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1 Table of Symbols

this section contains a table of all symbols used in this text.
symbol description mathematical notation
|ψ(t)〉 State vector representing a pure quantum state

Ĥ Hamiltonian represents the total energy of the cor-
responding system

ρ̂ Density matrix representing the quantum state of a
quantum system

ρ̂ =
∑
j pj |ψj〉 〈ψj |

Tr
(
Â
)

trace sum of the elements on the main diagonal of a
matrix

Tr
(
Â
)

=
∑n
i=1 aii

TrA

(
Â⊗ B̂

)
Partial trace a generalization of the trace operator TrA

(∑
i Âi ⊗ B̂i

)
=∑

i Tr
(
Âi

)
B̂i

< Â > Notation used for the expectation value of an opera-
tor Â

Σ̂z Pauli-z matrix

[
1 0
0 −1

]
χ Counting field
v value of the output of a measurement
Tf time interval when data is collected
Tc time interval during which data needs to be collected

to obtain significant results

Σ̂x Pauli-x matrix

[
0 1
1 0

]
U(α) rotation matrix over an angle of α

[
cosα − sinα
sinα cosα

]
α Angle of rotation of the qubit after a measurement

to return it to an equal weight superposition
γ Value describing the outside influences on our quan-

tum system

M̂ Observable of the quantum system

Q̂ Operator acting on one of the qubits of the quantum
system

|x〉 Eigenstate of the Pauli-x matrix with eigenvalue 1 |+〉+|−〉√
2

Σ̂y Pauli-y matrix

[
0 −i
i 0

]
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2 Introduction

The standard description of quantum mechanics say that a projective measure-
ment is an instantaneous non-unitary process. After such a measurement the
quantum system is projected onto an eigenstate of the measured observable. In
reality these measurements are never instantaneous but happen over a timescale
that is required to obtain a reliable measurement result(1). Continuous weak lin-
ear measurement (CWLM)(2) provides a more general and accurate description
of the measurement process on a quantum system. Due to recent technological
advances it is possible to study CWLM in detail for a set of quantum device
setups. In this text, we study CWLM using an iterative simulation procedure.
With this procedure we can simulate single quantum trajectories as well as the
average trajectory of many quantum trajectories.

The quantum system used to describe a simulation works as follows. The
detector is represented by a qubit. At each step of the simulation, which all
have a duration of ∆t, the qubit is initialized to an equal weight superposition
of two states. Then, for the duration of the step, it is coupled to the system being
measured. We evaluate the unitary evolution of the system and the qubit during
this time. After that, the qubit is measured projectively, the measurement result
counts for the detector output at this time interval, and the density matrix gets
updated according to this measurement result. The quantum system that will
be used for the simulation is a qubit, which initially is in the equal weight

superposition |+〉+|−〉√
2

. The qubit is measured in the basis of these two states,

where |+〉 stands for spin-up and |−〉 stands for spin down. We define the
direction of the spin to be along the axis of rotation of the quantum particle.
As a result of the decoherence the superposition is destroyed at a certain time
scale, and the density matrix becomes diagonal. The qubit is now in one of the
two states that make up the superposition, and the value of the measurement
result freezes at the corresponding value. The resulting signal is normalized
such that the final output value of the measurement is equal to ±1. After a
measurement is complete the qubit is no longer in a superposition. The qubit
will receive a rotation over an angle α so it can return to the equal weight
superposition. We do this so we can continue to collect data from this system.
This is interesting because the average of many data sets is less susceptible to
chance than a single data set.

In subsection 2.1 we explain what a state vector and a density matrix are
used for in a quantum system. Next in Section 3, we show what is theoretically
expected of the spin in the x-direction. Then we optimize the rotation angle
which returns the qubit in the superposition state.In subsection 3.1, we do this
for a system without outside influences. In Subsection 3.2, we do the same for a
system that has outside influences that have an effect on the system. In Subsec-
tion 3.3 we investigate a relation between the amount of outside influences and
the behavior of the system. Then in Section 4 we discuss the simulation and
the results generated by the simulation. In Subsection 4.1 we discuss the formu-
las needed to make the simulation. In Subsection 4.2 we discuss the quantum
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trajectories generated by the simulation. In Section 5 the conclusion.

2.1 Density Matrix

In quantum mechanics we work with particles that are too small to be seen
with the naked eye. This means we do not always know the exact spin (or
even momentum, position, etc.) of a particle. It turns out that a particle
does not have set spin direction, rather it can have spin up, spin down and it
can be at both spin up and spin down at the same time in a superposition,
albeit not with the same likelihood for every spin direction. We call such a
particle, or a group of interacting particles, a quantum system. A quantum
system can always be described by a state vector. This state vector contains
a probability distribution for any observable of the system. An observable is a
physical quantity, like position or momentum, that can be measured.

We recognize two situations for quantum states. These are pure states and
mixed states. A pure quantum state can be described by a state vector |ψ〉 and
by a density matrix ρ̂. A mixed quantum state can only be described by the
density matrix. The density matrix of a quantum system can be defined by the
state vector, according to equation (1).

ρ̂ =
∑
j

pj |ψj〉 〈ψj | (1)

In this equation the pj represent the probability of the particle of the quantum
system to be in the pure state |ψj〉. Now we can give a more mathematical
description of a pure state and a mixed state. If a system is in a pure state, one
pj equals 1 and the others are all 0 in equation (1). If a system is in a mixed
state, then all pj < 1.

A quantum state does not have to be a static probability distribution. With
other words a quantum state can change over time. If a quantum state is
dependent on time there are two equations that can be solved to describe the
time evolution of the quantum system. One equation can be used if the system
is described by a state vector, this equation is equation (2), which is known as
the Schrodinger equation. We have set h̄ to be equal to 1 throughout this text.

ih̄
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 (2)

Another equation that can be solved to describe the time evolution of the
quantum system is the Liouville–von Neumann equation, given in equation (3).

ih̄
dρ̂

dt
= [Ĥ, ρ̂] (3)

This equation can be used to solve for the density matrix of the system. In
the system that is used in this text we start with a quantum system in a pure
state. We will solve the Schrodinger equation and then we use equation (1) to
find the density matrix of the system. In equation (3) the brackets denote the
commutator of Ĥ and ρ̂.
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Now we will give the properties of the density matrix. The first property is
that a density matrix is positive semi-definite. This means that equation (4)
holds.

〈k| M̂ |k〉 ≥ 0 (4)

In equation (4) M̂ is an n × n matrix and |k〉 is an n-dimensional real valued
vector. The second property is that a density matrix is Hermitian. This means
for a matrix Â equation (5) holds.

aij = a∗ji (5)

The aij are the elements of the matrix Â. Before we give the last property we

introduce the trace of a matrix. The trace of an n × n matrix Â is defined by
equation (6).

Tr
(
Â
)

=

n∑
i=1

aii (6)

Now we know what the trace is, the third property of a density matrix is that
the trace of a density matrix is always 1.

We have defined the trace of a matrix now. but the trace in this way is not
always convenient to use. If we have a system of two particles, we can’t use
the Hilbert space of only one particle. We create a new space of the quantum
system by taking the Kronecker product between the Hilbert space of the first
particle and the Hilbert space of the second particle. Any operator working on
this quantum system can then be written as the operator in equation (7).

Ĉ =
∑
i

Ô1,i ⊗ Ô2,i (7)

Here Ĉ is an operator acting on the total quantum system, Ô1,i is an operator

acting on particle 1 and Ô2,i is an operator acting on particle 2. In a system
of two or more particles the particles can become entangled. This means that
measurement outcomes are dependent on each other. If two particles are entan-
gled and one of them has a spin up, the other particle will be in a spin down
state the majority of the time. We can now introduce the partial trace. This
is similar to the trace that was just introduced, but it can be used on a system
of two or more particles. The partial trace works as a trace operator over one
matrix of the matrices in the Kronecker product. In the form of an equation
the partial trace is the unique operator such that equation (8) holds.

TrA

(∑
i

Âi ⊗ B̂i

)
=
∑
i

Tr
(
Âi

)
B̂i (8)

We can also take the partial trace over the second matrix instead of the first,
then it looks like equation (9).

TrB

(∑
i

Âi ⊗ B̂i

)
=
∑
i

ÂiTr
(
B̂i

)
(9)
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It is useful to know if the quantum system describes a pure state or a mixed
state. This can be checked. If the density matrix describes a pure state equation
(10) holds.

ρ̂ = ρ̂2 (10)

This means that for a pure state the trace of ρ̂2 is always equal to 1. If we can
show that the trace of ρ̂2 is not equal to 1 we know that we do not have a system
of a pure state, and thus it must be a mixed state. This will be used later in
this text to show that we do have need of the density matrix over a state over
to describe our quantum system.

Now we are going to define the expectation value of a measurement using
the density matrix. We first recall the expectation value of a measurement for
a pure state which we see in equation (11).

< Â >= 〈ψ| Â |ψ〉 (11)

We use this on each of the pure states that make up a density matrix and we
find.

< Â >=
∑
j

pj 〈ψj | Â |ψj〉 =
∑
j

pjTr
(
|ψj〉 〈ψj | Â

)
=

Tr

∑
j

pj 〈ψj | Â |ψj〉

 = Tr
(
ρ̂Â
) (12)

If we do this, we run a measurement on the system. But a measurement changes
the quantum state of the system. To see how it changes first we assume that
we can write the observable Â in the following way.

Â =
∑
i

ai |ki〉 〈ki| (13)

After a measurement on Â the density matrix changes and equation (14) holds.
Note that this is the density matrix for the specific outcome of a measurement.

ρ̂new =
|ki〉 〈ki| ρ̂ |ki〉 〈ki|
Tr (ρ̂ |ki〉 〈ki|)

(14)

Now we know what a density matrix is and how a measurement on the density
matrix works. We will use this in a simulation. But for this simulation we need
to apply a rotation after one measurement to make sure the qubit is in an equal
weight superposition so we can perform another measurement on the quantum
system.
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3 Analytical Results

3.1 Ideal System

We want to use our system to perform measurements on it. We make sure
our system starts out in an equal weight superposition. After a measurement
is done, it will no longer be in a quantum position. If we want to use this
same system for another measurement we must rotate it back to this position.
However the qubit does not have to be in a spin-up or a spin-down state. It can
be in a position that is only a partial spin-up or a partial spin-down. Thus the
angle we need to apply a rotation over depends upon the state that is reached
at the end of a measurement. In this section we will obtain an expression of the
optimal angle. Then we will calculate any constant values that are contained in
this expression. We will also look at what the theory predicts about the spin in
the x-direction.

To calculate the optimal rotation angle first we shall use a standard differ-
ential equation for the density matrix and try to solve it. We will start with a
standard differential equation for a density matrix in equation (15).

d

dt
ρ̂ = (ρ̂− Σ̂z ρ̂Σ̂z) (15)

We will try to evaluate this equation using the counting fields method(2) (3).
Before we do this we will give a short explanation on how the counting fields
method works. We do not know the behavior of the quantum system. If we
run a measurement it can have multiple output values. This means that the
output values of the system follow a probability distribution. We now introduce
a counting field χ(t) that is coupled to the output of a measurement. This
counting field is the variable of the generating function of the probability dis-
tribution of the output. We now treat the evolution of the bra and the ket
as slightly different, by giving them different Hamiltonians. This is done by
adding/subtracting a term linear in χ to the Hamiltonian.

When we have applied this method we get equation (16), where we now solve
the augmented density matrix.

d

dt
ρ̂ = −χ

2

8
ρ̂+ i

χ

2
(Σ̂z ρ̂+ ρ̂Σ̂z)− (ρ̂− Σ̂z ρ̂Σ̂z) (16)

To solve equation (16) we will write this out in matrix form and solve for all
matrix elements separately. To do this we write the density matrix as in equation
(17).

ρ̂ =

[
ρ++ ρ+−
ρ−+ ρ−−

]
(17)

7



d

dt

[
ρ++ ρ+−
ρ−+ ρ−−

]
= −χ

2

8

[
ρ++ ρ+−
ρ−+ ρ−−

]
+i
χ

2

([
1 0
0 −1

] [
ρ++ ρ+−
ρ−+ ρ−−

]
+

[
ρ++ ρ+−
ρ−+ ρ−−

] [
1 0
0 −1

])
−
([
ρ++ ρ+−
ρ−+ ρ−−

]
−
[
1 0
0 −1

] [
ρ++ ρ+−
ρ−+ ρ−−

] [
1 0
0 −1

]) (18)

Now we have four ordinary differential equations and thus we can find the
solution for all elements of the density matrix by integrating with respect to
time.

ρ++(t) = ρ++(0)e(−χ
2

8 +iχ)t (19)

ρ+−(t) = ρ+−(0)e(−χ
2

8 −2)t (20)

ρ−+(t) = ρ−+(0)e(−χ
2

8 −2)t (21)

ρ−−(t) = ρ−−(0)e(−χ
2

8 −iχ)t (22)

Note that this is the augmented density matrix, and it is not Hermitian. Now
we have the density matrix in terms of time and χ. Our goal was to determine
the optimal rotation angle to rotate our system back to its equal weight super-
position. To achieve this goal we want to express the augmented density matrix
in terms of the value of a measurement. For this we use a Fourier transform. to
switch from the variable χ to the value of a measurement, for which we use the
variable v:

ρ̂(v) =
T

2π

∫ ∞
−∞

ρ̂(χ)e−iχTvdχ (23)

In equation (23), T is the time interval data is collected from the system. Then
our density matrix becomes, in terms of v:

ρ++(v) =

√
2T

π
e−2T (v−1)2 (24)

ρ+−(v) =

√
2T

π
e−2Tv2e−2T (25)

ρ−+(v) =

√
2T

π
e−2Tv2e−2T (26)

ρ−−(v) =

√
2T

π
e−2T (v+1)2 (27)

Now we have the density matrix of our system in terms of the value of the
measurement.This density matrix is no longer the augmented density matrix,
and all the properties discussed for a density matrix hold for this matrix.
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We set up a feedback cycle where we want to collect data during a mea-
surement and return the system to the equal-weight superposition after the
measurement. The data is collected during a time interval of fixed duration.
The time interval in which we collect data we call Tf . During this time interval
we need to collect data and we want to get significant results. We will call the
time interval we need to get significant results Tc, the characteristic time scale.
After a rotation we repeat the cycle. Now we have a problem. If Tf >> Tc the
superposition of our system will be destroyed. If Tf << Tc the superposition is
not destroyed, but the collected data can show large fluctuations and it might
not be an accurate reflection of the final position of the system. To get a crite-
rion for good data we take the average value of Σx over an entire cycle, and we
define it by equation (28):

Σ̄x =
1

Tf

∫ Tf

0

< Σx(t) > dt (28)

In equation (28) we take < Σx > to be the expected value of Σx. By running
many simulations we we see that this value is approximately equal to e−2T .
After we have measured the value of v, we need to apply a rotation to get back
to our initial position. This rotation is given by equation (29):

ρ̂a =

∫ ∞
−∞

Û(α(v))ρ̂(v)Û−1(α(v))dv (29)

When we start a new measurement we want the system to be in the initial
position. If we only apply the rotation for the angle at the exact position of the
last measurement, the next measurement depends on the result of the previous
measurement. To make every measurement independent of other measurements
we integrate the applied rotation over every possible angle. With the initial
condition being ρ̂a = (1+ρxΣx)/2, we look for a solution that fits both equation
(29) and the initial condition, and we find:

ρ̂(v) = G+
1 + Σ̂z

4
+G−

1− Σ̂z
4

+
e−2TGρxΣ̂x

2
(30)

Here we have that G(v) = (2T/π)1/2e−2Tv2 ,G+ = G(v− 1),G− = G(v+ 1). We
see now that a solution exists to this equation.

ρx = A+ ρxB (31)

ρx =
A

1−B
(32)

With A and B given by:

A =

∫ ∞
−∞

G+ −G−
2

sin(2α(v))dv (33)
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B = e−2T

∫ ∞
−∞

G cos(2α(v))dv (34)

Substitution in equation (28) gives.

Σ̄x = ρx
1− e−2T

2T
=

1− e−2T

2T

A

1−B
(35)

In equation (35) we have used equation (28) to calculate Σ̄x, where we have
taken Tf to be 1 in units of Tc. In order to obtain the optimal value of the
rotation angle we try to find the optimal value of Σ̄x. This means we have an
optimal feedback cycle in terms of collected data.

Now we will optimize the value of Σ̄x by differentiating to α and calculating
when this derivative is zero.

∂

∂α
Σ̄x ∝

(1−B) ∂
∂αA−A

∂
∂α (1−B)

(1−B)2
(36)

In equation (36) the proportional sign is used because the terms of T are inde-
pendent of alpha. For simplicity these terms have been left out of the equation
that we will solve. What we need to solve now is equation (37).

0 =
∂

∂α
A(1−B)−A ∂

∂α
(1−B) (37)

∂

∂α
A =

G+ −G−
2

cos(2α(v))2α′ (38)

∂

∂α
B = −2e−2TG sin(2α(v))α′ (39)

Now by substituting equation (38) and (39) into equation (37) we get:

0 =
G+ −G−

2
cos(2α(v))2α′(1−B)−A2e−2TG sin(2α(v))α′ (40)

If α′ is unequal to zero we can divide by this term. If it is equal to zero we do
not have an equation to solve. Thus we assume that this term is nonzero and
we begin to solve this equation. Now we have one equation with two unknowns.
This means that there is no unique solution. We must either try to obtain a
second equation or we must eliminate one unknown from this one equation. We
will do the latter.

We can create another variable, z. This variable is dependent on A and B.
A and B are the outcome of an integral and are thus constant. This means
that z is also a constant. Now we have one unknown and one equation. This is
solvable.

√
z =

A

1−B
(41)

0 =
G+ −G−

2
cos(2α(v))2−

√
z2e−2TG sin(2α(v)) (42)
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We note that we can rewrite this equation in a different way. We introduce a
vector F , with Fx = F cos(2α) and Fy = F sin(2α). If we do this, we can see
that:

0 = Fy cos(2α(v))− Fx sin(2α(v)) (43)

Combining equation (42) and (43) we find functions for Fx and Fy.

Fx = 2e−2TG
√
z (44)

Fy = G+ −G− (45)

Now we can finally get an expression for our rotation angle. We simply rewrite
equation (43) until we find equation (46).

tan(2α) =
sin(2α)

cos(2α)
=
Fy
Fx

(46)

Rewriting this we find equation (47).

α =
1

2
tan−1(

Fy
Fx

) (47)

To find the optimal angle of rotation we only need to calculate the value of z.
We will do this by calculating values for A and B and then solve equation (41)
for z and A and B, where A and B are now dependent on z. By our definition
of F , we can replace the sine and cosine in A and B.

A =

∫ ∞
−∞

(G+ −G−)2

2F
dv (48)

B = (e−2T )2

∫ ∞
−∞

G22
√
z

F
dv (49)

Where F is given by:

F = 2e−2TG

√
z + sinh2(4Tv) (50)

Our domain runs from −∞ to ∞. Since A and B are even integrals , we get:

A = 2

∫ ∞
0

(G+ −G−)2

2F
dv (51)

B = 2(e−2T )2

∫ ∞
0

G22
√
z

F
dv (52)

Now to solve for z and thus find values for A and B, a script has been made to
solve these equations numerically. This has been done using MATLAB.

We see from figure 1 that z has a value of 1, independent of time. There
are small deviations which are negligible because these deviations are small
compared to the value of z itself. In all figures the time will be in units of Tc.
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Figure 1: Value of z over time in an ideal system. z has a value of 1. the
deviations are caused by numerical calculation errors in MATLAB.
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Figure 2: spin of an ideal system in the x-direction over time. The curve follows
the expected shape of e−2T .
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When we look at figure 2 we see that indeed Σx has the shape that was
expected, which was e−2T .

3.2 Non Ideal System

We have now found the optimal angle of rotation for an ideal system. In reality
a system does not have to be perfect. There could be influences from outside
the system that have an effect. It is useful to also know the optimal angle of
rotation when such outside influences are present. These influences enter the
equation in the form of γ. γ is larger than or equal to 2. If γ = 2, we have
an ideal system. If γ > 2 we have a non ideal system. In this section our goal
is again to determine the optimal angle of rotation, but this time with these
outside influences in mind.

d

dt
ρ̂ =

γ

2
(ρ̂− Σ̂z ρ̂Σ̂z) (53)

We will try to evaluate this equation using the counting fields method(2) (3).
Before we do this we will give a short explanation on how the counting fields
method works.

We do not know the behavior of the quantum system. If we run a measure-
ment it can have multiple possible output values. This means that the function
of output values of the system follows a probability distribution. We intro-
duce now a counting field χ(t) that is coupled to the output of a measurement.
This counting field is the variable of the generating function of the probabil-
ity distribution of the output. We now treat the evolution of the bra and the
ket as slightly different, by giving them different Hamiltonians. This is done
by adding/subtracting a term linear in χ to the Hamiltonian. When we have
applied this method to the equation we get equation (54):

d

dt
ρ̂ = −χ

2

8
ρ̂+ i

χ

2
(Σ̂z ρ̂+ ρ̂Σ̂z)−

γ

2
(ρ̂− Σ̂z ρ̂Σ̂z) (54)

To solve equation (54) we will write this out in matrix form and solve for all
matrix elements separately. To do this we write the density matrix as in equation
(55).

ρ̂ =

[
ρ++ ρ+−
ρ−+ ρ−−

]
(55)

d

dt

[
ρ++ ρ+−
ρ−+ ρ−−

]
= −χ

2

8

[
ρ++ ρ+−
ρ−+ ρ−−

]
+i
χ

2

([
1 0
0 −1

] [
ρ++ ρ+−
ρ−+ ρ−−

]
+

[
ρ++ ρ+−
ρ−+ ρ−−

] [
1 0
0 −1

])
−γ

2

([
ρ++ ρ+−
ρ−+ ρ−−

]
−
[
1 0
0 −1

] [
ρ++ ρ+−
ρ−+ ρ−−

] [
1 0
0 −1

]) (56)

Now we have four ordinary differential equations and thus we can find the
solution for all elements of the density matrix by integrating with respect to
time.
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ρ++(t) = ρ++(0)e(−χ
2

8 +iχ)t (57)

ρ+−(t) = ρ+−(0)e(−χ
2

8 −γ)t (58)

ρ−+(t) = ρ−+(0)e(−χ
2

8 −γ)t (59)

ρ−−(t) = ρ−−(0)e(−χ
2

8 −iχ)t (60)

Note that this is the augmented density matrix, and it is not Hermitian. Now
we have the density matrix in terms of time and χ. Our goal was to determine
the optimal rotation angle to rotate our system back to its equal weight super-
position. To achieve this goal we want to express the augmented density matrix
in terms of the value of a measurement. For this we use a Fourier transform. to
switch from the variable χ to the value of a measurement, for which we use the
variable v:

ρ̂(v) =
T

2π

∫ ∞
−∞

ρ̂(χ)e−iχTvdχ (61)

In equation (61), T is the time interval data is collected from the system. Then
our density matrix becomes, in terms of v:

ρ++(v) =

√
2T

π
e−2T (v−1)2 (62)

ρ+−(v) =

√
2T

π
e−2Tv2e−γT (63)

ρ−+(v) =

√
2T

π
e−2Tv2e−γT (64)

ρ−−(v) =

√
2T

π
e−2T (v+1)2 (65)

Now we have the density matrix of our system in terms of the value of the
measurement. This density matrix is no longer the augmented density matrix,
and all the properties discussed for a density matrix hold for this matrix.

We set up a feedback cycle where we want to collect data during a mea-
surement and return the system to the equal-weight superposition after the
measurement. The data is collected during a time interval. The time interval
where we collect data we call Tf . During this time interval we need to collect
data and we want to get significant results. We will call the time interval we
need to get significant results Tc, the characteristic time scale. After a rotation
we repeat the cycle. Now we have a problem. If Tf >> Tc the superposition of
our system will be destroyed. If Tf << Tc the superposition is not destroyed,
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but the collected data can show large fluctuations and it might not be an ac-
curate reflection of the final position of the system. To get a criterion for good
data we take the average value of Σx over an entire cycle, and we define it by
equation (66):

Σ̄x =
1

Tf

∫ Tf

0

< Σx(t) > dt (66)

In equation (66) we take < Σx > to be the expected value of Σx. By running
many simulations we we see that this value is approximately equal to e−γT .
After we have measured the value of v, we need to apply a rotation to get back
to our initial position. This rotation is given by equation (67):

ρ̂a =

∫ ∞
−∞

Û(α(v))ρ̂(v)Û−1(α(v))dv (67)

When we start a new measurement we want the system to be in the initial
position. If we only apply the rotation for the angle at the exact position of the
last measurement, the next measurement depends on the result of the previous
measurement. To make every measurement independent of other measurements
we integrate the applied rotation over every possible angle. With the initial
condition being ρ̂a = (1+ρxΣx)/2, we look for a solution that fits both equation
(67) and the initial condition, and we find:

ρ̂(v) = G+
1 + Σ̂z

4
+G−

1− Σ̂z
4

+
e−γTGρxΣ̂x

2
(68)

Here we have that G(v) = (2T/π)1/2e−2Tv2 ,G+ = exp(4Tv)G(v)exp(−2T ),
G− = G(v)exp(−2T )exp(−4Tv). We see now that a solution exists to this
equation.

ρx = A+ ρxB (69)

ρx =
A

1−B
(70)

With A and B given by:

A =

∫ ∞
−∞

G+ −G−
2

sin(2α(v))dv (71)

B = e−γT
∫ ∞
−∞

G cos(2α(v))dv (72)

Substitution in equation (66) gives.

Σ̄x = ρx
1− e−γT

γT
=

1− e−γT

γT

A

1−B
(73)
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In equation (73) we have used equation (66) to calculate Σ̄x, where we have
taken Tf to be 1 in units of Tc. In order to obtain the optimal value of the
rotation angle we try to find the optimal value of Σ̄x. This means we have an
optimal feedback cycle in terms of collected data.

Now we will optimize the value of Σ̄x by differentiating to α and calculating
when this derivative is zero.

∂

∂α
Σ̄x ∝

(1−B) ∂
∂αA−A

∂
∂α (1−B)

(1−B)2
(74)

In equation (74) the proportional sign is used because the terms of T are inde-
pendent of alpha. For simplicity these terms have been left out of the equation
that we will solve. What we need to solve now is equation (75).

0 =
(1−B)∂

∂α
A−A ∂

∂α
(1−B) (75)

∂

∂α
A =

G+ −G−
2

cos(2α(v))2α′ (76)

∂

∂α
B = −2e−γTG sin(2α(v))α′ (77)

Now by substituting equation (76) and (77) into equation (75) we get:

0 =
G+ −G−

2
cos(2α(v))2α′(1−B)−A2e−γTG sin(2α(v))α′ (78)

If α′ is unequal to zero we can divide by this term. If it is equal to zero we do
not have an equation to solve. Thus we assume that this term is nonzero and
we begin to solve this equation. Now we have one equation with two unknowns.
This means that there is no unique solution. We must either try to obtain a
second equation or we must eliminate one unknown from this one equation. We
will do the latter.

We can create another variable, z. This variable is dependent on A and B.
A and B are the outcome of an integral and are thus constant. This means
that z is also a constant. Now we have one unknown and one equation. This is
solvable.

√
z =

A

1−B
(79)

0 =
G+ −G−

2
cos(2α(v))2−

√
z2e−γTG sin(2α(v)) (80)

We note that we can rewrite this equation in a different way. We introduce a
vector F , with Fx = F cos(2α) and Fy = F sin(2α). If we do this, we can see
that:

0 = Fy cos(2α(v))− Fx sin(2α(v)) (81)
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Combining equation (80) and (81) we find functions for Fx and Fy.

Fx = 2e−γTG
√
z (82)

Fy = G+ −G− (83)

Now we can finally get an expression for our rotation angle. We simply rewrite
equation (81) until we find equation (84).

tan(2α) =
sin(2α)

cos(2α)
=
Fy
Fx

(84)

Rewriting this we find equation (85).

α =
1

2
tan−1(

Fy
Fx

) (85)

To find the optimal angle of rotation we only need to calculate the value of z.
We will do this by calculating values for A and B and then solve equation (79)
for z and A and B, where A and B are now dependent on z. By our definition
of F , we can replace the sine and cosine in A and B.

A =

∫ ∞
−∞

(G+ −G−)2

2F
dv (86)

B = (e−2γT )

∫ ∞
−∞

G22
√
z

F
dv (87)

Where F is given by:

F = 2G

√
e−2γT z + e−4T sinh2(4Tv) (88)

Our domain runs from −∞ to ∞. Since A and B are even integrals , we get:

A = 2

∫ ∞
0

(G+ −G−)2

2F
dv (89)

B = 2(e−2γT )

∫ ∞
0

G22
√
z

F
dv (90)

Now to solve for z and thus find values for A and B, a script has been made to
solve these equations numerically. This has been done using MATLAB.

When we look at figures 3, 4, 5 and 6 we see that for short times the value
of z gets lower as the value of γ gets higher. When the time of a measurement
becomes larger z reaches the value of 1. This is why we will look for a relation
between γ and z in the next subsection. But first we will look at the value of
the spin in the x-direction at some values of γ.

When we look at figures 7, 8, 9 and 10 we see that the spin in the x-direction
still takes approximately the same amount of time to reduce in value. One thing
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that is different is that the starting value of this spin appears to be dependent
on γ. This is not in accordance to what was expected. We can still recognize a
shape of e−γT , but this expected shape had a starting value of 1 at the start of
a measurement, which does not seem to happen in figures 7, 8, 9 and 10.

3.3 Small Time Intervals

In the previous subsection we looked at the values of z at different times. We
saw that z starts at a lower value if we increase the value of γ. In this section
we will see if there is a relation between z and γ at small times.

We will try to simplify A and B in equations (86) and (87).We will use
Taylor expansions to simplify our equations. We do this by first simplifying 1

F
with F . We will only look at terms which are of order one or lower in T . Any
higher order terms are negligible, because we are looking at values of T very
close to 0.

ex = 1 + x+O(x2) (91)

Now we get:

2G

F
=

1√
z(1− 2γT ) + 16T 2v2

(92)

Now we use:

√
1 + x = 1 +

x

2
+O(x2) (93)

We find:

2G

F
=

1
√
z(1− γT + 8T 2v2

z )
(94)

Now we use:

1

1 + x
= 1− x+O(x2) (95)

We find:

2G

F
=

1√
z

(
1 + γT − 8T 2v2

z

)
(96)

Now we have approximated 1
F , We continue expanding A and B. For that we

will use:

sinhx = x+O(x3) (97)

By combining equations (86) and (96) we get for A:

A = (1− 4T )

∫ ∞
−∞

16T 2v2G√
z

(1 + γT − 8T 2v2

z
)dv (98)
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A =
16T 2 < v2 >√

z
(99)

If we do the same for B we get:

B = (1− 2γT )

∫ ∞
−∞

G(1 + γT − 8T 2v2

z
)dv (100)

B = 1− γT − 8T 2 < v2 >

z
(101)

Now we got A and B again, we can try to simplify z using equation (41).

√
z =

A

1−B
=

(
16T 2<v2>√

z

)
γT + 8T 2<v2>

z

(102)

A short calculation shows that:

< v2 >=
1

4T
(103)

And we get:

z =
4T

γT + 2T
z

(104)

This gives us equation (105)

zγT + 2T = 4T (105)

And from this we get:

z =
2

γ
(106)

Thus we find that there is a relation between z and γ, and it is the relation from
equation (106).
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4 Results

4.1 Simulation

In this section we will make a simulation of our system. First we will derive
formulas that are necessary to update the density matrix of a general system.
Then we will derive these formulas for a more specific system. Then we will
show graphs of the quantum trajectories of the spin in the x-direction and in
the z-direction.

We will now state our assumptions on the system. After this we will start
solving for our density matrix. We first say that there are two particles, which
we will call A and B. There is an interaction between these particles, which
means that the Hamiltonian is given by equation (107).

Ĥ = ĤA + ĤB + ĤC (107)

Here ĤC is the coupling Hamiltonian which governs the interaction between
particles A and B. We use the interaction picture for the simulation, hence at
every step we will apply a unitary transformation to switch to the interaction
picture. This means that we can ignore the evolution of ĤA and ĤB . Now we
only need a definition of the coupling term of the Hamiltonian. We give this in
equation (108).

ĤC = M̂ ⊗ Q̂ (108)

We say the system we have is only sensitive to a single observable M̂ . We also
say that Q̂ is an operator acting on particle B. Now we introduce our initial
density matrix. This is the state before any time has passed and particle A
and B have not yet had any interaction. This initial state is given by equation
(109).

ρ̂(0) = ρ̂A(0)⊗ ρ̂B(0) (109)

Our last assumption will be that the state vector of a particle does not change
in length. It only undergoes a unitary rotation. This means that the time
dependence of the state vector can be written as in equation (110).

|ψ(t)〉 = U(t) |ψ(0)〉 (110)

We use this expression and combine it with equation (2). If we do this we get
a simple differential equation and we see that the solution is given by equation
(111):

U(t) = e−iĤt (111)

This is only the time dependence of the state vector of a particle. We fill in
this time dependence in equation (1) to get the time dependence of the density
matrix of our system. This time dependence is then given by equation (112).
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ρ̂(∆t) = U(∆t)ρiU
∗(∆t) (112)

We now have a time dependent expression for the density matrix. We want to
write this density matrix in terms of the eigenbasis for the observable M̂ . we
note that we can write a matrix K̂ in the following way:

K̂ =
∑
n,m

|n〉 K̂n,m 〈m| (113)

In equation (113) Kn,m = 〈n| K̂ |m〉. To write the density matrix in terms of
this eigenbasis we will use this method.

ρ̂(∆t) = 〈n|U(∆t)
∑
n,m

ρAn,m |n〉 〈m| ⊗ ρB(0)U∗(∆t) |m〉 (114)

To get to equation (118) from equation (114) we we will use a Taylor expansion
for an exponential that was also used in equation (91).

U∗(∆t) |m〉 = ei∆tM̂⊗Q̂ |m〉 (115)

With the Taylor expansion this becomes.

∞∑
l=0

(
i∆tM̂ ⊗ Q̂

)l
l!

|m〉 (116)

We now use that the eigenbasis we use are eigenvectors of the matrix M̂ with
eigenvalues n for an eigenvector |n〉.(

1 + i∆tM̂ ⊗ Q̂+ ...
)
|m〉 =

(
1 + i∆tmQ̂+ ...

)
|m〉 (117)

We can do this since the vector does not change the Q̂ matrix in the vector basis
of our system. If we apply this we arrive at equation (118).

ρ̂(∆t) =
∑
n,m

ρAn,m |n〉 〈m| ⊗ Un(∆t)ρB(0)U∗m(∆t) (118)

Now the probability of a density matrix is given by its trace. Since here we have
a tensor product, we will use the partial trace, which gives us by definition:

P (i) = TrA(〈i| ρ̂(∆t) |i〉) =
∑
n

ρAn,n(0) 〈i|Un(∆t)ρB(0)U∗n(∆t) |i〉 (119)

After measuring the system it is in the state i. The updated density matrix
becomes, according to equation (14):

ρAnew =

∑
n,m ρ

A
n,m(0) |n〉 〈m| 〈i|Un(∆t)ρB(0)U∗m(∆t) |i〉∑
n ρ

A
n,n(0) 〈i|Un(∆t)ρB(0)U∗n(∆t) |i〉

(120)
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Now we have derived the equations we need for a general system. Now we are
going to define a more specific system that we will use and derive the equations
we need for this system. In this system the particle that acts as the detector
will initially be in the state shown in equation 121.

ρ̂B = |x〉 〈x| (121)

In equation (121) the x denotes an eigenstate of the Pauli-x-matrix σ̂x with
eigenvalue 1. By taking the Kronecker product between the measured system
and the detector, the joint density matrix takes the form of equation (122).

ρ̂(0) = ρ̂A ⊗ |x〉 〈x| (122)

We are only interested in the evolution of the measured system and not of the
detector system. Thus at each time step the detector system will be initialized
to the system in equation (121). At each time step the Hamiltonian will be
turned on. In the time evolution of the entire system the Hamiltonian will be
used. In the simulation the evolution of the measured system (Ĥa) and of the
detector (Ĥb) are small and can be neglected. Thus for the time evolution only
the coupling Hamiltonian will be used. This coupling Hamiltonian is shown in
equation (123).

Ĥc = M̂ ⊗ σ̂y (123)

Here σ̂y is the Pauli-y-matrix. At every step the density matrix is adjusted by
using equation (112). To simplify the calculations that must be done in the
simulation, we will use equation (118) to rewrite the density matrix in terms
of the eigenbasis of the operator M̂ . The resulting density matrix is shown in
equation (124).

ρ̂n,m(∆t) = ρ̂n,m(0)⊗ e−iMnσ̂y∆t |x〉 〈x| eiMmσ̂y∆t (124)

Now we have the density matrix after a time step. Before we go on we will
simplify the density matrix in equation (124). We will do this by using an
identity for a Pauli matrix in an exponent. This identity is shown in equation
(125).

eiaσ̂ = I cos(a) + iσ̂ sin(a) (125)

In equation (125) a is a constant and I is the identity matrix. Now we will
substitute equation (125) in equation (124) and we find:

ρ̂n,m(∆t) = ρ̂n,m(0)⊗ (I cos(Mn∆t)− iσ̂y sin(Mn∆t)) |x〉
〈x| (I cos(Mm∆t) + iσ̂y sin(Mm∆t))

(126)

We can still simplify equation (126). To do this we rewrite the equation until we
get equation (127). Now we have a density matrix in terms of another density
matrix and one other term. We will calculate the value of this other term, which
is called V in equation (127). Note that V in equation (127) is given by equation
(128).
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ρ̂n,m(∆t) = ρ̂n,m(0)V V ∗ (127)

V = (I cos(Mn∆t) + iσ̂y sin(Mn∆t)) |x〉 (128)

In equation (127) V ∗ is the conjugate transpose of V . Now V will be calculated.
If we have this value we can also calculate the value of the conjugate transpose
of V . A quick calculation shows that with the value of V the new density matrix
can be written as in equation (129).

ρ̂n,m(∆t) =
1

2
ρ̂n,m(0) (|1, 1〉 cosMn∆t− |−1, 1〉 sinMn∆t)

(〈1, 1| cosMm∆t− 〈−1, 1| sinMm∆t)
(129)

Now we know the density matrix after a time step. We will use this density ma-
trix in combination with equation (119) to calculate the probability to measure
a +1 or a −1. Initially our measured qubit is aligned with the x-axis. At every
step this qubit is projected onto the z-axis. A result of +1 means the qubit
is aligned more with the positive z-axis compared to the previous time step
and a result of a −1 means the qubit is more aligned with the negative z-axis
compared to the previous time step. After a result has been recorded the new
density matrix is calculated using equation (120). To calculate the probability
of getting a result we now apply equation (119) to our density matrix. This
probability is recorded in equation (130).

P (±) =
1

2

∑
n

ρn,n (1± sin 2Mn∆t) (130)

With the probability calculated the density matrix can be updated. To do this
we apply equation (120). If we do this we find that the elements of the updated
density matrix become.

ρAn,m,± =
1

4P (±)
(cosn∆t± sinn∆t)(cosm∆t± sinm∆t) (131)

Now we have calculated all the formulas needed for a simulation. We will now
look at the code of the simulation program. This code was made using the
programming language Python. The code is shown in appendix B.

We will now run through the code and an explanation will be given how
it works. First a function ’step’ is defined. In this function the probability of
getting a +1 or a −1 is calculated. Then a random number generator chooses
a number between 0 and 1. The density matrix is updated according to this
result. This function returns the updated components of the density matrix
and the result that was measured. After this a function ’loop’ is defined. This
function applies the function ’step’ a set number of times. This number of times
is set so that a significant total result can be obtained. This function returns the
weighted result, the density matrix elements and the entire quantum trajectory.
Third a function ’rotate’ is defined. This function rotates the density matrix
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to its position before any measurement had started. The function returns the
rotated density matrix. Last a function ’total’ is defined. This function com-
pletes the function ’loop’ and then the function ’rotate’ on the density matrix
that ’loop’ returns. the function ’total’ does this n times, where n is an integer
that can be chosen.

4.2 Simulation Results

In this section we will first show that we need to use the density matrix to
describe our system. we will do this by showing that equation (10) does not
hold. Then we will explain the value of the constants of our simulation, mainly
the value of the characteristic time, then we will show and discuss the quantum
trajectories in the z- and x- directions. Now we will show a plot of the trace of
ρ̂2 for γ = 3. In figure 11 we see the trace of the matrix ρ̂2. It is clearly visible
that this trace does not always have the value of 1. This means that ρ̂2 6= ρ̂,
and thus we do not have a pure state in our quantum system. Now we will move
on to the values of the constants that we used in our simulation program.

To simulate a continuous weak linear measurement we require the strength
of a measurement to be small. This means we require:

M∆t < 1 (132)

There are no other requirements for M and ∆t so these can be chosen. For this
report these values have been chosen such that ∆t = 0.01 and M = 1. Now we
use the fact that for a decisive measurement, we require the standard deviation
of the average output to be smaller than the separation between the discrete
values for < Σz >= ±1. This gives us:√

∆t

Tc
< M∆t (133)

We solve this equation by taking the square and isolating Tc. We find.

Tc =
1

M2∆t
(134)

Now the values of the constants used are explained we will move on to the plots.
We will discuss quantum trajectories in the x-direction and in the z-direction.
We will do this for integer values of γ from 2 to 6.

First we look at the quantum trajectory in the z-direction. Our qubit always
begins in an equal weight quantum position. Therefore the expectation is that
the average spin in the z-direction of a large number of quantum trajectories
will go to zero.

In figure 12 we can see a quantum trajectory. This trajectory goes to the
value of +1. If we compare this to figures 13,14,15 and 16 we see no big dif-
ferences. But these are just single trajectories. To see if our expectations are
correct we will look at averages of multiple quantum trajectories. We first look
at the average over 20 trajectories.
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trace of ρ̂2 over time for γ = 3

Figure 11: trace of ρ̂2 over time for γ = 3. If we have a non ideal system we see
that the trace of ρ̂2 is not equal to 1. This means that ρ̂2 6= ρ̂, and thus we do
not have a pure state, but rather a mixed state and it is necessary to use the
density matrix.
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spin in the z-direction over time for γ = 2

Figure 12: a quantum trajectory for γ = 2. This shows the spin in the z-
direction. In this case the qubit ends in a spin up state.
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spin in the z-direction over time for γ = 3

Figure 13: a quantum trajectory for γ = 3. This shows the spin in the z-
direction. In this case the qubit ends in a spin up state.
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spin in the z-direction over time for γ = 4

Figure 14: a quantum trajectory for γ = 4. This shows the spin in the z-
direction. In this case the qubit ends in a spin down state.
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spin in the z-direction over time for γ = 5

Figure 15: a quantum trajectory for γ = 5. This shows the spin in the z-
direction. In this case the qubit ends in a spin up state.
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spin in the z-direction over time for γ = 6

Figure 16: a quantum trajectory for γ = 6. This shows the spin in the z-
direction. In this case the qubit ends in a spin up state.
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average of 20 z-trajectories for γ = 2

Figure 17: average of 20 quantum trajectories for γ = 2. The curve goes slightly
higher than 0. We expect it to stay near zero. This is only a small deviation,
which might be caused by a small amount of trajectories in the average.
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average of 20 z-trajectories for γ = 3

Figure 18: average of 20 quantum trajectories for γ = 3. The curve goes slightly
lower than 0. We expect it to stay near zero. This is only a small deviation,
which might be caused by a small amount of trajectories in the average.
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average of 20 z-trajectories for γ = 4

Figure 19: average of 20 quantum trajectories for γ = 4. The curve stays near
0, which is what we expect of the average.
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average of 20 z-trajectories for γ = 5

Figure 20: average of 20 quantum trajectories for γ = 5. The curve goes higher
than 0. We expect it to stay near zero. This is not a small deviation, but it
might be caused by a small amount of trajectories in the average.
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average of 20 z-trajectories for γ = 6

Figure 21: average of 20 quantum trajectories for γ = 6. The curve goes slightly
higher than 0. We expect it to stay near zero. This is only a small deviation,
which might be caused by a small amount of trajectories in the average.
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Only in figure 19 the average seems to go to 0. In the figures 17,18,20 and
21 the average does not go to 0. In figure 20 the deviation from 0 appears to
be bigger than in the other figures. This could be the case because we took the
average over a too small number of trajectories. We want to know if we still see
a deviation if we increase the amount of trajectories in the average trajectory.
Therefore we will now take the average over 100 trajectories. When we look at
the averages over 100 trajectories in figure 22 we see that the average goes to zero
as expected. The average over 100 trajectories for γ = 4 is also shown in figure
23. Here we still see a small deviation from 0. This is not a big deviation thus it
could be caused by a small amount of trajectories in the average trajectory. We
again increase the amount of trajectories in the average trajectory to make sure
this is the cause of the deviations. If so, we expect the deviations to decrease.
For the other values of γ the plots are not shown here because they are similar to
the given figures. We will look now at the average over 500 trajectories. Because
the plots for the values of γ other than 2 again show no significant differences
from previous plots, we will only show the average of 500 trajectories for γ = 2.
Again the average of all trajectories goes to 0. We draw the conclusion that
the average value over a large number of trajectories does indeed go to 0 as
was expected. Any deviation from this average we have seen can be accounted
to not having enough trajectories for the average to approach the theoretical
values. We also conclude that outside influences, which come into play when
γ > 2, do not have a significant influence over the quantum trajectory in the z
direction.

Now we will discuss the results of the spin in the x-direction. In the last
chapter the evolution of the spin in the x-direction has been theoretically calcu-
lated. We will compare these theoretical results with the results the simulation
gives us. Now we look at the x-trajectories for integer values of γ from 2 to 6.

In figure 25 we see the evolution of the spin in the x-direction. This curve
does not look smooth. It stays at the value of 1 before it decreases in value. This
is but a single trajectory. The curve may approach the theoretical value better
if we take an average over multiple trajectories. When we look at figures 26, 27,
28 and 29 we note that the curves already appear smoother than in figure 26.
Another big difference is the rate at which the curves go to 0. The trajectory
for γ = 2 approaches 0 over the course of the characteristic time scale. For
values of γ bigger than 2 the trajectory is already close to 0 when 0.05 or less
time has passed in units of the characteristic time scale. If we compare this
to the theoretical curves we see that the actual trajectories decrease in value
significantly faster then is expected. It was also expected that the starting value
would decrease while the actual trajectories in the x-direction always start at the
value of 1. We will now start looking at the average over multiple trajectories.
Since the curves for γ > 2 are similar in shape we will only look at the values
of γ = 2 and γ = 3.

When we take the average over 20 trajectories we see no difference in figure
31 for γ = 3. When we increase the number of trajectories in the average we
do not expect to see that curve change anymore, because the curve is already
smooth and any deviation from the average does not appear to be big. If we
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average of 100 z-trajectories for γ = 2

Figure 22: average of 100 quantum trajectories for γ = 2. The average value
does not show significant deviations from 0. This means it behaves as we expect.
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average of 100 z-trajectories for γ = 4

Figure 23: average of 100 quantum trajectories for γ = 4. The average still
shows a small deviation from 0. This is a small deviation, thus it might still be
caused by a small amount of trajectories in the average trajectory.
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average of 500 z-trajectories for γ = 2

Figure 24: average of 500 quantum trajectories for γ = 2. We see that the
deviations that have occurred are very small. The curve follows the expected
value of 0.
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spin in the x-direction over time for γ = 2

Figure 25: a quantum x-trajectory for γ = 2. The qubit seems to keep its spin
in the positive x-direction initially instead of immediately aligning along the
z-direction. After a time of 1 Tc the spin has aligned itself along the z-direction.
This is in line with the theoretical expectation
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spin in the x-direction over time for γ = 3

Figure 26: a quantum x-trajectory for γ = 3. The value of the spin along the
x-direction immediately decreases and goes to 0. It goes to 0 in a time of 0.05Tc,
which is faster than the theoretical expectation. It also starts at a value of 1,
which is not what the theory predicted.
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spin in the x-direction over time for γ = 4

Figure 27: a quantum x-trajectory for γ = 4. The value of the spin along the
x-direction immediately decreases and goes to 0. It goes to 0 in a time of 0.02Tc,
which is faster than the theoretical expectation. It also starts at a value of 1,
which is not what the theory predicted.
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spin in the x-direction over time for γ = 5

Figure 28: a quantum x-trajectory for γ = 5. The value of the spin along the
x-direction immediately decreases and goes to 0. It goes to 0 in a time of 0.02Tc,
which is faster than the theoretical expectation. It also starts at a value of 1,
which is not what the theory predicted.
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spin in the x-direction over time for γ = 6

Figure 29: a quantum x-trajectory for γ = 6. The value of the spin along the
x-direction immediately decreases and goes to 0. It goes to 0 in a time of 0.01Tc,
which is faster than the theoretical expectation. It also starts at a value of 1,
which is not what the theory predicted.
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average of 20 x-trajectories for γ = 2

Figure 30: average of 20 quantum trajectories for γ = 2. The qubit immediately
goes to 0 in a time of 1Tc. This is in line with the prediction of the theory.
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average of 20 x-trajectories for γ = 3

Figure 31: average of 20 quantum trajectories for γ = 3. The qubit immediately
goes to 0 in a time of 0.05Tc. This is not in line with the prediction of the theory.
The starting value is at 1, which is also not in line with the theoretical prediction.
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now look at figure 30 we see that the curve appears smoother than in figure 25.
The curve does not linger at 1 but its value decreases immediately. We will now
increase the number of trajectories in the average to 100 and afterwards to 500.

For γ = 3 we see that the shape has not changed and the differences from
the theoretical curve have not changed either. These differences have already
been discussed. For γ = 2 the curve does not show any significant difference
from the theoretical curve. The value starts at 1 and it starts decreasing to 0.
It takes the entire time scale of the characteristic time to get close to 0. The
conclusion is that for an ideal system with no outside influence, the spin in the
x-direction follows the theoretical shape. When outside influences are present,
the theoretical curve does not correctly predict the behavior of the spin in the
x-direction.
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average of 100 x-trajectories for γ = 2

Figure 32: average of 100 quantum trajectories for γ = 2. The qubit immediately
goes to 0 in a time of 1Tc. This is in line with the prediction of the theory.
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average of 100 x-trajectories for γ = 3

Figure 33: average of 100 quantum trajectories for γ = 3. The qubit immediately
goes to 0 in a time of 0.05Tc. This is not in line with the prediction of the theory.
The starting value is at 1, which is also not in line with the theoretical prediction.
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average of 500 x-trajectories for γ = 2

Figure 34: average of 500 quantum trajectories for γ = 2. The qubit immediately
goes to 0 in a time of 1Tc. This is in line with the prediction of the theory.
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average of 500 x-trajectories for γ = 3

Figure 35: average of 500 quantum trajectories for γ = 3. The qubit immediately
goes to 0 in a time of 0.05Tc. This is not in line with the prediction of the theory.
The starting value is at 1, which is also not in line with the theoretical prediction.
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5 Conclusion

In this text we used a quantum system of two quantum particles, specifically
two qubits. One qubit acts as a detector in an equal weight superposition of
spin up and spin down. The two qubits in the system are entangled. To do
multiple measurements on the system, we want to rotate the system back to the
equal weight superposition, which is destroyed after a measurement.

We have calculated the time evolution of the density matrix of this quantum
system using a standard differential equation. We altered this differential equa-
tion using the counting fields method. After this we used the density matrix to
calculate the optimal angle of rotation to return the qubit to the equal weight
superposition. We did this for an ideal system without outside influences and
for a system with outside influences. We derived a relationship between the
outside influences on the system, γ, where γ = 2 represents an ideal system,
and a variable inside the system, z. This relation is 2

γ = z.
We also described an algorithm to simulate a random quantum trajectory.

We found that the value of the spin in the z-direction does go to the expected
value of 0 when the amount of single trajectories in the average trajectory is
large. This is true for all values of γ. For the value of the spin in the x-direction
we found that the theoretical curve correctly predicts the behavior of an ideal
system. We found that for a non ideal system, when γ > 2, the theoretical
curve does not correctly predict the behavior of a trajectory. The theory fails to
predict the speed with which the spin in the x-direction goes to 0 in a non ideal
system, where the theory is significantly slower at going to 0. Also the theory
predicts the starting value to be lower than 1 in a non ideal system, which is
not the case in practice.
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Appendices

A MATLAB code

clear all; close all; clc;
set(0, ’defaultlegendlocation’, ’best’)
set(0, ’defaultlegendinterpreter’, ’Latex’)
set(0, ’defaultaxesticklabelinterpreter’, ’Latex’)
set(0, ’defaulttextinterpreter’, ’Latex’)

for k = 2:1:6
gamma = k;
j = 1;

fun1 = @(x, z, T )exp(−4 ∗ T ). ∗ sqrt(2 ∗ T./pi). ∗ x.(− log(x)./(8 ∗ T )). ∗ (1./x−
x).2.∗1./((4∗T ∗x).∗sqrt(4∗z∗exp(−2∗gamma∗T )+exp(−4∗T )∗(1./x−x).2));
fun2 = @(x, z, T )4 ∗ exp(−2 ∗ gamma ∗ T ). ∗ sqrt(z). ∗ sqrt(2 ∗ T./pi). ∗ x.( −
log(x)./(8 ∗ T )). ∗ 1./((4 ∗ T ∗ x). ∗ sqrt(4 ∗ z ∗ exp(−2 ∗ gamma ∗ T ) + exp(−4 ∗
T ) ∗ (1./x− x).2));

I1 = @(z, T )integral(@(x)fun1(x, z, T ), 0, 1);
I2 = @(z, T )integral(@(x)fun2(x, z, T ), 0, 1);
CC = @(z, T )I1(z, T )./(1− I2(z, T ));
Wortel = @(z)sqrt(z);

A = @(z, T )I1(z, T );
B = @(z, T )I2(z, T );
sigmax = @(z, T )((1− exp(−gamma ∗ T ))/(gamma ∗ T )) ∗Wortel(z);
%ineenloopomtelatenwerkenvoorallewaardenvanT
i = 1;

az = @(v, T )tanh(4 ∗ T ∗ v);
ax = @(v, T )exp((−gamma+ 2) ∗ T )/cosh(4 ∗ T ∗ v);
a = @(v, T )az(v, T ).2 + ax(v, T ).2;

whilei < 151
fun = @(z)(CC(z, i/100)−Wortel(z));
solz(i+ 1) = fzero(fun, [0, 1.1]);

%valueA(i+ 1) = A(solz(i+ 1), i/500);
%valueB(i+ 1) = B(solz(i+ 1), i/500);
valuesigmax(i+ 1) = sigmax(solz(i+ 1), i/100);
i = i+ 1;
end
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sigmaoptTind
= max(valuesigmax);
Topt = (Tind− 1)/100;
sigmamat(j) = sigmaopt;
Topt;
optz(k) = solz(2)

y = linspace(0, 1.5, 151);
figure
plot(y(2 : length(y)), valuesigmax(2 : length(valuesigmax)),′−b′)
xlabel(′Time(Tc)′)
ylabel(′sigma′x)
title([′gamma =′, num2str(k)])
figure
plot(y(2 : length(y)), solz(2 : length(solz)))
xlabel(′Time(Tc)′)
ylabel(′z′)
title([′gamma =′, num2str(k)])
save = table(y, valuesigmax);
filename = [′gammais′, num2str(k),′ .txt′];

fid = fopen(filename,′ wt′);
fprintf(fid, [′Time′′′′Sigma′′′]);
fprintf(fid,′%f%f̊ ′, [y′valuesigma

′
x]′); fclose(fid); end

B python code

import numpy
import math

# constantes een waarde geven
deltat = 0.01
mn = 1
#mm = −mn
cn = numpy.cos(mn ∗ deltat)
#cm = numpy.cos(mm ∗ deltat)
sn = numpy.sin(mn ∗ deltat)
#sm = numpy.sin(mm ∗ deltat)
sin2 = numpy.sin(2 ∗mn ∗ deltat)
Tc = 1/(mn ∗ ∗2 ∗ deltat ∗ ∗2)
gamma = 2.

#functions
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defstep(rhopp, rhopm) :
treshold = 0.5 ∗ (1 + 2 ∗ rhopp ∗ sin2− sin2)
ifnumpy.random.rand() < treshold :
result = 1.0
rhoppnew = 0.5 ∗ rhopp ∗ (cn+ sn) ∗ (cn+ sn)/(treshold)
rhopmnew = numpy.exp(−(gamma − 2) ∗ deltat) ∗ 0.5 ∗ rhopm ∗ (cn + sn) ∗
(cn− sn)/(treshold)
else :
result = −1.0
rhoppnew = 0.5 ∗ rhopp ∗ (cn− sn) ∗ (cn− sn)/(1.0− treshold)
rhopmnew = numpy.exp(−(gamma − 2) ∗ deltat) ∗ 0.5 ∗ rhopm ∗ (cn − sn) ∗
(cn+ sn)/(1.0− treshold)
returnrhoppnew, rhopmnew, result

defloop(rhopp, rhopm, k) :
restot = 0.0
rhopptot = [rhopp]
rhopmtot = [rhopm]
foriinrange(0, k) :
rhoppnew, rhopmnew, result = step(rhopp, rhopm)
restot+ = result
rhopp = rhoppnew
rhopm = rhopmnew
rhopptot.append(rhopp)
rhopmtot.append(rhopm)
returnrhopp, rhopm, restot/(k ∗ sin2), rhopptot, rhopmtot

defrotate(rhopp, rhopm, result, k) :
hoek = −0.5 ∗math.atan(numpy.sinh(4. ∗ result ∗ deltat ∗ k ∗ gamma/2.))
rhopprot = rhopp∗(numpy.cos(hoek)∗∗2−numpy.sin(hoek)∗∗2)+numpy.sin(hoek)∗
∗2 + 2 ∗ rhopm ∗ numpy.cos(hoek) ∗ numpy.sin(hoek)
rhopmrot = (1 − 2 ∗ rhopp) ∗ numpy.cos(hoek) ∗ numpy.sin(hoek) + rhopm ∗
(numpy.cos(hoek) ∗ ∗2− numpy.sin(hoek) ∗ ∗2)
returnrhopprot, rhopmrot

deftotal(n) :
rhopp = 0.5
rhopm = 0.5
k = int(Tc)
listv = []
rhopptotav = [0] ∗ (k + 1)
rhopmtotav = [0] ∗ (k + 1)
foriinrange(0, n) :
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rhoppnew, rhopmnew, v, rhoppav, rhopmav = loop(rhopp, rhopm, k)
listv.append(v)
rhopptotav = numpy.add(rhoppav, rhopptotav)
rhopmtotav = numpy.add(rhopmav, rhopmtotav)
rhopp, rhopm = rotate(rhoppnew, rhopmnew, v, k)
returnlistv, rhopptotav/n, rhopmtotav/n

##############
importmatplotlib.pyplotasplt
v, rpl, rpm = total(1)
T = numpy.linspace(0, int(Tc ∗ deltat), num = len(rpl))
mylist = 2 ∗ rpl
sigz = [x− 1forxinmylist]
sigx = [2 ∗ xforxinrpm]
plt.plot(T, sigz)
plt.ylabel(′sigma′z)
plt.xlabel(′time(Tc)′)
plt.axis([0, int(Tc ∗ deltat),−1, 1])
plt.show()

61


