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Abstract
Quantum circuits constructed from Josephson junctions and superconducting electronics are key to
many quantumcomputing and quantumoptics applications. Designing these circuits involves
calculating theHamiltonian describing their quantumbehavior.Here we presentQuCAT, or
‘QuantumCircuit Analyzer Tool’, an open-source framework to help in this task. This open-source
Python library features an intuitive graphical or programmatical interface to create circuits, the ability
to compute theirHamiltonian, and a set of complimentary functionalities such as calculating
dissipation rates or visualizing current flow in the circuit.

1. Introduction

Quantumcircuits, constructed from superconducting electronics and involving one ormore Josephson
junctions, have steadily gained prominence in experimental and theoretical physics over the past twenty years.
Foremost, they are one of themost successful platforms in the quest to build a quantum computer (Devoret and
Schoelkopf 2013). The control that can be gained over their quantum state, and the flexibility in their design have
alsomade these circuits an excellent test-bed to probe fundamental quantum effects (Gu et al 2017). They can
also be coupled to other systems, such as atoms, spins, acoustic vibrations ormechanical oscillators, acting as a
tool tomeasure andmanipulate these systems at a quantum level (Xiang et al 2013).

Any applicationmentioned above generally translates to a desiredHamiltonian, which governs the physics
of the circuit. The task of the quantum circuit designer is to determinewhich circuit components to use, how to
inter-connect them, and calculate the correspondingHamiltonian (Nigg et al 2012, Vool andDevoret 2017).
Performing this task analytically can be time consuming or even challenging.

Here we presentQuCAT,which stands for ‘QuantumCircuit Analyzer Tool’, an open-source Python
framework to help in analyzing and understanding quantum circuits.We provide an easy interface to create and
visualize circuits, either programmatically or through a graphical user interface (GUI). AHamiltonian can then
be generated for further analysis inQuTiP (Johansson et al 2012, 2013). The current version ofQuCAT supports
quantization in the basis of normalmodes of the linear circuit (Nigg et al 2012), making it suited for the analysis
of weakly anharmonic circuits with small losses. The properties of thesemodes: their frequency, dissipation
rates, anharmonicity and cross-Kerr couplings can be directly calculated. The user can also visualize the current
flows in the circuit associatedwith each normalmode. The library covers lumped element circuits featuring an
arbitrary number of Josephson junctions, inductors, capacitors and resistors. Through equivalent lumped
element circuits, certain distributed elements such aswaveguide resonators can also be analyzed (see
section B.3). The software relies on the symbolicmanipulation of the circuits equations,making it reliable even
for vastly different circuits and parameters. It also results in efficient parameter sweeps, as analytical
manipulations need not be repeated for different circuit parameters. In a few seconds, circuits featuring 10 nodes
(or degrees of freedom), corresponding to between 10 and 30 circuit elements can be simulated.

In themain section of this article, we cover the functionalities of the software.We start by showing how to
create circuits, first using theGUI, then programmatically.We then demonstrate how to generate the
correspondingHamiltonian. Lastly, we showhow to extract the characteristics of the circuitmodes: frequencies,
dissipation, anharmonicity and cross-Kerr coupling and present a tool to visualize thesemodes. Thismain
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sectionwill feature as an example the standard circuit of a transmon qubit coupled to a resonator (Koch et al
2007). In the appendices, wewillfirst useQuCAT to analyze some recent experiments: a tuneable coupler
(Kounalakis et al 2018), amulti-mode ultra-strong coupling circuit (Bosman et al 2017), amicrowave
optomechanics circuit (Ockeloen-Korppi et al 2016) and a Josephson-ring based qubit (Roy et al 2017).We then
provide an overview of the circuit quantizationmethod used and the algorithmicmethodswhich implement it.
The limitations of thesemethods regardingweak anharmonicity and circuit size will then be presented. Finally
wewill explain how to install QuCAT andwe provide a summary of all its functions.More tutorials and
examples are available on theQuCATwebsite https://qucat.org/.

2. Circuit construction

Any use ofQuCATwill start with importing thequcatlibrary

importqucat

One should then create a circuit. These are namedQcircuit, short for ‘quantum circuit’ inQuCAT. There are
twoways of creating aQcircuit: using theGUI, or programmatically.

2.1. Creating a circuit with theGUI
Wefirst cover how to create a circuit with theGUI. This is done through this command

circuit=qucat.GUI(‘netlist.txt’)

which opens theGUI. TheGUIwill appear as a separate window,whichwill block the execution of the rest of the
Python script until thewindow is closed. The user can drag-in and drop capacitors, inductors, resistors or
Josephson junctions, or grounds. These components can then be inter-connectedwithwires. Each changemade
to the circuit will be automatically be saved in the‘netlist.txt’ file. After closing theGUI, theQcircuit
object will be stored in the variable namedcircuitwhichwewill use for further analysis.

2.2. Creating a circuit programmatically
Alternatively, one can create a circuit with only Python code. This is done by creating a list of circuit components
with the functionsJ,L,CandRfor junctions, inductors, capacitors and resistors respectively. For the circuit of
figure 1:

circuit_components=[

qucat.C(0,1,100e-15),# transmon

qucat.J(0,1,’Lj’),

qucat.C(0,2,100e-15),# resonator

qucat.L(0,2,10e-9),

qucat.C(1,2,1e-15),# coupling capacitor

Figure 1.Construction of a circuit: code and output. The circuit used as an example in this section comprises of a transmon qubit on
the left, coupled through a 1 fF capacitor to an LC-oscillator. Dissipation arises from the capacitive coupling of the LC-oscillator to a
50Ω resistor on the right. After importing thequcat package, thecircuit object is createdmanually through a graphical user
interface (GUI) opened after callingqucat.GUI(‘netlist.txt’). All information necessary to construct the circuit is stored
in the textfilenetlist.txt. After closing theGUI, this information is also stored in the variablecircuit. Theshowmethod
finally displays the circuit.
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qucat.C(2,3,0.5e-15),# ext. coupl. cap.

qucat.R(3,0,50)# 50Ohm load

]

All circuit components take as first two argument integers referring to the negative and positive node of the
circuit components. Here 0 corresponds to the ground node for example. The third argument is either afloat
giving the component a value, or a stringwhich labels the component parameter to be specified later. Doing the
latter avoids performing the computationally expensive initialization of theQcircuit objectmultiple times
when sweeping a parameter. By default, junctions are parametrized by their Josephson inductance f=L Ej j0

2

wheref0=ÿ/2e is the reduced flux quantum, andEj (in Joules) is the Josephson energy.
Once the list of components is built, we can create aQcircuitobject via theNetworkfunction

circuit=Network(circuit_components)

aswith a construction via theGUI, theQcircuit object will be stored in the variable namedcircuitwhich
wewill use for further analysis.

3.Generating aHamiltonian

TheHamiltonian of a Josephson circuit is given by
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It is written in the basis of its normalmodes. These have an angular frequencyωm andwewrite the operator
which creates (annihilates) photons in themode ˆ †am (âm). The cosine potential of each Josephson junction jwith
Josephson energyEj has been Taylor expanded to order n for small values of its phase fluctuations ĵj across it.
The phasefluctuations are a function of the annihilation and creation operators of themodes
ˆ ( ˆ ˆ )†j j= å +a aj m m j m mzpf, , . For a detailed derivation of thisHamiltonian, and themethod used to obtain its
parameters, see section B.

There are three different parameters that the user should fix

1. The set ofmodes to include.

2. For each of thesemodes, the number of excitations to consider.

3. The order of the Taylor expansion.

Themoremodes and excitations are included, and the higher Taylor expansion order, themore faithful the
Hamiltonianwill be to physical reality. The resulting increase inHilbert space size will howevermake itmore
computationally expensive to perform further calculations. Typically, larger degrees of anharmonicity require a
largerHilbert space, with a fundamental limitation on themaximumanharmonicity due to the choice of basis.
We expand on these topics in section E.2.

Such aHamiltonian is generated through themethodhamiltonian.More specifically, this function
returns aQuTiP object (Johansson et al 2012, 2013), enabling an easy treatment of theHamiltonian. All QuCAT
functions use units ofHertz, so the function is actually returning Ĥ h.

As an example, we generate aHamiltonian for the circuit offigure 1 at different values of the Josephson
inductance and useQuTiP to diagonalize it and obtain the eigen-frequencies of the system. For a Josephson
inductance of 8 nH this is achieved through the commands

H=circuit.hamiltonian(

modes=[0,1],

excitations=[10,12],

taylor=4,

Lj=8e-9)

E=H.eigenenergies()#Eigenenergies

3
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(here in units of frequency) using the

QuTiP function eigenenergies

Withmodes=[0,1], we are specifying that wewish to consider the first and secondmodes of the circuit.
Modes are numberedwith increasing frequency, so herewe are selecting the two lowest frequencymodes of the
circuit.Withexcitations=[10,12], we specify that formode0 (1)wewish to consider10 (12)
excitations.Withtaylor=4, we are specifying thatwewish to expand the cosine potential to fourth order,
this is the lowest order whichwill give an anharmonic behavior. The unspecified Josephson inductancemust
nowbefixed through a keyword argumentLj=8e-9. Doing so avoids initializing theQcircuit objects
multiple times during parameter sweeps, as initialization is themost computationally expensive task.We
calculate these energies with different values of the Josephson inductance, and thefirst two transition frequencies
are plotted infigure 2, showing the typical avoided crossing seen in a coupled qubit-resonator system.

4.Mode frequencies, dissipation rates, anharmonicities and cross-Kerr couplings

QuCAT can also return the parameters of the (already diagonal)Hamiltonian infirst-order perturbation theory

⎜ ⎟⎛
⎝

⎞
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valid forweak anharmonicity c wA,mn m m. The physics of thisHamiltonian can be understood by
considering that an excitation of one of the circuitmodesmay lead to current traversing a Josephson junction.
This will change the effective inductance of the junction, hence changing its ownmode frequency, as well as the
mode frequencies of all othermodes. This is quantified through the anharmonicity or self-KerrAm and cross-
Kerrχmn respectively.When nomode is excited, vacuum-fluctuations in current through the junction give rise
to shiftedmode energies w c- - å A 2m m n mn .

In a circuit featuring resistors, these anharmonicmodes will be dissipative. Amodemwill lose energy at a
rateκm. If these rates are specified in angular frequencies, the relaxation timeT1,m ofmodem is given by

k=T 1m m1, . A standardmethod to include the loss rates in amathematical description of the circuit is through
the Lindblad equation (Johansson et al 2012), where the losses would be included as collapse operators ˆk am m.

The frequencies, dissipation rates, andKerr parameters can all be obtained viamethods of theQcircuit
object. Thesemethodswill return numerical values, andwe should always specify the values of symbolically
defined circuit parameters as keyword arguments. Lists, orNumpy arrays, can be provided heremaking it easy to
performparameter sweeps. Additionally, initializing the circuit is themost computationally expensive
operation, so this will be by far the fastestmethod to performparameter sweeps.

Wewill assume that wewant to determine the parameters of theHamiltonian(2) for the circuit offigure 1 at
different values of Lj. The values for Lj are stored as aNumpy array

Lj_list=numpy.linspace(11e-9,9e-9,101)

Figure 2.Hamiltonian generation is done by applying thehamiltonianmethod to thecircuit variable defined in figure 1. The
Hamiltonian is expressed in the basis of circuit normalmodesmwith frequencies fm=ωm/2π, annihilation operators âm, and zero-
point phase fluctuations j m jzpf, , across junction jwith Josephson energyEj. The junction nonlinearities are expressed through aTaylor
expansion of the cosine potentials, where the user chooses the degree of Taylor expansion. The other arguments are the list ofmodes
to include, the number of excitations to consider for each of thesemodes, and any unspecified component value, hereLj. The
returnedHamiltonian is aQuTiP object, giving the user access to an extensive set of tools for further analysis (Johansson
et al 2012, 2013). As an example, we compute the eigenenergies of theHamiltonian, and plot the two first transition frequencies, as a
function ofLj.

4
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Wecan assign the frequency, dissipation rates, self-Kerr, and cross-Kerr parameters to the variablesf,k,Aand
chirespectively, by calling

f=circuit.eigenfrequencies(Lj=Lj_list)

k=circuit.loss_rates(Lj=Lj_list)

A=circuit.anharmonicities(Lj=Lj_list)

chi=circuit.kerr(Lj=Lj_list)

or alternatively through a single function call:

f,k,A,chi=circuit.f_k_A_chi(Lj=Lj_list)

All values returned by thesemethods are given inHertz, not in angular frequency.With respect to the
conventional way of writing theHamiltonian, whichwe have also adopted in(2), we thus return the frequencies
asωm/2π, the loss rates asκm/2π and theKerr parameters asAm/h andχmn/h. Note thatf,k,A, are arrays,
where the indexm corresponds tomodem, andmodes are orderedwith increasing frequencies. For example,f
[0]will be an array of length 101, which stores the frequencies of the lowest frequencymode asLj is swept
from11 to 9 nH. The variablechi has an extra dimension, such thatchi[m,n] corresponds to the cross-Kerr
betweenmodesm andn, andchi[m,m] is the self-Kerr ofmodem, which has the same value asA[m]. These
generated values are plotted infigure 3.

We can also print these parameters in a visually pleasingway to get an overview of the circuit characteristics
for a given set of circuit parameters. For a Josephson inductance of 9 nH, this is done through the command

circuit.f_k_A_chi(Lj=10e-9,pretty_print

=True)

whichwill print

mode|freq. |diss.|anha.|

0 |4.99GHz |9.56kHz |10.5kHz|

1 |5.28GHz |94.3Hz |189MHz |

Figure 3.Extracting eigenfrequencies, loss-rates, anharmonicities, and cross-Kerr couplings.We apply thef_k_A_chimethod to
circuit defined infigure 1 to obtain a list of eigenfrequencies (f), loss-rates (k), anharmonicities (A), and cross-Kerr couplings
(chi), for all the normalmodes of the circuit. There is one unspecified variable in the circuit, the Josephson inductance Lj, which is
here specifiedwith a list of values. In (a), we plot the eigenfrequencies of the twofirstmodesf[0] andf[1]. In (b), we plot the loss-
rates of the samemodesk[0] andk[1], and in (c) their anharmonicitiesA[0] andA[1]. In (d), we plot the cross-Kerr coupling
betweenmodes0 and1:chi[0,1].
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Kerrcoefficients

diagonal=Kerr

off-diagonal=cross-Kerr

mode|0|1|

0 |10.5kHz | |

1 |2.82MHz |189MHz|

We see thatmode 1 is significantlymore anharmonic thanmode 0, whereasmode 0 has however a higher
dissipation.Wewould expect thatmode 1 is thus the resonance which has current fluctuationsmostly located in
the junction, whilstmode 0 is located on the other side to the coupling capacitor, where it can couplemore
strongly to the resistor.

Such interpretations can be verified by plotting a visual representation of the normalmodes on top
of the circuit as explained below. This can be done by plotting either the current, voltage, charge or flux
distribution, overlaid on top of the circuit schematic. As shown in figure 4, this is done by adding arrows,
representing one of these quantities at each circuit component and annotating it with the value of that
component. The annotation corresponds to the complex amplitude, or phasor, of a quantity across the
component, if themode was populated with a single photon amplitude coherent state. The absolute
value of this annotation corresponds to the contribution of amode to the zero-point fluctuations of the
given quantity across the component. The direction of the arrows indicates what direction we take for
0 phase for that component.

We note that an independantly developped Julia platform also allows the calculation of normalmode
frequencies and dissipation rates for circuits (Scheer andBlock 2018).

5.Outlook

Wehave presentedQuCAT, a Python library to automatize and speed up the design process and analysis of
superconducting circuits. By facilitating quick tests of different circuit designs, and helping develop an intuition

Figure 4.Visualizing normalmodes. Theshow_normal_modemethod overlays the circuit with arrows representing the voltage
across components when the circuit is populatedwith a single-photon amplitude coherent state. The arrows are annotatedwith the
value of the complex voltage oscillating across a component, where the direction of the arrow indicates the direction of a phase 0 for
that component. The absolute value of this annotation corresponds to the zero-pointfluctuations of the given quantity across the
component. The length and thickness of the arrows scale with themagnitude of the voltage.show_normal_mode takes as argument
any unspecified circuit parameter, here we specifyLj=10e-9where the twomodes undergo an avoided crossing.We plot each
mode by specifyingmode=0 ormode=1 and see that formode0, the anti-symmetricmode, the voltage has opposite signs on each
side of the coupling capacitor, leading to a larger voltage across the coupler (and hence a larger effective capacitance and lower
frequency) than the symmetricmode.
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for the physics of quantum circuits, we also hope thatQuCATwill enable users to develop evenmore innovative
circuits.

Possible extensions of theQuCAT features could include black-box impedance components tomodel
distributed components (Nigg et al 2012), more preciselymodeling lossy circuits (Solgun et al 2014, Solgun and
DiVincenzo 2015), handling static offsets influx or charge throughDC sources, additional elements such as
coupled inductors or superconducting quantum interference devices (SQUIDS) and different quantization
methods, enabling for example quantization in the charge orflux basis. The latter would extendQuCATbeyond
the scope of weakly-anharmonic circuits.

In terms of performance, QuCATwould benefit fromdelegating analytical calculations to amore efficient,
compiled language, with the exciting prospect of simulating large scale circuits (Kelly et al 2019). Note however
that there is a strong limitation on themaximumHilbert space size that one can simulate after extracting the
Hamiltonian.
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AppendixA. Applications

A.1. Designing amicrowavefilter
In this applicationwe show howQuCAT can be used to design classicalmicrowave components.
We study here a band pass filtermade from two LC oscillators with the inductor inline and a capacitive shunt
to ground. Such a filter can be used to stop aDCbias line from inducing losses, whilst being galvanically
connected to a resonator, see for example (Viennot et al 2018). In this case we are interested in the loss rateκ of
a LC resonator connected through this filter to a 50Ω load, which could emulate a typicalmicrowave
transmission line.Wewant to study how κ varies as a function of the inductance L and capacitanceC of its
components.

TheQuCATGUIfunction can be used to open theGUI, the user willmanually create the circuit, and upon
closing theGUI aQcircuit object is stored in the variablefiltered_cavity. By calling themethodshow, we
display the circuit as shown infigure A1(a). These steps are accomplishedwith the code

#Open theGUI andmanually build the

circuit

filtered_cavity=qucat.GUI(‘netlist.txt’)

#Display the circuit

filtered_cavity.show()

Wecan then access the loss rates of the different circuitmodes through themethodloss_rates. Since the
values ofC and Lwere not specified in the construction of the circuit, their values have to be passed as keyword
arguments upon callingloss_rates. For example, the loss rate for a 1 pF capacitor and 100 nH inductor is
obtained through

# Loss rates of all modes

k_all=filtered_cavity.loss_rates(C=1e-12,L=100e-9)

7
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#Resonator loss rate

k=k_all[−1]

Since thefilter capacitance and inductance is large relative to the capacitance and inductance of the resonator,
themodes associatedwith the filter will have amuch lower frequency.We can thus access the loss rate of the
resonator by always selecting the last element of the array of loss rates with the commandk_all[−1]. The
dissipation rates for different values of the capacitance and inductance are plotted infigure A1(b).

A.2. Computing optomechanical coupling
In this application, we show howQuCAT can be used for analyzing another classical system, that of
microwave optomechanics. One common implementation ofmicrowave optomechanics involves a
mechanically compliant capacitor, or drum, embedded in one ormanymicrowave resonators (Teufel
et al 2011). One quantity of interest is the single-photon optomechanical coupling. This quantity is the
change inmode frequencyωm that occurs for a displacement xzpf of the drum (the zero-point fluctuations
in displacement)

( )w
=

¶
¶

g x
x

. A1m
0 zpf

The change inmode frequency as the drumheadmoves w¶ ¶xm is not straightforward to compute
for complicated circuits. One such example is that of (Ockeloen-Korppi et al 2016), where twomicrowave
resonators are coupled to a drum via a network of capacitances as shown in figure A2(a). Here, we
will useQuCAT to calculate the optomechanical coupling of the drums to both resonatormodes of the
circuit.

We start by reproducing the circuit offigure A2(a), excluding the capacitive connections on the far left and
right. This is done via theGUI openedwith thequcat.GUIfunction. Upon closing theGUI, the resulting
Qcircuit is stored in the variableOM, and theshowmethod is used to display the schematic of figure A2(a). These
steps are accomplishedwith the code below

#Open theGUI andmanually build the

circuit

OM=qucat.GUI(‘netlist.txt’)

#Display the circuit

OM.show()

Figure A1.Design of amicrowave filter. (a)Using theQuCATGUI, we build then plot amodel of a filtered cavity. A 50Ω load,
representing a cable, is connected to an LC resonator through two LC band pass filters. (b)The dissipation rate of the resonator is
plotted as a function of inductance and capacitance of thefilter using theloss_ratesmethod.
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Weuse realistic values for the circuit components without trying to be faithful to (Ockeloen-Korppi
et al 2016), the aim of this section is to illustrate amethod to obtain g0. Crucially, themechanically
compliant capacitors have been parametrized by the symbolic variableCd.We can now calculate the
resonance frequencies of the circuit with themethodeigenfrequencies as a function of a keyword
argumentCd.

The next step is to define an expression forCd as a function of themechanical displacement x of the drum
headwith respect to the immobile capacitive plate below it.

defCd(x):

#Radius of the drumhead

radius=10e-6

# Formula for half a circular parallel

plate capacitor

returneps∗pi∗radius∗∗2/x/2

wherepiandepshave been set to the values ofπ and the vacuumpermittivity respectively.We have divided
the usual formula for parallel plate capacitance by 2 since, as shown infigure A2(a), the capacitive plate below the
drumhead is split in two electrodes.We are now ready to compute g0. Following (Teufel et al 2011), we assume
the rest position of the drum to beD=50 nmabove the capacitive plate below. Andwe assume the zero-point
fluctuations in displacement to be xzpf=4 fm.We start by differentiating themode frequencies with respect to
drumdisplacement using a finite differences formula

# drum-capacitor gap

D=50e-9

# difference quotient

h=1e-18

# derivative of eigenfrequencies

G=(OM.eigenfrequencies(Cd=

Cd(D+h))-OM.eigenfrequencies(Cd=

Cd(D)))/h

Figure A2.Example of an optomechanical system. (a) Schematic of the device, adapted from (Ockeloen-Korppi et al 2016) under a
CCBY 3.0 license. Two resonators are connected through a network of capacitances and amechanically compliant capacitor (drum).
(b)QuCAT reconstruction of the circuit. By specifying a label for themechanically compliant capacitances, we have the possibility to
compute the eigenfrequenciesωmwith themethodeigenfrequencies for small variation inCd(x). This enables an easy
computation of the optomechanical coupling wµ xd dm .
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G is an arraywith values 2.3×1016Hz m−1 and 3.6×1016Hz m−1 corresponding to the lowest and higher
frequencymodes respectively.Multiplying these valueswith the zero-point fluctuations

# zero-point fluctuations

x_zpf=4e-15

g_0=G∗x_zpf

yields couplings of 96 and 147 Hz. The lowest frequencymode thus has a 96 Hz coupling to the drum.
If wewant to know towhich part of the circuit (resonator 1 or 2 infigure A2) thismode pertains, we can

visualize it by calling

OM.show_normal_mode(

mode=0,

quantity=‘current’,

Cd=Cd(D))

andwefind that the current ismajoritarily located in the inductor of resonator 1.

A.3. Convergence inmulti-mode cQED
In this sectionwe useQuCAT to study the convergence of parameters in thefirst orderHamiltonian
(equation (2)) of an ultra-strongly coupledmulti-mode circuitQED system.

Using a length of coplanar waveguide terminated with engineered boundary conditions is a common
way of building a high quality factormicrowave resonator. One implementation is a λ/4 resonator
terminated on one end by a large shunt capacitor, acting as a near-perfect short circuit formicrowaves
such that only a small amount of radiationmay enter or leave the resonator. On the other end one places
a small capacitance to ground: an open circuit. The shunt capacitor creates a voltage node, and at the open
end the voltage is free to oscillate. This resonator hosts a number of normalmodes, justifying its lumped
element equivalent circuit: a series of LC oscillators with increasing resonance frequency (Gely et al 2017).
Here, we study such a resonator with a transmon circuit capacitively coupled to the open end. In particular
we consider this coupling to be strong enough for the circuit to be in themulti-mode ultra-strong
coupling regime as studied experimentally in (Bosman et al 2017) and theoretically in (Gely et al 2017).
The particularity of this regime is that the transmon has a considerable coupling tomultiplemodes of the
resonator. It then becomes unclear howmany of thesemodes to consider for a realisticmodeling of the
system. This regime is reached bymaximizing the coupling capacitance of the transmon to the resonator
andminimizing the capacitance of the transmon to ground. The experimental device accomplishing this is
shown in figure A3(a), with its schematic equivalent in figure A3(b), and the lumped-elementmodel in
figure A3(c).

Wewill useQuCAT to track the evolution of different characteristics of the system as the number of
consideredmodesN increases. For this application, programmatically building the circuit ismore appropriate
than using theGUI.We start by defining some constants

# fundamental mode frequency of the

resonator

f0=4.603e9

w0=f0∗2.∗numpy.pi

# characteristic impedance of the resonator

Z0=50

# Josephson energy (inHertz)

Ej=18.15e9

#Coupling capacitance

Cc=40.3e-15

10

New J. Phys. 22 (2020) 013025 MFGely andGASteele



#Capacitance to ground

Cj=5.13e-15

#Capacitance of all resonatormodes

C0=numpy.pi/4/w0/Z0

# Inductance of first resonatormode

L0=4∗Z0/numpy.pi/w0

we can then generate aQcircuit we namemmusc, as an example herewithN=10modes.

# Initialize list of components for

Transmon and coupling capacitor

netlist=[

qucat.J(12,1,Ej,use_E=True),

qucat.C(12,1,Cj),

qucat.C(1,2,Cc)]

#Add 10 oscillators

forminrange(10):

Figure A3.Convergence inmulti-mode cQED. (a)Opticalmicrograph of the device studied in this example, adapted from (Bosman
et al 2017) under a CCBY 4.0 license. Light-blue corresponds to superconductor, dark blue to an insulating substrate. On the left we
see a vacuum-gap transmon: a capacitor plate suspended over the end of a coplanar-waveguide (CPW) resonator shorted to ground
through two Josephson junctions. The scale bar corresponds to 30 μm.On the right a CPWλ/4 resonator, capacitively coupled to the
transmon on one side and shorted to ground through a large shunt capacitor on the other. The scale bar corresponds to 100 μm. (b)
Circuit schematic of the device. TheCPWresonator hosts a number ofmodes, and is equivalent to a series assembly of LC oscillators
shown in (c). This circuit is built programmatically inQuCAT, and the qubit parameters are extracted for different total numbers of
modes. In (d) and (e)we plot the transmonmode frequencyωt/2π and anharmonicityAt/h, where t refers to the transmon-likemode,
using themethodseigenfrequencies andanharmonicities respectively. In (f)weplot the shift defined in (Gely et al 2018)
as the Lamb shift: the shift in transmon frequency (following equation (2)) due solely to the vacuum-fluctuations in the othermodes

cå ¹m t t m
1

2 , , obtainedwith thekerrmethod. These calculations allow the user to gauge howmanymodes are relevant to the physics
of the circuit.
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#Nodes ofmth oscillator

node_minus=2+m

node_plus=(2+m+1)

# Inductance ofmth oscillator

Lm=L0/(2∗m+1)∗∗2

#Add oscillator to netlist

netlist=netlist+[

qucat.L(node_minus,node_plus,Lm),

qucat.C(node_minus,node_plus,C0)]

#CreateQcircuit

mmusc=qucat.Network(netlist)

Note that12 is the index of the ground node.
We can now access some parameters of the system.Only the firstmode of the resonator has a lower

frequency than the transmon. The transmon-likemode is thus indexed asmode1. Its frequency is given by

mmusc.eigenfrequencies()[1]

and the anharmonicity of the transmon, computed from first order perturbation theory (see equation (2))with

mmusc.anharmonicities()[1]

Finally the Lamb shift, or shift in the transmon frequency resulting from the zero-point fluctuations of the
resonatormodes, is given following equation (2) by the sumof half the cross-Kerr couplings between the
transmonmode and the others

lamb_shift=0

K=mmusc.kerr()

forminrange(10):

ifm!=1:

lamb_shift=lamb_shift+K[1][m]/2

These parameters for different total number ofmodes are plotted in figures A3(d)–(f).
From this analysis, wefind that aswe reach 10, the plotted parameters are converging. Surprisingly, adding

even the highestmodes significantlymodifies the total Lamb shift of the Transmon despite large frequency
detunings.

A.4.Modeling a tuneable coupler
In this section, we study the circuit of (Kounalakis et al 2018)where two transmon qubits are coupled through a
tuneable coupler. This tuneable coupler is built from a capacitor and a SQUID. By flux biasing the SQUID, we
change the effective Josephson energy of the coupler, whichmodifies the coupling between the two transmons.
Wewill present how the normalmode visualization tool helps in understanding the physics of the device.
Secondly, wewill showhow aHamiltonian generatedwithQuCAT accurately reproduces experimental
measurements of the device.

We start by building the device shown infigure A4(a).More specifically, we are interested in the part of the
device in the dashed box, consisting of the two transmons and the tuneable coupler. The other circuitry, theflux
line, drive line and readout resonator could be included to determine external losses, or the dispersive coupling
of the transmons to their readout resonator.Wewill omit these features for simplicity here. After opening the
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GUIwith thequcat.GUIfunction,manually constructing the circuit, then closing theGUI, the resulting
Qcircuitis stored in a variableTC.

TC=qucat.GUI(‘netlist.txt’)

The inductance Lj of the junctionwhichmodels the SQUID is given symbolically, andwill have to be specified
when callingQcircuitfunctions. Since Lj is controlled throughfluxf in the experiment, we define a function
which translatesf (in units of the flux quantum) to Lj

defLj(phi):

#maximum Josephson energy

Ejmax=6.5e9

# junction asymmetry

d=0.076 9

# flux to Josephson energy

Ej=Ejmax∗numpy.cos(pi∗phi)

∗numpy.sqrt(1+d∗∗2

∗numpy.tan(pi∗phi)∗∗2)

# Josephson energy to inductance

return(hbar/2/e)∗∗2/(Ej∗h)

Figure A4.Tuneable coupler circuit analysis. (a)Opticalmicrograph of the device studied in this example, adapted from (Kounalakis
et al 2018) under a CCBY 4.0 license.Wewill omit theflux lines, drive lines and readout resonators for simplicity in this example, and
concentrate on the part of the device in the dashed box. The circuit consists of two near-identical transmon qubits coupled through a
third ‘coupler’ transmon. Scale bar corresponds to 200 μm. (b)Equivalent lumped-element circuit constructedwith theQuCATGUI
and displayed using theshow_normal_modemethod. Thismethod has overlaid the circuit with the currents flowing through the
components when the highest frequencymode is populatedwith a single-photon-amplitude coherent state.Most of the current is
located in the resonantly coupled transmons rather than the coupler, and the fact that the coupled transmons are identical leads to the
symmetry on each side of the coupler. Thismode is called symmetric since the current in both coupled transmonsflows in the same
direction. The net current through the coupling junctionmakes themode frequency sensitive to changes in the coupling junction
inductance tunedwith a SQUID. The change in symmetricmode frequency is shown in the experimentalmeasure of the response
frequencies in (c) (adapted from (Kounalakis et al 2018) under aCCBY 4.0 license), and in the diagonalization of theHamiltonian
generated fromQuCAT in (d).
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wherepi,h,hbar,ewere assigned the value ofπ, Plancks constant, Plancks reduced constant and the electron
charge respectively.

By visualizing the normalmodes of the circuit, we can understand themechanism behind the tuneable
coupler.We plot the highest frequencymode atf=0, as shown infigure A4(b)

TC.show_normal_mode(mode=2,

quantity=‘current’,

Lj=Lj(0))

Thismode is called symmetric since the currents flow in the same direction on each side of the coupler. This
leads to a net current through the coupler junction, such that the value of Lj influences the oscillation frequency
of themode. Conversely, if we plot the anti-symmetricmode instead, where currents are flowing away from the
coupler in each transmon, we find a current through the coupler junction and capacitor on the order of 10−21 A.
Thismode frequency should not vary as a function of Lj.When the bare frequency of the couplermatches the
coupled transmon frequencies, the coupler acts as a band-stop filter, and lets no current traverse. At this point,
both symmetric and anti-symmetricmodes should have identical frequencies.

Infigure A4(c) this effect is shown experimentally through ameasure of the first transitions of the two
nonlinearmodes. One is tunedwithflux (symmetricmode), the other barely changes (anti-symmetricmode).
We can reproduce this experiment by generating aHamiltonianwithQuCAT and diagonalizing it withQuTiP
for different values of the flux. For example, at 0flux, the twofirst two transition frequenciesf1andf2can be
generated from

# generate aHamiltonian

H=TC.hamiltonian(Lj=Lj(phi=0),

excitations=[7,7],

taylor=4,

modes=[1,2])

# diagonalize theHamiltonian

ee=H.eigenenergies()

f1=ee[1]-ee[0]

f2=ee[2]-ee[0]

f1 andf2 is plotted infigure A4(d) for different vales offlux and closelymatches the experimental data. Note
thatwe have constructed aHamiltonianwithmodes 1 and 2, excludingmode 0, which corresponds to
oscillations of currentmajoritarily located in the tuneable coupler. One can verify this fact by plotting the
distribution of currents formode 0 using theshow_normal_modemethod.

This experiment can be viewed as two ‘bare’ transmon qubits coupled by the interaction

ˆ ( )s s=H g , A2x
L

x
R

int

where left and right transmons are labeled L andR andσx is the xPauli operator. The coupling strength g reflects
the rate at which the two transmons can exchange quanta of energy. If the transmons are resonant a spectroscopy
experiment reveals a hybridization of the two qubits, whichmanifests as two spectroscopic absorption peaks
separated in frequency by 2g. From this point of view, this experiment thus implements a couplingwhich is
tuneable from an appreciable value to near 0 coupling.

A.5. Studying a Josephson-ring-based qubit
In this section, we demonstrate the ability forQuCAT to analyzemore complex circuits. The experiment of (Roy
et al 2017) features a Josephson ring geometry, which is aWheatstone-bridge-like circuit, typically difficult to
analyze as it cannot be decomposed in series and parallel connections.We consider the coupling of this ring to
two lossymodes of a cavity, bringing the total number ofmodes in the circuit to 5.We aim to understand the key
feature of this circuit: that one qubit-likemode acts as a quadrupole with little coupling to the resonatormodes.

The studied device consists of a 3D cavity (figure A5(a)) hosting a number ofmicrowavemodes, inwhich is
positioned a chip patternedwith the trimon circuit. The trimon circuit has four capacitive pads in a cross shape
(figure A5(b))which have an appreciable coupling between each othermaking up the capacitance of the trimon
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qubitmodes. The two vertically (horizontally) positioned pads will couple tomodes of the 3D cavity featuring
vertical (horizontal) electric fields.Wewill consider both a vertical and a horizontal cavitymode in ourmodel.
We number these pads from1 to 4 as displayed infigure A5(b). Each pad is connected to its two nearest
neighbors by a Josephson junction (figure A5(c)), forming a Josephson ring.

Using theQuCATGUI, we build a lumped elementmodel of this device, generating aQcircuit object we
store in the variabletrimon.

trimon=qucat.GUI(‘netlist.txt’)

The cavitymodes aremodeled asRLC oscillators with each plate of their capacitors capacitively coupled to a pad
of the trimon circuit. The junction inductances are assigned different values,first to reflect experimental reality,
but also to avoid infinities arising in theQuCAT analysis. Indeed, the voltage transfer function of this Josephson
ring between nodes 1, 3 and nodes 2, 4 will be exactly 0, whichwill cause errors when initializing theQcircuit
object. Component parameters are chosen to only approximativelymatch the experimental results of (Roy et al
2017), the objective here is to demonstrateQuCAT features rather than accuratelymodel the experiment.

The particularity of this circuit is that it hosts a quadrupolemode. It corresponds here to the second highest
frequencymode and can be visualized by calling

trimon.show_normal_mode(

mode=2,

quantity=‘voltage’)

the result of which is displayed infigure A5(d). The voltage oscillations aremajoritarily located in the junctions,
indicating this is not a cavitymode, but amode of the trimon circuit. Crucially, the polarity of voltages across the
junctions is such that the total voltage between pads 1 and 3 and the total voltage across pads 2 and 4 is 0,

Figure A5.Trimon device and Purcell-decay-protectedmode visualization. (a) Schematic of the cross-cut of a 3Dmicrowave cavity.
Dark gray showsmetal whilst light gray show the hollowed out section forming the cavity. Arrows represent the electric field of the
TE101, or ‘vertical’ cavitymode. In the cavity is placed a chip hosting the trimon circuit shown in the opticalmicrograph (b). The
circuit has 4 capacitive pads labeled from 1 to 4. These pads are connected by the Josephson junction ring shown in the scanning
electronmicroscope image (c). Scale bars correspond 200 and 2 μmfor panels (b) and (c) respectively. (d) Lumped-element equivalent
circuit of the device constructed using theQuCATGUI and displayedwithshow_normal_mode. The four pads of the trimon are
color-coded tomatch (b). The capacitorCa formed by pads 1 and 3 forms an electrical dipole which couples to a vertical cavitymode,
and the capacitorCb formed by pads 2 and 4 forms an electrical dipole which couples tomodes with horizontal electric fields. The
show_normal_mode overlays the voltage across different components if a single-photon amplitude coherent state was populating
mode 2. Thismode has a particularity that the voltage is concentrated across the junctions and their parallel capacitors without leading
to a buildup of voltage across the capacitorsCa orCb. This decouplesmode 2 from the cavitymode decay (no Purcell effect)whilst the
presence of voltagefluctuations across the junctions will ensure cross-Kerr coupling to the othermodes of the system. Concerning
panels (a)–(c): reprintedfigureswith permission fromRoy et al (2017). Copyright 2017 by theAmerican Physical Society.
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warranting the name of ‘quadrupolemode’. Due to the orientation of the chip in the cavity, the vertically and
horizontally orientated cavitymodeswill only be sensitive to voltage oscillations across pads 1 and 3 or 2 and 4.
This ensures that themode displayed here is decoupled from the cavitymodes, and fromany loss channels they
may incur.We can verify this fact by computing the losses of the differentmodes, and comparing the losses of
mode 2 to the other qubit-likemodes of the circuit.We perform this calculation by calling

trimon.f_k_A_chi(pretty_print=True)

whichwill calculate and return the loss rates of themodes, alongwith their eigenfrequencies, anharmonicities
andKerr parameters. Setting the keyword argumentpretty_print toTrue prints a table containing all this
information, which is shown infigure A6. To be succinct, we have not shown the table providing the cross-Kerr
couplings. By using theshow_normal_modemethod to plot all the othermodes of the circuit, and noting
where currents or voltages aremajoritarily located, we can identify eachmodewith the schematics provided in
figure A6. The three lowest frequencymodes are located in the trimon chip, andwe notice that as expected the
quadrupolemode 2 has a loss rate (due to resistive losses in the cavitymodes)which is three orders ofmagnitude
below the other two.Despite this apparent decoupling, the quadrupolemodewill still be coupled to both cavity
mode through the cross-Kerr coupling, given by twice the square-root of the product of the quadrupole and
cavitymode anharmonicities.

Appendix B. Circuit quantization overview

In this sectionwe summarize the quantizationmethod used inQuCAT,which is an expansion on thework of
(Nigg et al 2012). This approach is only valid in theweak anharmonic limit, where charge dispersion is negligible.
SeeNigg et al (2012) or section E.2 for a detailed discussion of this condition.

The idea behind the quantizationmethod is as follows.Wefirst consider the ‘linearized’ circuit. This is a
circuit where the junctions are replaced by their Josephson inductances f=L Ej j0

2 .WhereEj is the Josephson
energy and the reduced flux quantum is given byf0=ÿ/2e.We determine the oscillation frequencies and
dissipation rates of the different normalmodes of this linearized circuit. Then, we calculate the amplitude of
phase oscillations across each junctionwhen a givenmode is excited. This will determine hownonlinear each
mode is. All this informationwill finally allow us to build aHamiltonian for the circuit.

B.1. Circuit simplification to series ofRLC resonators (Foster circuit)
The eigenfrequencies and nonlinearity of eachmode is obtained by transforming the linearized circuit to a
geometrywe can easily analyze.Wewillfirst describe this process assuming there is only a single junction in the
circuit, the case ofmultiple junctionswill follow.We consider the example circuit offigure 1. After replacing the
junctionwith its Josephson inductance, we determine the admittanceYj(ω)=Ij(ω)/Vj(ω) evaluated at the nodes
of the junction. This admittance is the inverse of the impedancemeasured at the nodes of the junction. It relates
the amplitude ∣ ∣Vj and phase θ(Vj) of the voltage oscillating at frequencyω that would build up across the

Figure A6.Othermodes of the Trimon.Using thef_k_A_chimethod together with thepretty_print option gives the user an
overview of the differentmodes frequencies, dissipations rates and levels of anharmonicity. Herewe have overlaid the output of the
methodwith schematics of the corresponding trimon and cavitymodes adapted from (Roy et al 2017). One can identify amode to the
schematic by observingwhere the currents or voltages aremostly located in the circuit using theshow_normal_modemethod as in
figure A5(d). Since the only resistors of the circuit are located in the cavitymodes, all dissipation in transmonmodes 0 through 2are
due to the Purcell effect.Mode 2 is better protected from this effect by 3 orders ofmagnitudewith respect to the two other transmon
modes. Concerning schematics: reprintedfigureswith permission fromRoy et al (2017). Copyright 2017 by theAmerican Physical
Society.

16

New J. Phys. 22 (2020) 013025 MFGely andGASteele



junction if onewould feed a current oscillating atωwith amplitude ∣ ∣Ij and phase θ(Ij) to one of its nodes through
a infinite impedance current source. Infigure B1(a)we show a schematic describing this quantity. In the case
where all normalmodes of the circuit have small dissipation rates, this circuit has an approximate equivalent
shown infigure B1(b), consisting of a series ofRLC resonators (Solgun et al 2014). By equivalent, wemean that
the admittanceYj of the circuit is approximatively equal to that of a series combination ofRLC resonators
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EachRLC resonator represents a normalmode of the circuit, with resonance frequency w = L C1m m m , and
dissipation rate k = R C1m m m. Since this equivalent circuit comes from an extension of Foster’s reactance
theorem (Foster 1924) to lossy circuits, we call this the Foster circuit.

B.2.Hamiltonian of the Foster circuit
The advantage of this circuit form, is that it is easy towrite its correspondingHamiltonian following standard
quantizationmethods (see Vool andDevoret 2017). In the absence of junction nonlinearity, it is given by the
sumof theHamiltonians of the independent harmonicRLC oscillators:
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The annihilation operator âm for photons inmodem is related to the expression of the phase difference between
the twonodes of the oscillator

ˆ ( ˆ ˆ )

( )

†j j

j
f w

= +

=


a a

C

,

1

2
, B4

m j m j m m

m j
m m

, zpf, ,

zpf, ,
0

wherejzpf,m are the zero-point fluctuations in phase ofmodem. The total phase difference across the Josephson
junction ĵj is then the sumof these phase differences ˆ ˆj j= åj m m j, , andwe can add the Junction nonlinearity to
theHamiltonian
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Since the linear part of theHamiltonian corresponds to the circuit with junctions replaced by inductors, the
linear part already contains the quadratic contribution of the junction potential ĵµ j

2, and it is subtracted from

the cosine junction potential.

Figure B1. Example of equivalent circuit construction to prepare for quantization.We use the same example as used infigures 1–4. (a)
The circuit is linearized by replacing the junctionwith an inductance Lj. The circuit is characterized at the nodes of the junction by its
admittance Yj. (b) In the limit of small dissipation, this circuit is equivalent to a series combination ofRLC resonators.
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B.3. Calculating Foster circuit parameters
Bothωm andκm can be determined fromY(ω) sincewe haveY(ωm+iκm/2)=0 for low loss circuits. This can
be proven by noticing that the admittanceYm ofmodemhas two zeros at
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and zm
* . The approximate equality holds in the limit of large quality factor =Q R L C 1m m m m . From

equation (B1)we see that the zeros ofY are exactly the zeros of the admittancesYk. The solutions ofY(ω)=0,
which come in conjugate pairs ζm and zm

* , thus provide uswith both resonance frequenciesωm=Re[ζm] and
dissipation ratesκm=2Im[ζm].

Additionally, we need to determine the effective capacitancesCm in order to obtain the zero-point
fluctuations in phase of eachmode.We focus on onemode k, and start by rewriting the admittance in
equation (B1) as

( ) ( )
( ) ( )

( )
å

w w
w w

=
+

¹

Y Y
Y Y

1

1
. B7j k

m k
k m

Its derivative with respect toω is
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Evaluating the derivative atω=ζk, whereYk(ζk)=0 yields

⎛
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The capacitance is thus approximatively given by

[ ( )] ( )z= ¢C YIm 2. B10m j k

B.4.Multiple junctions
Whenmore than a single junction is present, we start by choosing a single reference junction, labeled r. All
junctions will be again replaced by their inductances, and by using the admittanceYr across the reference
junction, we can determine theHamiltonian including the nonlinearity of the reference junction through the
procedure described above.

In this section, wewill describe how to obtain theHamiltonian including the nonlinearity of all other
junctions too

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ˆ ˆ ˆ ˆ

ˆ
( )†å åw j

j
= + - -H a a E 1 cos

2
, B11

m
m m m

j
j j

j
2

where ĵj is the phase across the jth junction. This phase is determined by first calculating the zero-point
fluctuations in phasejzpf,m,r through the reference junction r for eachmodem given by equation (B4). For each
junction j, we then calculate the (complex) transfer functionTjr(ω)which converts phase in the reference
junction to phase in junction j.We can then calculate the total phase across a junction jwith respect to the
reference phase of junction r, summing the contributions of allmodes and both quadratures of the phase

ˆ [ ( ( ))( ˆ ˆ ) ( ( ))( ˆ ˆ )] ( )† †åj j w w= + - -T a a T a aRe i Im . B12j
m

m r jr m m m jr m m mzpf, ,

The definition of phase (Vool andDevoret 2017) ( ) ( )òj f t t= -
-¥

t v dj

t
j0

1 where vj is the voltage across

junction j translates in the frequency domain to ( ) ( )j w wf w= - Vij j0
1 . Finding the transfer functionTjr for phase

is thus equivalent tofinding a transfer function for voltageTjr(ω)=Vj(ω)/Vr(ω). This is a standard task in
microwave network analysis (see sectionD.3 formore details).

B.5. Further treatment of theHamiltonian
The cosine potential in equation (B11) can be expressed in the Fock basis by Taylor expanding it around small
values of the phase. This yields
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which is the form returned by theQuCAThamiltonianmethod. By keeping only the fourth power in the
Taylor expansion and performing first order perturbation theory, we obtain
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where the anharmonicity or self-Kerr ofmodem is

( )å=A A B15m
j

m j,

as returned by theanharmonicitesmethod, where

( )j=A
E

2
B16m j

j
m j, zpf, ,

4

is the contribution of junction j to the total anharmonicity of amodem. The cross-Kerr coupling betweenmode
m and n is

( )åc = A A2 . B17mn
j

m j n j, ,

Both self and cross-Kerr parameters are computed by thekerrmethod.Note in equation (B14) that the
harmonic frequency of theHamiltonian is shifted byAm and cå ¹ 2n m nm . The former comes from the change
in Josephson inductance induced by phase fluctuations ofmodem. The latter is called the Lamb shift (Gely et al
2018) and is induced by phase fluctuations of the othermodes of the circuit.

AppendixC. Algorithmicmethods

There are three calculations to accomplish in order to obtain all the parameters necessary towrite the circuit
Hamiltonian.Weneed:

• the eigen-frequenciesωm and loss ratesκm fulfillingYr(ζm=ωm+iκm/2)=0whereYr is the admittance
across a reference junction

• the derivative of this admittance evaluated at ζm

• the transfer functionsTjr between junctions j and the reference junction r.

In this section, we cover the algorithmicmethods used to calculate these three quantities.

C.1. Resonance frequency anddissipation rate
C.1.1. Theoretical background. In order to obtain an expression for the admittance across the reference
junction, we start bywriting the set of equations governing the physics of the circuit.Wefirst determine a list of
nodes, which are points at which circuit components connect. Each node, labeled n, is assigned a voltage vn.We
name r± the positive and negative nodes of the reference junction.

We are interested in the steady-state oscillatory behavior of the system.We can thusmove to the frequency
domain, with complex node voltages ∣ ( )∣ ( ( ( )))w w q w+V en

t Vi n n , fully described by their phasors, the complex
numbers ∣ ( )∣ ( ( ))w= q wV V en n

Vi n n . In thismathematical construct, the real-part of the complex voltages describes
the voltage onewouldmeasure at the node in reality. Current conservation dictates that the sumof all currents
arriving at any node n, from the other nodes k of the circuit should be equal to the oscillatory current injected at
node n by a hypothetical, infinite impedance current source. This current is also characterized by a phasor In.
This can be compactly written as

( ) ( )å - =
¹

Y V V I , C1
k n

nk n k n

where k label the other nodes of the circuit andYnk is the admittance directly connecting nodes k and n. Note that
in this notation, if a node k1 can only reach node n through another node k2, then =Y 0nk1

. Inductors (with
inductance L), capacitors (with capacitanceC) and resistors (with resistanceR) then have admittances 1/iLω,
iCω and 1/R respectively.

19

New J. Phys. 22 (2020) 013025 MFGely andGASteele



Expanding equation (C1) yields
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which can bewritten inmatrix form as
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Since voltage is the electric potential of a node relative to another, we still have the freedomof choosing a ground
node. Equivalently, conservation of currents imposes that current exciting that node is equal to the sumof
currents entering the others, there is thus a redundant degree of freedom in equation (C3). For simplicity, wewill
choose node 0 as ground. Sincewe are only interested in the admittance across the reference junction, we set all
currents to zero, except the currents entering the positive and negative reference junction nodes: +Ir and

= -- +I Ir r respectively. The admittance is defined by ( )= -+ + -Y I V Vr r r r . The equations then reduce to
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whereY is the admittancematrix
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ForYr=0, equation (C4) has a solution for only specific values ofω=ζm. These are the values whichmake
the admittancematrix singular, i.e. whichmake its determinant zero

[ ( )] ( )z =YDet 0. C6m

The determinant is a polynomial inω, so the problemoffinding ζm=ωm+iκm/2 reduces tofinding the roots
of this polynomial. Note that plugging ζm into the frequency domain expression for the node voltages yields

( )z w k-V e ek m
t ti 2m m , such that the energy ( ) ( )µ µ k-v t v t ek k

tm* decays at a rateκm, which explains the division
by two in the expression of ζm. Also note, that wewould have obtained equation equation (C6) regardless of the
choice of reference element.

C.1.2. Algorithm. We nowdescribe the algorithmused to determine the solutions ζm=ωm+iκm/2 of
equation (C6). As an example, we consider the circuit offigureC1(a) that a user would have built with theGUI.

The algorithm is as follows

1. Eliminate wires and grounds. In this case, nodesN0,N5 would be grouped under a single node labeled 0 and
nodesN1,N2,N3 would be grouped under node 1, we label nodeN4 node 2, as shown infigure C1(b).

2. Compute the un-grounded admittance matrix. For each component present between the different couples
of nodes, we append the admittancematrix with the components admittance. Thematrix is thenmultiplied
byω such that all components are polynomials inω, ensuring that the determinant is also a polynomial. In
this example, thematrix is

⎛

⎝
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w w w w
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1 i 1 i
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2 2

2 2

3. Choose a ground node. The node which has a corresponding column with the most components is chosen
as the ground node (to reduce computation time). These rows and columns are erased from thematrix,
yielding the final formof the admittancematrix
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4. Compute the determinant. Even if the capacitance, inductance and resistance were specified numerically,
the admittancematrix would still be a function of the symbolic variableω.We thus rely on a symbolic
Berkowitz determinant calculation algorithm (Berkowitz 1984, Kerber 2009) implemented in the Sympy
library through theberkowitz_det function. In this example, onewould obtain

[ ] ( )w w= - -LC RCYDet i 1. C92

5. Find the roots of the polynomial. Whilst the above steps have to be performed only once for a given circuit,
this one should be performed each time the user edits the value of a component. The root-finding is divided
in the following steps as prescribed by (Press et al 2007).

Diagonalize the polynomials companionmatrix (Horn and Johnson 1985) to obtain an exhaustive list of all
roots of the polynomial. This is implemented in theNumPy library through theroots function.

Refine the precision of the roots usingmultiple iterations ofHalley’s gradient based root finder (Press et al
2007) until iterations do not improve the root value beyond a predefined tolerance given by theQcircuit
argumentroot_relative_tolerance. Themaximumnumber of iterations thatmay be carried out
is determined by theQcircuit argumentroot_max_iterations. If the imaginary part relative to
the real part of the root is lower than the relative tolerance, the imaginary part will be set to zero. The
relative tolerance thus sets the highest quality factor thatQuCAT can detect.

Remove identical roots (equal up to the relative tolerance), roots with negative imaginary or real parts,
0-frequency roots, roots for which ( )w¢ <Y 0l m for all l, whereYl is the admittance evaluated at the nodes of
an inductive element l, and roots for whichQm<Qcircuit.Q_min. The user is warned of a root being
discardedwhen one of these cases is unexpected.

The roots ζm obtained through this algorithm are accessed through themethodeigenfrequencies
which returns the oscillatory frequency inHertz of all themodes Re[ζm]/2π orloss_rateswhich returns
2Im[ζm]/2π.

C.2.Derivative of the admittance
The zero-pointfluctuations in phasejzpf,m,r for eachmodem across a reference junction r is the starting point to
computing aHamiltonian for the nonlinear potential of the Junctions. As expressed in equation (B4), this
quantity depends on the derivative ¢Yr of the admittanceYr calculated at the nodes of the reference element. In
this sectionwefirst cover the algorithmused to obtain the admittance at the nodes of an arbitrary component.
From this admittancewe then describe themethod to obtain the derivative of the admittance onwhichj m rzpf, ,

depends Finally we describe how to choose a (mode-dependent) reference element.

C.2.1. Computing the admittance. Here we describe amethod to compute the admittance of a network between
two arbitrary nodes.Wewill continue using the example circuit offigure C1, assumingwewant to compute the
admittance at the nodes of the inductor.

1. Eliminate wires and grounds as in the resonance finding algorithm, nodesN0,N5 would be grouped under a
single node labeled 0 and nodesN1,N2,N3 would be grouped under node 1, we label nodeN4 node 2.We
thus obtain figureC3(a).

FigureC1. Example circuit to illustrate themode frequencyfinder algorithm. (a)Example of a circuit built through theGUI by a user.
(b)Application of the first step of the algorithmwhich removes thewires and grounds to obtain aminimal number of nodes without
removing any components.
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2.Group parallel connections. Group all components connected in parallel as a single ‘admittance
component’ equal to the sumof admittances of its parts. In this way two nodes are either disconnected,
connected by a single inductor, capacitor, junction or resistor, or connected by a single ‘admittance
component’.

3. Reduce the network through star-mesh transformations. Excluding the nodes across which we want to
evaluate the admittance, we utilize the star-mesh transformation described infigure C2 to reduce the
number of nodes in the network to two. If following a star-mesh transformation, two components are
found in parallel, they are grouped under a single ‘admittance component’ as described previously. For a
node connected tomore than 3 other nodes the star-mesh transformationwill increase the total number of
components in the circuit. Sowe start with the least-connected nodes tomaintain the total number of
components in the network to aminimum. In this example, wewant to keep nodes 0 and 2, but remove
node 1, a start-mesh transform leads to the circuit offigure C3(b) then grouping parallel componnets leads
to (c).

4. The admittance is that of the remaining ‘admittance component’ once the network has been completely
reduced to two nodes.

The symbolic variables at this stage (SympySymbols) areω, and the variables corresponding to any component
with un-specified values.

C.2.2. Differentiating the admittance. The expression for the admittance obtained from the above algorithm
will necessarily be in the formofmultiplemultiplication, divisions or additions of the admittance of capacitors,
inductors or resistors. It is thus possible to transformY to a rational function ofω
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with the sympy functiontogether. It is then easy to symbolically determine the derivative ofY, ready to be
evaluated at zm once the coefficients pi and qi have been extracted
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taking advantage of the property P(ζm)∝Y(ζm)=0.

C.2.3. Choice of reference element. For eachmodem, we use as reference element r the inductor or junction
whichmaximizesjzpf,m,r as specified by equation (B4). This corresponds to the elementwhere the phase

FigureC2. Star-mesh transform. A nodeN connected to nodes A B C, , ,.. through admittancesYA,YB,K can be eliminated if we
interconnect nodesA,B,C,.. with impedancesYAB,YAC,YBC,K given by = åY Y Y YXY X Y M M .We show the 5 node case, the initial
network on the left is called the ‘star’, which is then transformed to the ‘mesh’ on the right, reducing the total number of nodes by 1.

FigureC3. Example to illustrate the admittance calculation algorithm. (a)Example of a circuit built through theGUI by a user, after
removal of all wires and grounds. (b)Application of the star-mesh transformation to remove node 1. (c)After each application of the
star-mesh transformation, parallel connections are grouped together. Only the two nodes across whichwewant to compute the
admittance remain, the admittance is that of the remaining ‘admittance component’.
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fluctuations aremajoritarily located.We find that doing so considerably increases the success of evaluating

( )w¢Y m . As an example, we plot infigure C4 the zero-point fluctuations in phasej m rzpf, , of the transmon-like

mode, calculated for the circuit offigure 1, with the junction or inductor as reference element.Whatwefind is
that if the coupling capacitor becomes too small, resulting inmodeswhich are nearly totally localized in either
inductor or junction, choosing thewrong reference element combinedwith numerical inaccuracies leads to
unreliable values ofj m rzpf, , .

C.3. Transfer functions
In this section, we describe themethod used to determine the transfer functionTjr between a junction j and the
reference junction r. This quantity can be computed from theABCDmatrix (Pozar 2009). TheABCDmatrix
relates the voltages and currents in a two port network

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( ) ( )=

V
I

A B
C D

V

I
, C12r

r

j

j

where the convention for current direction is described infigureC5. By constructing the network as infigure C5,
with the reference junction on the left and junction j on the right, the transfer function is given by

FigureC4. Impact of the choice of reference element. (a) Schematic of the circuit used in this example.We have used a 100 fF
capacitances, a 10 nH inductor and a 8 nH Josephson inductance, wewill vary the coupling capacitance. The zero-point fluctuations in
phase j rzpf, across the inductor (r=L) and junction (r=J) formost anharmonicmode are drawn on the schematic and plotted in (b)
for different values of the coupling capacitorCC. The phase oscillations associatedwith thismode aremostly located in the junction, so
as the coupling capacitor is lowered, the amplitude of phase oscillations diminishes in the inductor. BelowCC∼10−5 fF, numerical
accuracies lead to unreliable values of the phase fluctuations in the inductor. This results in the anharmonicity of the qubit-likemode
Aq, plotted in (c), to be incorrectly estimated if the inductor is chosen as a reference element and the anharmonicity is computed using
equation (B12).

FigureC5.Visual summary of the notations and properties of theABCDmatrix applied to the calculation ofTrj. The transfer function
Trj=1/A is the inverse of the first coefficient of theABCDmatrix which relates the voltages and currents on either end of a network.
These currents and voltages are defined as shown above, with the reference junction on the left and junction j on the right. Currents
are defined as entering and exciting on the left and right respectively. If the circuit is constituted of a cascade of two port sub-networks,
the product of the sub-networkABCDmatrices are equal to theABCDmatrix of the total network.
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TodetermineA, we first reduce the circuit using star-mesh transformations (see figureC2), and group
parallel connections as described in the previous section, until only the nodes of junctions r and j are left. If the
junctions initially shared a node, the resulting circuit will be equivalent to the network shown infigureC6 (a). In
this case,
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Y

Y
1 . C14

p

a

If the junctions do not share nodes, the resulting circuit will be equivalent to the network shown infigureC6(b),
where some admittancesmay be equal to 0 to represent open circuits. To compute theABCDmatrix of this
resulting circuit, wemake use of the property illustrated infigure C5: theABCDmatrix of a cascade connection
of two-port networks is equal to the product of theABCDmatrices of the individual networks.Wefirst
determine theABCDmatrix of three parts of the network (separated by dashed line infigureC6) such that the
ABCDmatrix of the total network reads
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where theA andB coefficients of themiddle part of the network are
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TheABCDmatrix for themiddle part of the circuit is derived in section 10.11 of (Arshad 2010), and theABCD
matrices for the circuits on either sides are provided in (Pozar 2009).

Thismethod is also applied to calculate the transfer function to capacitors, inductors and resistors, notably
to visualize the normalmodewith theshow_normal_mode function.

C.4. Alternative algorithmicmethods
Since symbolic calculations are themost computationally expensive steps in a typical use ofQuCAT,we cover in
this section some alternatives to themethods previously described, and the reasonswhy theywere not chosen.

C.4.1. Eigen-frequencies from the zeros of admittance. One could solveYr(ω)=0whereYr is the admittance
computed as explained in sectionD.2. Providing good initial guesses for all values of the zeros ζm can be
provided, a number of root-finding algorithms can then be used to obtain final values of ζm.

A set of initial guesses could be obtained by noticing thatYr is a rational function ofω. Roots of its
numerator are potentially zeros ofY, and a complete set of them is easy to obtain through a diagonalization

FigureC6.Networks after star-mesh reduction. The two non-trivial situations reached after applying star-mesh transformations to a
network to obtainTrj.
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of the companionmatrix as discussed before. Note that if these roots are roots of the denominator with equal or
highermultiplicity, then they are not zeros ofY. They can, however,make good initial guesses of a root-finding
algorithm run onYr. This requires a simplification ofYr, as computed through star-mesh transforms, to its
rational function form.Wefind this last step to be as computationally expensive as obtaining a determinant.

A different approach, which does not require using a root-finding algorithmonYr, is to simplify the rational-
function formofY such that the numerator and denominator share no roots. This can be done by using the
extended Euclidian algorithm tofind the greatest commonpolynomial divisor of the numerator and
denominator. However, the numerical inaccuracies in the numerator and denominator coefficientsmaymake
thismethod unreliable.

The success of both of these approaches is dependent on determining a good reference component r, which
may bemode-dependent (see figure C4). This reference component is difficult to pick at this stage, when the
mode frequencies are unknown.

C.4.2. Finite difference estimation of the admittance derivative. Rather than symbolically differentiating the
admittance, one could use a numericalfinite difference approximation, for example

( ) ( ) ( ) ( )w
w dw w dw

dw
¢

+ - -
Y

Y Y2 2
. C18r

r r

Yr can be obtained through star-mesh reductions, or from a resolution of equation (C4).
Butfinding a good value of δω is no easy task. As an example, we consider the circuit offigure 1, wherewe

have taken as reference element the junction. As shown infigureC7, when the resonator and transmon decouple
through a reduction of the coupling capacitor, a smaller and smaller δω is required to obtain ¢Yr evaluated at the
ζ1 of the resonator-likemode.We have triedmaking use of Riddersmethod of polynomial extrapolation to try
and reliably approach the limit d x 0 (Press et al 2007). However at small coupling capacitance, it always
converges to the slower varying background slope ofYr, without anyway of detecting the error.

C.4.3. Transfer functions from the admittancematrix. Calculating the transfer functionTij could alternatively be
carried out through the resolution of the systemof equations (C5). The difference in voltage of a reference
elements nodes wouldfirst have to befixed to the zero-point fluctuations computedwith themethod of
section (D.2). These equationswould have to be resolved at each change of systemparameters and for each
mode, withω replaced in the admittancematrix by its corresponding value for a givenmode. This is to be

FigureC7.Determining zero-point fluctuations fromdifferentiating the admittance in decoupled circuits. Imaginary part of the
admittance Im[Y] across the junction of the circuit of figure 1 for different values of the coupling capacitorCc and for Lj=12 nH.
Resonances correspond to the frequenciesω at which the admittance crosses 0, and the calculation of zero-point fluctuations depends
on the derivative [ ]¢YIm at that point. As the resonator and transmonparts of the circuit decouple, [ ]¢YIm becomes larger, requiring a
lower δω if the admittance is to be determined through equation (C18). In extreme cases (see lower panel), when the derivative is very
large, the smaller variation in the background slopemay bemistaken for the slope at a resonance.
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balanced against a single symbolic derivation ofTij through star-mesh transformations, and fast evaluations of
the symbolic expression for different parameters.

AppendixD. Performance and limitations

D.1.Number of nodes
In this sectionwe ask the question: howbig a circuit canQuCAT analyze? To address this, wefirst consider the
circuit offigure A3(c), and secondly the same circuit with resistors added in parallel to each capacitor. As the
number of (R)LC oscillators representing themodes of a CPWresonator is increased, wemeasure the time
necessary for the initialization of theQcircuit object. This is typically themost computationally expensive part of
aQuCATusage, limited by the speed of symbolicmanipulations in Sympy.

These symbolicmanipulations include:

• calculating the determinant of the admittancematrix

• converting that determinant to a polynomial

• reducing networks through star-mesh transformations both for admittance and transfer function calculations

• rational functionmanipulations to prepare the admittance for differentiation.

Once these operations have been performed, themost computationally expensive step in aQcircuitmethod is
finding the root of a polynomial (the determinant of the admittancematrix)which typically takes a few
milliseconds.

The results of this test are reported infigureD1.Wefind that relatively long computation times above 10 s
are required as one goes beyond 10 circuit nodes. Due to an increased complexity of symbolic expressions, the
computation time increases when resistors are included. For example, the admittancematrix of a non-resistive
circuit will have no coefficients proportional toω, onlyω2 and only real parts, translating to a polynomial in
Ω=ω2 whichwill have half the number of terms as a resistive circuit. However, wefind that this initialization
time is also greatly dependent on the circuit connectivity, and this test should be taken as only a rough guideline.

MakingQuCAT compatible with the analysis of larger circuits will inevitably require the development of
more efficient open-source symbolicmanipulation tools. The development of the open-source C++ library
SymEngine https://github.com/symengine/symengine, together with its Pythonwrappers, the symengine.py
project https://github.com/symengine/symengine.py, could lead to rapid progress in this direction. An
enticing prospect would then be able to analyze the large scale cQED systems underlyingmodern transmon-
qubit-based quantumprocessors (Kelly et al 2019). One should keep inmind that an increase in circuit size
translates to an increase in the number of degrees of freedomof the circuit and hence of theHilbert space size
needed for further analysis once aHamiltonian has been extracted fromQuCAT.

FigureD1.Computation timewith increasing circuit size. On the vertical axis, we show the time necessary to initialize theQcircuit
object, which is the computationally expensive part of a typical QuCATuser case. This is plotted as a function of the number of nodes
in the circuit. The test circuit used here is themulti-mode circuit offigure A3(c), optionally with a resistor in parallel of each capacitor.
The number of nodes are increased by addingmodes to the circuit.Most of the computational time is spent in the symbolic
manipulations performedwith the sympy library.
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D.2.Degree of anharmonicity
In this sectionwe study the limits of the current quantizationmethod used inQuCAT.More specifically, we
study the applicability of the basis used to express theHamiltonian, that of Fock-states of harmonic normal
modes of the linearized circuit. To do so, we use the simplest circuit possible (figureD2(a)), the parallel
connection of a Josephson junction and a capacitor. As the anharmonicity of this circuit becomes a greater
fraction of its linearized circuit resonance, the physics of the circuit goes from that of a Transmon to that of a
Cooper-pair box (Koch et al 2007), and the Fock-state basis becomes inadequate. This test should be viewed as a
guideline for themaximumacceptable amount for anharmonicity.Wefind thatwhen the anharmonicity
exceeds 6 percent of the eigenfrequency, aQuCAT generatedHamiltonianwill not reliably describe the system.

In this test, we vary the ratio of Josephson inductance Lj to capacitanceC, increasing the anharmonicity
expected from first-order perturbation theory (see equation (B14)), called charging energyEC=e2/2C . The
resonance frequency of the linearized circuit w = L C1 j0 ismaintained constant. For each different
charging energy, we use thehamiltonianmethod to generate aHamiltonian of the system.We are interested
in the order of the Taylor expansion of the cosine potential, and the size of theHilbert space, necessary to obtain
realisticfirst and second transition frequencies of the circuit, named w -g e and w -e f respectively. To do so, we
increase the order of Taylor expansion, and for each order we sweep through increasingHilbert space sizes. In
figureD2(b), we show the values of these parameters at which incrementing themwould not change w -g e and
w -e f bymore than 0.1 percent. Beyond a relative anharmonicity EC/ÿω0 of 8 percent, such convergence is no
longer reached, even for cosine expansion orders andHilbert space sizes up to 100.

Up to the point of no convergence, we compare the results obtained from the diagonalization in the
harmonic Fock basis (Hamiltonian generated byQuCAT), with a diagonalization of theCooper-pair box
Hamiltonian. In regimes of higher anharmonicity, the systembecomes sensitive to the preferred charge offset
between the two plates of the capacitorNg (expressed in units of Cooper-pair charge 2e) imposed by the electric
environment of the system. TheCooper-pair boxHamiltonian takes this into account

⎛
⎝⎜

⎞
⎠⎟

ˆ ∣ ∣ (∣ ∣ ∣ ∣) ( )å å= ñá - - + ñá + ñá +H E N N N E N N N N4 1 1 , D1C
N

g
N

jCPB

2

where ∣ ñN is the quantum state of the systemwhereNCooper-pairs have tunneled across the junction to the
node indicated infigureD2(a). Formore details onCooper-pair box physics and the derivation of this
Hamiltonian, refer to (Schuster 2007).We diagonalize thisHamiltonian in a basis of 41 ∣ ñN states.

Wefind that beyond 6 percent anharmonicity, theCooper-pair boxHamiltonian becomes appreciably
sensitive toNg and diverges from the results obtained in the Fock basis. This corresponds toEj/EC; 35 at which

FigureD2.Applicability of the harmonic Fock basis. (a)Transmon orCooper-pair-box circuit. (b)On the x-axis, we vary the
approximate anharmonicity EC=e2/2Cwith respect to the frequency w = L C1 j0 . For each value, we plot aHilbert space size,
and order of Taylor-expansion of the junction cosine-potential. Incrementing these values produces less than a 0.1 percent change in
the first two transition frequencies obtained by diagonalizing theHamiltonian. Beyond a relative anharmonicity of 8, convergence is
no longer reached, even forHilbert space sizes andTaylor expansions up to 100. (c) Frequency of thefirst transition w -g e obtained
fromHamiltonian diagonalization, relative to the value expected fromfirst order perturbation theory:ω0 − EC/ÿ. (d)Anharmonicity
w w-- -e f g e obtained fromHamiltonian diagonalization relative to the value expected fromfirst order perturbation theory EC/ÿ.
Black lines correspond to a diagonalization in the harmonic Fock basis (equation (B13)), blue and orange dashed lines correspond to a
diagonalization of theCooper-pair boxHamiltonianwith gate charges of 0 and 1/2 respectively. The harmonic Fock basis provides
reliable results up to approximatively 6 percent anharmonicity.
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the charge dispersion (the difference in frequency between 0 and 0.5 charge offset) is 4×10−5 and 1×10−3 for
thefirst two transitions respectively.

Beyond 8 percent anharmonicity, one cannot reach convergence with the Fock basis and just before results
diverge considerably from that of the Cooper-pair boxHamiltonian. This corresponds toEj/EC; 20 at which
the charge dispersion is 1.5×10−3 and 3×10−2 for thefirst two transitions respectively. A possible extension
of theQuCATHamiltonian could thus include handling static offsets in charge and different quantization
methods, for example quantization in the charge basis to extendQuCATbeyond the scope of weakly-
anharmonic circuits.

Appendix E. InstallingQuCAT anddependencies

The recommendedway of installingQuCAT is through the standard Python package installer by runningpip
installqucat in a terminal. Alternatively, all versions ofQuCAT, including the version currently under-
development is available on github at https://github.com/qucat. After downloading or cloning the repository,
one can navigate to thesrc folder and runpipinstall. in a terminal.

QuCAT and its GUI is cross-platform, and should function on Linux,MACOS andWindows.QuCAT
requires a version of Python 3, using the latest version is advised. QuCAT relies on several open-source Python
libraries: Numpy, Scipy,Matplotlib, Sympy andQuTiP (Johansson et al 2012, 2013), installation of Python and
these libraries throughAnaconda is recommended. The performance of Sympy calculations can be improved by
installingGmpy2.

Appendix F. List ofQuCATobjects andmethods

QuCATobjects

Network—Creates aQcircuit from a list of components

GUI—Opens a graphical user interface for the construction of aQcircuit

J—Creates a Josephson junction object

L—Creates a inductor object

C—Creates a capacitor object

R—Creates a resistor object

Qcircuitmethods

eigenfrequencies—Returns the normalmode frequencies

loss_rates—Returns the normalmode loss rates

anharmonicities—Returns the anharmonicities or self-Kerr of each normalmode

kerr—Returns the self-Kerr and cross-Kerr for and between each normalmode

f_k_A_chi—Returns the eigenfrequency, loss-rates, anharmonicity, andKerr parameters of the circuit

hamiltonian—Returns theHamiltonian of [B13]

Qcircuitmethods (only if built withGUI)

show—Plots the circuit

show_normal_mode—Plots the circuit overlaidwith the currents, voltages, charge orfluxes through each
componentwhen a normalmode is populatedwith a single-photon coherent state.

J, L, R, Cmethods

zpf—Returns contribution of amode to the zero-point fluctuations in current, voltages, charge orfluxes.
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Jmethods

anharmonicity—Returns the contribution of this junction to the anharmonicity of a given normalmode
(equation (B16)).

AppendixG. Source code and documentation

The code used to generate thefigures of this paper are available in Zenodowith the identifier (https://doi.org/
10.5281/zenodo.3298107). Tutorials and examples, including those presented here are available on theQuCAT
website at https://qucat.org/. The latest version of theQuCAT source code, is available to download or to
contribute to at https://github.com/qucat.
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