
 
 

Delft University of Technology

Complex event processing on real-time video streams

Li, Ziyu; Katsifodimos, Asterios; Bozzon, Alessandro; Houben, Geert Jan

Publication date
2020
Document Version
Final published version
Published in
CEUR Workshop Proceedings

Citation (APA)
Li, Z., Katsifodimos, A., Bozzon, A., & Houben, G. J. (2020). Complex event processing on real-time video
streams. CEUR Workshop Proceedings, 2652.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



Complex Event Processing on Real-time Video Streams

Ziyu Li
supervised by Asterios Katsifodimos, Alessandro Bozzon and Geert-Jan Houben

Delft University of Technology

Z.Li-14@tudelft.nl

ABSTRACT
Cameras are ubiquitous nowadays and video analytic sys-
tems have been widely used in surveillance, traffic control,
business intelligence and autonomous driving. Some appli-
cations, e.g., detecting road congestion in traffic monitoring,
require continuous and timely reporting of complex patterns.
However, conventional complex event processing (CEP) sys-
tems fail to support video processing, while the existing
video query languages offer limited support for expressing
advanced CEP queries, such as iteration, and window.

In this PhD research, we aim to develop systems and
methods to alleviate these issues. In this paper, we first
identify the need for an expressive CEP language which al-
lows users to define queries over video streams, and receive
fast, accurate results. To evaluate CEP queries on videos in
real-time and with high accuracy, we explain how a stream-
ing query engine can be designed to provide native support
of machine learning (ML) models for fast and accurate in-
ference on video streams. In addition, we describe a set
of optimization problems that arise when ML models, with
trade-offs in speed, accuracy, and cost, are part of a query
plan. Finally, we describe how query plans on real-time
videos can be optimized and deployed on edge devices with
limited computational and network capabilities.

1. INTRODUCTION
Cameras installed in buildings, deployed on streets, and

fitted on various devices generate vast amounts of video con-
tent on a daily basis. The video footage empowers a wide
range of important applications such as in-door surveillance,
traffic control, business intelligence and autonomous driving
[8]. In real-world scenarios, we are generally interested in
detecting complex events and receiving instant alerts, e.g.,
detecting road congestion in traffic monitoring and alerting
to dangerous scenes in autonomous driving. Considering the
urgent need for real-time response, it is infeasible to store
videos in databases. Ideally, videos would be processed on
the spot.

Proceedings of the VLDB 2020 PhD Workshop, August 31st, 2020. Tokyo,
Japan. Copyright (C) 2020 for this paper by its authors. Copying permitted
for private and academic purposes.

Complex Event Processing (CEP) systems provide expres-
sive languages to construct CEP queries for pattern detec-
tion over events. The constructs of an event algebra that
fulfills the need of defining complex patterns was identified
[3]. CEP query languages [4, 2, 1] define complex events to
be detected and correlate them to more high-level meaning-
ful information in data streams. However, less attention has
been paid to content-based event detection on video streams
in CEP systems, considering that conventional CEP systems
accept structured data as input.

There have been many proposals for query languages on
video [13, 12]. These languages provide high-level seman-
tics, usually in an SQL-like format, allowing users to query
video content. Compared to CEP languages, these SQL-
like languages provide limited support for detecting complex
patterns on video content, i.e., missing operations such as
iteration and join, and restricted use of window (by count-
ing number of frames), which leads to constrained queries.
Table 1 shows a comparison of the current event query lan-
guages and existing video query languages. Operators listed
in the table are the combination of the ones commonly used
in streaming systems [3] and in video retrieval systems. From
the table, we discover two research gaps, where 1) CEP sys-
tems lack support for video data while 2) multimedia re-
trieval languages fail to support well-rounded operators for
CEP. This Ph.D. work aims to leverage these two gaps.

Video streams are difficult to process due to their low-level
features (pixel value). The state-of-the-art object detection
algorithm, Mask R-CNN [6] runs at 3 frames per second
(fps), while in real-time the video frame rate is 25-30 fps.
Nonetheless, techniques in ML, such as model specialization
and model compression can be applied to expand the model
search space [9, 8]. Models differ in shape, size, and the
classes of object they can identify, and most importantly,
in terms of accuracy and latency. Thus, it is essential to
optimize these aspects in response to user preference, i.e.,
quality-oriented or speed-oriented.

The objective of this PhD research is to leverage the ex-
pressiveness of streaming languages in order to construct
complex event patterns over real-time video streams, and to
optimize the process aiming for efficient and sound results.
To achieve the goal, in this paper we describe the PhD plan,
split in three main research lines. First, we identify the mo-
tivating query types that cannot be supported adequately
by current video query languages. Second, we show how
to exploit the operators in the context of video processing
by leveraging the existing streaming operators and state-of-
the-art computer vision techniques. Since traditional query



Table 1: Comparison between CEP and video query languages. (SIO : Single-item Operators, LO : Logic Operators, FMO :
Flow Management Operators; TR: Temporal Relationship; SR: Spatial Relationship)

SIO LO Iterations Windows FMO Aggregates TR SR Data
CEP Languages

SASE+ [4] X Only negation X X X Structured
Flink [1] X X X X X X X Structured

TESLA [2] X Only negation X X X Structured
VidCEP [17] X X X X X Video

Video Query Languages
CVQL [12] X X X X Video
SVQL [13] X X X X Video

FrameQL [8] X X X Video
SVQ [16, 10] X X X X X Video

optimizers typically do not consider trade-offs of accuracy,
speed and cost, we demonstrate the need to construct a ML
model search space and to navigate the search space ap-
plying Pareto frontier and an AND-OR graph. Finally we
consider deploying CEP query plans over video data closer
to the device where they are generated and outline the chal-
lenges for optimizing such plans to execute at the edge, re-
ducing communication and computation costs.

2. MOTIVATING EXAMPLE QUERIES
We first identify the use cases and scenarios that users may

be interested in when processing real-time video streams.
Q1-Identifying of an object with attributes. The detec-

tion on a single object class requests on the occurrence of
a specific object. This query type, as the simplest event
pattern, covers a wide range of applications. For instance,
a road surveillance system can monitor whether a car is
parked at a non-stopping lane. Also, it is an essential task
in autonomous driving to detect a traffic light along with
its color. However, recent works, such as [9, 16, 17], do not
either optimize the model in different scenarios, or provide
support for additional attributes detection.

Q2- Identifying multiple classes of objects. What differ-
entiates Q2 to Q1 is the detection on more than one class
of object. In this query type, users are interested to per-
ceive multiple objects. For example, in autonomous driving,
the system should be alerted when multiple pedestrians are
walking in the cross road with a yellow light on [8]. Still,
there is deficiency in [17, 10], where the model is fixed and
the optimization cannot solve the problem of model drift.

Q3-Temporal Relation. In this type of query, the time fac-
tor is involved in the complex event patterns. For example,
detect the sequence of events within a time interval. the
proposal of this query type distinguishes itself by the high
expressiveness of window operators and the availability to
detect iterated patterns. By providing a broader functional-
ity of window, it is feasible to analyse the data streams in a
timely manner, i.e., report aggregates over time, which has
never been seen in previous works [9, 10, 8, 16, 12, 13]. In
addition, few existing works in video query language men-
tioned iteration. This operator serves as an important role
in defining the sequence of events by indicating the occur-
rence of an event multiple times in sequence.

Q4-Spatial Relation. This query type perceives the spatial
relation between objects, i.e., to detect a car on the right of
a lamp post. The application of this type of query can be
applied to identify human-object interaction [16] and serves

as a fundamental support for autonomous driving. To com-
bine with Q3 or other query types, it is feasible to construct
more expressive queries, e.g detect human behaviors or track
an object throughout time.

3. RESEARCH OVERVIEW
In this section, we would like to highlight the challenges

of CEP over real-time video streams.
To process video streams in a CEP system, the challenges

are reflected from three aspects: query language, query plan-
ning with ML models, and query optimization on inference,
which will be illustrated below and explained in the rest of
the paper.

Defining a CEP language for video processing. In CEP
systems, a user can define specific queries using CEP lan-
guage or streaming operators to detect occurrences of partic-
ular patterns of (low-level) events. Then the event streams
are fed into the user-defined patterns. If all the conditions
are met, the user will receive an outcome or alarm.

This raises some questions: How to define a complex event
pattern over video streams given the available operators?
Are there any additional operators required that can express
the content of videos?

Query planning with ML models. Unlike conventional
CEP systems, the video streams generated from devices can
not be directly applied to match patterns, but instead are
first processed by cascading models, where the video frames
are transformed into events, i.e., object class, location, ob-
ject attributes.

Given a complex event pattern, how can we decompose it
and solve the components, i.e., identifying color, detecting
objects? How many models can be applied to address the
issue? Do the state-of-the-art models fulfill the need? If not,
how can we extend the model search space?

Optimizing inference. To achieve high efficiency and ef-
fectiveness, an optimization mechanism plays a role in auto-
matically assigning fast models for a given query and accu-
racy target. Is there an optimal solution to each query that
can achieve low latency and high accuracy? Is there any
method that can present the model selection process? Can
we further optimize the inference by pushing more compu-
tation to the edge closer to the data source?

4. A CEP LANGUAGE FOR VIDEOS
As discussed previously, the conventional CEP systems

lack support for video data, while video query languages do



not cater for advanced CEP needs. To leverage both, it is
feasible to solve the problem and design a CEP language for
videos. We will showcase the operators that are available in
terms of the query types described above.

The most basic operator is that of selection [5]. This oper-
ator applies to events and filters out those that do not satisfy
the predicates. Projection is another operator that belongs
to single-item operators, together with selection. This type
of operator transforms the attribute values of an event, and
thus can be applied to generate video events by transform-
ing the video frames into streams of events, including a set
of attributes, i.e., timestamp, object class and color.

In terms of Q3–manipulating with the temporal relation,
the time factor plays a pivotal role here. Existing video
query languages [8, 17, 10] measure time by counting frames
and doing the math using the speed of incoming frames mea-
sured in frames per second. Such operation is limited and
constrained to answer requests, e.g., report on a regular ba-
sis. Our notion of the window operator, incorporated from
stream processing, assigns windows to events with respect
to different notions of time opted by application developers.
One important notion of time supported is event time, which
signifies the time a frame was generated at the source device.
This provides us with a powerful abstraction for matching
temporal relationships. Notably, different types of windows
can be expressed, namely tumbling windows, sliding win-
dows, session windows and global windows[1]. The high
expressiveness of window operators, hence, enables timely
report and flexible manipulation on queries. Also, it is wor-
thy to note that iteration, as an important feature to define
the repeated occurrences of a match event, is not covered in
previous works [13, 12, 8, 17, 10]. In the proposal, we will
extend the temporal patterns that have been seen in pre-
vious works, by incorporating the rich definition of window
operators and introducing the iteration to define sequence
of events.

To detect the spatial relation between objects is an impor-
tant task in video retrieval, which is different from the con-
ventional stream processing where the events do not reveal
any spatial relationship. New operators should be defined to
detect such relations on video contents. State-of-the-art ob-
ject detection provide information that helps us to identify
the class of object as well as their location within a frame,
which enables to answer queries of Q4.

In addition, modern streaming systems scale-out by run-
ning multiple operator instances that process disjoint parts
of the data in shared-nothing commodity hardware. This
scalable distributed architecture is suitable for joining streams
from distributed sources or distributing data to various nodes.
It lays the foundation for edge computing, where a task may
be divided and distributed to various computational nodes.

5. QUERY PLANNING WITH ML MODELS
In order to run queries in the CEP language, we first

need to identify the models that can be applied to solve
the tasks in each query, e.g., detecting color or identifying
a specific object. For each task, there are various models
and solutions available. For example, to detect an object,
both object detection and image classification can be ap-
plied. The state-of-the-art object detection models include
but are not limited to Mask R-CNN [6], YOLOv2 [14]. On
the other hand, AlexNet [11] and VGG-16 [15] are state-
of-the-art deep image classification models. Despite all the

above-mentioned models, techniques in ML, such as special-
ized model and model compression, can also be applied to
enlarge the model search space. For example, a full and com-
plex algorithm, e.g., YOLO9000 [14], can classify or detect
thousands of classes (tasks). While a specialized model is a
smaller model (i.e., with fewer layers and neurons) that mim-
ics the behavior of a full NN model on a particular task. The
sacrifice of generalization of inference models on restricted
tasks can substantially reduce inference cost and latency.

To compile the query, we will construct a model search
space by showcasing all the models available to solve a par-
ticular task. Accordingly, there are multiple options that
can be selected in terms of various outcomes, i.e., accuracy
and inference latency. These models differ in complexity,
i.e., layers, number of neurons in dense layers and the abil-
ity to generalize.

6. OPTIMIZING VIDEO CEP QUERIES
As discussed above, the solutions to solve a task, e.g.,

detecting object class, are various. And there is no single
model that can outperform all the others in terms of accu-
racy and speed. Let alone, the performance of the models
is data-dependent [9]. And thus, we should optimize on the
inference models for each query and consider the trade-off
between accuracy and speed when assigning the models.

Manipulating the trade-off between accuracy and infer-
ence throughput can be regarded as a multi-objective opti-
mization problem (MOP). Pareto-optimal solutions are ap-
plied in order to select pre-optimal solutions for each task.
In this case, the aim is to process the video fast and accu-
rately, and thus the objectives are accuracy and speed. To
give an example, as shown in Figure 1a, every symbol repre-
sents a specific model, varying in shape, size and set of task,
but fulfill the same goal, i.e., identifying a specific object.
The blue line represents the Pareto frontier. Suppose that
f1 is inference time and f2 is accuracy. We expect f1 to be
lower and f2 to be higher. In the Pareto frontier, no solu-
tions in the search space are superior to the others in the
line in terms of both objectives. Only the models that lie in
the Pareto frontier (such as OD1 and OD2 ) are considered
for further comparison.

(a) Pareto frontier (b) AND-OR graph

Figure 1: Optimization approaches

After we obtain the sub-optimal models for each task, the
next step is to select and assign the optimal solution. In the
previous step, the models are coupled with the outcomes,
including the inference throughput and accuracy. If a user
is quality-oriented, then the model with the highest accuracy
is selected, and vice versa. To represent the solution of the



task, we will apply the AND-OR graph, as shown in Figure
1b. The query is decomposed into a set of smaller problems,
i.e., identify red color and detect a car. The leaves of the
AND-OR graph represent unique sub-optimal models in the
Pareto frontier, and the optimal option will be sent to their
parents for further analysis. The process goes on until the
query is solved.

7. EDGE/FOG COMPUTING
To process the video streams in real-time, it is feasible

to reduce transmission of data from one edge to another, by
offloading tasks to the devices closer to the data source. But
due to the limited computation power available at edge de-
vices, the interactions with remote clusters or public clouds
are inevitable. The models that are offloaded to the edge
devices may thus sacrifice accuracy for inference and the
complex models deployed remotely should compensate for
it. In this phase, the challenge is to decide what task shall
be offloaded and what information will be transmitted given
the dynamic circumstances in real-world deployment.

In the edge computing paradigm, the objectives that need
to be considered and optimized are not restricted to infer-
ence latency and accuracy anymore, but include wireless
bandwidth, processing capacity and energy consumption [7],
which increase the difficulty level of assigning optimal con-
figurations in real-time.

8. FUTURE PLAN
Building prototype. As the aim of this PhD project is

to provide highly expressive semantics for users to define
queries over real-time video steams, we intend to first de-
velop a prototype that is available for simple queries, e.g.,
Q1 and Q2. In this phase, the focus lies in the optimiza-
tion module, where trade-off between latency and accuracy
is exploited. Other queries will be implemented thereafter.

Video decoding. The characteristics of video may influ-
ence the model performance and should also be considered,
i.e., frame resolution, frame sampling rate. For example, a
crowded road scene compared to a quiet neighborhood re-
quire a more frequent frame sampling rate so that no event
is missed, and a higher resolution to retain the details of
content. The video characteristics will serve as important
factors and will be taken into account in the configuration
plan.

Adaptive configuration. Given the scene captured by the
camera changes overtime, even by a static-angle camera,
model drift is a main issue that affects the performance of
the video processing. Dynamic configuration is complex and
challenging if we want to maintain real-time performance,
since dynamic configuration may hinder the inference pro-
cedure. In the future, we will investigate adaptive configu-
rations given the trade-off between the inference speed and
the quality of the results.

Edge computing. To bring the computation closer to the
edge, we will investigate how to apply an edge computing
paradigm into the deployment. In this phase, the design
of the architecture of edge-cloud, the measure of real-time
performance, and the decision to offload tasks and commit
data will be important problems going forward.

9. ACKNOWLEDGMENTS
The author would like to thank Cognizant for their sup-

ports in this project. And many thanks to Marios Fragk-
oulis, Christos Koutras, Agathe Balayn, Andra Ionescu and
Georgios Siachamis for their valuable feedback on this work.

10. REFERENCES
[1] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,

and K. Tzoumas. Apache flink: Stream and batch
processing in a single engine. Bulletin of the IEEE
Computer Society Technical Committee on Data
Engineering, 36(4), 2015.

[2] G. Cugola and A. Margara. Tesla: a formally defined event
specification language. In Proceedings of the Fourth ACM
International Conference on Distributed Event-Based
Systems, pages 50–61, 2010.

[3] G. Cugola and A. Margara. Processing flows of information:
From data stream to complex event processing. ACM
Computing Surveys (CSUR), 44(3):1–62, 2012.

[4] Y. Diao, N. Immerman, and D. Gyllstrom. Sase+: An agile
language for kleene closure over event streams. UMass
Technical Report, 2007.

[5] N. Giatrakos, E. Alevizos, A. Artikis, A. Deligiannakis, and
M. Garofalakis. Complex event recognition in the big data
era: a survey. The VLDB Journal, 29(1):313–352, 2020.

[6] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on
computer vision, pages 2961–2969, 2017.

[7] C.-C. Hung, G. Ananthanarayanan, P. Bodik,
L. Golubchik, M. Yu, P. Bahl, and M. Philipose.
Videoedge: Processing camera streams using hierarchical
clusters. In 2018 IEEE/ACM Symposium on Edge
Computing (SEC), pages 115–131. IEEE, 2018.

[8] D. Kang, P. Bailis, and M. Zaharia. Blazeit: Optimizing
declarative aggregation and limit queries for neural
network-based video analytics. arXiv preprint
arXiv:1805.01046, 2018.

[9] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and
M. Zaharia. Noscope: optimizing neural network queries
over video at scale. arXiv preprint arXiv:1703.02529, 2017.

[10] N. Koudas, R. Li, and I. Xarchakos. Video monitoring
queries. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE), pages 1285–1296. IEEE, 2020.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[12] T. C. Kuo and A. L. Chen. Content-based query processing
for video databases. IEEE Transactions on Multimedia,
2(1):1–13, 2000.

[13] C. Lu, M. Liu, and Z. Wu. Svql: A sql extended query
language for video databases. International Journal of
Database Theory and Application, 8(3):235–248, 2015.

[14] J. Redmon and A. Farhadi. Yolo9000: better, faster,
stronger. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7263–7271,
2017.

[15] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[16] I. Xarchakos and N. Koudas. Svq: Streaming video queries.
In Proceedings of the 2019 International Conference on
Management of Data, pages 2013–2016, 2019.

[17] P. Yadav and E. Curry. Vidcep: Complex event processing
framework to detect spatiotemporal patterns in video
streams. In 2019 IEEE International Conference on Big
Data (Big Data), pages 2513–2522. IEEE, 2019.


