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A B S T R A C T   

Liquid storage tanks play a vital role in the modern chemical process industry (CPI). The strong ground motion 
caused by large-scale earthquakes may easily impose severe structural damage on liquid storage tanks, leading to 
a series of catastrophic cascaded events. The seismic damage estimation of liquid storage tanks is a challenging 
problem, as the fluid-structure interaction exhibits extremely complicated and non-stationary response behavior. 
This study develops a novel data-driven methodology to estimate the seismic damage state probability distri
bution of liquid storage tanks in the contexts of label ambiguity and data imbalance. With the support of the 
advanced deep learning framework, synthetic oversampling methods, and label enhancement techniques, a 
hybrid deep belief network-based label distribution learning system (HDBN-LDLS) is proposed for probability 
distribution learning. The proposed HDBN-LDLS is evaluated on the widely used ALA database. Simulation re
sults indicate that HDBN-LDLS can achieve a balanced estimation for all damage states while maintaining suf
ficient robustness to cope with label ambiguity. The reliability of the obtained data-driven model is validated by 
a damaged tank in the 2006 Silakhor earthquake. For practical applications, a more natural way to estimate a 
seismic damaged tank is to assign a membership degree to each possible damage state. The proposed method
ology can quickly obtain the seismic damage state probability curves of a specific liquid storage tank, which can 
be used to support quantitative risk assessment and seismic design.   

1. Introduction 

Liquid storage tanks are one of the common storage facilities in the 
modern chemical process industry (CPI), which can be used to contain 
various products such as diesel, gasoline, liquefied natural gas, and other 
hazardous chemicals (Huang et al., 2022a; Men et al., 2022a; Amin 
et al., 2019). The functionality of liquid storage tanks is essential for the 
safe operation of a wide range of petrochemical and processing opera
tions (Berahman and Behnamfar, 2009; Wang et al., 2022). Earthquakes 
may rapidly lead to a series of loss of containment (LOC) events in 
chemical tank farms, causing massive fires, explosions, or toxic cloud 
emissions (Antonioni et al., 2007; Yang et al., 2020; Men et al., 2022b; 
Meng et al., 2015). For example, a large-scale earthquake of magnitude 
7.4 occurred off the Kocaeli, Turkey, on 17 August 2011 (Girgin, 2011a). 
As shown in Fig. 1, many storage tanks at the TUPRAS Izmit refinery 

were damaged and triggered massive fires (Scawthorn and Johnson, 
2000). Damages in liquid storage tanks due to seismic events have been 
widely reported in the existing literature (Chakraborty et al., 2018; 
D’Amico and Buratti, 2019; Krausmann and Cruz, 2013; Ricci et al., 
2021; Sezen and Whittaker Andrew, 2006), which highlighted the 
importance of liquid storage tanks in performance-based earthquake 
engineering (PBEE). Accordingly, many scholars (Men et al., 2022b; 
Salzano et al., 2003; Fabbrocino et al., 2005; Bakalis et al., 2018) have 
pointed out seismic hazards should be integrated into the quantitative 
risk assessment of industrial facilities. 

As one of the core tasks of in process safety and risk management, the 
seismic damage estimation of liquid storage tanks has received consid
erable attention in recent years (Antonioni et al., 2007; Zuluaga May
orga et al., 2019). As mentioned by Marta et al (D’Amico and Buratti, 
2019)., most of the related studies focus on simulating and analyzing the 

* Correspondence to: South China University of Technology, No.381, Wushan Rd., Tianhe District, Guangzhou 510640, China. 
E-mail address: mmghchen@scut.edu.cn (G. Chen).  

Contents lists available at ScienceDirect 

Process Safety and Environmental Protection 

journal homepage: www.journals.elsevier.com/process-safety-and-environmental-protection 

https://doi.org/10.1016/j.psep.2023.02.079 
Received 30 August 2022; Received in revised form 14 January 2023; Accepted 26 February 2023   

mailto:mmghchen@scut.edu.cn
www.sciencedirect.com/science/journal/09575820
https://www.journals.elsevier.com/process-safety-and-environmental-protection
https://doi.org/10.1016/j.psep.2023.02.079
https://doi.org/10.1016/j.psep.2023.02.079
https://doi.org/10.1016/j.psep.2023.02.079
http://crossmark.crossref.org/dialog/?doi=10.1016/j.psep.2023.02.079&domain=pdf


Process Safety and Environmental Protection 172 (2023) 908–922

909

fluid-structure interaction system (Zhou and Zhao, 2021; Bakalis and 
Karamanos, 2021; Ozdemir et al., 2010) or assessing the seismic fragility 
of liquid storage tanks (D’Amico and Buratti, 2019; Lee et al., 2019; 
Salzano et al., 2003; Zuluaga Mayorga et al., 2019). Given the stochastic 
nature of accident evolution, probabilistic fragility is essential to un
derstand the response behavior of liquid storage tanks under extreme 
circumstances (D’Amico and Buratti, 2019; Men et al., 2022c; Yang 
et al., 2020; Zuluaga Mayorga et al., 2019). Research on fragility anal
ysis is abundant and most probabilistic models were driven by the 
post-earthquake damage data (D’Amico and Buratti, 2019; Salzano 
et al., 2003; Vıĺchez et al., 2001; Alliance, 2001b; Alliance, 2001a) or the 
analytical and numerical approximations (Berahman and Behnamfar, 
2009; Fabbrocino et al., 2005; Zuluaga Mayorga et al., 2019; Lee et al., 
2019; Saha et al., 2016; Gabbianelli et al., 2022). An overview of 
representative studies for the seismic fragility of liquid storage tanks is 
shown in the Appendix. Table A1. Many useful statistical methods such 
as probit regression (Salzano et al., 2003; Fabbrocino et al., 2005), lo
gistic regression (Yang et al., 2020; Gabbianelli et al., 2022; O’Rourke 
and So, 2000), Monte-Carlo simulation (Zuluaga Mayorga et al., 2019; 
Saha et al., 2016; Huang et al., 2022b), and Bayesian analysis (Berah
man and Behnamfar, 2009; D’Amico and Buratti, 2019) were widely 
used to obtain parametric fragility curves. Despite the increasing 
attention devoted to this research field, related studies are still limited 
by the imperfections of post-earthquake damage data (Bezir et al., 2022; 
D’Amico and Buratti, 2019; Men et al., 2022c). 

Following the performance-based earthquake engineering (PBEE) 
framework (Krawinkler, 2000; Ghosh et al., 2017), the damage states 
are usually divided into five levels (DS1: No damage, DS2: Minor damage, 
DS3: Moderate damage, DS4: Severe damage, DS5: Collapsed), and the 
damage description shown in Table 1 has been widely used to capture 
the damage states of liquid storage tanks (Bezir et al., 2022; D’Amico 
and Buratti, 2019; O’Rourke and So, 2000; Alliance, 2001b; Alliance, 

2001a). In real applications, the corresponding damage states were 
assigned to damaged tanks according to the experts’ opinions on the 
physical damage during past earthquake (Saha et al., 2016; Gao et al., 
2017; Geng, 2016). Such manual labeling method is difficult to collect 
sufficient samples with precise damage states. Given the fuzzy nature of 
natural language variables, qualitative terms such as minor, moderate, 
severe, etc., lead to the significant label ambiguity. Uncertainties asso
ciated with tank properties, hazard characteristics, measurement errors, 
incomplete information, and modeling errors also impose significant 
limitations on the above crisp models (Berahman and Behnamfar, 2009; 
D’Amico and Buratti, 2019; Saha et al., 2016). 

Moreover, from the perspective of data analysis, the size and distri
bution of sample space significantly affect the reliability of fragility 
analysis (Bezir et al., 2022; D’Amico and Buratti, 2019; Hu and Jiang, 
2019). As shown in Fig. 2, most of the existing databases (Bezir et al., 
2022; D’Amico and Buratti, 2019; O’Rourke and So, 2000; Alliance, 
2001b; Alliance, 2001a) show the characteristics of imbalance, which is 
rarely noticed by related studies. It leads to the probabilistic models 
failing to assign the same attention to minority damage states as the 
majority and further leads to the lack of generalization ability, although 
the overall performance is considerable (Hu and Jiang, 2019; Debowski 

Fig. 1. Tank damage at TUPRAS Izmit refinery (Scawthorn and Johnson, 2000). (a) The elephant foot buckling caused by the earthquake; (b) Tanks collapsed due 
to fire. 

Table 1 
Description of five seismic damage states (Bezir et al., 2022; D’Amico and 
Buratti, 2019; O’Rourke and So, 2000; Alliance, 2001b; Alliance, 2001a).  

Notations Damage 
State 

Physical Damage Description 

DS1 No damage No damage to tank structure and accessories 
DS2 Minor Damage to roof, minor loss of content, minor shell 

damage, minor piping damage, cracked foundation of 
the tank, no buckling 

DS3 Moderate Buckling with no leak or minor loss of contents 
DS4 Severe Elephant foot buckling with major loss of contents, 

severe damage 
DS5 Collapsed Total failure, tank structure collapse  

Fig. 2. Proportion of each damage state in common databases (1). O’Rourke 
and So (O’Rourke and So, 2000); (2). (Alliance, 2001a, 2001b); (3). (D’Amico 
and Buratti, 2019).; (4). (Bezir et al., 2022).). 
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et al., 2012; Gu et al., 2021). Due to the low frequency, samples with 
high damage states are often difficult to estimate. Meanwhile, these 
low-probability high-consequence events may lead to catastrophic 
interlocking chemical accidents (Men et al., 2022b). 

The central theme of this work is an expansion of fragility analysis, 
which aims to provide the probabilistic mapping relationship between 
structural physical damage and seismic intensity, theoretical support 
required for QRA. Two tough challenges caused by the imperfect post- 
earthquake damage data are especially considered: label ambiguity 
and data imbalance. To solve the research gaps mentioned above, a 
hybrid deep neural network-based label distribution learning system 
(HDBN-LDLS) is proposed, of which the core is the enhancement of post- 
earthquake damage data. To be specific, a broad artificial database is 
established to modify the imbalanced post-earthquake damage data and 
fill in the missing crucial information. A Niche-based synthetic over
sampling method is proposed to modify the imbalanced data. The label 
propagation algorithm is adopted to convert logical labels to label dis
tributions. Compared with the traditional crisp data-driven models, the 
proposed methodology deals with label ambiguity by allowing the 
answer to consist of more than one damage state. Finally, the advanced 
deep learning approach (Low et al., 2020; Arunthavanathan et al., 2021) 
is adopted to estimate the unknown probability distribution over the 
complex multivariate factors. 

The novelty of this study mainly has three aspects. 
Firstly, a novel data-driven methodology is proposed to estimate the 

seismic damage state probability distribution of liquid storage tanks, 
which can achieve a balanced estimation for all damage states while 
maintaining sufficient robustness to cope with label ambiguity. 
Compared with traditional crisp models, the proposed methodology can 
provide a more natural mapping relation of physical damage to proba
bility space. 

Secondly, the obtained seismic damage state probability curves 
provide a new and comprehensive perspective for seismic fragility 
analysis. Five compatible damage states are covered by the seismic 

damage state probability curves. The traditional crisp models focused on 
solving the issue “which damage state can represent the physical damage?”, 
while the proposed methodology deals with damage scale ambiguity by 
allowing the answer to consist of more than one damage state. Once the 
seismic damage state probability distribution is quantified, consequence 
analysis can be performed for those subsequent technological hazards 
such as fires, explosions and toxic gas emissions. 

Finally, the intersection of the probability curve corresponding to 
each seismic damage state is defined as the critical damage point, which 
can characterize the seismic performance of liquid storage tanks more 
conveniently. The proposed methodology has the potential to be a 
promising tool for the seismic design of liquid storage tanks. 

The rest of this paper is organized as follows. The proposed meth
odology is developed in Section 2. The performance of the proposed 
methodology is evaluated in Section 3 as well as some discussions about 
the methodology applications. This work is concluded in Section 4. This 
work includes an additional Supplemental material. Some preliminaries 
about seismic response characteristics, seismic damage characterization, 
and material properties are available in the Supplemental material. 

2. Methodology 

The proposed methodology consists of four main steps. 
Step 1 Post-Earthquake Damage Data Collection: The post- 

earthquake damage data of liquid storage tanks is first collected, 
which mainly includes tank properties and seismic intensity. Each 
sample is assigned to a specific damage state according to the experts’ 

Fig. 3. The flowchart of the proposed methodology.  

Table 2 
Critical parameters affecting seismic performance of liquid storage tanks.  

Notations Definitions 

D Tank Diameter, m 
H Tank Height, m 
tr Roof Thicknesses, mm 
ts Shell Thicknessesa, mm 
tb Base Thicknesses, mm 
ta Annular Ring Thicknesses, mm 
Rt Roof Type, 1. Floating Roof Tank; 2. Fixed Roof Tank 
St Steel Type 
AS Anchorage System, 1. Self-anchored; 2. Mechanically-anchored 
h Height of Liquid Level, m 
ρL Density of Stored Liquid, kg/m3 

Sp Peak Ground Acceleration, %gb 

SC Soil Classificationc  

a In this work, the shell thickness of the bottom plate is of particular concern. 
the thicknesses of other courses are assumed to the same as the bottom plate. 

b Acceleration due to gravity in consistent units, m/s2 

c API 650 differentiates soil types in six different “site classes” which range 
from site class A to F. 

Table 3 
Seismic damage parameters.  

Notations Definitions 

Fu Uplift Force of Tank Bottom Perimeter, N/m 
Fw Force Resisting Uplift in Tank Bottom, N/m 
FL Force Resisting Uplift in Annular Region, N/m 
J Anchorage Ratioa 

σC Maximum Longitudinal Shell Compression Stress, MPa 
σT Hoop Tensile Stress, MPa 
FC Allowable Longitudinal Shell-membrane Compression Stress, MPa 
Slh Sloshing Wave Height, m  

a According to the API 650, J < 0.785 indicates the tank is self-anchored; 
0.785 < J ≤ 1.54 indicates the tank is uplifting but stable; J > 1.54 indicates 
the tank is not stable and cannot be self-anchored.  
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opinions on the physical damage during past earthquake (Saha et al., 
2016; Gao et al., 2017; Geng, 2016). 

Step 2 Critical Parameters Identification: Thirteen critical pa
rameters affecting the seismic performance of liquid storage tanks and 
seven seismic damage parameters are identified and summarized. 

Step 3 Post-earthquake Damage Data Enhancement: The 
enhancement of post-earthquake damage data is the core of the pro
posed methodology. To be specific, a broad artificial database is estab
lished to modify the imbalanced post-earthquake damage data and fill in 
the missing crucial information. The label propagation algorithm is 
adopted to convert the original logical labels to the robust label 
distribution. 

Step 4 Label Distribution Learning: The obtained label distribution 
database is regarded as the input layer of the proposed hybrid deep 
neural network-based label distribution learning system. Through the 
training process, the seismic damage state probability distribution of 
liquid storage tanks can be obtained. (Fig. 3). 

2.1. Post-earthquake damage data collection 

Liquid storage tanks are often located in highly seismic regions, such 
as the case of oil storage facilities placed along the coasts of countries 

like Japan, California, Peru, Alaska, and Turkey (D’Amico and Buratti, 
2019). Several studies have constructed post-earthquake damage data
bases from different sources (Bezir et al., 2022; D’Amico and Buratti, 
2019; O’Rourke and So, 2000; Alliance, 2001b; Alliance, 2001a), which 
provide strong support for evaluating the seismic fragility of liquid 
storage tanks. However, most databases are not publicly available. In 
this work, the open-source ALA post-earthquake damage database 
(Alliance, 2001a,b) is adopted to demonstrate the proposed methodol
ogy, as it is publicly available and the reliability of the data is accept
able. This post-earthquake damage database consists of 531 liquid 
storage tanks in 21 earthquakes, and the observational information in
cludes: (1). Tank Diameter, (2). Tank Height, (3). Maximum Design Product 
Level, (4). Aspect Ratio (ratio of tank height to tank radius), (5). Filling 
Ratio, (6). Peak Ground Acceleration. Each tank is labeled with a specific 
damage state based on the definition shown in Table 1. It is worth 
mentioning that the proposed methodology is not limited to the ALA 
database (Alliance, 2001a,b), as many other databases also show the 
characteristics of label ambiguity and data imbalance. 

2.2. Identification of crucial parameters 

In this work, the cylindrical welded steel tanks in CPI are especially 
concerned, which can be regarded as a typical fluid-structure interaction 
system (Ozdemir et al., 2010; Hernandez-Hernandez et al., 2021). As 
mentioned by Ozdemir et al. (2010), the seismic damage estimation of 
liquid storage tanks is extremely complex since the fluid-structure 
interaction system possesses many different nonlinear behavior mech
anisms which may be triggered simultaneously or independently 
depending on the several factors, such as, characteristics of earthquake, 
contained liquid properties and its depth, dimensions of the tank, ma
terial properties and supporting conditions and stiffness of underlying 
soil medium. 

Some preliminaries about the seismic response characteristics of 
cylindrical steel liquid storage tanks under the excitation of ground 
motion are stated in the Supplemental Material. A. Through summari
zing, aggregating, organizing, and comparing the knowledge extracted 
from the existing studies (Scawthorn and Johnson, 2000; Bakalis and 
Karamanos, 2021; Housner, 1963, 1957; Spritzer and Guzey, 2017; API, 
2020; Phan et al., 2019), thirteen critical parameters affecting the 
seismic performance of liquid storage tanks are extracted and stated in 
Table 2. We cannot guarantee that the extracted parameters can repre
sent all the factors affecting the seismic performance of the storage tank. 
However, from the widely available literature, the extracted parameters 

Table 4 
Distributions of random parameters.  

Parameters Distribution Reference 

D,H, ts, tr, tb Discrete Information of 653 tanks are collected from 
previous studies (Yang et al., 2020; Spritzer and 
Guzey, 2017; Miladi and Razzaghi, 2019) 

St Discrete Seven steel types listed in Chinese Standard GB 
50341–2014 (P. Ministry of Housing and 
Urban-Rural Development, 2014). Material 
properties are stated in theSupplemental 
Material. B. 

h Uniform (0, 
0.95H) 

(Spritzer and Guzey, 2017; Miladi and Razzaghi, 
2019) 

ρL Uniform (750, 
1000) 

(Yang et al., 2020) 

ta Uniform (tmin
a , ts) The value of tmin

a can be obtained according to 
theSupplemental Material. D. Table. D. 1. 

Sp Uniform (0, 1.5) (Zuluaga Mayorga et al., 2019; Alliance, 2001a, 
b) 

SC Discrete (A, B, C, 
D, E, F) 

(Spritzer and Guzey, 2017)  

Fig. 4. Structure of the hybrid deep neural network-based label distribution learning system for estimating seismic damage state probability distribution of liquid 
storage tanks. 
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are sufficiently representative. 
Based on the seismic response analysis, various design codes are 

developed to guide the seismic design of storage tanks, such as the 
Chinese Standard GB 50341–2014 Annex D (P. Ministry of Housing and 
Urban-Rural Development, 2014), the American Standard API 650 
Annex E (API, 2020), NZSEE Recommendation (NZSEE, 2009), etc. The 
following eight parameters are usually adopted to characterize the 
seismic damage. ( Table 3) 

2.3. Post-earthquake damage data enhancement 

Although a lot of efforts have been made in the research on the 
seismic fragility of liquid storage tanks (D’Amico and Buratti, 2019; Lee 
et al., 2019; O’Rourke and So, 2000; Saha et al., 2016), existing studies 
are still limited by the imperfections of past databases. Thus, in this 
work, the enhancement of post-earthquake damage data is the core of 
the proposed methodology. In light of the above-mentioned limits, the 
enhancement of post-earthquake damage data is mainly carried out from 
the following three aspects. 

2.3.1. Data complement 

The original database (Alliance, 2001a,b) may only contains limited 
information. Many critical parameters affecting the seismic performance 
of liquid storage tanks are not available. The reliability of fragility 
models driven by such incomplete databases cannot be guaranteed 
(Bezir et al., 2022; D’Amico and Buratti, 2019). To facilitate the repre
sentation, the database obtained by the data complement process is 
denoted as the enhanced database. The database is required to include 
all critical parameters shown in Table 2. 

In this section, a data complement algorithm is proposed to fill in the 
missing information in the original database, while the information 
contained in the original database should be retained as far as possible. 
The missing information is regarded as random parameters and the 
random distributions of these parameters are stated in Table 4. 

The data complement process is stated in Algorithm 1. Suppose that 

O = {X ∈ RN×Q,L ∈ RN×P} (N = 531 is the number of instances; Q = 4 
is the dimension of the feature vector; P = 5 is the number of potential 
damage states) is the ALA post-earthquake damage database (only Tank 
Diameter D, Tank Height H, Liquid level h, Peak Ground Acceleration Sp are 
available.). The enhanced database is denoted as O e = {Xe ∈ RNe×Qe ,

Le ∈ RNe×P} (Ne is the number of instances; Qe = 13 is the dimension of 
the feature vector). In the initialization phase, the enhanced database O e 
is assumed to be empty, and a broad artificial database O h is con
structed. The feature vector Xh ∈ RNh×Qe of O h is generated by random 
sampling (Yang et al., 2020; Zuluaga Mayorga et al., 2019), the number 
of artificial instances Nh is set to be ten times N (Zhang and Qiu, 2022; 
Gan et al., 2022; Sawant and Prabukumar, 2020). The missing infor
mation of the ALA post-earthquake damage database can be obtained by 
random sampling (Yang et al., 2020; Zuluaga Mayorga et al., 2019), and 
the generated database O m = {Xm ∈ RN×Qe ,L ∈ RN×P} is obtained. For 
each generated instance, the label sharing assumption is made. Thus, the 
damage state of each generated instance is assumed to be the same as the 
original ALA instance. 

Algorithm 1. . Data Complement. 

For each instance x, the corresponding seismic damage feature sx = {

Fx
u, F

x
w, F

x
L, J

x
, σx

C, σx
T, F

x
C, S

x
h} can be obtained. Detailed calculations of 

these seismic damage parameters can be found in the Supplemental 
Material B. Thus, we have the seismic damage vector Sh ∈ RNh×S for the 
artificial database O h, the Sm ∈ RN×S for the original database O . The 
union of Sm and Sh constitutes an extensive feature space damage feature 
space 𝒮 = Sm

⋃
Sh. The seismic damage parameters can be used to assist 

to evaluate the deviation degree between the randomly generated in
formation and the actual situation. To be specific, the widely used K- 
means algorithm (Brus et al., 2006) is adopted for clustering analysis of 
𝒮. The predefined number of cluster centers is set to five, and the clus
tering labels C can be obtained. For each generated instance 
x ∈ Xm ∈ RN×Qe , when its clustering label Cx is consistent with the 
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original label Lx, the label sharing assumption is considered to be valid. 
Instances that satisfy the label sharing assumption largely retain infor
mation of the original data. Thus,{x,Lx} is introduced into the enhanced 
database O m.Nmax is a hyper-parameter, which is used to limit the 
number of the enhanced instances. The above process is repeated until a 
sufficient enhanced database is obtained. 

2.3.2. Imbalance modification 
As mentioned above, imbalanced data is one of the major challenges 

in estimating seismic damage state probability distribution of liquid 
storage tanks. It leads to the data-driven model failing to assign the same 
attention to minority damage states as the majority and further leads to 
the lack of generalization ability, although the overall performance is 
considerable (Hu and Jiang, 2019). 

Algorithm 2. . Imbalance Modification. 

However, in CPI, rare events often cause catastrophic consequences 
(Scawthorn and Johnson, 2000; Krausmann and Cruz, 2013; Zhou and 
Zhao, 2021; Girgin, 2011b). The synthetic oversampling methods (Hu 
and Jiang, 2019; Chawla et al., 2002; Han et al., 2005) are widely used 
to deal with imbalanced data, but are often limited by information loss 
and self-adaption. Thus, in this work, a Niche-based synthetic over
sampling method is proposed to modify the imbalanced data. The 
imbalance modification process is stated in Algorithm 2. To facilitate the 
representation, the database obtained by the imbalance modification 
process is denoted as the modified database. 

The Niche technique (Goldberg and Richardson, 1987) is adopted to 
identify the rarity of instances. For ∀{x,Lx} ∈ O e, its rarity r(x) can be 
calculated as follows: 

r(x) =
∑

x′ ∈Nk(x),x
′
∕=x

sf (x, x′

) (1)  

where Nk(x) is the neighborhood of x; the rarity of x is defined as the 
sum of the similarity between x and other samples in the neighborhood 
∀x′

∈ Nk(x) ∧ x′

∕= x. The sharing function sf(x, x′

) is used to describe the 
similarity between x and x′ Goldberg and Richardson (1987). Suppose 

that μ is the predefined rarity threshold, for all the instances x ∈ Xe,

r(x) ≤ μ, the synthetic oversampling method (Hu and Jiang, 2019; 
Chawla et al., 2002; Han et al., 2005) is adopted to generate artificial 
instances. 

xnew = x + α(xneo − x), xneo ∈ Nk(x) (2)  

where xneo is a random sample from the neighborhood of x;α ∈ (0,1] is a 
random variable. The damage state of the generated artificial instance 
xnew can be obtained by the k-nearest neighborhood (KNN) algorithm 
(Pourbahrami et al., 2020). If xnew and x have the same fault pattern, 
then xnew is included in enhanced database O e. This process is repeated 
until the rarities of all instanses are greater than the threshold. Finally, 
the modified database is denoted as O em = {Xem ∈ RNem×Qe ,

Lem ∈ RNem×P}. 

2.3.3. Label enhancement 

Label distribution learning (LDL) is a novel learning paradigm, which 
labels an instance with a label distribution and learns a mapping from 
instance to label distribution straightly (Xu et al., 2021). In most of the 
post-earthquake damage data, an instance x is assigned with lDSi

x ∈ {0,1}
to each potential damage state DSi, representing whether DSi describes 
x. To be specific, lDSi

x is denoted as the logical label, which reflects the 
logical relationship between the damage state and the instance. Such 
crisp classification answers the essential question “which damage state 
can describe the instance”, but does not involve the explicit relative 
importance of each damage state (Gao et al., 2017; Geng, 2016; Xu et al., 
2021). 

Following the concept of LDL learning paradigm, in this work, an 
instance x is to assign a real number dDSi

x ∈ [0, 1] to each potential 
damage state DSi. As shown in Table 1, the definitions of five damage 
states are derived from qualitative language variables such as minor, 
moderate, severe, etc. The fuzzy nature of these qualitative language 
variables leads to the significant label ambiguity. Thus, the term 
“membership degree” in fuzzy theory is adopted. Thus, dDSi

x is denoted as 
the membership degree of DSi to x. The higher the value of dDSi

x , the 
higher the degree to which x belongs to the damage state DSi. As 
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mentioned above, the set of potential damage state can be defined as DS 
= {DS1,DS2,DS3,DS4,DS5}. To satisfy the form of seismic damage state 
probability distribution, we have 

∑

DS
dDSi

x = 1. Given the database O em =

{Xem ∈ RNem×Q,Lem ∈ RNem×P}, label enhancement recovers the damage 
state distribution dx of x ∈ Xem from the logical label vector lx ∈ {0,1}P, 
and thus transforms O em into a LDL data set Θ = {Xem ∈ RNem×Qe ,

D ∈ RNem×P}. There are several algorithms designed for label enhance
ment (Xu et al., 2021). 

In this work, the label propagation (LP) algorithm is adopted. The 
basic idea of LP is to iteratively update the original logical labels by the 
following similarity matrix S = (sij)N×N. 

sij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp

(

−

⃦
⃦xi − xj

⃦
⃦2

2

)

if i ∕= j

0, if i = j

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3) 

Following the structure of Laplacian matrix, the label propagation 
matrix ℘ is constructed as follows: 

℘ = Ŝ
− 1

2SŜ
− 1

2 (4)  

where Ŝ is a diagonal matrix with the elements ŝij =
∑N

j=1sij. Suppose 
that D is the label distribution matrix, at iteration g, D is updated as 
follows: 

D(g) = α℘D(g− 1) + (1 − α)L (5)  

where the initial D(0) is set as the logical label matrix L; α ∈ (0, 1) is the 
balancing parameter. Finally, D(g) will converge to D∗, and the softmax 
normalization is adopted to normalize the label distribution matrix. 

2.4. Label distribution learning 

A hybrid deep neural network-based label distribution learning 
system (HDBN-LDLS) is developed to estimate the seismic damage state 
probability distribution of liquid storage tanks. The structure of the 
proposed HDBN-LDLS is shown in Fig. 4. The obtained label distribution 
database is regarded as the input layer of HDBN-LDLS. The training 
process is driven by the deep belief network (DBN) (Cao et al., 2022). As 
one of the advanced deep learning technologies, the DBN can overcome 
the defects of the traditional shallow neural network due to its powerful 
linear approximation (Cao et al., 2022; Li et al., 2022). The DBN is a 
probabilistic generative model that contrasts with the discriminative 
nature of traditional neural networks (Low et al., 2020; Cao et al., 2022). 

As shown in Fig. 4, DBN is a deep network obtained by stacking 
multiple restricted Boltzmann machine (RBM) and adding a Back 
Propagation neural network (BP-NN) into the last layer to accept the 
output vector of the topmost RBM (Tian et al., 2022). Following the 
basic framework of DBN, the training process of the proposed 
HDBN-LDLS is divided into two sub-processes: pretraining process and 
fine-tuning process. 

2.4.1. Pretraining process 
The pretraining process mainly adopts the RBM to map the feature 

Fig. 5. Structure of the restricted Boltzmann machine.  

Table 5 
The composition of enhanced databases obtained from ten independent runs.  

No. NDs1 NDs2 NDs3 NDs4 NDs5 Ne Lr  

1  522  83  31  15  14  665 3.201e-2  
2  532  99  29  16  12  688 3.951e-2  
3  490  91  31  14  17  643 4.122e-2  
4  512  82  27  15  13  649 2.823e-2  
5  533  89  29  14  12  677 3.012e-2  
6  484  94  34  13  13  638 3.213e-2  
7  512  87  33  12  11  655 3.581e-2  
8  498  86  36  13  16  649 2.811e-2  
9  514  82  31  14  13  654 2.931e-2  
10  524  87  32  12  15  670 3.012e-2  

Fig. 6. The composition of the enhanced databases obtained from ten independent runs.  
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vector Xem ∈ RNem×13 to different feature spaces, so as to retain as much 
feature information as possible. The RBM is an energy-based probabi
listic model. 

As shown in Fig. 5, an RBM usually consists of discrete visible units 
x ∈ Xem and discrete hidden units h (Mohan et al., 2021). The joint 
probability distribution (x, h) ∼ P(x, h; θ) is defined by the energy 
function E(x,h; θ) Mohan et al. (2021). 

P(x,h; θ) =
e− E(x,h;θ)

Z
(6)  

E(x, h; θ) = − bT x − cT h − hT Wx (7)  

where θ = {b, c,W} is the model parameter; Z = Z =
∑

x

∑

h
e− E(x,h;θ) is the 

partition function. During the pretraining process, the initial visible 
layer vector of RBM is the input training sample vector Xem ∈ RNem×13. 
Then, the hidden layer output vector calculated by {b, c,W} can be input 
to the next RBM. The Contrastive Divergence (CD) algorithm can be 
adopted to train RBM layer by layer quickly (Ning et al., 2018). The 
whole pretraining process can be regarded as an unsupervised learning 
process, which make the DBN have superior performance in feature 
extraction and automatic data dimension reduction (Cao et al., 2022). 

2.4.2. Fine-tuning process 
The BP-NN is adopted to fine-tune the DBN model. The hidden layer 

output vector output vector of the final RBM is regarded as the input 
layer of BP-NN. The output of the BP-NN is compared with the label 
distribution matrix D ∈ RNem×5, thus the model error can be obtained. 
The back-propagation algorithm (Cao et al., 2022; Li et al., 2022) can be 
used to adjust the network parameter values, so as to minimize the 
model error. The obtained data-driven model can be used to estimate 

seismic damage state probability distribution of liquid storage tanks. 

3. Methodology validation 

The proposed methodology is verified in this section. Methodology 
validation is performed on Matlab R2021a under a computer that is 
equipped with Intel(R) Core(TM) i7–8750H CPU @2.20 GHz and 
8.00 GB RAM. 

3.1. Training database 

Following the flowchart of the proposed methodology, the original 
ALA database ℴ = {X ∈ R531×4,L ∈ R531×5} is first converted to the 
enhanced database O e = {Xe ∈ RNe×13, Le ∈ RNe×5}. To preserve as 
much information as possible about the original instances, the size of O e 
should be similar to that of ℴ (Zhang and Qiu, 2022; Gan et al., 2022). 
Thus, Nmax is set to be 531. Due to the stochastic property of the pro
posed data complement process, ten independent data complement 
processes are performed to obtain different enhanced databases O e. The 
composition of the obtained enhanced databases is shown in Table 5. 
Suppose that Nr is the number of the instances x ∈ ℴ⋀x ∕∈ O e, the loss 
rate Lr =

Nr
N is adopted to represent the information loss of the data 

complement process. As shown in Table 5, the loss rate is very low. 
Simulation results indicate that the proposed data complement process 
can obtain sufficient instances that satisfy the label sharing assumption, 
which not only fills in the missing information, but also preserves the 
information contained in the original ALA database. However, as shown 
in Fig. 6, the enhanced databases still present an imbalanced distribu
tion. In addition, we found that instances with minority damage states 

Table 6 
The composition of the modified databases obtained from ten independent runs.  

No. NDs1 NDs2 NDs3 NDs4 NDs5 Nem  

1  511  334  221  131  112  1309  
2  513  299  218  133  117  1280  
3  519  311  232  127  96  1285  
4  498  321  239  119  100  1277  
5  502  331  232  122  105  1292  
6  511  312  266  121  99  1309  
7  531  311  222  113  110  1287  
8  528  306  235  116  96  1281  
9  528  321  232  112  106  1299  
10  533  312  235  121  99  1300  

Fig. 7. The composition of the modified databases.  

Fig. 8. Model error rate (enhanced databases).  
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are very similar. This indicates that the learning model may struggle to 
gain knowledge about these rare events (Hu and Jiang, 2019; Gu et al., 
2021). Meanwhile, various historical accidents (Scawthorn and John
son, 2000; Krausmann and Cruz, 2013; Chakraborty et al., 2018; Sezen 
and Whittaker, 2006; Zhou and Zhao, 2021; Girgin, 2011b) indicate that 
these rare events are highly possible to lead to catastrophic chemical 
accidents. 

The proposed imbalance modification process is applied to modify 
O e, a relatively balanced database O em can be obtained. The predefined 
rarity threshold is one of the key hyper-parameters. If the value of 
predefined rarity threshold is too high, artificially generated instances 
may contaminate the information contained in the original database 
(Zhang and Qiu, 2022; Gan et al., 2022; Sawant and Prabukumar, 2020). 
If the value of predefined rarity threshold is too low, the imbalance of 
the database cannot be modified adequately. After cross validation, the 

predefined rarity threshold is set to be 0.7

∑

x∈Xe

m(x)

Ne
. Through the imbalance 

modification process, ten modified databases are derived from the cor
responding enhanced database. The composition of the obtained 
modified databases is shown in Table 6. As shown in Fig. 7, compared to 
O e, the number of instances with minority damage states have all 
increased to varying degrees. On the premise of ensuring data reliability, 
a relatively balanced database O em can be obtained. Then, the LP al
gorithm is adopted to transform O em into the corresponding LDL data set 
Θ = {Xem ∈ RNem×13,D ∈ RNem×5}. 

3.2. Algorithm performance analysis 

In this section, the ten enhanced databases are first adopted to be the 
input of DBN, respectively. The training process can be regarded as a 
multiclass classification problem (Hu and Jiang, 2019). Theoretically, 
the increase of hidden layer can enhance the model accuracy but also 
inevitably increase the time complexity of the training process, and may 
lead to over-fitting (Hu and Jiang, 2019; Low et al., 2020; Tian et al., 
2022). Three widely used conventional neural networks that have 
shallow architectures, namely neural networks with a single hidden 
layer (SNN), support vector machine (SVM), and BPNN, are adopted for 
comparison to demonstrate the superiority of the DBN. In practical ap
plications, the settings of model hyperparameters have always been an 
inevitable problem in machine learning. The training dataset consists of 
60% instances in the enhanced database, the validation dataset consists 
of 20% instances, and the rest of instances are regarded as the test 
dataset. Both the validation dataset and the test dataset are not involved 
in the training process (Hu and Jiang, 2019; Low et al., 2020; Tian et al., 
2022), of which the validation dataset is adopted to adjust model 
hyperparameters and the test dataset is adopted to evaluate model 
generalization ability. According to some preliminary test, a DBN with 3 
hidden layers is considered and the neurons in three hidden layers are 
set as {27,15,10}. We cannot guarantee that the hyperparameters set
tings are the optimal combination. However, for most cases, the above 
settings can make the DBN obtain the data-driven model with great 
accuracy within the acceptable time. 

As shown in Fig. 8, the error rates of the DBN-driven models are 

Fig. 9. The comparison of AUC values (enhanced databases).  

Table 7 
Error rate of each damage state (DBN, enhanced databases).  

O e DS1 DS2 DS3 DS4 DS5 Error rate  

1  0.033  0.253  0.387  0.600  0.714  0.104  
2  0.053  0.222  0.483  0.563  0.667  0.118  
3  0.090  0.286  0.387  0.500  0.353  0.148  
4  0.070  0.280  0.593  0.600  0.538  0.140  
5  0.023  0.315  0.517  0.429  0.667  0.101  
6  0.050  0.266  0.382  0.462  0.615  0.119  
7  0.082  0.218  0.333  0.583  0.273  0.125  
8  0.068  0.186  0.333  0.462  0.813  0.125  
9  0.089  0.146  0.516  0.500  0.538  0.135  
10  0.052  0.299  0.531  0.833  0.533  0.131  
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obviously lower than the counterparts of the shallow networks. The AUC 
value (0.5–1) (Hu and Jiang, 2019; Xu et al., 2021) is adopted to further 
analyze the performance of classifiers obtained by the four algorithms. 
The larger the AUC is, the better the classification performance is. As 
shown in Fig. 9, for majority damage states (DS1 and DS2), the 
DBN-driven model presents obvious advantages. In this work, the DBN 
adopts layer-by-layer strategy of which the values of the all latent var
iables in each layer can be implicit by a single, bottom-up pass. The 
superposition of the underlying multilayer RBM makes the characteris
tics of the sample data set more obvious and effective, and it can be used 
directly in BPNN (Gan et al., 2022; Cao et al., 2022; Li et al., 2022; Tian 
et al., 2022). The stacked structure allows the DNN compactly represent 
highly non-linear and highly-varying functions. Thus, the DBN out
performs the shallow neural networks when handling the complex 
learning task due to its strong ability in feature learning and data 
expression. However, all the classifiers are not effective to identify mi
nority damage states. 

As shown in Table 7, the obtained models failing to assign the same 
attention to minority damage states as the majority and further leads to 
the lack of generalization ability, although the overall performance is 
considerable (Hu and Jiang, 2019; Debowski et al., 2012; Gu et al., 
2021). Due to the low frequency, instances with high damage states are 
often difficult to estimate. To handle the imbalanced database, the 
proposed imbalance modification process is adopted to obtain ten 
modified databases. With the test dataset unchanged, the model error 
rate is state in Table 8. To further verify the imbalance modification 
process, results shown in Table 7 and Table 8 are compared in Fig. 10. 

As shown in Fig. 10 (a), the overall error rate of the models driven by 
O em is slightly worse than that driven by O e. Moreover, for the instances 
in damage state DS1, the models driven by O em may also has higher error 
rate than the models driven by O e. This is because the involvement of 
artificially generated instances inevitably changes the knowledge model 
contained in the original data (Hu and Jiang, 2019; Zhang and Qiu, 
2022; Gan et al., 2022; Sawant and Prabukumar, 2020). For O e, the 
instances in damage state DS1 are sufficient, and the overall error rate is 
largely determined by these instances in majority damage state. How
ever, the models driven by O e cannot accurately evaluate the instances 
in minority damage state, which shows poor generalization ability. On 
the contrary, as shown in Fig. 10 (c-f), the models driven by O em can 
achieve a balanced estimation for all damage states. This indicates that 
the proposed imbalance modification process can effectively deal with 
the imbalanced data. 

3.3. Seismic damage estimation 

The above data-driven model still suffers from the limitations asso
ciated with crisp models, which is incompetent to handle the un
certainties arising from the label ambiguity (Gao et al., 2017; Xu et al., 
2021). To handle the label ambiguity, the LP algorithm is adopted to 
recover the damage state probability distribution from the logical labels, 
which utilizes the topological information of the feature space and the 

correlation among the damage states (Xu et al., 2021). Through the label 
enhancement process, the LDL database Θ can be obtained for learning 
the damage state probability distribution. The label distribution 
learning can be regarded as a regression problem (Geng, 2016; Xu et al., 
2021). Through the label distribution learning process, the proposed 
HDBN-LDLS can obtain a robust seismic damage estimation model. In 
this section, the reliability of the obtained robust seismic damage esti
mation model is validated by an actual damaged tank in the 2006 
Silakhor earthquake (Miladi and Razzaghi, 2019). 

3.3.1. Instance description 
The 2006 Silakhor earthquake Mw = 6.1 was occurred at a focal 

depth of 7 km. The maximum Sp record was 4.32 m/s2 (horizontal) and 
5.24 m/s2 (vertical). The 2006 Silakhor earthquake damaged many 
above-ground cylindrical tanks. One of the most damaged tanks (Tank 
3) was analyzed by Miladi and Razzaghi (2019), instance features of 
Tank 3 are stated in Table 9. 

According to the Supplemental Material. B, the seismic damage pa
rameters can be obtained: Fu = 2.639e + 5N/m; Fw = 3.065e + 4N/m; 
J = 6.764; σC = 70.775MPa; FC = 71.558MPa. The calculation results 
show that the maximum longitudinal shell compression stress σC is very 
close to the allowable longitudinal shell-membrane compression stress 
FC. Since Fu≫Fw& J > 1.54, the tank is not stable and cannot be self- 
anchored. In fact, the 2006 Silakhor earthquake caused shell uplift, 
cracking of foundation and buckling (Miladi and Razzaghi, 2019). The 
actual seismic damage characteristics are basically consistent with the 
seismic response analysis results, of which the reliability of the proposed 
data complement process can be effectively guaranteed. 

3.3.2. Estimation results analysis 
The instance features are regarded as the input of the robust seismic 

damage estimation model. Then, the seismic damage state probability 
distribution can be obtained. The estimation result is {dDS1 = 0.021,
dDS2 = 0.271, dDS3 = 0.486, dDS4 = 0.162, dDS5 = 0.060}. According to 
the definitions of five seismic damage states, the damage state of Tank 3 
can be identified as DS3. This is consistent with the estimation result. 
The membership degree of DS3 to the instance is 0.486, which is 
consistent with the actual physical damage of Tank 3. In addition, the 
explicit relative importance of other damage states can also be obtained 
from the seismic damage state probability distribution. As shown in 
Fig. 11, compared with traditional crisp models, the proposed robust 
methodology can provide a more natural mapping relation of physical 
damage to probability space. 

3.4. Seismic damage state probability curves 

After the training process, the obtained seismic damage estimation 
model can quickly estimate the seismic damage state probability dis
tribution, which provides a powerful tool for the seismic design of liquid 
storage tanks. Through changing the value of Sp (0.05 g~1.5 g), the 
seismic damage state probability curves of Tank 3 can be obtained 

Table 8 
Error rate of each damage state (DBN, modified databases).  

O em DS1 DS2 DS3 DS4 DS5 Error rate  

1  0.085  0.135  0.182  0.188  0.210  0.135  
2  0.083  0.131  0.177  0.198  0.212  0.134  
3  0.091  0.146  0.184  0.197  0.200  0.140  
4  0.113  0.128  0.159  0.191  0.178  0.138  
5  0.107  0.142  0.161  0.214  0.199  0.143  
6  0.098  0.132  0.162  0.207  0.201  0.137  
7  0.088  0.145  0.167  0.186  0.202  0.134  
8  0.091  0.131  0.175  0.198  0.213  0.135  
9  0.101  0.127  0.174  0.221  0.199  0.139  
10  0.089  0.132  0.167  0.178  0.195  0.130  
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Fig. 10. Model Comparison (ℴe vs O em).  
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(Fig. 11). The proposed methodology deals with label ambiguity by 
allowing the answer to consist of more than one damage state. The 
damage state with highest membership degree is denoted as the domi
nant state of seismic damage. As show in Fig. 12, with the increase of 
earthquake intensity, the membership degrees of DS1 ∼ DS5 to Tank 3 
changes dynamically. 

The intersection of the probability curve corresponding to each 
seismic damage state is defined as the critical damage point. When the 
seismic intensity exceeds the corresponding critical damage point, the 
dominant seismic damage state of the tank will change accordingly. 
Thus, the critical damage points provide a more convenient way to 
characterize the seismic performance of liquid storage tanks. As shown 
in Fig. 11, Tank 3 has four critical damage points, {0.145g,0.328g,0.587g,
1.128g}. This indicates that the dominant seismic damage state of Tank 
3 is DS1 with the seismic intensity Sp ≤ 0.145g; the dominant seismic 
damage state of Tank 3 is DS2 with the seismic intensity 
0.145g < Sp ≤ 0.328g; the dominant seismic damage state of Tank 3 is 
DS3 with the seismic intensity 0.328g < Sp ≤ 0.587g; the dominant 

seismic damage state of Tank 3 is DS4 with the seismic intensity 
0.587g < Sp ≤ 1.128g; the dominant seismic damage state of Tank 3 is 
DS5 with the seismic intensity Sp > 1.128g. 

As mentioned by many studies (D’Amico and Buratti, 2019; Gab
bianelli et al., 2022; Lee et al., 2019; Miladi and Razzaghi, 2019), 
anchoring technology can greatly improve the seismic performance of 
storage tanks. (Miladi and Razzaghi (2019) observed the damage state of 
28 above-ground cylindrical tanks that experienced the 2006 Silakhor 
earthquake. None of the mechanically anchored tanks was damaged. 
Thus, we assume that Tank 3 is mechanically anchored, the corre
sponding seismic damage state probability curves are shown in Fig. 13. 
The mechanically-anchored Tank 3 has two critical damage points, {
0.691g,0.989g}. This indicates that the dominant seismic damage state 
of mechanically-anchored Tank 3 is DS1 with the seismic intensity 
Sp ≤ 0.691g; the dominant seismic damage state of 
mechanically-anchored Tank 3 is DS2 with the seismic intensity 
0.691g < Sp ≤ 0.989g; the dominant seismic damage state of 

Table 9 
Instance Features of Tank 3 (Miladi and Razzaghi, 2019).  

Parameters Values 

D 3.8 m 
H 4.5 m 
ts 6 mm 
tr 6 mm 
tb 6 mm 
ta Not equipped with annular ring 
AS 1 
Rt 2. Fixed Roof Tank 
Steel Properties Elastic Modulus: 210 kPa; Yield Stress: 240 MPa; Density: 7850 kg/m3 

h 4.2 m 
ρL fuel oil, 920 kg/m3 

Sp 0.4 g 
SC 1  

Fig. 11. Mapping relation of physical damage to probability space.  
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mechanically-anchored Tank 3 is DS3 with the seismic intensity 
0.989g < Sp ≤ 1.5g. According to the accident statistical analysis 
(D’Amico and Buratti, 2019; Salzano et al., 2003; Vıĺchez et al., 2001; 
Alliance, 2001b; Alliance, 2001a), seismic events with the seismic in
tensity Sp > 1.5g are not considered. We found that the seismic perfor
mance of the mechanically-anchored Tank 3 is much better than that of 
self-anchored storage tank. Through comparing the critical damage 
points of the tanks, the effects of various parameters on the seismic 
performance of liquid storage tanks can be quantitatively analyzed. In 
practical application, the proposed methodology can quickly identify 
the tank parameters that satisfy the specific anti-seismic requirements. 

4. Conclusions 

In this work, label ambiguity and damage data imbalance associated 
with seismic damage estimation of liquid storage tanks were especially 
concerned. A novel data-driven methodology was developed, which 

integrated a data complement process for filling in the missing infor
mation from database, an imbalance modification process for generating 
specific instances with minority damage states, a label enhancement 
process for recovering the damage state distribution from the logical 
label, and a label distribution learning for obtaining a robust seismic 
damage estimation model. 

Simulation results indicate that the obtained seismic damage esti
mation model can achieve a balanced estimation for all damage states 
while maintaining sufficient robustness to cope with label ambiguity. 
Compared with traditional crisp models, the proposed robust method
ology provided a more natural mapping relation of physical damage to 
probability space. Even though seismic damage estimation of liquid 
storage tanks is the main motivation of our work, the proposed meth
odology is not limited to this, as many fragility analysis problems have 
analogous uncertain attributes. 

Compared with the traditional fragility curves, the seismic damage 
state probability curves provide a new and comprehensive perspective 

Fig. 12. Seismic damage state probability curves (Tank 3, Self-anchored).  

Fig. 13. Seismic damage state probability curves (Tank 3, Mechanically-anchored).  
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for fragility analysis. The seismic damage state probability curves can be 
used to analyze the topological information of the feature space 
(equipment parameters and hazard intensity) and the correlation among 
the damage states. The proposed methodology provides a promising tool 
for seismic design of liquid storage tank. 

There are still some issues in the current study that have not yet been 
resolved. The selection of the intensity measure is important for fragility 
analysis. From the perspective of the proposed data-driven methodol
ogy, this work is not limited to a specific seismic intensity measure. The 
seismic intensity measure actually depends on the original post- 
earthquake damage databases. However, most databases still use the 
Peak Ground Acceleration as the intensity measure. The Peak Ground 
Acceleration alone cannot fully capture the complex response of a liquid 
storage tank under seismic excitation. Moreover, for vector-valued in
tensity measures, specific data mapping methods may be required for 
dimension reduction. These issues will be the key points of our future 
research. 
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Appendix  

Table A1 
Overview of representative studies for the seismic fragility of liquid storage tanks.  

Authors (Year) Probabilistic models Evidence Main work 

O’Rourke and So (2000) Logistic Regression Post-earthquake Damage 
Data  

● The seismic behavior of cylindrical on-grade, steel liquid storage tanks 
was investigated;  

● The seismic damage data of 397 tanks in nine seismic events was 
collected for fragility analysis;  

● According to the HAZUS methodology (Kircher Charles et al., 2006), 
five damage states (no damage to complete failure) were adopted to 
describe the physical damage. 

American Lifeline Alliance 
(ALA, 2001a,b) 

Least Square Regression Post-earthquake Damage 
Data  

● The seismic damage data of 532 tanks in 19 seismic events was collected 
for fragility analysis;  

● Five damage states were defined to describe the physical damage. 
Salzano et al. (2003) Probit Regression Post-earthquake Damage 

Data  
● The ALA seismic damage data (Alliance, 2001b; Alliance, 2001a) 

reorganized in terms of risk states with reference to the loss of content;  
● Based on the framework of probit analysis, a simple and useful statistic 

tool was developed for seismic QRA. 
Berahman and Behnamfar 

(2009) 
Bayesian Analysis Finite Element Analysis 

(FEA)  
● The fragility of un-anchored steel storage tanks in petroleum complexes 

was estimated by a probabilistic seismic demand model;  
● The observation data of two failure modes, elephant foot buckling and 

welding failure, were obtained by FEA. 
Buratti and Tavano (2014) 

(Buratti and Tavano, 
2014) 

Regression analysis Added Mass Modeling  ● The secondary buckling occurring in the top part of the tank was 
investigated;  

● Incremental nonlinear time-history analyses were performed to identify 
the critical buckling loads. 

Saha et al. (2016) Monte Carlo Simulation Response Surface Model 
(RSM)  

● The uncertainty associated with isolator was investigated;  
● The RSM was adopted to observe the non-linear seismic response of the 

base-isolated liquid storage tanks. 
Zuluaga Mayorga et al. 

(2019) 
Monte Carlo Simulation Limit State Equation (LSE)  ● The LSEs of buckling and overturning were extracted from the American 

standard API-650 (Spritzer and Guzey, 2017);  
● The large-scale sample space obtained by Monte Carlo Simulation was 

divided by the LSEs into two categories: safety and failure. 
(D’Amico and Buratti, 

2019) 
Bayesian Analysis Post-earthquake Damage 

Data  
● The seismic damage data of 3026 tanks in 24 seismic events was 

collected for fragility analysis;  
● Two sets of damage states were adopted to describe the severity of 

structural damage and the quantity of liquid releases. 
Bezir et al. (2022) Logit, Probit and Cumulative 

Lognormal Model and Maximum 
Likelihood Method 

Post-earthquake Damage 
Data/ Finite Element 
Analysis  

● The seismic damage data of 4509 tanks were extracted from previous 
studies, another 101 damage data was obtained from the FEA.  

● Different statistical methods were used for curve fitting to the data 
called "observation frequency" of the damage.  

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.psep.2023.02.079. 
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