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Abstract

Detection of the outliers is pivotal for any ma-
chine learning model deployed and operated in
real-world. It is essential for the Deep Neural Net-
works that were shown to be overconfident with
such inputs. Moreover, even deep generative mod-
els that allow estimation of the probability den-
sity of the input fail in achieving this task. In this
work, we concentrate on the specific type of these
models: Variational Autoencoders (VAEs). First,
we unveil a significant theoretical flaw in the as-
sumption of the classical VAE model. Second, we
enforce an accommodating topological property to
the image of the deep neural mapping to the latent
space: compactness to alleviate the flaw and ob-
tain the means to provably bound the image within
the determined limits by squeezing both inliers
and outliers together. We enforce compactness us-
ing two approaches: (i) Alexandroff extension and
(ii) fixed Lipschitz continuity constant on the map-
ping of the encoder of the VAEs. Finally and most
importantly, we discover that the anomalous in-
puts predominantly tend to land on the vacant la-
tent holes within the compact space, enabling their
successful identification. For that reason, we intro-
duce a specifically devised score for hole detection
and evaluate the solution against several baseline
benchmarks achieving promising results.

1 INTRODUCTION

Deep Generative Models (DGMs) allow for estimating the
probability density of the input. This capability may appear
tempting to utilize in the tasks of the detection of the out-
liers by casting all of the inputs that lie Out-of-Distribution
(OoD) with the low density as anomalous. Nevertheless,
empirical evidence shows that DGMs may sometimes be

overconfident in their density estimation over OoDs [Nalis-
nick et al., 2018]. Overconfidence is observed in all types of
DGMs, including autoregressive models [Oord et al., 2016],
normalizing flows [Dinh et al., 2017], and VAEs [Kingma
and Welling, 2013, Rezende et al., 2014]. This fact may ap-
pear especially intriguing, considering the difference in the
techniques used for density estimation among these three
distinct modeling approaches. However, from the theoretical
perspective, there is nothing peculiar in such performance.
It can be easily demonstrated that it is possible to learn an
invertible reparametrization of the actual density of the data
in a way that assigns an arbitrary density to each point in the
new representation even in the models with perfect densities
and in a low-dimensional setting [Lan and Dinh, 2020]. It
means that the outlier detection is infeasible while relying
only on the arbitrary learned probability density.

There are several alternative approaches aiming at tackling
this issue that can be coarsely classified into one of the
following categories: (i) methods that augment the input
data by outliers [Hendrycks et al., 2018, Ren et al., 2019],
(ii) ensemble-based methods [Daxberger and Hernández-
Lobato, 2019, Glazunov and Zarras, 2022, Choi et al., 2019],
(iii) methods that introduce new scores [Nalisnick et al.,
2019, Serrà et al., 2019], (iv) methods based on the model
modification [Hernández-Lobato et al., 2016, Schirrmeister
et al., 2020], (v) and methods that involve retraining of the
models [Xiao et al., 2020].

In this work, we refrain from augmenting data with outliers
during training since it is not always feasible; we do not re-
train the model to check every input as it is time-consuming,
and due to the same reason, we do not apply ensemble-
based methods. Instead, we utilize a model modification by
introducing a new score. Specifically, we address the outlier
detection from the perspective of general topology. Namely,
we consider the property of compactness of the mapped im-
age in the latent space. This property satisfies the necessary
condition for the modeling assumption of a classical VAE
from the viewpoint of the Universal Approximation Theo-
rem (UAT) [Cybenko, 1989, Hornik, 1991, Pinkus, 1999].
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First, we implement compactification using the Alexandroff
extension of a flat subspace to a hypersphere. Second, we
utilize a related topological property: bounded continuity. It
equips us with two additional valuable tools. In particular, it
lets enforce the Lipschitz-continuity constraints on the map-
pings used in the model. These constraints, in turn, permit
both to establish the compactness of the mapped image and
simultaneously control its boundaries in the case of the flat
latent space. In addition, it helps to identify if the continuity
holes in the latent prior play a significant role in the outlier
detection during the ablation study.

Constraining the mapped image of the encoder may at first
sound counterintuitive since the common choice of a prior
over the latent is used to be the standard normal distribution
with the infinite support that explicitly implies that out-
liers should be placed in some different location, distinctly
separated from the inliers. It includes the low-dimensional
cases where such inputs are placed in the tails far from the
mode and the high-dimensional cases where the outliers
are located outside the typical set. However, as we already
indicated, there is no guarantee for such behavior even in
perfect density models since any density function can be
manipulated by an arbitrary choice of representation. Since
there is no control over the mapped compact in the latent
space, the choice of the bounds of the learned factors of
variations of the VAE is basically arbitrary. In some situa-
tions, it can be the case that the outliers are indeed placed far
from the inliers, which gives an excellent separation based
only on the density values; however, in other situations, the
outliers and inliers may overlap, which in some cases results
in the overconfidence of the model. Hence the purposeful
control over the compactness of the mapped image enforces
the model to bind the learned factors of variations for any
input within the predefined limits. If these limits are chosen
in such a way that enforces the model to squeeze all of its
inputs in the properly bounded space, then the model would
have no other choice than to map the outliers somewhere
within the same space that is used for the inliers in the latent
representation. Experimental evidence shows that when the
model is confronted with such tight condensing, it tends
to place the outliers into the vacant latent continuity holes
allowing their successful detection.

In summary, we make the following main contributions:

• We reveal the persistent theoretical flaw in the model-
ing assumption of VAEs.

• We mitigate this shortcoming by enforcing controlled
compactness of the latent space.

• By bounding the image of the encoder, we discover
that the outliers tend to gravitate toward the vacant
latent holes and devise an appropriate score for their
detection.

• We empirically evaluate the suggested approach based
on several datasets.

2 BACKGROUND

2.1 NOTATION

We use nonbold x’s to denote elements of general topologi-
cal spaces, including the ones equipped with the appropriate
metric. In the case of the normed vector spaces and random
vectors within such spaces, we adhere to traditional usage
in the literature, namely x. When it comes to the particular
elements comprising the random vector, we utilize x. The
spaces are denoted as a pair (X , T ) for topological spaces
with the corresponding topology T . In the specific case
of metric spaces, we indicate the appropriate metric d that
induces topology: (X , dX ).

2.2 VAES

VAE represents a DGM that allows to get an approximate
value of the density of the input x. It is based on the op-
timization of the evidence lower bound (ELBO), that pro-
vides joint optimization w.r.t variational parameters φ of
the encoder responsible for variational approximation of the
posterior qφ over the latent variable z, and the generative
parameters θ of the decoder responsible for the parameteri-
zation of the likelihood pθ(x|z):

Lθ,φ(x) = Eqφ(z|x)

[
log pθ(x|z)− log

qφ(z|x)

pθ(z)

]
(1)

This equation involves a data likelihood term (used for gen-
erative purposes) and a regularization term (the KL diver-
gence between the variational family qφ(z|x) and the prior
distribution over the latent variables).

The final estimation of the marginal likelihood is done using
importance sampling. Backpropagation through the random
variable z is performed utilizing the standard reparameteri-
zation trick [Kingma and Welling, 2013].

2.3 COMPACTNESS

A topological space is compact or, equivalently, possesses a
compactness property if every of its open cover has a finite
subcover. In the case of the Eucledian spaces, the following
specific result exists.

Theorem 2.1 (Heine-Borel). Let K ⊂ Rn then K is com-
pact if and only if K is closed and bounded.

Compactification is the process of turning a topological
space into a compact one.

Definition 2.2. Let (X , T ) be a topological space and let
(X ∗, T ∗) be a compact topological space s.t. X is home-
omorphic to a dense subspace of X ∗. Then (X ∗, T ∗) is
called a compactification of (X , T ). Thus, a compact space
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(X ∗, T ∗) is a compactification of a space (X , T ) if and only
if there exists a mapping f of X into X ∗ s.t. f is homeo-
morphism of X onto the subspace f(X ) of X ∗ and f(X ) is
dense in X ∗.

An illustrative example of a frequently used compactifica-
tion is an extension of R to R ∪ {−∞,+∞}.

Besides, there is a specific type of compactification by ad-
joining only one point: the Alexandroff extension.

Definition 2.3. Let (X , T ) be a topological space and let∞
be an object not belonging to X . Let X ∗ = X ∪∞ and let
a topology T ∗ on X ∗ defined as follows: T ∗ = T ∪ {V ⊂
X ∗ :∞ ∈ V and X \V is closed and compact in X}. Then
(X ∗, T ∗) is the Alexandroff extension of (X , T ).

An intuitive example of the Alexandroff extension is the
inverse stereographic projection from the Euclidean plane
to the sphere with the addition of a point at infinity.

2.4 LIPSCHITZ CONTINUITY

Definition 2.4. A map f : X → Y , where (X , dX ) and
(Y, dY) are metric spaces with the corresponding metrics dX
and dY , is called Lipschitz continuous if for any x1, x2 ∈ X ,
there exists a constant M ∈ R+ such that:

dY(f(x1), f(x2)) ≤MdX (x1, x2) (2)

M is called a Lipschitz constant. In this work, we refer
to the Lipschitz constant as the smallest possible M . A
mapping with such a constant is called an M -Lipschitz map.
If not explicitly indicated otherwise, we let X = Rn and
Y = Rm.

Recall that widely used activation functions such as sigmoid,
tanh, and ReLU [Jarrett et al., 2009] are already generally
scaled to be 1-Lipschitz. Hence, due to the composition prop-
erty of the Lipschitz mappings, the first intuitive attempt
to enforce the desirable Lipschitz property on the mapping
would be to constrain the operator norm of the weights of
each layer of the Deep Neural Network (DNN) [Yoshida and
Miyato, 2017, Cisse et al., 2017]. However, it was proven
that such an approach could not approximate even a simple
absolute value function [Huster et al., 2018]. To tackle the
issue, Anil et al. [2018] observed the critical component that
influences the expressive power of any DNN, namely, the
gradient-preserving property of its transformations. There-
fore, they introduced the appropriate linear transformations
and the 1-Lipschitz activation function, GroupSort, both
of which are gradient preserving. They provably allow set-
ting a Lipschitz constant on a DNN mapping. Moreover,
DNNs utilizing them represent universal approximators of
any Lipschitz mapping.

2.4.1 Latent Holes

Falorsi et al. [2018] introduced a score for detecting con-
tinuity holes in the latent space based on the ratio of the
distances between two nearly located points in the input
space and the distances of their corresponding latent codes:

FLip = dY(f(x1), f(x2))/dX (x1, x2) (3)

Xu et al. [2020] discovered that there exist vacant regions of
low density in the aggregated posterior where prior assigns
a relatively high density. They suggested detecting these
regions by estimating the negative log-likelihood of the
manipulated reference latent codes under the aggregated
posterior:

FAgg = − log p(z± ε) (4)

where ε represents a magnitude of manipulation. It was
demonstrated by Li et al. [2021] that both of these scores
are connected despite the different motivation meaning that
if the hole is detected by the score FAgg then it will be also
detected by FLip.

2.5 UNIVERSAL APPROXIMATION THEOREM

The theoretical underpinning of DNNs is rooted in the re-
sults obtained in the approximation theory that is commonly
referred to as the universal approximation theorem [Cy-
benko, 1989, Hornik, 1991, Pinkus, 1999].

Theorem 2.5. Let C(X ,Y) denote the set of all continuous
mappings from X to Y . Let σ ∈ C(R,R) represent an
element-wise activation function. Then let N σ

n,m represent
the class of feedforward neural networks with activation
function σ, with n neurons in the input layer, m neurons
in the output layer, and one hidden layer with an arbitrary
number of neurons. Let K ⊆ Rn be compact. Then σ is
nonpolynomial if and only if N σ

n,m is dense in C(K,Y).

The activation functions currently used in DNNs are non-
polynomial, so they fulfill the main requirement of the theo-
rem. However, we deliberately emphasize that the results of
the Universal Approximation Theorem (UAT) apply only in
the cases when the input of the neural network is a compact
set that is often overlooked.

3 RELATED WORK

New Scores-Based Methods. Nalisnick et al. [2019] conjec-
ture that considering the high dimensionality of inputs, the
over-confidence of DGMs may be because in-distribution
images lie in the typical set as opposed to the tested OoDs
that concentrate in the high-density region. They introduce
the test for typicality that treats all input sequences as inliers
if their entropy is close to the model’s entropy.
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Since the likelihood of generative models is biased by the
complexity of the inputs, Serrà et al. [2019] propose to offset
this bias by a factor that measures the input complexity
and use the length of lossless compression of the image
as the complexity factor, which is used to determine OoD.
However, they do not evaluate their method on VAEs.

Ensemble-Based Methods. Choi et al. [2019] use an en-
semble of independently trained DGMs that allow to get the
density value and score them against the WAIC.

Bayesian DGMs. Although the BDGMs represent a single
model, the Bayesian inference over model parameters allows
building ensembles on the fly. The theoretical justification
for the Bayesian VAE has been first laid out by Kingma and
Welling [2013]. Several works are dedicated to OoD detec-
tion using Bayesian inference [Daxberger and Hernández-
Lobato, 2019, Glazunov and Zarras, 2022]. They introduced
new scores, such as the disagreement score and entropy.
Both are based on the discrepancy between the models’ esti-
mations within the ensemble that achieved state-of-the-art
results.

Lipschitz Continuity Methods. Several works utilize the
Lipschitz continuity to improve the robustness of discrimi-
native models against adversarial examples [Hein and An-
driushchenko, 2017, Tsuzuku et al., 2018, Yang et al., 2020].
Barrett et al. [2022] apply the gradient-preserving transfor-
mations from Anil et al. [2018] in a similar to our approach
manner. However, their main focus is to use Lipschitz map-
pings for certifiable robustness against adversarial examples.

4 METHODOLOGY

4.1 COMPACTNESS OF THE LEARNED LATENT
REPRESENTATION

A usual assumption for VAE models is that the prior follows
the standard normal distribution: p(z) = N (z;0, I). It is a
meaningful choice from the perspective of the generative
process since it provides a clear and simple way of sampling.
Moreover, it is a natural candidate for the ELBO objective’s
regularization term in learning a Gaussian posterior per each
input of VAE. However, it additionally implies an infinite
support of the latent prior. We show that such an assumption
contradicts the UAT (Theorem 2.5).

Lemma 4.1. Let f : X → Y be a continuous mapping
from a topological space X to a topological space Y . If X
is compact, then its image f [X ] is also compact (for proof,
see Appendix A).

Hence, by combining both Theorem 2.5 and Lemma 4.1
it follows that the image of any DNN trained on a com-
pact set is also compact. This conclusion contradicts the

infinite support assumption of the standard normal prior
in the case of VAEs. Any DNN used as an encoder will
map all inputs to the compact subset of the latent space.

In the case of in-distribution inputs, this conclusion may be
considered subtle since all such inputs should be assigned
the appropriate density under the model learned during the
DNN training. However, it plays a significant role as soon
as the model starts dealing with the OoD inputs. These are
the different inputs that the model has not seen before and
has not been able to generalize during training. Therefore,
as it was demonstrated in Lan and Dinh [2020] the model
is not constrained in putting those inputs anywhere within
the whole available support or, more precisely, within the
learned image of the encoder mapping. The properties of the
compactness of the latent space become of great importance.
One of the essential questions concerns the locations where
the model tends to map the OoD inputs within the image
compact space. As it was demonstrated by Nalisnick et al.,
the DGMs and VAEs, in particular, tend to be overconfident
with OoD inputs. There were several attempts to explain
this type of behaviour Nalisnick et al. [2019], Kirichenko
et al. [2020], but none addressed the issue of compactness.

In this paper, we deliberately enforce the latent space’s com-
pactness. The reason for that is twofold. First, it should
alleviate the contradiction above in the modeling assump-
tion of the VAE by providing a principled way to set the
compactness of the image of the learned mapping. Further-
more, the input support for the decoder also gets a compact
space during training which is again in line with UAT. Sec-
ond, it allows us to conduct experiments with the outliers’
detection in the controlled environment with the desirable
compactness properties so that all the holes will be located
within the predefined boundaries.

In principle, this approach can be implemented utilizing
the following two separate methods: (i) by Alexandroff
extension and (ii) by setting a predefined Lipschitz constant
of the encoder. The first method implies a change of the
intrinsic curvature of the latent space by switching from a
Euclidean to a non-Euclidean manifold. On the other hand,
the second method allows keeping a flat latent space by only
enforcing specific bounds on a mapped compact.

4.2 COMPACTIFICATION OF THE LATENT
SPACE

4.2.1 Compactification of the Latent Space to the
Hypersphere

The Alexandroff extension (Definition 2.3) of Rn can be
done by adjoining a single point at infinity, turning the
flat Euclidean space into a hypersphere Sn embedded into
Rn+1.

Lemma 4.2. Let Sn := {x ∈ Rn+1 : ||x|| = 1} be a
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hypersphere with radius r = 1 centered at 0 and embedded
in Rn+1 then Sn is compact (for proof, see Appendix B).

The appropriate type of distribution that can be utilized on
the hyperspherical surface is the von Mises-Fisher distribu-
tion which is parameterized by mean µ and concentration κ.
If the concentration parameter κ is greater than zero, then the
distribution has properties similar to normal; however, when
κ = 0, then it is a uniform distribution. It allows choos-
ing the uniform prior and calculating the corresponding
KL-divergence term for the regularization within the latent
space. We utilize the same algorithm introduced by David-
son et al. [2018] for the sampling and reparametrization
trick. They named it a Hyperspherical VAE (HVAE).

4.2.2 Enforcing Compactness by Setting a Lipschitz
Constant on the Encoder Mapping

Although the Alexandroff extension of the Euclidean space
to the hypersphere is theoretically appealing, it has an issue
with the surface area collapse, which makes it infeasible
to use in high-dimensional settings (see Appendix C). To
alleviate these issues, we implement our own method of
ensuring the compactness of the latent codes. This method
is beneficial since it keeps the flat Euclidean space for the
latent representation and provides the necessary means to
control the boundaries of the resulting compact.

Theorem 4.3. Image of an M-Lipschitz mapping f :
X → Z from a compact K ⊆ X with x, y ∈ K:
‖f(x)− f(y)‖ ≤ M ‖x− y‖ is bounded by both a cor-
responding Lipschitz constant M and by a radius R of a
closed ball in the input support.

Proof. By the Heine-Borel (Theorem 2.1), a compact K ⊂
Rn is closed and bounded, meaning that the set is contained
in some closed ball with a finite radius R. Hence, for any
x, y ∈ K:

‖x− y‖ ≤ R (5)

Therefore, by combining the two inequalities above, we get:

‖f(x)− f(y)‖ ≤MR (6)

so the mapping f is bounded by the constant MR.

Note that it is necessary to consider three components si-
multaneously to set a bound on the DNN output: bounds
of the input compact, a norm being used, and, finally, an
M-Lipschitz constant. In this work, we normalize the input
support to the following compact vector space: [0, 1]n. It
conveniently allows constraining R ≤ 1 by applying an
L∞-norm.

Moreover, to preserve both the generative functionality and
the comparable log-likelihood values with the non-compact

latent prior, it is important to consider the properties of
the standard normal prior distribution. In the case of the
low-dimensional setting, it is natural to bind the resulting
compact with some standard deviation multiplier depending
on the condensing tightness one wants to obtain. However,
in the high-dimensional setting, the typical set should be con-
sidered. For that reason, the actual values for the Lipschitz
constant of the encoder should be based on the dimension-
ality of the latent space. Namely, an upper bound on the
mapped image should depend on the location of the typical
set of the prior and its width. Recall that the center of the
typical set of a centered normal distribution is located at the
distance of σ

√
m from the mode. In our experiments, we set

the width equal to two standard deviations, and we choose
the closest whole number:

M := bσ
√
m+ 2σe (7)

where m is the dimensionality of the latent representation
and σ = 1 for the standard deviation of the prior.

In our work, we ensure the Lipschitz constant of the map-
ping utilizing the GroupSort activation function together
with a projection of the weights of each layer on L∞-ball
during the forward-pass of the DNN. The constant is set
layerwise in the following way: for a DNN with K number
of layers in order to guarantee the M -lipschitz constant of
the entire network mapping, we enforce the M

1
K constant

per each of its layer. It relies on the fact that the finite com-
position of Lipschitz functions is also Lipschitz with the
product of the corresponding constants used in composition:

M =

K∏
n=1

M
1
K (8)

The main building blocks are both 1-Lipschitz non-linearity
and 1-Lipschitz linear mapping per each layer. The appro-
priate scaling of the results makes them equal to M

1
K . For

the complete algorithm, see Appendix E.

4.3 LATENT HOLES

We look at the holes from two different viewpoints as men-
tioned in section 2.4.1. First, we apply the following opera-
tional perspective to the definition of the hole: if two closely
located latent points produce two distant samples in the in-
put space, then we say that there is a hole in the latent space.
This definition is similar to the one introduced by Falorsi
et al. [2018]. Second, from the conceptual perspective, we
treat the holes as the regions where there is a discrepancy
between the aggregated posterior and the prior [Xu et al.,
2020], i.e., the hole appears when the regions with the high
prior density have a low density of the aggregated posterior.
Despite the seemingly different motivations for both def-
initions, it has been demonstrated by Li et al. [2021] that
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Figure 1: Compact S2 latent space of VAE trained only on the two digits of the MNIST dataset 0’s and 1’s. The outliers
densely land on the hole. From left to right: yellow depicts means of the estimated posteriors for 1’s and purple for 0’s; red
represents the mapped means for a held-out outlier: a class of digits 9’s; kernel density estimation of all means with the
densest region in the hole packed with the outliers.

they are, in fact, connected. Moreover, if it is possible to
squeeze all of the model’s inputs within the high-density
region of the prior, then the only "free" space within the
latent compact turns out to be these holes.

4.4 WHY SQUEEZING?

The reason for that is at least two-fold. First, because of
the arbitrariness of the mapping of outliers, it appears only
logical to limit the whole image for any input (including
outliers) within the same constrained space as for the in-
liers in order to eliminate this arbitrariness. The opposite
approach, i.e., the widening of the compact, will not pro-
vide any benefits, only allowing for the model to use more
“free” space where the outliers can be mapped to. Also,
considering the well-known overconfidence issue Nalisnick
et al. [2018], the wide compact does not guarantee the us-
age by the model of this available free space for any input.
Some of the inputs can indeed be placed in the available
space far from the mode; however, some will still be placed
close to the mode (see Figure 2). Second, recall that VAEs,
beside being probabilistic models, are also autoencoders.
So they can be viewed from the perspective of the infor-
mation bottleneck principle, i.e., when the information is
put under pressure using the low-dimensional bottleneck
layer to extract the relevant factors of variations of the input
data in question. The compactness can be considered as a
supplementary constraint to the low latent dimensionality
(note that the dimensionality is also a topological property).
By low dimensionality, we mean in comparison with the
dimensionality of the input. Hence, by putting additional
pressure in the form of a tight condensing of the mapped
image within the predefined limits of the compact, we force
the model to learn the bounded factors of variations for any
input in a controlled and principled manner, eliminating the
unnecessary “free” space for the model where it can po-
tentially place outliers. The experimental evidence reveals
that in such case the model indeed tends to place the out-
liers within the only available “free” space - the latent holes
which, in turn, can be easily detected.

4.5 SCORES

As we indicated before, currently available scores for the
holes’ detection are based either on the availability of the
suitable metric in the input space [Falorsi et al., 2018] or on
the computationally expensive estimation of the aggregated
posterior based on all the training samples Xu et al. [2020].
The motivation for that was clearly because these scores are
based on the inlier inputs; hence the search for the holes
starts from their corresponding latent codes. However, in
the case of outlier detection, we can directly check if the
mapped input lands within the hole. For this purpose, we
sample the approximated posterior qφ(z|x) with several
latent codes z under a particular input x and compute the
sample standard deviation of the log-likelihoods log p(x|z)
(see Appendix G).

The approximated posterior under the input provides a lo-
cality within the latent space. Based on this locality—the
samples from the posterior give us the notion of nearness
around this specific locality. Finally, the standard deviation
of the log-likelihoods based on the samples indicates how
far from each other the sampled codes are mapped back into
the input space. As a result, it becomes a beneficial indicator
because it does not require making a particular traversal
along some path (as was the case in [Falorsi et al., 2018])
or doing a thorough search through the latent space for all
available holes (as was done in [Li et al., 2021]). On the
contrary, it allows direct checking if we are within the hole
or not for a particular input.

There is also an alternative but still connected way of scoring
the presence of a hole. Recall that density calculation of the
given input under probability models with latent variables
can be done through marginal likelihood. It is defined as the
expected model likelihood marginalized over the latent’s
prior:

p(x) = Ep(z)[p(x|z)] (9)

First, let z ∈ L and |L| <∞ then the marginal likelihood
can be considered as a finite mixture of different p(x|z)

with different constant weights w = p(z) s.t.
∑|L|
i=1 wi = 1:
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p(x) =

|L|∑
i=1

wip(x|zi) (10)

And |L| is the size of the components in the considered finite
mixture of the likelihoods. Now suppose that p(x|z) is fully
factorized, then the variance of the mixture of individual
random components x’s comprising x is given by:

Varp(x)(x) =

|L|∑
i=1

wiVarp(x|zi)[x]︸ ︷︷ ︸
Weighed individual variances

+

+

|L|∑
i=1

wi
(
Ep(x|zi)[x]

)2 −
 |L|∑
i=1

wiEp(x|zi)[x]

2

︸ ︷︷ ︸
Jensen’s gap

(11)

The first term is a weighted sum of variances of individual
model likelihoods under all latent codes. Note that the differ-
ence of second and third terms is always non-negative due
to Jensen’s inequality. This difference represents a Jensens’s
gap and can be interpreted as the variance of the means
of the likelihoods weighted by the appropriate prior prob-
abilities of the latent. Hence, by computing the variance
of the marginal likelihood under importance sampling due
to this Jensen’s gap, it is possible to estimate the variance
of the means of the likelihoods, which can be utilized for
hole detection with outlier inputs. For that reason, we apply
the sample standard deviation of the estimated marginal
likelihoods under importance sampling (see Appendix G)
and test the performance of this score in our thorough ex-
periments. Since the marginal likelihood is already quite
frequently estimated under importance sampling in many
practical implementations, it becomes possible to quickly
adapt these implementations for practitioners to incorporate
the sample standard deviation of the marginal likelihood
under importance sampling to get as a handy byproduct an
alternative score for the hole identification. To distinguish
between the two scores, we label the first as the hole indi-
cator and the second as the standard deviation of marginal
log-likelihoods (Stds of LLs for short).

Threshold. For identifying the best threshold for the scores,
we utilize threshold-independent metrics (these metrics are
calculated for all possible thresholds) such as the Area
Under the Receiver Operating Characteristic Curve (AU-
ROC), the Area Under Precision-Recall curve (AUPR),
and the False-Positive Rate at 80% of True-Positive Rate
(FPR80) [Davis and Goadrich, 2006].

5 EVALUATION

Table 1: Hole indicator (means and 99.9% confidence inter-
val values for 10 separate runs) for toy experiments with S2.
The held-out outliers are all digits except 0’s and 1’s.

MNIST held-out MNIST vs. Fashion-MNIST

ROC AUC↑ 89.05 (±0.25) 94.54 (±0.09)
AUPRC↑ 99.38 (±0.02) 99.01 (±0.02)
FPR80↓ 16.1 (±0.72) 5.60 (±0.2)

5.1 TOY EXPERIMENTS WITH COMPACT S2

We begin with the simple held-out experiments based on the
MNIST dataset [LeCun and Cortes, 2010]. For that reason,
we utilize HVAE. 1 It is trained with the hyperspherical
uniform prior on S2 only on two digits as inliers, namely
zeros and ones. The rest of the handwritten digits are con-
sidered outliers. These experiments assist in acquiring a
fundamental intuition in the way how the encoder of the
model maps the outliers in the compact latent space. As
it can be observed in Figure 1, the two inlier classes are
separated from each other on the sphere surface. There is
also a hole between the clusters formed by these classes.
Next, we try to map to the latent space held-out classes. As a
result, we visually demonstrate that the encoder is forced to
place the unseen during training classes somewhere within
the constrained space and choose to land the outliers into
latent holes. It happens when the model is confronted with
the bounded factors of variation. In addition, we run ex-
periments with our hole detection score Σz[x] first with all
held-out classes as outliers and second with all classes of
Fashion-MNIST [Xiao et al., 2017] as outliers. In addition,
we conduct the experiments for 10 separate runs and sum-
marize the results in a 99.9% confidence interval values that
can be observed in Table 1. The obtained result strongly
support our hypothesis about holes as centers of attraction
for the outliers. Moreover, we compare these results with
the corresponding baseline scores using Vanilla VAEs with
the same low dimensionality of the latent space and also
benchmark the hole indicator on the model trained on all
classes of Fashion-MNIST vs. all MNIST classes as outliers
(see Appendix F).

5.2 EXPLORING COMPACTNESS ENFORCED BY
LIPSCHITZ CONTINUITY

We continue probing compactness properties based on the
constrained Lipschitz mapping to the latent space. We run
experiments with both the classical VAE models and the
VAE models with the enforced Lipschitz constant M = 1
for the encoder. We trained four separate models (for the
used DNN architectures, see Appendix D): on MNIST and

1The source code of the implemented solution is freely
available at https://github.com/DigitalDigger/
VAEOutliersDetectionByVacantHoles
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Figure 2: Estimated Gaussian kernel densities of L∞-norms of the approximated posterior means in the latent space for
datapoints from MNIST as inliers, and datapoints from FashionMNIST, KMNIST, white and black images as outliers.
From left to right: classical VAE trained on MNIST; VAE with a fixed Lipschitz constant M = 1 for encoder trained on
MNIST; classical VAE trained on Fashion-MNIST; VAE with a fixed Lipschitz constant M = 1 for encoder trained on
Fashion-MNIST.

Table 2: Scoring values for the Lipschitz constrained VAEs trained on MNIST, Fashion-MNIST and CIFAR10

MNIST vs. Fashion-MNIST Fashion-MNIST vs. MNIST CIFAR10 vs. SVHN

ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓
Vanilla VAE

Log likelihood 99.99 99.99 0.00 54.03 57.37 84.70 61.08 53.92 56.25
Input complexity 0.00 32.91 100.00 99.17 99.24 0.00 95.87 95.36 9.09
Typicality test 100.00 100.00 0.00 53.81 50.78 70.74 59.75 64.06 80.20

Bayesian VAE

WAIC 99.99 99.99 0.00 59.53 59.35 71.88 61.15 54.22 57.15
Disagreement score 98.95 99.01 0.23 96.44 97.22 1.11 81.16 84.82 38.47
Entropy 99.42 99.47 0.02 97.97 98.43 0.19 84.76 88.21 29.31

Lipschitz VAE

Stds of LLs 99.78 99.79 0.06 99.21 99.16 0.84 86.40 84.88 21.59
Hole indicator (ours) 99.87 99.87 0.00 99.69 99.65 0.28 91.76 89.58 12.30

The most robust scores are in bold. The highest values are in gray.

* 0’s in FPR80 are possible since it is a value for false-positive rate at 80% of true-positive rate

Fashion-MNIST, with and without continuity constraints—
the dimensionality of the latent space across all models:
m = 10. We evaluate the means of the approximated pos-
teriors for the outliers from KMNIST [Clanuwat et al.,
2018] (and analogously from Fashion-MNIST for the mod-
els trained on MNIST and vice versa). In addition, we run
the same tests with the specially forged datasets. One con-
tains non-realistic images, but all of their pixels tend to the
black color; another contains images that tend to the white
color. The idea behind the two latter datasets is that they
represent extreme values of the compact support of the input
data. As shown in Figure 2, the possible range of the val-
ues achievable by the classical VAE is considerably broad
based on the limited number of the outlier datasets. For the
model trained on MNIST, it goes as far as seven standard
deviations from the mean.

Meanwhile, the unconstrained model trained on Fashion-
MNIST has a range with a maximum of around four stan-
dard deviations. It demonstrates the arbitrariness of the
mapped compact and its limits. Note, however, that when
we bound the continuity of the encoder, then both inliers
and outliers are squeezed together in a compact within the
appropriate limits, which experimentally confirms our theo-

retical result (see Theorem 4.3). It allows the enforcement
of a controlled and bounded compactness on the flat prior.

5.3 DETECTING OUTLIERS

As we indicated before, due to the surface collapse of the
sphere, it is infeasible to use HVAE with high-dimensional
priors. Hence, we apply the fixed Lipschitz mapping to-
gether with the appropriate input normalization (all inputs
are normalized to [0, 1]n). We evaluate our approach against
several baseline methods. For them, we choose the classical
VAE, the ensemble-based VAE, namely, the one based on the
Bayesian inference over the weights of the DNN, and sev-
eral approaches based on the new scores, namely, typicality
score and input complexity. For scoring the Bayesian VAE,
we utilize three available scores: WAIC, a disagreement
score, and entropy. Bayesian inference is implemented uti-
lizing the Bayes by Backpropagation Blundell et al. [2015].
The corresponding hyper-parameters and the training proto-
col are based on the work by Glazunov and Zarras [2022].
All models trained on MNIST and Fashion-MNIST have
the dimensionality of the latent space equal to 10, and mod-
els trained on the CIFAR10 dataset have the latent of 70

708



dimensions. For our suggested Lipschitz-based model, we
compute the appropriate Lipschitz constant for the decoder
based on the dimensionality of the latent space in order
to preserve the comparable log-likelihood values of the
classical VAE and also to be able to sample the prior in
a standard way. For MNIST and Fashion-MNIST, it is equal
to 5, and for CIFAR10, it is equal to 10. The results can
be observed in Table 2. Our hole indicator demonstrates
the best results among the scores that consistently perform
well across all datasets. Moreover, the standard deviation
of the likelihoods is the second most robust score, which
agrees with our theoretical derivation (see Equation 11). By
robustness in this context, we mean the persistence of the
state-of-the-art results, independent of the dataset used for
training the model and testing for the outliers. For example,
despite the high values for the typicality test on MNIST vs.
Fashion-MNIST datasets and input complexity on CIFAR10
vs. SVHN datasets, they are inconsistent across all of the
considered datasets, making them unreliable in practical
applications. The reason behind our score’s robustness is
that the model maps the outliers to the holes in the com-
pact latent space (i.e., the only “free” space available for
the learned factors of variations) that can be easily detected.
Other scores rely either on the complexity of the dataset (as
input complexity score), which is a data-dependent score, or
on the hypothesis about the typical set, which is not always
guaranteed because of the arbitrariness of the mapping of
the encoder to any available “free” space including the holes
in the typical set.

5.4 ABLATION STUDY

To check if the continuity holes are responsible for the ob-
tained results, we conduct experiments with the gradual re-
duction of the holes in the latent space. This can be done by
smoothing out the decoder mapping. This approach is advan-
tageous since it affects all holes in the latent space. Hence,
if our assumption is correct, then the results of the outlier
detection based on the holes should degrade according to
the strength of the smoothing. We enforce smoothing by set-
ting the corresponding Lipschitz constants on the decoder
mapping in the same way as it was done for the encoder in
previous experiments. We train six separate models, all of
which have the Lipschitz encoder with M = 1. Decoder
is enforced with the values of the Lipschitz constants M
from the following set: {1, 2, 3, 4, 5, 10}. As can be seen
in Figure 3, there is an apparent performance degradation
of the hole indicator for the outliers with decreasing of the
corresponding Lipschitz constant enforced on the decoder,
which is in line with our hypothesis that outliers land on the
latent holes. Finally, we separately ablated the compactness
component (for the results see Appendix H).
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Figure 3: ROC AUC values from the ablation study. VAE
with different Lipschitz constants enforced on the decoder,
namely, M = 1,M = 2,M = 3,M = 4,M =
5 and M = 10, all plotted along x-axis. VAE is trained
on Fashion-MNIST with the Encoder Lipschitz constant
M = 1 for all tests and evaluated on several outlier datasets.

6 CONCLUSION

In this paper, we identified an implicit theoretical inconsis-
tency from the perspective of general topology between the
VAE modeling and the UAT. We addressed this discrepancy
utilizing the compactness of the mapped image to the latent
space. In order to enforce the compactness, we devised a
provable method for controlling the bounds of the resulting
compact. The experimental evidence revealed that constrain-
ing the limits of the factors of variation is beneficial for
outlier detection. In particular, we discovered that outlier
inputs tend to be mapped to the latent continuity holes. By
devising a special score for the hole indicator, we conducted
several experiments aimed at their detection. Utilizing this
score, we achieved promising results in unsupervised outlier
detection based on the latent representation. Specifically, the
suggested method and score demonstrated the most robust
performance across all the used benchmarks and datasets.
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