (2017) and the EFM estimate proposed by Cui, Hirdle, and Zhu (2011).
The function simestgcv available in the R-packages simest was used to obtain the PLSE.

The algorithm described on p. 1670 of Cui et al. (2011) was implemented by us in a C++
program, with a fixed tuning parameter M for the EDF approach. The computation time is consid-
erably longer than the time required for the methods discussed in Section 2 (this observation also
holds for the PLSE estimate proposed in Kuchibhotla & Patra, 2017). Moreover, the fixed-point
algorithm, used in the second step of the algorithm of Cui et al. (2011), has an oscillating behav-
ior and will certainly not converge in any monotone way; one has to wait whether it will enter
at a certain point of the iterations into a sufficiently small ball around a fixed point. The version
of the algorithm, kindly sent to us by Dr. Cui, depends crucially on the R algorithm smooth.1f
in the R package locfit, and it is not so easy to see how the first step of the algorithm is han-
dled by this package. We used our own C++ implementation of the algorithm, but noticed that
the R implementation had a similar behavior. The R implementation of Cui et al. (2011) also uses
a fixed tuning parameter M for the EDF approach. In both implementations, one has to discard
non-converging runs.
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FIGURE 6 n times the variance of a5 as a function of the sample size n for the simulation model (a) with

X; ~ U[0,1] and (b) with X; ~ N(0, 1) for the LSE (solid, black, o), SSE (dashed, red, o), MRCE (dotted, green, +),
MRE (dashed-dotted, blue, x), LS-MRE (long-dashed, pink, <), EDF (two-dashed, light blue, v), and PLSE (solid,
orange, (). The point at co represents the asymptotic values

Therefore, we do not report results for the sample size n = 10000 and simulated only N = 2500
data sets for the PLSE with n = 5000. Boxplots of 213.:0 (@; — ap;)*/3, shown in Figure 7, illus-
trate that the PLSE and EFM estimates perform better than the SSE, MRCE, and MRE for smaller
sample sizes. As the sample size increases, the results for the efficient but computational inten-
sive methods are no longer superior, and the best performance is obtained with the SSE. The
results for the PLSE and EDF estimates depend furthermore on smoothing parameters that need
to be selected carefully. Figure 6 clearly shows that n times the variance increases for the PLSE
with increasing sample size, in contrast to the efficient convergence rate. This illustrates again
that, in practice, methods involving smoothing techniques are not necessarily a better choice than
\/ﬁ-consistent parameter-free methods, especially for larger sample sizes where the computation
cost is enormous.

We conclude that it is worthwhile to consider parameter-free methods for estimation in the
monotone single-index model. The additional complexity (due to the smoothing parameter) does
not necessarily result in better performances for efficient estimates. The increased computation
time is only worthwhile when the sample size is small. The SSE is preferred for larger samples
and moreover achieves better performances than the rank estimators (MRCE and MRE). The
experiments in the normal model were in favor of the parametric \/ﬁ-rate for the LSE, whereas the
uniform trials suggested a slower convergence rate. Even if the LSE leads atall to an \/ﬁ-consistent
estimate, its performance remains inferior to the score procedure in Section 2.2. Nevertheless, it
remains an interesting topic to understand the behavior of the LSE in the monotone single-index
model.

4 | REAL DATA EXAMPLE

In this section, we apply the estimation techniques to the ozone data (Chambers, Cleveland,
Kleiner, & Tukey, 1983). The data set contains observations on the ozone concentration for
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FIGURE 7 Boxplots of Z?:o (@; — ap;)?/3 for the model with X; ~ U[0, 1] for sample sizes (a) n = 100,

(b) n = 500, (c) n = 1000, and (d) n = 5000. Red boxes correspond to \/Z-consistent but ineffcient methods
(SSE, MRCE, and MRE), blue boxes correspond to ﬁ-consistent and efficient methods (EDF and PLSE), and
green boxes correspond to methods with an unknown limiting distribution (LSE and LS-MRE)

153 consecutive days between May 1, 1973 and September 30, 1973. We study the relationship
between the ozone concentration (Y, ppb) and the meteorological variables, namely, solar radia-
tion (R, Ly), temperature (T, °F), and wind speed (W, mph), in a subset of the data consisting of
111 complete observations.

Yu and Ruppert (2002) compared linear, semiparametric, and fully nonparametric fits for the
ozone data and concluded that better results were obtained with a single-index model. The data set
became a benchmark in the study of single-index models (Alquier & Biau, 2013; Antoniadis et al.,
2004; Karabatsos, 2009; and Wang, 2009, among others), and the results, previously presented in
the statistical literature, suggest that a monotone fit for the underlying link function is plausible
for the ozone data.

For our data analysis, we have scaled the covariates to have mean 0 and variance 1. Table 5
summarizes the results of the regression parameters for the LSE, SSE, MRCE, MRE, and LS-MRE.
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TABLE 5 Ozone data

Method R T W

LSE 0.261650 0.673180 —0.691641
SSE 0.288573 0.857762 —0.425406
MRCE 0.371694 0.833361 —0.409088
MRE 0.380572 0.835861 —0.395603

LS-MRE 0.269241 0.828638 —0.490783

Note. LSE = least squares estimator; SSE = simple
score estimator; MRCE = maximum rank correlation
estimator; MRE = maximum rank estimator.
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FIGURE S8 Ozone data. Scatterplot (&~ x;, y;) and Wna, (red, step function) for (a) LSE, (b) SSE, and (c) LS-MRE

The estimate 4, of y,, together with a scatterplot of (@lx;, ), is given in Figure 8 for
the LSE, SSE, and LS-MRE. We see that the estimates described in this paper result in similar
estimated relationships between the ozone concentration and the meteorological variables.
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APPENDIX

A.l | Equivalence MRCE and MRE for the binary choice model and
the current status regression model

In this section, we show that the maximizers of H, and R, coincide for the current status linear
regression model. A similar derivation holds for the binary choice model.
Consider the MRE for the current status model maximizing

Ry () = 2 A; {Tl - aTXiﬂ > Tj - (ITXj} .
i#j
This rank estimator is equivalent to Han's MRCE, given by the maximizer of
Hy(o) = Y (A > A} {Ti - a"X,p > T; - a'X; }
i#j
=Y A0 -A){Ti-a'Xip>T; - a'X,}.
i#]

This can be seen as follows. Suppose that the observations are ordered in the T; — a”X;, that is,
T1 — (XTX1 < Tz — (ZTXZ <. <L Tn — aTXn. Then,

1
Hy(at) = ZAi(l—Aj): ZAi—ZAiAJ = ZAi— EZAiAj
j<i j<i j<i j<i J#i
1
= Ru(o) = - Z AA;.
J#

Since the second term in the expression above is independent of the ordering in T; — a’X;, the
maximizers of R,(a) and Hy(a) coincide and both estimators are equivalent.
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A.2 | Asymptotic distribution of the MRCE and the MRE
In this section, we show that the asymptotic normal distribution for the MRCE is given by
V(@ - @) =aNa(0, VI, V),

where V and X are defined in Table 1 and where V'~ denotes the Moore-Penrose inverse of matrix
V. A similar argument can be used to derive the asymptotic distribution of the MRE in terms
of Moore-Penrose inverses. The asymptotic normality for the MRCE and the MRE is derived in
Sherman (1993) and Cavanagh and Sherman (1998), where the authors restrict the parameter
space to a compact subset of {a@ € R¢ : ay = 1}. Each a is represented as (6, 1), and only d — 1
instead of d components are considered in the proofs of \/ﬁ-consistency and asymptotic normal-
ity. Using the parametrization {& € R : ||a|| = 1} instead and considering a transformation
S:BcR¥! s {a@ € RY: ||| = 1} as in Balabdaoui et al. (2017), it follows, by similar
arguments as in Sherman, that for the MRCE, we have

0 < Ha() — Ha(Bo) = 5B = Bo)"E (V2r((X. V), )} (B - o) + %(ﬁ — )W,
n

+ 0y (”ﬁ - ﬁO”z) + Op(l/l’l),
where
o(x,),8) =E ({y>Y}{SB)"x > SB)'X}) + E ({Y > y} {S(B)'X > S(B)"x})

and

n
1
W, 1= — Y Vi (Xi, Y, By)
ni=1
converges in distribution to a normal Ny_;(0, W) random vector. Here, V; represents the first
partial derivative operator with respect to . Let A denote E(V,7(X, Y), ). If A is negative definite,
then it follows, by theorem 2 in Sherman, that

VB, = Bo)—iNa-1(0,A7'WA™).
Using an application of the delta method, we conclude that
V(& — ao)—qNy (0, [ViS(BIIAT' WA [V1S(BI") = (0,V'EV7),

where V and X are given in Table 1 and where the last equality follows analogously to the proof
of asymptotic normality given in Balabdaoui et al. (2017).
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