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ABSTRACT
Contextual information is a prerequisite for timely offering of per-
sonalized decision support and recommendation. Yet, research on
context-aware recommender systems (CARS) does not appear to be
thriving, and finding public datasets containing context factors is a
challenging task. We can make various assumptions about why this
drop in research interest happened – be it ethical considerations or
the popularity of opaque deep learning models that merely consider
context in an implicit way. This is an unwelcome development. We
argue that continued effort must be put on the creation of suitable
datasets. Furthermore, we see significant opportunities in the de-
velopment of next-generation CARS in the space of interactive AI
assistants powered by Large Language Models.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 SITUATION
Context-aware recommender systems (CARS) were put on the re-
search agenda in the early 2000s [1], and refer to decision support
systems that offer automated recommendations to users based on
contextual information [2]. In this setting, contextual information
refers to observational data such as time, geographical location,
sentiment, and presence or absence of others – variables that play
an important role in human decision making and preference for-
mation. In case of CARS, contextual attributes are typically used
to vary recommendations over a larger user set, based on the pref-
erences of the individual (for reviews, see [11, 13, 16]). CARS can
handle state-of-the-art personalization techniques like the ubiquity
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paradigm, in which contextual information is used to proactively
recommend to the user items that may not yet be “top of mind”.
Precisely this aspect of context adaptation renders CARS particu-
larly suited for the offering of highly targeted – i.e., personalized –
forms of decision support [21].

The research community seems to address CARS less often in
works presented at conferences such as the ACM Recommender
Systems (RecSys) and User Modeling, Adaptation and Personal-
ization (UMAP). As already recognized in [12], a lack of publicly
available datasets on context features for recommendation seri-
ously hampers research progress in the community. Ilarri et al. [8]
identified only six (relatively small) datasets with potential useful-
ness for CARS. This may be partly due to ethical considerations.
For instance, proactive recommendations based on data harvested
from the user’s personal space tend to be pervasive – with users’
recommendation engagement depending on information privacy
concerns [17]. Overly intrusive recommendations may cause users
to opt out of data collection, and yield datasets that suffer frommiss-
ing and/or sparse context variables [8]. In addition, context-aware
recommendations that exploit personal and intimate data – such as
with whom a user watches a movie or goes out for dinner – can
be potentially harmful and be easily at odds with legal frameworks
for data management such as the European Union’s General Data
Protection Regulation (GDPR) [19].

A second possible explanation for the seeming decline in research
interest in CARS may be the growing reliance on deep learning
models. Such models efficiently take on unstructured, multimodal
and multilevel panel data. In contrast to traditional ML models,
where ML engineers select features such as variables representing
context explicitly, DL models decide on features implicitly as part of
the learning process. Thus, they capture user preferences from large
amounts of data points without the need to tap explicit contextual
attributes [22]. Powerful as these machine learning tools may be,
they predict and recommend at the expense of contextual factors. It
has been argued elsewhere that deep learning models yield results
that are less applicable to opportunities and challenges existing in
the real world [10, 11]. Ignoring context may be equalled to missing
out on the larger sociotechnical system in which recommendations
are provided.

2 OPINION
We recognize that the research community nowadays often implic-
itly accounts for contextual aspects – cf. session-based or intent-
aware recommender systems. In [18], for instance, a diversity-based
algorithm taps the user’s weak (implicit) rather than strong (ex-
plicit) preferences. In this approach, the recommender system is
aware of the user’s intent in a given context, andmakes adjustments
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accordingly. Our position, however, is that such implicit approaches
do not suffice to keep CARS research alive. What is needed is a bold
focus on explicit context representation.

Public sharing of datasets with context features for recommen-
dation would be a step in the right direction. Data sharing is an
important step to overcome the reproducibility crisis in science
[3], and this point is also recognized in the recommender systems
community [5, 7]. Researchers should not only ask permission from
ethics boards and participants to run the study itself (informed
consent), but also explicitly obtain permission to share those data
with the research community on later occasions.

People may have explicit or implicit attitudes towards, for in-
stance, a product or brand, and still be willing to change their point
of view depending on the context [14, 15]. Thus, the challenge
to accurately extract context information from users comes first.
Therefore, we call for a reappraisal of conversational recommender
systems [9]. Traditionally, these systems explicitly asked users to
share contextual aspects relevant for a specific domain. Human
preferences and interests (i.e., attitudes) are not necessarily fixed
and consistent. In the era of generative LLMs (Large Language
Models), a new generation of users is – again – growing accus-
tomed to explicitly communicating their context with the system,
as illustrated in this hypothetical request: I am planning to go for
dinner with my friends [social context] after attending the Mets [lo-
cation/situation context] game on Sunday [temporal context]. Any
recommendations?”

Already in the early days, conversational and knowledge-based
recommender systems explicitly asked users about their needs and
requirements, thus clarified on the context and intent of users as in
[4, 6, 20]. Such an explicit context representation rendered trans-
parently to users why one option was recommended over another.
The lack of dynamism and high ramp-up costs of these early sys-
tems can nowadays be overcome with generative LLM technology.
Therefore, envisioning interactive AI assistants capable of natu-
ral language interaction in the tradition of these conversational
and knowledge-driven recommender systems is in our view the
research opportunity for a next generation of CARS.
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