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Abstract

Quantum circuits constructed from Josephson junctions and superconducting electronics are key to
many quantum computing and quantum optics applications. Designing these circuits involves
calculating the Hamiltonian describing their quantum behavior. Here we present QuCAT, or
‘Quantum Circuit Analyzer Tool’, an open-source framework to help in this task. This open-source
Python library features an intuitive graphical or programmatical interface to create circuits, the ability
to compute their Hamiltonian, and a set of complimentary functionalities such as calculating
dissipation rates or visualizing current flow in the circuit.

1. Introduction

Quantum circuits, constructed from superconducting electronics and involving one or more Josephson
junctions, have steadily gained prominence in experimental and theoretical physics over the past twenty years.
Foremost, they are one of the most successful platforms in the quest to build a quantum computer (Devoret and
Schoelkopf2013). The control that can be gained over their quantum state, and the flexibility in their design have
also made these circuits an excellent test-bed to probe fundamental quantum effects (Gu et al 2017). They can
also be coupled to other systems, such as atoms, spins, acoustic vibrations or mechanical oscillators, acting as a
tool to measure and manipulate these systems at a quantum level (Xiang et al 2013).

Any application mentioned above generally translates to a desired Hamiltonian, which governs the physics
of the circuit. The task of the quantum circuit designer is to determine which circuit components to use, how to
inter-connect them, and calculate the corresponding Hamiltonian (Nigg ef al 2012, Vool and Devoret 2017).
Performing this task analytically can be time consuming or even challenging.

Here we present QuCAT, which stands for ‘Quantum Circuit Analyzer Tool’, an open-source Python
framework to help in analyzing and understanding quantum circuits. We provide an easy interface to create and
visualize circuits, either programmatically or through a graphical user interface (GUI). A Hamiltonian can then
be generated for further analysis in QuTiP (Johansson et al 2012, 2013). The current version of QuCAT supports
quantization in the basis of normal modes of the linear circuit (Nigg et al 2012), making it suited for the analysis
of weakly anharmonic circuits with small losses. The properties of these modes: their frequency, dissipation
rates, anharmonicity and cross-Kerr couplings can be directly calculated. The user can also visualize the current
flows in the circuit associated with each normal mode. The library covers lumped element circuits featuring an
arbitrary number of Josephson junctions, inductors, capacitors and resistors. Through equivalent lumped
element circuits, certain distributed elements such as waveguide resonators can also be analyzed (see
section B.3). The software relies on the symbolic manipulation of the circuits equations, making it reliable even
for vastly different circuits and parameters. It also results in efficient parameter sweeps, as analytical
manipulations need not be repeated for different circuit parameters. In a few seconds, circuits featuring 10 nodes
(or degrees of freedom), corresponding to between 10 and 30 circuit elements can be simulated.

In the main section of this article, we cover the functionalities of the software. We start by showing how to
create circuits, first using the GUI, then programmatically. We then demonstrate how to generate the
corresponding Hamiltonian. Lastly, we show how to extract the characteristics of the circuit modes: frequencies,
dissipation, anharmonicity and cross-Kerr coupling and present a tool to visualize these modes. This main
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import qucat
circuit = qucat.GUI( )
circuit.show()

Al

1fF L 500 aF
L

100 fF 100 fF 10 nH 500

Figure 1. Construction of a circuit: code and output. The circuit used as an example in this section comprises of a transmon qubit on
the left, coupled through a 1 fF capacitor to an LC-oscillator. Dissipation arises from the capacitive coupling of the LC-oscillator to a
50 2 resistor on the right. After importing the qucat package, the circuit object is created manually through a graphical user
interface (GUI) opened after callingqucat . GUI ( ‘netlist.txt’).Allinformation necessary to construct the circuit is stored
inthetextfilenetlist. txt. After closing the GUI, this information is also stored in the variable circuit. The show method
finally displays the circuit.

section will feature as an example the standard circuit of a transmon qubit coupled to a resonator (Koch et al
2007). In the appendices, we will first use QuUCAT to analyze some recent experiments: a tuneable coupler
(Kounalakis et al 2018), a multi-mode ultra-strong coupling circuit (Bosman et al 2017), a microwave
optomechanics circuit (Ockeloen-Korppi et al 2016) and a Josephson-ring based qubit (Roy et al 2017). We then
provide an overview of the circuit quantization method used and the algorithmic methods which implement it.
The limitations of these methods regarding weak anharmonicity and circuit size will then be presented. Finally
we will explain how to install QuCAT and we provide a summary of all its functions. More tutorials and
examples are available on the QuCAT website https://qucat.org/.

2. Circuit construction
Any use of QuCAT will start with importing the qucatlibrary
import qucat

One should then create a circuit. These are named Qcircui t, short for ‘quantum circuit’ in QuCAT. There are
two ways of creating a Qcircui t: using the GUI, or programmatically.

2.1. Creating a circuit with the GUI
We first cover how to create a circuit with the GUL This is done through this command

circuit = qucat.GUI (‘netlist.txt’)

which opens the GUI. The GUI will appear as a separate window, which will block the execution of the rest of the
Python script until the window is closed. The user can drag-in and drop capacitors, inductors, resistors or
Josephson junctions, or grounds. These components can then be inter-connected with wires. Each change made
to the circuit will be automatically be saved in the ‘netlist.txt’ file. After closing the GUL the Qcircuit
object will be stored in the variable named circui t which we will use for further analysis.

2.2. Creating a circuit programmatically

Alternatively, one can create a circuit with only Python code. This is done by creating a list of circuit components
with the functions J, L, Cand R for junctions, inductors, capacitors and resistors respectively. For the circuit of
figure 1:

circuit_components = [

qucat.C(0,1,100e-15), #transmon

qucat.J(0,1,’L3"),

qucat.C(0,2,100e-15), #resonator

qucat.L(0,2,10e-9),

qucat.C(1,2,1le-15), #couplingcapacitor

2
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qucat.C(2,3,0.5e-15), #ext. coupl. cap.
qucat.R(3,0,50) #500hmload
]

All circuit components take as first two argument integers referring to the negative and positive node of the
circuit components. Here 0 corresponds to the ground node for example. The third argument is either a float
giving the component a value, or a string which labels the component parameter to be specified later. Doing the
latter avoids performing the computationally expensive initialization of the Qcircuit object multiple times
when sweeping a parameter. By default, junctions are parametrized by their Josephson inductance L; = ¢; /E;
where ¢y = fi/2eis the reduced flux quantum, and E; (in Joules) is the Josephson energy.

Once the list of components is built, we can create a Qcircuitobject viathe Network function

circuit = Network (circuit_components)

as with a construction via the GUI, the Qcircui t object will be stored in the variable named circuit which
we will use for further analysis.

3. Generating a Hamiltonian

The Hamiltonian of a Josephson circuit is given by

A A —1 n+1 o
H=Y" liwnd)am+ > Ej((z—)v(pfz . (1)
m j n=2 11)

Itis written in the basis of its normal modes. These have an angular frequency w,,, and we write the operator
which creates (annihilates) photons in the mode 51;, (@)- The cosine potential of each Josephson junction j with
Josephson energy E;has been Taylor expanded to order 1 for small values of its phase fluctuations &; acrossit.
The phase fluctuations are a function of the annihilation and creation operators of the modes
gbj =3 rpfym,j (4} + @,,). For adetailed derivation of this Hamiltonian, and the method used to obtain its
parameters, see section B.

There are three different parameters that the user should fix

1. The set of modes to include.
2. For each of these modes, the number of excitations to consider.

3. The order of the Taylor expansion.

The more modes and excitations are included, and the higher Taylor expansion order, the more faithful the
Hamiltonian will be to physical reality. The resulting increase in Hilbert space size will however make it more
computationally expensive to perform further calculations. Typically, larger degrees of anharmonicity require a
larger Hilbert space, with a fundamental limitation on the maximum anharmonicity due to the choice of basis.
We expand on these topics in section E.2.

Such a Hamiltonian is generated through the method hami 1 tonian. More specifically, this function
returns a QuTiP object (Johansson et al 2012, 2013), enabling an easy treatment of the Hamiltonian. All QuCAT
functions use units of Hertz, so the function is actually returning H /h.

As an example, we generate a Hamiltonian for the circuit of figure 1 at different values of the Josephson
inductance and use QuTiP to diagonalize it and obtain the eigen-frequencies of the system. For a Josephson
inductance of 8 nH this is achieved through the commands

H=circuit.hamiltonian (
modes = [0,1],
excitations = [10,12],
taylor =4,

Lj = 8e-9)

E = H.eigenenergies () # Eigenenergies

3
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Figure 2. Hamiltonian generation is done by applying the hami 1 tonian method to the circuit variable defined in figure 1. The
Hamiltonian is expressed in the basis of circuit normal modes m with frequencies f,,, = w,,/2, annihilation operators d,,, and zero-
point phase fluctuations ¢,¢ ,, - across junction j with Josephson energy E;. The junction nonlinearities are expressed through a Taylor
expansion of the cosine potentials, where the user chooses the degree of Taylor expansion. The other arguments are the list of modes
to include, the number of excitations to consider for each of these modes, and any unspecified component value, here L. The
returned Hamiltonian is a QuTiP object, giving the user access to an extensive set of tools for further analysis (Johansson
etal2012,2013). As an example, we compute the eigenenergies of the Hamiltonian, and plot the two first transition frequencies, as a
function of L.

(here in units of frequency) using the

QuTiP function eigenenergies

Withmodes = [0, 1], weare specifying that we wish to consider the first and second modes of the circuit.
Modes are numbered with increasing frequency, so here we are selecting the two lowest frequency modes of the
circuit. Withexcitations = [10, 12], wespecify that for mode O (1) we wish to consider 10 (12)
excitations. With taylor = 4, weare specifying that we wish to expand the cosine potential to fourth order,
this is the lowest order which will give an anharmonic behavior. The unspecified Josephson inductance must
now be fixed through a keyword argument Lj = 8e-9. Doing so avoids initializing the Qcircuit objects
multiple times during parameter sweeps, as initialization is the most computationally expensive task. We
calculate these energies with different values of the Josephson inductance, and the first two transition frequencies
are plotted in figure 2, showing the typical avoided crossing seen in a coupled qubit-resonator system.

4. Mode frequencies, dissipation rates, anharmonicities and cross-Kerr couplings

QuCAT can also return the parameters of the (already diagonal) Hamiltonian in first-order perturbation theory

A=3S (fiwm — A — X;")ﬁ;am A AT By — XA @
m n=m

valid for weak anharmonicity x,,,, A, < wy,. The physics of this Hamiltonian can be understood by
considering that an excitation of one of the circuit modes may lead to current traversing a Josephson junction.
This will change the effective inductance of the junction, hence changing its own mode frequency, as well as the
mode frequencies of all other modes. This is quantified through the anharmonicity or self-Kerr A,,, and cross-
Kerr X, respectively. When no mode is excited, vacuum-fluctuations in current through the junction give rise
to shifted mode energies /v, — Ay — >, X/ 2-

In a circuit featuring resistors, these anharmonic modes will be dissipative. A mode m will lose energy ata
rate ,,,. If these rates are specified in angular frequencies, the relaxation time T} ,,, of mode m is given by
Ti,m = 1/Kp. Astandard method to include the loss rates in a mathematical description of the circuit is through
the Lindblad equation (Johansson et al 2012), where the losses would be included as collapse operators /Ky, 4.

The frequencies, dissipation rates, and Kerr parameters can all be obtained via methods of the Qcircuit
object. These methods will return numerical values, and we should always specify the values of symbolically
defined circuit parameters as keyword arguments. Lists, or Numpy arrays, can be provided here making it easy to
perform parameter sweeps. Additionally, initializing the circuit is the most computationally expensive
operation, so this will be by far the fastest method to perform parameter sweeps.

We will assume that we want to determine the parameters of the Hamiltonian (2) for the circuit of figure 1 at
different values of ;. The values for L;are stored as a Numpy array

Lj_list = numpy.linspace(lle-9,9%e-9,101)

4
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f,k,A,chi = circuit.f_k_A chi(
= numpy.linspace( R ))
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Figure 3. Extracting eigenfrequencies, loss-rates, anharmonicities, and cross-Kerr couplings. We apply the £_k_A_chi method to
circuit definedin figure 1 to obtain alist of eigenfrequencies (£), loss-rates (k), anharmonicities (&), and cross-Kerr couplings
(chi), forall the normal modes of the circuit. There is one unspecified variable in the circuit, the Josephson inductance L;, which is
here specified with a list of values. In (a), we plot the eigenfrequencies of the two firstmodes £ [0] and £ [1].In (b), we plot the loss-
rates of the ssame modes k [0] and k [1], and in (c) their anharmonicities A [0] and A[1].In(d), we plot the cross-Kerr coupling
between modes O and 1: chi [0, 1].

We can assign the frequency, dissipation rates, self-Kerr, and cross-Kerr parameters to the variables £, k, A and
chirespectively, by calling

f =circuit.eigenfrequencies(Lj = Lj_list)
k=circuit.loss_rates(Lj =1Lj_list)
A =circuit.anharmonicities(Lj = Lj_list)

chi =circuit.kerr(Lj =1Lj_list)
or alternatively through a single function call:
f,k,A,chi =circuit.f_k A _chi(Lj=1Lj_list)

All values returned by these methods are given in Hertz, not in angular frequency. With respect to the
conventional way of writing the Hamiltonian, which we have also adopted in (2), we thus return the frequencies
as w,,/2m, theloss rates as k,,,/2m and the Kerr parameters as A,,,/h and x,,,,,/ h. Note that £, k, A, are arrays,
where the index m corresponds to mode 1, and modes are ordered with increasing frequencies. For example, £
[0] will bean array of length 101, which stores the frequencies of the lowest frequency mode as L7 is swept
from 11 to 9 nH. The variable ch1i has an extra dimension, such that chi [m, n] corresponds to the cross-Kerr
between modesmand n,and chi [m, m] is the self-Kerr of mode m, which has the same value as A [m] . These
generated values are plotted in figure 3.
We can also print these parameters in a visually pleasing way to get an overview of the circuit characteristics

for a given set of circuit parameters. For a Josephson inductance of 9 nH, this is done through the command

circuit.f_k A_chi(Lj = 10e-9, pretty_print

= True)
which will print
mode | freg. | diss. | anha. |

0 |4.99GHz | 9.56kHz | 10.5kHz |

1 |5.28GHz |94.3Hz | 189MHz |
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circuit.show_normal_mode(

@ ( ) 5.64i uV 3.16i pv
< —

2471 HVT
100F

(b) ( ) 72inv 257 pv

500 aF
2511 pV 1.98nV
100 fF 10 nH 50Q

Figure 4. Visualizing normal modes. The show_normal_mode method overlays the circuit with arrows representing the voltage
across components when the circuit is populated with a single-photon amplitude coherent state. The arrows are annotated with the
value of the complex voltage oscillating across a component, where the direction of the arrow indicates the direction of a phase 0 for
that component. The absolute value of this annotation corresponds to the zero-point fluctuations of the given quantity across the
component. The length and thickness of the arrows scale with the magnitude of the voltage. show_normal_mode takes as argument
any unspecified circuit parameter, here we specify Lj = 10e-9 where the two modes undergo an avoided crossing. We plot each
mode by specifyingmode = 0 ormode = 1 and see that for mode 0, the anti-symmetric mode, the voltage has opposite signs on each
side of the coupling capacitor, leading to a larger voltage across the coupler (and hence a larger effective capacitance and lower
frequency) than the symmetric mode.

Kerr coefficients

diagonal = Kerr
off-diagonal = cross-Kerr
mode | 0 | 1 |

0 |10.5kHz | |

1 |2.82MHz | 189MHz |

We see that mode 1 is significantly more anharmonic than mode 0, whereas mode 0 has however a higher
dissipation. We would expect that mode 1 is thus the resonance which has current fluctuations mostly located in
the junction, whilst mode 0 is located on the other side to the coupling capacitor, where it can couple more
strongly to the resistor.

Such interpretations can be verified by plotting a visual representation of the normal modes on top
of the circuit as explained below. This can be done by plotting either the current, voltage, charge or flux
distribution, overlaid on top of the circuit schematic. As shown in figure 4, this is done by adding arrows,
representing one of these quantities at each circuit component and annotating it with the value of that
component. The annotation corresponds to the complex amplitude, or phasor, of a quantity across the
component, if the mode was populated with a single photon amplitude coherent state. The absolute
value of this annotation corresponds to the contribution of a mode to the zero-point fluctuations of the
given quantity across the component. The direction of the arrows indicates what direction we take for
0 phase for that component.

We note that an independantly developped Julia platform also allows the calculation of normal mode
frequencies and dissipation rates for circuits (Scheer and Block 2018).

5. Outlook

We have presented QuCAT, a Python library to automatize and speed up the design process and analysis of
superconducting circuits. By facilitating quick tests of different circuit designs, and helping develop an intuition
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for the physics of quantum circuits, we also hope that QuCAT will enable users to develop even more innovative
circuits.

Possible extensions of the QuCAT features could include black-box impedance components to model
distributed components (Nigg et al 2012), more precisely modeling lossy circuits (Solgun et al 2014, Solgun and
DiVincenzo 2015), handling static offsets in flux or charge through DC sources, additional elements such as
coupled inductors or superconducting quantum interference devices (SQUIDS) and different quantization
methods, enabling for example quantization in the charge or flux basis. The latter would extend QuCAT beyond
the scope of weakly-anharmonic circuits.

In terms of performance, QuCAT would benefit from delegating analytical calculations to a more efficient,
compiled language, with the exciting prospect of simulating large scale circuits (Kelly et al 2019). Note however
that there is a strong limitation on the maximum Hilbert space size that one can simulate after extracting the
Hamiltonian.
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Appendix A. Applications

A.1. Designing a microwave filter
In this application we show how QuCAT can be used to design classical microwave components.
We study here a band pass filter made from two LC oscillators with the inductor inline and a capacitive shunt
to ground. Such a filter can be used to stop a DC bias line from inducing losses, whilst being galvanically
connected to a resonator, see for example (Viennot et al 2018). In this case we are interested in the loss rate x of
a LCresonator connected through this filter to a 50 €2 load, which could emulate a typical microwave
transmission line. We want to study how & varies as a function of the inductance L and capacitance C ofits
components.

The QuCAT GUIfunction can be used to open the GUI, the user will manually create the circuit, and upon
closing the GUI a Qcircuit object is stored in the variable filtered_cavity. By calling the method show, we
display the circuit as shown in figure A1(a). These steps are accomplished with the code

# Open the GUI and manually build the

circuit
filtered_cavity = qucat.GUI (‘netlist.txt’)
# Display the circuit
filtered_cavity.show ()
We can then access the loss rates of the different circuit modes through the method 1oss_rates. Since the
values of Cand L were not specified in the construction of the circuit, their values have to be passed as keyword
arguments upon calling 1oss_rates. For example, the loss rate for a 1 pF capacitor and 100 nH inductor is
obtained through
# Loss rates of all modes

k_all =filtered_cavity.loss_rates(C =1e-12, L =100e-9)
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(a)
filtered_cavity = qucat.GUI( )
filtered_cavity.show()
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Figure A1l. Design of a microwave filter. (a) Using the QuCAT GUI, we build then plot a model of a filtered cavity. A 50 (2 load,
representing a cable, is connected to an LC resonator through two LC band pass filters. (b) The dissipation rate of the resonator is
plotted as a function of inductance and capacitance of the filter using the Loss_rates method.

L(H)
K (Hz)

# Resonator loss rate

k=%k all[-1]

Since the filter capacitance and inductance is large relative to the capacitance and inductance of the resonator,
the modes associated with the filter will have a much lower frequency. We can thus access the loss rate of the
resonator by always selecting the last element of the array of loss rates with the command k_al1 [—1].The
dissipation rates for different values of the capacitance and inductance are plotted in figure A1(b).

A.2. Computing optomechanical coupling

In this application, we show how QuCAT can be used for analyzing another classical system, that of
microwave optomechanics. One common implementation of microwave optomechanics involves a
mechanically compliant capacitor, or drum, embedded in one or many microwave resonators (Teufel
etal 2011). One quantity of interest is the single-photon optomechanical coupling. This quantity is the
change in mode frequency w,, that occurs for a displacement x,,¢ of the drum (the zero-point fluctuations
in displacement)

Owm
8o = Xopf - . (AD)
Ox

The change in mode frequency as the drum head moves dw,, /0x is not straightforward to compute

for complicated circuits. One such example is that of (Ockeloen-Korppi et al 2016), where two microwave
resonators are coupled to a drum via a network of capacitances as shown in figure A2(a). Here, we

will use QuCAT to calculate the optomechanical coupling of the drums to both resonator modes of the

circuit.

We start by reproducing the circuit of figure A2(a), excluding the capacitive connections on the far left and
right. This is done via the GUI opened with the qucat . GUIfunction. Upon closing the GUI, the resulting
Qcircuit is stored in the variable OM, and the showmethod is used to display the schematic of figure A2(a). These
steps are accomplished with the code below
# Open the GUI and manually build the

circuit
OM = qucat.GUI (‘netlist.txt’)
# Display the circuit

OM. show ()
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Figure A2. Example of an optomechanical system. (a) Schematic of the device, adapted from (Ockeloen-Korppi et al 2016) under a
CCBY 3.0 license. Two resonators are connected through a network of capacitances and a mechanically compliant capacitor (drum).
(b) QuCAT reconstruction of the circuit. By specifying a label for the mechanically compliant capacitances, we have the possibility to
compute the eigenfrequencies w,,, with the method eigenfrequencies for small variation in C,(x). This enables an easy
computation of the optomechanical coupling ocdw,, /dx.

~ -
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resonator 1 1 X
! x-dependant ,

___________ -
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We use realistic values for the circuit components without trying to be faithful to (Ockeloen-Korppi
et al 2016), the aim of this section is to illustrate a method to obtain g,. Crucially, the mechanically
compliant capacitors have been parametrized by the symbolic variable C,. We can now calculate the
resonance frequencies of the circuit with the method eigenfrequencies asafunction of a keyword
argument C,;.

The next step is to define an expression for C, as a function of the mechanical displacement x of the drum
head with respect to the immobile capacitive plate below it.

def Cd (x) :

# Radius of the drumhead

radius = 10e-6

# Formula for half a circular parallel

plate capacitor

returneps*pikradiussx2/x/2
where piand eps have been set to the values of m and the vacuum permittivity respectively. We have divided
the usual formula for parallel plate capacitance by 2 since, as shown in figure A2(a), the capacitive plate below the
drum head is split in two electrodes. We are now ready to compute g,. Following (Teufel er al 2011), we assume
the rest position of the drum to be D = 50 nm above the capacitive plate below. And we assume the zero-point

fluctuations in displacement to be x,,¢ = 4 fm. We start by differentiating the mode frequencies with respect to
drum displacement using a finite differences formula

# drum-capacitor gap

D = 50e-9
# difference quotient
h=1e-18

# derivative of eigenfrequencies
G = (OM.eigenfrequencies (Cd =
Cd (D+h))-OM.eigenfrequencies (Cd =

Ccd(D)))/h
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Gisanarray with values 2.3 x 10'°Hzm ™ 'and 3.6 x 10'*Hzm™' corresponding to the lowest and higher
frequency modes respectively. Multiplying these values with the zero-point fluctuations

# zero-point fluctuations
x_zpf = 4e-15

g_0 = Gxx_zpf

yields couplings of 96 and 147 Hz. The lowest frequency mode thus has a 96 Hz coupling to the drum.
If we want to know to which part of the circuit (resonator 1 or 2 in figure A2) this mode pertains, we can
visualize it by calling

OM. show_normal_mode (
mode = 0,
quantity = ‘current’,

Cd =Cd(D))

and we find that the current is majoritarily located in the inductor of resonator 1.

A.3. Convergence in multi-mode cQED
In this section we use QuCAT to study the convergence of parameters in the first order Hamiltonian
(equation (2)) of an ultra-strongly coupled multi-mode circuit QED system.

Using alength of coplanar waveguide terminated with engineered boundary conditions is a common
way of building a high quality factor microwave resonator. One implementation is a A/4 resonator
terminated on one end by a large shunt capacitor, acting as a near-perfect short circuit for microwaves
such that only a small amount of radiation may enter or leave the resonator. On the other end one places
asmall capacitance to ground: an open circuit. The shunt capacitor creates a voltage node, and at the open
end the voltage is free to oscillate. This resonator hosts a number of normal modes, justifying its lumped
element equivalent circuit: a series of LC oscillators with increasing resonance frequency (Gely et al 2017).
Here, we study such a resonator with a transmon circuit capacitively coupled to the open end. In particular
we consider this coupling to be strong enough for the circuit to be in the multi-mode ultra-strong
coupling regime as studied experimentally in (Bosman et al 2017) and theoretically in (Gely et al 2017).
The particularity of this regime is that the transmon has a considerable coupling to multiple modes of the
resonator. It then becomes unclear how many of these modes to consider for a realistic modeling of the
system. This regime is reached by maximizing the coupling capacitance of the transmon to the resonator
and minimizing the capacitance of the transmon to ground. The experimental device accomplishing this is
shown in figure A3(a), with its schematic equivalent in figure A3(b), and the lumped-element model in
figure A3(c).

We will use QuCAT to track the evolution of different characteristics of the system as the number of
considered modes N increases. For this application, programmatically building the circuit is more appropriate
than using the GUIL We start by defining some constants

# fundamental mode frequency of the
resonator

f0=4.603e9

w0 = £0*2.*numpy.pi

# characteristic impedance of the resonator

Z0 =50

# Josephson energy (in Hertz)

Ej = 18.15e9

# Coupling capacitance

Cc =140.3e-15

10
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Figure A3. Convergence in multi-mode cQED. (a) Optical micrograph of the device studied in this example, adapted from (Bosman
etal2017) under a CC BY 4.0 license. Light-blue corresponds to superconductor, dark blue to an insulating substrate. On the left we
see a vacuum-gap transmon: a capacitor plate suspended over the end of a coplanar-waveguide (CPW) resonator shorted to ground
through two Josephson junctions. The scale bar corresponds to 30 zm. On the right a CPW \/4 resonator, capacitively coupled to the
transmon on one side and shorted to ground through a large shunt capacitor on the other. The scale bar corresponds to 100 pm. (b)
Circuit schematic of the device. The CPW resonator hosts a number of modes, and is equivalent to a series assembly of LC oscillators
shown in (c). This circuit is built programmatically in QuCAT, and the qubit parameters are extracted for different total numbers of
modes. In (d) and (e) we plot the transmon mode frequency w,/27 and anharmonicity A,/h, where t refers to the transmon-like mode,
using the methods eigenfrequenciesand anharmonicities respectively. In (f) we plot the shift defined in (Gely et al 2018)

as the Lamb shift: the shift in transmon frequency (following equation (2)) due solely to the vacuum-fluctuations in the other modes
1

Ezmz Xy,m» Obtained with the ke rr method. These calculations allow the user to gauge how many modes are relevant to the physics

of the circuit.

# Capacitance to ground

Cj =5.13e-15

# Capacitance of all resonator modes
CO = numpy.pi/4/w0/70
# Inductance of first resonator mode

L0 = 4%z0/numpy.pi/w0
we can then generate a Qcircuit we name mmusc, as an example here with N = 10 modes.

# Initialize list of components for
Transmon and coupling capacitor
netlist = [
qucat.J(12,1,Ej,use_E = True),
qucat.C(12,1,C3),

qucat.C(1,2,Cc)]

# Add 10 oscillators

forminrange (10) :

11


https://creativecommons.org/licenses/by/4.0/

IOP Publishing NewJ. Phys. 22 (2020) 013025 M F Gely and G A Steele

# Nodes of mth oscillator
node_minus =2 +m
node_plus = (2 +m+ 1)
# Inductance of mth oscillator
Im=L0/(2%m + 1) %%2
# Add oscillator to netlist
netlist = netlist + [
qucat.L (node_minus,node_plus,Lm),

qucat.C (node_minus,node_plus,CO0) ]

# Create Qcircuit

mmusc = qucat.Network (netlist)

Note that 12 is the index of the ground node.
We can now access some parameters of the system. Only the first mode of the resonator has a lower
frequency than the transmon. The transmon-like mode is thus indexed as mode 1. Its frequency is given by

mmusc.eigenfrequencies () [1]
and the anharmonicity of the transmon, computed from first order perturbation theory (see equation (2)) with
mmusc.anharmonicities () [1]

Finally the Lamb shift, or shift in the transmon frequency resulting from the zero-point fluctuations of the
resonator modes, is given following equation (2) by the sum of half the cross-Kerr couplings between the
transmon mode and the others

lamb_shift =0

K = mmusc.kerr ()

forminrange (10) :
ifm! =1:

lamb_shift = lamb_shift + K[1] [m]/2

These parameters for different total number of modes are plotted in figures A3(d)—(f).

From this analysis, we find that as we reach 10, the plotted parameters are converging. Surprisingly, adding
even the highest modes significantly modifies the total Lamb shift of the Transmon despite large frequency
detunings.

A.4.Modeling a tuneable coupler

In this section, we study the circuit of (Kounalakis et al 2018) where two transmon qubits are coupled through a
tuneable coupler. This tuneable coupler is built from a capacitor and a SQUID. By flux biasing the SQUID, we
change the effective Josephson energy of the coupler, which modifies the coupling between the two transmons.
We will present how the normal mode visualization tool helps in understanding the physics of the device.
Secondly, we will show how a Hamiltonian generated with QuCAT accurately reproduces experimental
measurements of the device.

We start by building the device shown in figure A4(a). More specifically, we are interested in the part of the
device in the dashed box, consisting of the two transmons and the tuneable coupler. The other circuitry, the flux
line, drive line and readout resonator could be included to determine external losses, or the dispersive coupling
of the transmons to their readout resonator. We will omit these features for simplicity here. After opening the
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Figure A4. Tuneable coupler circuit analysis. (a) Optical micrograph of the device studied in this example, adapted from (Kounalakis
etal2018) under a CC BY 4.0 license. We will omit the flux lines, drive lines and readout resonators for simplicity in this example, and
concentrate on the part of the device in the dashed box. The circuit consists of two near-identical transmon qubits coupled through a
third ‘coupler’ transmon. Scale bar corresponds to 200 pm. (b) Equivalent lumped-element circuit constructed with the QuCAT GUI
and displayed using the show_normal_mode method. This method has overlaid the circuit with the currents flowing through the
components when the highest frequency mode is populated with a single-photon-amplitude coherent state. Most of the current is
located in the resonantly coupled transmons rather than the coupler, and the fact that the coupled transmons are identical leads to the
symmetry on each side of the coupler. This mode is called symmetric since the current in both coupled transmons flows in the same
direction. The net current through the coupling junction makes the mode frequency sensitive to changes in the coupling junction
inductance tuned with a SQUID. The change in symmetric mode frequency is shown in the experimental measure of the response
frequencies in (c) (adapted from (Kounalakis et al 2018) under a CC BY 4.0 license), and in the diagonalization of the Hamiltonian

GUIwith the qucat . GUI function, manually constructing the circuit, then closing the GUI, the resulting

Qcircuit isstoredinavariable TC.

TC = qucat.GUI (‘netlist.txt’)

The inductance L; of the junction which models the SQUID is given symbolically, and will have to be specified
when calling Qcircuit functions. Since L;is controlled through flux ¢ in the experiment, we define a function

which translates ¢ (in units of the flux quantum) to L;

defLj (phi) :

# maximum Josephson energy

Ejmax = 6.5e9

# junction asymmetry

d=0.0769

# flux to Josephson energy

Ej = Ejmax*xnumpy.cos (pi%phi)
snumpy.sqrt (1 + d#*2
snumpy.tan (pikphi) %*x2)

# Josephson energy to inductance

return (hbar/2/e) *%2/ (Ej*h)

13


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

10P Publishing

NewJ. Phys. 22 (2020) 013025 M F Gely and G A Steele

where pi, h, hbar, e were assigned the value of , Plancks constant, Plancks reduced constant and the electron
charge respectively.

By visualizing the normal modes of the circuit, we can understand the mechanism behind the tuneable
coupler. We plot the highest frequency mode at ¢ = 0, as shown in figure A4(b)

TC.show_normal_mode (mode = 2,
quantity = ‘current’,

L3 =13 (0))

This mode is called symmetric since the currents flow in the same direction on each side of the coupler. This
leads to a net current through the coupler junction, such that the value of L;influences the oscillation frequency
of the mode. Conversely, if we plot the anti-symmetric mode instead, where currents are flowing away from the
coupler in each transmon, we find a current through the coupler junction and capacitor on the order of 10" A.
This mode frequency should not vary as a function of L;. When the bare frequency of the coupler matches the
coupled transmon frequencies, the coupler acts as a band-stop filter, and lets no current traverse. At this point,
both symmetric and anti-symmetric modes should have identical frequencies.

In figure A4(c) this effect is shown experimentally through a measure of the first transitions of the two
nonlinear modes. One is tuned with flux (symmetric mode), the other barely changes (anti-symmetric mode).
We can reproduce this experiment by generating a Hamiltonian with QuCAT and diagonalizing it with QuTiP
for different values of the flux. For example, at 0 flux, the two first two transition frequencies £ 1and £2 canbe
generated from

# generate a Hamiltonian
H=TC.hamiltonian(Lj = Lj (phi =10),
excitations = [7, 7],
taylor =4,
modes = [1, 2])
# diagonalize the Hamiltonian
ee=H.eigenenergies ()
fl =ee[l]-eel0]

f2 =eel[2]-ee[0]

£1 and £2 is plotted in figure A4(d) for different vales of flux and closely matches the experimental data. Note
that we have constructed a Hamiltonian with modes 1 and 2, excluding mode 0, which corresponds to
oscillations of current majoritarily located in the tuneable coupler. One can verify this fact by plotting the
distribution of currents for mode 0 using the show_normal_mode method.

This experiment can be viewed as two ‘bare’ transmon qubits coupled by the interaction

Hy = golo¥, (A2)
where left and right transmons are labeled L and R and o, is the x Pauli operator. The coupling strength greflects
the rate at which the two transmons can exchange quanta of energy. If the transmons are resonant a spectroscopy
experiment reveals a hybridization of the two qubits, which manifests as two spectroscopic absorption peaks
separated in frequency by 2¢. From this point of view, this experiment thus implements a coupling which is
tuneable from an appreciable value to near 0 coupling.

A.5. Studying a Josephson-ring-based qubit
In this section, we demonstrate the ability for QuCAT to analyze more complex circuits. The experiment of (Roy
etal 2017) features a Josephson ring geometry, which is a Wheatstone-bridge-like circuit, typically difficult to
analyze as it cannot be decomposed in series and parallel connections. We consider the coupling of this ring to
two lossy modes of a cavity, bringing the total number of modes in the circuit to 5. We aim to understand the key
feature of this circuit: that one qubit-like mode acts as a quadrupole with little coupling to the resonator modes.
The studied device consists of a 3D cavity (figure A5(a)) hosting a number of microwave modes, in which is
positioned a chip patterned with the trimon circuit. The trimon circuit has four capacitive pads in a cross shape
(figure A5(b)) which have an appreciable coupling between each other making up the capacitance of the trimon
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Figure A5. Trimon device and Purcell-decay-protected mode visualization. (a) Schematic of the cross-cut of a 3D microwave cavity.
Dark gray shows metal whilst light gray show the hollowed out section forming the cavity. Arrows represent the electric field of the
TEj¢;, or ‘vertical’ cavity mode. In the cavity is placed a chip hosting the trimon circuit shown in the optical micrograph (b). The
circuit has 4 capacitive pads labeled from 1 to 4. These pads are connected by the Josephson junction ring shown in the scanning
electron microscope image (c). Scale bars correspond 200 and 2 pm for panels (b) and (c) respectively. (d) Lumped-element equivalent
circuit of the device constructed using the QuCAT GUI and displayed with show_normal_mode. The four pads of the trimon are
color-coded to match (b). The capacitor C, formed by pads 1 and 3 forms an electrical dipole which couples to a vertical cavity mode,
and the capacitor C;, formed by pads 2 and 4 forms an electrical dipole which couples to modes with horizontal electric fields. The
show_normal_mode overlays the voltage across different components if a single-photon amplitude coherent state was populating
mode 2. This mode has a particularity that the voltage is concentrated across the junctions and their parallel capacitors without leading
to a buildup of voltage across the capacitors C, or Cy,. This decouples mode 2 from the cavity mode decay (no Purcell effect) whilst the
presence of voltage fluctuations across the junctions will ensure cross-Kerr coupling to the other modes of the system. Concerning
panels (a)—(c): reprinted figures with permission from Roy et al (2017). Copyright 2017 by the American Physical Society.

qubit modes. The two vertically (horizontally) positioned pads will couple to modes of the 3D cavity featuring
vertical (horizontal) electric fields. We will consider both a vertical and a horizontal cavity mode in our model.
We number these pads from 1 to 4 as displayed in figure A5(b). Each pad is connected to its two nearest
neighbors by a Josephson junction (figure A5(c)), forming a Josephson ring.

Using the QuCAT GUI, we build a lumped element model of this device, generatinga Qcircuit object we
store in the variable t r imon.

trimon = qucat.GUI (‘netlist.txt’)

The cavity modes are modeled as RLC oscillators with each plate of their capacitors capacitively coupled to a pad
of the trimon circuit. The junction inductances are assigned different values, first to reflect experimental reality,
butalso to avoid infinities arising in the QuCAT analysis. Indeed, the voltage transfer function of this Josephson
ring between nodes 1, 3 and nodes 2, 4 will be exactly 0, which will cause errors when initializing the Qcircuit
object. Component parameters are chosen to only approximatively match the experimental results of (Roy et al
2017), the objective here is to demonstrate QuCAT features rather than accurately model the experiment.
The particularity of this circuit is that it hosts a quadrupole mode. It corresponds here to the second highest

frequency mode and can be visualized by calling

trimon.show_normal_mode (
mode = 2,
quantity = ‘voltage’)
the result of which is displayed in figure A5(d). The voltage oscillations are majoritarily located in the junctions,

indicating this is not a cavity mode, but a mode of the trimon circuit. Crucially, the polarity of voltages across the
junctions is such that the total voltage between pads 1 and 3 and the total voltage across pads 2 and 4 is 0,
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Figure A6. Other modes of the Trimon. Using the £_k_A_chi method together with the pretty_print option gives the user an
overview of the different modes frequencies, dissipations rates and levels of anharmonicity. Here we have overlaid the output of the
method with schematics of the corresponding trimon and cavity modes adapted from (Roy et al 2017). One can identify a mode to the
schematic by observing where the currents or voltages are mostly located in the circuit using the show_normal_mode method as in
figure A5(d). Since the only resistors of the circuit are located in the cavity modes, all dissipation in transmon modes 0 through 2are
due to the Purcell effect. Mode 2 is better protected from this effect by 3 orders of magnitude with respect to the two other transmon
modes. Concerning schematics: reprinted figures with permission from Roy et al (2017). Copyright 2017 by the American Physical
Society.
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warranting the name of ‘quadrupole mode’. Due to the orientation of the chip in the cavity, the vertically and
horizontally orientated cavity modes will only be sensitive to voltage oscillations across pads 1 and 3 or 2 and 4.
This ensures that the mode displayed here is decoupled from the cavity modes, and from any loss channels they
may incur. We can verify this fact by computing the losses of the different modes, and comparing the losses of
mode 2 to the other qubit-like modes of the circuit. We perform this calculation by calling

trimon.f_k_A_ chi (pretty_print = True)

which will calculate and return the loss rates of the modes, along with their eigenfrequencies, anharmonicities
and Kerr parameters. Setting the keyword argument pretty_print to True prints a table containing all this
information, which is shown in figure A6. To be succinct, we have not shown the table providing the cross-Kerr
couplings. By using the show_normal_mode method to plot all the other modes of the circuit, and noting
where currents or voltages are majoritarily located, we can identify each mode with the schematics provided in
figure A6. The three lowest frequency modes are located in the trimon chip, and we notice that as expected the
quadrupole mode 2 has aloss rate (due to resistive losses in the cavity modes) which is three orders of magnitude
below the other two. Despite this apparent decoupling, the quadrupole mode will still be coupled to both cavity
mode through the cross-Kerr coupling, given by twice the square-root of the product of the quadrupole and
cavity mode anharmonicities.

Appendix B. Circuit quantization overview

In this section we summarize the quantization method used in QuCAT, which is an expansion on the work of
(Nigg et al 2012). This approach is only valid in the weak anharmonic limit, where charge dispersion is negligible.
See Nigg et al (2012) or section E.2 for a detailed discussion of this condition.

The idea behind the quantization method is as follows. We first consider the ‘linearized’ circuit. Thisis a
circuit where the junctions are replaced by their Josephson inductances L; = (bé / Ej. Where E;is the Josephson
energy and the reduced flux quantum is given by ¢y = 7/2e. We determine the oscillation frequencies and
dissipation rates of the different normal modes of this linearized circuit. Then, we calculate the amplitude of
phase oscillations across each junction when a given mode is excited. This will determine how nonlinear each
mode is. All this information will finally allow us to build a Hamiltonian for the circuit.

B.1. Circuit simplification to series of RLC resonators (Foster circuit)

The eigenfrequencies and nonlinearity of each mode is obtained by transforming the linearized circuitto a
geometry we can easily analyze. We will first describe this process assuming there is only a single junction in the
circuit, the case of multiple junctions will follow. We consider the example circuit of figure 1. After replacing the
junction with its Josephson inductance, we determine the admittance Yj(w) = Ij(w)/Vj(w) evaluated at the nodes
of the junction. This admittance is the inverse of the impedance measured at the nodes of the junction. It relates
the amplitude | V| and phase (V) of the voltage oscillating at frequency w that would build up across the
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Figure B1. Example of equivalent circuit construction to prepare for quantization. We use the same example as used in figures 1-4. (a)
The circuit is linearized by replacing the junction with an inductance L;. The circuit is characterized at the nodes of the junction by its
admittance Y;. (b) In the limit of small dissipation, this circuit is equivalent to a series combination of RLC resonators.

junction if one would feed a current oscillating at w with amplitude |I;] and phase 6(1)) to one of its nodes through
ainfinite impedance current source. In figure B1(a) we show a schematic describing this quantity. In the case
where all normal modes of the circuit have small dissipation rates, this circuit has an approximate equivalent
shown in figure B1(b), consisting of a series of RLC resonators (Solgun et al 2014). By equivalent, we mean that
the admittance Y; of the circuit is approximatively equal to that of a series combination of RLC resonators

1
Vi)~ —— (B1)
! > 1/ V(W)
which each have an admittance
1 . 1
Yu(w) = - + iICpw + —. (B2)
iL,w m

Each RLCresonator represents a normal mode of the circuit, with resonance frequency w,,, = 1/4/L,,C,,, and
dissipation rate k,,, = 1/R,, C,,. Since this equivalent circuit comes from an extension of Foster’s reactance
theorem (Foster 1924) to lossy circuits, we call this the Foster circuit.

B.2. Hamiltonian of the Foster circuit

The advantage of this circuit form, is that it is easy to write its corresponding Hamiltonian following standard
quantization methods (see Vool and Devoret 2017). In the absence of junction nonlinearity, it is given by the
sum of the Hamiltonians of the independent harmonic RLC oscillators:

S7 B, o (B3)

The annihilation operator d,, for photons in mode m is related to the expression of the phase difference between
the two nodes of the oscillator

" N A
(pm,j - @zpf,m,j(am + am)’

1 /i
%) . LS B4
zptym,j ¢0 2w, m ( )

where ¢, are the zero-point fluctuations in phase of mode . The total phase difference across the Josephson
junction ¢, is then the sum of these phase differences ¢, = 3=, &,, ;, and we can add the Junction nonlinearity to
the Hamiltonian

~2
. . ?;
H =3 /wndhim + Ejf 1 — cos & — 71 ) (B5)
m

Since the linear part of the Hamiltonian corresponds to the circuit with junctions replaced by inductors, the
linear part already contains the quadratic contribution of the junction potential ocafo].Z, and itis subtracted from

the cosine junction potential.
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B.3. Calculating Foster circuit parameters
Both w,,, and k,,, can be determined from Y(w) since we have Y(w,, + ik,,,/2) = 0 forlowloss circuits. This can
be proven by noticing that the admittance Y,,, of mode #1 has two zeros at

1 1 .1
Cn=—T7—==,1 ——5 +1i
JLuCo 4Q?  2R,,C,
>~ Wy + 1K /2 (B6)

and ¢ ;’2 The approximate equality holds in the limit of large quality factor Q,, = R, / VLm/Cn > 1.From
equation (B1) we see that the zeros of Yare exactly the zeros of the admittances Yj. The solutions of Y(w) = 0,
which come in conjugate pairs ¢, and ¢ j;, thus provide us with both resonance frequencies w,, = Re[(,,,] and
dissipation rates ,, = 2Im[(,,].

Additionally, we need to determine the effective capacitances C,, in order to obtain the zero-point
fluctuations in phase of each mode. We focus on one mode k, and start by rewriting the admittance in
equation (B1) as

1

Yi(w) = Yi(w) . (B7)
! 1+ 37 %w)/ Yu(w)
m=k
Its derivative with respect to w is
1 0 1
Yi(w) = Yi(w) + Yi(w)— . (B8)
: T S @ /Y@ 0w 1+ Y %w) /Y w)
m=k m=k
Evaluating the derivative atw = (j, where Y;((x) = Oyields
. 4Q?
Yi(C) = Yi(C) = iC| 1 + ———————
e G+ \4Q* — 1)
~i2C,, for Q,, > 1. (B9)
The capacitance is thus approximatively given by
Cn = Im[Y}(¢]/2. (B10)

B.4. Multiple junctions
When more than a single junction is present, we start by choosing a single reference junction, labeled r. All
junctions will be again replaced by their inductances, and by using the admittance Y, across the reference
junction, we can determine the Hamiltonian including the nonlinearity of the reference junction through the
procedure described above.

In this section, we will describe how to obtain the Hamiltonian including the nonlinearity of all other
junctions too

"2
- At A . ¥
H=Y) S, @ + ZEjll — cos Py — 7]], (B11)
m i

where ¢, is the phase across the jth junction. This phase is determined by first calculating the zero-point
fluctuations in phase @, ., through the reference junction r for each mode m given by equation (B4). For each
junction j, we then calculate the (complex) transfer function Tj,(w) which converts phase in the reference
junction to phase in junction j. We can then calculate the total phase across a junction j with respect to the
reference phase of junction r, summing the contributions of all modes and both quadratures of the phase

&= 3 Coptmr [Re (T (@) @ + A7) — i Im (T (@) @ — )] (B12)

The definition of phase (Vool and Devoret 2017) @i(t) = gbo’l £ v(7)dT where v;is the voltage across

junctionj translates in the frequency domain to ¢;(w) = iw¢0_1 Vj(w). Finding the transfer function T;, for phase
is thus equivalent to finding a transfer function for voltage Tj(w) = Vj(w)/V/(w). This is a standard task in
microwave network analysis (see section D.3 for more details).

B.5. Further treatment of the Hamiltonian
The cosine potential in equation (B11) can be expressed in the Fock basis by Taylor expanding it around small
values of the phase. This yields
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2n
n |:Z szpf,m,j(&;l + ﬁm):| (Bl3)

which is the form returned by the QuCAT hami 1 tonian method. By keeping only the fourth power in the
Taylor expansion and performing first order perturbation theory, we obtain

N A
A=Y (ﬁwm A, — an)a,;am — a8 Al — Xy B A (B14)
m n=m 2 2
where the anharmonicity or self-Kerr of mode m1 is
Apw=> Anj (B15)
j
asreturned by the anharmonicites method, where
Apj = Ew“ - (B16)
o Tepfmj

is the contribution of junction j to the total anharmonicity of a mode m. The cross-Kerr coupling between mode
mand nis

Xown = 2 JAmjAnj- (B17)
i

Both self and cross-Kerr parameters are computed by the ke rr method. Note in equation (B14) that the
harmonic frequency of the Hamiltonian is shifted by A,,and 3_,, ., x,,,,, /2. The former comes from the change
in Josephson inductance induced by phase fluctuations of mode m. The latter is called the Lamb shift (Gely et al
2018) and is induced by phase fluctuations of the other modes of the circuit.

Appendix C. Algorithmic methods

There are three calculations to accomplish in order to obtain all the parameters necessary to write the circuit
Hamiltonian. We need:

+ the eigen-frequencies w,, and loss rates x,, fulfilling Y,((,,, = w,,, + ik,,/2) = 0 where Y, is the admittance
across a reference junction

+ the derivative of this admittance evaluated at (,,,

+ thetransfer functions T}, between junctions jand the reference junction r.
In this section, we cover the algorithmic methods used to calculate these three quantities.

C.1. Resonance frequency and dissipation rate

C.1.1. Theoretical background. In order to obtain an expression for the admittance across the reference
junction, we start by writing the set of equations governing the physics of the circuit. We first determine a list of
nodes, which are points at which circuit components connect. Each node, labeled #, is assigned a voltage v,,. We
name r. the positive and negative nodes of the reference junction.

We are interested in the steady-state oscillatory behavior of the system. We can thus move to the frequency
domain, with complex node voltages | V;, (w) [el“+0(Vs(w)) fully described by their phasors, the complex
numbers V,, = |V, (w)|e!?"»(“), In this mathematical construct, the real-part of the complex voltages describes
the voltage one would measure at the node in reality. Current conservation dictates that the sum of all currents
arriving at any node #, from the other nodes k of the circuit should be equal to the oscillatory current injected at
node n by a hypothetical, infinite impedance current source. This current is also characterized by a phasor I,.
This can be compactly written as

> YV — Vo) = I, (CDH
k=n
where klabel the other nodes of the circuit and Y, is the admittance directly connecting nodes k and n. Note that
in this notation, if a node k; can only reach node n through another node k,, then Y, = 0. Inductors (with
inductance L), capacitors (with capacitance C) and resistors (with resistance R) then have admittances 1 /iLw,
iCwand 1/R respectively.
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Expanding equation (C1) yields

(Z YoV, — Z YuVi =1, (C2)
k=n k=n
which can be written in matrix form as
YkeoYor —You - —Yon \4) Iy
—.Ym Eki.lyik —5./11\7 V1 _ 11 ‘ (C3)
Yo Yo SkenYmi)\WN Iy

Since voltage is the electric potential of a node relative to another, we still have the freedom of choosing a ground
node. Equivalently, conservation of currents imposes that current exciting that node is equal to the sum of
currents entering the others, there is thus a redundant degree of freedom in equation (C3). For simplicity, we will
choose node 0 as ground. Since we are only interested in the admittance across the reference junction, we set all
currents to zero, except the currents entering the positive and negative reference junction nodes: I,, and

I, = —I,, respectively. The admittance is defined by Y; = I, /(V;, — V,). The equations then reduce to

0

Vi Vi, — Vi
V. 0

Y| Pl=x%] | (C4)

: 0

W V-V,
0

where Y is the admittance matrix

Skt Y2 - —Yin
y=| " St ohe (C5)
—Yvi Y2 o XpenYak

For Y, = 0, equation (C4) has a solution for only specific values of w = (,,,. These are the values which make
the admittance matrix singular, i.e. which make its determinant zero

Det[Y(¢,)] = 0. (Ce)

The determinant is a polynomial in w, so the problem of finding (,,, = w,,, + ik,,/2 reduces to finding the roots
of this polynomial. Note that plugging ¢,,, into the frequency domain expression for the node voltages yields

Vi (€, elemterm /2, such that the energy ocvi (£)*vj(t) o< e ! decays at a rate r,,,, which explains the division
by two in the expression of (,,,. Also note, that we would have obtained equation equation (C6) regardless of the
choice of reference element.

C.1.2. Algorithm. We now describe the algorithm used to determine the solutions ¢,,, = w,, + ik,,/2 of
equation (C6). As an example, we consider the circuit of figure C1(a) that a user would have built with the GUL
The algorithm is as follows

1. Eliminate wires and grounds. In this case, nodes Ny, N5 would be grouped under a single node labeled 0 and
nodes N;, N, N3 would be grouped under node 1, we label node N, node 2, as shown in figure C1(b).

2. Compute the un-grounded admittance matrix. For each component present between the different couples
of nodes, we append the admittance matrix with the components admittance. The matrix is then multiplied
by wsuch that all components are polynomials in w, ensuring that the determinant is also a polynomial. In
this example, the matrix is

iCw? + 1/iL —iCw? —1/iL
—iCw? iCw? 4+ w/R —w/R | (C7)
~1/iL ~w/R  1/iL + w/R

3. Choose a ground node. The node which has a corresponding column with the most components is chosen
as the ground node (to reduce computation time). These rows and columns are erased from the matrix,
yielding the final form of the admittance matrix
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(a) (b)

c
T

Figure C1. Example circuit to illustrate the mode frequency finder algorithm. (a) Example of a circuit built through the GUI by a user.
(b) Application of the first step of the algorithm which removes the wires and grounds to obtain a minimal number of nodes without
removing any components.

¥ — (ijz + w/R —w/R ) C8)

—w/R 1/iL + w/R

4. Compute the determinant. Even if the capacitance, inductance and resistance were specified numerically,
the admittance matrix would still be a function of the symbolic variable w. We thus rely on a symbolic
Berkowitz determinant calculation algorithm (Berkowitz 1984, Kerber 2009) implemented in the Sympy
library through the berkowitz_det function. In this example, one would obtain

Det[Y] = LCw? — iRCw — 1. (C9)

5. Find the roots of the polynomial. Whilst the above steps have to be performed only once for a given circuit,
this one should be performed each time the user edits the value of a component. The root-finding is divided
in the following steps as prescribed by (Press et al 2007).

Diagonalize the polynomials companion matrix (Horn and Johnson 1985) to obtain an exhaustive list of all
roots of the polynomial. This is implemented in the NumPy library through the root s function.

Refine the precision of the roots using multiple iterations of Halley’s gradient based root finder (Press et al
2007) until iterations do not improve the root value beyond a predefined tolerance given by the Qcircuit
argument root_relative_tolerance. The maximum number of iterations that may be carried out
is determined by the Qcircuit argument root_max_iterations.Iftheimaginary partrelative to
the real part of the root is lower than the relative tolerance, the imaginary part will be set to zero. The
relative tolerance thus sets the highest quality factor that QuCAT can detect.

Remove identical roots (equal up to the relative tolerance), roots with negative imaginary or real parts,
0-frequency roots, roots for which ¥;’(w,,) < 0 for all [, where Y;is the admittance evaluated at the nodes of
an inductive element /, and roots for which Q,, < Qcircuit.Q_min. The user is warned of a root being
discarded when one of these cases is unexpected.

The roots (,,, obtained through this algorithm are accessed through the method eigenfrequencies
which returns the oscillatory frequency in Hertz of all the modes Re[(,,,] /27 or Loss_rates which returns
2Im([(,,]/27.

C.2. Derivative of the admittance

The zero-point fluctuations in phase ¢, for each mode m across a reference junction ris the starting point to
computing a Hamiltonian for the nonlinear potential of the Junctions. As expressed in equation (B4), this
quantity depends on the derivative Y’ of the admittance Y, calculated at the nodes of the reference element. In
this section we first cover the algorithm used to obtain the admittance at the nodes of an arbitrary component.
From this admittance we then describe the method to obtain the derivative of the admittance on which Doty
depends Finally we describe how to choose a (mode-dependent) reference element.

C.2.1. Computing the admittance. Here we describe a method to compute the admittance of a network between
two arbitrary nodes. We will continue using the example circuit of figure C1, assuming we want to compute the
admittance at the nodes of the inductor.

1. Eliminate wires and grounds as in the resonance finding algorithm, nodes Ny, N5 would be grouped under a
single node labeled 0 and nodes Nj, N,, N3 would be grouped under node 1, we label node N, node 2. We
thus obtain figure C3(a).
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Figure C2. Star-mesh transform. A node N connected to nodes A, B, C,.. through admittances Yy, Y, ... can be eliminated if we
interconnect nodes A, B, C,.. with impedances Y5, Yac, Yie» --- given by Yxy = Yx ¥y /3", Yar. We show the 5 node case, the initial
network on the left is called the ‘star’, which is then transformed to the ‘mesh’ on the right, reducing the total number of nodes by 1.

(1/R)(1/iwC) Y02 iwL
Yor= 1/R+1/iwC 7Y, Hwl

Figure C3. Example to illustrate the admittance calculation algorithm. (a) Example of a circuit built through the GUI by a user, after
removal of all wires and grounds. (b) Application of the star-mesh transformation to remove node 1. (c) After each application of the
star-mesh transformation, parallel connections are grouped together. Only the two nodes across which we want to compute the
admittance remain, the admittance is that of the remaining ‘admittance component’.

2.Group parallel connections. Group all components connected in parallel as a single ‘admittance
component’ equal to the sum of admittances of its parts. In this way two nodes are either disconnected,
connected by a single inductor, capacitor, junction or resistor, or connected by a single ‘admittance
component’.

3. Reduce the network through star-mesh transformations. Excluding the nodes across which we want to
evaluate the admittance, we utilize the star-mesh transformation described in figure C2 to reduce the
number of nodes in the network to two. If following a star-mesh transformation, two components are
found in parallel, they are grouped under a single ‘admittance component’ as described previously. For a
node connected to more than 3 other nodes the star-mesh transformation will increase the total number of
components in the circuit. So we start with the least-connected nodes to maintain the total number of
components in the network to a minimum. In this example, we want to keep nodes 0 and 2, but remove
node 1, a start-mesh transform leads to the circuit of figure C3(b) then grouping parallel componnets leads
to (¢).

4. The admittance is that of the remaining ‘admittance component’ once the network has been completely
reduced to two nodes.

The symbolic variables at this stage (Sympy Symbo1s)are w, and the variables corresponding to any component
with un-specified values.

C.2.2. Differentiating the admittance. The expression for the admittance obtained from the above algorithm
will necessarily be in the form of multiple multiplication, divisions or additions of the admittance of capacitors,
inductors or resistors. It is thus possible to transform Y'to a rational function of w

P(w) _ py +pw+ pw’+ ..

Y(w) = = >
Q(w) qo + qw + qw* + ...

(C10)

with the sympy function together. Itis then easy to symbolically determine the derivative of Y, ready to be
evaluated at ¢, once the coefficients p;and g; have been extracted

Y'(¢,) = (P'((,0Q(C,) — P((,)Q((,)/Q(,)*
=(p + 20,C + -0/ + 4G + ) (C11)

taking advantage of the property P((,,,) x Y((,,) = 0.

C.2.3. Choice of reference element.  For each mode m, we use as reference element r the inductor or junction
which maximizes @, .., - as specified by equation (B4). This corresponds to the element where the phase
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Figure C4. Impact of the choice of reference element. (a) Schematic of the circuit used in this example. We have used a 100 {F
capacitances, a 10 nH inductor and a 8 nH Josephson inductance, we will vary the coupling capacitance. The zero-point fluctuations in
phase Pyp, ACTOSS the inductor (r = L)and junction (r = J) for most anharmonic mode are drawn on the schematic and plotted in (b)
for different values of the coupling capacitor Cc. The phase oscillations associated with this mode are mostly located in the junction, so
as the coupling capacitor is lowered, the amplitude of phase oscillations diminishes in the inductor. Below C ~ 10~ fF, numerical
accuracies lead to unreliable values of the phase fluctuations in the inductor. This results in the anharmonicity of the qubit-like mode
Ay plotted in (c), to be incorrectly estimated if the inductor is chosen as a reference element and the anharmonicity is computed using
equation (B12).
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Figure C5. Visual summary of the notations and properties of the ABCD matrix applied to the calculation of T};. The transfer function
T,j = 1/Ais theinverse of the first coefficient of the ABCD matrix which relates the voltages and currents on either end of a network.
These currents and voltages are defined as shown above, with the reference junction on the left and junction j on the right. Currents
are defined as entering and exciting on the left and right respectively. If the circuit is constituted of a cascade of two port sub-networks,
the product of the sub-network ABCD matrices are equal to the ABCD matrix of the total network.

fluctuations are majoritarily located. We find that doing so considerably increases the success of evaluating
Y'(w,,). As an example, we plot in figure C4 the zero-point fluctuations in phase ©ypf,m,r Of the transmon-like
mode, calculated for the circuit of figure 1, with the junction or inductor as reference element. What we find is
that if the coupling capacitor becomes too small, resulting in modes which are nearly totally localized in either
inductor or junction, choosing the wrong reference element combined with numerical inaccuracies leads to
unreliable values of oty

C.3. Transfer functions

In this section, we describe the method used to determine the transfer function T;, between a junction jand the
reference junction r. This quantity can be computed from the ABCD matrix (Pozar 2009). The ABCD matrix
relates the voltages and currents in a two port network

(1)-(2 5)x) o
r j

where the convention for current direction is described in figure C5. By constructing the network as in figure C5,
with the reference junction on the left and junction j on the right, the transfer function is given by

23



10P Publishing

New J. Phys. 22 (2020) 013025 M F Gely and G A Steele

(a)

Figure C6. Networks after star-mesh reduction. The two non-trivial situations reached after applying star-mesh transformations to a
network to obtain T;.

_Viw 1
Ty (w) = Ve A (C13)

To determine A, we first reduce the circuit using star-mesh transformations (see figure C2), and group
parallel connections as described in the previous section, until only the nodes of junctions rand j are left. If the
junctions initially shared a node, the resulting circuit will be equivalent to the network shown in figure C6 (a). In
this case,

[
A=|14+—| (C14)
a
Ifthe junctions do not share nodes, the resulting circuit will be equivalent to the network shown in figure C6(b),
where some admittances may be equal to 0 to represent open circuits. To compute the ABCD matrix of this
resulting circuit, we make use of the property illustrated in figure C5: the ABCD matrix of a cascade connection
of two-port networks is equal to the product of the ABCD matrices of the individual networks. We first
determine the ABCD matrix of three parts of the network (separated by dashed line in figure C6) such that the
ABCD matrix of the total network reads

A B 1 0Jl]A B||1 O
[c EJ::[XAI][C ﬁ][% 1} (€13)
A=A + By, (C16)

where the A and B coefficients of the middle part of the network are

A=+ VY + Yo /(Yo Ys — B Y0)
B=Y,+ Y+ Y. + Yo) /(Y. Yy — ¥, Yo). (C17)

The ABCD matrix for the middle part of the circuit is derived in section 10.11 of (Arshad 2010), and the ABCD
matrices for the circuits on either sides are provided in (Pozar 2009).

This method is also applied to calculate the transfer function to capacitors, inductors and resistors, notably
to visualize the normal mode with the show_normal_mode function.

C.4. Alternative algorithmic methods
Since symbolic calculations are the most computationally expensive steps in a typical use of QuCAT, we cover in
this section some alternatives to the methods previously described, and the reasons why they were not chosen.

C.4.1. Eigen-frequencies from the zeros of admittance. One could solve Y,(w) = 0 where Y, is the admittance
computed as explained in section D.2. Providing good initial guesses for all values of the zeros (,,, can be
provided, a number of root-finding algorithms can then be used to obtain final values of ¢,,,.

A set of initial guesses could be obtained by noticing that Y, is a rational function of w. Roots of its
numerator are potentially zeros of Y, and a complete set of them is easy to obtain through a diagonalization
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Figure C7. Determining zero-point fluctuations from differentiating the admittance in decoupled circuits. Imaginary part of the
admittance Im[Y] across the junction of the circuit of figure 1 for different values of the coupling capacitor C.and for L; = 12 nH.
Resonances correspond to the frequencies w at which the admittance crosses 0, and the calculation of zero-point fluctuations depends
on the derivative Im[Y’] at that point. As the resonator and transmon parts of the circuit decouple, Im[Y’] becomes larger, requiring a
lower dw if the admittance is to be determined through equation (C18). In extreme cases (see lower panel), when the derivative is very
large, the smaller variation in the background slope may be mistaken for the slope at a resonance.

of the companion matrix as discussed before. Note that if these roots are roots of the denominator with equal or
higher multiplicity, then they are not zeros of Y. They can, however, make good initial guesses of a root-finding
algorithm run on Y,. This requires a simplification of Y,, as computed through star-mesh transforms, to its
rational function form. We find this last step to be as computationally expensive as obtaining a determinant.

A different approach, which does not require using a root-finding algorithm on Y,, is to simplify the rational-
function form of Ysuch that the numerator and denominator share no roots. This can be done by using the
extended Euclidian algorithm to find the greatest common polynomial divisor of the numerator and
denominator. However, the numerical inaccuracies in the numerator and denominator coefficients may make
this method unreliable.

The success of both of these approaches is dependent on determining a good reference component r, which
may be mode-dependent (see figure C4). This reference component is difficult to pick at this stage, when the
mode frequencies are unknown.

C.4.2. Finite difference estimation of the admittance derivative Rather than symbolically differentiating the
admittance, one could use a numerical finite difference approximation, for example

Y (w+ 6w/2) — YV (w — bw/2)

Y/ (w) =~
@) —

(C18)

Y, can be obtained through star-mesh reductions, or from a resolution of equation (C4).

But finding a good value of dw is no easy task. As an example, we consider the circuit of figure 1, where we
have taken as reference element the junction. As shown in figure C7, when the resonator and transmon decouple
through a reduction of the coupling capacitor, a smaller and smaller éw is required to obtain Y,’ evaluated at the
(; of the resonator-like mode. We have tried making use of Ridders method of polynomial extrapolation to try
and reliably approach the limit 6x — 0 (Press et al 2007). However at small coupling capacitance, it always
converges to the slower varying background slope of Y,, without any way of detecting the error.

C.4.3. Transfer functions from the admittance matrix. ~Calculating the transfer function Tj; could alternatively be
carried out through the resolution of the system of equations (C5). The difference in voltage of a reference
elements nodes would first have to be fixed to the zero-point fluctuations computed with the method of

section (D.2). These equations would have to be resolved at each change of system parameters and for each
mode, with wreplaced in the admittance matrix by its corresponding value for a given mode. This is to be
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Figure D1. Computation time with increasing circuit size. On the vertical axis, we show the time necessary to initialize the Qcircuit
object, which is the computationally expensive part of a typical QuCAT user case. This is plotted as a function of the number of nodes
in the circuit. The test circuit used here is the multi-mode circuit of figure A3(c), optionally with a resistor in parallel of each capacitor.
The number of nodes are increased by adding modes to the circuit. Most of the computational time is spent in the symbolic
manipulations performed with the sympy library.

Qcircuit build time (s)

balanced against a single symbolic derivation of Tj; through star-mesh transformations, and fast evaluations of
the symbolic expression for different parameters.

Appendix D. Performance and limitations

D.1. Number of nodes
In this section we ask the question: how big a circuit can QuCAT analyze? To address this, we first consider the
circuit of figure A3(c), and secondly the same circuit with resistors added in parallel to each capacitor. As the
number of (R)LC oscillators representing the modes of a CPW resonator is increased, we measure the time
necessary for the initialization of the Qcircuit object. This is typically the most computationally expensive part of
a QuCAT usage, limited by the speed of symbolic manipulations in Sympy.

These symbolic manipulations include:

+ calculating the determinant of the admittance matrix
+ converting that determinant to a polynomial
+ reducing networks through star-mesh transformations both for admittance and transfer function calculations

+ rational function manipulations to prepare the admittance for differentiation.

Once these operations have been performed, the most computationally expensive step in a Qcircuit method is
finding the root of a polynomial (the determinant of the admittance matrix) which typically takes a few
milliseconds.

The results of this test are reported in figure D1. We find that relatively long computation times above 10 s
are required as one goes beyond 10 circuit nodes. Due to an increased complexity of symbolic expressions, the
computation time increases when resistors are included. For example, the admittance matrix of a non-resistive
circuit will have no coefficients proportional to w, only w” and only real parts, translating to a polynomial in
Q = w* which will have half the number of terms as a resistive circuit. However, we find that this initialization
time is also greatly dependent on the circuit connectivity, and this test should be taken as only a rough guideline.

Making QuCAT compatible with the analysis of larger circuits will inevitably require the development of
more efficient open-source symbolic manipulation tools. The development of the open-source C++-library
SymEngine https://github.com/symengine/symengine, together with its Python wrappers, the symengine.py
project https://github.com/symengine/symengine.py, could lead to rapid progress in this direction. An
enticing prospect would then be able to analyze the large scale cQED systems underlying modern transmon-
qubit-based quantum processors (Kelly et al 2019). One should keep in mind that an increase in circuit size
translates to an increase in the number of degrees of freedom of the circuit and hence of the Hilbert space size
needed for further analysis once a Hamiltonian has been extracted from QuCAT.
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Figure D2. Applicability of the harmonic Fock basis. (a) Transmon or Cooper-pair-box circuit. (b) On the x-axis, we vary the
approximate anharmonicity Ec = €*/2Cwith respect to the frequency wy = 1 / \/LJ_C . For each value, we plot a Hilbert space size,
and order of Taylor-expansion of the junction cosine-potential. Incrementing these values produces less than a 0.1 percent change in
the first two transition frequencies obtained by diagonalizing the Hamiltonian. Beyond a relative anharmonicity of 8, convergence is
no longer reached, even for Hilbert space sizes and Taylor expansions up to 100. (c) Frequency of the first transition w,_, obtained
from Hamiltonian diagonalization, relative to the value expected from first order perturbation theory: wy — Ec/h. (d) Anharmonicity
We—f — Wy obtained from Hamiltonian diagonalization relative to the value expected from first order perturbation theory Ec/h.
Black lines correspond to a diagonalization in the harmonic Fock basis (equation (B13)), blue and orange dashed lines correspond to a

diagonalization of the Cooper-pair box Hamiltonian with gate charges of 0 and 1/2 respectively. The harmonic Fock basis provides
reliable results up to approximatively 6 percent anharmonicity.

D.2. Degree of anharmonicity

In this section we study the limits of the current quantization method used in QuCAT. More specifically, we
study the applicability of the basis used to express the Hamiltonian, that of Fock-states of harmonic normal
modes of the linearized circuit. To do so, we use the simplest circuit possible (figure D2(a)), the parallel
connection of a Josephson junction and a capacitor. As the anharmonicity of this circuit becomes a greater
fraction of its linearized circuit resonance, the physics of the circuit goes from that of a Transmon to that ofa
Cooper-pair box (Koch et al 2007), and the Fock-state basis becomes inadequate. This test should be viewed as a
guideline for the maximum acceptable amount for anharmonicity. We find that when the anharmonicity
exceeds 6 percent of the eigenfrequency, a QuCAT generated Hamiltonian will not reliably describe the system.

In this test, we vary the ratio of Josephson inductance L; to capacitance C, increasing the anharmonicity
expected from first-order perturbation theory (see equation (B14)), called charging energy Ec = ¢°/2C. The
resonance frequency of the linearized circuit wy = 1 / \/L]_C is maintained constant. For each different
charging energy, we use the hami 1 tonian method to generate a Hamiltonian of the system. We are interested
in the order of the Taylor expansion of the cosine potential, and the size of the Hilbert space, necessary to obtain
realistic first and second transition frequencies of the circuit, named wj_, and w,_ s respectively. To do so, we
increase the order of Taylor expansion, and for each order we sweep through increasing Hilbert space sizes. In
figure D2(b), we show the values of these parameters at which incrementing them would not change w,_, and
w,—f by more than 0.1 percent. Beyond a relative anharmonicity Ec/ fiw, of 8 percent, such convergence is no
longer reached, even for cosine expansion orders and Hilbert space sizes up to 100.

Up to the point of no convergence, we compare the results obtained from the diagonalization in the
harmonic Fock basis (Hamiltonian generated by QuCAT), with a diagonalization of the Cooper-pair box
Hamiltonian. In regimes of higher anharmonicity, the system becomes sensitive to the preferred charge offset
between the two plates of the capacitor N, (expressed in units of Cooper-pair charge 2e) imposed by the electric
environment of the system. The Cooper-pair box Hamiltonian takes this into account

2
Blegs = 4EC(2|N><N| - Ng) SN+ 1(N] 4 INVN + 1), o1
N N

where | N) is the quantum state of the system where N Cooper-pairs have tunneled across the junction to the
node indicated in figure D2 (a). For more details on Cooper-pair box physics and the derivation of this
Hamiltonian, refer to (Schuster 2007). We diagonalize this Hamiltonian in a basis of 41 | N) states.

We find that beyond 6 percent anharmonicity, the Cooper-pair box Hamiltonian becomes appreciably
sensitive to N,and diverges from the results obtained in the Fock basis. This corresponds to E;/Ec = 35 at which
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the charge dispersion (the difference in frequency between 0 and 0.5 charge offset)is4 x 10 >and 1 x 10 for
the first two transitions respectively.

Beyond 8 percent anharmonicity, one cannot reach convergence with the Fock basis and just before results
diverge considerably from that of the Cooper-pair box Hamiltonian. This corresponds to E;/Ec ~ 20 at which
the charge dispersionis 1.5 x 10> and 3 x 10~ *for the first two transitions respectively. A possible extension
of the QuCAT Hamiltonian could thus include handling static offsets in charge and different quantization
methods, for example quantization in the charge basis to extend QuCAT beyond the scope of weakly-
anharmonic circuits.

Appendix E. Installing QuCAT and dependencies

The recommended way of installing QuCAT is through the standard Python package installer by running pip
install qucat inaterminal. Alternatively, all versions of QuCAT, including the version currently under-
development is available on github at https: / /github.com/qucat. After downloading or cloning the repository,
one can navigate to the src folderandrunpip install. inaterminal.

QuCAT and its GUI is cross-platform, and should function on Linux, MAC OS and Windows. QuCAT
requires a version of Python 3, using the latest version is advised. QuCAT relies on several open-source Python
libraries: Numpy, Scipy, Matplotlib, Sympy and QuTiP (Johansson et al 2012, 2013), installation of Python and
these libraries through Anaconda is recommended. The performance of Sympy calculations can be improved by
installing Gmpy2.

Appendix F. List of QuCAT objects and methods

QuCAT objects

Network—~CreatesaQcircuit fromalist of components

GUI —Opens a graphical user interface for the construction ofaQcircuit
J —Creates a Josephson junction object

L—Cereates a inductor object

C—Cereates a capacitor object

R—Creates a resistor object

Qcircuit methods

eigenfrequencies—Returns the normal mode frequencies

loss_rates —Returns the normal mode loss rates

anharmonicities—Returns the anharmonicities or self-Kerr of each normal mode
kerr—Returns the self-Kerr and cross-Kerr for and between each normal mode

f_k_A_ chi—Returns the eigenfrequency, loss-rates, anharmonicity, and Kerr parameters of the circuit

hamiltonian—Returns the Hamiltonian of [B13]

Qcircuit methods (only if built with GUI)
show —Plots the circuit

show_normal_mode —Plots the circuit overlaid with the currents, voltages, charge or fluxes through each
component when a normal mode is populated with a single-photon coherent state.

J,L,R, Cmethods

zpf —Returns contribution of a mode to the zero-point fluctuations in current, voltages, charge or fluxes.
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Jmethods

anharmonicity—Returns the contribution of this junction to the anharmonicity of a given normal mode
(equation (B16)).

Appendix G. Source code and documentation

The code used to generate the figures of this paper are available in Zenodo with the identifier (https://doi.org/
10.5281/zen0do.3298107). Tutorials and examples, including those presented here are available on the QuCAT
website at https://qucat.org/. The latest version of the QuCAT source code, is available to download or to
contribute to at https://github.com/qucat.
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