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Abstract— Federated Learning (FL) makes it
possible for a network of clients to jointly train
a machine learning model, while also keeping
the training data private. There are several
approaches when designing a FL. network and
while most existing research is focused on a
single-server design, new and promising vari-
ations are arising that make use of multiple
servers, witch have the benefit of speeding up the
training process. Unfortunately single-server
FL networks are prone to model poisoning at-
tacks by malicious participants, that aim to re-
duce the accuracy of the trained model. This
work showcases the inherent resilience of the
multi-server design against existing state-of-the-
art attacks tailored around single-server FL, as
well as propose two novel attacks that exploits
multi-server topology in order to reduce the re-
quired knowledge an adversary needs to obtain
to carry out the attack, while still remaining ef-
fective.

Main findings are as follows: In the event that
the malicious party has compromised the entire
network, existing single-server attacks are suffi-
cient to completely prevent a model from train-
ing. If they are limited to knowledge available
only within the local reach of their compromised
clients, the effect is minimized to where the at-
tacks might get mitigated without any defences
being necessary. However in such cases a cor-
relation can be observed between the location of
the compromised clients and the effectiveness of
an attack. The novel attacks proposed in this pa-
per exploit this relation in order to remain suf-
ficiently effective while requiring only the same
amount of data necessary for the multi-server
algorithm to function.

1 Introduction

Due to the rapid growth of the number of smartphones [1],
wearable devices and Internet of Things (known as IoT) sen-
sors in the past years, more and more data is being generated
outside of cloud servers and data centers, but instead at the
edge on client devices. It can be very tempting if compa-
nies can somehow utilize that data in training new models
without incurring additional cost for processing power and,
more importantly, without overstepping any ethical or legal
boundaries over utilizing that data when training their mod-
els. Therefore recently a new paradigm - Federated Learning
(FL) [2]approaches when designing an FL network and while
most existing research is focused on a was developed as a way
to train a machine learning model on a decentralized network.

Unlike a more traditional deep learning setup where the en-
tire process takes place in a centralized location in the cloud,
FL takes a more collaborative approach by aggregating mod-
els trained on local data across a potentially large number

of clients and then distributing the result back to the clients
for the next iteration of training, at the end resulting in a
global model trained on the available data of the participat-
ing clients. The benefits of this approach is that it makes it
possible to train neural network models on data that could
otherwise be sensitive to collect due to privacy or legal issues,
as well as distributing the computational cost across multiple
points in a network.

There are several possible approaches for the design of
a FL network topology between servers and clients. The
original proposed design has a single-server configuration,
where all clients are directly connected with one central cloud
server. However since the training process requires upload-
ing and downloading models at every iteration the commu-
nication delay can lead to severe bottleneck for the entire
process. To address this issue a novel aggregation protocol,
called FedMes [3], was developed that utilizes multiple edge
servers to propagate the model across the network, by using
clients that are located within range of more than one such
edge server as a bridge.

Because of the decentralized nature of FL, however, it is
susceptible to poisoning attacks [4] if one or more clients in-
tends to sabotage the global model. A poisoning attack is gen-
erally categorized into one of two types: untargeted, where
the goal of the adversary is to bring the accuracy of the model
down, or targeted, aiming to bring the accuracy down for a
specific predetermined input. In order to achieve this an ad-
versary can launch a poisoning attack either by manipulating
the available data (data poisoning attack) or by uploading ma-
licious gradients for the model it has trained (model poisoning
attack). In order to mitigate the effect of an attack launched
by malicious clients there have been several robust aggrega-
tion algorithms devised to combat this issue in a single-server
configuration.

Research gap: While there are several papers that propose
and analyze various untargeted attacks on a single server FL
networks [5], [6], [7], [4], there has not been much work done
for a multi-server configuration. Since both single- and multi-
server have the same general goal of decentralized training
of a model this can raise the question of how vulnerable a
multi-server network is and if there are any additional secu-
rity concerns that are inherent with such a change of topology.
Therefore the focus of this paper is on untargeted model poi-
soning attack performed upon a multi-server FL network that
uses the FedMes algorithm for aggregation.

Main contributions: An overview and analysis of the ef-
fects and required adversarial knowledge for untargeted
attacks on multi server FL. We examine the difference in
effect of several state of the art single-server model poison-
ing attacks on a multi-server network. However those attacks
make quite hefty assumptions for the knowledge that the ma-
licious parties have over the network [8], specifically that
the adversary can access the computed gradients or at least
their aggregation of every single client in the network. While
this might be achievable in a single-server configuration by
compromising the communication channel towards the single
server, it is even more difficult to obtain the necessary data in
a decentralized multi-server configuration, since essentially
the malicious party would need to posses more knowledge



about the entire network topology than any other participants,
including the edge servers. However due to the difference
of how a multi-server network distributes the global model
across clients this could provide local knowledge that could
be exploited in a different way. For those reason this work
sets out to evaluate the robustness of a multi-server network
by answering the following research questions:

* Are existing attacks, designed around single-server,
effective on a multi-server network, and if so by how
much?

* For a single-server the location of a malicious client
in the network is irrelevant. Is the effectiveness of a
malicious client in a multi-server network dependent
on their location?

¢ Does the data sharing necessary for multi-server net-
work to operate provides necessary information for
conducting an effective attack, without the need to
compromise additional parties?

To address those issues this work presents the results of
simulated FL networks with malicious clients, as well as
proposing two novel attacks: Collaborative MinMax”* where
an assumption is made that the malicious clients can commu-
nicate with each other and share information when conduct-
ing their attack, as well as “Isolated Knowledge MinMax”
where each malicious client conducts their attack indepen-
dently of one another during the attack.

The organization of the rest of the paper is as follows: Sec-
tion 2 describes more in depth the concepts of federated learn-
ing in its single- and mult- server variants as well as give fur-
ther elaboration on model poisoning untargeted attacks. Sec-
tion 3 gives an overview of the threat model we will consider
as well as the topology of the multi-server. Section 4 de-
scribes the methodology used for conducting the experiment
the results of which are showcased in section 5. Section 6
argues for the ethical consideration taken for conducting this
research and the conclusion is summarized in section 7.

2 Background

This section gives general description on existing relevant
work for single-server and multi-server federated learning.
Afterwards there is a focus on current state of the art untar-
geted attacks that exist for single-server FL.

2.1 Multi-Server Federated Learning

We will begin by considering a standard single-server feder-
ated learning setting [2] and will then extend it to a multi-
server design. A visual comparison of both topologies is
given in figure 1. In a FL network we have a coordinating
server, also called parameter server (PS), and n clients that
hold the data which will be used to train the model. During
each global epoch of training, the PS selects a subset (which
can be of size n) of available clients and sends them the pa-
rameters of the current global model. It is expected that each
client will compute a stochastic gradient by using the private
data they have locally available to update the received model
and then upload the update back to the server. After all the
clients have responded the results are then combined using

a) Single server

b) FedMes network

Figure 1: Comparison of single-server and FedMes multi-server FL.
network, where some participants might be malicious. a) Illustration
of a single-server configuration: every participant communicates di-
rectly with a single server in the cloud for model upload and down-
load. b) A FedMes network, each client communicates with every
edge server within reach, in this case the clients in the middle act as
bridge and average the models they receive from both servers and
upload them back after their local update.

some aggregation algorithm, such as averaging, into the new
global model. This process is repeated either a set number of
times or until convergence is achieved.

While the bottleneck in traditional deep learning training is
usually in the computational resource available, in FL, due to
the constant model upload and download between clients and
server, the more important factor is communication latency.
The FedMes algorithm [3] addresses this concern by utilizing
multiple edge servers (ES), which are usually much closer to
the clients, instead of relaying on communication with a sin-
gle server that can be farther away in the cloud. In such a
configuration each ES acts as a local PS within the physical
area of its reach, referred to as cell. In order to propagate
the global model throughout the entire network in this topol-
ogy, the clients that are within reach of multiple ES’ act as a
bridge in-between them. Due to their location those clients
receive the update parameters of each cell they are in. They
then aggregate those models by averaging, update them with
their local epoch and then upload it back to every edge servers
within reach. Since the latency between ES and clients is usu-
ally much lower than that of a client and a cloud server this
method greatly improves the latency for training the global
model within the entire network.

2.2 Attacks on FL

There are two general types of attack an adversary would
want to launch on a FL network - targeted and untargeted at-
tack. Targeted attacks [9], also called backdoor attacks, have
a goal of implanting a specific trigger during training, which
causes a specific response from the model. For example in a
classification task, the attacker might try to make the resulting
global model have good overall accuracy, however for inputs
of specific class the model always gives a specific inaccurate
response. Untargeted attacks [8], also referred to as Byzan-
tine attacks, aim to reduce the overall accuracy of the global
model, which can also lead to preventing convergence from
occurring.

Depending on the capabilities of the adversary, there are
two main ways of performing those attacks - either through



model poisoning or data poisoning. Data poisoning occurs
when the training data available on a compromised client to
skew it towards the desired result. The other way is through
model poisoning, where the weights of the model are adjusted
either during or after training with the goal of manipulating
the global model when taken into aggregation.

We will now give a brief summary of the current state of
the art untargeted attacks for single server FL. Intuitively it
helps to visualize the gradients of the model as a mathemat-
ical vector, in which case malicious updates are a point that
attempt to steer away from the direction where the rest of the
benign clients are pointing towards.

LIE attack: The LIE attack [6] works by introducing spe-
cific noise to the parameters sent to the server. The deviation
is designed to be able to steer the global model, while being
small enough to avoid detection. In order to achieve this it
needs to obtain the mean pu, as well as the standard devia-
tion o of the gradients of all benign clients. Then a coeffi-
cient z is computed based on the number of malicious and
benign clients in the system. The final gradients reported to
the server are computed as p + zo.

Fang attack: The Fang attack [5] is an optimization attack
designed primarily for the Krum aggregation algorithm. The
attacker needs to obtain the mean s, and the aggregation V°
(which might be calculated via any aggregation strategy, such
as by the Krum algorithm or any other method) of the gradi-
ents of every benign client and computes an initial direction
VP = —sign(u). The malicious update is then calculates by
solving V™ = V? 4 ~VP for the coefficient v. In order to
speed up the process the initial value for v is fixed and its
continually halved, until V" would get selected by the Krum
algorithm.

MinMax and MinSum attacks: The MinMax and Min-
Sum attacks [7] are both also an optimization type attack, but
unlike in a Fang attack, the malicious gradients are updated
until they are optimal, instead of stopping until the first suffi-
cient coefficient is reached. Both variants of the attack need
the aggregation V® and some deviation V? from the gradients
of the benign clients. That can be either in the opposite, a sign
flip or a standard deviation away from the inferred good di-
rection. The malicious update is then calculated via solving
V™ = V® + VP for . In the MinMax variation ~ is op-
timized to be at most the maximum of the minimal distance
between any two benign gradients while the MinSum variant
optimizes to be the minimum of the sum of squared distance.

2.3 Defenses in FL

In order to mitigate the possibility of untargeted attacks sev-
eral defense mechanisms for single-server FL have been de-
vised in the form of a robust aggregation algorithm that aims
to provide provably similar convergence as averaging the up-
dates [10], [11], [12], [13], [14], while preventing any ma-
licious input from interfering. In general they work by at-
tempting to first filter any suspicious gradients they receive,
based on some criteria for determining the outliers, and then
combining the rest of the updates deemed to be good.
Currently there are no existing defenses for a multi-server
FL configuration. While some of the above mentioned aggre-
gation algorithms could be utilized when a local edge server

Figure 2: Visualization of the used topologies with the location of
all edge servers and all clients used in the simulation: a) dense con-
nected topology and b) sparse connected topology.

combines the received updates, for the rest of the papers it
is assumed that the network uses a simple averaging over the
received updates. Even for a single-server configuration, it is
arguable by [8] that a simple averaging is a sufficient defense
for a realistic application of FL.

This paper focuses on investigating untargeted model poi-
soning attacks on a multi-server federated learning network
which uses the FedMes algorithm for aggregation of the
global model.

3 System and Threat Model

In this section we will present the network topology used for
evaluating the resilience of the FedMes algorithm against un-
targeted attacks. Afterwards we will also showcase the possi-
ble threat models considered for a potential adversary.

3.1 Network Topology

There are two main topologies that would be used for the ex-
periment, both consisting of 3 edge servers and 10 clients.
The first one is the dense network where most clients are
within reach of more than one edge server and there is a single
client within reach of all three servers. Because of that cen-
tral client this topology will serve as a more direct compari-
son with a single-server configuration. The second topology
is the sparse network, which is less tightly connected, and
therefore encapsulates more difficulties for both the global
model to converge and for an attacker to have an effect. A
visualization of both networks is provided in Figure 2



3.2 Threat Model

Here we consider a possible threat models for a model poi-
soning attack. The design of those is guided by both existing
threat models towards a single-server FL network, while also
considering the possible complications introduced by a multi-
server network.

Adversary’s Objective. The goal of the malicious party
is to bring down the accuracy of the resulting global model
for any input given. In order to achieve this they will con-
struct and upload malicious gradients to the edge servers in
the FedMes network. This is referred to as an untargeted
model poisoning attack.

Adversary’s Capabilities. We assume that the attacker is
able to control m out of n clients, either by compromising
existing benign clients or injecting malicious ones in the net-
work. It is expected that less than half of the total clients are
malicious (m < n/2), otherwise the global model would be
too easily manipulated. All compromised clients are assumed
to have valid data for training of the machine learning task.

For evaluation of the single-server attacks it is assumed that
the adversary can access the gradients of all clients across the
entire network or those of the clients within the same cell as
a compromised client. For the “Isolated knowledge attack” it
is assumed that the adversary can only listen in to the com-
munication directed only at the compromised clients. It is
assumed that the adversary can freely influence what param-
eters are broadcasted by the compromised clients.

Adversary’s Knowledge. In order to properly assess what
damage can be dealt by an adversary upon a Fl network, we
will consider three separate levels of knowledge they posses
when conducting the experiment. For evaluating the single-
server attacks on a multi-server network the adversary is
aware of the number and location of each client, as well as
the results of their local update send towards the edge servers.
This is intended to represent the worst case scenario, since the
adversary has more available information then any participat-
ing party in the FL training process. A consideration of the
effect of such attacks are then scaled down by assuming that
the adversary is only aware of the information on every client
only within the range of the edge servers the malicious clients
are in. The final considered situation the adversary only has
access to information on malicious clients.

4 Methodology

This section describes the environment designed for conduct-
ing the experiment for the results presented in Section 5. It
goes over some of the technical details of the setup, a more
in-depth explanation of the novel attack, as well as the metrics
considered for evaluating the results.

In order to evaluate the effectiveness of untargeted model
poisoning attacks a simulation of a FedMes environment was
set up and carried out. The simulation is an FL network, ei-
ther with a single-server or a multi-server topology, tasked
with training a model for an image classification task, with the
possible presence of malicious clients. For the evaluation the
CIFAR-10 [15] 10 class image classification tasks are consid-
ered. The training data of both tasks is split evenly between
each client in an iid (independent and identically distributed)

Algorithm 1 Collaborative MinMax

procedure COLLAB-MINMAX
: gradients <+ local _update()

1:

2

3: gradients < last_recieved_updates()
4: gradients < conspiritors_update()

5: mal-gradients < minmax(gradients)
6 return mal-gradients

Algorithm 2 Isolated Knowledge MinMax
1: procedure ISOLATED-MINMAX

2 available_gradients <+ local_update()

3: available_gradients < last_recieved_updates()
4: mal_gradients «— minmazx(available_gradients)
5: return mal_gradients

fashion. The validation data of size 10000 for both dataset
is reserved in accordance to the instruction of the dataset’s
authors. The performance of the local model available on a
client is tested against the validation data and that is taken as
a direct indication of the performance of the entire network.
In terms of the presented topologies, visualization in Figure
2, the dense network is evaluated based on the client located
in the range of all servers, for the sparse network a client in
one of the overlapped regions is used.

The implementation of the novel attacks is as described
in Algorithm 1 and 2. Intuitively the malicious client inter-
prets all gradients within reach, including their own update, as
those of benign client and calculates the malicious gradient as
a MinMax attack on the available data. In order to better eval-
uate the effect of the location of the malicious clients within a
topology a modified version of MinMax was used, referred in
the results as ”Veiled MinMax”. This implementation works
identically to the single-server implementation of MinMax,
except for that the malicious clients can only ”see” the gradi-
ents of the benign clients within the range of the same edge
Servers.

The design of the neural network models used for the
CIFAR-10 task were VGG11 [16] and ResNet [17]. While
all attacks considered in this work where originally designed
to obtuse the training process they are also evaluated in their
ability to degrade the accuracy of an converged network. For
that a a pretrained [18] ResNet model, with an accuracy of
above 95% on the CIFAR-10 task was utilized.

The code used for the simulation can be obtained online
via https://github.com/Riliano/rp-msfl. The implementation
of the single-server malicious updates is largely based on the
code supplement to [7] with the necessary modifications to
simulate a FedMes network. A comparison between the accu-
racy of the global models in a single-server and multi-server
configurations where used as a validation of the correctness
of the FedMes implementation.

5 Results

In this section the results of the simulation of the untargeted
attacks are presented. First a baseline results of the networks
are established and then a comparison is made between the
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effects of an adversary with full and partial knowledge over
all clients.

The reference values of the performance of the FL net-
works without any malicious clients present are showcased
in Table 1. For the Cifar-10 task with a VGG11 network. The
effects of each attack are compared to by running the net-
work when no attacker is present and with no attacker present
in a single-server simulation. While only the accuracy of the
model is considered for the evaluation, the simulation is set
up to terminate if the value of the loss function reaches a value
of above 100. In those cases the effectiveness of the attack is
judged based on the number of epochs before termination had
to occur.

Table 1: Comparison for the effectiveness of existing single-server
attacks on a multi-server network training for the Cifar-10 classifi-
cation task.

Variation Mazxg Avgg Completed
epochs

Single-server no at- | 68.77 53.01 1200

tacker

Fedmes no attacker | 66.15 47.12 1200

Fedmes Fang attack | 14.03 10.02 1200

Fedmes Lie attack 14.01 10.07 1200

Fedmes MinMax | 14.76 10.01 50

attack

However we will now consider a more realistic scenario
where the adversary is only aware of the gradients of clients
within local reach of the malicious ones. A challenge spe-
cific for launching attacks on a multi-server network is the
location of the malicious clients. While for a single-server
it is irrelevant where the malicious clients are, only that they
successfully upload malicious updates. That is not the case
for multi-server setups, the difference of the effectiveness of
an untargeted attack is showcased in Figure 3. Due to Min-
Max proving to be the most effective attack, a modified ver-
sion referred to as ”Veiled MinMax” is used. It works in the
same way as the single-server MinMax with the difference
that the malicious update is computed only based on the gra-
dients within reach of the same edge servers of a compro-
mised client. There is an apparent link between the effective-
ness of a malicious client and their location.

We will now examine the effectiveness of the two novel at-
tacks, shown in Figure 4 for the dense network and Figure 5
for the sparse one. Both attacks are more effective by a sig-
nificant margin from the ~’Veiled MinMax”, due to them be-
ing able to access a more varied set of gradients for optimiz-
ing against. Additionally they are able to exploit more effec-
tively the advantageous location of having malicious clients
in strongly overlapped regions, from attack designed around
a single server configuration.

Epochs

Figure 3: Effects of the veiled MinMax attack on a network from dif-
ferent malicious clients on a ResNet network for the Cifar-10 task.
The malicious client in an overlapped region is able to be very effec-
tive, while those within a reach of a single server can barley affect
the accuracy.

6 Responsible Research

This section is dedicated to ethical considerations taken into
account when conducting this research. The main guiding
principles used for consideration where based on the Nether-
lands Code of Conduct for Research Integrity [19]. In order
to ensure the validity and reproducibility of the findings dis-
cussed in this paper, the full source code for running the sim-
ulation, as well as the raw data of the presented results are
publicly available online. The code itself is provided together
with the necessary instructions to be able to run on most stan-
dard computational environment used for data science.

A major ethical motivator when conducting this research
was in advancing the technique of federated learning easier to
make it more suitable for larger adaptation. Even though this
paper provides instructions on how one could launch an attack
on such a network, it does so more with the intent to inves-
tigate what is the inherent resilience of the design and what
information an attacker might require, so that those aspects
can be taken into account when a real world multi-server FL
network is being deployed.

7 Conclusions

The main goal of this work was to examine the effectiveness
of existing untargeted model poisoning attack designed for
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Figure 4: Comparison on the effectiveness of “Isolated Knowledge MinMax” and ”Collaborative MinMax” against ”Veiled MinMax” in the
dense network. The attack is carried out on a pretrained ResNet model for the Cifar-10 task for 50 epochs with a learning rate of 0.00082.
The effectiveness of all attacks is primarily determined by the location of the malicious clients, by having a malicious client within reach of
many edge servers an attacker can significantly cripple the performance of the network.

single-server FL networks when launched against a multi-
server network. If a malicious party is able to also compro-
mise the communication channel of every client across the
network, then existing single-server attacks are sufficient to
bring down the accuracy of the model trained by that net-
work. If the malicious party is only able to compromise
clients within reach of their local server, the simple averag-
ing is sufficient to deter such attacks. In the case that the
adversary is aware that the compromised clients are part of
a multi-server FL network, they can exploit the data passing
through such clients in order to launch attacks with a more
severe effectiveness.
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Figure 5: Comparison on the effectiveness of “Isolated Knowledge MinMax” and ”Collaborative MinMax” against ”Veiled MinMax” in the

sparse network. The attack is carried out on a pretrained ResNet model for the Cifar-10 task for 50 epochs with a learning rate of 0.00082.
The effectiveness of all attacks are in general less effective, due to less available overlap between the edge servers.
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