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Summary

We design and demonstrate a prototype ultrasound sensor based on a photonic
micro-ring resonator integrated on a silicon membrane, and show that it can de-
tect very low pressure ultrasound waves. The use of integrated photonics in future
array transducers has several benefits: for instance it provides a small spatial
footprint, compatibility with MRI due to the lack of electrical wiring, easy interro-
gation of the array of elements and ease of mass production, which may result in
cost-effective fabrication of array transducers. To understand the working princi-
ple of the sensor, we have modeled the basic sensor element, fabricated the sensor
and measured the response of the sensor to ultrasound. We have studied the re-
sponse of the optical resonator separately before we integrate the resonator on the
membrane and measure the response of the entire sensor. Besides the characteri-
zation of the sensor, we have expanded the existing knowledge of acoustical noise
to determine the noise mechanism of the sensor.
Although ultrasound sensors are widely used in both industrial and medical ap-
plications, this thesis mainly focuses on use in medical diagnostics. Currently,
ultrasound transducers are amongst others used to image such diverse objects as
the coronary arteries, heart valves, liver, kidneys, prostate, brain and thyroid, but
the most familiar application is the echo imaging of the fetus. The basis of the
conventional ultrasound transducer consists of piezoelectric material that converts
an electrical signal into a pressure wave and vice versa. During the last decades
the single element transducers are replaced by one-dimensional arrays of sensors
and during the last few years we have seen the emergence of two-dimensional ar-
rays of sensors. Hence the development is focused on miniaturization of the sensor
elements and fabrication of large dense arrays.
In this thesis, we have designed the basic element of a possibly future array ultra-
sound sensor that is based on integrated photonics. We have used the resulting
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Optical Micro-machined Ultrasound Sensor (OMUS) to investigate the working
principle. The element consists of a silicon optical waveguide that is coupled to a
photonic racetrack-shaped optical resonator with a spatial footprint of 50 µm by
10 µm. The optical resonator is positioned on a silicon-dioxide membrane with
a thickness of 2.5 µm and a diameter of about 100 µm. When a pressure wave
is incident on the element, the membrane deforms and thus deforms the optical
resonator. The deformation of the optical resonator shifts the optical resonance
frequencies. This shift is recorded by an external interrogation system.
We have fabricated the photonic circuit of the sensor in a semi-industrial CMOS
line. The resulting wafer-piece (die) contains 220 nm high and 400 nm wide silicon
waveguides on top of a 2 µm thick silicon-dioxide layer on top of a 250 µm thick
silicon substrate. Next, we have deposited a 0.5 µm thick silicon dioxide cladding
on top of the die to isolate the waveguide from the water. Finally, we have created
the membrane by locally removing the entire silicon substrate with use of deep
reactive ion etching from the back of the die.
The prototype sensor is used to give proof of concept. We have used a laser and
photo-receiver to interrogate the optical resonator and a conventional ultrasound
transducer to transmit the pressure waves that were received by the sensor. We
have found that the sensor had a resonance frequency of 0.76 MHz with a -6 dB
bandwidth of 19 %. Furthermore, we have demonstrated that this prototype is ca-
pable of detecting pressures as low as 0.4 Pa. The latter matches the performance
of the state of the art piezo-electric transducers while the spatial footprint of our
sensor is 65 times smaller.
The sensor elements were further investigated by characterizing the strain-induced
shift of the resonances of the optical resonator. We have applied a well defined
strain to the racetrack resonators and have identified three different influences on
the shift of resonances; dispersion, change in effective index and change in track-
length. We have found that the linear wavelength shift per applied strain varies
between 0.5 and 0.75 pm/microstrain depending on the width of the waveguide
and the orientation of the silicon crystal for infrared light around 1550 nm wave-
length. The influence of the increasing ring circumference is about three times
larger than the influence of the change in waveguide effective index, and the two
effects oppose each other.
The influence of the membrane is investigated by applying increasing static load-
ings to the sensor. In this study, we have integrated a short optical resonator
on the membrane, which experiences a radial deformation rather than a uniform
elongation. The measurement results show a non-linear response with high sen-
sitivity at the beginning of the curve where small loadings are applied and lower
sensitivity to the larger loadings.
The dynamic behavior of the sensor is investigated with a laser vibrometer. Due to
simultaneous read-out of the sensor and the vibrometer, the read-out of the sensor
can be compared to the vibration of the membrane and vibration of the entire
sensor. We were able to show that the sensitivity of the sensor to low pressure
signals is indeed induced by the membrane of the sensor, as the back of the sensor
shows no significant vibrations. Furthermore, we have shown that the resonance
frequency of the sensor can be tuned using different membrane diameters.
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The noise level of our sensor is different from conventional ultrasound transducers
due to the lack of electrical circuits. The noise of the optical sensor is only caused
by acoustical noise, which is not well described in literature. Therefore, we have
expanded the existing knowledge of acoustical noise by analyzing two mechanisms
of acoustical noise. We show that in thermodynamic equilibrium the noise power
delivered by the medium to the sensor balances the noise power delivered by the
sensor to the medium. Moreover, we show that for sensors with vanishing aperture
area, the noise pressure due to the molecular motion in the medium will reach a
well-defined finite limit.





Samenvatting

In dit proefschrift ontwerpen en demonstreren we een prototype ultrageluidsen-
sor die bestaat uit een optische micro-ring-resonator op een silicium membraan.
We laten zien dat deze sensor zeer lage ultrageluid drukgolven kan detecteren.
Het gebruik van gëıntegreerde optica in toekomstige matrix tranducenten heeft
verschillende voordelen: de technologie past bijvoorbeeld op een klein oppervlak,
is te combineren met MRI omdat er geen elektrische bedrading nodig is, maakt
dat een matrix van elementen makkelijk uitleesbaar is en is via massa productie
te produceren hetgeen mogelijk resulteert in kosteneffectieve fabricatie van matrix
transducenten. Om de werking van de sensor te begrijpen hebben we een model ge-
maakt van het basis element, deze sensor gefabriceerd en de respons op ultrageluid
gemeten. We hebben eerst apart de respons van de optische resonator bestudeerd
voordat we de resonator in het membraan hebben gëıntegreerd en de respons van
de hele sensor hebben gemeten. Naast het karakteriseren van de sensor hebben we
de bestaande kennis van akoestische ruis verruimd om het ruismechanisme van de
sensor te kunnen bepalen.
Hoewel ultrageluidsensoren worden gebruikt in zowel industriële als medische toe-
passingen, focust dit proefschrift zich op de medische diagnostiek. De meest be-
kende toepassing hierin is de echo van een foetus, maar de ultrageluidsensoren
worden ook gebruikt om beelden te maken van allerlei objecten zoals de krans-
slagaders, hartkleppen, lever, nieren, prostaat, hersenen en schildklier. De basis
van de conventionele ultrageluidtransducenten bestaat uit piëzo-elektrisch materi-
aal dat een elektrisch signaal in een drukgolf converteert en andersom. Al sinds
tientallen jaren hebben enkel-elementstranducenten plaatsgemaakt voor een één-
dimensionale array van transducentelementen. Als gevolg daarvan heeft de ont-
wikkeling zich met name gericht op het verkleinen van de transducentelementen
en het fabriceren van matrices met hoge dichtheid van elementen.
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In dit proefschrift hebben we het basis element ontworpen van een mogelijk toe-
komstige matrix ultrageluidsensor dat gebaseerd is op gëıntegreerde optica. We
hebben de resulterende optische micro-gefabriceerde ultrageluidsensor (OMUS)
gebruikt om de werking daarvan te onderzoeken. Het element bestaat uit een
optische golfgeleider van silicium die aan een optische ellips-vormige resonator
wordt gekoppeld. Deze resonator heeft een spatieel oppervlak van 50 µm bij
10 µm. De optische resonator is gepositioneerd op een membraan van silicium-
dioxide dat een dikte heeft van 2.5 µm en een diameter rond de 100 µm. Wanneer
een drukgolf het element raakt vervormt het membraan en daarmee ook de optische
resonator. De deformatie van de optische resonator zorgt voor een verschuiving
van zijn optische resonantiefrequenties. Deze verschuiving wordt geregistreerd door
een extern uitlees systeem.
We hebben het optische circuit van de sensor in een semi-industriële CMOS lijn
gefabriceerd. De resulterende silicium schijf (wafer) bevat 220 nm hoge en 400 nm
brede silicium golfgeleiders op een 2 µm dikke siliciumdioxide laag op een 250 µm
dik slicium substraat. Hierna hebben we de golfgeleiders met een 0.5 µm dikke
laag slicium bedekt om de golfgeleiders van het water te isoleren. Tenslotte hebben
we het membraan gemaakt door lokaal via de achterkant met een diepe reactieve
ion ets het volledige silicium substraat te verwijderen.
Het prototype sensor is gebruikt om te laten zien dat het concept werkt. We
hebben gebruik gemaakt van een laser en fotodiode om de optische resonator uit
te lezen en een conventionele ultrageluidtranducent om de drukgolf op te wekken.
We hebben een resonantie frequentie van 0.76 MHz gevonden met een -6 dB band-
breedte van 19 %. Verder laten we zien dat dit prototype een minimale druk van
0.4 Pa kan detecteren. Deze druk komt overeen met die van de meest moderne
piëzo-elektrische trandsucenten terwijl het oppervlak van onze sensor 65 keer klei-
ner is.
De sensorelementen zijn verder onderzocht door het karakteriseren van de rek-
gëınduceerde verschuiving van de resonanties van de optische resonatoren. We
hebben een goed gedefinieerde rek aangebracht op de ellips-vormige resonatoren
en hebben drie verschillende invloeden op de resonatieverschuiving kunnen on-
derscheiden; dispersie, verschil in effectieve index en verschil in baanlengte. We
hebben voor infrarood licht met een golflengte rond 1550 nm een variatie tussen
0.5 en 0.75 pm/microrek van de lineaire golflengte-verschuiving per aangebrachte
rek gevonden, die afhankelijk is van de breedte van de golfgeleider en de oriëntatie
van het silicium kristal. De invloed van de toenemende baanomtrek is ongeveer
drie keer zo groot als de invloed van het verschil in de effectieve index van de
golfgeleider. Daarnaast werken de twee effecten tegengesteld.
De invloed van het membraan is onderzocht door een toenemende statische last op
de sensor aan te brengen. In dit onderzoek is een korte optische resonator op het
membraan gëıntegreerd, die een radiële deformatie ondervindt in plaats van een
uniforme verlenging. De meetresultaten laten een niet-lineaire respons zien met
hoge gevoeligheid in het begin van de curve waar kleine lasten worden aangebracht
en lagere gevoeligheid voor de hogere lasten.
Het dynamische gedrag van de sensor is met een laservibrometer onderzocht. Door
het gelijktijdig uitlezen van de sensor en de vibrometer kan de meetwaarde van de
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sensor vergeleken worden met de vibratie van het membraan en de vibratie van de
gehele sensor. Hierdoor kunnen we laten zien dat de gevoeligheid van de sensor
voor lage druk signalen inderdaad door het membraan wordt gëınduceerd omdat
de achterkant van de sensor geen significante trillingen laat zien. Verder laten we
zien dat de resonantiefrequentie van de sensor kan worden bëınvloed door gebruik
van membranen met verschillende diameter.
Het ruisniveau van onze sensor verschilt van conventionele ultrageluidsensoren
door het ontbreken van elektrische circuits. De ruis van de optische sensor wordt
alleen veroorzaakt door akoestische ruis, die niet goed is beschreven in de lite-
ratuur. Daarom hebben we de bestaande kennis van akoestische ruis uitgebreid
door twee ruismechanismen van akoestische ruis te analyseren. We laten zien dat
in thermodynamisch evenwicht het ruis vermogen dat door de omgeving aan de
sensor wordt afgegeven in balans is met het ruis vermogen dat door de sensor
aan zijn omgeving wordt afgegeven. Bovendien laten we zien dat voor sensoren
met een oneindige klein oppervlak de ruis druk door moleculaire beweging in het
medium een goed gedefinieerde eindige limiet bereikt.
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Chapter

1

General introduction

This thesis describes the development and characterization of an ultrasound sen-
sor based on integrated photonics. The use of light as information carrier makes
this sensor different from the state-of-the-art piezo-electric ultrasound transducers.
It provides a large data transfer capacity due to a broad bandwidth. Moreover
the sensor is made using standard Complementary Metal Oxide Semiconductor
(CMOS) fabrication processes, which allows for mass production. To design a
high quality sensor that has comparable or even better image qualities than the
state-of-the-art transducers, complete understanding of the sensor is necessary.
Therefore we investigated the optical, mechanical and acoustical aspects of the
sensor.
This chapter starts with an introduction of the main background of medical imag-
ing and development of conventional ultrasound transducers (Sec. 1.1). Then we
describe the aim of the research that was carried out in Sec. 1.2. In this part, we
briefly describe the working principle of the sensor to get some understanding of
the sensor. For a detailed description of the sensor as well as its operating principle
we refer the reader to Chapter 4. In Sec. 1.3 we will discuss the development in
the use of guided light in sensors and the semiconductor industry as fabrication
platform. The outline of this thesis is presented in Sec. 1.4.

1.1 Medical imaging

Medical ultrasound is often used for diagnostic imaging of patients. Compared to
other imaging techniques as CT and MRI, it has a lot of benefits; the images are
real-time, it is safe (no radiation), inexpensive and the system is portable. The
name ultrasound imaging refers to the use of high (≥ 1 MHz) frequency sound
waves to image the inside of the body. A device, named transducer, is used to
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emit soundwaves into the body. These waves partly reflect on the inhomogeneities
inside the body. The transducer receives the reflected waves (echoes) and with use
of the time of flight the axial depth of the tissue can be determined. A single trans-
mission provides the location of the scatterers in the beam line of the transducer.
To create an image, multiple lines are needed and hence the area of interest has
to be scanned. Three typical ultrasound images are shown in Figure 1.1 with on
the left an image of a fetus, in the middle an image of the 4 chambers and valves
of the heart and on the right an ultrasound image of an artery.
The development of diagnostic ultrasound instrumentation as we know it today was
initiated around the time of the end of the Second Wold War [1]. The conventional
transducers used to make an image consist of piezoelectric material. Piezoelectric-
ity is defined as an electrical polarization related to mechanical strain. The polar-
ization is proportional to the strain and changes sign with it [2]. Thus piezoelectric
materials accumulate an electric charge in response to an applied mechanical stress
and vice versa. The first ultrasound transducers were made of Quartz. This ma-
terial has a high mechanical strength and low internal friction, but needs large
amplitude voltages to be driven. Later, piezoelectric ceramics were used which
had an improved efficiency and could be processed into varying shapes and sizes.
In 1954, lead titanate-zirconate compositions (PZT) were discovered as piezoelec-
tric material which had the additional benefits of a larger operating temperature
range [3]. Currently, PZT is still used as transduction material in the state-of-the-
art transducers, while research for new materials like single crystals (e.g. Lead
Magnesium Niobate-Lead Titanate (PMN-PT)) or composites continues [1].
The efficiency of a transducer in conversion of energy depends next to the material
on the frequency of excitation. To improve the energy transfer between the piezo-
electric material and the tissue, matching layers and backing layers are often used.
A scheme of a conventional transducer is shown in Figure 1.2. This transducer
contains a large backing block that prevents movement of the bottom part of the
piezoelectric layer. The matching layer, which has an impedance in between the
piezoelectric material and the tissue, is here indicated as plastic ’nose’.
Next to the development of new materials, other aspects of the transducers were
also adapted. The transducers changed from single element transducers into ar-
rays, which contain many small transducer elements in a line (linear array) or in a
plane (matrix array). Arrays give the option to illuminate an entire area at once,
or electrically scan the area of interest [1]. With these arrays higher resolution
images could be obtained with a much faster acquisition time [4].
The transducers used for medical imaging are designed for specific applications.
The materials, element dimensions, shape and resonance frequency are optimized
to obtain the penetration depth and resolution needed for each procedure. The ap-
plications that require dense arrays with small outer dimensions of the transducer
are the ones where our sensor can provide most added value. Such applications
can be found in the field of intra-operative image guidance (e.g. Intravascular
Cardiac Echography (ICE)), where the device should not interfere with the proce-
dure [5], or in the field of internal medical diagnostics, for instance Transesophageal
Echocardiography (TEE) or Intravascular Ultrasound (IVUS). In these last two
diagnostic applications the transducer is positioned on a catheter which is posi-
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tioned inside the body. With a TEE image the catheter containing the transducer
is positioned via the mouth or nose in the esophagus to image the hart. In case of
IVUS the catheter is positioned inside a coronary artery to image the artery wall.
In both cases a small transducer is required that nevertheless consists of multiple
elements. Because the transducer is mounted on a catheter, the number of coaxial
cables that connects the catheter to the computer is also limited, which provides
an additional design challenge.

1 mm

a) b) c)

Figure 1.1: Ultrasound images of a) fetus obtained with 3D ultrasound [6],
b) apical 4-chamber view of the heart obtained with transthoracic echocardio-
graphy [7] and c) a cross-section of a coronary artery obtained with IVUS [8].

Figure 1.2: Scheme of ultrasound transducer [9].
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1.2 An optical micro-machined ultrasound sensor
for (medical) ultrasound

The aim of this research project was to design, fabricate and test an ultrasound
sensor based on a new operation principle. This operation principle makes use
of integrated photonics. Therefore our read-out system tracks the light spectrum
over time. When an acoustical wave is incident on the sensor the transmission
spectrum changes. We can explain this by describing the working principle of the
sensor. The sensor consist of a photonic waveguide (bus waveguide) that guides
the light from one side of the sensor towards the other side. We positioned a pho-
tonic ring resonator, which is a looped waveguide with distinct resonances, in the
middle of the sensor. A part of the light spectrum is coupled from the photonic
waveguide into this ring resonator. When we transmit a broad light spectrum
through the bus waveguide and record the transmission spectrum at the end of
the waveguide, instead of a flat spectrum we measure resonance dips consistent
with the resonance frequencies of the ring resonator. We want to obtain a modu-
lation of this spectrum due to ultrasound waves. This is done by positioning the
ring resonator on an acoustical membrane. When a pressure wave is incident on
the acoustical membrane, the membrane and thus the integrated ring resonator
will deform. The deformation of the ring resonator influences the position of the
resonances in the transmission spectrum. When one resonance is monitored over
time using light with a very narrow spectrum, an incident pressure wave causes a
time dependent shift of this resonance dip, which is observed as a modulation of
the transmitted light intensity.
A main benefit of this new operating principle is the sensors in-susceptibility to
electromagnetic interference. Therefore the sensor can be used in combination
with MRI and other radiative environments. An other advantage is the possibility
to stack data of several sensors in the spectrum. As a result only a single fiber is
required as read-out of an entire array.
To get a good understanding of this sensor and be able to determine the feasibility
as ultrasound sensor we investigated several aspects. We studied the optical com-
ponents on the chip [10] as well as the influence of strain on the ring resonators
(Chapter 3). We provided proof of concept with the first ultrasound measure-
ments performed with a prototype (Chapter 4). We determined the influence of
the membrane with a static pressure analysis and a study of the membrane motion
(Chapter 5). Finally we derived a theory about the noise pressure levels that de-
termines the minimal pressure level that can be measured with this type of sensor
(Chapter 6).

1.3 Integrated photonic systems and micro-
machining fabrication technology

Our sensor uses light as information carrier to benefit from fiber optics. Fiber op-
tics, first developed in the 1970s, revolutionized the telecommunications industry.
Compared to copper wires, optical fibers have the benefit of low attenuation and
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interference, high reliability over long distances, a long life span and a very high
information capacity [11].
We choose silicon and silicondioxide as materials for the index-guided based pho-
tonic waveguides. This allows us to use silicon-on-insulator technology for fabrica-
tion and hence profit from 50 years of development in semiconductor fabrication
technology. This mainly means ease of fabrication and hence mass production.
Chip production today is based on photolithography. In this process high energy
UV-light is shone through a mask upon a photosensitive film covering the silicon
wafer. The illuminated part of the photosensitive layer forms the pattern of the
chip and is developed into a layer that protects the underlying silicon. With etch-
ing processes the silicon that is not protected by the mask is removed. The wafer
is cleaned by removing the mask. Most designs require several of these fabrication
sequences [12].
Lots of structures can be created with this fabrication technique, but there are lim-
itations that have to be taken into account when a design is made. For instance,
there are variations present in the height of the silicon light-guiding layer and the
chip can contain structures that have a slightly different size than designed for.
Furthermore the lithography can only be optimized for one feature size, meaning
that only this feature size is according to specifications. A final consideration is
the fact that the sides of the patterns are not perfectly straight, but have an angle
of about 10 degrees [10].

1.4 Outline of this thesis

With this brief introduction to the different fields involved we have obtained a
general idea why this new sensor can be of importance to the medical field. In the
remaining part of this thesis, we discuss the work done to obtain this sensor as
well as the investigation of the different aspects of the sensor.
Chapter 2 presents a short overview of the theory that is important for the design
of our sensor. It first describes the basic concepts that we used to model the sensor.
The second part of this chapter describes the modeling results. With the models
we obtained possible dimensions and corresponding resonance frequencies for our
prototype device. We also calculated the first values of the pressure levels that
could be received.
Chapter 3 studies the shift in the optical resonances due to an applied static me-
chanical strain to the ring resonator. The influence of different physical aspects
on the ring resonator is investigated, such as: the elongation of the track, the
change in cross-section of the waveguide due to the Poisson ratio, the change in
the refractive index of the silicon and silicondioxide due to the photo-elastic effect
and the dispersion in the waveguide.
Chapter 4 presents the proof-of-concept of the sensor. We present the first mea-
surement results of the response of our sensor to an acoustical pressure wave. We
determined the transfer function and hence its resonance frequency. We found a
noise equivalent pressure that indicated that we fabricated a very sensitive ultra-
sound sensor.



6 Chapter 1. General introduction

Chapter 5 describes the characterization of the sensor. We investigated what the
behavior of the sensor is under static and dynamic loading as well as the initial
shape. Due to the fabrication technique of the silicon wafer, we found that initial
strain is present, which influences the behavior of the membrane. Instead of linear
theory, large deflection theory is needed to understand the static pressure mea-
surements. Furthermore it is shown that only the membrane itself is significantly
responding to the ultrasound waves.
Chapter 6 presents a theory to determine the noise level of small sensors. The
noise floor of our sensor is different from the state-of-the-art transducers due to
the lack of piezoelectric material. Hence our sensor is only prone to the noise
generated by thermal motion of the atoms in the membrane and the water, while
the piezoelectric transducers also have to deal with the high electrical noise from
the electrical impedance.
Chapter 7 concludes and summarizes the thesis.



Chapter

2

Basic concepts and
membrane design

Abstract – To be able to design a prototype sensor the basic concepts of the sensor
should be known. This chapter describes the basis concepts of photonic waveguides,
couplers and ring resonators as well as the linear theory for membrane deflection.
With use of these concepts the membrane thickness and diameters are obtained.
It is shown that a membrane thickness of 1.2 µm of silicon left underneath the
2.5 µm silicondioxide results in the most induced strain in the layer of the photonic
waveguide for a resonance frequency of 1 MHz. Membrane diameters from 60 to
100 µm result in resonance frequencies of 3.2 to 0.9 MHz in water. Calculations
showed a minimum detectable pressure level in the order of 600 Pa, which is
sufficient for ultrasound sensing.

This chapter is based on the following publication:
S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, K. W. A. van Dongen,

H. P. Urbach, N. de Jong, and M. D. Verweij, “Membrane design of an all-optical ultrasound
receiver,” in Proceedings IEEE International Ultrasonics Symposium, Prague, Jul. 2013, pp.
2175–2178
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The general concept of the sensor is that the transmitted light traveling through
the optical waveguide is modulated by the mechanical deformation of the optical
ring resonator due to an incident ultrasound wave. To design such a sensor we
need to understand the concepts of guided light and its mechanical response to
pressure. An overview of the main concepts is given in the first part of this chapter,
starting with the theory of photonic waveguides followed by the linear theory of
membrane deflection. The second part shows the first modeling results for the
dimensions and the corresponding resonance frequency of the sensor. These are
used to obtain an estimate for the membrane diameter and thickness as starting
values for the design of the prototype.

2.1 Photonic waveguides

This section describes the theory for high-index-contrast silicon waveguides. It
only describes the theory that is of interest in our design. The reader is referred
to [10] for a broader description of the theory and newly derived theory for these
kind of waveguides. We start with the description of waves that can propagate in a
waveguide (Section 2.1.1). Then the coupling of light from the straight waveguide
towards the ring resonator via a directional coupler is described (Section 2.1.2)
and we finalize with the description of a ring resonator (Section 2.1.3).

2.1.1 General description of a dielectric photonic waveguide

Photonic waveguides confine light and transport it over a given distance. The
confinement is done by index guiding where the core of the waveguide has a
higher refractive index than the surrounding. The photonic waveguides that are
discussed are rectangular waveguides made of silicon. They have a SiO2 burried
oxide (BOX) substrate and an air or SiO2 cladding. The waveguides have a typical
height of 220 nm and width of 400 nm. The assumed free-space wavelength λ of
the light is 1.55 µm. A schemamtic picture of such a silicon-on-insulator (SOI)
waveguide is shown in Figure 2.1a, with its fundamental transverse electric (TE)
mode depicted in Figure 2.1b. The fundamental mode has most of its energy in the

n1 = 3.45

n5 = 1

n4 = 1.44
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Figure 2.1: Cross-section of a SOI waveguide. a) Sketch of the waveguide
b) Sketch of the Ex component of the fundamental mode in color. Dark blue
represents a large field, white represents zero field [10].
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center of the waveguide. The modes can be described with Maxwell’s equations.
In our description we approximate silicon and silicon dioxide as linear dielectrics
with permittivity ϵ, which means that the material polarization is proportional
to the electric field. We neglect magnetic behavior of the dielectrics by using the
permeability of vacuum µ0. All optical descriptions given are valid for monochro-
matic light with angular frequency ω and vacuum wavelength λ = ω/2πc where c
is the speed of light in vacuum. The physical electromagnetic fields are described
by the real components of the complex vector fields E and H of the electric and
magnetic fields respectively. Maxwell’s complex equations for monochromatic
light in an isotropic linear dielectric medium without charges are given by [13]

∇× E = −iωµ0H, (2.1)

∇×H = iωϵE, (2.2)

∇ · ϵE = 0, (2.3)

∇ ·H = 0. (2.4)

The latter two equations (2.3) and (2.4) are not independent and follow di-
rectly from the first two equations (2.1) and (2.2). The refractive index n depends
on the permittivity as n =

√
ϵ/ϵ0, with ϵ0 the permittivity of vacuum. The

permittivity profile ϵ(x, y, z) describes the devices as is indicated in Figure 2.1a
and hence describes how the electromagnetic field behaves.

Electromagnetic fields in a homogeneous isotropic medium without charges obey
the wave equations

(∇2 + n2k2)E = 0, (2.5)

(∇2 + n2k2)H = 0, (2.6)

with k = ω/c the free-space propagation constant [13, Ch. 9]. A dielectric waveg-
uide is fully described by its permittivity profile ϵ(x, y) which is invariant in the
z-direction, i.e. the direction in which the light propagates. We may assume that
the propagating wave solutions have the form

E(x, y, z) = E(x, y)e−iβz, H(x, y, z) = H(x, y)e−iβz, (2.7)

with β the propagation constant.
To find a solution in the form of Eq. 2.7 for the light propagation through rect-
angular dielectric waveguides, we can use the extended description of Marcatili’s
approximate analytical approach [14] or numerical mode solvers.
The field on the chip has to deal with losses. These losses are introduced by im-
perfections of the silicon and by waveguide bends. In case of the waveguide bends
the mode in the bend changes with respect to the mode of the straight waveguide.
This happens because the wave fronts at the outside of the bend have to propagate
faster than the wave fronts at the inside. As a result the power of the mode moves
towards the outside of the bend [15]. This effect is stronger for sharper bends.
When we include losses the electrical field of the TE mode is described by

E(x, y, z) = E(x, y)e−iβz−αpz, (2.8)
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with αp the propagation loss.
The effective index is often expressed in terms of the propagation constant as

ne ≡
β

k
. (2.9)

The effective group index ng is defined as

ng ≡ ∂β

∂k
. (2.10)

We can also find an explicit expression for the group index in terms of the first-
order dispersion in the effective index ne as

ng = ne − λ
∂ne

∂λ
. (2.11)

In our case, we only use a small wavelength span around a center wavelength λc.
Therefore we approximate the wavelength-dependence of the effective index ne(λ)
as linear so that

β(λ) ≈ 2π

[
ne(λc)− ng(λc)

λc
+

ng(λc)

λ

]
. (2.12)

2.1.2 Directional couplers

It is possible to couple light from one waveguide into another by means of a di-
rectional coupler. Such a directional coupler consists of two parallel single-mode
waveguides positioned close together as is shown in Figure 2.2a-b. We use a di-
rectional coupler to couple a fraction of the light from the straight waveguide into
the ring resonator. The electric field in the coupler Ec can be approximated as a
superposition of the two modes of the isolated waveguides a and b. The amplitudes
of the two modes vary along the length of the coupler as is shown in Figure 2.2c.
The electromagnetic field is approximated as

Ec(x, y, z) ≈ Ea(x, y)ua(z) + Eb(x, y)ub(z), (2.13)

with ua and ub the complex modal amplitudes of waveguides a and b respectively
and Ea and Eb the modal electric fields of the waveguides. When light propagates
through waveguide b at the start of the coupler, i.e. z = 0, all energy is in this
waveguide and therefore the amplitude of this mode is maximal and the mode in
waveguide a is zero (ua(0) = 0). At the effective coupling length of the coupling,
i.e. z = L̃, the amplitudes of both modes in the coupler is given by

ub(L̃) = τub(0), ua(L̃) = κub(0). (2.14)

The effective coupling length L̃ = L + ∆L consist of the length of the coupler L
and an contribution ∆L from a part of the bends of the waveguide. The complex
amplitudes τ and κ are calculated using coupled mode theory. The derivation is
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given in [10], but the final formula for the coupling amplitudes for two waveguides
is given by

τ =

(
cos sL̃− iδ

s
sin sL̃

)
ei(βb+κbb−δ)L̃, (2.15)

κ = −
(
iκab

s
sin sl̃

)
ei(βb+κbb−δ)L̃, (2.16)

where βb is the propagation constant of mode b, κbb is the correc-
tion to this propagation constant originating from the other waveguide,
δ ≡ 1/2(βb + κbb − βa − κaa) is the difference between the corrected propa-
gating constants of the guides and s =

√
κbaκab + δ2 is the coupling coefficient.

Coupling coefficient κab represents the coupling from the mode of waveguide b to
the mode of waveguide a and κba represents the coupling from the mode of waveg-
uide a to the mode of waveguide b. These coefficients dominate s. The guides
in the coupler that we study are designed to be identical, but we experimentally
observed non-zero δ in our couplers.
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Figure 2.2: Directional coupler and its behavior. a)Top view of a directional
coupler with bus waveguide b and second waveguide a. b) Optical microscope
photo of a directional coupler in SOI. The very narrow pinkish lines are the
waveguides. c) The normalized power in each mode at a certain coupling length
z. The coupling coefficient s is 0.1 for identical waveguides (δ = 0) [10].

2.1.3 Ring resonators

Ring resonators consist of a looped optical waveguide and a coupling mechanism
to couple light into the loop. The shape of the ring is arbitrary. We use racetrack
resonators which are elongated rings with a straight part between the bends (Fig.
2.3). As coupling mechanism we use two directional couplers (Sec 2.1.2). A losless
coupler without reflections is generally described by [16](

b1
b2

)
=

(
τ∗ κ
−κ∗ τ

)(
a1
a2

)
, (2.17)

where a1, a2, b1 and b2 are the waveguide terminals and κ and τ are the coupling
coefficients from the bus waveguide to the ring resonator and vice versa as indicated
in Figure 2.3. The relation between the coupling coefficients is given by |τ |2+|κ|2 =
1 and the ∗ is the complex conjugate.
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When the wave travels through the racetrack resonator it experiences after one
round-trip a phase delay ϕρ and a decay by a factor α, so that

a2 = αeiϕρb2. (2.18)

We can obtain the power in the output waveguide |b1|2 by substituting Eq.(2.18)
in Eq.(5.1) to find

b2 =
−κ∗

1− ταeiϕρ
a1, (2.19)

and

b1 =

(
τ∗ − κκ∗αeiϕρ

1− ταeiϕρ

)
a1, (2.20)

with τ = |τ |eiϕτ and ϕτ the phase delay due to the coupler. We can rewrite
Eq.(2.20) into

b1 =
−α+ |τ |ei(ϕρ+ϕτ )

e−iϕρ − α|τ |eiϕτ
a1. (2.21)

We compute |b1|2 = b1b
∗
1 and use 2 cos θ = eiθ + e−iθ to get

|b1|2 =
α2 + |τ |2 − 2α|τ | cos θ
1 + α2|τ |2 − 2α|τ | cos θ

|a1|2, (2.22)

where θ = ϕρ+ϕτ is the net phase delay of traveling through the ring and coupler.
In case of two bus waveguides with identical couplers we include the transmis-
sion through the second coupler in the track round-trip by replacing α with α|τ |.
Eq.(2.23) changes then into

|b1|2 =
(α2 + 1− 2α cos θ)|τ |2

1 + α2|τ |4 − 2α|τ |2 cos θ
|a1|2, (2.23)

with in this case θ = ϕρ + 2ϕτ . When the racetrack including the couplers has

length l, the transmission through the directional couplers with effective length L̃
is given by Eq. (2.15). The phase delay due to propagation through a waveguide
with length l− 2L̃ is equal to ϕρ = β(l− 2L̃). The total phase delay of the ring is
therefore given by

θ = −βl + 2δL̃− 2κbbL̃+ 2arg

{
cos sL̃− iδ

s
sin sl̃

}
. (2.24)

For a coupler with two identical waveguides, neglecting the κbb and with linear
dispersion of the effective index, the phase delay reduces to

θ = −βl = −2π

[
ne − ng

λc
+

ng

λ

]
l, (2.25)

with ne ≡ ne(λc) and ng ≡ ng(λc).
When we measure the transmission spectrum of a waveguide coupled with a single
directional coupler to a ring resonator, given by |b1|2 as a function of wavelength,
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Figure 2.3: Sketch of ring resonator and (a) one directional coupler or (b)
two directional couplers. [10].

we observe resonance dips for θ = 2πm with m an integer number. The resonance
wavelengths λm for two identical waveguides in the coupler are given by

mλm = ne(λm)l. (2.26)

A typical transmission spectrum for our sensor is shown in Figure 2.4. The differ-
ence between two successive resonance dips is indicated by the free spectral range
(FSR). We may approximate the FSR by linearizing the relation between m and
λ(m) in Eq.(2.26) and then computing |∆λ| for ∆m = 1 to obtain,

∆λFSR =

∣∣∣∣ ∂λ∂m
∣∣∣∣∆m =

λ2

(ne − λ∂ne

∂λ )l
=

λ2

ngl
. (2.27)

At resonance we have cos θ = 0 and thus Eq.(2.23) becomes

|b1|2 =
(α− |τ |)2

(1− α|τ |)2
|a1|2. (2.28)

This relation shows that there is no transmission at the resonance wavelengths
when |τ | = α, hence when the round-trip loss of the racetrack is equal to the
power coupled to the racetrack. This condition is called critical coupling. The
minimum transmitted power |b1,min|2 occurs at resonance while the maximum
transmitted power |b1,max|2 occurs in between the resonances. The extinction
ratio, defined as r ≡ |b1,min|2/|b1,max|2, and the full-width at half-max (FWHM)
of the transmission spectrum show the shape of the resonances as a function of
the waveguide and coupler properties and are given by

r =
(α− |τ |)2(1 + α|τ |)2

(α+ |τ |)2(1− α|τ |)2
, (2.29)

and

∆λFSR =
λ2

πlng
cos−1

[
2α|τ |

1 + α2|τ |2

]
. (2.30)

The FWHM depends on the losses in the resonator and scales with the FSR, while
for the extinction ratio the critical coupling is most important. When α is replaced
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by α|τ |, Eq.(2.26)-(2.30) are also valid for two couplers, as the second coupler acts
as an additional source of loss.
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Figure 2.4: Measured transmission spectrum of a ring resonator. The FSR
is indicated.

2.2 Membrane deflection

To obtain a sensitive sensor, it is essential to design a membrane with high strain
values at the position of the optical ring resonator when it is deformed. In this sub-
section, we study the strain distribution on the membrane as well as the resonance
frequency of the OMUS.

2.2.1 Static strain profiles

For small deflections of the membrane i.e. when the deflections of the plate are
small in comparison with the thickness of the plate, the theory of pure bending of
plates can be applied. It is assumed that the middle plane, or neutral surface, of
the plate does not undergo any extension during bending [17]. When we consider
a differential element of a thin plate with a thickness h and area dx dy as is Figure
2.5, the governing equation of the deflection w(r, θ, t) due to an external loading
q in polar coordinates is given by [17,18]

D∇4w(r, θ, t) + ρh
∂2w(r, θ, t)

∂t2
= q(r, θ, t), (2.31)

where ∇4 = ∇2∇2 with ∇2 = ∂2

∂r2 +
1
r

∂
∂r+

1
r2

∂2

∂θ2 the Laplacian in polar coordinates
and ρ is the density of mass. The flexural rigidity D of the plate is given by

D =
E

1− ν2

∫ h/2

−h/2

z2dz =
Eh3

12(1− ν2)
, (2.32)
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Figure 2.5: Differential element of a thin plate with neutral plane n at half
the thickness h of the plate and lamina at z below the middle plane.

with E the Young’s modulus and ν the Poisson ratio. When different materials are
used, we integrate over the separate layers with their specific material properties
to obtain the flexural rigidity of the entire plate [17].
The displacement w(r, θ, t) measures the deflection of the middle plane of the
plate. When we look at a lamina with thickness dz located at a distance z below
the middle plane n of the plate indicated in Figure 2.5, the normal strains defined
as the relative elongation of the lamina (ϵl ≡ ∆l/l) are given by

ϵx =
z

rx
, (2.33)

ϵy =
z

ry
, (2.34)

where rx and ry are the radii of curvature in the x, z-plane and y, z-plane respec-
tively. We assume small deflections and slopes and therefore the curvatures may
be approximated with use of the second order derivatives of the displacement (e.g.

rx ≈ −1/∂2w
∂x2 ) such that

ϵx = −z
∂2w

∂x2
, (2.35)

ϵy = −z
∂2w

∂y2
. (2.36)

The shear strain is given by

γxy = −2z
∂2w

∂x∂y
. (2.37)

From Hooke’s law the strains relate to the stresses as

ϵx =
1

E
(σx − νσy), (2.38)

ϵy =
1

E
(σy − νσx), (2.39)
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with ν the Poisson ratio. Combining Eqs. (2.35)-(2.39) results in a radial and
transverse stress along the thickness of the membrane in polar coordinates these
stresses are

σr =
Ez

1− ν2

(
∂2w

∂r2
+ ν

∂2w

∂θ2

)
, (2.40)

σθ =
Ez

1− ν2

(
∂2w

∂θ2
+ ν

∂2w

∂r2

)
, (2.41)

τrθ = Gγrθ = −2Gz
∂2w

∂r∂θ
. (2.42)

In a static situation, Eq. (2.31) can be simplified to:

D∇4ω(r, θ) = q(r, θ). (2.43)

With a symmetrical load the deflection of a circular membrane is independent of
θ hence w(r, θ) = w(r). Assuming that the membrane has clamped boundaries,

hence w(a) = 0, and ∂w(a)
∂r = 0, and the deflection has a maximum at the center

of the membrane, i.e.∂w(0)
∂r = 0, this equation can be solved resulting in [17]

w(r) =
q

64D

(
a2 − r2

)2
. (2.44)

We can determine the maximum or minimum stress at the lower or upper face
of the plate. These maximum or minimum stress is the same in the lower and
upper face but has an opposite sign. In the radial direction of a face, the absolute
maximum is found at the boundary of the plate where σr = −3qa2/(4h2) and a
slightly lower value is found at the center of the plate with opposite sign where
σr = 3(1 + ν)qa2/(8h2) [17]. We do not know the exact boundary conditions of
our sensor as the membrane is part of the chip itself. When we therefore model
the displacement of the chip under uniform loading we can get the displacement
and radial curves for a 100 µm diameter membrane (Fig. 2.6). A typical curve
of the radial strain in a layer has positive values at the edge of the membrane
where it is extended, while towards the center negative values are present due to a
compression of the surface. Between the center and edge is a circular area without
radial strain which is around 1/3 of the radius from the edge of the membrane.

2.2.2 Resonance frequency of membranes

To obtain the fundamental mode of the membrane we solve Eq. (2.31) without
loading. We assume a solution w(r, θ, t) = W (r, θ)e−iωt with ω the angular fre-
quency and t the time. If we go through the mathematics, we find the solution for
full circular plates as

W (r, θ) = {AJn(βr) + CIn(βr)}
[

sinnθ
cosnθ

]
, (2.45)

with Jn the Bessel function of the first kind, In the modified Bessel function of the
first kind and β4 = ω2ρh/D [18,19]. When we apply clamped boundary conditions
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Figure 2.6: Typical displacement curve of a circular membrane with a radius
of 50 µm (blue line) and corresponding radial strain curve in a lamina of the
plate (red line).

we get
In(βa)J

′
n(βa)− Jn(βa)I

′
n(βa) = 0. (2.46)

Each value of n in this equation will have an infinite number of roots, which give
the resonance frequencies. We define λnm = βnma where n is the integer arising
in Eq. (2.46) and m is corresponding to the order of the root for a given n. The
fundamental mode has for instance a value of λ2

01 = 10.216. The normal modes
are given by

Wnm(r, θ) =

{
Jn(βnmr)− Jn(βnma)

In(βnma)
In(βnmr)

}[
sinnθ
cosnθ

]
. (2.47)

Because λ2
nm = ωa2

√
ρh/D, we are able to calculate the resonance frequency

f = ω/2π in air which is given by [19]

f =
1

2π

λ2
nm

a2

√
D

ρh
. (2.48)

One side of the sensor will be submerged in water instead of air, which will give
an extra load on the membrane. The resonance frequency will shift downwards by
a factor that could be approximated by

fw =
fa√

1 + γΓ
, (2.49)

where fw is the resonance frequency for water, fa the resonance frequency for air,
Γ a non-dimensional added virtual mass factor, which is a function of mode shapes
and boundary conditions and γ = ρwa

ρph
with ρw the density of mass of the water

and ρp the density of mass of the plate [20].
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2.3 Membrane modeling

The theory in the previous section demonstrated that the resonance frequency of
the membrane can only be exactly determined for air and for known boundary con-
ditions. To deal with water loading and unknown boundary conditions we have
to solve the problem numerically. We like to obtain values for the ideal thickness
of the membrane, given a certain resonance frequency and find the corresponding
resonance frequency in water of certain membrane diameters. We will first de-
scribe the modeling parameters followed by the results of the static and dynamic
simulations.

2.3.1 Specifications and modeling parameters

In the numerical simulation we use a 2D axis-symmetric domain and modeled
the device as a 250 µm silicon layer below the 2.5 µm SiO2 layer (including the
top layer). The 220 nm thick silicon waveguides are neglected. We assume for
simplicity that the strain induced at 0.5 µm from the top, i.e. the waveguide layer,
will represent the strain induced in the waveguide. The acoustical membrane is
created by removing a part of the substrate. In the static analyses, described
in Section 2.3.2, the thickness of silicon left under the SiO2 layer is varied each
time. In the dynamic analyses, described in Section 2.3.2, we model three different
membranes with diameters of 60 µm, 80 µm and 100 µm. In these dynamic models,
the membranes consist only of SiO2, and the area underneath the membrane is
filled with air. The remaining part of the modeling domain is filled with water.
The discretization of the receiver design contained at least 12 points per wavelength.
The water domain is large enough to avoid interference from reflecting waves from
the boundaries of the domain. In both studies we used a density of mass of
2329 kg/m3 for the silicon and an isotropic Young’s modulus of 170 GPa and
Poisson ratio of 0.28. The silica has a density of 2200 kg/m3, Young’s modulus of
70 GPa and a Poisson ratio of 0.17.

2.3.2 Modeling results

To analyze the strain profiles and determine the response of the receiver, we per-
form two different analyses which are described in this section. The first part is a
static analysis by which we compute the dimensions of the membrane. The second
part is a dynamic study in which the response and sensitivity of the receiver are
obtained.

Static analysis

The acoustical membrane can be developed for all kinds of applications. We de-
signed a membrane that has an acoustical resonance at 1 MHz when it is submerged
in water. To find the optimal dimensions, i.e. inducing the highest amount of strain
in the optical resonator, we investigate whether an optimum is present when the
thickness of the membrane is varied. The thickness of the membrane consists of
at least the 2.5 µm SiO2 layer, so only the thickness of the silicon was varied from
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Table 2.1: Response of three prototype receivers due to an incident plane
wave

Membrane Resonance Sensitivity Minimum detection

diameter [µm] frequency [MHz] [microstrain/kPa] level [Pa]

60 3.2 1.3 1540

80 1.6 3.4 590

100 0.9 3.2 625

0 µm to 10 µm. For each thickness of the membrane the corresponding radius is
calculated by Eqs. (2.48) and (2.49) to obtain a resonance frequency of 1 MHz.
For every thickness and corresponding radius, we determine with a finite element
model the maximum absolute strain that can be induced in the membrane. We
used a static pressure of 1 kPa. The results show that the maximum strain varies
from 0.17 to 0.45 microstrain. The maximum value is attained when 1.2 µm of
silicon is left underneath the 2.5 µm SiO2 layer.
Although an optimum exists, the difference in strain in the range of 0 µm to 4 µm
of silicon is only a factor of 1.5. In the fabrication process of the membrane, the
flatness and thickness of the silicon layer is difficult to control. A well-controlled
fabrication can be performed when all the silicon up to the SiO2 layer is removed,
using a chemically selective etch process. Therefore we have finally choosen to
remove all the silicon in the design of the prototypes and in the remaining study.

Dynamic analysis

We designed three prototypes with different membrane diameters to determine
the response and influence of the membrane on the performance of the sensor. In
a time domain analysis, we used an incident acoustic plane wave with Gaussian
pulse shape with a maximum amplitude of 50 kPa and pulse width of 0.6 µs.
The time and frequency response of the 80 µm diameter membrane are shown
in Figure 2.7. The results of all the receivers are listed in Table 2.1. For every
receiver, we numerically obtained the resonance frequency of the membrane. The
maximum strain values, present in the time simulations, were used to calculate
the sensitivity by dividing the strain by the maximum of the incoming pressure
field. To determine the minimum pressure detection level, we assumed to have an
optical detector with a resolution of 1 pm and we used 0.5 pm/microstrain for the
shift in the light spectrum due to strain from [21].
The results show that our device can be well used for ultrasound sensing. The three
times less sensitivity of the smallest membrane suggest that there is a minimum
footprint of the element. Furthermore, we conclude that the membrane with a
80 µm diameter is the most sensitive receiver.
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Figure 2.7: a) The induced strain by a propagating Gaussian pressure wave
and b) the frequency response of the 80 µm diameter membrane. Both plots
apply to the center point of the waveguide layer.

2.4 Conclusion

With use of the basic concepts of waveguides and membrane deflection we have
been able to design a prototype sensor. When we look at the static strain profiles
we conclude that the optical resonator needs to be positioned at maximum dis-
tance from the neutral plane, i.e. at the top or at the bottum, and either in the
center or at the edge of the membrane. When the sensor is realized, the waveg-
uide needs to be protected from the water and will therefore be positioned below a
0.5 µm cladding. Therefore the maximum distance from the neutral plane is a
little bit less in the final design. Because of the current racetrack shape of the ring
resonators we will position it in the center of the membrane where the largest area
with similar strain values is present. Because this area with similar strain is lim-
ited, the maximum length of the ring resonator is limited to 2/3 of the membrane
diameter.
The thickness of the membrane should in optimal situation contain a layer of
1.2 µm silicon underneath the silicondioxide for a membrane with resonance around
1 MHz. Although this optimum exist we prefer to build a prototype that could
easily be compared to models and hence contains a flat and evenly thick membrane.
Therefore we will remove all the silicon with a well-controlled chemically selective
etch process.
The dynamic simulations show that the obtained sensitivity of the sensor is suffi-
cient for ultrasound sensing. Furthermore is it possible to fabricate the membrane
diameters that correspond to resonance frequencies in the MHz range.
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Optical characterization of
strain sensors based on

silicon waveguides

Abstract – Microscale strain gauges are widely used in micro electro-mechanical
systems (MEMS) to measure strains such as those induced by force, acceleration,
pressure or sound. We propose all-optical strain sensors based on micro-ring res-
onators to be integrated with MEMS. We characterized the strain-induced shift
of the resonances of such devices. Depending on the width of the waveguide and
the orientation of the silicon crystal, the linear wavelength shift per applied unit
of strain varies between 0.5 and 0.75 pm/microstrain for infrared light around
1550 nm wavelength. The influence of changing ring circumference is about three
times larger than the influence of the change in waveguide effective index, and
the two effects oppose each other. The strong dispersion in 220 nm high silicon
sub-wavelength waveguides accounts for a decrease in sensitivity of a factor 2.2
to 1.4 for waveguide widths of 310 nm to 860 nm. These figures and insights are
necessary for the design of strain sensors based on silicon waveguides.

This chapter is based on the following publication:
W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D.

Verweij, M. Yousefi and H. P. Urbach “Characterization of integrated optical strain sensors
based on silicon waveguides,” in JSTQE, Vol. 11, No. 4, December 2013

Earlier results based on micro-ring resonators where we excited the fundamental TM-
like mode of a 300 nm high silicon waveguide were published as W.J. Westerveld, J. Pozo,
P.J. Harmsma, R. Schmits, E. Tabak, T.C. van den Dool, S.M. Leinders, K.W.A. van Dongen,
H.P. Urbach, and M. Yousefi, “Characterization of a photonic strain sensor in silicon-on-insulator
technology,” Optics Letters, vol. 37, no. 4, pp. 479–481, Feb 2012.
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3.1 Introduction

Microscale strain gauges are widely used in micro electro-mechanical systems
(MEMS) to measure strains such as those induced by force, acceleration, pressure
or (ultra)sound [22, 23]. These sensors are traditionally based on a piezoresistive
or piezoelectric material which transduces the strain to an electrical signal. Alter-
natively, optical resonators can be used as sensing element, providing particular
benefits: high-speed readout, small sensor size, small multiplexer size (1 mm2), in-
sensitivity to electromagnetic interference, and no danger of igniting gas explosions
with electric sparks.
Integrated optics technology allows the optical strain sensors, as well as their mul-
tiplexing circuit, to be integrated with MEMS. The sensing elements and their mul-
tiplexers can often be fabricated in a single processing step. Silicon-on-insulator
(SOI) has emerged as one of the focus platforms for integrated optics, and is rel-
atively straightforward to integrate with MEMS, as MEMS are most commonly
made of silicon. Micro-electronic research institutes have tailored CMOS fabrica-
tion processes to the demands of SOI optical circuits, and now offer cheap and
reproducible wafer-scale fabrication [24, 25]. The high contrast of the refractive
index of SOI ridge waveguides allows for a small device footprint, and single-mode
guides have a cross-section of only 400 × 220 nm2.
We employ ring resonators as sensing element. Such a resonator consists of a wave-
guide which is looped, forming a closed cavity which has specific optical resonance
wavelengths. Any change in the size or in the refractive index of this waveguide
shifts its resonances, and this shift can be accurately recorded.
Several groups have reported on sensor micro opto-electro-mechanical systems
(MOEMS) that are based on silicon integrated optical ring resonators, such as
strain gauges [26, 27], or pressure sensors [28–30]. An application of particular
interest is as ultrasound sensor for medical intravascular ultrasonography (IVUS).
IVUS has been recommended for the diagnostics of atherosclerosis [31, 32]. IVUS
is an invasive technique for blood vessel imaging where the sensor is attached to
a catheter and brought inside the artery. Using an array of sensors improves the
image quality but wiring many piezoelectric sensors with coaxial cables requires
too much space for this application. As solution, we proposed a micro-machined
ultrasound transducer (MUT) with optical readout [33]. This sensor consists of
a silicon ring resonator integrated in a membrane that deforms due to ultrasonic
waves. Integrated optical multiplexers allow high-speed read-out of many sensors
via one optical fiber and, moreover, insensitivity to electromagnetic interference
allows usage inside MRI scanners.
The relation between strain and silicon waveguides is of broader interest than sens-
ing. Electro-mechanical modulation of silicon optical resonators may be employed
to modulate optical signals, for application in the field of telecommunication [34].
As alternative to silicon waveguide-based ring resonators, it is also possible to use
photonic crystals cavities, which have their own dispersion relations [35]. Strain
has also been used to modify the birefringence of larger SOI rib waveguides [36].
Strain is inevitable when using silicon photonic circuits on a flexible substrate [37].
Another interesting field of research is the strain-induced change in the electronic
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band-gap and the optical refractive index of silicon, with the possibility to intro-
duce second-order nonlinearity [38–40]. However, details of the relation between
an applied strain and the shift in optical resonance of ring resonators have not
been studied.
We characterized the shift of the resonance wavelengths which is caused by a
well-defined strain. We quantified the contribution of three physical effects: the
strain-induced change in circumference of the resonator, the strain-induced change
in effective index of the waveguide, and the dispersion which is strong in sub-
wavelength silicon waveguides. This knowledge is required for the design of me-
chanical sensors based on silicon integrated optics, such as ring resonators or Mach-
Zehnder interferometers.
This chapter is organized as follows: first we present the devices which are used to
study the effect of strain on silicon optical waveguides (Sec. 3.2), then we derive
opto-mechanical theory describing these devices (Sec. 3.3), after which we detail
the experimental setup and methodology (Sec. 3.4). The characterization and the
analysis of the devices are presented in Sec. 3.5 and Sec. 3.6, respectively, and we
draw some conclusions in Sec. 3.7.

3.2 Devices

In this section, we first describe the SOI-technology in which the devices are fab-
ricated, secondly detail the ring resonators and then describe the sets of devices
that we studied.
The integrated optical devices are in silicon-on-insulator technology, with 220 nm
thick waveguides of mono-crystalline silicon. The guides are on top of a 2 µm thick
buried oxide (BOX) layer which is on top of a 675 µm thick silicon substrate. We
deposited a 2 µm thick SiO2 cladding layer using plasma-enhanced chemical vapor
deposition (PEVCD), so that the silicon waveguides are embedded in silica. The
devices were fabricated via the EU-funded ePIXfab consortium at IMEC (Leuven,
Belgium) [24, 25]. IMEC fabricated the devices in their CMOS line with 193 nm
deep-UV lithography. The waveguides are not excactly rectangular but have a
side-wall-angle of 10 degrees. We measured the average widths of the fabricated
waveguides with a helium ion microscope (Carl Zeiss SMT), providing an accuracy
of 15 nm.
We designed long racetrack-shaped ring resonators in an “add-drop” configuration
(Fig. 3.1), and excite the “input” waveguide with infrared light with wavelengths
λ around a center wavelength λc of 1550 nm. A directional coupler couples light
from the “input/output” waveguide to the resonator, and an identical coupler is
used half-way the racetrack to couple light to a “drop” waveguide. The transmit-
ted spectrum T (λ) in the “output” port has dips at the resonance wavelengths
of the resonator. We characterized the couplers and 59% of the power is coupled
from the waveguide to the track, such that the power which goes straight-through
the coupler |t|2 = 41%. Having a strong coupling in a symmetric add-drop config-
uration gives resonance dips with good extinction ratio even for high losses in the
racetrack or for variations in coupling (e.g. due to fabrication) [16].
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Figure 3.1: Sketch of racetrack resonator with in/output ports (not to scale).
Long straight waveguide has length ls = 1000 µm and width w. Taper section
has length lt = 64.35 µm (4.35 µm long waveguide of width 400 nm, taper
with a length varying from 0 to 60 µm, followed by a waveguide of width w
to close the space.) Coupler section has length lc and consists of two 10 µm
long parallel guides (width ∼400 nm, gap 220 nm), and bends with a radius of
5 µm.

Silicon is anisotropic, so its deformation depends on the direction in which a force is
applied. Therefore two sets of devices were fabricated and characterized; one with
the long side of the racetrack parallel to the ⟨110⟩ direction of the silicon crystal
and one with the long side parallel to the ⟨100⟩ direction of the silicon crystal.
Reference [41] explains the crystal planes in a “(100) wafer” as we used. We
characterized the influence of the width of the waveguide on the shift in resonance,
therefore each set of devices consists of resonators with waveguide widths varying
from 310 nm up to 860 nm.

3.3 Theory

This section presents the theory of ring resonators such as presented in the previous
section, i.e. a looped waveguide with a varying width. First, Sec. 3.3.1 presents
the optical theory of ring resonators, then Sec. 3.3.2 derives the opto-mechanical
theory. Sec. 3.3.3 applies the theory to the long racetrack resonators under study.
The relations derived in this section are used as fitting function of the measured
spectra, and as basis for the analysis of the measurements.

3.3.1 Ring and racetrack resonators

The transmitted optical power T of a micro-ring resonator with two lossless cou-
plers in an add-drop configuration such as shown in Figure 3.1 is [16]

T =
α2|t|2 + |t|2 − 2α|t|2 cos(δ)
1 + α2|t|4 − 2α|t|2 cos(δ)

, (3.1)

where |t|2 is the straight-through power of the coupler and α2 is the power trans-
mission due to one round-trip through the ring (α = 1 means zero loss). T thus
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describes the optical power transmitted from the input to the output of the connect-
ing waveguide, and is wavelength dependent because δ is wavelength-dependent.
The phase delay δ of one round-trip through the ring (including passing the cou-
plers) is

δ =

∮
ne(ρ, λ)

2π

λ
dρ = ⟨ne(λ)⟩

2π

λ
l, (3.2)

where the waveguide effective index ne(ρ, λ) is averaged over the position ρ in
the track with circumference l as ⟨ne(λ)⟩ ≡ 1

l

∮
ne(ρ, λ)dρ. The effective index

in the coupler is approximated equal to the effective index of a single isolated
waveguide. The strong modal dispersion in sub-wavelength silicon waveguides is
approximated to be linear around the center wavelength λc, and is expressed in
terms of the effective group index ng ≡ ne − λ∂ne

∂λ , so

ne(ρ, λ) = ne(ρ) +
(
ne(ρ)− ng(ρ)

)( λ
λc

− 1
)

(3.3)

where ne and ng at the right-hand-side, denoted without λ dependence, are eval-
uated at λc. As λ and ρ are independent,

⟨ne(λ)⟩ = ⟨ne⟩+ (⟨ne⟩ − ⟨ng⟩)(
λ

λc
− 1), (3.4)

from which it is observed that the transmission spectrum of a racetrack resonator
with varying width is described by the same relation as a resonator with a single
waveguide, but with averaged effective index ⟨ne⟩ and group index ⟨ng⟩.
Equation (3.1) with Eqs. (5.11) and (3.4) will be fitted to the measured resonance
spectra to accurately obtain ⟨ng⟩ and ⟨ne⟩, from which the resonance wavelengths
are calculated.

3.3.2 Strain-induced resonance shift of ring resonators

This section details the shift in the resonances of a ring resonator due to an applied
mechanical strain. Four physical effects play a role when elongating a ring- or
racetrack resonator. First, the circumference of the track l increases. Second,
the cross section of the waveguide shrinks due to the Poisson effect. Third, the
refractive indices of the silicon and SiO2 change due to the photo-elastic effect.
The latter two effects together influence the effective index ne of the waveguide.
Fourth, the shift in resonance is affected by the dispersion in the waveguide.
In our case, a homogeneous strain Sz is applied parallel to the long sides of the
racetrack resonator (the z-direction). The transmitted spectrum of the connecting
waveguide shows dips at the resonance wavelengths λm when δ = m2π, or

mλm =

∮
ne(ρ, λm, Sz) (1 + Sρ(ρ, Sz)) dρ. (3.5)

The effective index of the waveguide depends on a mechanical deformation. The
local strain in the direction of the track Sρ is taken into account by stretching
each element dρ to (1 + Sρ)dρ. For the straight waveguide of the racetracks as in
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Figure 3.1, the z- and ρ-directions coincide, whereas they do not for the coupler
section. We found that the relation between an applied strain Sz and the shift
in resonance wavelength is linear, which is explained by the fact that the applied
strains are small. A description of this linear influence can be found by taking the
first derivative of Eq. (5.12) with respect to Sz,

m
∂λm

∂Sz
=

∮ {(
∂ne

∂Sz
+

∂ne

∂λm

∂λm

∂Sz

)
(1 + Sρ) + ne

∂Sρ

∂Sz

}
dρ,

which we evaluate at zero strain (i.e. Sz = Sρ = 0). Solving this equation for
∂λm/∂Sz, substituting m from Eq. (5.12), and dividing by track circumference l
gives

∂λm

∂Sz
=

λc

⟨ng⟩l

∮ (
∂ne

∂Sz
+ ne

∂Sρ

∂Sz

)
dρ, (3.6)

with λc the resonance wavelength λm without deformation. This equation is eas-
iest understood when considering a resonator with a single waveguide shape (i.e.
⟨ne⟩ = ne and ⟨ng⟩ = ng). In that case,

∂λm

∂Sz
=

ne

ng︸︷︷︸
dispersion

⟨ λc

ne

∂ne

∂Sz︸ ︷︷ ︸
eff. index

+ λc
∂Sρ

∂Sz︸ ︷︷ ︸
track-length

⟩
, (3.7)

where the influence of the different physical effects are indicated. Without disper-
sion, ne/ng = 1. For the part of the track which is in the direction of the applied
strain Sρ = Sz, so ∂Sρ/∂Sz = 1, hence the contribution of the track-length change
is simply λc.

3.3.3 Strain-induced resonance shift of long racetracks

We measured very long racetracks because this will allow for neglecting the influ-
ence of the tapers and the couplers. In the long racetrack resonators, Eq. (5.12)
reads

mλm = 2lsns(1 + Sz) +

∫
tapers

ne (1 + Sρ) dρ+

∫
couplers

ne (1 + Sρ) dρ, (3.8)

where the contributions of the different sections of the track are separated (see
Fig. 3.1, with ls, lt, and lc indicating the straight, taper and coupler sections,
respectively) and ns is the effective index of the long straight waveguide. We
calculate the first-order influence of strain on this racetrack similarly to Eq. (3.6),
and rewrite the equation such that the influence of the tapers and the couplers is
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written as a correction to the shift caused by the long straight guides,

⟨ng⟩
∂λm

∂Sz
=λc

(
∂ns

∂Sz
+ ns

)
(3.9)

+
λc

l

∫
tapers

(
∂ne

∂Sz
+ ne

∂Sρ

∂Sz
− ∂ns

∂Sz
− ns

)
dρ

+
λc

l

∫
couplers

(
∂ne

∂Sz
+ ne

∂Sρ

∂Sz
− ∂ns

∂Sz
− ns

)
dρ.

We will justify later that the second and third term of the right-hand-side of this
equation are small compared to the first one, and hence can be neglected, resulting
in

⟨ng⟩
∂λm

∂Sz
≈ λc

(
∂ns

∂Sz
+ ns

)
. (3.10)

The taper is a waveguide in the z-direction with a width varying from 400 nm up
to the width w of the long section waveguide. The second term at the right-hand-
side of Eq. (3.9) is the relative contribution of the taper to the resonance shift,
with respect to the contribution of a waveguide with width w of the same length.
The relative contribution of the taper is smaller than the relative contribution of
a 400 nm wide waveguide of the same length. Using Eq. (3.10), it is thus found
that the second term of the right-hand-side of Eq. (3.9) is smaller than

4lt
l

∣∣∣∣ ⟨ng⟩
∂λm

∂Sz︸ ︷︷ ︸
width under study

− ⟨ng⟩
∂λm

∂Sz︸ ︷︷ ︸
width 400 nm

∣∣∣∣. (3.11)

The third term of Eq. (3.9) comes from the effect of the couplers including the bend
waveguides. This contribution can be either positive (as for the long waveguides)
or negative (as the path-length might shrink due to the Poisson effect). We expect
the magnitude to be smaller than twice the effect of a straight waveguide of equal
length that is strained in its long direction. Thus the 3rd term in Eq. (3.9) is
smaller in magnitude than

2
2lc
l

(
⟨ng⟩

∂λm

∂Sz

)
. (3.12)

As will be shown in Sec 3.5, the maximum measured difference in ⟨ng⟩(∂λm/∂Sz)
for the devices under study with different waveguide widths is 10%. For these
long racetracks, 4lt/l = 11%, so the second term in Eq. (3.9) is smaller than 1.1%.
The third term is smaller than 4lc/l = 5%. Equation (3.10) is used in the charac-
terization of the measurements. We characterized both ⟨ng⟩ and ∂λm/∂Sz. The
effective index of the straight waveguide ns is computed with a numerical mode
solver, which allows us to extract the strain-induced change in effective index.
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Figure 3.2: Example of resonance shift due to an applied strain. (a) Small
span of 7 measured spectra for increasing values of applied strain. Resonance
dips shift to the red. Racetrack in the <100> crystalline direction, with wave-
guide width 400 nm. (b) The wavelengths of the resonance dips λm in (a) are
plotted versus the applied strain Sz. The wavelengths of the resonance dips
for decreasing values of strain are also plotted. Resonance shift ∂λm/∂Sz is
obtained from a linear fit.

Similar to Eq. (5.13) in the more general Sec. 3.3.2, we indicate the effects of the
different phenomena in Eq. (3.10)

∂λm

∂Sz
=

ns

⟨ng⟩︸ ︷︷ ︸
dispersion

( λc

ns

∂ns

∂Sz︸ ︷︷ ︸
eff. index

+ λc︸︷︷︸
track-length

)
. (3.13)

This result is used in the interpretation of the measurements in Sec. 3.6. In fact,
track-averaged group index ⟨ng⟩ can be approximated as the group index ng of
the straight waveguide. We have used the numerical mode solver to show that
this approximation is valid within 1%. In our analysis, we use the track-averaged
group index which was accurately measured.

3.4 Methodology

We characterized the photonic chips in an automated setup in which they are bent
such that the top layer with the racetrack resonators is strained. Transmission
spectra of the resonators were recorded for elongations varying from 0 to 275 mi-
crostrain. As example, Figure 3.2a shows a resonance dip of the measured spectra
for increasing strain. The resonance wavelengths, and the group index ng, were
extracted from fitting a relation for ring resonator transmission. Figure 3.2b shows
the resonance wavelength λm plotted versus the applied strain.
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Figure 3.3: (a-c) Analysis of the mechanical setup. (d) Sketch of the me-
chanical setup. Composed of the CAD drawing that was used to fabricate
the setup (left-hand-side), and a sketch of the linear stage with the load cell
(right-hand-side).

3.4.1 Mechanical setup: four point bending

We designed and fabricated a mechanical setup in which the chips are bent such
that the top layer with the photonic circuit is uniformly strained (Fig. 3.3). The
setup is equipped with elastic elements to provide an accurate bending moment
to the chip, without hysteresis or other non-linearities. Between the two inner
supports, the chip experiences a constant bending moment M (known as pure
bending) [42]

M =
a1(a4 − a3)

4a2
L, (3.14)

with L the load applied at the lever. The bending of the chip is described by
plate bending theory for thin plates with small deflections [43], as its thickness H
is small compared to its width W and length. An assumption in this theory is
that the normal stresses in the x-direction can be neglected, so that there is no
strain Sx in the x-direction and the width W of the chip does not change due to
the applied load. In the setup, the deflection of the chip at considerable distance
from its ends can be assumed to be cylindrical. In this mechanical analysis the
influence of upper layers of the chip (BOX layer, waveguide layer, and cladding
layer) is neglected as their total thickness of 4.220 µm is much smaller than the
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chip thickness of 675 µm. Hooke’s law and plate bending theory give the relation
between the stress σz and strain Sz in the chip [41,43]:

σz =
Ez

1− νxzνzx
Sz, (3.15)

with Young’s modulus1 Ez and anisotropic Poisson’s ratios2 νxz and νzx. Com-
bining Eqs. (3.14) and (3.15) with the cylindrical deflection of the chip gives the
strain Sz on the top surface of the chip in the mechanical setup

Sz =
3a1(a4 − a3)(1− νxzνzx)

2a2WH2Ez
L. (3.16)

A precise linear stage (Newport MFA-CC) applies a force to the lever, while a
load cell (Omega LECB5) measures the actual applied load L. It was observed
that the relation between the displacement of the linear stage Y and the applied
load L is linear in the regime of our measurements, and also that the repeatability
of the linear stage position Y was higher than the repeatability of the load cell.
Therefore, we extracted a single number for the resistance of the chip to bending,
∂Y/∂L, from all the measurements performed on a chip.

3.4.2 Optical setup

The transmission spectra of the racetracks were measured with near infrared light
around λc = 1550 nm. An amplified spontaneous emission light-source (OptoLink
C-band ASE) was used to emit this light, and a 5 nm span of the spectra were
recorded with an optical spectrum analyzer (Yokogawa AQ6370B). The input and
output waveguides of the racetrack resonators are routed to out-of-plane grating
couplers at convenient locations on the chip, and coupled to cleaved optical fibers
via free-space [44,45]. These fibers were mounted on stages with piezo positioning,
and automatically actively aligned in the horizontal (x,z)-plane before recording a
spectrum. All transmission spectra are normalized to the transmission spectrum
of a reference waveguide, which was smoothened by convolution with a 1 nm wide
Gaussian window to remove Fabry-Pérot resonances originating from reflections
of the out-of-plane grating couplers.
A relation for ring resonator transmittance, Eqs. (3.1)-(3.4), was fitted to the
recorded spectrum. The ring length l and straight-through power of the coupler
|t|2 = 41% were fixed, while the effective index ⟨ne⟩, group index ⟨ng⟩, resonator
waveguide loss α2 and fiber-coupling loss were fitted. The resolution bandwidth of
the optical spectrum analyzer (OSA) was incorporated in this fitting by convolut-
ing the calculated spectrum with a 20 pm wide Gaussian curve. For the zero-strain
measurement, the mode number m of the resonance closest to λc was estimated
from Eq. (5.12) where the effective index ne(ρ, λc, 0) was calculated using a mode
solver (film mode matching method in FimmWave by PhotonDesign [46]). This dip
was followed over consecutive measurements. An accurate initial guess of ⟨ne⟩ and

1Ei is the Young’s modulus along axis i.
2νij is the Poisson’s ratio that corresponds to a contraction in direction j when an extension

is applied in direction i.
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⟨ng⟩ (thus the wavelengths of the resonance dips) is necessary for the Levenberg-
Marquardt fitting algorithm [47]. Therefore, the resonance dips were first found
using findpeaks [48] and from this ⟨ne⟩ and ⟨ng⟩ were estimated via Eq. (5.12).
This initial estimate allows for automated fitting of the spectra. With this fitting,
the free parameters in Eqs. (3.1)-(3.4) could be obtained, and λm was calculated
from Eq. (5.12) with an accuracy much higher than the resolution bandwidth of
the OSA.

3.4.3 Measurements

We characterized chips with the racetracks in the <110> crystalline direction and
with the racetracks in the <100> direction. The measurements were repeated sev-
eral times. First, the chip was manually placed in the setup. Then resonators with
different widths of the straight waveguide were automatically measured. The strain
of the racetrack was increased and decreased from 0 to approximately 275 micro-
strain, with 6 steps in each direction (see Fig. 3.2a). The transmittance spectrum
was recorded for each applied strain, and the resonance position λm that started
closest to λc was extracted. The effective group index ⟨ng⟩ was also extracted from
this spectrum. For each value of applied strain, the measured load L and the po-
sition of the linear stage Y were recorded. Per measurement set of increasing and
decreasing strain, the resonance shift per displacement of the load cell, ∂λm/∂Y ,
was obtained from a linear fit, and so was the relation between the displacement
and the applied load, ∂Y/∂L. We observed that both relations were indeed linear
in this regime. The strain-induced resonance shift is then

∂λm

∂Sz
=

∂λm

∂Y
· ∂Y
∂L

· ∂L

∂Sz
, (3.17)

in which the first two terms on the right-hand-side are measured and the last term
is calculated from Eq. (3.16).
The relation between the displacement of the load cell and the measured load can
be interpreted as the resistance of the chip and setup to bending. The average value
for the chip with the racetracks in the <110> direction is ∂Y/∂L = 0.128 µm/mN
and the average value for the chip with the racetracks in the <100> direction
∂Y/∂L = 0.135 µm/mN.

3.4.4 Numerical mode solver

For the analysis of the measurements, we calculated the effective index at zero
strain, ne(ρ, λc, 0) using the film mode matching method in FimmWave [46]. Also
the effective group index ng(ρ) at λc was calculated using this mode solver. The
track-averaged effective index ⟨ne⟩ and group index ⟨ng⟩ are then straightforward
to calculate.

3.4.5 Measurement uncertainty analysis

The uncertainty in the measurements was estimated following the guidelines of
Ref. [49]. The relative errors of the three terms on the right-hand-side of Eq. (3.17)



32 Chapter 3. Optical characterization of strain sensors based on waveguides

Table 3.1: Material properties, dimensions, and estimated uncertainties
of mechanical setup

Quantity Value Uncertainty

Ez/(1− νxzνzx), <110> 170 GPaa 4 GPa 2.5%b

Ez/(1− νxzνzx), <100> 141 GPaa 4 GPa 2.5%b

a1 156 mm 0.3 mm 0.2%c

a2 24 mm 0.03 mm 0.1%d

a3 5 mm 0.03 mm 0.6%d

a4 20 mm 0.03 mm 0.1%d

Chip W 24 mm 0.3 mm 1.2%c

Chip H 0.675 mm 0.01 mm 1.7%e

∂L/∂Sz, <110> 12.7 mN/µstrain 0.6 mN/µstrain 4.7%

∂L/∂Sz, <100> 10.5 mN/µstrain 0.5 mN/µstrain 4.7%

a From Ref. [41]
b Estimated.
c Measured with digital electronic calipers, maximum error 0.5 mm.
d Estimated fabrication uncertainty, maximum error 0.05 mm.
e Measured with digital electronic calipers, maximum error
0.02 mm.

are added quadratically, as they are independent. The chips with the racetrack
resonators in the <110> and <100> directions were placed in the mechanical
setup and measured 6 and 5 times, respectively.

∂λm/∂Y

The value for ∂λm/∂Y is averaged over the repetitive measurements, and the un-
certainty is estimated as the standard deviation. The relative uncertainty did
not significantly depend on the width of the waveguide, and the maximum rela-
tive uncertainty (of all widths) is used. The uncertainty for the chips with the
waveguides in the <110> and <100> directions are 3.1% and 1.1%, respectively.
The measurement-to-measurement difference mainly originated from reposition-
ing the chip in the setup, which was done before each measurement. Repeating a
measurement without repositioning the chip in the setup gives a measurement-to-
measurement difference which is negligible. We could not attribute this difference
to a slight tilt of the chip with respect to the setup (around the y-direction). We
do not fully understand why the uncertainty in the <110> direction is higher, but
the strong angle dependency of Poisson’s ratio around the <110> direction may
play a role. Also, we had to reassemble the setup between various <110> measure-
ments, while the measurements of the <100> chip were performed consecutively
in a mainly empty laboratory.
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∂Y/∂L

The value of ∂Y/∂L did not significantly depend on the position of the chip in the
setup. All measurements (for different widths of the waveguide, and repetitions
of the measurements) are averaged to obtain ∂Y/∂L. The statistical uncertainty
(arising from random fluctuations) is estimated as the standard deviation, and the
systematic uncertainty of the system (load cell, load cell voltage source, and A/D
converter) is estimated as 3%. The standard deviation of the 30 measurements in
the <110> direction is 2.8%, and the standard deviation of the 45 measurements
in the <100> direction is 0.7%. This difference can be explained by the fact that
we increased the integration time of the read-out of the load cell from 50 samples
at 1 kHz for the <100> direction measurements to 1000 samples at 1 kHz for
the <110> direction measurements. The output voltage of the load cell is a few
mV, which required this longer integration time of our A/D converter (National
Instruments USB-6251 DAQ). The uncertainties of ∂Y/∂L are thus 5.8% and 3.7%
for the chips with the racetracks in the <110> and <100> directions, respectively.

∂L/∂Sz

The mechanics of the setup is described by Eq. (3.16). The material properties,
dimensions, and uncertainties that are used in this equation are listed in Table 3.1.
The uncertainty σ of a quantity whose uncertainty is estimated as a maximum
deviation u is given by σ = u/

√
3 [49]. In the computation of the uncertainty of

∂L/∂Sz, we have treated all uncertainties as independent and approximated the
influence of all the uncertainties as linear.

Group index ⟨ng⟩

We found that the track-averaged effective group index does not depend on the
applied strain. Therefore all measurements of a device are averaged, and the
uncertainty is estimated as the standard deviation. These where 78 and 65 mea-
surements for the racetracks in the <110> direction and <100> directions, respec-
tively. The relative uncertainty did not depend much on the width of the straight
waveguide in the racetrack nor on the crystalline orientation, so that we have used
the maximum of 0.03%.

Effective index ⟨ne⟩

In the analysis of the measurements, we calculated the effective index with a
numerical mode solver. We do not know the uncertainty, as it is mostly related
to the difference between the simulated waveguide and the fabricated waveguide.
Therefore, we estimated the uncertainty in the effective index as the difference
between the measured effective group index ⟨ng⟩ and the track-averaged group
index as calculated with the same mode solver (see Fig. 3.4b).
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Figure 3.4: (a) Measured resonance shift per applied strain ∂λm/∂Sz,
with resonance wavelength λm and strain Sz. (b) Measured and calculated
track-averaged effective group indices ⟨ng⟩. Measured for racetracks in the
<100> and in the <100> silicon crystalline directions. (c) Change in effective
index of a straight waveguide, ns, due to a strain, Sz, applied in the direction
of the guide.
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3.5 Characterization

We characterized two chips with long racetrack resonators; one chip with the res-
onators in the <110> silicon crystalline direction and one with the resonators in
the <100> direction. A strain Sz was applied to the top surface of the chips, where
the resonators are placed. The strain was increased to approximately 275 micro-
strain, and then decreased to zero strain in steps of approximately 45 microstrain.
Per applied strain, the transmission spectrum of the resonator was recorded, as is
shown in Figure 3.2a. The wavelength of the resonance dip which started closest
to 1550 nm is extracted from each of the spectra, and plotted versus the applied
strain in Figure 3.2b. The shift per applied strain ∂λm/∂Sz is obtained from a lin-
ear fit. This is done for racetracks with different widths, and the resonance shifts
per strain are presented in Figure 3.4a. It can be seen that the racetracks in the
<110> direction are slightly more sensitive than the tracks in the <100> direction,
and that the resonators with wider waveguides are more sensitive to strain than
the ones with narrower waveguides widths. The latter can be attributed to the
dispersion in the waveguide, as shown in Sec. 3.6. The estimated uncertainties are
with respect to the absolute value of λm/Sz, and a large part of the uncertainty
is a systematic bias and equal for all measurements. Considering only the statis-
tical (or random) uncertainties, we found that the racetracks in the <110> and
<100> directions have a significantly different shift in resonance.
The track-averaged effective group indices ⟨ng⟩ were also extracted from the spec-
tra and are presented in Figure 3.4b. We also calculated the effective group index
with the numerical mode solver. The calculated and measured track-averaged
effective group indices agree within 3%.
The change in effective index due to strain, ∂ne/∂Sz, is calculated using Eq. (3.10).
We measured the resonance shift ∂λm/∂Sz and the effective group index ⟨ng⟩, and
we calculated the effective index ns of the straight waveguide with the numerical
mode solver. The resulting ∂ns/∂Sz is shown in Figure 3.4c.

3.6 Analysis

In this section, we interpret the measured shift and indicate the contributions
of different physical effects: the elongation of the track, the change in effective
index and the dispersion of the waveguide. Equation (3.13) shows how these
effects shift the resonance wavelength. The effect of the elongation of the track
(λc) and the effect of the change in effective index are added. The change in
effective index ∂ns/∂Sz is negative, so the two effects oppose each other. The
dispersion of the waveguide, ns/ng, is smaller than unity, and thus damps the
shift. Figure 3.5a presents ns/⟨ng⟩, in which it can be seen that this damping
is stronger for small waveguides. Figure 3.5b presents the resonance wavelength
shift with dispersion excluded. The shift due to the change in the effective index
increases (in magnitude) with increasing width of the guide. The higher resonance
shift for wider waveguides ∂λm/∂Sz is thus due to the dispersion, and not due to
the change in effective index of the waveguide.
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Figure 3.5: (a) Influence of dispersion on the strain-induced resonance shift,
ns/⟨ng⟩. Effective index ns is calculated with a mode solver. Track-averaged
effective group index ⟨ng⟩ is measured. (b) The hypothetical strain-induced
shift in resonance in which the dispersion is excluded. The two different contri-
butions to this shift (track-length change and effective-index change) are shown.
Results for the racetracks in the <110> and the <100> directions are shown

3.7 Conclusion

We measured the strain-induced shift of the resonances of optical racetrack res-
onators in silicon-on-insulator technology. For waveguides with a width of 400 nm,
the resonance wavelength shift per applied strain is 0.57 pm/microstrain when
the racetrack is parallel to the ⟨100⟩-direction of the silicon crystal, and 0.66
pm/microstrain when the racetrack is parallel to the ⟨110⟩-direction. We observed
largest sensitivity for wider waveguides; a racetrack with 860 nm wide waveguides
oriented in the ⟨110⟩-direction has a resonance shift of 0.75 pm/microstrain. We
have studied elongations up to 275 microstrain, and observed a linear relation
between the resonance wavelength and the applied strain.
The effect of the strain-induced increase in track circumference and the effect of
the strain-induced change in waveguide effective index oppose each other. The
effect of the strain-induced increase in circumference is about three times larger
than the effect of the change in effective index. The strong dispersion in the sub-
wavelength silicon waveguides lowers the change in wavelength shift approximately
by a factor two. In fact, the lower dispersion of the wider waveguides is the reason
that these devices are more sensitive.
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This chapter addressed how micro-ring resonators transduce an applied strain into
a shift of their optical resonance wavelengths. Sensor MEMS or MOEMS consist,
next to the transducer, also of a mechanical structure that acts on the transducer
and an interrogation system that reads the transducer. A variety of interrogation
concepts exist for monitoring the shift in the resonances of optical resonators
[50–56]. The detection limit of MOEMS sensors depends on the designs of the
mechanical structure and the interrogation system. These designs are application
specific as they depend, for example, on the bandwidth of the measured signal
(e.g., Ref. [33] presents the design of an ultrasound sensor).
In this work, we have characterized a novel type of optical strain sensors which
can be integrated in micro-electro-mechanical systems (MEMS). We believe these
sensors open opportunities in different fields of applications such as in the medical,
petrochemical, or oil&gas markets, by offering specific advantages such as high-
speed readout over kilometer distances, integrated optical multiplexing, and small
device size. Moreover, by removing the need for galvanic connections, susceptibility
to electromagnetic disturbance is eliminated.





Chapter

4

Proof of concept of an
optical micromachined

ultrasound sensor

Abstract – With the increasing use of ultrasonography, especially in medical imag-
ing, novel fabrication techniques together with novel sensor designs are needed to
meet the requirements for future applications like three-dimensional intercardiac
and intravascular imaging. These applications require arrays of many small el-
ements to selectively record the sound waves coming from a certain direction.
Here we present proof of concept of an optical micro-machined ultrasound sensor
(OMUS) fabricated with a semi-industrial CMOS fabrication line. The sensor is
based on integrated photonics, which allows for elements with small spatial foot-
print. We demonstrate that the first prototype is already capable of detecting
pressures of 0.4 Pa, which matches the performance of the state of the art piezo-
electric transducers while having a 65 times smaller spatial footprint. The sensor
is compatible with MRI due to the lack of electronical wiring. Another important
benefit of the use of integrated photonics is the easy interrogation of an array of ele-
ments. Hence, in future designs only two optical fibers are needed to interrogate an
entire array, which minimizes the amount of connections of smart catheters. The
demonstrated OMUS has potential applications in medical ultrasound imaging,
non destructive testing as well as in flow sensing.

This chapter is based on the following publication:
S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P.

Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor
(OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” in Scientific
Reports, vol.5, 2015
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4.1 Introduction

The wide use of ultrasonography, especially in medical imaging, has resulted in
the development of different types of ultrasound transducers such as piezo-electric
transducers, micro-machined ultrasound transducers (MUTs) and optical ultra-
sound sensors. Conventional transducers are made of piezo-electric material and
nowadays contain multiple piezo elements to form a one or two dimensional array.
These arrays enable beam focusing and steering, and hence are able to scan the
area or volume of interest and create real-time 2D or 3D images [1, 2]. The
frequencies of the transducers are ranging from 1-20 MHz and typical bandwidths
are 70-80% [57]. Recently, Xia et al. [58] presented a piezo-electric array of 5 mm
× 5 mm containing 25 elements of 0.9 mm × 0.9 mm. This ultrasound array
transducer is used in photoacoustic breast tomography and has a center frequency
of 0.9 MHz and a bandwidth of 80%. The noise equivalent pressure is 0.5 Pa per
single element. We shall use this element as reference to our sensor.
Because small diagnostic transducers are paramount for extending the possibil-
ities of intravascular and transesophageal ultrasound, one of the goals in the
development of piezo-electric transducers is miniaturization [1]. There are two
main challenges in the fabrication of small arrays. The first challenge is to obtain
the small elements. The conventional fabrication technique uses a diamond saw
to divide a single piezo-electric slab into multiple elements [1]. The minimal
distance between two neighboring elements is determined by the thickness of the
dicing blade (minimal ∼10-15 µm), and advanced fabrication techniques like laser
cutting are required when this distance should be decreased.
The second issue is related to the individual wiring of the elements, especially
when a large number (order of thousands) of elements is needed [59–61]. Bond-
ing techniques, in which wires are attached to each individual element, are too
labor-intensive for arrays containing large amounts of elements. Hence, the use of
flexible circuits or other complex techniques are required for the electrical inter-
connections. Moreover, dense electrical wiring generally brings the disadvantage
of intrinsic susceptibility to electromagnetic interference and cross-talk [59,61].
The mentioned production difficulties make that increasing miniaturization of
conventional piezo-electric transducer arrays is intricate. To circumvent these dif-
ficulties, capacitive and piezo-electric micro-machined ultrasound sensors (CMUTs
and PMUTs) are developed [62–64]. A MUT consists of a flexible membrane that
is deformable by ultrasonic pressure waves. The micro-machining technology used
for the fabrication of MUTs benefits from the developments in the integrated
circuit (IC) technology, which allows for a relatively easy fabrication of com-
plex transducer patterns, as well as the integration of accompanying electronic
circuitry [65, 66]. However, these MUTs still have a high electrical impedance
resulting in a low signal-to-noise ratio and, consequently, a low imaging depth. To
obtain the imaging depth that is currently attained with piezo-electric arrays, the
signal-to-noise ratio of MUTs should be improved [57,63].
As far as the receive function is concerned, optical micro-sensors are another
alternative for conventional piezo-electric transducers [67, 68]. These optical
devices share the fabrication benefits of MUTs. An additional benefit of these
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sensors is the lack of electrical wiring or matching circuits. The insensitiveness to
electromagnetic interference makes optical devices also compatible with imaging
systems such as MRI. In contrast to the previously described electrical transduc-
ers, optical devices are not reciprocal and require an external ultrasound source
to transmit the sound waves. Ultrasonic optical fiber sensors are commercially
available [69, 70]. However, planar optical circuits are needed to build a dense
one or two dimensional array of ultrasound sensors. The group of Guo have
reported on sensors that are based on a polymer ring resonator [67, 71, 72]. They
manufactured a one dimensional array of four polymer micro-ring resonators
(100 µm diameter) [72]. Their latest sensor has a noise-equivalent pressure (NEP)
of 10.5 Pa for a bandwidth of 1-25 MHz [67]. The fabrication of these polymer
photonic integrated circuits is performed with special polymer technology. Rosen-
thal et al. [73] fabricated optical ultrasound sensors in silicon, using standard
silicon IC fabrication technology (CMOS). They reported on a sensor in silicon-
on-insulator technology, based on the deformation of a π-phase-shift fiber Bragg
grating (π-FBG) with a length of 250 µm. Currently, the optical modulation
in this embedded ultrasound sensor is predominantly caused by the formation
of surface acoustic waves. The sensor only has a response to incident pressure
waves with an angle larger than 19◦ to the normal and can therefore not be used
for diagnostic ultrasound, which has near normal incidence. Unlike CMUTs and
PMUTs, neither of the optical sensors above employ a membrane.
Appreciating the mentioned benefits of both integrated optical sensors and micro-
machining technology, we fabricated a ‘receiver-only’ optical micro-machined
ultrasound transducer (OMUS) with a membrane. In doing so we improved the
sensitivity by a at least an order of magnitude. Our OMUS contains an optical
micro-ring resonator that is integrated onto an acoustical membrane in a silicon
chip. We are, to the best of our knowledge, the first to report the operation of
such a sensor for ultrasonic frequencies. Photonic integrated circuits in silicon-
on-insulator (SOI) technology have a high contrast in refractive index. Therefore,
silicon micro-ring resonators can have diameters down to 5 µm without substantial
radiation losses [74]. The small spatial footprint of integrated waveguides opens
up the possibility to make sensors with sizes in the order of 10 µm, which is an
order of magnitude smaller than the current state of the art. Moreover, it allows
the addition of small passive optical multiplexers for the simultaneous read-out of
many elements [75, 76]. Hence, the read-out of an entire array of elements can in
principle be done with only two optical fibers.
In this chapter, we present the measurements of the performance of this novel
type of OMUS and show the possibilities of this device as an ultrasound sensor,
especially for medical applications.

4.2 Concept, design and fabrication

The OMUS consists of a waveguide and a photonic ring resonator that are inte-
grated onto a membrane (Fig. 4.1a). When a broad spectrum of light is trans-
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mitted through the waveguide, a part of the spectrum is coupled into the ring
resonator by means of a directional coupler [77]. The transmitted spectrum at the
output port of the waveguide shows dips at the optical resonance wavelengths λm

of the ring resonator, given by

mλm = nel, (4.1)

where m is an integer number, l the circumference of the ring and ne its effective
index of refraction. Incident acoustical pressure waves strain the membrane and
hence the resonator. The induced strain in the resonator causes a shift in the
optical resonance curves with respect to the undeformed state. The magnitude
of this shift due to induced strain depends on three aspects: the amount of elon-
gation of the optical resonator track, the change in effective index of refraction,
and the change in dispersion of the material of the track [21, 78]. The shift in
resonance is what we want to observe. To do so without using a dedicated detector,
we transmit light, and hence measure the transmitted intensity, at one optical
wavelength. This wavelength is chosen on one flank of the optical resonance curve
of the undeformed resonator, such that a shift of the resonance curve directly
translates into a modulation of the transmitted optical intensity, as is shown in
Figure 4.1b. The intensity is measured using a photo diode.
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Figure 4.1: a) Sketch of the OMUS, showing the photonic micro-ring res-
onator on top of the membrane. b) Sketch of three intensity curves at the end
of the waveguide, representing the different transmittances for different strain
values of the photonic micro-ring resonator.

The design of the membrane is chosen such that it has a resonance frequency
around 1 MHz. To determine the dimensions we use plate bending theory, because
the deflection of the membrane is expected to be small compared to its height [79].
With this theory the resonance frequency of the freely moving membrane can be
calculated analytically for specific boundary conditions. However, for medical di-
agnostic purposes the sensor will be submerged in water-like substances, and the
predicted resonance frequency in air will shift downwards [20]. Therefore, we use
a finite element method (COMSOL Multiphysics) to numerically determine the
diameter and thickness of the membrane [80] that will give the desired resonance
frequency. The membrane of the OMUS was designed as a 2.7 µm thick silicon
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oxide slab with a diameter of 120 µm. It was created by taking silicon with a top
layer of silicon dioxide, and etching a hole through the back of the silicon. To
ensure a flat bottom surface of the membrane and a reproducible fabrication, all
the silicon behind the membrane was etched. The dimensions of the waveguides
and directional coupler determine the shape of the optical resonance dips. The
shape of the ring resonator and its position on the membrane determine the shift in
optical wavelength due to the deformation of the membrane. The steeper the flank
of the optical resonances, the more sensitive the sensor. An optimization problem
now arises, in that a long racetrack has a narrower resonance dip and therefore a
higher sensitivity. However, the strain patterns of a statically deformed membrane
showed that a short ring resonator located in the middle of the membrane results
in the most strain per pressure. Based on the mechanical FEM analysis and the
model in Ref [77], we chose a racetrack-shaped optical ring-resonator with a bend-
ing radius of 5 µm and 40 µm straight track. We use two directional couplers on
opposite sides of the ring resonator with a 6 % coupling efficiency of optical power.
For details on the design, we refer the reader to our previous work [10,81]. We use
an out-of-plane grating coupler at each end of the waveguide to direct the light
upwards out of the waveguides and into optical fibers.
We realized the sensor using the following procedure. First, the fine optical cir-
cuitry was fabricated using a semi-industrial CMOS fabrication line at IMEC
(Leuven, Belgium) via the ePIXfab platform [82]. The resulting wafer-piece (die)
contains 220 nm high and 400 nm wide silicon waveguides on top of a 2 µm thick
silicon-dioxide layer on a 250 µm thick silicon substrate. A 0.5 µm thick silicon-
dioxide cladding was deposited to isolate the waveguide from the water. Second,
we etched the membrane (124 µm diameter) from the back of the die using deep
reactive ion etching with sulfur hexafluoride (SF6) as etchant and we used the
silicon-dioxide layer as a well-defined etch-stop. A photograph of the membrane
with photonic circuitry is shown in Fig 4.2. Third, we glued the chips on two
1 mm thick glass plates. The first plate contained a hole of 4 mm diameter, which
was positioned behind the membrane. The second glass plate sealed the chip from
the backside, ensuring that only air is present behind the membrane. Finally, we
connected the optical fibers to the silicon photonic circuit, referred to as pack-
aging. We developed a packaging method that is suitable for under-water usage.
This involves attaching to the chip a Pyrex block in which the connecting optical
fiber ended. The block had a polished angle facet with an evaporated aluminum
coating to reflect light from the fiber into the grating coupler at the end of the
waveguide [83].

4.3 Results

We have optically characterized the OMUS by measuring the transmittance of light.
Moreover we performed acoustical measurements to measure the time responses
to transmitted acoustical pulses with different frequencies. Finally we determined
the bandwidth, sensitivity and noise equivalent pressure of the sensor.
The optical characterization starts by determining the shape of the optical reso-
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Waveguide

Directional coupler

Membrane

Ring resonator

10 µm

Figure 4.2: Microscopic image of an OMUS, showing a membrane with an
optical resonator and two directional couplers. This OMUS has a circular
membrane with a diameter of 78 µm and a thickness of 2.7 µm. The membrane
is visible because it is illuminated from the back. The OMUS reported in this
chapter has a larger membrane diameter of 124 µm.

nance curve of the ring resonator in a static situation, hence without deformation
of the membrane. We measured the transmission T (λ) from the input to the output
of the OMUS by stepping through successive optical wavelengths. The intensity
I at the output of the chip for a static situation is given by I = T I0 with I0 the
maximum output intensity far away from the resonance dip. This is directly re-
lated to the maximum output power P0, which currently is 10 µW (Fig 4.3a). The
transmittance of the OMUS shows a dip at resonance of the ring resonator which
has a FWHM of 100 pm. The transmittance of a membrane at rest is denoted by
T0 and is the initial transmittance of every acoustical measurement. When the
membrane and hence the optical resonator is deformed, the transmittance of the
ring resonator is shifted. We write the deformed transmittance T (λ) in first order
as T (λ) ≈ T0(λ +∆λ), where ∆λ is the wavelength shift due to the deformation
of the ring (see Fig 5.1b).
For the acoustical measurements we observe the time modulation of the output
intensity at one particular optical wavelength λl set by the laser (indicated as
measurement wavelength in Fig 5.1b). When an incident acoustical wave deforms
the membrane and hence the resonator over time, the time dependent intensity at
the output of the chip can be described as

I(λl, t) = T (λl)I0 ≈ T0 (λl +∆λ(t)) I0, (4.2)

with ∆λ(t) the ultrasound-induced optical wavelength shift. When we interrogate
by measuring the intensity at one particular optical wavelength over time, the sen-
sitivity of interrogation is determined by the gradient of the initial transmittance
curve and hence is the largest when the measurement wavelength λl is at the point
of largest gradient of the transmittance. To show this dependence, we applied an
acoustical wave (described in section Materials and Methods) and measured the
maximal output intensity swing versus the chosen measurement wavelength. The
result is shown in Figure 4.3b (blue line). The curve shows equal sensitivity be-
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tween the left and right side of the optical resonance dip (dashed black line) as
is expected by the symmetry of the resonance dip. The maximal sensitivity is
reached at around 1/3 from the bottom of the dip. We also determined the noise
versus the chosen optical wavelength (red line) by measuring the intensity fluctua-
tions in the absence of an incident acoustical wave. As is shown in the figure, the
noise depends only slightly on the output intensity (dashed black line). Therefore,
the signal-to-noise-ratio will mainly depend on the sensitivity curve. For every
measurement we will hence use the optical wavelength that gives a maximal out-
put intensity swing; this will be chosen on the left flank.
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Figure 4.3: a) The measured transmittance versus optical wavelength, for a
maximum output power P0 of 10 µW. b) The measured output intensity swing
of the OMUS (blue line), the RMS value of the noise in the output intensity
(red line), and the transmittance (dashed black line; normalized for visibility),
all versus the chosen optical wavelength of the laser.

After we determined a suitable optical wavelength for our measurements, we in-
vestigated the response of the OMUS to an acoustical Gaussian modulated sine
wave (see Section Materials and Methods), being transmitted by an external ultra-
sound source. Two measured time traces of the output signal due to an incident
acoustical wave are shown in Fig 4.4. The presented signals are an average of
500 individual signals. The upper time trace shows the response to a transmitted
acoustical wave with a 0.42 MHz center frequency, which is below the acoustical
resonance peak of the membrane. The second time trace shows the response to
a transmitted acoustical wave around the resonance frequency of the membrane
(f0 = 0.77 MHz). The signal below the resonance frequency of the membrane re-
sembles the transmitted acoustical pulse quite well, while there is a large acoustical
ring-down time present in the signal around the acoustical resonance frequency of
the OMUS.
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Figure 4.4: Time responses of the OMUS (right, red) for two transmitted
acoustical pulses (left, black) with different center frequencies. The presented
signals are an average of 500 individual signals.

The normalized transfer function of the OMUS is shown in Fig 4.5 and is obtained
by sweeping the ultrasound frequency from 0.4 MHz to 1.4 MHz using narrow-
band pulses. The -6 dB bandwidth of the OMUS is 19% and the center frequency
is 0.76 MHz. The used maximum output power P0 for these and subsequent
measurements was 70 µW.
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Figure 4.5: The normalized transfer function of the OMUS.

We determined the sensitivity and noise equivalent pressure of the OMUS for in-
cident acoustic waves with a frequency that corresponds to the maximum of the
transfer function (f0 = 0.76 MHz). The measurement results are shown in Fig
4.6 which shows the amplitude of the detected signals versus the amplitude of the
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exciting acoustical signal. For small deformations of the membrane, and hence for
small optical wavelength shifts of the optical resonance, the sensor response is lin-
ear. The OMUS has a sensitivity of 2.1 mV/Pa for pressures up till approximately
150 Pa (determined with a linear fit). For higher pressures, the sensitivity curve
starts to deviate from a linear behavior. This nonlinear response of the OMUS
occurs because of the used detection system. With this system the dynamic range
of the OMUS is determined by the width of the optical resonance curve. If the
deformation of the membrane, and hence the shift in optical resonance is too large,
the response of the OMUS is distorted. We determined a noise equivalent pressure
(NEP) of 0.4 Pa by the intersection of the sensitivity curve and the RMS value of
the measured output noise (0.8 mV). To transform the NEP value to an equivalent
minimum detectable wavelength shift we use the derivative of equation (4.2) with
respect to the wavelength. The minimum detectable wavelength shift ∆λnoise is
thus calculated from the RMS noise ∆Inoise as

∆λnoise =
∂λ

∂I
∆Inoise =

∂λ

∂T

∆Inoise
I0

. (4.3)

To determine ∂λ/∂T , we use the derivative of the normalized transmittance (Fig
4.3a), resulting in ∂T/∂λ = 10.5 nm−1. With measured values I0 = 69 µW and
∆Inoise = 21 nW, this results in ∆λnoise = 29 fm.
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Figure 4.6: The measured amplitude of the OMUS output signal (blue points)
versus the amplitude of the incident pressures, calibrated with a hydrophone.
The sensitivity was obtained with a linear fit through the linear region of the
system (dashed black line) and has a tangent of 2.1 mV/Pa. The red line is
the RMS value of the measured output noise (0.8 mV). The crossing of the
lines gives the NEP at 0.4 Pa. The results apply to the center frequency of the
OMUS (f0 = 0.76 MHz).
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4.4 Discussion

The results demonstrate that we fabricated a very sensitive and small ultrasound
sensor compared to the polymer ring resonators [67] and even state of the art
piezo-electrical devices. This sensor can easily be repeated into an array of sen-
sors by using waveguide gratings or echelle gratings [75]. These passive optical
(de)multiplexers convert a broad spectrum into many wavelength channels and
vice versa. When we use grating coupled ring resonators [76] only one of the
many resonance peaks per ring resonator will be present in a wavelength channel,
hence allowing to successively stack as many sensors as possible into the available
spectrum. Underneath these parallel photonic waveguides with grating coupled
ring resonators multiple membranes can be created using dry etching or other
techniques [84]. A dense array of sensors is particularly beneficial in the field of
intravascular ultrasound, where the outer dimensions of the catheter are restricted
to 1 mm and every catheter can only be used once due to hygiene codes. This
application will require integration with a separate source (e.g., a piezo-electric
element) to form a hybrid transducer. Moreover, an increase of the acoustical
center frequency to 15-20 MHz will be necessary, which in principle should be fea-
sible through redimensioning the sensor. Another interesting field of application
is photoacoustics where high SNR and a small bandwidth are needed [85].
In view of its small spatial footprint of 124 µm diameter, the question arises
whether sensor is more prone to noise. This topic will be further adressed in Chap-
ter 6. Nevertheless, the obtained detection limit, or NEP, of 0.4 Pa is better than
the NEP of 0.5 Pa offered by the state of the art piezo-electrical device with a 65
times larger surface area.
To optimize our sensor as medical imaging device, there are a few aspects that
can be improved. The most important one is addition of absorbing layers or other
adjustments to the membrane to increase the bandwidth, which is now 4 times less
than for conventional transducers. The resonance frequency of the current OMUS
is comparable with the photo-acoustic breast tomography sensor, but needs to
be increased for almost all other medical applications. This can be achieved by
further reduction of the membrane diameter or by designing a different membrane
shape.
Improvements can also be obtained in the dynamic range. With the current de-
tection system, the dynamic range is limited. This could be drastically increased
when we use a similar interrogator system as the one used by Rosenthal et al [68].
In their paper, coherence-restored pulse interferometry (CRPI) is introduced which
enables them to track the location of an optical resonance peak or dip over time.
In that case, the dynamic range will not be limited by the optical interrogation
system.
Although further development is needed, with this first prototype we gave proof of
the OMUS concept and demonstrated a very sensitive sensor that may form the
basis of future ultrasound transducers.
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4.5 Method

The optical path of the measurement set-up starts with a tunable laser (Agi-
lent, 81940A) to generate the light. The light passes through an in-fiber isolator
(Opto-link Cooration Ltd., OLISO-I-S155), in-fiber attenuator (Opto-link Corpora-
tion Ltd., OLVAO-MN-155-2TA) and an in-fiber polarization controller (Thorlabs,
FPC560) and is then coupled into the chip. The polarization controller is required
because the optical waveguide on the OMUS only accepts one polarization state.
The other fiber of the chip is connected to a photo-receiver (Newport, Newfocus
1811-FC-AC).
The acoustical part of the set-up contains a 1 MHz ultrasound transducer (Olym-
pus, Panametrics V314) as source, which is connected to an arbitrary waveform
generator (Agilent, 33521A). All the equipment is connected to a computer and
we use 16-bit AD-cards (Spectrum, M314142-exp) with a sampling rate up to
250 MSa/s to acquire all the data. The ultrasound source and OMUS are placed
in a water basin on a fixed distance of 23.2 cm from each other. The temperature
of the water basin is regulated within 0.1◦C by a thermostat (Grant Instruments,
GD120) and we use a needle hydrophone (1 mm, Precision Acoustics) to measure
the pressure generated at the position of the OMUS.
Every series of measurements starts with a short scan of the optical transmission
to determine the optical resonance wavelength. Then we step through the optical
wavelengths of the laser, starting from a position halfway the flank, to find the
optical wavelength with the highest sensitivity. At this optical wavelength, the
successive measurements were performed, by transmitting different sound waves
towards the chip. The transmitted acoustical pressure has the shape

p(t) = A exp

−( t− τd
N
2f0

)2
 sin (2πf0 [t− τd]), (4.4)

where p is the acoustical pressure as a function of time t, A is the amplitude of the
acoustic wave, τd is a fixed time delay, N is half the number of sine periods that
are roughly visible below the gaussian envelope, and f0 is the center frequency
of the sine. We determined the transfer function of the OMUS by transmitting
narrow-band pulses (N=20) at subsequent acoustical frequencies, and adjusted
the amplitude in such way that we compensated for the transfer function of the
source, as to keep the emitted pressure the same for every acoustical frequency.
We measured the sensitivity by altering the amplitude at a fixed frequency of
f0 = 0.76 MHz. The noise measurements were perfomed without a transmitted
acoustical signal. We performed every measurement series twice, one with the
OMUS and one with the hydrophone, in which the last series provided a reference
for the pressure values at the surface of the OMUS.
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Characterization of the
optical micro-machined

ultrasound sensor

Abstract – The development of ultrasound sensors for real time 3D ultrasound
imaging has focused on miniaturization and extension from single elements to-
wards large dense arrays. We proposed an optical micro-machined ultrasound
sensor as basis for such future arrays. To optimize the basis element for a spe-
cific application complete understanding of the element is needed. This chapter
describes the characterization of the basis element. We show that the measured re-
sponse to changes in temperature correspond to literature with sensitivities around
80 pm/K. We measured a stronger response of the sensor to static pressure than
predicted by a finite element model. We already showed that the sensor was very
sensitive to ultrasound with a noise equivalent pressure of 0.4 Pa. In this chapter
we are able to show that this sensitivity is indeed induced by the membrane of
the sensor. Furthermore we show that the resonance frequency of the sensor can
be tuned with the diameter of the membrane and we show that similar membrane
diameters result in similar responses, i.e. the sensor is reproducible.

This chapter is based on the following publication:
S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, K. W. A. van Dongen,

H. P. Urbach, N. de Jong, and M. D. Verweij, “First measurements on a novel type of optical
micro-machined ultrasound transducer (OMUT),” in Proceedings IEEE International Ultrasonics
Symposium, pp. 2572-2575, Sep. 2014.
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5.1 Introduction

Real-time 3D ultrasound imaging techniques require transducers that consist of
dense arrays [4]. Applications like intravascular ultrasound (IVUS), endoscopic
ultrasound (EUS) or image guidance based intra-operative ultrasound restrict the
outer dimensions of the transducer [86–90]. Hence in the last decade the develop-
ment of ultrasound sensors is focused on miniaturization and extension from single
elements towards large dense arrays [1]. The conventional transducers are made
of piezo-electric material. Miniaturization and fabrication of small dense arrays
is challenging for these conventional transducers especially in the wiring of the
individual elements [59, 61]. Therefore alternative sensors and fabrication meth-
ods are widely investigated [91–95]. We proposed an alternative ultrasound sensor
fabricated with micro-machining techniques comparable to CMUTs and PMUTs
but based on integrated photonics instead of piezo-electric material [21, 78, 96].
The applied integrated circuit fabrication technology (CMOS) allows for ease of
production. Furthermore, the advantage of the use of integrated photonic cir-
cuitry is the possibility to design small spatial footprints of the sensor elements
(∼10 µm [74]). Other advantages are its insensitiveness to electromagnetic inter-
ference, high speed communication and a broad bandwidth for data transmission.
We fabricated this optical micro-machined ultrasound sensor and provided proof of
concept [96]. This sensor can be used as a basis for building large dense arrays but
further development of this sensor towards any application first requires complete
understanding of its behavior.
This chapter presents a full characterization of the sensor. We performed tempera-
ture measurements, static measurements and dynamic measurements. The temper-
ature measurements and static measurements are compared to literature [97, 98].
Next to the literature, the static measurements also compared to a finite element
model as well. The dynamic measurements show to what extend the membrane
read-out of the sensor corresponds to the motion of the membrane.
This chapter is organized as follows: first we describe the working principle of the
sensor and the devices used for the study, then we present the theory to determine
the influence on the optical wavelength shift of the sensor due to temperature
and due to a static load. The influence of a static load can be extended to an
expected wavelength shift due to an ultrasound pressure wave. Next, we describe
the method and measurement set-up, followed by the results. We end with the
conclusions.

5.2 Working principle and device description

The working principle of the sensor as well as the fabrication process and design
considerations are already described in Ref [96]. For convenience we sum up the
most important aspects in this section.
The optical micro-machined ultrasound sensor consists of a waveguide and a pho-
tonic ring resonator that are integrated onto a membrane (Fig. 5.1a). When a
broad light spectrum is transmitted through the waveguide, a part of the spectrum
is coupled into the ring resonator by means of a directional coupler [77]. The trans-
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mitted spectrum at the output port of the waveguide shows dips at the optical
resonance wavelengths λm of the ring resonator, given by

mλm = nel, (5.1)

where m is an integer number, l the circumference of the ring and ne its effective
index of refraction. Incident acoustical pressure waves strain the membrane and
hence the resonator. The induced strain in the resonator causes a shift in the
optical resonance curves with respect to the undeformed state. The shift in reso-
nance is what we want to observe.
When we load the sensor in several steps, we can obtain a translation of the res-
onance dip from the wavelength shift in successive scans of the entire spectrum.
This is indicated in Figure 5.1b by the three different spectra in blue, red and
green, which correspond to different added loads. This scanning procedure can
be used for static measurements, but is too slow for detection of the ultrasound
waves without use of a dedicated detector. To determine fast optical wavelength
shifts, we transmit light, and hence measure the transmitted intensity, at one op-
tical wavelength. This wavelength is chosen on one flank of the optical resonance
curve of the undeformed resonator (in this case the red curve), such that a shift
of the resonance curve directly translates into a modulation of the transmitted
optical intensity, as is shown in Figure 5.1b. The intensity is measured using a
photo diode. We realized the sensor using the following procedure. First, the
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Figure 5.1: a) Sketch of the OMUS, showing the photonic micro-ring res-
onator on top of the membrane. b) Sketch of three intensity curves at the end
of the waveguide, representing the different transmittances for different strain
values of the photonic micro-ring resonator. Adapted from [96]

miniature optical circuitry was fabricated using a semi-industrial CMOS fabrica-
tion line at IMEC (Leuven, Belgium) via the ePIXfab platform [82]. The resulting
wafer-piece (die) contains 220 nm high and 400 nm wide silicon waveguides on top
of a 2 µm thick silicon-dioxide layer on a 250 µm thick silicon substrate. A 0.5
µm thick silicon-dioxide cladding was deposited to isolate the waveguide from the
water. Second, we etched the membrane (124 µm diameter) from the back of the
die using deep reactive ion etching with sulfur hexafluoride (SF6) as etchant and
we used the silicon-dioxide layer as a well-defined etch-stop.
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The static and dynamic measurement set-ups require different sensors. Therefore,
the sensors for the dynamic measurements were further processed. We glued those
chips on a 1 mm thick glass plate. The plate contained a hole of 4 mm diameter,
which was positioned behind the membrane. Finally, we connected optical fibers to
the silicon photonic circuit of these sensors, which is referred to as packaging [83].
An overview of the used sensors is given in Table 5.1. The difference between the
sensors is found in the post-processing of the device, diameter of the membrane
and length of the optical ring resonator.

Table 5.1: Sensor description and use in different measurements. The first
column list the sensor number, followed by the diameter of the membrane and
race track (i.e. resonator) length. The glass layer indicates whether a glass layer
is present or not. The last column indicates the measurements in which the
device is used, where T is the temperature measurements, V is the vibrometer
measurement and P is the pressure measurement.

Sensor membrane diameter racetrack length glass layers measurements
[µm] [µm]

Chip 4 60 30 yes T
Chip 11 124 40 yes V,T
Chip 13 101 40 yes V,T
Chip 16 104 40 no P
Chip 17 63 30 no P

5.3 Theory

This section describes the influence of temperature on the optical resonance and
the physical relations between the deformation of the membrane and the expected
optical resonance shift. We start with the dependence on temperature as this
is independent of the mechanical deformation (Sec.5.3.1). Then we describe the
deformation of the membrane. The membrane has an initial hollow position. When
a pressure load is applied to the sensor, the membrane will deform further. This
deformation induces (more) strain in the optical ring resonator, which causes a
shift in the optical resonances. These different aspects are discussed below. First
we discuss the initial condition of the membrane (Sec. 5.3.2). Second we discuss
the relation between the pressure and deformation of the membrane (Sec. 5.3.3)
and third we describe the expected optical wavelength shift due to this deformation
(Sec 5.3.4).

5.3.1 Influence of temperature

Temperature influences the propagation of light through the silicon waveguide.
The refractive index is dependent on temperature according to:

β(T ) =
1

n

dn

dT
, (5.2)
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with dn/dT being the thermo-optic coefficient [97, 99]. The change of refractive
index is significant for silicon (β = 1.79 × 10−4/K) and is an order of magnitude
lower for SiO2. The thermal expansion coefficient is given by

α(T ) =
1

h

dh

dT
, (5.3)

with h being the sample thickness. The thermal expansion of Si measured around
room temperature at 1530 nm wavelength is low (α = 2.58·10−6/K) compared
to the change of refractive index [99]. This means that the effect of the expan-
sion of the cross-section of the waveguide is negligible compared to other effects.
The change in the direction of propagation can give rise to noticeable spectrum
changes. To determine the total effect on the silicon waveguide due to changes in
temperature, the wavelength dispersion of the effective index has to be taken into
account as well. A derivation of this formula is beyond the scope of this thesis,
but is given by [100]

λ =
L

m

(
1−

(
L

m

)(
∂neff

∂λ

))−1(
∂neff

∂ϵc

)
2nsi

(
∂nsi

∂T

)
(T−T0)+

L

m
neff(λ0), (5.4)

with ϵc the relative dielectric constant for the material that is changing with tem-
perature, in this case the silicon waveguide.

5.3.2 Initial condition

It is known from literature that the fabrication process of thin films can cause
residual stress [101–107]. In general is it difficult to determine the state of residual
stress in a thin film because it depends on the specifics of the fabrication process
and varies through the film thickness [103]. There are different processes that
can contribute to the residual stress, but the main cause in our case is due to
the difference in thermal expansion coefficients of the materials [105]. Although
this difference is not important when the device is used, it is of importance when
the CMOS structures are made at elevated temperatures. The silicondioxide is
deposited onto a substrate of single-crystal silicon at these elevated temperatures.
The wafer of our sensor is made with the smart cut technique [108]. Due to
the different thermal expansion coefficients of silicon and silicon dioxide thermal
stresses are induced in these materials during manufacture and remain there during
the subsequent use of the devices. For thermal mismatch problems, the elastic
strain needed to fit the film to the substrate is given by

ϵ = −(αf − αs)(T − T0) = −∆α∆T, (5.5)

where αf and αs are the linear thermal expansion coefficients of the film and sub-
strate, respectively, T is the current temperature and T0 is the initial temperature
at which the film and substrate were in a stress-free state [101]. The varying values
for the silicondioxide expansion coefficient in literature and the fact that thermal
expansion coefficients in a thin film can differ from the bulk values make it difficult
to predict the strain values present in the membrane [102,107]. The stress in a thin
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film deposited on a substrate can be approximated in second order by a biaxial
homogeneous stress superimposed on a linear biaxial stress gradient. The stress
in the film is in this approximation biaxial at all points, but varies linearly from
the top surface to the bottom surface [106]. Both compressive and tensile stresses
can be present, but it is known that silicon dioxide resulting from a thermal ox-
idation of silicon is in a state of compression on the silicon surface [105]. When
the membrane is created by locally removing the substrate, the internal stress in
the membrane will relax and the device will deform [102,106].

5.3.3 Deflection

The deflection of uniformly loaded plates is described depending on the size of
the displacement. For small displacements, linear theory can be used. When the
displacement is in the order of the thickness of the plate, large deflection theory
is used. This theory assumes that the vertical displacement w is much larger than
the lateral displacements u and v and that the normals to the undeformed middle
surface remain the normals to the deformed middle surface [17, 109–112]. The
governing differential equations or Kármán equations for the bending of a circular
plate due to a load P are [111]

P =
Eh3

12(1− ν2)
∇4w − h

r

∂ϕ

∂r

∂2w

∂r2
, (5.6)

∇4ϕ = −E

r

∂w

∂r

∂2w

∂r2
, (5.7)

where E is the Young’s modulus, ν is the Poisson ratio and ϕ is the Airy stress
function. The biharmonic operator ∇4 is given by

∇4 =

(
∂2

∂r2
+

1

r

∂

∂r

)2

. (5.8)

In case of very large deflection theory the strain relations contain extra terms
compared to the linear theory, with second order dependence on both the u and
w direction resulting in [17]

ϵr =
du

dr
+

1

2

[(
du

dr

)2

+

(
dw

dr

)2
]

and ϵθ =
u

r
, (5.9)

where ϵr is strain in the radial direction, ϵθ is the strain in the tangential direction
and u is the displacement in the radial direction. These strain relations can be
extended with intrinsic strain [110,111].
Next to the intrinsic strain our sensor has an initial displacement in the order of
the thickness h of the membrane. In such case superposition of the initial condition
and the deflection due to a load can not be applied [113]. Therefore we will use
a finite element model to determine the amount of strain that is induced by the
initial deformation and the pressure load together.
For dynamic measurements we assume that the deformation of the membrane at
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its fundamental mode has a similar shape as the static loading. In that case the
displacement in time is given by

w(t) = wstat +∆w(t),

= wstat +
∂w

∂P
∆P (t). (5.10)

So at the position of the static curve where the load matches the load of the water,
the slope should match the displacement per load of the dynamic measurements.

5.3.4 Optical wavelength shift

We now determine the optical wavelength shift due to a certain strain at the posi-
tion of the ring resonator. Equation 5.1 gives the dip position of the transmitted
spectrum of the undeformed ring resonator. When strain S is applied these dips
at the resonance wavelengths λm appear when the phase delay δ of one round trip
through the ring is

δ =

∮
ne(ρ, λ)

2π

λ
dρ = m2π, (5.11)

or

mλm =

∮
ne(ρ, λm, Sz) (1 + Sρ(ρ, Sz)) dρ, (5.12)

where z indicates the specific direction of the long sides of the racetrack resonator
and ρ indicates the direction along the racetrack in general. The effective index of
the waveguide depends on its mechanical deformation. Moreover, the local strain
in the direction of the track Sρ is taken into account by stretching each element
dρ to (1 + Sρ)dρ. From previous strain measurements, we know that the optical
wavelength shift is linear with respect to strain. We derived a formula of this shift
in such way that it shows dependence on three different physical aspects [78]

∂λm

∂Sz
=

ne

ng︸︷︷︸
dispersion

⟨ λc

ne

∂ne

∂Sz︸ ︷︷ ︸
eff. index

+ λc
∂Sρ

∂Sz︸ ︷︷ ︸
track-length

⟩
, (5.13)

where ng is the group index and λc is the resonance wavelength without deforma-
tion.

5.4 Description and numerical modeling parame-
ters of the measurement set-up

The characterization of the sensor is performed with three different measurements;
one set-up to determine the dependence on temperature (Sec. 5.4.3), one in which
we measured the response due to a static pressure (Sec. 5.4.1) and one in which
we measured the deflection of the membrane due to an incident acoustic wave with
a simultaneous optical read-out of the sensor (Sec. 5.4.2). This section describes
all measurement set-ups as well as the parameters that were used in the numerical
FEM model (5.4.4).
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5.4.1 Static measurement set-up description

As described in Section 5.2, we use unpackaged sensors for the pressure measure-
ments. Therefore, we have to align two single optical fibers above the grating
couplers to couple the light into the sensor. The optical path of this setup con-
tains a tunable laser (Agilent, 81960A) to generate the light followed by an in-fiber
polarization controller (Thorlabs, FPC560). This fiber ends at an translational
stage which can be positioned above the sensor. The fiber at the other end of the
sensor is connected to an optical power meter (Agilent, N7744A). The sensor is po-
sitioned on a chuck. Using a membrane vacuum pump we are able to decrease the
pressure under the membrane. We measure the pressure with a calibrated pressure
sensor (Vacuubrand, CVC 3000). The set-up is shown in Figure 5.2a. For every
measurement series, we sweep the wavelength of the laser through 400 pm around
the dip position and measure the mean dip position for a given pressure during
75 seconds.

5.4.2 Dynamic measurement set-up description

The basic equipment, used for the dynamic vibrometer measurements was similar
to the setup used in Ref [96] (Fig. 5.4b). In the optical path of the measurement
set-up we use a tunable laser (Agilent, 81940A) to generate the light. The light
passes through an in-fiber isolator (Opto-link Cooration Ltd., OLISO-I-S155), an
in-fiber attenuator (Opto-link Corporation Ltd., OLVAO-MN-155-2TA) and an
in-fiber polarization controller (Thorlabs, FPC560), and is then coupled into the
chip. The other fiber of the chip is connected to a photo-receiver (Newport, Newfo-
cus 1811-FC-AC). The acoustical part of the set-up contains a 1 MHz ultrasound
transducer (Olympus, Panametrics V314) as a source, which is connected to an
arbitrary waveform generator (Agilent, 33521A). The ultrasound source is placed
in a water basin on a fixed vertical distance of 10 cm below the sensor. The OMUS
is attached to a hollow tube and positioned in such way that the sensor itself is
submerged in water while the back of the tube is still above the water surface so
only air is present behind the membrane. The ultrasound source and OMUS are
positioned in line with a laser vibrometer (Polytec, OFV5000) that can measure
the displacement of the OMUS. The vibrometer has a displacement card (Poly-
tec, dd-300) that can measure displacements up to 150 nm with a resolution of
0.1 pm/

√
Hz at a maximum sample frequency of 24 MHz. We use a 20x objective

(f=200, M Plan Apo NIR) to focus on the center of the back of the membrane or
on the back of the chip. All the equipment is connected to a computer and we use
16-bit AD-cards (Spectrum, M314142-exp) with a sampling rate up to 250 MSa/s
to acquire all the data.
Every series of measurements starts with a short scan of the optical transmission
spectrum to determine the optical resonance wavelength. Then we step through
the optical wavelengths of the laser, starting from a position halfway the flank,
to find the optical wavelength with the highest sensitivity. At this optical wave-
length, the successive measurements were performed, by transmitting different
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sound waves towards the chip. The transmitted acoustical pressure has the shape

p(t) = A exp

−( t− τd
N
f0

)2
 sin (2πf0 [t− τd]), (5.14)

where p is the acoustical pressure as a function of time t, A is the amplitude of
the acoustical wave, τd is a fixed time delay, N is the number of sine periods that
are roughly visible below the gaussian envelope, and f0 is the center frequency
of the sine. We determined the transfer function of the OMUS by transmitting
narrow-band pulses (N=30) at subsequent acoustical frequencies. We measured
the sensitivity by altering the amplitude at a fixed frequency of f0 = 0.8 MHz for
Chip 11 and at f0 = 1.05 MHz for Chip 13.

5.4.3 Temperature measurement set-up description

The optical equipment used for these measurements is exactly the same as the one
used for the dynamic vibrometer measurements. Because the sensors are packaged,
we can submerge them in the water basin. We position them in the middle of the
basin and measure the temperature of the water with a calibrated analog ther-
mometer that has a precision of 0.005◦C. The water temperature is regulated with
a thermostat (Grant Instruments, GD120) within 0.1◦C. We vary the temperature
with steps of 1◦C and perform measurements when the temperature is stable.

5.4.4 Numerical modeling parameters and methodology

We numerically model our sensor as a membrane with clamped boundary condi-
tions. We only model a quarter of the membrane thus employing the axisymmetric
conditions. The membrane consist of three layers; first the 2 µ main SiO2 layer,
second the 0.22 µm optical Si layer, third the 0.5 µm SiO2 cover layer. The Young’s
moduli are 70 GPa and 170 GPa for the SiO2 layer and Si layer respectively. The
Poisson ratio is 0.19 for SiO2 and 0.27 for Si. The FEM model uses curved triangu-
lar finite rotation shell elements that can handle the expected deformations [114].
The pressure is increased from 0 to 7 MPa.
To determine the wavelength shift per strain (Eq. 5.13), we need to have estimates
for the effective index, ne, group index ng, resonance wavelength λc and change in
effective index due to strain ∂ne

∂Sz
. We obtained these values for several long ring res-

onators and waveguides with different widths [78]. We use these results as estimate
for the ring resonators. With an estimated effective index of 2.2, group index of
4.32, resonance wavelength of 1550 nm and a change in effective index ∂ns

∂Sz
= −0.72

we get an optical wavelength shift due to strain of 0.55 pm/microstrain.

5.5 Results

We started the characterization of the OMUS by determining its dependence on
temperature. Next we measured the response to a static load and compared this
to the FEM model. We continued by measuring the membrane displacement as
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Figure 5.2: Two measurement setups to measure the influence of a) static
pressure on the optical resonance shift and b) ultrasound pressure on the optical
resonance shift.

well as the chip displacement due to an incident acoustical pressure wave. All
measurement results are described below.

5.5.1 Temperature measurement results

The influence of temperature was first visualized in the transmission curve of
the sensor. The local temperature is influenced by the transmit intensity of the
laser. To show this, we determined the shape of the optical resonance curve by
measuring the transmittance T (λ) from the input to the output of the OMUT.
The intensity I at the output of the chip for a static situation is given by I = T I0
with I0 the maximum output intensity far away from the resonance dip. This
maximum output intensity I0 is related to the maximum output power P0 that
we measure with the photo-receiver. We measured the transmittance by stepping
through successive wavelengths with the laser for two different output powers.
Figure 5.3 shows the transmittance for output powers P0 of 10 µW and 60 µW.
The low intensity curve (blue line) shows the expected symmetric resonance
curve with a FWHM of 100 pm. The curve for higher power (red line) shows a
different transmittance. The asymmetry of the resonance dip can be explained
by the heating of the ring resonator due to the dissipation of light. Silicon has
a strong thermo-optical effect and the resulting shift in resonance wavelength is
about 80 pm/◦C [97]. During the measurement we stepped through the successive
wavelengths and therefore changed the amount of light in the ring, and thus the
dissipation. On the left flank of the resonance dip, the amount of light in the
ring resonator increases for increasing laser wavelength, resulting in a shift to the
right of the resonance dip during the measurement sequence. On the right flank
of the resonance dip, the amount of light for increasing laser wavelength decreases
and the resonance dip thus shifts to the left. Therefore, with this measurement
method, at relatively high power values the transmission curve is altered due to
the heat generated by the laser source.
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Figure 5.3: The measured transmittance versus optical wavelength, for an
maximum output power P0 of 10 µW (blue line) and 60 µW (red line).

To determine the thermo-optical effect more thoroughly we measured the optical
wavelength shift of three sensors. The straight part of the racetrack of two res-
onators is 40 µm and one ring has a straight part of 30 µm. The temperature
was varied from 23◦C to 27◦C in steps of 1◦. At every temperature several mea-
surements were performed. The measurement results of Chip 13 are similar to the
other measurements and clearly show that all the measured temperature shifts are
on a straight line (Fig. 5.4). The measured sensitivity of the optical wavelength
shift per degree centigrade is 80.0◦C, 82.5◦C and 80.9◦C for chip 4, chip 11 and
chip 13 respectively. The coefficient of determination R2 is 0.99 for all measure-
ments and shows that the results are easily fitted to the linear regression [115].
The small difference between the three devices may have to do with small fab-
rication variations. The measurements correspond well with calculations and
other measurements in literature where the optical wavelength shift varies between
70 pm/K to 90 pm/K for different waveguide widths [97].

5.5.2 Static measurement results

When we look at the initial condition of the membrane, it can be seen through a
microscope that the membrane is in a hollow position. This initial displacement
is confirmed with a white light interferometer (Bruker, ContourGT-K). The result
of the latter is shown in Figure 5.5. Due to the rough surface of the device the
interferometer measurement can only be used to get an estimate for this initial
displacement, which is in the order of 4 µm.
We measured the optical wavelength shift of the membrane due to a static loading.
The results are shown in Figure 5.6 and show a nonlinear response. The response
is sensitive for small pressures and less sensitive for the higher pressures. The
maximum wavelength shift is in the order of 200 pm. These results are similar
to the measurement results of Hallynck [98]. They measured a similar curve in
the response to the same pressure load with a maximal optical wavelength shift of
208 pm for a similar device with a rectangular membrane and a ring resonator.
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Figure 5.4: Measured optical wavelength shift change versus temperature
change. The linear fit has a R2 of 0.99.

We modeled the device to see whether we could fit the measurements and obtain
the membrane displacement. Because we have no exact measurements of the
initial deflection, we vary the initial strain in the model to obtain different initial
deflections of the membrane. We modeled two cases, one in which the membrane
has no initial strain or displacement and one in which the initial displacement of
the membrane is obtained with an initial strain of 1 %. The results are shown in
Figure 5.7 with on the left hand side the displacement of the membrane and on the
right hand side the change in strain in the layer of the waveguide due to loading.
We use the change in strain to determine the optical resonance shift due to loading,
using the initial resonance wavelength as starting position. It is shown that an
initial strain of 1% results in an initial displacement of 4.4 µm. Furthermore, it can
be seen that the general trend for the displacement and strain becomes nonlinear,
but that the pressure load needed for this non-linearity is much larger than the
one used for the measurements. In the regime of interest both the displacement
and strain are linear. The initial strain causes a change in sign of the strain in
the top layer. Although the membrane is buckled due to the initial strain, there
is still strain present in the entire membrane when there is no loading. We obtain
-108 µstrain at 70 kPa with no initial strain and 48 µstrain at 70 kPa with an
initial strain of 1%. When we use the conversion of 0.55 pm/µstrain we obtain
an expected wavelength shift of -59 pm and 26 pm. These values are much lower
than the shifts that we have measured. The sign of the measurements correspond
to the model with no initial strain.
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Figure 5.5: Interferometer measurement of the sensor. The color indicates
the measured height of the sensor where a red color represents the flat sur-
face and a blue color the maximum displacement. There are three different
(isolated) ring resonators visible with straight lengths from 20 to 60 µm. The
hollow membrane is clearly visible around the 40 µm ring resonator. The mea-
surement contains too much noise to obtain accurate quantitative values of the
displacement of the membrane.
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Figure 5.6: The optical induced wavelength shift due to pressure for two
sensors, Chip 16 and Chip 17.

5.5.3 Dynamic measurement results

We first investigated whether the read-out of the ring resonator is only influenced
by the deformation of the membrane. We obtained two time-traces simultaneously,
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Figure 5.7: The modeling results for a membrane with no initial strain (blue)
and an initial strain of 1% (red). The displacement in both cases is shown in
a) and the corresponding strain difference (the initial strain with zero pressure
subtracted) in b).

one by interrogating the sensor and one from the vibrometer that measures the
displacement of the membrane. The time-traces of both signals are shown in
Figure 5.8. It is clearly visible that both curves have the same response. The
phase difference between the two signals is due to the coaxial wiring of the set-up
and is dependent on frequency. When we excite the sensor at successive frequencies
the transfer function can be determined. The transfer function of the membrane
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Figure 5.8: Two simultenous recorded timesignals are shown of Chip 11 trans-
mitted with a center frequency of 0.8 MHz. One of the optical read-out of the
OMUS (read) and one of the displacement of the membrane (blue). A zoom of
both time traces is shown in the lower right corner.
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displacement as well as the OMUS signal are shown in Figure 5.9 for two sensors. It
is shown that Chip 11 has its resonance frequency at 0.8 MHz. This is comparable
to the OMUS of Ref [96], which is a sensor with a similar membrane diameter
(124 µm). Chip 13 has a higher resonance frequency of 1.05 MHz which is expected
in view of the smaller membrane diameter of 100 µm. Clearly, the membrane
displacements and the OMUS signal have almost the same transfer functions.

a) b)
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Figure 5.9: The transfer functions of the membrane and the sensor signal.
a) the results for Chip 11 and b) the results for Chip 13. The signals are
normalized with respect to the maximum of each function. These maxima
correspond for Chip 11 to 270 mV (vibrometer signal) and 199 mV (OMUS
signal) and for Chip 13 to 111 mV (vibrometer signal) and 172 mV (OMUS
signal).

Next we determined the sensitivity of the OMUS, which is related to the membrane
displacement for a given amplitude of the incident acoustical pressure wave. This
is determined by transmitting acoustical pressure waves with increasing amplitude
and center frequency f0 of the sensor. The results are shown in Figure 5.10. For
small deformations of the membrane, and hence for small optical wavelength shifts,
the sensor response is linear. For higher pressures, the sensitivity curve starts to
deviate from the linear curve. This nonlinear response of the OMUS occurs be-
cause of the used interrogator system. With this system the linear dynamic range
of the OMUS is determined by the width and shape of the optical resonance curve.
If the deformation of the membrane, and hence the shift in optical resonance is
too large, the response of the OMUS is distorted. From the response of the vi-
brometer it can be seen that the displacement of the membrane is still linear for
higher pressures.
The difference between the chip displacement (black line) and membrane displace-
ment (red line) confirms that for both sensors only the membrane is significantly
excited by the incident pressure wave. The optical resonance shift ∆λ (blue line)
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is obtained from the intensity modulation ∆I of the photodiode according to

∆λ =
∂λ

∂T

∆I

I0
, (5.15)

where ∂λ/∂T is determined from the derivative of the normalized transmittance
T (Figure 5.1b). We obtained a derivative of ∂T/∂λ = 13.2 nm−1 for Chip 11
and ∂T/∂λ = 8.3 nm−1 for Chip 13 from the measured spectra. By dividing the
optical resonance shift with the measured displacement we obtain a sensitivity of
2, 1pm

nm (resonance shift over membrane displacement) for Chip 11 at 0.8 MHz and
1, 6pm

nm for Chip 13 at 1.05 MHz.
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Figure 5.10: Measured optical wavelength shift (blue line), membrane dis-
placement (red line) and chip displacement (black line). a) the results for Chip
11 and b) the results for Chip 13. We obtained the sensitivity of the OMUS
signal by making a linear fit through the first measurement points (dashed blue
line). The sensitivity of the displacement was determined by making a linear
fit through the vibrometer data (dashed red line).

5.6 Discussion

We characterized the sensor by determining its response to temperature, a static
loading and a pressure wave. We did this with three different measurements ap-
plied to several sensors. We showed that the OMUS is sensitive to changes in
temperature. The response is linear and corresponds to calculated values and mea-
sured values in literature. However, we do not expect that temperature effects will
influence our acoustical measurements, because the influence of temperature is a
relatively slow effect (order of seconds) compared to the ultrasound measurements
that take place in a short amount of time (order of microseconds). Furthermore,
the displacements of the membrane are small and hence the differences in wave-
length shifts are small. Therefore we will write the influence of temperature only
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as an extra translation ∆λh of the low-power curve in Figure 5.3, and consider
this translation to be constant during the ultrasound measurements.
We measured the initial position of the membrane and found that the membrane is
buckled. The main reason of this buckling is strain due to the fabrication process.
There are several methods known from literature that can avoid this internal strain,
for instance by deposition of another film [116, 117] or by ion implantation [118].
Another solution is reported by Iwase et al. who adjusted the structure of the
sensor in such way that it corrects for the buckling by design [119]. All these
methods have consequences for the design of the membrane, which means that
they influence the resonance frequency and possible sensitivity. This is important
to take into account when the design needs to be optimized for an application as
ultrasound sensor.
Optical ring-resonators have already been used to measure static loading with a
linear response between the load and optical wavelength shift. The sensitivity of
the sensor depends on the radius of the ring resonator as well as the thickness of
the membrane [120]. The buckling of the membrane due to internal strain in the
sensor seems to change the linear static behavior since we measured a non-linear
response to a static pressure. We were not able to explain the measurement results
of the static measurements with a finite element model: the non-linearity occurs
at much higher loadings in the model as in the measurements. There are several
aspects that need to be investigated further to find a possible explanation. First,
the exact values of the initial displacement and material constants are unknown.
This makes it difficult to build an exact model to fit our measurements. Second,
the status of initial strain is unknown. We showed with the model that the amount
of strain as well as the sign is completely different for a situation with no initial
strain and one with initial strain. Third, the linear response of the ring resonator
is only investigated for cases of pure bending, where in the situation of static load-
ing, membrane strain is an important factor as well.
The stronger response of the device due to static loading may also be an explana-
tion for its sensitivity to ultrasound. Due to the missing information of the static
displacement of the membrane it is not yet possible to obtain a full description of
the displacement of the sensor as described by Eq. 5.10. Instead, we are able to
match the optical wavelength shift of the sensor due to pressure in a similar man-
ner. The highest derivative of the static measurements is found at the beginning
of the curve and has values in the order of 10 pm optical wavelength shift/kPa.
These values are in the same order of magnitude as the linear fit of the vibrometer
measurements. Because the sensors are barely submerged under water when the
vibrometer measurements are performed, the static loading due to the water col-
umn is in the order of several pascals. Therefore the steep derivative of the strain
measurements seems to match the sensitive response to ultrasound.
With the vibrometer measurements we are able to show that the response of the
sensor is a result of the oscillating membrane. We conclude from the measurements
that only the membrane is significantly oscillating due to the incident pressure
wave and the back of the sensor is not. Hence the response of the ring resonator
matches the response of the membrane. With the two devices that were fabricated
for the vibrometer measurements we showed that the sensor is reproducible.
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Abstract – In medical diagnostics, ultrasound devices are often used to image
organs or tissue from positions inside the human body. Therefore it is paramount
to design small and sensitive sensors. In search for miniature ultrasound sen-
sors we developed an opto-mechanical micro-machined ultrasound sensor based
on integrated photonics instead of piezo-electric material. To predict the lowest
detectable pressure we wanted to determine the noise level of this sensor. Due to
the lack of electrical circuits the noise of the sensor is only caused by two noise
mechanisms; one is the molecular agitation in the medium hitting the surface of
the sensor and the other the mechanical thermal noise induced in the sensor it-
self. The resulting acoustical noise is not well described in literature. Therefore
this paper expands the existing knowledge of acoustical noise by analyzing both
noise mechanisms. We show that in thermodynamic equilibrium the noise power
delivered by the medium to the sensor indeed balances the noise power delivered
by the sensor to the medium. Moreover we show that for sensors with vanishing
aperture area, the noise pressure due to the molecular motion in the medium will
reach a well-defined finite limit.
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6.1 Introduction

The need of 3D real time images in medical ultrasound requires ultrasound trans-
ducers that consist of dense arrays of elements [4]. Next to the increasing amount
of elements, developments of transducer design also involve further miniaturization
by the introduction of micro-machining processes [1]. In search for miniature acous-
tic sensors we developed an opto-acoustical ultrasound sensor [96]. We showed that
this sensor is very sensitive and can measure pressure levels down to 0.4 Pa. We
wanted to determine the absolute noise floor and found that the noise floor was
much smaller than predicted from calculations found in literature. The pressure
noise in our sensor originates from intrinsic thermo-mechanical fluctuations in the
sensor itself [121] and thermo-acoustical noise due to molecular agitation in the
medium [122]. Gabrielson [123] reviews several techniques to calculate the mechan-
ical thermal noise induced in micro-machined sensors. However, some aspects are
missing in the literature. First of all, the noise due to molecular agitation in the
medium is not explicitly derived. Second, the current description of the acoustical
noise received by a transducer uses the specific acoustic impedance and is defined
as the acoustic impedance of the medium (ρc) times the surface area of the trans-
ducer. When we use this specific acoustic impedance to determine the noise floor
of our sensor, the noise blows up for sensors with a small aperture. Third, with
noise calculations of conventional piezo-electric transducers this acoustical noise is
only implicitly taken into account as a partial contribution to the total noise at
the electrical output [1,2]. Hence there is a need to derive a theory that describes
the expected acoustical noise of these small non-electric sensors.
This paper presents a theory to determine the acoustical noise of a piston trans-
ducer. The theory is based on full thermodynamic equilibrium conditions, which
means that the noise power produced by the sensor itself must equal the power pro-
duced by the medium. In this way are we able to cross-check the power delivered
by both mechanisms. The theory shows that the noise level is not only dependent
on the surface area of the transducer, but that a factor is needed to correct for the
piston behavior of the transducer when the radius a of the transducer’s surface is
small compared to the wavelength λ (i.e., a/λ < 0.3). Furthermore is it shown
that due to this factor the acoustical noise induced by the medium converges to a
finite value for transducers with a vanishing surface area.
This paper is organized as follows: We derive the theory in Section 6.2, where
we start the analysis with a short overview of the derivation that is needed to
determine the noise pressure at the transducer surface. Next we derive the noise
power and the noise pressure due to the sensor and the medium, and we conclude
that section with a description of the noise pressure levels. We show simulation
results that describe the dependence of the acoustical noise on the ratio a/λ of the
piston surface for our sensor. In Section 6.3 we will compare these noise pressure
to the noise levels that can be obtained with conventional piezo-electric transduc-
ers based on a finite element model. We finalize this paper with conclusions in
Section 6.4.
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6.2 Theory

When a system is in full thermodynamic equilibrium with its surroundings at
temperature T , no net power can flow between the system and the surroundings
(Fig. 6.1a) [124]. If the system contains a damping element, it means that there is a
mechanism for mechanical dissipation in that system. In that case the fluctuation-
dissipation theorem [125] states that there will be a component of mechanical
fluctuation in that system that is directly related to the dissipation. As a result of
this theorem any mechanical system, no matter how complex, that is in full ther-
modynamic equilibrium, can be analyzed for mechanical-thermal noise by adding
a noise force generator alongside each damping element [123]. In the equation
of motion of our sensor the oscillation of the membrane is approximated by pis-
ton motion. Therefore only one damping mechanism is present, which represents
the internal mechanical resistance against the oscillation of the membrane. In an
equivalent circuit this mechanical sensor can be described as a damper with me-
chanical resistance RM and a parallel force generator both connected to the piston
(Fig. 6.1b). On the other hand, if the system is in contact with a surrounding
medium via a membrane, molecular agitation against the membrane will be a sec-
ond cause of noise (Fig. 6.1c). This kind of noise can be analyzed in a similar
manner as the electrical noise received by an antenna. Because the sensor is in ther-
mal equilibrium with the medium, the total spectral power received by the sensor
from the medium must equal the spectral power delivered by its internal noise force
generator to the medium [126]. Based on this principle we are able to check the
noise power generated by both mechanisms. Next, we determine the noise pressure
at the surface of the transducer. We start the analysis by determining the amount
of noise power produced by the force generator in the noisy mechanical resistor
(Sec 6.2.1), and the noise power density present in the medium (Sec 6.2.2). We
proceed by calculating the mechanical radiation impedance of the piston and its
effective area in reception (Sec 6.2.3). Then we determine the maximum amount
of noise power that is collected by the sensor (Sec 6.2.4) and finalize by deriving
the noise pressure present at the surface of the sensor (Sec 6.2.5).

6.2.1 Energy generated by the sensor

When the sensor is in thermal equilibrium with its surroundings at an absolute
temperature T , there are intrinsic thermodynamic fluctuations present, which are
described by the force generator alongside the damper. The magnitude of the mean
square displacement fluctuations can be solved from the equipartition theorem
[127, Ch. 7.5] which states that each independent quadratic term in the total
energy of the system corresponds to a degree of freedom with a mean fluctuation
energy equal to kBT/2 where kB = 1.38× 10−23[J/K] is the Boltzmann constant.
To determine the thermal agitation of the sensor we follow the Nyquist reasoning
[126] for thermal agitation of electric charge in electrical resistors, but in our case
we take two mechanical dampers.
Consider two dampers, each with a mechanical resistance RM and the same tem-
perature T , connected as indicated in Figure 6.2. Due to thermal agitation of
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Figure 6.1: a) Sensor with a piston A and matched mechanical resistance
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Figure 6.2: Scheme of two connected dampers I and II each with a mechan-
ical resistance RM . a) The mechanical network diagram of the two dampers
fixed on one side and connected together on the other side. b) The equivalent
network model.

damper 1 a force F generates a velocity v in damper 2. This velocity, obtained
by dividing the force by 2 RM , causes absorption of power in damper 2. This ab-
sorbed power is equal to the product of the mechanical resistance and the square
of the velocity. So power is transferred from damper 1 to damper 2. In the same
manner power is transferred from damper 2 to damper 1. Since the two dampers
are at the same temperature it follows from the second law of thermodynamics
that the power flowing in one direction is exactly equal to the power flowing in the
other direction. This equilibrium condition holds for the power exchanged within
any frequency band [126]. Hence the force is a universal function of frequency,
mechanical resistance and temperature and of these variables only. To determine
the form of this function we consider again the two dampers each of resistance
RM , but now connected via a long non-dissipative thin rod (Fig. 6.3). The length
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of the rod is l, it has a density ρ, cross-section A and the velocity of propagation
along the rod is defined as c. This rod has the same characteristic impedance
Z = RM as the mechanical resistance so there is no reflection at either end of
the rod. Let the absolute temperature of the system be T after thermal equilib-
rium has been established. We can describe the delivered power to the rod as two
trains of energy traversing the rod. One train is traveling from left to right, being
the power delivered by damper 1 and absorbed by damper 2. The other train is
traveling in the reverse direction. At a certain instant after equilibrium has been
established, we isolate the rod from the two dampers. Under these conditions
there is complete reflection at the two ends of the rod and the energy which was
on the rod at the time of isolation remains trapped. Now instead of describing
the waves on the rod as two trains traveling in opposite directions we describe
the rod as vibrating at its natural frequencies. The lowest frequency has a force
node at each end and no intermediate nodes. The frequency corresponding to this
mode of vibration is c/2l. The next higher natural frequency has a node at each
end of the rod and one in the middle and is described by 2c/2l. In this way there
are natural frequencies at 3c/2l, 4c/2l, etc. Consider a frequency range extending
from f cycles per second to f + ∆f cycles per second, i.e. a frequency range of
width ∆f . The number of modes of vibration, or degrees of freedom, lying within
this range may be taken to be 2l∆f/c, provided l is taken sufficiently large to
make this expression a great number. Under this condition it is permissible to
speak of the average energy per degree of freedom as a definite quantity. To each
degree of freedom there corresponds an energy equal to kBT on the average, on
the basis of the equipartition law: 1/2kBT for the open-ended modes and 1/2kBT
for the fixed-ended modes. The total energy of the vibrations within the frequency
interval ∆f is then seen to be 2lkBT∆f/c. But since there is no reflection this
is the energy within that frequency interval which was transferred from the two
dampers to the rod during the time of transit l/c. The average power, transferred
from each damper to the rod within the frequency interval ∆f during the time
interval l/c is therefore kBT∆f . Therefore the maximal power that the sensor can
deliver to the medium is

Psens = kBT∆f. (6.1)

6.2.2 Energy present in the medium

In this analysis we want to determine the noise power density present in the
medium. In the present case, the cavity is assumed to contain liquid with
impedance Z0 as indicated in Figure 6.1. The energy present in this cavity is
determined by the thermal motion of the particles of the fluid. There are two
types of atomic motion present in a liquid: phonon motion and diffusional mo-
tion [128]. The phonon motion consist of one longitudinal mode and may contain
two transverse modes. Whether these transverse modes are present or not depend
on the solid-like ability of liquids to support shear waves. This is indicated by the
Frenkel frequency ωF that is minimally needed to support those waves. The second
atomic motion is the diffusional motion which happens when an atom is jumping
between two equilibrium positions. Taking all possible motions into account, the
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Figure 6.3: Scheme of two connected dampers with a mechanical resistance
RM and a long thin rod. a) The mechanical diagram of the two dampers fixed
on one side and connected via a thin rod on the other side. b) The equivalent
electrical network model. The rod translates to a lossless transmission line.

total energy present in the liquid can be described as

E = Kl + Pl +Ks(ω > ωF ) + Ps(ω > ωF ) +Kd + Pd, (6.2)

where K is the kinetic energy and P the potential energy [128]. The subscripts
define the three different motions with l the longitudinal mode, s the shear modes
and d the diffusing atoms. This energy equation can be simplified because the
energy of the diffusional motion is so low that it can be omitted. Furthermore, the
frequency range of ultrasound sensors is much lower than the Frenkel frequency of
water (∼1011 Hz at 150 MPa) [128], which allows us to omit the shear phonons
as well. Hence the only relevant energy left in the liquid is the longitudinal mode
of phonon motion. The energy of the longitudinal mode in a liquid contains the
same energy as a longitudinal mode in solid state physics [128–130]. Because
the energy of longitudinal modes in solid state physics have been extensively de-
scribed [131–133], we will assume that we can use this description to determine the
energy in the medium. A practical justification for this assumption may be found
in the abundant use of finite element and finite difference models for computing
acoustic wave fields. In these models we use regular discrete grids to describe
the wave propagation through a fluid. These models are thoroughly validated
for frequencies in the MHz range. We see no reason to doubt that for computing
noise in the same frequency range it is equally allowed to replace wave propagation
through the continuous fluid medium by wave propagation through a regular grid.
The latter is exactly what is considered in solid state physics.
The energy in the medium can be obtained via the vibrational modes of the cor-
responding system of particles. Similar to the description of the energy trapped
in the rod, we will use standing waves as sums of traveling waves to describe the
vibrational modes. The simplest system grid contains cubic cells with sides L.
Whereas the traveling waves have positive and negative wave-vectors to describe
their behavior, the standing waves consist of a superposition of two opposite trav-
eling waves and can thus be described by only the positive wave-vectors [131].
Therefore the mode spectrum is represented in an octant of the three-dimensional
k⃗-space as a simple cubic lattice with sides π/L. The wave-vector k⃗ is given by

k⃗ = îkx + ĵky + l̂kz. The distance from each point to the origin is proportional to
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the resonant frequency of the mode. The number of standing wave states inside a
volume element d3k⃗ in this octant of k-space is

ρs(k⃗)d
3k⃗ =

(
L

π

)3

d3k⃗ =
V

π3
d3k⃗, (6.3)

where V = L3 is the volume of the cubic cell and ρs(k⃗) is the density of states
for standing waves in a three-dimensional crystal [131]. If we introduce spherical
coordinates (θ, ϕ, k) and the number of standing wave states in a spherical shell
between k and k + dk we obtain

ρs(θ, ϕ, k)k
2 sin θdkdθdϕ =

V

8π3
k2 sin θdkdθdϕ =

V

8π3
k2dkdΩ, (6.4)

where the factor 1/8 is present to correct for the fact that the density is given for
the entire space while in Eq.6.3 only positive k values were allowed. Moreover,
dΩ = sin θdθdϕ is the solid angle enclosed by θ and θ + dθ, and ϕ and ϕ+ dϕ.
The elementary vibrational disturbance of a lattice of atoms that uniformly os-
cillates at a single frequency is called a phonon in the quantum mechanical de-
scription. The quantum of energy of a phonon of frequency f is hf , where
h = 6.626 × 10−34 [Js] is Planck’s constant. The total energy of a particular
vibrational mode is a multiplication of the average number of phonons per mode
and the energy per phonon. The average number of phonons ⟨n⟩ per mode at
temperature T is described by the Bose-Einstein factor as [131]

⟨n⟩ = 1

e
( hf
kBT ) − 1

. (6.5)

Therefore, the average energy per mode is given by

⟨E⟩ = ⟨n⟩hf =
hf

e
( hf
kBT ) − 1

. (6.6)

With the known mode density of the system and the average energy per mode we
are able to determine the total energy density of the system. The energy density
(energy per unit volume) dU per solid angle in a band between k and k + dk is
given by the average energy per mode times the number of modes per solid angle
and per unit volume as

dU(θ, ϕ, k) =
hf

e
( hf
kBT ) − 1

k2

8π3
dk. (6.7)

We assume that hf/kBT ≪ 1 which is valid for frequencies below the GHz range.
With this assumption the exponential ex = 1 + x/1! + x2/2! + ... can be approx-
imated as ehf/kBT ≈ 1 + hf/kBT . So below 1 GHz the energy density flowing
within the cavity between f and f + df is

dU(θ, ϕ, k) ≈ kBT
k2

8π3
dk. (6.8)
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The intensity per solid angle of the modes in a band dk is

dI⃗(θ, ϕ, k) = c0dU(θ, ϕ)e⃗r = c0kBT
k2

8π3
dke⃗r, (6.9)

where e⃗r = k⃗

|⃗k|
is the direction of the wave and c0 is the speed of sound in the

medium. We like to express dP with dependence on frequency f instead of k.
Because k = 2πf/c0, we obtain for the intensity

dI⃗(θ, ϕ, f) = kBT
f2

c20
dfe⃗r =

kBT

λ2
dfe⃗r. (6.10)

To describe the sound intensity that is produced by the medium we want to in-
troduce the term loudness L. This loudness (in Wm−2sr−1Hz−1) is the spectral
power density produced per solid angle and is thus given by

L(θ, ϕ, f) =
kBT

λ2
. (6.11)

6.2.3 Radiated power from a piston

The connection between the mechanical resistor and the medium is made by the
surface area of the sensor in the rigid baffle that separates both cavities in Figure
6.2. This connection has influence on the amount of energy that can travel from
one side of the cavity towards the other side. From the mechanical resistor’s side
towards the medium this is indicated by the mechanical radiation impedance and
from the medium towards the sensor this is indicated by an effective area of the
surface. The formulation of both the mechanical radiation impedance and the
effective area of the surface will be derived in this section.
When we have a piston surface S in a rigid baffle at z = 0, the energy that radiates
into the medium can be determined by the Rayleigh integral. The pressure at
constant frequency at any position (x, y, z) in the medium is given by

p̂ =
−iωρ

2π

∫∫
S

v̂n(xs, ys)
eikR

R
dxsdys, (6.12)

where the hat indicates the complex amplitude of the quantity, R =√
(x− xS)2 + (y − yS)2 + z2, with x, y and z the coordinates in cartesian space

with z directed perpendicular to the baffle. The subscript s denotes the source
coordinates. The uniform normal velocity of the surface is denoted by vn. We
use the acoustic energy flux or acoustic intensity I⃗ = pv⃗ to determine the time
average power in the far field radiated from the source as [134]

Pav =

∫∫
S

I⃗av · n⃗outdS, (6.13)

where n⃗out indicates the normal vector of the surface S. When we write the

pressure p as p = Re
{
p̂e−iωt

}
and the velocity as v⃗ = Re

{
⃗̂ve−iωt

}
, the average

product is given by

(pv⃗)av =
1

2
Re

{
p̂⃗̂v∗
}
. (6.14)
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Hence, the time average of the acoustic energy flux I⃗av is given by

I⃗av =
1

2
Re

{
p̂⃗̂v∗
}
. (6.15)

We can now calculate the average power in the far field as

Pav =
1

2
Re

{∫∫
S

v̂∗np̂dS

}
,

=
|v̂n|2

2
Re

{
−iωρ

2π

∫∫
S

∫∫
S

eikR

R
dxsdysdxdy

}
,

=
|v̂n|2

2
Re {Zm,rad} , (6.16)

where Zm,rad is the mechanical radiation impedance [134]. The radiation

impedance is defined as the force F̂z divided by the normal velocity v̂n. For a
piston this is similar to the area integral of the specific radiation impedance p̂/v̂n.
The quadruple integral can be solved for a baffled circular piston resulting in a
mechanical radiation impedance of

Zm,rad =
−iωρ

2π

∫∫
S

∫∫
S

eikR

R
dxsdysdxdy,

= πa2Z0 [R1(2ka)− iX1(2ka)] , (6.17)

with

R1(2ka) = 1− 2J1(2ka)

2ka
, X1(2ka) =

2H1(2ka)

2ka
. (6.18)

The J1(η) and H1(η) are the Bessel function and the Struve function of first
order [134] and a is the radius of the piston. So the radiated power from a circular
piston with area A = πa2 in a rigid baffle results in

Pav =
|v̂n|2

2
AZ0R1(2ka). (6.19)

The radiated power can also be obtained from the maximum intensity Imax and
the normalized radiation pattern Pn(θ, ϕ) of the circular piston as

Pav =

∫ 2π

0

∫ π/2

0

ImaxPn(θ, ϕ)r
2 sin θdθdϕ. (6.20)

The maximum intensity in the far field is given by

Imax =
1

2
Re {p̂FF v̂

∗
FF } =

|p̂FF |2

2Z0
. (6.21)

For the pressure in the far field we can state that z ≫ xS and z ≫ yS . Therefore
Eq.(6.12) can be approximated as

p̂FF =
−iωρ

2π
v̂n

∫∫
S

eikz

z
dxsdys,

=
−iωρAeikz

2πz
v̂n. (6.22)
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We are only interested in the modulus of the field, which results in

|p̂FF | =
Z0A

λz
|v̂n|. (6.23)

When we substitute Eq.(6.23) and Eq.(6.21) into Eq.(6.20), we obtain for the
radiated power

Pav =
Z0A

2

2λ2
|v̂n|2ΩA, (6.24)

where

ΩA =

∫ 2π

0

∫ π/2

0

Pn(θ, ϕ) sin θdθdϕ, (6.25)

is known as the beam solid angle of the piston and is the integral over the normal-
ized radiation pattern. Both calculated radiated powers in Eq.(6.19) and Eq.(6.24)
should be the same and by equating we are able to find a relationship between the
effective area of the piston, the wavelength and the radiation pattern as

λ2 = AeffΩA, (6.26)

where

Aeff =
A

R1
. (6.27)

The validity of this relationship can also be shown mathematically by solving
the integral of the beam solid angle. With use of the far field approximation
the pressure can be expressed in the form of an outgoing spherical wave and
nonuniform directivity D(θ, ϕ) according to

p̂ ≈ D(θ, ϕ)
eikr

r
, (6.28)

where

D(θ, ϕ) =
iωρ

2π

∫∫
S

v̂n(xs, ys)e
−kx⃗s·e⃗rdxsdys, (6.29)

and contains the two-dimensional Fourier transform of v̂n(xs, ys). For a circular
piston, D(θ, ϕ) is only dependent on θ as [134]

D(θ) =
−iρcv̂nka

2

2

2J1(ka sin θ)

ka sin θ
. (6.30)

Hence the normalized radiation pattern is given by

Pn(θ, ϕ) =
|D(θ, ϕ)|2

max {|D(θ, ϕ)|2}
=

2J1(ka sin θ)

ka sin θ
. (6.31)

Therefore the effective area can be calculated with Eq.(6.26) using this relationship
for the directivity

Aeff =
λ2

2π
∫ π/2

0

[
2J1(ka sin θ)

ka sin θ

]2
sin θdθ

. (6.32)
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This integral can be solved∫ π/2

0

[
2J1(ka sin θ)

ka sin θ

]2
sin θdθ =

2ka− 2J1(2ka)

(ka)3
, (6.33)

which, in view of Eq.(6.18), results in

Aeff =
λ2(ka)3

2π [2ka− 2J1(2ka)]

= πa2
2ka

2ka− 2J1(2ka)

=
A

R1(2ka)
. (6.34)

This confirms the validity of Eq.(6.27) for the specific case of a circular piston.

6.2.4 Energy collected by the sensor

In this section we want to determine the power that is maximally delivered by the
medium to the sensor. The maximum delivered power to the surface area of the
sensor is given by [135,136]

Pmed =

∫ f+∆f

f

Aeff

∫ 2π

0

∫ π/2

0

L(θ, ϕ, f)Pn(θ, ϕ) sin θdθdϕdf. (6.35)

Using Eqs.(6.11),(6.26) and (6.25) we obtain for the maximum delivered power

Pmed =

∫ f+∆f

f

λ2

ΩA

kBT

λ2

∫ 2π

0

∫ π/2

0

Pn(θ, ϕ) sin θdθdϕdf,

= kBT∆f. (6.36)

We already mentioned that when the sensor is in full thermodynamic equilibrium
with the medium the powers produced by the sensor and by the medium should be
the same. We just determined the maximum power produced by the medium and
collected by the sensor as kBT∆f . We already determined the maximum power
produced by mechanical resistor of the sensor as kBT∆f (Eq. (6.1)). So these
two powers are indeed equal.

6.2.5 Noise induced pressure at the sensor

We use the derived maximum noise power generated by the sensor and by the
medium to determine the noise pressure generated at the transducer surface. We
draw two equivalent circuits corresponding to the two different noise mechanisms.
The circuit containing the Nyquist spectral power produced by the mechanical
resistor is shown in Figure 6.4a. It contains the mechanical impedance of the
noiseless damper, the noise pressure source due to the force generator and the me-
chanical radiation impedance of the piston. The maximum noise power is delivered
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Figure 6.4: Equivalent circuit for a) a noisy transducer, b) a noisy medium,
c) a realistic situation with a noisy transducer and a noisy medium. In this
figure, all impedances are assumed noiseless.

when there is ideal coupling between the sensor and the medium, i.e. Zm,rad = Z∗
m.

Based on this coupling we are able to determine the noise pressure source with
use of the known power delivered to Zm,rad. This dissipated power is kBT∆f
(Sec 6.2) and is equal to PII . From this equation we can determine the noise
source pressure p̄sens due to the sensor itself as

Psens = kBT∆f =
A2p̄2mem

Re {Zm}
=

A2p̄2sens
4Re {Zm}

(6.37)

p̄sens =

√
4kBT∆fRe {Zm}

A
. (6.38)

Here a bar is used to indicate the RMS value of a quantity.
The second equivalent circuit is shown in Figure 6.4b and contains the maximum
radiation noise power delivered by the medium. Similar to the derivation above,
the noise source pressure p̄med due to the medium is found as

Pmed = kBT∆f =
A2p̄2mem

Re {Zm,rad}
=

A2p̄2med

4Re {Zm,rad}
(6.39)

p̄med =

√
4kBT∆fRe {Zm,rad}

A
,

=

√
4kBTZ0AR1∆f

A
. (6.40)

The factor R1 for piston motion is the main difference between our relation for
the noise pressure of the medium and the method in the literature that just uses
the specific acoustic impedance Z0 of the medium. The influence of this factor is
shown in Figure 6.5 where the noise pressure p̄med/

√
∆f is plotted against ka of our

sensor. It is shown that both methods converge to the same value for elements with
large ka values. This means that for transducer elements with ka > 2 the specific
impedance can be used to determine the noise floor. When we have transducer
elements with ka < 1.9 or a/λ < 0.3, both methods differ significantly. The
method without factor R1 goes to infinity while the method with the factor R1
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converges. The limiting value can be calculated with the expansion series of the
Bessel function as [134]

J1(η) =
η/2

(1!)2
− 2(η/2)3

(2!)2
+

3(η/2)5

(3!)2
− · · · (6.41)

When we substitute Eq.(6.41) into Eq.(6.18) we obtain

R1(2ka) =
(2ka)2

4 · 2
− (2ka)4

6 · 42 · 2
+

(2ka)6

8 · 62 · 42 · 2
− · · · (6.42)

For a circular piston with ka → 0 the noise source pressure p̄med converges to
0.3 mPa/

√
Hz.
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Figure 6.5: The noise source pressure p̄med/
√
∆f versus ka for circular sensors

with k the wavenumber and a the radius of the sensor. The black curve is the
noise pressure based on the impedance of water and the surface area of the
sensor while the red curve is calculated with use of an extra factor R1 that
corrects for the radiation behavior of the piston.

In reality, noise is caused by both the medium and the sensor itself. The equivalent
circuit of a real case is shown in Figure 6.4c. Because the noise sources are uncor-
related we can not add the pressures but need to add the corresponding powers in
the circuit. Hence the pressure at the surface p̄med of the transducer is given by

p̄mem =

√(
p̄sens|ZII |
|ZI + ZII |

)2

+

(
p̄med|ZI |
|ZI + ZII |

)2

, (6.43)

=

√
4kBT∆f

A

√
RI |ZII |2

|ZI + ZII |2
+

RII |ZI |2
|ZI + ZII |2

. (6.44)
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The real and imaginary parts of ZI follow from the construction of the sensor, and
the real and imaginary parts of ZII follow from Eqs. 6.17 and 6.18. Depending
on the relative magnitude of ZI , we can distinguish the following cases:

� If |ZI | ≫ |ZII | we have a very stiff transducer, and this wil result in

p̄mem = p̄med. (6.45)

In this case the noise from the medium is dominant.

� If |ZI | ≪ |ZII | we have a very compliant transducer, and this will give

p̄mem = p̄sens. (6.46)

In this case the noise from the sensor is dominant. If ka < 1, then
|ZI | ≪ |ZII | implies that RI ≪ RII , and we will have

p̄sens ≪ p̄med. (6.47)

To summarize, p̄med can be regarded as the upper limit of the total acoustical
noise of a sensor.

6.3 Piezo-electric model

With the derived theory we are able to investigate the contribution of the acoustical
noise due to the medium to the total noise of a piezo-electric ultrasound transducer.
We made a finite element model that can be used to calculate the expected noise
floor and mechanical radiation impedance. This section first describes the model
(Sec. 6.3.1) and then presents the results (Sec.6.3.2).

6.3.1 Model description

We made a 2D and 3D finite element model in PZFlex (Weidlinger Associates, UK).
The 2D model is made to determine the electrical impedance of the transducer and
to determine the sensitivity as there is no significant difference compared to the
3D model while having a much faster calculation time. The 3D model is used to
calculate the mechanical radiation impedance. The geometry of the transducer
is similar in both models and will be described first. The piezo-electric element
is optimized for a resonance frequency around 0.8 MHz, which is comparable to
one of our opto-acoustical sensors. The transducer has a square surface with a
similar area as the circular sensor. The width xwidth of the square element is each
time calculated as xwidth =

√
a2π, with a the radius of the circular sensor. In

the 2D model there is an option to scale the electrode in such way that a square
element is obtained. The design of the transducer is similar to the one used in
Ref [92] except for the backing layer which is changed into an electrical conducting
glue. The stack of the transducer starts with a 120 µm backing layer followed by a
1.6 mm piezo-electric layer and a 350 µm matching layer. The width of the entire
stack xwidth is each time varied and runs from 85 µm to 2.54 mm corresponding
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to a ka of 0.2 to 6 respectively. The transducer is loaded with water or void.
For the electrical impedance we first determine the resonance frequency of the
transducer by excitation of the piezo-electric element with a 90 ns pulse. With
this short pulse we are able to excite all frequencies of interest. At resonance we
determine the electrical impedance. We need to determine the sensitivity of the
transducer to be able to translate the electrical impedance to a noise pressure. We
transmit a 3-cycle sinusoid acoustical plane wave with center frequency of 1 MHz
through the water and measure the induced voltage on the electrode of the sensor.
We divide the peak to peak value of the voltage by the peak to peak value of the
pressure at the surface of the transducer to find the sensitivity.
The mechanical radiation impedance is obtained with the 3D model. We used the
method of Ref. [137] and excite the transducer with a 3-cycle sinusoid with 1 MHz
center frequency. We compute the average pressure and the average velocity over
the surface of the transducer. The modulus of the maximum of the average pressure
divided by the maximum of the average velocity is computed. We calculate the
relative radiation impedance by dividing this modulus by the specific acoustic
impedance of water, which is 1.5 MRayl.

6.3.2 Modeling results

First we determined the electrical impedance of the transducer for several ka
values by changing the width of the transducer. We modeled two cases; an un-
loaded transducer and a water loaded transducer. The difference in the electrical
impedance between the two models is the addition of a contribution due to the
acoustic radiation impedance. The results are shown in Figure 6.6a. It can be
seen that the curves are quite similar. At higher ka values (ka > 2) the electrical
impedance has the same order of magnitude and for lower ka values (ka ≤ 2)
the electrical impedance with air loading is a little bit lower than the electrical
impedance of the water loaded transducer. It can also be seen that the electrical
impedance goes to infinity for small ka numbers.
We also determined the relative radiation impedance in a 3D model. Figure 6.6b
shows the modeling results compared to the analytical relative radiation impedance
where we plotted |Zm,rad/πa

2Z0| for the analytical radiation impedance and per-
formed the same corrections for the modeling results. The curves are rather similar.
One difference between the two curves may be explained by the fact that the an-
alytical radiation impedance is obtained for a circular piston while the surface
element of the model is rectangular. Another explanation for the higher value
is the fact that the element is not positioned in a rigid baffle, as is the case in
the analytical solution, but has a void next to it. The last comment that can be
made about the higher values for larger ka is the fact that ideal piston motion
is no longer occuring. In the regime where ka > 1.6 piston motion is no longer
guaranteed as can be seen in the motion pattern of the model. For the larger ka
values second and even third order vibrations of the surface are visible.
We are able to determine the noise pressure of the transducer based on the electrical
impedance when we know its sensitivity. We can use the Johnson-Nyquist noise
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Figure 6.6: The electrical impedances of a piezo-electric transducer for differ-
ent ka values. a) The electrical impedance for a water loaded (blue) and air
loaded (red) transducer. b) The acoustical relative radiation impedance of the
transducer with in blue the modeling results of a square element and in red the
analytical solution of a circular piston. Both curves show the absolute relative
radiation impedance and are corrected for the surface area of the element and
the specific acoustic impedance of water.

of a resistor which will result in noise voltages of

Vnoise =
√
4kBTR, (6.48)

where R = Re {Zelec}. With the sensitivity of the transducer in volts per pascal
we can determine the equivalent noise pressure. We determined the sensitivity and
the results for ka ≤ 2 are listed in Table 6.1. It can be seen that the sensitivity
has a maximum when ka = 1.4 − 1.6. The resulting noise pressures p̄mem/

√
∆f

for a piezo-electric transducer are shown in Figure 6.7. The curve shows higher
equivalent pressure values than the sensor noise pressure which is estimated at p̄med

because we assume that a PZT transducer is relatively stiff. The differences in
Figure 6.7 are expected because of the extra electrical noise in the PZT transducer.
Furthermore, the trend seems similar to the curve where the specific acoustic
impedance Z0 is used without R1 which hence goes to infinity.

6.4 Discussion

In this paper we derived the acoustical noise pressure at the surface of a transducer.
We showed that for smaller elements an extra factor is needed to take radiation
effects into account. This factor ensures that for sensors with element areas with a
ka < 2 the medium noise converges. For a sensor with a circular surface the limit
of the noise pressure due to molecular agitation in the fluid is 0.3 mPa/

√
Hz. This

means that from the total noise level of our sensor with ka < 1 and a bandwidth of
1 MHz, a maximum of 0.3 Pa is noise that can be assigned to noise contributions
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Table 6.1: Modeling results of a piezo-electric transducer. The first column list
the ka value of the transducer, the second and third column list the electrical
impedance of the loaded and unloaded transducer respectively and the last
column contains the sensitivity values.

ka impedance with water impedance with air sensitivity
kΩ kΩ µV/Pa

0.2 6980 2496 27
0.4 1550 825 40
0.6 550 408 51
0.8 272 248 58
1.0 162 189 64
1.2 107 149 68
1.4 78 85 72
1.6 51 60 72
1.8 30 36 71
2.0 27 22 66

from the medium and from the mechanical system of the sensor.
Although this theory is different from the acoustical literature its derivation is par-
tially similar to the one used in radio astronomy. In radio astronomy antennas are
used to detect signals from outside the atmosphere of the earth to study celestial
objects at the radio frequencies. Noise is an important factor in this field and we
followed the same methodology to derive the theory. Based on thermodynamic
equilibrium noise contributions of the antenna and environment are determined
and matched. Because antennas often have no clear physical area they use the ef-
fective area as measure for the effectiveness of the antenna. We used the effective
area in the same manner to take piston motion into account which influences the
effectiveness of the surface element.
It is clear that the derived noise level is of importance for mechanical sensors with-
out electrical noise. To relate the noise pressure of mechanical sensors to noise
pressures of sensors with an electrical system we modeled a PZT-transducer with
thickness mode vibrations. The results suggest that the contribution from electri-
cal noise in small piezo-electric transducers is dominant. It is also shown that when
the corresponding noise pressures are obtained, the electrical impedance yields a
trend similar to the acoustical impedance without the R1 factor, but with higher
values.
We may conclude from the noise pressure curve of piezo-electric transducers that
there is no use in building piezo-electric sensors with ka < 1 as the noise pressure
level goes rapidly up due to the increase of the dominant electrical impedance. An
advantage of opto-mechanical transducers is that these devices are still able to
detect low noise pressures while having surface elements with very low ka values.
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Figure 6.7: The noise pressure levels versus ka of the example PZT transducer.
The black curve shows the acoustical noise pressure from the medium, as based
on the impedance of the water and surface area of the sensor; the red curve
is the acoustical noise pressure calculated with use of an extra factor R1 that
corrects for piston motion and the margenta curve is the total noise pressure
obtained with the finite element model. This noise pressure is based on the
electrical impedance of the transducer and hence contains the electrical noise
and the acoustical noise. The sensitivity of the transducer is used to determine
the corresponding noise pressure.



Chapter

7

Conclusions and discussion

We demonstrated that silicon micro-ring resonators are sensitive to strain and when
they are integrated on an acoustical membrane can be used to sense ultrasound.
In this thesis we mainly focused on the use of this sensor in medical applications,
but the sensor can also be optimized for other applications such as the oil and
gas markets. In medical procedures it is an advantage that the sensor is not
susceptible to electromagnetic disturbance and hence can be used in combination
with MRI. An other important benefit is the safety during medical procedures.
Because the sensor is not electrically driven, safety concerns like high voltages or
leakage currents are not present. A main benefit in the fabrication process of the
sensor is the use of CMOS technologies that allow for ease of production and do
not pose design limitations on the device.
In this section we will discuss the feasibility (Sec. 7.1) and prospects (Sec. 7.2,
Sec. 7.3) of this ultrasound sensor in medical diagnostics. We will also discuss
the use as temperature sensor (Sec. 7.4) and static pressure sensor (Sec. 7.5).
We finalize this Chapter with a discussion about the noise pressure levels of small
sensors (Sec. 7.6).

7.1 Feasibility of the sensor

We designed, fabricated and characterized an ultrasound sensor that is based on
integrated photonics. The prototype consist of a 220 nm high silicon photonic
ring-resonator (spatial footprint: 10 µm by 50 µm) integrated on an acoustically
tuned silicon dioxide circular membrane (124 µm diameter, 2.5 µm thick). The
ultrasound sensor has a resonance frequency of 0.76 MHz with a -6 dB bandwidth
of 20 %. The noise equivalent pressure of 0.4 Pa is slightly better than the state-
of-the-art ultrasound transducers with the same resonance frequency, while these
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have a 65 times larger spatial footprint (Sec. 4.3). The vibrometer measurements
(Sec. 5.5.3) show that the optical intensity modulation corresponds with the oscil-
lation of the membrane and that there is no significant oscillation present in the
silicon chip. Furthermore it is shown that the fabrication process is reproducible,
hence a second sensor with similar membrane diameter will have a similar reso-
nance frequency.
The sensor is interrogated by use of a laser and a photoreceiver. The wavelength
of the laser is chosen such that it is positioned on the flank of a resonance dip of
the ring resonator. In this way, a shift in optical resonance translates into a mod-
ulation of the light intensity at that particular wavelength. The noise equivalent
pressure of 0.4 Pa corresponds to a minimal detectable wavelength shift of 29 fm.
As this is the first prototype there is a lot of room for improvement of the sensor
for each specific application. The most important adjustment, needed for almost
every application, is addition of absorbing layers or other adjustments to the mem-
brane to increase the bandwidth. Improvement of the bandwidth directly means
that the Q-factor of the sensor has to be decreased, i.e. the increase in bandwidth
is at the cost of its sensitivity. But there is also room to increase the sensitivity
of the sensor. As a first step, the ring resonator can be optimized to the strain
distribution of the membrane. One can think of racetracks positioned in a smaller
area in the center with on average higher strain values or on the opposite by using
larger rings exactly positioned on the edge of the membrane. Furthermore it is
possible to enhance the induced strain in the membrane by optimizing the design
of the membrane itself. By locally adding or removing layers of the membrane it
may be possible to design a shape that contains areas that act as a mechanical
strain amplifier.
When the application allows a lower sensitivity than the current 0.4 Pa, there is
also the option of increasing the bandwidth by using the frequencies below the
resonance frequency of the sensor. The curve of the transfer function (Fig. 4.5)
is much flatter below the resonance frequency, resulting in a broader bandwidth.
With a value of -17 dB this corresponds to a noise level of 2.8 Pa.
The resonance frequency of the current OMUS is comparable with that of the
photo-acoustic breast tomography sensor used as comparison in Chapter 4, but
needs to be increased for almost all other medical applications. This can be
achieved by further reduction of the membrane diameter. Reducing the radius
of the membrane results in an increase of the resonance frequency as is shown
in Sec. 2.2.2 for a membrane diameter of 100 µm with the higher resonance fre-
quency of 1.05 MHz. Other options to increase the resonance frequency are an
stiffer membrane or different membrane shape.
The dynamic range of the OMUS is limited to low pressures as is shown in Figure
4.6 by the deviation from the linear curve. The vibrometer measurements show
that this limitation is due to the interrogator and not due to a nonlinear response
of the membrane (Sec. 5.5.3). Hence the dynamic range of the sensor could be
drastically increased when we use a similar interrogator system as the one used
by Rosenthal et al [68], where the resonance dip is tracked instead of the intensity
modulations at a single wavelength.
We can conclude that the OMUS is applicable as ultrasound sensor. Even while
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this sensor is not optimized for a specific application, but designed to be compara-
ble to models and to assess robustness with fabrication, it is already very sensitive
with a noise equivalent pressure of 0.4 Pa. The sensor can easily be improved for a
specific application and has enough options as described above to implement these
improvements.

7.2 Matrix probe

There are two medical imaging applications where the OMUS has most added
value in view of the design requirements of the probe. The first application is
TransEsophageal Echocardiography (TEE) in which the heart is imaged with a
probe located inside the esophagus. In ideal situations the probe is inserted via
the nose, which limits the volume of the head of the probe to around 1 cm3 [138].
The second application is Intravascular Ultrasound (IVUS) where an ultrasound
probe mounted on a catheter is inserted into the coronary artery to image the
artery wall and determine the amount of atheromatous plaque. In this case the
outer diameter of the probe is limited to 1 mm [139].
In both cases the spatial footprint of the probe is limited, while a dense matrix
array is required to obtain real-time 3D images [4]. There are many different
ways to design such an array, but Raghunathan et al. [138] show that a matrix
design with a good radiation pattern and fast acquisition options consist of a few
transmit elements, located in the middle of the array, and many receiver elements
around. By repeating one sensor of the OMUS we should be able to build a very
sensitive matrix sensor with high potential for imaging applications in IVUS and
TEE. With TEE we have the option to build this array of sensors as TEE probe
and transmit the acoustical pulse from the outside with a conventional ultrasound
transducer. The other option, which is also needed for IVUS, is to integrate a few
piezoelectric elements on the chip to transmit the beam.
The array should contain an incoming bus waveguide with passive optical demul-
tiplexers that convert the wide spectrum of each bus waveguide into many small
spectrum channels. We can obtain the spectrum for each ring resonator with grat-
ing couplers [76]. These grating coupled ring resonators allow coupling of only one
particular resonance peak per ring. The spectrum of the outgoing bus waveguide
is created with a multiplexer that successively stacks the modulated spectra of as
many sensors as possible back into the available wide spectrum. The membranes
positioned underneath the ring resonators can be created using dry etching or
other techniques [84]. The current interrogator system should be changed into
one that is capable of tracking the different resonant dips of all the successive
ring resonators. Hence the ideal interrogator is capable to interrogate one or
more channels where each channel contains several peaks. Technobis (Alkmaar,
The Netherlands) already fabricated an interrogator named the LadyGator that
is capable of simultaneously interrogating 6 channels with a resolution of 1 fm
wavelength shift and maximum interrogation speed of 2 MHz.
When we have an array of sensors we are able to solve the limited bandwidth of
the current sensor by designing membranes with successive resonance frequencies
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as is done in some pMUT designs [62,140,141].
Although the integrated photonics and membranes are small enough to meet the
design requirements of a possible matrix array, the current packaging is not. It
is possible to package the chip with use of a fiber facet connected directly to the
waveguide that fits the outer dimensions for IVUS, as is shown by Rosenthal et
al. [68].

7.3 Photoacoustics

Another interesting field of application is photoacoustics. Not only can photo-
acoustics be used to image, but it can also provide functional information in the
form of blood oxygenation, blood flow and temperature [142,143]. It combines the
high-contrast and spectroscopic-based specificity of optical imaging with the high
spatial resolution of ultrasound imaging, and has a greater penetration depth than
purely optical imaging modalities [143]. With this technique tissue is irradiated
with short light pulses. Due to the transient thermo-elastic expansion of the irra-
diated tissue, wideband ultrasonic waves are generated. The frequency range of
photoacoustic waves is inversely proportional to the dimensions of the absorbing
volume. The local optical energy deposition is wavelength dependent due to the
wavelength dependent absorption coefficient of tissue and determines the magni-
tude of the wave. The photoacoustic waves hence contain physiologically specific
information which is not present in normal ultrasound images. Due to the ANSI
standards [144] only a limited amount of energy can be deposited in the human
body, which results in a maximum inducible pressure. This is different from ul-
trasound images where the pressure of the acoustic wave is set by the transducer.
Normal pressure with photoacoustics are in the order of kPa due to an increase
in temperature in the range of mK [5, 145]. This pressure can be easily detected
with our sensor.
Only the addition of a light source is required to use our OMUS for photoacoustic
imaging. Polymer ring resonators as well as a Fabry-Perot optical interferometers
have already been tested for future use in photoacoustics [146, 147]. They both
use external sources and illuminate the object from a different position than the
sensor. In some imaging systems this light source is separated from the sensing
device [143], but for other applications like intravascular photoacoustics we need to
integrate the light source with the sensor. The absorption spectrum of the tissue
of interest has its wavelength between 400 nm and 1300 nm for lipid, collagen and
elastin [145]. Therefore the silicon waveguide can not be used as light source
because it only supports propagation of light waves with wavelengths around
1.55 µm [15]. Hence an additional fiber is needed to radiate the light. From the
integration of an optical fiber and a state-of-the-art IVUS transducer [142,148,149]
it can be concludedd that it is possible to integrate our sensor with a light source
in the same manner.



7.4. Temperature sensor 91

7.4 Temperature sensor

We studied the response of the sensor to temperature. This behavior is well de-
scribed in literature and our measurements show similar results. The optical wave-
guide is very sensitive to temperature changes with an optical wavelength shift
around 80 pm/◦C. With its linear temperature response, the sensor can be used
for accurate measurements of changes in temperature.
The sensitivity to temperature changes may be of interest in the field of hyper-
thermia therapy where specific parts of the body are heated to kill or damage
tumor tissue or to make this more susceptible to ionizing radiation or chemother-
apy [150, 151]. When ultrasound is used to monitor the temperature, our sensor
can be used, next to the imaging, for extra local measurement of the temperature
at the position of the sensor. Because the temperature during treatment changes
slowly compared to the fast ultrasound waves, the slow translation of the resonance
dip can be used to determine the change in temperature and the fast modulation
on this translation can be applied to image ultrasound pressure waves.

7.5 Strain sensor and pressure sensor

We studied the effect of pure bending on the optical racetrack resonators. We
found that three different physical aspects have influence on the final shift in
resonance wavelength: elongation of the waveguide, change in effective index of
the waveguide, and dispersion. The effect of the strain-induced increase in track
circumference and the effect of the strain-induced change in waveguide effective
index oppose each other, where the first effect is three times larger than the latter.
The strong dispersion in silicon sub-wavelength waveguides (400 nm by 220 nm)
accounts for a decrease in sensitivity of about a factor two. The shift in resonance
wavelength per applied strain is dependent on the width of the waveguide and the
orientation of the silicon crystal and varies between 0.5 and 0.75 pm/microstrain
for infrared light around 1550 nm wavelength. We have studied elongations up to
275 microstrain, and observed a linear relation between the resonance wavelength
and the applied strain, which makes the silicon racetrack resonators suitable as
strain sensors.
With the knowledge of this linear behavior we investigated the response of the
sensor to a static loading. Therefore we created a membrane around one of the
racetrack resonators. This membrane changed the circumstances of the measure-
ments completely. First, the case of pure bending has changed into an applied
strain due to deformation of the membrane under static loading. This means that
the strain is present in the radial direction of the membrane and hence is no longer
aligned with the direction of the racetrack. Second, we found that the chip has
internal strain. A part of this strain is released by the initial deformation of the
membrane. With the static measurements, we showed that these two effects have
a major influence on the measurement results as they describe a non-linear re-
sponse to the applied pressure. Hence our sensor is at this moment less suited as
pressure sensor. We know from literature that linear responses can be obtained
when thicker membranes are used [120,152].
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7.6 Noise pressure level of sensors with a small
spatial footprint

We wanted to determine the absolute noise floor of our newly developed optical
micro-machined ultrasound sensor. We already measured a noise pressure of 0.4 Pa
and found that this is a much lower value than the theoretical noise pressure levels
obtained from literature, which go to infinity when the radius of the membrane
goes to zero. Therefore we derived a theory to determine the acoustical noise
for sensors with a small spatial footprint. With this theory we showed that the
acoustical noise pressure levels of all sensors converge for a vanishing aperture.
The difference between our theory and the one described in literature is an extra
factor that accounts for the radiation effects of the surface.
When we calculate the acoustical noise floor for our sensor using a bandwidth of
20%, we obtain a maximum pressure level of 0.13 Pa that can be assigned to noise
contributions from the medium and from the sensor itself. This means that with
our first sensor design we are already able to measure a pressure level that is very
close to the pressure level of internal noise contribution values from the sensor and
surroundings. With further optimization of the interrogating system it may be
possible to reach this acoustical noise contribution level.
We also showed that the acoustical noise pressure level can never be obtained
with a piezo-electric sensor with similar ka values as the electrical impedance
goes to infinity when the aperture becomes zero, i.e. ka → 0. As a result these
optical micro-machined sensors can uniquely be used to detect pressure waves
using apertures with a small diameter compared to the wavelength of the pressure
wave.
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