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1
Introduction

In the past decades, microwave imaging has attracted the attention of numerous re-
searchers from various fields due to its advantages over some existing imaging in-
struments. Microwave imaging systems typically emit electromagnetic (EM) waves
by transmitting antennas to illuminate the imaging scene and then collect the re-
flected or scattered signals by receiving antennas. So compared to the optical imag-
ing systems, they avoid the operating limitations such as night-time scenarios or
non-illuminated areas. Moreover, due to the relatively long wavelength, microwave
signals can penetrate the barriers or opaque media (e.g., smoke and fog) to sense the
imaging scene. This feature has made microwave imaging popular for subsurface
imaging, through-wall imaging, concealed weapon detection, remote sensing, etc.
As a non-intrusive imaging tool, microwave imaging equipment has no health risk
on the human body as long as a safe level of microwave radiation is used, which is
different from computed tomography (CT) that exposes the human body to ionizing
X-ray radiation. Many studies have also been performed with attempt to investigate
the potential of microwave imaging in medical applications, for instance, breast
cancer detection [1, 2].

With the expansion of microwave imaging application areas, images with in-
creasingly higher resolution and higher quality are required, especially for short-
range imaging. In order to meet these requirements, many microwave imaging
systems have been developed by fully exploiting the Ultra-wideband (UWB), ar-
ray and polarimetry techniques. As the down-range resolution is inversely propor-
tional to the operational frequency bandwidth, a wideband or even UWB signal
with fractional bandwidth larger than 20% [3] is generally used to increase the re-
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2 Chapter 1. Introduction

solving capability of the imaging system in the down-range direction. To improve
the cross-range resolution, the typical approaches are to exploit array techniques:
phased arrays, synthetic aperture radar (SAR) and Multiple-Input-Multiple-Output
(MIMO) arrays [4]. The phased array uses a great number of antennas to construct
a large array aperture, thus forming a narrow beamwidth in the cross-range direc-
tion(s). Although it provides the capability for real-time imaging, a phased array is
usually very expensive, which is not attractive or even not affordable for civilian ap-
plications. By contrast, both synthetic aperture and MIMO array techniques enable
to significantly reduce the number of antennas needed to build a large aperture and
provide an affordable/cheap solution to the array system. Synthetic aperture tech-
niques translate a single antenna/small array in space to synthesize a large aperture
while MIMO array techniques exploit the spatial diversity of the transmitting and
receiving antennas’ locations to generate a large virtual array. However, to syn-
thesize a virtual large aperture array with N antenna elements, MIMO arrays still
require at least 2

√
N antennas, while synthetic aperture techniques provide the po-

tential to further reduce the number of antennas needed, in the extreme case, down
to one. Therefore, in scenarios with tight cost and/or space constraints, the syn-
thetic aperture (or combined with MIMO array) technique is probably the most
desirable option to build large virtual arrays. Moreover, accounting for the vec-
tor nature of EM waves, differently polarized signals scattered from targets can be

(a) (b)

Figure 1.1: (a) Cutter-head of a tunnel boring machine, (b) the frontal view of the cutter head of a six-
arm tunnel boring machine, where the red rectangle indicates the possible slots for ground penetrating
radar (GPR) antennas.
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acquired. Taking advantage of the imaging and polarimetry technique, different po-
larimetric images are reconstructed; those contain rich scattering information about
the targets and significantly benefit the target detection, classification as well as
recognition [5].

The motivation of this research is to develop a forward-looking Ground Pene-
trating Radar (GPR) system to predict ground properties ahead of a tunnel boring
machine (TBM) which is a very powerful and important piece of equipment for
tunnel excavation (as illustrated in Figure 1.1(a) [6]). In this scenario, the GPR
antennas are embedded in a few slots on the cutter-head of a TBM, for instance, as
illustrated in Figure 1.1(b) for a six-arm TBM [7]. In order to minimize or avoid
the influence of the slots made for the GPR antennas on the robustness of the me-
chanical structures of the cutter-head of a TBM, the number of antennas should be
as small as possible. Thus, the synthetic aperture technique seems to be the most
attractive solution in this circumstance.

1.1 Overview of Synthetic Aperture Radar Techniques

Synthetic aperture radar techniques have been widely used for both remote sensing
(in the far field of the sensor) and short-range imaging applications. In remote sens-
ing applications, the radar system is typically mounted on a moving platform, for
instance, an airplane or a satellite, and the EM signals are collected with its transla-
tion along a (quasi-) linear trajectory. Thus, a large aperture is synthesized, which
leads to high resolution in the cross-range direction. By steering the antenna beam
during the data acquisition with respect to the illuminated area, different operational
modes have been designed, including Stripmap, ScanSAR, Spotlight, Sliding spot-
light, and so on [8]. These operational modes of SAR systems generally achieve
a relatively vast area survey. To observe a small region of interest from full 360◦

aspects, Circular SAR (CSAR) [9] has been proposed by moving the radar sys-
tem over a circular trajectory above the illuminated area. Furthermore, CSAR is
extended by utilizing the synthetic aperture technique in the elevation (i.e., down-
range) direction as well in order to improve the height (down-range) resolution,
which is referred as Elevation CSAR (E-CSAR) [10].

Besides the aforementioned SAR modalities, some other SAR configurations
are also introduced in the short-range imaging applications, in particular for 3-D
imaging. According to their implementation, these synthetic aperture techniques
can be mainly divided into three categories [11]: (1) rectilinear scanning system,
(2) cylindrical scanning system, and (3) Radial-scanning SAR (Rad-SAR) system.
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Figure 1.2: Geometrical configurations of near-field 3-D SAR imaging systems. (a) Rectilinear scan-
ning system, (b) Cylindrical scanning system, and (c) Rad-SAR system.

Their imaging geometries are shown in Figure 1.2. In the rectilinear scanning sys-
tem, a linear array is moved along its perpendicular direction for signal acquisition,
thus synthesizing a 2-D planar array. This configuration has been widely used for
subsurface survey with array-based GPR system, through-wall imaging, etc. Mean-
while, the cylindrical scanning system rotates a linear array around an axis to illu-
minate targets, and a cylindrical array is formed around the targets. So it is suitable
to the circumstance where targets are located within a certain volume and accessible
from all 360◦ aspects around them. In practice, one of its application examples is
the human body scanner used for security check in airports or other public check-
points. By contrast, in the Rad-SAR system, a linear array is rotated around a point
in the array to form a planar circular array. It is easy to implement and provides
great potential for forward-looking short-range imaging applications. Some other
scanning/synthetic aperture geometries, for example the spherical scanning config-
uration, are also proposed, and some of them are already used for near-field antenna
measurement. However, these have been scarcely employed for building imaging
systems for practical applications so far.

Considering the GPR system used for a TBM, a large aperture array is synthe-
sized with the rotation of its cutter-head where GPR antennas are installed. So it
naturally forms a RadSAR-type configuration in this circumstance. Although the
RadSAR-type configuration has already been investigated for near-field imaging
[11] and subsurface sensing [12], the EM waves were tackled as the scalar waves
in these studies. That is to say, the impact of the rotation of antenna orientations on
the acquired signals was neglected. So considering the vector nature of EM waves,
the possibility of the RadSAR for polarimetric imaging is still not clear. Moreover,
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UWB signals can be used to get high-resolution in the down-range direction and
also provides the potential for sparse spatial sensing without causing aliasing. In
the open literature, the combination of UWB and the RadSAR techniques is not
yet discussed. Therefore, further research has to be carried out to fully explore the
capability of the RadSAR for high-resolution short-range imaging and to develop
proper imaging algorithms for high-quality image reconstruction.

1.2 Research Objectives

The research objective of this thesis is to develop a high-resolution, high-quality
Rad-SAR imaging system by fully exploiting the synthetic aperture radar, UWB and
polarimetry techniques. The primary focus of the work lies in the investigation of
the capabilities of the UWB Rad-SAR and the development of an advanced imaging
algorithm. Considering the aforementioned motivation and the particular features
of the Rad-SAR, some related research questions should be addressed to achieve
the main research objective.

The Rad-SAR system implements the synthetic array by rotating a linear ar-
ray/antennas around a point over the aperture. For linearly polarized antennas which
are typically used in subsurface imaging systems, the rotation constantly changes
the antenna polarizations with respect to targets, thus acquiring scattered EM sig-
nals with varying polarizations. However, the imaging algorithms developed for
seismic/acoustic waves based on the scalar wave assumption are generally used
for image reconstruction. To be utilized for the EM field, the antenna polariza-
tions within the imaging array are typically assumed to be coherent, i.e., aligned.
Otherwise, the utilization of the traditional imaging algorithms would decrease the
image quality. Moreover, traditional polarimetric-imaging techniques also assume
that the differently polarized signals/images are acquired separately at first, and the
polarimetry techniques are applied for polarimetric information processing. There-
fore, the fact that antenna polarizations of the Rad-SAR are constantly varying dur-
ing the signal acquisition naturally leads to the following research questions.

Q1: How can we tackle the effects of the variations of antenna polarizations over
the aperture of the Rad-SAR on the imaging performance?

Q2: Can we take advantage of the Rad-SAR for fully polarimetric imaging?

Considering the highly tight constraint on the space for the antenna installation
in the TBM application, it is expected that the number of antennas used can be as
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small as possible. The antennas are installed on the cutter-head of a TBM. With
the rotation of the cutter head, a Rad-SAR is implemented. As during the operation
the cutter head does not only rotate but also advances with the progress of the ex-
cavation, a synthetic aperture in the down-range direction can also be synthesized.
Moreover, according to the UWB theory, using an UWB signal could also lead to
sparse arrays, thus reducing the number of antennas needed. Then the following
questions arise.

Q3: Can we reduce the imaging system complexity, i.e., the number of antennas
needed, by exploiting the Rad-SAR with its down-range movement? If yes,
how would the spatial samples be properly taken for high-resolution, high-
quality imaging?

Q4: How should the spatial samples of the Rad-SAR be taken when UWB signals
are used by the imaging system?

Finally, to utilize UWB techniques, RF front-ends that work in the UWB spec-
trum are required. However, in practice it is quite often that the UWB antennas
are not available due to the technological difficulties in antenna design, especially
for subsurface imaging, like in the TBM application. Then an alternative solution
is to divide the UWB spectrum into several relatively narrow band segments, and
narrowband antennas are used to work at each segment so as to cover the whole
UWB spectrum. So to get an equivalent UWB signal for high-resolution imaging,
the narrowband data should be processed by addressing the following question:

Q5: How could we properly and coherently fuse the multiband data/images to
achieve an equivalent UWB imaging?

The above questions cover the main aspects of Rad-SAR imaging, and some of
them are of general interest in UWB microwave imaging and go beyond the Rad-
SAR as well as beyond the GPR imaging system in the TBM application.

1.3 Novelties and Main Results

By addressing the aforementioned research questions, some novelties and results
have been obtained and are presented in the thesis as follows:

• Two novel approaches to design rotating antenna arrays for fully polarimetric
imaging have been proposed. The proposed approaches overcome the effects
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of the variations of antenna polarizations of the Rad-SAR on the imaging per-
formance via designing specific rotating antenna arrays. The designed rotat-
ing arrays allow retrieving the fully polarimetric signals from their measure-
ments acquired by antennas with spatially varying polarizations. It benefits
the traditional scalar-wave based imaging algorithms to be applied for image
reconstruction without degrading the image quality. Moreover, the proposed
approaches also provide a cost-efficient solution to fully polarimetric imaging
with a Rad-SAR system, which is a novel array-based imaging.

• A linear inversion based approach is applied to address the effects of the vari-
ations of antenna polarizations of the Rad-SAR from the aspect of imaging.
The proposed approach considers the full-wave (including near-, intermediate-
and far-field) contributions to the radiation characteristic of antennas. To ac-
celerate the linear inversion approach, two computationally efficient methods,
i.e., an interpolation based method and a Nonuniform fast Fourier transform
(NUFFT) based method, are suggested to compute the accurate Green’s func-
tions for the observation matrix construction. The proposed linear inversion
approach significantly improves the image quality compared to those tradi-
tional scalar-wave based imaging algorithms.

• A new multi-dimensional sampling model by accounting for the integral im-
pact of spatial- (i.e., array technique), frequency- (i.e., UWB technique) and
polarization diversity on image focusing is established based on an abstract
matrix formulation. Based on this model, the trade-offs among the spatial-,
frequency and polarization sampling can be to some extent made for imag-
ing system design. It not only extends the traditional narrow/wide array
theory but also lays the theoretical foundations for designing 3-D sampling
schemes/arrays, frequency-modulated arrays, etc.

• The Clustered FrameSense (CFS) algorithm has been developed to imple-
ment the multidimensional sampling design. This algorithm sequentially op-
timizes the sample selection by evaluating the “orthogonality” of a group of
samples associated with a sampling position with respect to the selected ones
through the inner product. It is computationally efficient and an appealing
algorithm for huge sample selection problems, for instance, sampling design
for imaging systems.

• The Clustered Maximum Projection onto Minimum Eigenspace (CMPME)
algorithm has also been developed for sampling design for linear inversion
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problems. It evaluates both the “orthogonality” and the contribution of the
new samples with respect to the selected ones. As CMPME is a forward
selection algorithm, it is very efficient when the number of selected samples
is much smaller than that of the candidate ones.

• A novel fusion approach is developed to coherently process the multiband
data in the wavenumber domain to achieve an equivalent UWB high-resolution
imaging. It not only integrates the data from different frequency subbands but
also extrapolates the missing data between them. As the fusion operation is
performed in the wavenumber domain, the proposed approach can be applied
to fuse multiband data acquired with both collocated and non-collocated ar-
rays in different frequency bands.

The research presented in this thesis has been performed within the NeTTUN
project which is funded by the European Commission within FP-7 Programme un-
der Grant 280712. Part of the project is to develop an advanced ground prediction
system used for TBM. Within the frame of the project, we are responsible for the
development of a high-resolution ground penetrating radar system and related sig-
nal processing approaches. The antenna array topologies and algorithms developed
have been discussed within the NeTTUN consortium.

1.4 Outline of the Thesis

The remaining of the thesis is organized in three parts by covering the exploration of
polarization, spatial and frequency diversities associated with array-based forward-
looking UWB imaging. In the first part, the effects of the variations of the antenna
orientations caused by the rotation of the array during the signal acquisition on the
image reconstruction will be discussed, which will be tackled from both system
design (i.e., array design) and image formation aspects. In the second part, the
potential of exploiting three-dimensional spatial sampling to reduce the number of
antennas needed for 3-D imaging will be investigated through a sampling selection
strategy. In the third part, multiband signal fusion to achieve an equivalent UWB
imaging will be studied and a wavenumber domain fusion approach will be pre-
sented. The content of the chapters to follow are briefly described as follows:

Chapter 2 presents some mathematical fundamentals related to microwave imag-
ing. The propagation of EM waves and their interactions with media are
governed by the Maxwell’s equations. Considering the assumption of the
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sources used for microwave imaging, in this chapter we divide the traditional
microwave imaging algorithms into two categories: scalar-wave based ap-
proaches and vector-wave based approaches. Scalar-wave based approaches
assume that the electromagnetic sources radiate isotropically like an acoustic
source and all the EM sources radiate equally for array-based imaging systems
by assuming they are polarization coherent. On the other hand, the vector-
wave based approaches consider the full vectorial nature of the EM waves and
different polarized components of the scattered EM waves are included in the
image formation. In this chapter, some typical imaging algorithms in these two
categories are presented and their differences are analyzed as well. Through a
mathematical discussion of these imaging approaches, it lays the foundations
for properly selecting/developing the imaging algorithms in Chapters 3-5 and
also indicates some implications for the imaging system design.

Chapter 3 tackles the effects of the variations of the antenna polarizations of the
rotating antenna array in the image formation and proposes two approaches to
design rotating arrays to overcome these effects. In this chapter, the effects of
the rotation of the antenna orientation on the acquired EM signals are investi-
gated through the scattering process formulation. Some relationship equations
between the fully polarized signals in two sets of different polarization bases
are derived. Based on the derived relationship equations, two approaches are
proposed for rotating array design for fully polarimetric imaging. Two design
examples for the rotating arrays are given to demonstrate the effectiveness and
accuracy of the proposed approaches by comparing with the traditional fully
polarimetric imaging arrays. Finally, the performance of the previously de-
signed rotating arrays for fully polarimetric imaging is verified through exper-
imental measurements.

Chapter 4 focuses on the same problem as in Chapter 3 but addresses it through
image formation processing instead by considering the vectorial nature of the
EM waves. In this chapter, a linear inversion approach based on the “exact”
radiation patterns is applied to reconstruct images from the EM data acquired
using antennas with spatially varying orientations within the aperture. To ac-
celerate the proposed algorithm, two approaches, i.e., an interpolation based
approach and a Nonuniform fast Fourier transform (NUFFT) based approach,
are proposed to efficiently compute the accurate Green’s functions (GF) of ro-
tated antennas, thus obtaining full-wave radiation patterns. The efficiency and
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accuracy of the two approaches for GF computation are examined via a nu-
merical example. Imaging experiments are also carried out to demonstrate the
performance of the proposed linear inversion algorithm.

Chapter 5 extends the two-dimensional (2-D) circular synthetic array to a three-
dimensional (3-D) one by combining both the cross-range rotation and the
forward motion of a linear array. The aim of this chapter is to investigate the
3-D spatial sampling of the synthetic array so as to examine the possibility to
reduce the number of antennas needed in the linear array. Following Chap-
ter 4, the imaging problem is formulated as an estimation problem, and the
3-D spatial sampling design of the UWB synthetic array is converted to be
an observation selection problem by discretizing the signal acquisition aper-
ture. Two greedy algorithms are developed to sequentially select the discrete
sensing vectors associated with each spatial sampling position over the opera-
tional bandwidth. Their performance to select (near) optimal observations are
demonstrated and compared with other existing algorithms. Finally, an imag-
ing example to illustrate the performance of the selected 3-D array is given.

Chapter 6 is dedicated to multiband signal fusion to achieve an equivalent UWB
imaging result when either a dedicated UWB front-end or continuous UWB
spectrum is unavailable. A wavenumber domain (i.e., k-space) fusion algo-
rithm based on the Matrix-Pencil Approach (MPA) is presented. Compared to
the traditional time(frequency)-space domain fusion approaches, the proposed
fusion approach is applicable to the multiband signals acquired with both col-
located and non-collocated antennas in different frequency subbands.

Chapter 7 summarizes the main achievements presented in this dissertation and
also provides some recommendations for further research.
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2
Fundamentals of Microwave

Imaging

In this chapter, some mathematical fundamentals of microwave imaging are briefly
presented, which include the signal model, scattering approximations and image
reconstruction approaches that are used in the following chapters.

2.1 Maxwell’s Equations

Maxwell’s equations govern the electromagnetic (EM) field by a set of experimental
laws, which connects the EM field vectors to the sources [1, 2]. In the differential
form, Maxwell’s equations are given by

∇ × E (r, t) = −
∂B (r, t)
∂t

(2.1)

∇ ×H (r, t) =
∂D (r, t)
∂t

+ J (r, t) (2.2)

∇ · D (r, t) = ρ (r, t) (2.3)

∇ · B (r, t) = 0 (2.4)

Here the notations are listed as follows.
r — the position vector [in meters (m)];
t — the time [in seconds (s)];
E (r, t) — Electric field [in volts per meter (V/m)];

13



14 Chapter 2. Fundamentals of Microwave Imaging

H (r, t) — Magnetic field [in amperes per meter (A/m)];
D (r, t) — Electric field flux [in coulombs per square meter (C/m2)];
B (r, t) — Magnetic field flux [in webers per square meter, or Tesla (Wb/m2, or
T)];
J (r, t) — Electric current density [in amperes per square meter (A/m2)];
ρ (r, t) — volume electric charge density [in coulombs per cubic meter (C/m3)].
∇×, ∇· — curl and divergence operators, respectively.

Equations (2.1)-(2.4) give the relationships between the field vectors E, H, D
and B with their sources J and ρ. They can be simplified if we assume the vector
fields are time-harmonic. A time-harmonic field can be represented by

F(r, t) = Re
[
F(r)e jωt

]
(2.5)

where j =
√
−1 is the complex unit, ω is the angular frequency, and F(r) is a

complex vector. Re[·] takes the real part of an argument. Using the time-harmonic
form in (2.5) for the vector fields and taking the Fourier transform of (2.1)-(2.4)
with respect to time, the time-harmonic form of Maxwell’s equations is obtained

∇ × E(r) = − jωB(r) (2.6)

∇ ×H(r) = jωD(r) + J(r) (2.7)

∇ · D(r) = ρ(r) (2.8)

∇ · B(r) = 0 (2.9)

Maxwell’s equations can also be represented in their integral form. By integrat-
ing (2.6)-(2.7) over a regular open surface S and using Stokes’ theorem, one can
derive ∮

C
E(r)dl = − jω

∫
S

B(r) · n̂ds (2.10)∮
C

H(r)dl = jω
∫

S
D(r) · n̂ds +

∫
S

J(r) · n̂ds (2.11)

where C is the contour line of the surface S , n̂ is its normal at r and ds denotes
the related differential area. Similarly, integrating (2.8) and (2.9) over a volume
bounded by surface S c and applying Gauss’ theorem, one obtains∮

S c

D(r) · n̂dr =

∫
V
ρ(r)dr = Q (2.12)∮

S c

B(r) · n̂dr = 0 (2.13)
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where Q is the total charge in volume V . Equations (2.10) to (2.13) form the integral
representation of Maxwell’s equations, which give the relations among field vectors
and sources within a given region.

Moreover, to consider the effect of media on the EM field, Maxwell’s equations
should be supplemented by the constitutive relations which characterize the EM
properties of the media via three parameters: permittivity ε, permeability µ, and
conductivity σ. In general, these three parameters can be a tensor/scalar, and also
a function of frequency. Accounting for the research background, media that are
linear, locally and instantaneously acting, isotropic and inhomogeneous are consid-
ered in this thesis. Then the three EM parameters of the media can be represented
by scalar functions. The constitutive relations are expressed as

D(r) = ε(r)E(r) (2.14)

B(r) = µ(r)H(r) (2.15)

J(r) = σ(r)E(r) (2.16)

For homogeneous media, the permittivity, permeability and conductivity func-
tions are spatially shift-invariant. For example, the EM properties of vacuum are
described by ε = ε0 ≈ 8.85 × 10−12F/m, µ = µ0 = 4π × 10−7H/m, and σ = 0.

In addition, in a linear, isotropic and conducting medium, (2.7) is also generally
expressed as

∇×H = jωε(r)E(r)+σ(r)E(r)+J0(r) = jωε0

(
εr(r) − j

σ(r)
ωε0

)
E(r)+J0(r) (2.17)

where εr(r) = ε(r)/ε0 is defined as the relative permittivity of the medium, and
J0(r) denotes the impressed current. In the derivation of (2.17), equations (2.14)-
(2.16) have been used. If we introduce the effective dielectric permittivity as

εe(r) = ε0

(
εr(r) − j

σ(r)
ωε0

)
= ε′(r) − jε′′(r) = ε0

(
ε′r(r) − jε′′r (r)

)
(2.18)

then equation (2.17) can be written as

∇ ×H = jωεe(r)E(r) + J0(r) (2.19)

In (2.19), only the impressed current J0 explicitly appears in the right-hand side. So
by defining the complex-valued permittivity, the conducting media can be treated in
the same way as the dielectric media. Consequently, (2.16) is not explicitly listed in
the constitutive relations in some literature. For simplification of notation, we omit
the subscript of εe to denote the effective permittivity in the following text.
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2.2 Wave Equations

2.2.1 Vector Wave Equations

Considering a homogeneous medium, the dielectric permittivity and permeability
are characterized as ε and µ. Taking the curl of (2.6) and substituting it for ∇ × H
in (2.7), the vector wave equation for the electric field can be obtained

∇ × ∇ × E(r) − k2E(r) = − jωµJ0(r) (2.20)

where k = ω
√
µε denotes the wavenumber of the medium where EM waves propa-

gate.
In order to get a unique solution to the above vector wave equation, some bound-

ary conditions and the radiation conditions satisfied by the electric and magnetic
fields are required, which are provided by the uniqueness theorem. For instance, in
the lossy region of interest V bounded by a closed surface S , the conditions imposed
on the tangential component n̂ × E(r) [or n̂ ×H(r))] are sufficient to determine the
EM field inside V . In addition, unique solutions for the EM field can also be ob-
tained by assigning mixture boundary conditions of the tangential components on
S , i.e., n̂ × E(r) on one part and n̂ ×H(r) on the other part of S .

For an unbounded medium, the radiation conditions should be assigned to guar-
antee the uniqueness of the solution to (2.20), which can be written as

r̂ × E(r) = ηH(r) + o
(
1
r

)
(2.21)

H(r) × r̂ =
1
η

E(r) + o
(
1
r

)
(2.22)

where r̂ = r/r is the unit vector and η =
√
µ/ε is the intrinsic impedance of the

medium. Then taking advantage of the wave equation (2.20) and the radiation con-
ditions (2.21) and (2.22), the EM field in an unbounded medium (e.g., free space)
generated by the impressed current J0 can be determined as

E(r) = jωµ
∫

V
J0(r′)Ḡ(r, r′) dr′ (2.23)

where Ḡ(r, r′) is the free-space dyadic Green’s tensor given by [3]

Ḡ(r, r′) =

[
Ī +

1
k2∇∇

]
G(r − r′) = −

1
4π

[
Ī +

1
k2∇∇

]
e− jk|r−r′ |

|r − r′|
. (2.24)
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In (2.24), Ī is the 3 × 3 identity dyadic and the scalar Green’s function

G(r − r′) = −
e− jk|r−r′ |

4π|r − r′|
(2.25)

is the solution to the inhomogeneous scalar wave equation[
∇2 + k2

]
G(r − r′) = δ(r − r′). (2.26)

The dyadic Green’s tensor Ḡ(r, r′) corresponds to the EM fields generated by the
elementary source and is the solution to the following equation

∇ × ∇ × Ḡ(r, r′) − k2Ḡ(r, r′) = Īδ(r − r′). (2.27)

It should be noted that (2.24) is obtained by using the vector field identities
∇ × ∇ × Ḡ = ∇∇ · Ḡ − ∇2Ḡ and ∇ · Ḡ = ρ/ε =

(
∇ · Ī

)
/(− jωε). Moreover, (2.23)

gives the electric field radiated by a bounded source. Without loss of generality,
its form for the electric field still holds in other situations, for instance, half-space
scenario, as long as a proper dyadic Green’s tensor is used.

2.2.2 Scalar Wave Equations

In a homogeneous, isotropic and source-free medium, the vector wave equation in
(2.20) can be modified as

∇ × ∇ × E(r) − k2E(r) = 0 (2.28)

Taking advantage of the vector field identities ∇ × ∇ × E(r) = ∇∇ · E(r) − ∇2E(r)
and ∇ · E(r) = 0, (2.28) can be rewritten as

∇2E(r) + k2E(r) = 0. (2.29)

In Cartesian coordinates, the electric field E(r) = x̂Ex + ŷEy + ẑEz, where x̂, ŷ and
ẑ are the unit vector for the three components. Therefore, (2.29) consists of three
homogeneous scalar wave equations

(∇2 + k2) ψ(r) = 0 (2.30)

where ψ(r) can be any one of the components Ex, Ey or Ez. However, the so-
lution of (2.29) is only admissible to (2.30) when it is solved with the condition
∇ ·E(r) = 0. So only two of the three equations in (2.28) are independent [2]. Nev-
ertheless, the equation (2.30) derived from electromagnetics lays the foundation for
microwave image reconstruction with scalar-wave imaging algorithms, which will
be introduced later in this chapter.
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2.3 Electromagnetic Scattering

Let us consider the scattering problem of a bounded contrast domain occupied by
scatterers embedded in an unbounded homogeneous medium. Assume the contrast
domain is V s and the dielectric permittivity and permeability of the scatterers are
ε̂s(r) and µ̂s(r), respectively. For the unbounded homogeneous medium, it is char-
acterized by the permittivity ε̂(r) and the permeability µ̂(r). With the presence of
the contrast domain, the EM fields radiated by the sources, which are indicated as
the incident fields

{
Êi(r), Ĥi(r)

}
, are perturbed and the resulting EM fields (i.e.,

perturbed fields) are denoted by {Ê(r), Ĥ(r)}. Obviously, the differences between
the perturbed fields and the incident fields lead to the scattered fields

{
Ês(r), Ĥs(r)

}
which are ascribed to the presence of the contrast domain, i.e., to the interaction
between the contrast scatterers and the incident fields. Therefore, their relations
can be written as

Ê(r) = Êi(r) + Ês(r) (2.31)

Ĥ(r) = Ĥi(r) + Ĥs(r) (2.32)

As both the perturbed fields and the incident fields satisfy Maxwell’s equations,
so we can get, according to (2.10) and (2.11), the following equations∮

C
Ê(r)dl = − jω

∫
S
µ̂s(r)Ĥ(r) · n̂ds (2.33)∮

C
Ĥ(r)dl = jω

∫
S
ε̂s(r)Ê(r) · n̂ds +

∫
S

J0(r) · n̂ds (2.34)

and ∮
C

Êi(r)dl = − jω
∫

S
µ̂(r)Ĥi(r) · n̂ds (2.35)∮

C
Ĥi(r)dl = jω

∫
S
ε̂(r)Êi(r) · n̂ds +

∫
S

J0(r) · n̂ds (2.36)

where S is a regular open surface with the contour line C. Subtracting (2.35) and
(2.36) from (2.33) and (2.34), respectively, one can obtain∮

C

[
Ê(r) − Êi(r)

]
dl = − jω

∫
S

[
µ̂s(r)Ĥ(r) − µ̂(r)Ĥi(r)

]
· n̂ds (2.37)∮

C

[
Ĥ(r) − Ĥi(r)

]
dl = jω

∫
S

[
ε̂s(r)Ê(r) − ε̂(r)Êi(r)

]
· n̂ds (2.38)
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Taking advantage of (2.31) and (2.32), the above equations can be rewritten as∮
C

Ês(r)dl = − jω
∫

S

{[
µ̂s(r) − µ̂(r)

]
Ĥ(r) + µ̂(r)Ĥs(r)

}
· n̂ ds (2.39)∮

C
Ĥs(r)dl = jω

∫
S

{[
ε̂s(r) − ε̂(r)

]
Ê(r) + ε̂(r)Ês(r)

}
· n̂ ds (2.40)

If we introduce the equivalent sources

Meq(r) = jω
[
µ̂s(r) − µ̂(r)

]
Ĥ(r), (2.41)

Jeq(r) = jω
[
ε̂s(r) − ε̂(r)

]
Ê(r), (2.42)

then (2.39) and (2.40) are rearranged as∮
C

Ês(r)dl = − jω
∫

S
µ̂(r)Ĥs(r) · n̂ ds −

∫
S

Meq(r) · n̂ ds (2.43)∮
C

Ĥs(r)dl = jω
∫

S
ε̂(r)Ês(r) · n̂ ds +

∫
S

Jeq(r) · n̂ ds (2.44)

From (2.43) and (2.44), one can observe that the scattered fields can be consid-
ered as the radiated fields generated by the equivalent sources which are dependent
on the electromagnetic properties of the scatterers. These two equations show the
volume equivalence theorem.

Using the equivalence sources, one can express the scattered electric and mag-
netic fields as [2]

Ês(r) = jωµ̂
∫

V
Jeq(r′) · Ḡ(r, r′)dr′ +

∫
V
∇ ×Meq(r′) · Ḡ(r, r′)dr′ (2.45)

Ĥs(r) = jωε̂
∫

V
Meq(r′) · Ḡ(r, r′)dr′ −

∫
V
∇ × Jeq(r′) · Ḡ(r, r′)dr′ (2.46)

As the nonmagnetic media, i.e., µ̂ = µ̂s = µ0, are considered in the study
presented in this thesis, Meq = 0 can be obtained. Then the scattered electric and
magnetic fields can be simplified as

Ês(r) = jωµ0

∫
V

Jeq(r) · Ḡ(r, r′)dr′ (2.47)

Ĥs(r) = −

∫
V
∇ × Jeq(r) · Ḡ(r, r′)dr′. (2.48)
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In practice, microwave imaging systems only acquire the electric field measure-
ments for image reconstruction. Hence, we can mainly focus on the discussion of
the electric field relation, i.e., (2.47), in the following.

Substituting (2.41) into (2.47) and (2.48), we obtain

Ês(r) = jωµ̂
∫

V
τ(r′)Ê(r′) · Ḡ(r, r′)dr′ (2.49)

where
τ(r) = jω

[
ε̂s(r) − ε̂

]
(2.50)

is called the object function or contrast function. In (2.49), both the object function
τ(r) and the perturbed electric field Ê(r) are unknown. Meanwhile, the perturbed
electric field Ê(r) is also related to the permittivity of scatterers. Therefore, to
reconstruct the object function based on some measurements outside of the region
of interest becomes a very difficult problem. However, in some circumstances,
(2.49) can be linearized by introducing some approximation models, which will
alleviate the inversion/image reconstruction processing.

2.4 Born Approximation Model

When the scatterer has a small contrast relative to the background medium, the
Born approximation can be applied. The simplest (i.e., the first order) Born approx-
imation assumes that the perturbed electric field in the integrand in (2.49) can be
approximated by the incident one

Ês(r) = jωµ̂
∫

V
τ(r′)Ê(r′) · Ḡ(r, r′)dr′

≈ jωµ̂
∫

V
τ(r′)Êi(r′) · Ḡ(r, r′)dr′ (2.51)

As the incident field Ê(r′) is independent from the scatterers, equation (2.51), com-
pared to (2.49), is linearized with respect to the object function. Meanwhile, the
object function becomes the only unknown in (2.51) which is easy to solve. The
condition for the first-order Born approximation to be valid for weak scatterers can
be expressed as

kba sup
|r|<a
|εr(r) − 1| < 2πζ (2.52)

where kb is the wavenumber of the EM signal in the background medium, a is the
radius of the minimum circle that can enclose the object cross section, and ζ is a
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constant. In [4], Slaney et al. set ζ = 0.25 by investigating a plane wave impinging
onto a cylindrical object and requiring the phase differences between the incident
wave and the wave traveling through the object to be less than π.

Some other Born approximations (e.g., the second-order Born approximation
and extended Born approximation) have been developed and provide a better re-
construction of scatterers. However, considering the computational simplicity, we
still use the first-order Born approximation for the algorithm development in this
thesis.

2.5 Imaging Reconstruction Methods

Based on the above formulation, many different imaging algorithms have been
developed for microwave imaging, such as delay-and-sum, filtered back projec-
tion, Kirchhoff migration, Range migration algorithm (RMA), linear inversion al-
gorithms, etc. In principle, we can divide these algorithms into two categories: (1)
Radar-based (or scalar-wave based) approaches and (2) Inverse-based approaches.
The radar-based approaches typically treat the EM signals as the scalar wave for im-
age formation, especially for those algorithms initially developed for seismic/acoustic
imaging. These approaches are usually computationally efficient and provide the
potential for real-time/near real-time imaging. By contrast, the inverse-based ap-
proaches take into account the vector nature of the EM signals and significantly
improve image qualities at the expense of much higher computational cost. More-
over, the inversion-based approaches are to some extent applicable to more general
imaging configurations. For convenience, a few algorithms used in the later chap-
ters are briefly introduced below.

2.5.1 Radar-based Approaches

As presented above, each of the electric field components in Cartesian coordinates
satisfies the scalar wave equation (2.30). Hence, for the same polarized signals
acquired over a measurement surface, they can be back-propagated to the time zero
to reconstruct the image of scatterers by exploiting the exploding reflector model
(ERM) which assumes that the reflected signals can be considered as the radiated
signals from a virtual source placed at the scatterer’s position but propagating with
half of the real speed in the practical medium. This back propagation process can
be implemented in either spatial-time domain or frequency-wavenumber domain
and accordingly different imaging algorithms are developed. Two examples of such
algorithms are Kirchhoff migration and range migration.
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2.5.1.1 Kirchhoff Migration

Kirchhoff migration, which was an approach originally proposed to the migration
of seismic data based on the scalar wave equation, utilizes the Kirchhoff integral
to backpropagate the acquired signals to the time zero to reconstruct the image of
scatterers [5]. The Kirchhoff integral can be derived from Green’s theorem that
relates the wavefield in the interior of a closed surface and the observations on the
surface [6], which is given by1

U(r, t) = −

∫
dt0

∫
S 0

dS 0

[
G(r, r0, t, t0)

∂U
∂n

(r0, t0) − U(r0, t0)
∂G
∂n

(r, r0, t, t0)
]

(2.53)
where U(r, t) is the wave field in a volume bounded by the surface S 0, and r is
the vector from the origin to a wavefield point. r0 is the vector from the origin
to a point on the surface of integration S 0. t0 is the time at which the wavefield
is observed, and n is the unit vector normal to the surface S 0. G(r, r0, t, t0) is the
Green’s function that is a solution to the scalar wave equation for a point source at
r, which is the time domain counterpart of the Green’s function in (2.25).

To evaluate the integral in (2.53), both the wave field U(r0, t0) and its derivative
in the direction normal to the surface S 0 are required. To circumvent the require-
ment for the derivatives of U(r0, t0) in the normal direction n, the Kirchhoff approx-
imation can be introduced, which specifies the Green’s function on the surface S 0
by

G = 0,
∂G
∂n

= 2
∂Gfs

∂n
(2.54)

and
Gfs = −

δ(t − t0 − R/v)
4πR

, R = |r − r0|.

where v is the propagation velocity of EM waves in the medium. Then (2.53) can
be simplified as

U(r, t) = −
1

2π

∫
dt0

∫
U(r0, t0)

∂

∂n

[
δ(t − t0 − R/v)

R

]
dS 0 (2.55)

Equation (2.55) is the so-called Kirchhoff integral. After some algebraic manipula-
tions, it can be explicitly written as

U(r, t) =
1

2π

∫
dS 0

∂R
∂n

[
∂U(r0, t − R/v)

∂t
1

Rv
+

U(r0, t − R/v)
R2

]
(2.56)

1Here the factor − 1
4π is included in the Green’s function G(r, r0) compared to that in Reference [6].
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Based on (2.56), the Kirchhoff migration algorithm for image reconstruction is ob-
tained by setting t = 0, which is expressed as

f (r) = U(r, 0) =
1

2π

∫
∂R
∂n

[
∂U(r0, t − R/v)

∂t
1

Rv
+

U(r0, t − R/v)
R2

]
dS 0|t=0 (2.57)

2.5.1.2 Range Migration

Range migration is another kind of popular imaging algorithm which processes
the image reconstruction in the spatial Fourier (i.e., wavenumber) domain. It has
been widely used for synthetic aperture radar [7], seismic imaging, computed to-
mography. Similar to Kirchhoff migration, range migration algorithms can also be
derived from the scalar wave equation. However, as the range migration algorithm
can take advantage of the fast Fourier transform in the implementation, it is more
efficient than Kirchhoff migration which performs the image reconstruction in the
spatial-time domain.

Considering the scalar wave equation (2.26), it can be explicitly expressed in a
Cartesian coordinate system as[

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 + k2
]

U(r, r0, ω) = δ(r − r0) (2.58)

Taking the Fourier transform with respect to x and z (i.e., cross-range variables) on
both sides of (2.58), we obtain[

−k2
x − k2

z +
∂2

∂y2 + k2
]

U(kx, kz, y, k) = 0 (2.59)

where kx and kz represent the wavenumber-domain counterparts of x and z, respec-
tively. Note that in the above derivation the velocities of wave propagation in the
cross-range directions are assumed to be constant. (2.59) is a second-order dif-
ferential equation with respect to y. Utilizing the ERM and considering only the
incoming wave field, one can get the solution to (2.59) as

U(kx, kz, y, k) = U(kx, kz, y = 0, k)e− jkyy (2.60)

where
ky =

√
k2 − k2

x − k2
z (2.61)

and k = 2ω/v, in which the factor “2” results from half of the velocity of wave
propagation in the ERM model. Taking the inverse Fourier transform of (2.60), the
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migrated image in space is obtained

f (x, y, z, t = 0) =

$
U(kx, kz, y = 0, k) e− j(kx x+kyy+kzz)dkxdkzdω (2.62)

In (2.62), the wave field is extrapolated through a phase-shift [see (2.60)] before
the inverse FT. So it is also known as Gazdag’s phase-shift migration, which can
tackle the variations of the propagation velocities in the down-range direction. In
a homogeneous medium, the wave propagation velocity is constant. Hence, the
integral element dω in (2.62) can be converted into dky. According to the dispersion
relation (2.61), one can get

dω =
kyv
4ω

dky (2.63)

Substituting (2.63) for dω, (2.62) can be rewritten as

f (x, y, z, t = 0) =
v
4

$
ky

ω
U(kx, kz, y = 0, k) e− j(kx x+kyy+kzz)dkxdkydkz (2.64)

Equation (2.64) is the Fourier transform of ky
ωU(kx, kz, y = 0, k) with respect to

kx, ky, and kz. However, U(kx, kz, y = 0, k) is usually given in an even grid of
k but uneven in ky, which hinders the application of the 3-D inverse fast Fourier
transform. To overcome this problem, a variable change from k to ky is needed
to transform U(kx, kz, y = 0, k) to Ũ(kx, ky, kz, y = 0). This can be implemented
by Stolt interpolation which is a 1-D interpolation from uneven data to even data
[8]. By properly warping the scattered data in the spatial Fourier domain, the Stolt
interpolation accurately corrects the wavefront curvature of the wave fields scattered
from the scatterers. Finally, the migrated image can be expressed as

f (x, y, z, t = 0) =

$
Ũ(kx, ky, kz, y = 0) e− j(kx x+kyy+kzz)dkxdkydkz (2.65)

Due to the Stolt interpolation, the range migration is also known as the Stolt mi-
gration. The range migration can be used to migrate the radar data collected in a
(quasi-)monostatic configuration. Its implementation steps are briefly described as

(1) Applying the Fourier transform to the scattered data in the cross-range direc-
tions to obtain U(kx, kz, y = 0, k);

(2) Scaling U(kx, kz, y = 0, k) by the factor kyv
4ω , and then performing the Stolt

interpolation with the scaled data to get Ũ(kx, ky, kz, y = 0);

(3) Taking 3-D IFFT of Ũ(kx, ky, kz, y = 0) to get migrated images.
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2.5.2 Inversion-based Approaches
Inversion-based approaches form another important group of the methods for mi-
crowave imaging. These approaches address the scattered EM data inversion in
many different ways based on the imaging configuration, operation condition and
the target itself (i.e., strong or weak scatterers) [9]. For weak scatterers, the Born
approximation is usually used to linearize the scattering model and simplify the in-
version process. We assume the Born approximation is also valid for the scenarios
considered in this thesis.

Combining (2.51) and (2.23), the scattered electric field under the Born approx-
imation can be written as

Ês(r) = jωµ0

∫
V
τ(r′)Ḡ(r, r′)dr′ · jωµ0

∫
V s

J0(rs)Ḡ(r′, rs)drs

= −ω2µ2
0

∫
V
τ(r′)Ḡ(r, r′)dr′

∫
V s

J0(rs)Ḡ(r′, rs)drs
(2.66)

where V represents the domain occupied by the scatterers and V s denotes the vol-
ume of the source. Meanwhile, µ̂ = 1 has been used to consider the nonmagnetic
media.

In practice, microwave imaging systems generally illuminate the region of in-
terest with some isolated sources and accordingly measure the scattered fields at
some discrete positions in the observation domain. In this thesis, we consider the
configuration in which both the electric field sources and the receivers are placed on
a plane, for instance, xoz plane, and y points towards the region of interest. Assume
a point source Jβ = w(ω)bβ, where w(ω) is the source wavelet spectrum and bβ
denotes the orientation of the source antennas, is located at rt, the scattered field
acquired by a receiver at rr with the orientation bα can be obtained from (2.66) as

Es
αβ(r

r, rt, ω) = −ω2µ2
0

∫
V
τ(r′)bαḠ(rr, r′)dr′

∫
V′
δ(rs − rt)JβḠ(r′, rs)drs

= −ω2µ2
0w(ω)

∫
V
τ(r′)bαḠ(rr, r′)Ḡ(r′, rt)bβdr′ (2.67)

By introducing

S (ω) = −ω2µ2
0w(ω) (2.68)

Dαβ(rr, rt; r′, ω) = bαḠ(rr, r′)Ḡ(r′, rt)bβ (2.69)

Then (2.67) can be rewritten as

Es
αβ(r

r, rt, ω) =

∫
V

Dαβ(rr, rt; r′, ω)τ(r′)S (ω)dr′ (2.70)
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where Dαβ(rr, rt; r′, ω) represents the wave-field extrapolator propagating from a
bβ-polarized transmitter at rt to a scatterer at r′ and then to a bα-polarized receiver
at rr. For numerical processing, (2.70) can be discretized as

Es
αβ(r

r, rt, ω) = S (ω) · ∆V ·
N∑

i=1

Dαβ(rr, rt; r′i , ω)τ(r′i) (2.71)

where N is the number of discrete cells included in the investigation domain, and
∆V is the volume of each cell. Considering all the measurements acquired over P
discrete frequencies by M transceivers/transmitter-receiver pairs in the observation
domain, one can obtain

s = D · χ (2.72)

where

s = vec ([s1, s2, · · · , sM]) (2.73)

sm =
[
Es
αmβm

(rr
m, r

t
m, ω1), Es

αmβm
(rr

m, r
t
m, ω2), · · · , Es

αmβm
(rr

m, r
t
m, ωP)

]T
,

m = 1, 2, · · · ,M (2.74)

D = [D1,D2, · · · ,DM]T (2.75)

Dm =
[
D(1)

m , D(2)
m , · · · , D(P)

m

]
, m = 1, 2, · · · ,M (2.76)

D(p)
m =

[
Dαmβm(rr

m, r
t
m; r′1, ωp), Dαmβm(rr

m, r
t
m; r′2, ωp), · · · , Dαmβm(rr

m, r
t
m; r′N , ωp)

]T
,

p = 1, 2, · · · , P (2.77)

χ =
[
τ(r′1), τ(r′2), · · · , τ(r′N)

]T
. (2.78)

In (2.73), vec(X) represents an MN ×1 vector by stacking the columns of an M×N
matrix X. Moreover, the term S (ω) · ∆V has been suppressed for simplification in
(2.72). To reconstruct the contrast function χ in the investigation domain, (2.72)
has to be inverted. However, due to the noise and/or measurement errors of the
imaging system, the inversion problem of the system (2.72) is generally ill-posed,
which may cause the issues related to the existence, uniqueness, and stability of the
solution χ. To resolve the nonexistence, non-uniqueness and stability of the solu-
tion, many different inversion methods have been proposed, including (truncated)
singular value decomposition-type methods and regularization-based methods [9].
The singular value decomposition-type methods provide a generalized solution to
(2.72) in the least-squares sense while regularization-based methods enable to in-
corporate some prior information about the scene to be inspected with the data to
get a more stable solution.
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2.6 Conclusion

In this chapter, an overview of the mathematical tools that are required in the fol-
lowing chapters is given. Based on Maxwell’s equations, the EM wave propagator
has been introduced. Then the image reconstruction methods are briefly reviewed.
In particular, the radar-based imaging and linear inversion methods are presented.
As a rule, all methods are formulated in either space-frequency or wavenumber-
frequency domains except Kirchhoff migration which is formulated in the space-
time domain. It is also shown that the radar-based imaging methods (such as Kirch-
hoff and RMA) are typically formulated for backscattered fields, while the inversion
methods are generally formulated including multi-static scattering.
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3
Rotated Arrays for Fully

Polarimetric Imaging

3.1 Introduction

The synthetic aperture technique achieves a high cross-range resolution by moving
a single antenna/small antenna array to simulate a large array aperture. The antenna
(array) is generally linearly translated over the array aperture and the EM signals
are collected at each spatial position. Then the acquired EM signals are focused
with scalar-wave based imaging algorithms [1, 2]. For fully polarimetric measure-
ments, the co-pol and cross-pol signals can also be jointly migrated via a matrix
inversion to merge all the polarimetric information in one image [3]. All of these
algorithms assume that the polarizations of the signals acquired within the aper-
ture are constant. However, for rotated antenna arrays, the motions of the antennas
contain not only linear translations but also rotations in space. Due to the rotation,
the orientations (i.e., polarizations) of linearly polarized antennas are changed and
thus the polarizations of the EM signals acquired by the rotated arrays are varying
within the synthetic aperture, which violates the assumption of traditional scalar-
wave based imaging algorithms. If these algorithms are still used to process the

Part of this chapter was published as: J. Wang, P. Aubry, and A. Yarovoy, "A Novel Approach to
Full-Polarimetric Short-Range Imaging With Copolarized Data," IEEE Transactions on Antennas and
Propagation, 64 (11), pp. 4733-4744, 2016. J. Wang, P. Aubry, and A. Yarovoy, "A Novel Rotated
Antenna Array Topology for Near-Field 3-D Fully Polarimetric Imaging," IEEE Transactions on
Antennas and Propagation, 66(3), pp. 1584-1589, 2018.
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polarization-varied EM data directly, the quality of the resultant images could be
degraded and the polarimetric information of targets is destroyed. Although more
advanced imaging algorithms can be developed to process the polarization-varied
EM data by considering full-wave radiation patterns of antennas, which will be dis-
cussed in Chapter 4, scalar-wave based imaging algorithms (e.g., migration meth-
ods) are more efficient compared to them.

The aim of this chapter is to explore the possibility to circumvent the polariza-
tion variations of the EM signals acquired with rotated arrays by specifically design-
ing the array topologies, and then to utilize traditional scalar-wave based algorithms
for image formation. Firstly, the effects of the variations of antenna orientations
(i.e., polarizations) on the recorded EM signals are investigated. Then a novel ap-
proach to fully polarimetric imaging with rotated antenna arrays, which includes
rotated array design and full-pol signal reconstruction, is proposed to overcome the
effects of the polarization variations of the acquired EM signals. Two approaches
for rotated antenna array design are proposed. The proposed rotated arrays collect
either three co-polarized or two co-pol and one cross-pol measurements in a “lo-
cal” polarization coordinate system at each position. Then the full-pol signals in
the aligned H/V polarization bases can be retrieved from the three “locally” polar-
ized measurements at each position through a simple linear transformation. So they
facilitate the applicability of traditional scalar-wave based imaging algorithms for
polarimetric image formation and targets’ full-pol feature extraction with rotated
arrays.

The rest of the chapter is organized as follows. In section 3.2, the scattering for-
malism is briefly reviewed. The scattered wave field extrapolator for a rotated an-
tenna is discussed in section 3.3. Two approaches to design rotated arrays for fully
polarimetric imaging are proposed in the same section. Section 3.4 shows two ex-
amples of rotated array design with the proposed approaches. Then in sections 3.5
and 3.6 the effectiveness and accuracy of the rotated arrays for fully polarimetric
imaging are demonstrated through numerical simulations and experiments. Finally,
conclusions are drawn in section 3.7.

3.2 Scattering Formulation

Here the monostatic radar configuration is considered. We assume the antennas are
deployed on the x1-x2 plane, and the x3-axis points towards the observation scenario
and forms a right-hand coordinate system. Based on the Born approximation, the
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scattering process can be represented by a linear expression [3]

Es
αβ

(
xR, xT , ω

)
=

∫
V(xc)

Dαβ

(
xR, xT

∣∣∣ xc, ω
)
χ
(
xc) Jβ

(
xT , ω

)
d V (3.1)

where ω = 2π f is the angular frequency and x = (x1, x2, x3) collects the spatial
coordinates. The superscripts R and T refer to the receiving and transmitting anten-
nas while the subscripts α and β take values {1, 2} and represent, respectively, the
receiving and transmitting antennas’ orientations along the x1 or x2 direction. χ (xc)
is the contrast function in the position xc, Jβ(xT , ω) is the point source located at the
position xT , and Dαβ

(
xR, xT

∣∣∣ xc, ω
)

is the forward wavefield extrapolator from the
transmitting antenna at xT to the scatter at xc and then to the receiving antenna at
xR. The contrast function χ is defined as χ (xc) = η̂s − η̂, which is the difference of
the physical properties of the scatter η̂s and the background η̂. The physical prop-
erty η̂ is defined as η̂ = σ + jωε, where j =

√
−1, σ is the conductivity, ε is the

permittivity. The point source Jβ(xT , ω) can be denoted as

Jβ
(
xT , ω

)
= S (ω) bβ

(
xT

)
(3.2)

where S (ω) is the source wavelet radiated by the source antenna and bβ indicates
its orientation along the x1- or x2-direction. The forward wavefield extrapolator
Dαβ(xR, xT , ω) is defined by an inner product

Dαβ

(
xR, xT

∣∣∣ xc, ω
)

=

3∑
`=1

Gα`

(
xR

∣∣∣ xc, ω
)
G`β

(
xc

∣∣∣ xT , ω
)

(3.3)

where ` ∈ {1, 2, 3} denotes the electric field directions along the axes. Green’s
function G`β(xc|xT , ω) describes the propagation of an electromagnetic wave from
the source at xT to the scatterer at xc and Green’s function Gα`

(
xR

∣∣∣ xc, ω
)

expresses
the propagation from the scatterer in the position xc to the receiving antenna at xR.
The forward wavefield extrapolator shown in (3.3) describes the scattering process
with xβ-oriented transmitting antenna and xα-oriented receiving antenna. Hence
(3.1) gives the scattered wave from an illuminated volume acquired with an xα-
oriented receiving antenna related to an xβ-oriented transmission. Accounting for a
pair of orthogonal orientations of the receiving antennas on the acquisition plane,
the observed waves in the two directions can be arranged as a vectorEs

1

(
xR, xT , ω

)
Es

2

(
xR, xT , ω

) = S (ω) ·
∫

V(xc)
D

(
xR, xT

∣∣∣ xc, ω
) b1

(
xT

)
b2

(
xT

) χ (
xc) d V (3.4)
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where
[
Es

1, Es
2

]ᵀ
is a measured vector by two receiving antennas with orthogonal

orientations corresponding to two orthogonally polarized transmission, and the su-
perscript ᵀ refers to matrix transpose operation. It is given byEs

1

(
xR, xT , ω

)
Es

2

(
xR, xT , ω

) =

Es
11

(
xR, xT , ω

)
+ Es

12

(
xR, xT , ω

)
Es

21

(
xR, xT , ω

)
+ Es

22

(
xR, xT , ω

) (3.5)

and D represents the forward wavefield extrapolator that is given by

D =

D11
(
xR, xT

∣∣∣ xc, ω
)

D12
(
xR, xT

∣∣∣ xc, ω
)

D21
(
xR, xT

∣∣∣ xc, ω
)

D22
(
xR, xT

∣∣∣ xc, ω
)

=

[
GR

11 GR
21 GR

31
GR

12 GR
22 GR

32

] G
T
11 GT

12
GT

21 GT
22

GT
31 GT

32


(3.6)

where GR is short for GR
(
xR|xc, ω

)
and GT for GT

(
xc|xT , ω

)
. We focus on the

monostatic configuration here, so transmitting and receiving antennas are located
at the same position xA, i.e., xT = xR = xA for each observation. Consequently,
Green’s functions of transmitting and receiving antennas are equal in the corre-
sponding electric field directions. Meanwhile, using the reciprocity properties of
propagation, the elements of D can be explicitly written as

D11 = G2
11 + G2

21 + G2
31

D12 = G11G12 + G21G22 + G31G32

D21 = G11G12 + G21G22 + G31G32

D22 = G2
12 + G2

22 + G2
32

(3.7)

where Green’s functions G are functions of xc, xA, and ω. From (3.7), it can be
observed that D12 equals D21 in the monostatic configuration, which is the result of
the reciprocity theorem.

3.3 Wavefield Extrapolator for Rotated Antennas

The variation of the orientations of transmitting/receiving antennas changes the po-
larizations of the radiated/received electromagnetic fields. In the monostatic config-
uration, simultaneously rotating the orientations of the transmitting and receiving
antennas equivalently rotates the polarization coordinate system of measurement.
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Assume the new polarization coordinate system is rotated with an angle θ in a
clockwise direction with respect to the original one [e.g., (b1, b2) base], then the
received signal in the new polarization bases can be related to the measurements
before rotation at the same position through the rotation matrixEs

1

(
xR, xT , ω

)
Es

2

(
xR, xT , ω

) = R

 Es
θ

(
xR, xT , ω

)
Es
θ⊥

(
xR, xT , ω

)b1
(
xT

)
b2

(
xT

) = R

 bθ
(
xT

)
bθ⊥

(
xT

)
(3.8)

where R is the rotation matrix and is expressed as

R =

[
cos θ sin θ
− sin θ cos θ

]
(3.9)

Inserting (3.8) into (3.4) and performing a simple algebraic manipulation result in Es
θ

(
xR, xT , ω

)
Es
θ⊥

(
xR, xT , ω

) = S (ω)
∫

V(xc)
R−1D

(
xR, xT

∣∣∣ xc, ω
)

R

 bθ
(
xT

)
bθ⊥

(
xT

) χ (
xc) d V (3.10)

where R−1 is the inverse matrix of R. Equation (3.10) formulates the scattering
process in the polarization bases (θ, θ⊥). Compared to (3.4), in the polarization
bases (θ, θ⊥) the forward wavefield extrapolator, denoted by D̂, can be defined as

D̂ = R−1D
(
xR, xT

∣∣∣ xc, ω
)

R (3.11)

Equation (3.11) describes the relationship between the forward wavefield extrapo-
lators in two different polarization bases (b1, b2) and (θ, θ⊥). Substituting (3.9) for
R, D̂ can be explicitly written as

D̂ =

[
D̂11 D̂12
D̂21 D̂22

]
(3.12)

where
D̂11 = cos2 θ · D11 − sin θ cos θ · D21 − sin θ cos θ · D12 + sin2θ · D22

D̂12 = sin θ cos θ · D11 − sin2θ · D21 + cos2θ · D12 − sin θ cos θ · D22

D̂21 = sin θ cos θ · D11 + cos2θ · D21 − sin2θ · D12 − sin θ cos θ · D22

D̂22 = sin2θ · D11 + sin θ cos θ · D21 + sin θ cos θ · D12 + cos2θ · D22

(3.13)
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In practice, quad-polarimetric radar systems radiate two orthogonally polarized
electric fields separately in time or with orthogonal waveforms for identification;
then for each polarized transmission, two orthogonally polarized components are
collected. This operation can be represented by setting the vector [bθ(xT ), bθ⊥(xT )]ᵀ

as [1, 0]ᵀ or [0, 1]ᵀ for the two orthogonally polarized transmissions. Utilizing the
four combinations of the polarizations of transmitting and receiving antennas, the
acquired polarimetric measurements are

Es
θθ

(
xR, xT , ω

)
= S (ω)

∫
V(xc)

D̂11χ
(
xc) d V

Es
θ⊥θ

(
xR, xT , ω

)
= S (ω)

∫
V(xc)

D̂12χ
(
xc) d V

Es
θθ⊥

(
xR, xT , ω

)
= S (ω)

∫
V(xc)

D̂21χ
(
xc) d V

Es
θ⊥θ⊥

(
xR, xT , ω

)
= S (ω)

∫
V(xc)

D̂22χ
(
xc) d V

(3.14)

Applying (3.1) and (3.13) to (3.14), we can get

Es
θθ

(
xR, xT , ω

)
= cos2θ · E11 − sin θ cos θ · E21

− sin θ cos θ · E12 + sin2θ · E22

Es
θ⊥θ

(
xR, xT , ω

)
= sin θ cos θ · E11 − sin2θ · E21

+cos2θ · E12 − sin θ cos θ · E22

Es
θθ⊥

(
xR, xT , ω

)
= sin θ cos θ · E11 + cos2θ · E21

−sin2θ · E12 − sin θ cos θ · E22

Es
θ⊥θ⊥

(
xR, xT , ω

)
= sin2θ · E11 + sin θ cos θ · E21

+ sin θ cos θ · E12 + cos2θ · E22

(3.15)

As E21 = E12 in the monostatic configuration, (3.15) can be further simplified as

Es
θθ

(
xR, xT , ω

)
= E11cos2θ − E12 sin 2θ + E22sin2θ

Es
θ⊥θ

(
xR, xT , ω

)
=

(E11 − E22)
2

sin 2θ + E12 cos 2θ

Es
θθ⊥

(
xR, xT , ω

)
=

(E11 − E22)
2

sin 2θ + E12 cos 2θ

Es
θ⊥θ⊥

(
xR, xT , ω

)
= E11sin2θ + E12 sin 2θ + E22cos2θ

(3.16)
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In (3.16), Es
θ⊥θ

is equal to Es
θθ⊥

, which agrees with the reciprocity theorem. Another
fact one can observe is that the measurement Es

θθ should be obtained by turning
90◦ (or 270◦) clockwise the orientations of the transmitting-receiving antennas for
Es
θ⊥θ⊥

. This can be demonstrated by replacing θ in the last line of (3.16) with θ+90◦

(or θ + 270◦) such that the first line in (3.16) arrives. It shows the self-consistency
of the derivation.

The equations in (3.16) give the relationships among the polarimetric measure-
ments in two sets of polarization bases, i.e., (θ, θ⊥) and (b1, b2). So one can see
that as long as we get the fully polarimetric measurements with respect to a rotated
polarization coordinate system, the fully polarimetric signals in terms of the aligned
polarization bases, for example, (b1, b2), can be reconstructed via (3.16). This pro-
vides the first method to design a rotated array for fully polarimetric imaging.

Moreover, the equations in (3.16) reveal that each polarimetric measurement in
the (θ, θ⊥) bases is a function of the fully polarimetric signals in the (b1, b2) bases at
the same position. Taking the first equation in (3.16) as an example, it shows that the
θ co-polarized scattered waves, which are acquired with transmitting and receiving
antennas with orientations of θ from the x1-axis, contain both the co-polarized (i.e.,
E11 and E22) and cross-polarized (i.e., E12) information that are measured by b1-
or b2-polarized antennas. Therefore, to extract or reconstruct the fully polarimetric
information of targets with rotated antennas, a second approach is to take three
co-polarized measurements with antennas of three different orientations. Then, the
application of the relation in (3.16) helps to reconstruct the full-polarized scattered
signals that could be observed by b1- or b2-polarized antennas. More specifically,
assume the three antennas for co-pol measurements are oriented with angles of θ1,
θ2, and θ3 from the x1-axis, then this approach can be expressed as

Es
θ1θ1

(
xR, xT , ω

)
= cos2θ1 · E11 − sin 2θ1 · E12 + sin2θ1 · E22

Es
θ2θ2

(
xR, xT , ω

)
= cos2θ2 · E11 − sin 2θ2 · E12 + sin2θ2 · E22

Es
θ3θ3

(
xR, xT , ω

)
= cos2θ3 · E11 − sin 2θ3 · E12 + sin2θ3 · E22

(3.17)

which gives the relations of three co-pol measurements with orientations of θ1, θ2
and θ3 with the fully polarimetric measurements E11, E12 and E22 in the linear
polarization bases (b1, b2). Solving the system of linear equations in (3.17) recon-
structs the observables E11, E12 and E22 in the linear polarization bases (b1, b2)
required by the conventional fully polarimetric imaging approaches. Then, the re-
constructed measurements E11, E12, and E22 can be processed by employing either
the scalar-wave based imaging algorithms or the matrix-based inversion algorithm.



36 Chapter 3. Rotated Arrays for Fully Polarimetric Imaging

4 x

y

o

Antenna

(a)

4 x

y

o

Transceiver

(b)

Figure 3.1: Topologies of the rotated arrays for fully polarimetric imaging designed with (a) the first
approach based on (3.16) (referred to as Rotated Array I), and (b) the second approach based on (3.17)
(referred to as Rotated Array II).
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Figure 3.2: Operation Scheme of the Rotated Array I to acquire two “local” co-pol and one cross-pol
measurements. (a), (b) and (c) illustrate the two co-pol and one cross-pol measurements at a position
on the y-axis acquired sequentially by three antennas on the same circle.
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Figure 3.3: Operation scheme of the Rotated Array II to acquire three co-pol measurements. (a), (b)
and (c) illustrate the three different co-pol measurements at a sampling position on the y-axis acquired
sequentially by three antennas on the same circle.
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Figure 3.4: Topologies of traditional fully polarimetric imaging arrays: (a) HH copol array, (b) HV
cross-pol array, and (c) VV copol array.

3.4 Rotated Antenna Arrays Design

3.4.1 Array Topologies

In this section, the proposed approaches to full-polarized signal acquisition above
are applied to design rotated antenna arrays which could be used in, for example,
the GPR systems for the TBM applications.

Firstly, one rotated array topology can be proposed based on the first approach,
which measures two co-pol and one cross-pol signals at each position with respect
to the “local” polarization coordinate system. Assume the antenna elements are
distributed along three radial directions over several concentric circles. The anten-
nas on two of the radial directions are placed along the “local” polarization bases
to collect the two co-pol components while the transmitting and receiving antennas
on the third radial directions are placed orthogonally at each position to take the
cross-pol measurements. Figure 3.1(a) illustrates such a topology, where the “lo-
cal” polarization bases are defined as the vectors parallel and perpendicular to the
local radius. For convenience, this rotated array is referred to as Rotated Array I in
the following. Its operation scheme is shown in Figure 3.2. With its rotation, the
Rotated Array I collects two “local” co-pol and one cross-pol EM signals when the
antennas pass by the same sampling positions. As an example, the polarizations of
the three measurements acquired by the Rotated Array I at a position on the y-axis
are indicated in Figure 3.2.

Next, utilizing the second approach proposed above, another rotated array topol-
ogy can be designed for full-pol imaging by just recording three co-pol measure-
ments at each position. Similar to the Rotated Array I, the antennas are placed in
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Figure 3.5: Geometry configuration for rotated array imaging.

three radial directions over a series of concentric circles. The antennas in the same
radial direction are set with the same orientation but in different radial directions
the antenna orientation angles formed with respect to the corresponding radius are
different. Figure 3.1(b) shows an example of a rotated array when the three angles
formed between antenna axis and the corresponding radius are 0◦, 45◦ and 90◦,
which is referred to as Rotated Array II. With the rotation of the circular disc, three
co-polarized measurements are acquired when the three antennas on the same circle
sequentially pass by one particular sampling position. This operation mechanism
for the signal acquisition at a point on the y-axis is shown in Figure 3.3. One may
note that polarizations of the three measurements with both Rotated Array I and II
are still distinct at different spatial points as the antenna array rotates circularly. But
employing (3.16) and (3.17), the full-pol signals in an aligned polarization coordi-
nate system can be reconstructed from the measurements of Rotated Array I and II,
respectively. Furthermore, to get sufficient spatial observations within the aperture,
the radii of concentric circles and the azimuthal sampling intervals with the rotation
are determined by the sampling criteria and will be discussed in next section.

3.4.2 Sampling Criteria

The rotated antenna array synthesizes a planar circular aperture (i.e., RadSAR) for
the 3-D imaging and takes spatial samples over a polar grid, as shown in Figure 3.5.
The numbers of antennas along a radial direction and azimuthal samples can be
determined based on the polar sampling analysis. To avoid aliasing, it is derived for
narrowband (or monochromatic) systems in [4] that regular sampling is performed
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along the radial direction and equi-arc-length sampling in azimuth. The azimuthal
sampling interval is

∆ϕ = 2π/(2N + 1), N = dKare (3.18)

where Ka is the maximum wavenumber related to the scenario, r denotes the radius
and N is the smallest integer larger than or equal to Kar. The radial sampling
constraint can be obtained in a similar way to the linear arrays. Based on the Nyquist
criterion, it should satisfy

∆r 6 λ
√

(Ra + a)2 + R2
0 / [4(Ra + a)] (3.19)

where λ is the wavelength of the highest frequency of the signal, Ra is the radius of
the antenna aperture, R0 is the distance from the target to antenna aperture, and a
is the radius of the smallest sphere circumscribing the object. For typical imaging
systems, the values of the radius of the antenna aperture, the extension of the object,
and the distance between antenna aperture and the object are comparable; thus the
radial sampling interval is on the order of λ/2.

In addition, we have to mention that combining ultra-wideband (UWB) tech-
niques these sampling constraints could be relaxed to take sparse measurements
without causing aliasing, especially when the fractional bandwidth is larger than
100%. This is due to the limited interference region of UWB pulses in the space
domain [5]. To design a particular sparse sampling strategy for UWB systems in-
volves the spatial sampling (or antenna array) optimization, which will be discussed
in Chapter 5. For simplicity, in the following examples and analyses, we will use
the equal-angular sampling strategy according to Nyquist criterion.

3.5 Numerical Simulation

In this section, numerical electromagnetic simulations were performed to demon-
strate the effectiveness of the proposed approaches to fully polarimetric information
retrieval and imaging. The simulation models were implemented with the applied
EM simulation software FEKO in which the Method of Moments (MoM) solver is
utilized to solve the integral equations. In the models, Hertz dipoles were used as
transmitting and receiving antennas. The operational signal bandwidth was from
2 to 10 GHz. For comparison, simulations were carried out for both the proposed
rotated arrays [Figures 3.1(a) and (b)] and their traditional counterpart (Figure 3.4)
for fully polarimetric imaging. Due to the feature of the MoM solver, the EM
simulations were implemented in the frequency domain. The synthetic data were
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Figure 3.6: The normalized focused patterns of traditional and rotated arrays with focal point
at (4λc, 10λc, 0) for differently polarized signals. The focusing patterns of traditional array for: (a)
HH polarization, (b) HV polarization, (c) VV polarization. (d), (e), and (f) Corresponding contour
plots at −25 dB beamwidths. The focused patterns of Rotated Array I for: (g) HH polarization, (h)
HV polarization, and (i) VV polarization. (j), (k), and (l) Corresponding contour plots at −25 dB
beamwidths. (Legend of Fig 3.6 continued on next page)
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(Legend continued from previous page)
The focusing patterns of Rotated Array II for: (m) HH polarization, (n) HV polarization, (o) VV
polarization. (p), (q), and (r) Corresponding contour plots at −25 dB beamwidths. The ratios between
the maximums of focused HH and HV patterns and between the maximums of focused VV and HV
patterns are 16.4 and 16.6, respectively.

converted to the time domain by using the Fast Fourier Transform (FFT) after ap-
plying a Hanning window. Then the time-domain polarized data were focused using
Kirchhoff migration (2.57) to obtain the fully polarimetric images of objects.

Both the traditional fully polarimetric arrays and the rotated arrays performed
the same spatial sampling. In the rotated arrays, the antennas were placed on a
series of concentric circles with the topologies in Figure 3.1. The radii of these
concentric circles varied from 0.02 m to 0.5 m with intervals of 2 cm (i.e., 0.4λc,
where λc is the wavelength of the center frequency). In azimuth, the samples were
taken every 4◦ over each circle. Then it resulted in a circular antenna aperture of
radius 0.5 m (i.e., 10λc). With the same spatial sampling intervals, the simulations
were also conducted for the traditional fully polarimetric arrays (Figure 3.4). For
convenience, the simulation parameters are summarized in Table 3.1.

To evaluate the imaging performance, the Point Spread Functions (PSF) of the
traditional and rotated arrays for differently polarized signals are obtained by focus-
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Table 3.1: Parameters for numerical simulations

Parameter Value
Radius of antenna aperture 0.5 m
Sampling interval in radial direction 2 cm
Sampling interval in azimuth 4◦

Operational frequencies 2–10 GHz
Frequency steps 100 MHz
Distance between target and antenna array 0.5 m

ing the scattered signals from a point-like target (i.e., a small sphere), and shown
in Figure 3.6. The polarization effects on the focused patterns are noticeable. For
all HH, HV and VV polarized signals, the nearly same PSFs were obtained for
the three arrays. The sidelobes of the PSFs for differently polarized signals are
all lower than −25 dB. However, slightly stronger sidelobes around the focal point
can be seen in the PSFs of HV-pol signals [Figures 3.6(e), (k) and (q)]. As the
cross-pol radiation pattern does not have main lobe but sidelobes, the cross-pol an-
tenna picks up scattered energy via sidelobes when scatterers are off the broadside
direction of the antennas. Thus, it results in relatively stronger sidelobes of the
cross-pol PSF compared to that of the co-pol components. In addition, we have
to mention that the equal-angle sampling of rotated arrays causes a non-uniform
distribution of the samples in the synthetic aperture where the sampling distance
depends on the radius. The non-uniform distribution of samples inherently intro-
duces a space-tapering and may influence the resolutions of a target. To tackle this
effect, the samples were weighted by the effective area (e.g., the areas of Voronoi
cells) surrounding them within the aperture in the imaging process. That is to say,
smaller weighting factors were imposed on the densely sampled region while larger
weighting factors were used for relatively sparse samples within the aperture. This
technique has been utilized for image formation in all experiments in this chapter.

Next, a numerical simulation was performed for a complex “E”-shaped perfect
electric conductor (PEC) object that was placed in front of the antenna array at a
distance of 0.5 m (i.e., 10λc) in free space. The “E”-shaped object is illustrated in
Figure 3.7, which contains a vertical column of the length 15 cm, a horizontal bar
of the length 10 cm in the middle and two inclined bars joined with the vertical
column at the two ends. The two inclined bars were 10 cm in length and rotated
30◦ away from the horizontal direction. The width and thickness of all the parts
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Figure 3.7: The “E”-shaped object used in the simulation

of the “E”-shaped object were 3 cm. The synthetic data with rotated arrays and
traditional arrays at 2 GHz are shown in Figure 3.8. For simplicity of notation,
the polarizations of the measurements of rotated arrays at each spatial position are
defined with respect to the local radius: (1) PP, where the antenna axis is parallel to
the radius; (2) NN, where the antenna axis is perpendicular (normal) to the radius;
(3) DD, where the antenna axis forms an angle of 45◦ with the radius; (4) LX, i.e.,
the local cross-pol measurements which are only acquired by Rotated Array I.

3.5.1 Full-polarimetric Imaging with Rotated Arrays and Traditional Polari-
metric Arrays

Using (3.16) and (3.17), the polarimetric (i.e., HH, HV(VH), and VV-pol) signals
were retrieved from the synthetic signals collected by rotated arrays and denoted
as Erti

HH , E
rti
HV and Erti

VV , where the superscript rt refers to “retrieved” signals and i ∈
{1, 2} indicates Rotated Array I or II. Arbitrarily choosing a spatial sample position
within the aperture, the retrieved time-domain signals are shown in Figure 3.9. Here
the selected spatial position is (0.3 m, 236◦). In addition, the polarimetric signals
Em

HH , E
m
HV and Em

VV acquired with traditional arrays are displayed as references.
The differences between the retrieved signals and their corresponding references
are presented in Figures 3.9(d), (e) and (f).

Firstly, from Figures 3.9(a)–(c), one can see that the retrieved polarimetric sig-
nals with both Rotated Array I and II agree very well with their references at all
three positions. It is confirmed by the small differences between the retrieved and
reference signals in Figures 3.9(d) till (f) where the relative differences observed are
generally smaller than 0.5%. So both Rotated Array I and II provide the capability
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Figure 3.9: Comparison of the retrieved signals with the rotated arrays and the measured signals with
traditional array at the position (0.3 m, 236◦). (a), (b) and (c) show the measured and retrieved signals
while their corresponding differences are presented in (d), (e) and (f).

to estimate the full-pol signals from their measurements with sufficient accuracy
compared to the traditional full-pol arrays.

However, some subtle differences between the two rotated arrays are also per-
ceived in terms of the accuracies of the retrieved signals. Based on Figures 3.9(d)
and (f), one can see that the co-pol (i.e., HH- and VV-) signals retrieved with Ro-
tated Array I exhibit larger differences than those with Rotated Array II relative to
the reference signals. On the other hand, the differences between the cross-pol sig-
nals retrieved with Rotated Array I and the reference are slightly smaller than that
between the cross-pol signal retrieved with Rotated Array II and the reference one
at the position (0.3 m, 236◦). So Rotated Array I provides slightly better or compa-
rable estimation for the HV-pol signals in contrast to Rotated Array II. Moreover, it
can be seen that the differences between the polarized signals retrieved with Rotated
Array I and the corresponding references are relatively comparable. By contrast,
with the measurements of Rotated Array II, the co-pol signals are more accurately
estimated than the cross-pol one.

To quantitatively analyze the accuracy of the retrieved signals, we introduce the
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Figure 3.10: Relative errors of the retrieved polarimetric signals on three circles (i.e., R = 0.1 m,
0.2 m and 0.3 m) within the synthetic aperture. (a), (c) and (e) show the L2 relative errors of the HH-,
HV- and VV-signals retrieved with Rotated Array I; (b), (d) and (f) show the L2 relative errors of the
corresponding signals estimated with Rotated Array II.
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Figure 3.11: Polarimetric images reconstructed from the measurements of the three antenna arrays.
(a), (b) and (c) are obtained with Rotated Array I; (d), (e) and (f) are obtained with Rotated Array II;
and (g), (h) and (i) are obtained with traditional antenna arrays.

L2 relative error as a metric that is defined as the energy of the differential signal
divided by the energy of the reference signal acquired with traditional arrays

α =

∑N
k=0

∣∣∣Ert (tk) − Em (tk)
∣∣∣2∑N

i=0 Em(ti)2 (3.20)

where N is the number of discretized samples of the signal. One can see that the
smaller the differences between the retrieved signal Ert(t) and the reference signal
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Em(t), the closer α to zero; thus the more accuracy the retrieved signal.

Figure 3.10 illustrates the relative errors of the full-pol signals estimated from
the measurements of Rotated Array I and II on three circles (i.e., R = 0.1 m, 0.2 m
and 0.3 m) within the synthetic aperture. In general, considerably small relative er-
rors are observed for the polarized signals retrieved with both rotated arrays (i.e.,
less than 10−4). However, some differences are also found between the relative er-
rors of the signals retrieved with the two rotated arrays as well as among the differ-
ently polarized signals. Comparing Figures 3.10(a), (e) with (b) and (f) respectively,
one can see that the relative errors of the co-pol signals estimated with Rotated Ar-
ray II are much (i.e., about two or three orders of magnitude) smaller than that of
the co-pol ones retrieved with Rotated Array I. On the other hand, the accuracy of
the HV signals estimated with Rotated Array I is slightly better or comparable to
that obtained with Rotated Array II.

Moreover, for differently polarized signals obtained with Rotated Array I, their
relative errors are more or less at the same level. However, with Rotated Array II,
the relative errors of the estimated HV signals are much larger than that of the co-
pol ones [see Figures 3.10(b), (d) and (f)], which has been noticed in Figure 3.9 as
well. This can be explained as follows. As the relations (3.16) and (3.17) used for
full-pol signal retrieval were derived based on the Born approximation, so they are
accurate for weak and point-like scatterers. But for distributed targets and strong
scatterers, these relations are only approximate. In our simulation, an extended “E”-
shaped object was used, which is a strong scatterer. Rotated Array I acquires two
co-pol and one cross-pol signal in terms of the ‘local’ polarization basis. Then us-
ing (3.16) and algebraic theory, relatively uniform differences result for all retrieved
polarized signals. On the other hand, Rotated Array II measures three co-pol sig-
nals scattered from the targets. Since two of the co-pol measurements are the same
as the co-pol ones measured by Rotated Array I, the third co-pol (i.e., DD) mea-
surement provides some redundancy about the co-pol components scattered from
the target. So, applying (3.17) to the measurements of Rotated Array II, relatively
higher accuracies are achieved for the co-pol signal estimation than for the cross-pol
ones. Furthermore, Rotated Array I takes a local cross-pol measurement instead of
a third co-pol one, which improves the accuracies of the HV signal estimations, for
instance, at the positions from 60◦ to 120◦ and from 240◦ to 310◦ in azimuth com-
pared to Rotated Array II [see Figure 3.10 (c)]. But at the positions from 0 to 30◦

and from 160◦ to 190◦, the accuracies of the signals obtained with Rotated Array I
are slightly worse than those acquired with Rotated Array II. So, Rotated Array I is
not definitely superior to Rotated Array II in terms of the accuracy of the estimated
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Table 3.2: The accuracy of the polarimetric images of “E”-shaped object obtained with the rotated
arrays and the traditional arrays.

HH HV VV
Rotated
Array I

L2 error 5.8479e-8 7.5763e-6 6.0008e-8
L∞ error 2.5080e-4 2.9873e-3 2.7552e-4

Rotated
Array II

L2 error 1.0163e-12 5.3444e-6 9.8370e-13
L∞ error 2.8061e-7 2.8859e-3 3.1629e-7

HV signals but the accuracies of the signals retrieved with Rotated Array I have a
relatively larger variation. Nevertheless, with both rotated arrays the relative errors
of the estimated signals are sufficiently small [about 10−4 in Figure 3.10(c)] so that
they are practically negligible for object imaging.

After imaging operation with the Kirchhoff migration [1], the accurately re-
trieved polarimetric signals lead to almost identical images as those generated by
the reference polarimetric signals (Figure 3.11). The images formed with the two
rotated arrays and the traditional arrays reveal the similar polarization dependence
of different parts of the target. For example, the horizontal bar shows higher ampli-
tudes in the HH-pol images while the vertical column is highlighted in the VV-pol
images. In the HV-pol images, the inclined bars are well reconstructed and exhibit
stronger scattering properties than other parts. The similarities of the corresponding
polarimetric images obtained with the three arrays can also be quantitatively exam-
ined via the L2 and L∞ relative errors. The L2 relative error is defined as in (3.20)
but the time-domain samples of signals are replaced by the voxels of images. The
L∞ relative error is defined as the maximum difference between the voxel values
of a polarimetric image and its reference divided by the maximum voxel value of
the reference image. The relative errors for the images of the “E”-shaped object are
listed in Table 3.2. According to Table 3.2, one can see that the L2 and L∞ errors
of the images obtained with the two rotated arrays are smaller than 5 × 10−5 and
5 × 10−3, respectively. Therefore, both Rotated Array I and II provide sufficient ac-
curacy for fully polarimetric imaging. Moreover, the relative errors of the HV-pol
images acquired with both rotated arrays are on the same order of magnitude. For
different polarimetric images acquired with Rotated Array I, both L2 and L∞ errors
are relatively uniform while relative errors with different orders of magnitude are
obtained for co-pol and cross-pol images with Rotated Array II, which are consis-
tent with the observations about the differences between the retrieved polarimetric
signals and their references.
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Figure 3.12: Geometrical configuration and corner reflector used for simulation.

Table 3.3: The accuracy of the polarimetric images of the trihedral corner reflector obtained with the
rotated arrays and the traditional arrays.

HH HV VV
Roated
Array I

L2 error 1.6374e-6 2.6249e-5 1.6333e-6
L∞ error 5.5975e-4 3.89e-3 5.4874e-4

Rotated
Array II

L2 error 2.1335e-13 1.733e-5 2.1401e-13
L∞ error 3.0898e-8 3.578e-3 3.2136e-8

In addition, comparing the co-pol measurements of Rotated Array II and the
signals recorded by traditional arrays in Figure 3.8, one can see that the amplitudes
of co-pol signals measured with Rotated Array II are generally larger than that of
cross-polarized signals recorded with the traditional array. So considering the same
noise level, Rotated Array II could acquire signals with low susceptibility to noise.

To further examine the accuracy of the full-pol imaging for strong scattering
objects with the rotated arrays proposed, one more simulation was carried out with
a trihedral corner reflector (TCR) in free space. We took the parameters listed in Ta-
ble 3.1 for the antenna arrays except that the operational bandwidth was 2–12 GHz.
The antenna arrays were located on the xoz plane and centered at the origin. A TCR
was placed at a distance of 0.4 m from the corner point to the antenna array. The
TCR contains three surfaces that are mutually perpendicular and their intersecting
sides are 15 cm in length. Figure 3.12 shows the geometrical configuration. Again,
the EM data were synthesized with the EM software FEKO for the three antenna
arrays. Then the signals acquired with Rotated Array I and II were used to esti-
mate the fully polarimetric signals via (3.16) and (3.17). Comparing the estimated
polarized signals with the references acquired by the traditional full-pol arrays, the
similar phenomenon was observed as for the “E”-shaped object: the errors of the
co-pol signals estimated with Rotated Array I are larger than those of their counter-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.13: Full-polarimetric images reconstructed from the measurements of the three antenna
arrays. (a), (b) and (c) are obtained with Rotated Array I; (d), (e) and (f) are obtained with Rotated
Array II; and (g), (h) and (i) are obtained with traditional antenna arrays.

parts estimated with Rotated Array II; by contrast, the cross-pol signals estimated
with Rotated Array I are slightly more accurate than that with Rotated Array II
relative to the references. To make the text compact, these figures are omitted here.

Focusing the polarimetric signals estimated from the measurements of the two
rotated antenna arrays as well as collected by traditional full-pol arrays, the polari-
metric images of the TCR were reconstructed, as shown in Figure 3.13. Firstly,
one can see that in Figure 3.13 all the images are well focused, and different scat-
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tering characteristics of the TCR are revealed in the HH-, HV- and VV-polarized
images. Specifically, the edge of the bottom surface is well reconstructed in the
HH-polarized images while the edges of the two top surfaces are clearly presented
in the VV-polarized images. Meanwhile, the HH- and VV-polarized images dis-
tinctly show the three intersecting sides of the surfaces and the corner point appears
as the brightest spot. In the HV-polarized images, the two bottom intersecting sides
demonstrate the strongest cross-polarization effects with the orientation of the TCR
placed in the simulation. As its projection on the antenna aperture is a vertical line,
the top intersecting side induces negligible cross-polarized signals. Thus, it is miss-
ing in the focused HV-polarized images [i.e., the middle gaps in Figures 3.13(b),
(e) and (h)]. Comparing the polarized images in each column, the HH-, HV- and
VV-polarized images obtained with the two rotated antenna arrays and the tradi-
tional arrays are visually equivalent. The relative errors of the reconstructed images
were also analyzed with respect to the reference images, and the results are listed in
Table 3.3. Similar to the “E”-shaped object case, Rotated Array I achieves roughly
similar L2 and L∞ errors for different polarimetric images while the relative errors
of HH- and VV-pol images obtained with Rotated Array II are much smaller than
that of the HV-pol image. But the accuracies of the HV-pol images acquired with
Rotated Array I and II are comparable (i.e., about 10−5 for L2 error and 10−3 for L∞
error). Therefore, both Rotated Array I and II achieve sufficient accuracies, even
for strong scattering objects, for full-pol imaging although some subtle differences
are perceived in the relative errors of their full-pol images.

3.5.2 Polarimetric Imaging vs Scalar-wave-based Processing

In the two proposed antenna arrays, antennas placed on three radii are needed to
obtain three differently polarized measurements at each spatial position for the fully
polarimetric signal retrieval and imaging. In practical imaging systems, due to the
constraints of cost and system complexity, sometimes only the antennas along a
single radius can be employed to acquire, for instance, PP- or NN-polarized signals.
Thus, the polarizations of the EM signals acquired are varying within the aperture.
For these polarization-varied EM data, generally two types of imaging approaches
can be applied for image formation: (1) scalar-wave based imaging algorithms, for
example, the Kirchhoff migration in (2.57) and the range migration algorithm in
(2.62). These algorithms focus the PP (NN)-pol signals recorded by the rotated
arrays to form images by ignoring the variations of antenna polarizations during
the signal acquisition. They are usually very efficient but assume the polarizations
of EM signals are constant within the antenna aperture. So using these algorithms
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(a) (b)

Figure 3.14: Images obtained with scalar wave processing for: (a) measurements acquired with an-
tennas of polarizations parallel to the radius (PP-pol); (b) measurements acquired with antennas of
polarizations normal to the radius (NN-pol).

for image formation may lead to the loss of polarimetric information of targets
or even degrade the qualities of focused images. (2) inversion based algorithms.
Accounting for the vectorial nature of the EM signal, inversion based algorithms
could result in better image qualities compared to the scalar-wave based ones, which
will be discussed in detail in Chapter 4.

In this section, the scalar-wave based algorithm, i.e., Kirchhoff migration is
used to focus PP (NN)-pol signals, and the effects of the variations of signal po-
larizations on the imaging performance are discussed by comparing the results of
fully polarimetric imaging with rotated arrays, scalar-wave based imaging with var-
ied polarizations (SWVP for short), and scalar-wave based imaging with aligned
polarizations (SWAP for short). The synthetic data for the “E”-shaped object was
used.

Figure 3.14 presents the images reconstructed with PP- and NN-polarized sig-
nals by Kirchhoff migration. To facilitate the comparison, the HH, HV and VV
polarimetric images in Figure 3.11 are integrated by assigning the backscattering
matrices HH, HV and VV directly to red, green and blue components (i.e., Lex-
icographic color coding) to obtain a pseudocolor image. For the convenience of
visualization, Figure 3.15 shows the slices at y = 0.5 m of the 3-D images obtained
by SWAP (i.e., HH and VV), SWVP (i.e., PP and NN) and fully polarimetric imag-
ing. One can see that the shape of the target is relatively well reconstructed in
all the slice images. As expected, in the HH- and VV-pol images the horizontal
and vertical parts of the targets show higher amplitudes than the rest. In contrast,
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(a)

(c) (d)

(f) (g) (h)

(b)

(e)

Figure 3.15: Slices of the reconstructed volumetric images at y = 0.5 m by fully polarimetric imaging
and scalar-wave based imaging. (a) and (b) are the slices of HH- and VV- images with traditional
arrays (i.e., SWAP images); (c) is the slice of the integrated polarimetric image obtained with a rotated
array; (d) and (e) are the slices of scalar-wave based images with PP- and NN-polarized signals (i.e.,
SWVP images), respectively; (f), (g) and (h) are the close-ups of the areas indicated by dashed ellipses
in (c), (d) and (e).
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SWVP with PP- and NN-polarized signals generates more uniform images of tar-
gets compared to the SWAP images (i.e., HH and VV images) as the PP- or NN-
polarized signals contain various co-pol information scattered from different parts
of the target. However, more artifacts are observed surrounding the reconstructed
target profile in the image of SWVP with NN-polarized signals. Moreover, as HH,
HV and VV images are obtained and integrated into the fully polarimetric image,
more scattering features of the target, besides its shape, can be distinguished from
the pseudocolor images, e.g., edge and sharp corner diffraction indicated in green.
This can be explained by the fact that the edges and corners cause cross-polarization
of the incident waves and generate strong cross-polarized (HV) backscattered sig-
nals. Comparing Figures 3.15(c), (d) and (e), the pseudocolor image is superior to
the SWVP images with PP- and NN-pol signals in terms of some details about the
target structure, specifically, the regions circled by dashed ellipses. The edge of the
inclined bar is more clearly formed in the pseudocolor image than in the SWVP
images [see Figures 3.15(f)–(h)]. The same phenomenon can be observed for the
edges of the horizontal bar. In Figure 3.15 (c), the horizontal bar in the middle and
the vertical column are displayed in different colors, which also demonstrate the
distinct polarization dependence of their scattering properties. So, through different
processing and visualization techniques, polarimetric images provide various po-
larimetric characteristics of targets and abundant scattering information for target
discrimination and identification compared to the SWAP and SWVP images.

3.6 Experimental Results

Experimental measurements in free space were also performed to further demon-
strate the effectiveness and accuracy of the proposed arrays for fully polarimetric
imaging. The experimental setup for the rotated arrays (i.e., Rotated Array I and II)
is shown in Figure 3.16(a). To simulate the rotated arrays, a stepper motor was used
to drive a vertical column on top of which a polyethylene plastic panel was mounted
to support antennas. The stepper motor was precisely controlled by a computer for
positioning and rotating the column. Antipodal Vivaldi antennas [6] were used for
transmission and reception and connected to a Vector Network Analyzer (VNA)
for signal acquisition in the frequency domain. As the monostatic radar configu-
ration was considered, at each spatial sampling position S 11 was measured to get
the co-pol components for all three antenna arrays while S 21 was measured to get
the cross-pol components with a quasi-monostatic configuration where a transmit-
ting antenna and a receiving antenna were placed with a separation of 6 cm. The



56 Chapter 3. Rotated Arrays for Fully Polarimetric Imaging

z

y

x

Target

VNA

Motor

Antennas

Dielectric 

column

(a)

Target

Planar 

scanner

z

x

y

(b)

(c) (d) (e)

Figure 3.16: The experimental setups for rotated arrays and traditional planar arrays. (a) is the setup
for the rotated arrays and (b) for the traditional planar array. (c) shows the employed antipodal Vivaldi
antennas. (d) and (e) display the “L”-shaped object and the trihedral corner reflector used for the
experiments, respectively.

operational frequencies swept from 3 to 15 GHz with steps of 20 MHz. Through
the translation and rotation of the vertical column, the antennas measured the data
over 15 circles of the radii ranging from 11 to 53 cm with steps of 3 cm (i.e., 0.9λc)
and the azimuth sampling interval dθ along each circle was 1.2◦. So a planar cir-
cular array of the radius 0.53 m (i.e., 15.9λc) was synthesized. An “L”-shaped
distributed target which was coated with aluminum foil was placed at a distance of
0.5 m (i.e., 15λc) in front of the center of the ‘equivalent’ circular array for the test
[Figure 3.16(d)]. The two arms of the “L”-shaped object are about 20 and 30 cm
in length, respectively. Their width and thickness are 6 cm and 5.5 cm. Arranging
antennas with orientations as required by the two rotated arrays and repeating the
measurements over the same sampling grid, then the corresponding polarized sig-
nals, i.e., PP-, NN-, DD- and LX-polarized signals were acquired at each sampling
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Figure 3.17: Comparison of the retrieved polarimetric signals and the reference ones at the position
(R, θ) = (0.29 m,−163.2◦). (a) HH-polarized signals, (b) HV-polarized signals, and (c) VV-polarized
signals. The scattered signal spectrum was normalized with respect to the transmitted one.

position.
For comparison, the reference HH-, HV- and VV-pol signals were also mea-

sured with the traditional polarimetric arrays over the same sampling grid, which
was implemented with the planar scanner [Figure 3.16 (b)]. The signals scattered
from the background were also measured in the absence of the target with all three
arrays. Applying the Hanning window to all the signals measured in the frequency
domain and taking the inverse FFT, the time-domain scattered signals were ob-
tained. After background subtraction, the EM signals scattered from targets were
extracted.

Taking advantage of (3.16) and (3.17), the HH-, HV- and VV- signals were
retrieved from the measurements of the two rotated arrays. As an example, the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.18: The HH, HV and VV polarimetric images obtained with: (a)–(c) traditional array; (d)–(f)
Rotated Array I; and (g)–(i) Rotated Array II.

retrieved signals at (R, θ) = (0.29 m,−163.2◦), as well as the corresponding ref-
erence signals, are shown in Figure 3.17. To suppress the strong antenna reflec-
tions, time clipping was used for the signals in the first three nanoseconds. In
Figure 3.17, the full-pol signals retrieved with the two rotated arrays have relatively
good agreements with the HH-, HV- and VV-polarized reference signals in terms
of the wavelets. Focusing both the retrieved and reference polarized signals, the re-
constructed polarimetric images are presented in Figure 3.18. It can be seen that the
major features of the target are well reconstructed with all the three antenna arrays.
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The corresponding polarimetric images are in good agreement. Specifically, the po-
larization dependence of the horizontal and vertical part of the “L”-shaped target is
clearly visible in the HH- and VV-polarized images, respectively. Meanwhile, the
edges of the target can be perceived in the HV images.

However, some discrepancies are observed between the amplitudes of the re-
trieved and reference signals in Figure 3.17 as well as between the images in Fig-
ure 3.18. In particular, relatively larger discrepancies between the cross-pol images
[i.e., Figures 3.18(b), (e) and (h)] obtained with the traditional arrays and the ro-
tated arrays are seen compared to that between the co-pol images. As the cross-pol
signals acquired with traditional full-pol arrays are measured with slightly sepa-
rated transmitting and receiving antenna pairs (i.e., bistatic configuration), then not
only the edges and corners of the target but also the flat surface exhibit high in-
tensity in the reference HV image [Figure 3.18(b)]. By contrast, the HV images
obtained with the two rotated arrays demonstrate the cross-polarization features of
the target as theoretically expected, where the edges and corners are mainly recon-
structed. So the two rotated arrays enable to effectively reconstruct both the co- and
cross-pol images of the target. Furthermore, small differences between the HV im-
ages acquired with the two rotated arrays [Figures 3.18(e) and (h)] are also noticed.
These differences might be induced by the non-purity of the linear polarization of
antipodal Vivaldi antenna, especially for high frequencies. Due to this non-purity
of the antenna polarization, the HV-polarized signal retrieved with the rotated ar-
ray II may contain some co-pol components, which leads to its larger amplitude in
Figure 3.17(b) (compared to that retrieved with rotated array I) and partially recon-
structed flat surface in Figure 3.18(h) [in contrast to Figure 3.18(e)].

To clearly illustrate different polarization features of images in Figure 3.18,
the color-coded slice images at the target position are shown in Figure 3.19. The
horizontal and vertical bars are displayed in red and pink while the edges of the
targets are represented in green where the cross-polarization effect induces the HV
polarized signals. According to Figure 3.19, the pseudocolor images obtained with
the rotated arrays reveal similar polarimetric features of the targets as that acquired
with the traditional full-pol imaging arrays. Hence, the two rotated arrays provide
comparable imaging performance as the traditional polarimetric arrays.

Using the same experimental setups for both the rotated and traditional polari-
metric arrays, a TCR was used as a strong scattering object for a second experimen-
tal measurement. The edges of the TCR are about 19.7 cm in length, as shown in
Figure 3.16(e). The TCR was placed in front of the antenna aperture at a distance of
0.5 m. After performing the same experimental measurement operations and image
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Figure 3.19: Pseudocolor slice images at the target position obtained with (a) rotated array I, (b)
rotated array II, and (c) traditional array with dynamic range of 15 dB. Lexicographic color coding is
used for visualization ( HH: Red; HV: Green and VV:Blue).

formation as for the “L”-shaped object, the fully polarimetric images of the TCR
with the three antenna arrays are obtained, which are shown in Figure 3.20.

It can be seen that both rotated antenna arrays reconstruct the comparable po-
larimetric features of the TCR in the corresponding images in contrast to the tra-
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Figure 3.20: Three dimensional polarimetric images of a trihedral corner reflector obtained with the
experimental measurements of the three antenna arrays. (a)–(c) are the HH-, HV- and VV-pol images
obtained with Rotated Array I; (d)–(f) are obtained with Rotated Array II; and (g)–(i) are obtained
with the traditional antenna arrays.

ditional arrays. However, some differences are still noticeable between the po-
larimetric images formed with the two rotated arrays. Visually, Rotated Array I
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achieves slightly better fully polarimetric images in terms of the similarity to those
obtained with the traditional arrays. Specifically, in both HH- and VV-pol images
obtained with Rotated Array II the edges along the z-axis direction are much weaker
than that in the corresponding images of Rotated Array I. Moreover, the cross-pol
image focused with Rotated Array II [Figure 3.20(e)] is slightly asymmetric with
respect to the xoy plane compared to the one obtained with Rotated Array I [Fig-
ure 3.20(b)]. Meanwhile, the sidelobes/artifacts surrounding the images of the TCR
seem slightly rotated. These may be caused by non-purity of the linear polarization
of the antipodal Vivaldi antenna used for the measurement, as mentioned above.
As a consequence, the cross-pol signals were inaccurately estimated with the mea-
surements of Rotated Array II. However, in Rotated Array I, the cross-pol signals
were measured with two orthogonally oriented Vivaldi antennas at each spatial po-
sition, which to some extent mitigates the effect of the non-purity of their linear
polarization on the HV-pol signal estimation.

Furthermore, although a well-reconstructed HV-pol image is obtained with the
traditional array through a quasi-monostatic measurement configuration, the HV-
pol image obtained with Rotated Array I [Figure 3.20(b)] reveals the slit induced
by the intersecting side formed by the two top surfaces in a full agreement with the
HV-pol images in Figure 3.13 obtained in the numerical simulations. This demon-
strates further the effectiveness and accuracy of Rotated Array I for fully polarimet-
ric imaging and indicates the relatively higher tolerance of Rotated Array I to the
quasi-monostatic measurement configuration for full-pol imaging compared to the
traditional fully polarimetric imaging arrays and Rotated Array II. This advantage
could be very attractive for the implementation of practical full-pol imaging sys-
tems, especially in the circumstances where antennas with relatively lower cross-
pol isolation are used.

3.7 Conclusion

In this chapter, fully polarimetric imaging with rotated antenna arrays has been
investigated. The scattered signals for polarization-varied antennas (i.e., rotated an-
tennas) are formulated under the Born approximation. This formulation reveals that
the signals acquired by rotated antennas in a varied-polarization basis can always
be expressed as a linear combination of the fully polarimetric signals measured
in a fixed polarization basis. Utilizing this fact, two approaches to design rotated
antenna arrays for full-pol signal acquisition and imaging are proposed, in which
either two co-pol and one cross-pol signals or three co-pol signals are measured at
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a sampling position. The rotated arrays designed with both approaches overcome
the effects of the polarization variations on the fully polarimetric imaging that are
encountered by the traditional rotated imaging arrays.

Numerical simulations and experimental results demonstrate the effectiveness
and accuracy of the rotated arrays for fully polarimetric imaging. The numerical
results show that the relative errors of all three polarimetric components retrieved
with the rotated arrays are generally much smaller than 0.5% compared to their
references acquired with traditional arrays, thus resulting in almost identical recon-
structed volumetric images (L2 error is smaller than 10−5 and L∞ error is less than
10−3). Although the rotated array that measures three co-pol signals at each posi-
tion outperforms the one that records two co-pol and one cross-pol signals at a local
polarization coordinate system in terms of the accuracy of the estimated co-pol sig-
nals, the rotated array with co- and cross-pol measurements achieves slightly more
or equivalently accurate estimation of the cross-pol (i.e., HV) signals. Nevertheless,
both rotated arrays provide the capability to retrieve the fully polarimetric (i.e., HH,
HV, and VV) signals with sufficient accuracy, which facilitates the fully polarimet-
ric imaging by using traditional scalar-wave-type algorithms on the three sets of
polarimetric data. In addition, thanks to the RadSAR implementation, both rotated
arrays provide cost-efficient solutions to 3-D fully polarimetric imaging, especially
for the observations of small regions/volumes.
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4
Linear Inversion of

Polarization-Varied EM Data

4.1 Introduction

The polarization variations of the rotated antenna arrays within the data acquisition
aperture have been circumvented by specifically designed array topologies in Chap-
ter 3. In that approach, three differently polarized signals have to be measured at
each sampling position [1]. In that case, more antennas are required to construct the
array system. However, this is not desirable or even unacceptable for some prac-
tical imaging systems (for example, GPR system for TBM) due to the constraint
of limited space, cost, mass, etc. Therefore, to tackle the effect of the variation
of antenna orientations via post-imaging process is of great importance. To this
end, two physical phenomena need to be considered: spatial rotation of the antenna
radiation patterns and rotation of the transmitted field polarization. Either both are
assumed constant or their variations within array apertures are ignored in traditional
scalar-wave-type imaging schemes.

Recently imaging with rotated antenna arrays has been discussed for near-field
SAR imaging [2], subsurface object detection [3, 4], etc. However, the effects of
the variations of antenna polarizations caused by the rotation were neglected and

Part of this chapter was published as: J. Wang, P. Aubry, and A. Yarovoy, "Efficient Implementation
of GPR Data Inversion in Case of Spatially Varying Antenna Polarizations", IEEE Transactions on
Geoscience and Remote Sensing, 2017, DOI: 10.1109/TGRS.2017.2779788.
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the EM signals were treated as the scalar wave for imaging in these works. Con-
sidering the vectorial nature of the EM wavefield, in this chapter, the effects of the
antenna polarization variations on the microwave imaging are partially overcome
by exploiting the exact radiation patterns of the differently oriented antennas within
the aperture.

In the past decades, many attempts have been made to get qualitatively im-
proved or quantitatively correct microwave images by considering the effects of
antenna radiation patterns and/or vector nature of the electromagnetic waves, espe-
cially for subsurface imaging [5–11]. The majority of these approaches are based on
the far-field approximation of radiation patterns. For example, the far field radiation
pattern of interfacial dipole antenna has been incorporated in Kirchhoff migration
[5] and generalized Radon transform [6] for GPR data processing. In [7] and [8],
the diffraction tomography is discussed based on the approximated Green’s func-
tion in the horizontal wavenumber-frequency domain. These approaches are mainly
employed to process the single-component GPR data. Moreover, in [10], a matrix-
based inversion approach was proposed to migrate multicomponent GPR data si-
multaneously by combining the far-field approximation of radiation patterns. Later
this approach has been improved through the use of accurate radiation patterns com-
puted with an FFT-based method [11]. However, all the aforementioned imaging
approaches assume that the antenna orientations remain constant within the aperture
for data acquisition. Namely, their radiation patterns are just linearly translated, i.e.,
space shift-invariant, which is critical for both radiation pattern computation and
the wavenumber domain migration approaches. However, the space shift-invariant
property of antenna radiation patterns is spoiled in rotated (or polarization-varied)
antenna arrays. Thus, these imaging algorithms are not directly applicable for high-
quality imaging with rotated antenna arrays.

In this chapter, microwave imaging with polarization-varied antennas over data
acquisition aperture (for example, rotated antenna arrays) is formulated as a linear
inverse problem based on the Born approximation. The effects of the variations of
antenna polarizations within the aperture are tackled by exploiting the full-wave ra-
diation patterns of antennas. Antennas are assumed to be dipoles (as a majority of
widely used GPR antennas demonstrate dipole-like radiation patterns). Two opera-
tional circumstances of antennas are considered: free space and half space. In the
free-space case, the radiation patterns of differently oriented antennas can be conve-
niently obtained through the dyadic Green’s function (GF) in the space-frequency
domain. In the half-space case, analytically closed Green’s functions of a dipole an-
tenna are not available in the space-frequency domain. The radiation patterns have
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Figure 4.1: Geometrical configuration of 3-D imaging with a rotated antenna array. With the rotation
of the linear array, the antenna polarizations constantly change.

to be computed from the wavenumber-frequency domain Green’s functions. To get
the full-wave radiation patterns (which are valid in near-, intermediate- and far-
fields of the dipole) of differently oriented antennas, two methods were suggested
to compute the accurate space-frequency domain Green’s functions: interpolation
based method and Nonuniform fast Fourier transform (NUFFT) based method.
Both methods consider the effects of antenna translation and rotation within the
aperture and are implemented in the space-frequency and wavenumber-frequency
domains, respectively. After obtaining the full-wave radiation patterns for all the
antennas, a linear system of equations between the spatial measurements and the
scattering coefficients of scatterers can be established for linear inversion.

This chapter is organized as follows. The linear inversion signal model is for-
mulated in section 4.2. In section 4.3, the exact Green’s functions computation for
rotated antennas are discussed and the fast computing methods are presented. Then
some numerical and experimental imaging results are shown in sections 4.4 and 4.5.
Finally, the chapter is summarized in the last section.

4.2 Signal Model

Assume the transmitting and receiving antennas (dipoles) are placed along a radial
direction of a circular aperture on the vertical plane and their orientations are par-
allel to the radius, as shown in Figure 4.1. With the rotation of the circular aperture
transmitting and receiving antenna arrays, the antennas illuminate the scene of in-
terest and the scattered signals are acquired over the space. As a consequence, an
equivalent circular antenna array is synthesized. Using the Born approximation,
which we assumed to be valid, the scattered electromagnetic signals for a pair of
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transmitting and receiving antennas can be formulated as [10]

Es
αβ

(
xR, xT , ω

)
=

∫
V(xc)

Dαβ

(
xR, xT |xc, ω

)
χ
(
xc) Jβ

(
xT , ω

)
dV

= S (ω)
∫

V(xc)
Dαβ

(
xR, xT |xc, ω

)
bβ

(
xT

)
χ
(
xc) dV (4.1)

where ω = 2π f is the angular frequency related to the signal frequency f , Dαβ is
the wavefield extrapolator that describes the wave propagation of electric field from
a β- polarized point source Jβ

(
xT , ω

)
at xT to a scatterer at xc and then to a α-

polarized receiving antenna at xR, χ (xc) = η̂−η is the contrast function and defined
as the difference of the background physical property η̂ and scatterer’s physical
property η. Here the electromagnetic physical property η is defined as η = σ+ jωε,
where σ is the conductivity and ε is the permittivity. Moreover, in the last line of
(4.1), the expression for a point source Jβ

(
xT , ω

)
= S (ω) bβ

(
xT

)
is used, where

S (ω) denotes the source wavelet and bβ indicates the source antenna orientation. In
space domain, the wavefield extrapolator Dαβ is explicitly represented as an inner
product of Green’s functions of transmitting and receiving antennas

Dαβ =

3∑
l=1

GαlGlβ (4.2)

where l ∈ {1, 2, 3} represents the electric field orthogonal directions. Gαl and Glβ

are Green’s functions in the l direction for α-pol receiving and β-pol transmitting
antennas, respectively. In the discrete form, (4.1) can be written as

Es
αβ

(
xR, xT , ω

)
= S (ω) bβ(xT ) · ∆V ·

Np∑
k=1

Dαβ

(
xT , xR

∣∣∣ xc
k, ω

)
χ
(
xc

k

)
(4.3)

where Np is the number of partition cells of the imaging scene and ∆V is the vol-
ume of each partition cell. Considering all the transmitting and receiving antenna
pairs and all the frequencies of the signals, scattered signals can be represented in a
matrix form

Es = D(Ntr ·N f )×Np · χ
(
Xc) (4.4)

where Ntr is the number of transmitting-receiving antenna pairs, N f is the number
of the discrete frequencies within the operational bandwidth, and Es is a Ntr ·N f col-
umn vector formed by all the measurements. In (4.4), the constant S (ω) bβ(xT )∆V
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has been normalized with respect to the signal spectrum of a source at xT . χ (Xc) is
a column vector and represents the contrast functions of the pixels

χ
(
Xc) =

[
χ
(
xc

1

)
, χ

(
xc

2

)
, · · · , χ

(
xc

Np

)]T
(4.5)

where superscript ᵀ refers to the matrix transpose operation and xc
1, xc

2, · · · , xc
Np

are the positions related to each pixel in the imaging scene. D is the matrix of the
forward wavefield extrapolator and

D =
[
D̃1, D̃2, · · · , D̃Ntr

]T
,
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where p = 1, 2, · · · ,Ntr, and q = 1, 2, · · · ,N f . xTR

p denotes the positions of the p-th
transmitting-receiving antenna pair, i.e., (xR, xT ).

The objective of imaging process is to retrieve the contrast functions of the
targets relative to the background media, which requires solving the large system of
linear equations in (4.4). The least squares estimation of the contrast functions of
the scatters can be represented as

χ
(
Xc) = D† · Es (4.6)

where D† =
(
DHD

)−1
DH , and the superscript H and (·)−1 refer to the Hermitian

transpose and the inverse operation of a matrix correspondingly. As the wavefield
extrapolator D is typically a matrix with dimensions of thousands or even more,
the inverse operation of DHD is extremely computationally expensive. To save the
computational load, (4.6) can be rearranged as

DHDχ = DHEs (4.7)

Then some iterative approaches can be used to solve (4.7). In this chapter, we used
the BiConjugate Gradient Stabilized method (BiCGStab). Here, as long as the ma-
trix of the forward wavefield extrapolator D is computed, (4.7) can be solved to
reconstruct the contrast functions of scatterers. Therefore, the other major compu-
tational effort has to be spent to compute Green’s functions for each transmitting-
receiving antenna pair at each frequency with respect to the imaging region. Con-
sidering the constant variation of antenna polarizations within the aperture, two ap-
proaches are suggested in the following to compute the full-wave Green’s functions
in the space-frequency and wavenumber-frequency domains, respectively.
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4.3 Full-wave Green’s Functions of Rotated Antennas

4.3.1 Free-space Dyadic Green’s Function

In a Cartesian coordinate system, the free-space dyadic Green’s function of an ele-
mentary source can be written as [12]

Ḡ(r, r′) =

(
Ī +

1
k2∇∇

)
G(r − r′) (4.8)

where Ḡ denotes a Green’s dyadic (i.e., a 3 × 3 matrix here), k = 2π/λ is the
wavenumber with respect to the wavelength λ in the free space, and Ī is the identity
dyadic (i.e., the identity matrix). G (r − r′) is the Green’s function pertaining to the
three-dimensional free-space scalar-wave equation and expressed as

G
(
r − r′

)
=

e− jk|r−r′ |

4π|r − r′|
(4.9)

where j is the imaginary unit, r′ is the position vector of a point source and r is
the position vector of a field point. After some algebraic manipulations (see the
appendix), the free-space dyadic Green’s function can be explicitly given by

Ḡ
(
r, r′

)
= G

(
r − r′

) [(
1 −

j
kR
−

1
k2R2

)
Ī +

(
−1 +

3 j
kR

+
3

k2R2

)
R̂R̂

]
(4.10)

where R is the amplitude of the vector R = |r−r′| and denotes the distance between
the field point and the point source. R̂ = ∇R represents the gradient of R, and R̂R̂
denotes the outer product of itself.

Equation (4.10) gives the vector Green’s functions of a field point with respect
to the point source with the current component along the three axes in a Carte-
sian coordinate system, for example, the x1-, x2- and x3-axes, which is a sym-
metric matrix. For shifted antennas with orientations aligned with one axis, their
Green’s functions are obtained through the linear translation in space according to
space shift-invariant property. However, for the rotated antenna arrays, the antennas
within the aperture are not only linearly translated but also rotated. To obtain the
corresponding Green’s functions, both translation and rotation should be consid-
ered.

Assume the rotated antennas are placed on the x1ox2 plane, as shown in Fig-
ure 4.1. For a rotated antenna, its vector Green’s functions in the original coordinate
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system can be obtained by combining its current components in the x1 and x2 direc-
tions or by rotating the source vector of an antenna along, for instance, the x1-axis
with the corresponding angle. It can be implemented by multiplying the source
vector by a rotation matrix. The operation can be expressed as

Gθ
rot = Ḡ · Rx3(θ) · Ix1 (4.11)

where Gθ
rot is the vector of Green’s functions for an antenna rotated by θwith respect

to the x1-axis. Ix1 = [1, 0, 0]T denotes the unit current vector along the x1-axis,
and Rx3(θ) is a 3 × 3 rotation matrix around the x3-axis and defined as

Rx3(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (4.12)

Accounting for the linear translation and utilizing (4.11), the vector Green’s func-
tions for rotated antennas can be obtained.

4.3.2 Half-space Green’s Functions

For GPR imaging, the antennas are typically placed on the ground surface. So
half-space Green’s functions are needed for linear inversion of GPR data. Assume
dipole-like GPR antennas are placed on the surface of homogeneous ground, for
instance, x1ox2 plane in Figure 4.1, with orientations along the x1- or x2-axis.
The related full-wave half-space Green’s functions are given in the wavenumber-
frequency (k- f ) domain by [11]g11 g12

g21 g22
g31 g32

 = −ζ

k2
1V + U k1k2V
k1k2V k2

2V + U
− jk1Γ0V − jk2Γ0V

 (4.13)

where gmn represents Green’s functions of the electric field component in the xm

direction for the dipole antenna located at the origin with its orientation along the
xn-axis, m ∈ {1, 2, 3} and n ∈ {1, 2}. kn denotes the wavenumber on the aperture
plane along the xn-axis. U and V are written as

U =
exp (−Γ1x3)

Γ0 + Γ1
, V =

exp (−Γ1x3)
γ2

1Γ0 + γ2
0Γ1

(4.14)

Γi =

√
γ2

i + k2
1 + k2

2 (4.15)
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and γ2
i = ηiζ, where i ∈ {0, 1}, denotes the complex propagation constants for air

(i = 0) and the subsurface (i = 1); ηi = σi + jωεi is the electric material parameters
for conductivities σi and permittivities εi; and ζ = jωµ0 is the magnetic material
parameter with permeability µ0.

Taking the inverse Fourier transform (IFT) of Green’s functions in (4.13) with
respect to k1 and k2, their counterparts in the space-frequency (i.e., x- f ) domain are
obtained G11 (x1, x2, f ) G12 (x1, x2, f )

G21 (x1, x2, f ) G22 (x1, x2, f )
G31 (x1, x2, f ) G32 (x1, x2, f )

 .
Note Gmns give the full-wave Green’s functions of an antenna at the origin oriented
along the x1- or x2-axis. For shifted antennas with orientations along the x1- or
x2-axis, the associated half-space Green’s functions can be obtained through the
linear translation in space. By contrast, to obtain Green’s functions for the rotated
antennas, both translation and rotation operations are needed in the x- f domain.
However, the rotation of the antennas generally spoils the alignment of the com-
putational grid of the Green’s functions and the imaging grid, which makes the
FFT-based approach to compute GFs with (4.13) no longer straightforwardly appli-
cable. Hence, extremely expensive computations are required if the direct Riemann
summation is used to compute the Fourier transform of the k- f domain GFs over
the imaging grid, especially for large arrays. To accelerate this computation, two
methods are suggested to efficiently compute the exact Green’s functions of rotated
antennas in the following.

4.3.2.1 Computation of Green’s functions via Interpolation

For image reconstruction, Green’s functions over a rectilinear grid in the x1-x2-x3
coordinate system are required. Let us assume the imaging grid in space at a certain
depth is defined as

I =

(x1p, x2q
) ∣∣∣∣∣∣x1p = p∆x1; p = 0, 1, · · · ,Nx1 − 1

x2q = q∆x2; q = 0, 1, · · · ,Nx2 − 1

 (4.16)

where ∆x1, ∆x2 are the grid intervals along the x1 and x2 axes and Nx1 , Nx2 are
the associated numbers of sample points. Assume a dipole antenna is placed at
(xa

1, x
a
2, 0) with an orientation angle of θ with respect to the x1 axis and denote the

antenna orientation and its normal direction as xθ and xθ⊥ . For the convenience
of discussion in the following, we define a “local” coordinate system xθ-xθ⊥-x3
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with the origin at (xa
1, x

a
2, 0) and denote kθ and kθ⊥ as the Fourier counterparts of xθ

and xθ⊥ . As mentioned above, in the “local” kθ-kθ⊥- f domain, Green’s functions
gθθ⊥

(
kθ, kθ⊥ , f

)
on a grid Φ can be directly calculated via (4.13), and the grid Φ is

defined as

Φ =

(kθ_m, kθ⊥_n
) ∣∣∣∣∣∣kθ_m = m∆kθ; m = 0, 1, · · · , Lkθ − 1

kθ⊥_n = n∆kθ⊥ ; n = 0, 1, · · · , Lkθ⊥ − 1

 (4.17)

where the sampling intervals ∆kθ and ∆kθ⊥ are determined by the field of view of
the imaging scene according to the Nyquist criterion. In [11], it suggests that in
practical implementation the wavenumber sampling grid should be 4 ∼ 16 times
over sampled compared to the Nyquist sampling requirements in order to get accu-
rate radiation properties of antennas, especially for the near-field. Taking the IFFT
of gθθ⊥

(
kθ, kθ⊥ , f

)
with respect to kθ and kθ⊥ , Green’s functions Ga

θθ⊥

(
xθ, xθ⊥ , ω

)
in

the xθ-xθ⊥- f domain are obtained.
To get Green’s functions on the imaging grid I, a mapping from Green’s func-

tions in xθ-xθ⊥ has to be made, including both linear translation and rotation opera-
tion in space. Explicitly, this mapping can be expressed as

Ga
(
x1, x2, f ; xa

1, x
a
2, θ

)
= Ga

θθ⊥

(
x̃θ, x̃θ⊥

)
(4.18)

where

x̃θ =
(
x1 − xa

1

)
cos θ +

(
x2 − xa

2

)
sin θ

x̃θ⊥ = −
(
x1 − xa

1

)
sin θ +

(
x1 − xa

2

)
cos θ

From (4.18), one can see that Green’s functions over a new grid (x̃θ, x̃θ⊥) in the
xθ-xθ⊥ coordinate system are needed to get the corresponding values on the grid
I. As the new grid (x̃θ, x̃θ⊥) is generally different from that determined by the
wavenumber-domain grid Φ, a two-dimensional (2-D) interpolation is required to
implement the mapping from a rectilinear grid (xθ, xθ⊥) to the rectilinear grid I.
Many interpolation methods, for example, nearest, cubic, spline, are applicable for
this operation. Considering both accuracy and efficiency, spline interpolation is
used in this chapter.

In addition, we have to mention that instead of taking the interpolation in x-
f domain, Green’s function Ga(x1, x2, f ; xa

1, x
a
2, θ) can also be obtained via direct
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Fourier summation of gθθ⊥
(
kθ, kθ⊥ , f

)
, which is expressed as

Ga
(
x1, x2, f ; xa

1, x
a
2, θ

)
=

Lkθ−1∑
m=0

Lkθ⊥
−1∑

n=0

gθθ⊥
(
kθ_m, kθ⊥_n, f

)
· exp

{
− jkθ_m ·

[(
x1 − xa

1

)
cos θ +

(
x2 − xa

2

)
sin θ

]}
(4.19)

· exp
{
− jkθ⊥_n ·

[
−

(
x1 − xa

1

)
sin θ +

(
x2 − xa

2

)
cos θ

]}
The computation of Green’s functions via (4.19) is referred to as direct summation
method in the following text.

4.3.2.2 Computation of Green’s functions with NUFFT

In this section, we propose to take advantage of Nonuniform Fast Fourier Transform
(NUFFT) [13] to accelerate the computation of x- f domain Green’s functions.

For the interpolation-based method presented in the previous section, linear
translation and rotation operations in space are required to obtain the full-wave
Green’s functions for rotated antennas. Actually, these operations can also be ef-
ficiently implemented in the wavenumber domain. According to the properties of
two-dimensional (2-D) Fourier transform, the operations in (4.18) can be repre-
sented in the wavenumber domain as

ga
i

(
k1, k2, f ; xa

1, x
a
2, θ

)
= F2D

[
Ga

i

(
x1, x2, f ; xa

1, x
a
2, θ

)]
= gθθ⊥ (k1 cos θ + k2 sin θ,−k1 sin θ + k2 cos θ, f )

· exp
{
− j

[
(k1 cos θ + k2 sin θ) xa

1 + (k2 cos θ − k1 sin θ) xa
2

]}
(4.20)

where Ga
i , as in (4.18), is Green’s function of antenna in the x- f domain and ga

i
is its counterpart in the k- f domain in the (k1, k2) coordinate system while gθθ⊥ is
the 2-D Fourier transform of Ga

θθ⊥
in the (kθ, kθ⊥) coordinate system. The subscript

i ∈ {1, 2, 3} represents the directions of electric field components. F2D is the 2-D
Fourier transform operator. In (4.20), the exponential terms describe the translation
operation in space while the trigonometric terms are related to the rotation.

Then to get the Green’s functions Ga
i of a rotated antenna over the grid I,

its Fourier counterpart ga
i should be computed on a rectilinear grid on the k1-k2

plane. According to (4.20), the corresponding values Ga
θθ⊥

have to be calculated
on a nonuniform grid (k1 cos θ + k2 sin θ,−k1 sin θ + k2 cos θ) in the (kθ, kθ⊥) basis,
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which can be obtained directly via (4.13). However, due to the continuously varied
antenna orientations, the grid points (k1 cos θ + k2 sin θ,−k1 sin θ + k2 cos θ) change
for antennas in different azimuthal positions within the aperture. Hence the point-
by-point computation of GFs has to be performed for all antennas with different
orientations. This is even more computationally expensive than the interpolation-
based method.

One alternative approach to address this problem is to exploit the similar idea
as the Stolt interpolation for one-dimensional mapping. Firstly, equations (4.13),
(4.14), and (4.15) are used to compute the GFs gθθ⊥ over the grid Φ in the k- f
domain. After the k- f domain GF values are obtained point by point, then they
can be used to calculate the x- f domain counterparts for every antenna within the
aperture. For an antenna at

(
xa

1, x
a
2, 0

)
with orientation of angle θ with respect to

the x1 axis, the pre-computed GFs over the regular grid in the
(
kθ, kθ⊥

)
basis that is

rotated with θ counter-clockwise with respect to the (k1, k2) basis are mapped onto
the grid

Φ′ =

(k1, k2)

∣∣∣∣∣∣∣∣∣∣
k1 = kθ_m cos θ + kθ⊥_n sin θ;

k2 = −kθ_m sin θ + kθ⊥_n cos θ;(
kθ_m, kθ⊥_n

)
∈ Φ

 (4.21)

in the (k1, k2) basis. Obviously, after the rotation mapping from
(
kθ_m, kθ⊥_n

)
→

(k1, k2), the sampling points are located on a rotated rectilinear grid in the (k1, k2)
basis.

So the problem can be restated as: Using the pre-calculated k- f domain Green’s
functions over the rotated rectilinear grid Φ′ to reconstruct their counterpart in the
x- f domain over the rectilinear grid I. Apparently, it is a typical non-uniform
Fourier transform problem from non-uniform samples in the k- f domain to the
uniform grid in the x- f domain. So we can take advantage of NUFFT to efficiently
implement it [13]. To compute the Green’s functions in a 3-D volume, the wavefield
computed in one horizontal plane can be extrapolated to different depth via the
derived relation [14]

gmn
(
k1, k2, ω, x

(n)
3

)
= gmn

(
k1, k2, ω, x

(0)
3

)
· exp

{
−Γ1

(
x(n)

3 − x(0)
3

)}
(4.22)

where x(0)
3 is the initial depth of the electric fields computed directly and x(n)

3 is
the depth of the extrapolated electric fields. As the exponential term in (4.22) is
rotationally symmetric around the origin on the k1-k2 plane, so it is directly appli-
cable to extrapolate the wavefield to different depths for antennas with whatever
orientations.
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Table 4.1: Comparison of three methods for x- f domain Green’s function Computation

Method Direct-sum Interp NUFFT
Time [s] 1042.64 4.042 0.553

L2 Error
G11 - 1.269e-8 1.373e-14
G21 - 2.034e-8 1.524e-14
G31 - 2.358e-8 1.827e-14

L∞ Error
G11 - 1.033e-4 1.255e-7
G21 - 1.500e-4 1.644e-7
G31 - 1.655e-4 1.683e-7

4.3.2.3 Sampling Criteria

In the two methods presented above for GF computation (i.e., the interpolation-
based method and the NUFFT-based method), the uniform sampling of gmn on a
regular grid in the k- f domain is required to facilitate the application of FFT dur-
ing the GF computation. To avoid the aliasing of the GFs in the x- f domain, the
wavenumber-domain sampling spacings can be taken as [11]

dkn =
2π

p · Xn
=

2π
p · Nxn∆xn

(4.23)

where p is the oversampling factor, Xn = Nxn∆xn is the dimension of the imaging
scene in the xn direction. Considering the computational accuracy of IFFT-derived
Green’s functions in the x- f domain, p could empirically take a value of 4 to 16.
Moreover, we have to mention that when the interpolation based method is used to
compute the GFs, a large enough value should be chosen for p so that the support
region of the computed GFs always covers the desired imaging area in the spatial
domain even after translation with respect to the most remote antenna from the
origin.

4.4 Simulations

4.4.1 Green’s Function Computation

In this section, the Green’s function computation methods are examined via nu-
merical simulations. In this simulation, the operational frequency was 200 MHz
and the relative permittivity of soil medium was 9. Dipole antennas were placed
on the x1ox2 plane and their orientation angles were defined as the angle from the



4.4 Simulations 77

x1[m]

x2
[m

]

G11: dipole at (0,0); OriAng: 0deg

−2 −1 0 1 2

−2

−1

0

1

2

0.02

0.04

0.06

0.08

0.1

0.12

(a)
x1[m]

x2
[m

]

G21: dipole at (0,0); OriAng: 0deg

−2 −1 0 1 2

−2

−1

0

1

2

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(b)
x1[m]

x2
[m

]

G31: dipole at (0,0); OriAng: 0deg

−2 −1 0 1 2

−2

−1

0

1

2

0.01

0.02

0.03

0.04

0.05

(c)

x1[m]

x2
[m

]

G11: dipole at (1,1); OriAng: 45deg; Direct−Sum

−2 −1 0 1 2

−2

−1

0

1

2

0.02

0.04

0.06

0.08

0.1

0.12

(d)
x1[m]

x2
[m

]
G21: dipole at (1,1); OriAng: 45deg; Direct−Sum

−2 −1 0 1 2

−2

−1

0

1

2

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(e)
x1[m]

x2
[m

]

G31: dipole at (1,1); OriAng: 45deg; Direct−Sum

−2 −1 0 1 2

−2

−1

0

1

2

0.01

0.02

0.03

0.04

0.05

(f)

x1[m]

x2
[m

]

G11: dipole at (1,1); OriAng: 45deg; Interp

−2 −1 0 1 2

−2

−1

0

1

2

0.02

0.04

0.06

0.08

0.1

0.12

(g)
x1[m]

x2
[m

]

G21: dipole at (1,1); OriAng: 45deg; Interp

−2 −1 0 1 2

−2

−1

0

1

2

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(h)
x1[m]

x2
[m

]

G31: dipole at (1,1); OriAng: 45deg; Interp

−2 −1 0 1 2

−2

−1

0

1

2

0.01

0.02

0.03

0.04

0.05

(i)

x1[m]

x2
[m

]

G11: dipole at (1,1); OriAng: 45deg; NUFFT

−2 −1 0 1 2

−2

−1

0

1

2

0.02

0.04

0.06

0.08

0.1

0.12

(j)
x1[m]

x2
[m

]

G21: dipole at (1,1); OriAng: 45deg; NUFFT

−2 −1 0 1 2

−2

−1

0

1

2

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(k)
x1[m]

x2
[m

]

G31: dipole at (1,1); OriAng: 45deg; NUFFT

−2 −1 0 1 2

−2

−1

0

1

2

0.01

0.02

0.03

0.04

0.05

(l)

Figure 4.2: Green’s functions at the depth of 0.6 m for a dipole antenna located at (0, 0, 0) with its
orientation along the x1-axis [(a)–(c)] and a rotated one at (1, 0, 1) m with its orientation of 45◦ from
the x1-axis [(d)–(l)]. (a), (b), and (c) show Green’s functions of the dipole antenna at the origin with
respect to the electric field components along the antenna axis (i.e., the x1 component), the direction
orthogonal to the antennas axis (the x2 component), and the propagation direction (the x3 component
here), respectively. (d)–(f), (g)–(i), and (j)–(l) show Green’s functions of the rotated dipole antenna
at (1, 0, 1) m obtained with the direct summation, the interpolation-based method, and the NUFFT
based method, respectively. The antennas are placed on the ground surface (the x1ox2 plane). The
operational frequency is 200 MHz and the relative permittivity of soil ε = 9.
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x1-axis to antenna axis. The x3-axis points downward, forming a right-hand co-
ordinate system with the x1- and x2-axes. Firstly, Green’s functions for a dipole
antenna at the origin along the x1-axis were calculated with the FFT-based method
[11]. Then Green’s functions for a linearly translated and rotated antenna were
computed by the interpolation based method and NUFFT based method proposed
in the previous section. In order to get accurate x- f domain Green’s functions,
four times oversampling in the k- f domain computation was taken for all simu-
lations and the computational accuracy of NUFFT was set to be 10−5. The sim-
ulation results are illustrated in Figure 4.2. The GFs at the depth of 0.6 m for a
dipole antenna located at the origin are shown in Figures 4.2(a)–(c) while the GFs
for a rotated dipole antenna at (1, 1, 0) m with the orientation angle of 45◦ are dis-
played in Figures 4.2(d)–(l). Among the plots for the rotated dipole antenna, Fig-
ures 4.2(g)–(i) and Figures 4.2(j)–(l) show the GFs obtained with the interpolation
based method and NUFFT-based method, respectively. As a reference, the results
computed by direct summation are shown in Figures 4.2(d), (e) and (f). Accord-
ing to Figures 4.2(d)–(l), one can see that both the interpolation based method and
NUFFT based method obtain the visually equal results as those of direct summa-
tion.

The efficiency and accuracy of the two proposed methods were also compared
quantitatively and the results are listed in Table. 4.1. The accuracy is indicated
by the relative L2 and L∞ errors. The relative L2 error is defined by the norm
of the differences between the computed GF with the suggested methods and the
reference GF divided by the norm of the reference GF. The relative L∞ error is
defined by the maximum of the differences between the computed GF with the
suggested methods and the reference GF divided by the norm of the reference GF.
In terms of both relative L2 error and relative L∞ error, the NUFFT based method
for Green’s function computation achieves much higher accuracy than that of the
interpolation based one. Although both suggested methods significantly improve
the computational efficiency compared to the direct summation method, the NUFFT
based method is still more than 7 times faster than the interpolation based method
for computing 250 × 250 points of the x- f domain Green’s function.

4.4.2 Imaging with Rotated Antenna Array

To demonstrate the imaging performance of the proposed approach, numerical sim-
ulations were performed for dielectric cylinders buried in the soil. GPR data were
synthesized with gprMax software, which uses the Finite-Difference Time-Domain
(FDTD) method to simulate the electromagnetic wave propagation [15]. The ge-



4.4 Simulations 79

Table 4.2: Simulation parameters for cylindrical cavities in soil

Parameter Value
Wavelet Ricker [900 MHz]
Radial sampling interval 5 cm
Azimuthal sampling interval 3◦

Radius of circular antenna aperture 0.5 m
Permitivity of background soil 9.0
Soil conductivity 0.01 S/m
Permitivity of dielectric cylinders 5.0
Conductivity of dielectric cylinders 0.05 S/m
Depth of the cavity 0.4 m

(a) (b)

Figure 4.3: Geometrical configuration of dielectric cylinders in soil. (a) is the 3-D geometrical con-
figuration and (b) is its top view against the y axis.

ometrical configuration for the simulation is shown in Figure 4.3. Two cylinders
of radius 10 cm were buried at the depth of 0.4 m and they were joined at one end
[as shown in Figure 4.3(a)]. The relative permittivity of the cylinders is 5.0 and
their conductivity is 0.05 S/m. Meanwhile, the permittivity and conductivity of the
background soil are 9.0 and 0.01 S/m, respectively. The elementary dipole anten-
nas were placed on the ground surface (i.e., xoz plane) and the Ricker wavelet of
900 MHz was used as the excitation signal. To emulate the operation of the GPR
system used for TBM applications, the dipole antennas were placed with orienta-
tions along the radii at different positions. GPR signals were acquired over eight
concentric circles whose radii range from 0.15 m to 0.5 m with steps of 5 cm and the
azimuthal sampling intervals were 3◦. Therefore, in total 960 spatial samples were
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Reconstructed images of cylinders buried in the soil with three different imaging ap-
proaches: (a), (c), and (e) are the 3-D images obtained by the linear inversion with exact radiation
patterns, Kirchhoff migration, and Kirchhoff migration combining the far-field radiation patterns, re-
spectively. (b), (d), and (f) are their corresponding top-view images.
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(a) (b)

Figure 4.5: Reconstructed image of cylinders with the linear inversion approach. (a) real part, (b)
imaginary part.

obtained within the aperture but their polarizations varied in different azimuthal
positions. For convenience, the parameters of the GPR system and the media prop-
erties are summarized in Table 4.2.

After synthesizing the GPR data, the accurate Green’s functions of rotated an-
tennas at each position were computed with the suggested methods in the previous
section. Then the synthetic data were focused via the linear inversion method by
considering the accurate radiation patterns of the antennas with varied polarizations
at different positions (i.e., linear inversion with accurate radiation pattern, referred
as LI-AccuRP below). In the implementation, the biconjugate gradients stabilized
method (BiCGStab) was exploited to estimate the solution for the linear system of
equations. For comparison, the Kirchhoff migration, as well as the Kirchhoff mi-
gration combining the far-field approximation of the radiation patterns, was also
utilized for image formation. Integrating the far-field radiation pattern aims to cor-
rect the angle dependence of the dipole radiation which is generally neglected in the
Kirchhoff migration. To avoid the blow-up of the signals after correction caused by
the sharp minima in the far-field radiation patterns, only the signals that correspond
to the radiation patterns down to -13dB with respect to its maximum were compen-
sated in the third imaging approach.

The images reconstructed with the three approaches are shown in Figure 4.4.
In all the images of Figures 4.4(a), (c) and (f), the “L”-shaped profiles of the joint
cylinders are more or less reconstructed. However, in Figures 4.4(c) and (e) the
reconstructed cylinders are much thinner than that in Figure 4.4(a). This is due to
the striking angle dependence of the radiation patterns of the interfacial dipole an-



82 Chapter 4. Linear Inversion of Polarization-Varied EM Data

tennas which significantly affects the strength of the signals observed from different
aspects with respect to a target. Although the far field radiation patterns were em-
ployed to compensate the angle dependence of the observations in Figures 4.4(e)
and (f), the resultant images are visually even worst than that without radiation pat-
tern correction [Figures 4.4(c) and (d)]. Specifically, the image of the cylinder par-
allel to the x-axis is fractured and in Figure 4.4(f) the joint part of the two cylinders
becomes dim compared to that in Figure 4.4(d). This may result from the inadequate
approximation of the far-field patterns in this case as well as the truncation effect
on the radiation patterns for signal correction. In contrast to Figures 4.4(c)–(f), the
images formed with linear inversion are remarkably improved by accounting for
the exact radiation patterns of ideal dipole antennas [Figures 4.4(a) and (b)]. Based
on Figure 4.4(b), the diameters of the cylinders could be estimated although some
artifacts are observed around the object.

Finally, we have to mention that the linear inversion approach in principle has
the potential to estimate the contrast function of targets. However, as the Born ap-
proximation used in the formulation is invalid in the simulation scenario, the con-
trast functions of the cylinders relative to the soil background were not correctly
estimated. From the reconstructed complex contrast functions (see Figure 4.5), the
permittivity difference between the cylinders and the soil background is estimated
to be 1.88 while its real value should be 4. Nevertheless, the shapes of the cylinders
were properly reconstructed. So one can see that the Born approximation is ap-
plicable and robust for reconstructing shapes of targets (at least, for homogeneous
objects) but not for estimating the contrast functions.

4.5 Experiments

As the rotated GPR instrument was unavailable, we instead took an experimental
campaign in the anechoic chamber for imaging in free space.

A rotated experimental platform was built in the anechoic chamber in the TU
Delft to emulate the signal acquisition for rotated arrays, as shown in Figure 4.6(a).
Actually, this setup was similar to the one we used in [1]. A column was installed
on the base with the three-axis motion (i.e., two-axis translation and one-axis rota-
tion), where a stepper motor was used to drive the base. On the top of the column,
a polyethylene plastic panel was mounted as a support for the two antipodal Vivaldi
antennas, i.e., one for transmitting and the other for receiving. Both Vivaldi anten-
nas were connected to a vector network analyzer (VNA). By linear translation along
the radius and rotation along azimuth, a circular planar array was synthesized. An
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Figure 4.6: The experimental setup in the anechoic chamber. (a) shows the experimental setup for
rotated array measurement. (b) displays the antipodal Vivaldi antennas used and (c) is the “L”-shaped
target.

(a) (b)

Figure 4.7: Images of experimental measurements reconstructed by: (a) Linear inversion with accu-
rate radiation pattern, (b) Kirchhoff migration.

“L”-shaped object was placed in front of the array at a distance of 0.5 m. The two
arms of the “L”-shaped object are about 20 cm and 30 cm in length, respectively,
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6 cm in width, and 5.5 cm in thickness [see Figure 4.6(c)]. All the parts of the ob-
ject was coated with aluminum foil. The spatial measurements were taken over
some concentric circles with radii ranging from 11 cm to 53 cm with steps of 3 cm.
In azimuth, the sampling interval was 2.4◦. The operational frequency of the VNA
sweeps from 3 GHz to 6 GHz with steps of 20 MHz.

To consider the direct coupling between the transmitter and the receiver and
background reflections, the measurement was also performed with the absence of
the object. After background subtraction, the signals reflected from the target were
obtained. Then the linear inversion approach with accurate radiation patterns was
utilized to reconstruct the target’s image from the frequency-domain signals. The
reconstructed image is shown in Figure 4.7(a). Note that as the experimental mea-
surement was conducted in free space, the Green’s functions for a Hertz dipole in
free space instead of half-space were used for linear inversion [12]. For comparison,
the signals after applying the inverse Fourier transform (IFT) to the measurements
in the frequency domain were focused with the Kirchhoff migration as well and the
formed image is presented in Figure 4.7(b). From Figure 4.7, one can see that both
linear inversion with accurate radiation patterns and the Kirchhoff migration ac-
quire well-focused images of the target. However, the profile of the target is clearer
and sharper in the image formed by linear inversion with accurate radiation pattern
[Figure 4.7(a)] compared to that in the image focused by the Kirchhoff migration
[Figure 4.7(b)]. Meanwhile, relatively larger artifacts and circularly sidelobes ob-
served in Figure 4.7(b) are noticeably suppressed in Figure 4.7(a). Therefore, by
considering the accurate radiation patterns of the rotated antenna arrays, improved
images were obtained. As a consequence, in this case the computation time of
the linear inversion approach (with 51 frequencies at each spatial position, i.e., the
measurements were down-sampled every three frequencies) required ∼350 s (about
340 s for computing DHD in (4.7)) compared to the ∼7 s of the Kirchhoff migra-
tion on a computer of 3.20 GHz CPU with four cores. The increase of computation
time can be considered as a cost to be paid for the improved image quality. To
accelerate the linear inversion approach, the matrix DHD can be precomputed and
stored before the inversion operation, or more advanced inversion solvers should be
exploited to circumvent the computation of DHD.

4.6 Conclusion

In this chapter, we have applied a linear inversion approach to microwave imaging
with transmitting and receiving antennas which are arbitrarily oriented over the
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data acquisition aperture. The approach models the wave propagation process with
full-wave Green’s functions and the image reconstruction is formulated as a linear
inverse problem. Taking advantage of full-wave Green’s functions, the polarization
and radiation pattern variations of antennas are taken into account and their effects
are compensated during the image formation.

In terms of the implementation of the proposed approach, two methods are
proposed to compute Green’s functions, especially half-space ones: interpolation-
based method and NUFFT based method. Compared to the direct summation
method, both methods significantly accelerate the Green’s function computation
and their accuracies were verified through numerical simulations. Besides for the
imaging, these two efficient approaches for Green’s function calculation can also
benefit the investigation of the properties of sensing matrix for near-field imaging
which is helpful to optimize the spatial signal sampling and imaging array design.
It was shown through both simulations and measurements the proposed approach
significantly improves the imaging performance (i.e., the sharpness of the focused
image, artifacts suppression) compared to the traditional imaging algorithms, such
as the scalar Kirchhoff migration and its combination with far-field radiation pat-
terns. The Born approximation does not seem important for the reconstruction of
the shapes of objects. However, reconstructed material parameters of the objects are
not correct, as expected. The proposed approach can be used for both free space and
subsurface imaging by exploiting the corresponding Green’s functions. In particu-
lar, the proposed method is very suitable for reconstructing images of polarization
independent objects and structures (such as point-like scatterers, spheres, and pla-
nar structures). The proposed approach can also be straightforwardly extended to
fully polarimetric imaging when the signals are acquired with fully polarimetric
antenna arrays and to incorporate with non-linear inversion schemes.

Appendix

As in this chapter Green’s function G (r − r′) with the minus (“−”) sign in the phase
terms, instead of “+” sign as used in [12], is used for outgoing waves, so the resul-
tant dyadic Green’s function is slightly different, which is derived as follows.

In a Cartesian coordinate system, dyadic Green’s function of an elementary
source can be written as

Ḡ(r, r′) =

(
Ī +

1
k2∇∇

)
G(r − r′) (4.24)
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where G (r − r′) is Green’s function of the scalar-wave equation, and given by

G
(
r − r′

)
=

e− jk|r−r′ |

4π|r − r′|
(4.25)

To get the explicit form of dyadic Green’s function Ḡ, we first expand the sec-
ond term in (4.24) as

∇G = ∇

(
e− jk|r−r′ |

4π|r − r′|

)
= ∇

(
e− jkR

4πR

)
=

1
4πR
∇e− jkR + e− jkR∇

(
1

4πR

)
(4.26)

=
1

4πR
e− jkR(− jk)∇R + e− jkR 1

4π

(
−

1
R2∇R

)
=

(
− jk −

1
R

)
G∇R =

(
− jk −

1
R

)
GR̂

where R = |r − r′| denotes the distance between a field point and the point source,
and R̂ = ∇R is used in the last line of the above equation.

Then we can get

∇∇G = ∇

[(
− jk −

1
R

)
G
]

R̂ +

(
− jk −

1
R

)
G∇R̂

=

[
− jk∇G − ∇

(
1
R

G
)]

R̂ +

(
− jk −

1
R

)
G∇R̂ (4.27)

=
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1
R

(
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)
GR̂ + G

1
R2 R̂

]
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+

(
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1
R

)
G

(
Ī − R̂R̂

) 1
R

where

∇R̂ = ∇

(
R
R

)
=

1
R
∇R − R

1
R2∇R =

1
R

(Ī − R̂R̂) (4.28)

Note that R = r − r′ and ∇R = Ī are used, where Ī is the identity dyadic. So finally
dyadic Green’s function Ḡ is obtained as

Ḡ
(
r, r′

)
= G

(
r − r′

) [(
1 −

i
kR
−

1
k2R2

)
Ī +

(
−1 +

3i
kR

+
3

k2R2

)
R̂R̂

]
(4.29)
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5
Three-Dimensional Array Design

and Optimization

5.1 Introduction

In this chapter, we extend the RadSAR to a new three dimensional SAR modality,
termed as the Elevation-RadSAR (E-RadSAR) by exploiting the additional forward
movement of the platform in the down-range direction. The E-RadSAR takes the
spatial measurements over a volume, i.e., one more degree of spatial freedom used
compared to the traditional arrays. An elementary objective of this study is to ex-
plore the potential of the 3-D spatial sampling of the E-RadSAR for reducing the
number of antennas needed in building a forward-looking short-range imaging sys-
tem.

5.1.1 Prior Works and Existing Theories

As a cost-efficient array technology, the SAR technique is widely applied to syn-
thesize a large aperture in the cross-range direction for high cross-range resolution.
The stripmap, spotlight, and CSAR designed for remote sensing, and the planar
scanning array and the RadSAR for short-range imaging are all such modalities.

Part of this chapter was submitted as: J. Wang, and A. Yarovoy,"Sampling design of synthetic volume
arrays for three-dimensional microwave imaging," IEEE Transactions on Computational Imaging,
under review.
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Moreover, the SAR technique is also utilized in the down-range direction to
extend the CSAR to the E-CSAR [1], which is closely related to our work. Com-
pared to the CSAR, the E-CSAR improves the down-range resolution and provides
the 3-D Imaging capability. Although its down-range resolution is still coarser than
that achieved by a planar array (e.g., the RadSAR) with the same cross-range di-
mensions [2], the E-CSAR demonstrates the potential of exploiting SAR technique
in the down-range direction for reducing the number of antennas needed for 3-D
imaging. Analogously, it inspires the extension of the RadSAR to the E-RadSAR
for cost-tight and/or space-limited imaging applications.

The synthetic aperture technique is, in essence, a scheme for spatial signal ac-
quisition. So it involves a signal sampling problem. Specifically, for the E-RadSAR,
it relates to a volume sampling, i.e., 3-D spatial sampling, of the scattered sig-
nals, which is substantially different from the traditional SAR modalities and ar-
rays in which spatial samples are collected along a line or over a surface. Regard-
ing the 3-D or even higher dimensional sampling, the Shannon sampling theorem
for frequency-limited signals was extended to functions of multi-dimensional ar-
guments [3], where the samples were taken over a periodic lattice to reconstruct
functions with limited spectrum in the wavenumber space. However, the periodic
lattice cannot be directly applied to take spatial samples of the wave fields in a vol-
ume or to design volume arrays for 3-D imaging. Moreover, Bucci et al. [4] studied
the bandwidth of the scattered fields and derived the degrees of freedom (DoF),
which are equal to the Nyquist number, as a criterion for the sampling representa-
tion. But the DoF only provides a guideline for the minimum number of the spatial
samples needed to avoid aliasing for the wave field signal reconstruction. Detailed
spatial sampling schemes still need to be investigated and elaborately designed for
different operational configurations.

Meanwhile, the sampling problem can be transformed to and discretely tack-
led as a subset selection problem, i.e., selecting a subset of samples as the mea-
surements from a group of candidates. Similar subset selection problems have
been formulated for sensor/observation selections in Magnetic Resonance Imag-
ing (MRI) [5–8], sensor management/allocation [9–14], remote sensing [15], etc.
The subset selection problem involves a combinatorial optimization problem. If
an exhaustive search is used to look for the solution, it requires prohibitively ex-
pensive computation, which is impractical, even for a medium-size problem. To
accelerate the selection process, plenty of selection methods have been proposed
in the related studies, which can be classified into three main categories: heuristic
methods [16], greedy methods with various selection criteria [5–8, 10, 12, 15, 17],
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and convex optimization methods [9, 11]. Heuristic methods [16] use some general
optimization methods, such as the genetic algorithm, particle swarm, etc, to gener-
ate (near-)optimal solutions for subset selection. But these kind of algorithms are
still prohibitively computational cost and their solutions have no optimality guaran-
tee. Convex optimization methods relax the boolean presentation of discrete sen-
sor/observation selection to a convex set. The optimality of the selected solution can
be evaluated through the distance between the primal and dual problem solutions
[18]. This approach can be extended by considering some prior information, for in-
stance, sparsity constraints [11]. Greedy methods select the sensors/observations in
a one-by-one manner by optimizing some proxies of error of the estimated physical
fields or unknowns, such as the trace of (AHA)−1 (here A is the observation matrix),
the determinant or trace of AHA, frame potential or eigenvalues of the observation
matrix A. Accordingly, some selection algorithms have been developed, includ-
ing the sequential backward selection (SBS), sequential forward selection (SFS),
FrameSense, Maximal projection onto minimum eigenspace (MPME), etc. More-
over, when the cost function used for the selection decision is submodular,1 the
resulting combination is guaranteed to be optimal within a certain bound.

5.1.2 Our Contributions

We investigate the volumetric spatial sampling of the E-RadSAR for 3-D short-
range imaging. The sampling design of the E-RadSAR for microwave imaging is
formulated as a sensor/observation selection problem. Specifically, we assume that
the antennas can take measurements within a volume over some grids which form
the set of candidate spatial samples. Then the sampling design for the E-RadSAR
is converted to the selection of a subset of antennas and their spatial sampling posi-
tions. Moreover, if wideband/UWB signals are used, the effect of the signal band-
width on the array design can be accounted for by taking samples in a series of
discrete frequencies in the operational frequency band. Therefore, one antenna gets
multiple measurements at each spatial sampling position. So the spatial sample se-
lection, in essence, becomes a vector measurement selection problem. A similar
vector measurement selection problem was also considered for sensor selection [9]
and sensor array configuration for ionospheric radio tomography [15] based on the
convex relaxation and clustered Sequential Backward Selection (CSBS) algorithm,

1A real-valued function z defined on a finite set N is called submodular if z(S ∪ {k}) − z(S) ≤ z(R ∪
{k})− z(R),R ⊂ S ⊂ N , k ∈ N\S. For submodular maximization, submodular set functions exhibit a
natural diminishing returns property. More discussions about submodular functions can be referred
to [19].
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respectively.
To address the vector measurement selection for short-range imaging, we pro-

pose two greedy algorithms, i.e., Clustered FrameSense and Clustered Maximum
Projection onto Minimum Eigenspace (CMPME). The clustered FrameSense se-
lects the spatial samples by optimizing the frame potential (a surrogate of the es-
timation error of physical field) of the observation matrix while the CMPME se-
quentially picks out the sample that brings the maximum complementary informa-
tion with respect to the existing ones by examining its projection onto the mini-
mum eigenspace. Compared to the convex relaxation method and CSBS, the two
proposed algorithms are substantially more computationally efficient and provide
near-optimal selections.

Moreover, we have to mention that the linear system formulation of the scat-
tered field inversion also provides a general multi-dimensional sampling model for
array-based microwave imaging systems, which enables to explore the impact of
spatial-, frequency- and polarization-diversities on the image formation in a uni-
fied framework. Based on this general model, we can design more advanced 3-
D sampling schemes/arrays, frequency-modulated arrays, as well as polarization-
diversified arrays in which the antennas within the aperture are intentionally placed
with different polarizations, etc.

5.2 Signal Model

5.2.1 Linear Inversion Problem

Under the Born approximation, the scattered EM field acquired by an array-based
imaging system can be expressed as (2.72). For convenience, we rewrite it as

s = D · χ (5.1)

where s ∈ CN is a vector formed by N measurements of the imaging system, and
χ ∈ Cm is a vector of the scatterers’ contrast functions in the investigation domain
discretized with respect to a set of unit volume box functions corresponding to a
3-D array of m cubic voxels. D ∈ CN×m, where N � m, denotes the sensing matrix
that relates scattered fields to the targets’ contrast functions, and each entry of the
matrix D is a function of operational frequency, the positions of transmitting and re-
ceiving antennas, and their polarizations. So it can be seen that different microwave
imaging systems lead to distinct sensing matrices and thus affect the information
content of the observation datasets. Therefore, the sensing matrix provides impor-
tant implications on the quality of image reconstruction. Theoretically, to accurately
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reconstruct the contrast functions of the targets, a great number of measurements
of the scattered fields acquired at different transceiver positions, signal frequencies
and polarizations are needed.

However, due to some practical constraints (i.e., cost, space, and bandwidth) of
the imaging systems, only a small number of measurements of the scattered EM
field can be collected. The measured signals are written as

y = Hs + n = Aχ + n (5.2)

where H ∈ RM×N is the selection matrix whose rows are the standard bases eT
si

s
(ek is a column vector whose k-th element is non-zero), and i = {1, 2, · · · ,M}. The
selected M rows from D indexed by {s1, s2, · · · , sM} form the observation matrix
A ∈ CM×m and each row in A is an observation vector related to a specific antenna
position, frequency and polarization. n ∈ CM is the measurement error of Gaussian
process with zero mean and σ2I the covariance matrix. Assuming M ≥ m measure-
ments are acquired by the imaging system, the least squares estimate of the contrast
function is given by

x̂ = A†y = (AHA)−1AHy (5.3)

where A† = (AHA)−1AH is the pseudo-inverse of A. The accuracy of the recon-
structed x̂ with the observation matrix A can be examined via the metrics:

• Mean square error (MSE)

MSE(x̂) = E[‖x̂ − x‖22]

= σ2tr(Γ−1) = σ2
m∑

i=1

1
λi

= σ2‖A†‖2F (5.4)

where Γ = AHA, and λ1 ≥ λ2 ≥ · · · ≥ λm are its non-increasing eigenvalues.

• Worst case error variance (WCEV)

WCEV(x̂) = λmax(σ2Γ−1) = σ2 1
λm

= σ2‖A†‖22 (5.5)

where λmax(·) represents the maximum eigenvalue of a matrix.

In (5.4) and (5.5), notations ‖ · ‖F , ‖ · ‖2 and ‖ · ‖2 represent the Frobenius norm,
l2 norm, and norm square, respectively. From (5.4) and (5.5), One can see that the
MSE and WCEV are closely related as MSE(x̂) ≤ mWCEV(x̂). By minimizing the
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WCEV, the MSE is also minimized. Besides, the condition number of the obser-
vation matrix A is often used to indicate the sensitivity of the estimation of x with
respect to the error of the measurement data and defined by

CondNo(A) =
√
λ1/λm (5.6)

As λ1 ≥ λm, the condition number of A is not less than one. If the condition number
is small, then small changes in the measurement data will result in a small error in
the estimation of x. Otherwise, small changes in the measurement data will lead to
a large error in the estimation of x.

According to (5.4)–(5.6), MSE, WCEV, and the condition number are all de-
pendent on the eigenvalues of the matrix Γ, thus fully depending on the observa-
tion matrix A. For microwave imaging, the observation matrix A is a function of
antenna positions, polarizations and frequencies. So the recovery performance of
matrix A can be optimized by properly choosing the antenna positions, polariza-
tions, and the frequencies. Hence, the above linear system formulation provides
a unified framework to explore spatial-, polarization- and frequency-diversities for
microwave imaging system design.

5.2.2 Problem Statement

Here we assume that the imaging system works over a certain bandwidth and the
antenna polarizations are fixed at each position. Only the spatial sampling of syn-
thetic volume array, i.e., E-RadSAR, for 3-D imaging is considered below.

In principle, the 3-D spatial sampling problem of the E-RadSAR can be handled
by transforming to a sensor/observation selection problem. As the E-RadSAR is im-
plemented by utilizing synthetic aperture technique in both cross- and down-range
directions, the related sensor/observation selection procedure is naturally divided
into two steps: (1) selecting a specific number of sensors (antennas); (2) deter-
mining the spatial sampling strategy for each antenna performed with a SAR tech-
nique in cross- and down-range directions. Actually, both steps can be addressed
by searching over a set of candidate positions for sensors/observations to find an
optimal or near-optimal subset.

Assume there are L initial candidate positions for the antennas. Taking advan-
tage of the SAR technique, each candidate antenna takes D measurements with
respect to q spatial positions in a volume and p discrete frequencies in the oper-
ational bandwidth, where D = p · q. So N = L · D measurements, in total, can
be collected and their corresponding observation vectors form the initial sensing
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matrix D ∈ CN×m, which is generally an extremely large matrix. Due to some prac-
tical constraints on, for instance, space and weight, only a few (saying M) antennas
could be used in the imaging system. So the first step for the sampling design of the
E-RadSAR is to select M antennas from the L candidates. As one antenna acquires
D measurements, the corresponding observation vectors contribute to D rows in the
sensing matrix. Hence, choosing one antenna means selecting D rows in D. With all
the observation vectors related to the M selected antennas, a new matrix, denoted as
D̃ ∈ C(M·D)×m, can be constructed. Analogously, the 3-D spatial samples of each an-
tenna are selected in the second step. At each spatial candidate position, a selected
antenna collects p measurements over the operational bandwidth. So selecting one
spatial position suggests choosing p corresponding observation vectors in D̃. The
observation vectors associated with all selected spatial positions form the final ob-
servation matrix A. Thus, one can see that selecting a position for either antenna or
spatial samples from the set of candidates implies to choose multiple observation
vector (i.e., a small matrix) from the initial sensing matrix, which is different from
the traditional sensor selection problem where one observation vector is typically
selected at a time.

Based on the above analysis, both steps of the sampling design for the E-
RadSAR can be formulated as a vector measurement selection problem. For the
convenience of description, we denote the set of the N candidate positions (for ei-
ther antenna or spatial samples) as N = {1, 2, · · · ,N} and the set of M selected
positions S = {s1, s2, · · · , sM}. The initial sensing matrix Ã = [Φ1,Φ2, · · · ,ΦN]T ∈
C(N·Q)×m (which corresponds to either D or D̃ mentioned above), where ΦT

i ∈ C
Q×m

is the submatrix contributed from the ith candidate position and Q is the number of
the observation vectors associated. Then, the sensor/observation placement prob-
lem with vector measurement can be formally expressed as follows.

Problem 1 Giving the initial sensing matrix Ã = [Φ1,Φ2, · · · ,ΦN]T ∈ C(N·Q)×m,
where ΦT

i ∈ C
Q×m, select M submatrices of Ã indexed with [s1, s2, · · · , sM] in N

to construct an observation matrix A = [Φs1 ,Φs2 , · · · ,ΦsM ]T ∈ C(M·Q)×m, such that
the estimation error is small enough and the number of selected submatrices is
minimized.

It can be found that the Problem 1 is very similar to the one addressed in [12]
except that block submatrices instead of individual rows are selected here. By con-
secutively tackling the Problem 1 for antenna and their spatial observation selection,
the sampling strategy of the E-RadSAR can be determined. Actually, the Problem
1 was also considered in [15] and [9]. However, the proposed CSBS and convex re-
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laxed methods are still very expensive computationally. To address Problem 1, we
next present two new algorithms, i.e., clustered FrameSense and clustered MPME,
developed for efficiently selecting clustered sensors/observations with sufficient op-
timality.

5.3 Clustered FrameSense

5.3.1 Frame Potential

Frames are a more general concept than bases [20]. A frame is an over-complete
set of vectors which yield expansions that are not necessarily unique for a vector in
the finite dimensional space. So a frame must have at least as many vectors as the
number of the dimensions of the space.

Frame potential (FP) is a scalar property of the frame and it describes the or-
thogonality of the frames. For a matrix ΨL = [ψ1, · · · , ψL]T ∈ CL×n and L > n, its
frame potential is defined as

FP(ΨL) =
∑
i, j∈L

|〈ψi, ψ j〉|
2 (5.7)

where ψi ∈ C
n whose transpose is the i-th row of ΨL, and L = {1, 2, · · · , L}. 〈·〉

and | · | represent the inner product and absolute value, respectively. If the rows
of ΨL have unit norm and form a unit-norm tight frame, then it has the minimum
FP compared to other matrices of the same size formed with unit-norm vectors.
Thus, the row vectors of ΨL are as close to orthogonal as possible. Consequently,
the unit-norm tight frame ΨL is the matrix that achieves the minimum MSE for
each component. In addition, from (5.7), one can see that the FP is defined as the
sum of squared modulus of the inner product of the row vectors of a matrix. So
minimizing the FP is equivalent to, roughly speaking, minimizing the correlation
among the observation vectors.

5.3.2 The Algorithm

By minimizing the FP of the observation matrix, the FrameSense has been proposed
for near-optimal sensor selection [10]. Here we apply the FrameSense to optimize
spatial sampling positions/sensor with vector measurements (instead of the case of
single sensor for single measurement). Based on the FrameSense algorithm, each
time, the candidate position that maximally increases the FP of the observation
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Algorithm 5.1: Clustered FrameSense

1 Input: Linear model Ã = {Φ1,Φ2, · · · ,ΦN}
T ∈ C(N·Q)×m, where ΦT

i ∈ C
Q×m;

Number of candidate positions N
2 Output: A ∈ C(M·Q)×m; Selected sample positions S
3 1) Initialization: the set of candidate positions N = {1, 2, 3, · · · ,N}; the

set of sample positions S = N ; the set of sample positions to be removed
R = ∅; k = 1

4 2) Determine the M spatial sample positions.
5 (a) Find the optimal submatrix i∗ = arg maxi∈L F (R ∪ i).
6 (b) Update the set of removed sample positions R = R ∪ i∗.
7 (c) Update the set of sample positions S = S\i∗.
8 (d) If k ≤ N − M, then k = k + 1 and repeat the steps (a)-(c); otherwise,

stop.

matrix is removed. The cost function is written as [10]

F(R) = FP(Ã) − FP(ÃN\R) (5.8)

where N is the set of candidate positions with respect to Ã, R is the position to be
evaluated. Note in our case eliminating one sampling position indicates to remove
Q corresponding rows in the observation matrix Ã. So we name it as Clustered
FrameSense (CFS). Its operation steps are shown in Algorithm 5.1.

As indicated in [10], the cost function (5.7) is a submodular function which
guarantees that the greedy maximization algorithm returns a solution with a pre-
dictable optimality. In CFS the cost function (5.8) is evaluated by removing Q
rows, i.e., a small matrix at a time, so the computational cost is reduced compared
to the traditional FrameSense method where one observation vector is removed
each time. The computational complexity of the clustered FrameSense can be an-
alyzed as follows. As we have an initial sensing matrix Ã ∈ C(N×Q)×m associated
with the N candidate positions. To select M positions from the N candidates, then
N − M of them should be removed through the “worst-out” strategy of the Frame-
Sense. To determine the k-th position to be removed, the computational cost is
O(2m[(N − k + 1)Q]2). So the total computational complexity can be estimated as
O

(
2
∑N−M

k=1 m[(N − k + 1)Q]2
)

= O
(

2
3 (N3 − M3)Q2m

)
. If the matrix ÃÃH can be

stored, then the computational complexity can be reduced to be O(2mN2Q2).
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5.4 Clustered Maximal Projection on Minimal Eigenspace

The Maximal Projection on Minimal Eigenspace (MPME) approach [12] was pro-
posed to select the minimum number of sensors one by one for linear inversion
problems. For convenience, we briefly describe it first. Then the developed clus-
tered MPME as well as its efficient implementation are presented.

5.4.1 MPME

The objective of the MPME algorithm is, in essence, to select the minimum num-
ber of sensors such that their observation vectors form an observation matrix with
m significant singular values. The basic idea of the MPME algorithm is to select
the sensor that brings the most complementary information to that of the existing
ones at a time. Assume an observation matrix Ak−1 ∈ C

(k−1)×m is formed by the
observation vectors related to the first k − 1 selected samples. Its singular value
decomposition (SVD) Ak−1 = UΣVH , where U ∈ C(k−1)×(k−1) and V ∈ Cm×m are
left and right unitary matrices, and Σ ∈ R(k−1)×m is a diagonal matrix with the non-
negative real numbers in the diagonal. The column vectors of U and V span the
data space and the object’s space, respectively. So to get an observation matrix for
unambiguous reconstruction of the object, the most efficient observations are those
that gradually expand the dimension of data space to be close or equal to that of
the object’s space. So it is better to select as the kth sensor/observation the one
that brings the most complementary information with respect to the existing k − 1
ones. Specifically, when the number of the sensors/observations is less than that
of the unknowns in the beginning, i.e., k ≤ m, the observation vector that has the
largest component (i.e., projection) in the null space of the observation matrix Ak−1
expands the dimension of the data space and contributes the most complementary
information. Thus, the corresponding sensor/observation should be the kth selec-
tion. Inserting the newly selected observation vector into Ak−1, the new observation
matrix Ak is constructed with the row dimension increased by one. Accordingly, it
also increases the number of significant singular values of Ak. When k > m, the
rows of the observation matrix Ak−1 form an over-complete set of bases for its row
space and the observation matrix has m non-zero singular values. To reduce the
estimation errors of the solution (see (5.4) and (5.5)), the observation vector of a
new sensor should increase the minimum singular value of the updated observation
matrix Ak (equivalently, to increase the minimum eigenvalues of the matrix AH

k Ak

[12]). This is implemented by selecting the sensor whose observation vector has
the largest projection onto the subspace spanned by the eigenvector(s) associated
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with the minimum eigenvalue(s) of AH
k−1Ak−1. In [12], the subspace spanned by

the eigenvectors associated with the minimum eigenvalues of AHA is defined as its
minimum eigenspace.

5.4.2 CMPME Algorithm

In this section, the MPME is further developed to tackle the problem of select-
ing the sensors/observations with vector measurements, named as clustered MPME
(CMPME). In this case, selecting a sensor results in selecting a set of associated
observation vectors (Q vectors as indicated above) at a time and these observation
vectors are added as rows into the observation matrix Ak−1 to form a new one Ak.
To determine the optimal sensor to be selected, it is essential to evaluate how the Q
observation vectors affect the eigenvalue system of the “dual observation matrix”
AH

k−1Ak−1 (equivalently, the effect on the singular value system of the observation
matrix Ak−1), which typically uses the projection of the selected rows onto the min-
imum eigenspace of the “dual observation matrix” AH

k−1Ak−1 as a metric in MPME.
However, besides examining the projection of the selected rows onto the minimum
eigenspace of AH

k−1Ak−1, to what extent the rows of the selected small matrix are
mutually orthogonal should be checked as well. When the observation vectors as-
sociated with two sensors have equal projections onto the minimum eigenspace
of “dual observation matrix”, the one with a more mutually orthogonal set of ob-
servation vectors is preferred. This can be derived as follows. If we allow the
observation vectors associated with a sensor to be selected individually, each time
the observation vector that has the largest projection onto the minimum eigenspace
of AH

k−1Ak−1 is picked up. If the number of rows of Ak−1 is smaller than m, the
minimum eigenspace of AH

k−1Ak−1 is the null space of Ak−1. So the newly selected
observation vector is always to the largest extent “orthogonal” to the existing rows
in the observation matrix. This is also true for the last Q selected observation vec-
tors. However, now we have to select Q vectors as a group at a time. So it is natural
that the newly selected Q observation vectors should not only have the largest pro-
jection onto the minimum eigenspace of AH

k−1Ak−1 but also be to the largest extent
mutually “orthogonal”.

To quantitatively assess the orthogonality among the Q observation vectors of a
sensor, the inner products among their corresponding normalized vectors are con-
ducted. As we prefer the sensors whose observation vectors are more close to or-
thogonal, the inner products among them should be more close to zeros. Combining
both the projection of the new observation vectors onto the minimum eigenspace
and their orthogonality, the optimal sensor can be selected by maximizing the cost
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function

Cost(Φsk ) =
∥∥∥Pk−1Φsk

∥∥∥2
F − η

 Q∑
i, j=1

|〈ϕ̃i, ϕ̃ j〉|
2

 (5.9)

where Φsk is the small matrix formed by the Q observation vectors ϕi, i = 1, · · · ,Q,
and ϕ̃i is the normalized vector of ϕi. Pk−1 is the projection operator onto the min-
inum eigenspace of AH

k−1Ak−1. η is a regularization(-like) term that controls the
importance of the orthogonality among the new observation vectors. Actually, the
second term of the cost function is related to the inverse frame potential of the new
sensor. Therefore, to some extent, this cost function can be considered as a combi-
nation of the projection and the frame potential.

The projection operator at each step can be obtained in a similar way as in [12].
When k · Q ≤ m, the minimum eigenspace of AH

k−1Ak−1 is the null space of Ak−1.
Then the projection matrix Pk−1 onto the minimum eigenspace of AH

k−1Ak−1 can be
given by

Pk−1 = Im×m − Rk−1RH
k−1 (5.10)

where I is the identity matrix and Rk−1 = orth(AH
k−1) whose column vectors are

obtained through the Gram-Schmidt (G-S) Orthonormalization of all the column
vectors of AH

k−1 [21]. When k · Q > m, the projection matrix Pk−1 is written as

Pk−1 = U(k−1)
m (U(k−1)

m )H (5.11)

where U(k−1)
m = [u(k−1)

m−µn+1,u
(k−1)
m−µn+2, · · · ,u

(k−1)
m ] ∈ Cm×µn . u(k−1)

m−µn+1,u
(k−1)
m−µn+2, · · · ,u

(k−1)
m

are the eigenvectors of the smallest eigenvalue of AH
k−1Ak−1 with multiplicity µn.

After getting the projection matrix in each iteration, the cost function (5.9) can
be evaluated for the selection. The detailed CMPME operations are shown in Al-
gorithm 5.2. In its implementation, the cost function evaluation causes the dom-
inant computational cost. To determine the k-th spatial sample position, it costs
O(m2(N − k + 1)Q + mQ2(N − k + 1)). Therefore, the total complexity cost can be
estimated as O((m2 + mQ)NQM).

5.4.3 Efficient Implementation

In Algorithm 5.2, two most computationally expensive steps are to evaluate the cost
functions with respect to the observation vectors of each candidate sample (line 6
or 10) and to compute and update the set of orthonormal bases (line 7 or 11). As
the cost function of each candidate sample is evaluated with respect to the same set
of orthonormal bases, so it can be implemented by parallel computing.
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Algorithm 5.2: Clustered Maximal Projection on Minimum Eigenspace

1 Input: Ã = {Φ1,Φ2, · · · ,ΦN}
T ∈ C(N·Q)×m, where ΦT

i ∈ C
Q×m

2 Output: A ∈ C(M·Q)×m, S, M
3 1) Initialization: N = {1, 2, · · · ,N},S = ∅.
4 2) Determine the first n = dm

Qe sampling positions:
5 (a) Set A0 = [],P0 = In×n and k = 1.
6 (b) ŝk = arg maxi∈N\SCost(Φi).
7 (c) Update: S = S ∪ {ŝk}, Ak = [AT

k−1 Φŝk ]
T, Rk = orth(AH

k ),
Pk = Im×m − RkRH

k .
8 (d) Set k = k + 1 and repeat steps (b-c) until k = n.
9 3) Determine the remaining sampling positions:

10 (a) ŝk = arg maxi∈N\SCost(Φi).
11 (b) Update: S = S ∪ {ŝk},Ak = [AT

k−1 Φŝk ]
T, AH

k = UkΣkVH
k ,

Pk = U(k)
m (U(k)

m )H .
12 (c) If λ(k)

m > γ return S, M = k and A = Ak; else set k = k + 1 and repeat
steps (a-b).

For the update of the orthonormal bases and projection operator, the compu-
tation load can be significantly reduced by iterative computing. More specifically,
the orthonormal bases Rk−1 (in line 7) are computed through the orthonormaliza-
tion of the column vectors of AH

k−1 and then expanded to Rk after appending new
observation vectors Φŝk to Ak−1, which can be expressed as Rk = orth(AH

k ) =

orth([AH
k−1 Φ∗ŝk

]), and the superscript ∗ represents the complex conjugate. As in
the previous iteration Rk−1 = orth(AH

k−1) has been computed and orthonormal col-
umn vectors are obtained, Rk can be updated by only orthonormalizing Φ∗ŝk

relative
to Rk−1 via a Gram-Schmidt process. After obtaining Rk, the projection operator
Pk can also be updated. This update process can be expressed as

Pk = Im×m − RkRH
k

= Im×m − Rk−1RH
k−1 − orth(Φ∗ŝk

; Rk−1)orth(Φ∗ŝk
; Rk−1)H (5.12)

= Pk−1 − orth(Φ∗ŝk
; Rk−1)orth(Φ∗ŝk

; Rk−1)H .

where orth(Φ∗ŝk
; Rk−1) denotes the new orthonormal bases of Φ∗ŝk

relative to Rk−1. So
one can see that the cost function can be updated by just computing the projections
of the observation vectors of the remaining sensors with respect to the second term
in the last line of (5.12). As the column dimension of orth(Φ∗ŝk

; Rk−1) is much
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smaller than that of Rk, i.e., Q � m, the computational load for the cost function
evaluation in line 6 is substantially reduced through a sequential update in each
iteration.

In line 11, the column vectors of U form a set of orthonormal bases, which is
obtained through SVD: AH

k = UkΣkVH
k . As the dimensions of matrix Ak typically

are of hundreds and thousands in the imaging case, the SVD of Ak is very compu-
tationally expensive. Considering the fact that Ak is obtained by appending a small
matrix Φŝk to the row space of Ak−1, then its SVD can be obtained by consecutively
performing Q times rank-1 update to the SVD of Ak−1 [22, 23]. In addition, we
have to mention that these efficient implementation methods can also be used to
accelerate the traditional MPME algorithm.

5.5 Imaging Examples

This section presents some examples to show the imaging performance of antenna
arrays optimized with the proposed algorithms, i.e., CFS and CMPME. For compar-
ison, the simulations were also carried out with CSBS [15] and the convex relaxed
method [9]. The convex relaxed method was solved by using the SDPT3 software
package which is a Matlab software for semidefinite-quadratic-linear programming
[24].

5.5.1 Planar Array Imaging

Firstly, a circular planar array based imaging in free space is presented to demon-
strate the performance of the four methods for antenna array optimization. Assume
that a circular planar array of radius 0.5 m is used for signal acquisition and it is lo-
cated on the xoz plane. The y-axis points towards the illuminated region and forms
a right-hand coordinate system with the x- and z-axes. The operational bandwidth
is from 2 to 6 GHz. The scene of interest is a volume with the shortest distance
of 0.5 m from the array and its dimensions are 0.6 m × 0.2 m × 0.6 m in the x-, y-
and z-axes, respectively. So the cross-range and down-range resolution can be es-
timated as 2.25 cm and 3.75 cm, respectively. Considering the computational time
for the simulation, we divide the scene of interest into voxels with dimensions of
5 cm × 5 cm × 5 cm. So the whole imaging volume contains 845 voxels. In the cir-
cular antenna array, the candidate spatial samples of the antennas lie on a series of
circles with radii ranging from 0.05 m to 0.5 m with steps of 5 cm. In azimuth, the
sampling interval is 6◦. Therefore, we have 600 candidate spatial samples within
the aperture in total. Moreover, at each spatial sampling position, an antenna takes
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41 measurements at the frequencies sweeping from 2 to 6 GHz with steps 100 MHz.
In the simulation, the near-field signal model is used to generate each measure-

ment
s(xa, f ) =

∫
V
χ(x) ·

exp(− j4π f R/c)
4πR

dV (5.13)

where xa and x represent the antenna’s and the scatterers’ positions, respectively.
c is the wave propagation velocity, f is the signal frequency, χ(·) is the reflectivity
function and R = |x − xa| is the distance between the antenna and the scatterer.

Setting χ(x) = 1 and applying the spatial box window at each voxel in (5.13),
the initial sensing matrix Ã ∈ C24600×845 associated with all the candidate spatial
samples can be constructed.

Based on the aforementioned simulation setup, the spatial samples for a circular
planar array are selected with CMPME, CFS, CSBS, and convex relaxed method.
Here as long as a spatial sampling position is selected, the observation vectors cor-
responding to all the 41 frequencies are chosen. Assume n is independent and
identically distributed (i.i.d.) Gaussian noise, with the variance σ2 = 1. Then the
MSE, WCEV and condition numbers achieved by the observation matrices con-
structed with the observation vectors selected by the four methods are presented in
Figure 5.1.

From Figure 5.1(a), it can be seen that the spatial samples selected with CMPME
achieve smaller MSE, WCEV and condition numbers compared to CFS. Moreover,
with sufficient spatial samples (more than 60 spatial samples), CMPME also leads
to slightly better selection than CSBS. However, when the number of selected spa-
tial samples is small (less than 50), CSBS performs slightly better than CMPME.
This is because CSBS is, similar to CFS, a greedy ‘worst-out’ algorithm, which
gradually removes the least informative spatial samples. Then the most informa-
tive ones are selected in terms of MSE. By contrast, CMPME takes a sequential
forward selection scheme. It gradually adds to the selection set the sample that
is most complementary to the existing ones. So the spatial samples selected by
CMPME could be less optimal than that selected by CSBS when the number of
samples is small. Nevertheless, 50 spatial samples are not sufficient as the MSEs
achieved by the observation matrices obtained with both methods are larger than
105. With the increase of the number of selected spatial samples, CMPME and
CSBS achieve equivalent performance in terms of MSE. Meanwhile, CFS reaches
a comparable but slightly larger MSE compared to CMPME and CSBS. This is due
to the fact that in the simulation scenario the distances from different antenna po-
sitions to scatterers have very small differences. Namely, the observation vectors
associated with each spatial sample have more or less similar norms, in which case
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Figure 5.1: Criteria comparison of the three selection approaches. (a) shows the MSEs achieved by
the observation matrices with different number of selected spatial sampling positions; (b) for WCEV,
and (c) for Condition number.

the frame potential can lead to a near-optimal selection. Therefore, CFS achieves
comparable performance as CMPME and a similar phenomenon is also observed
for FrameSense and MPME [12]. Furthermore, it is obvious that the observation
matrices selected by CMPME, CSBS and CFS arrive at much smaller MSEs than
that obtained with the convex relaxed method. So all the CMPME, CSBS, and CFS
outperform the convex relaxed method in this case in terms of MSE.

The variations of the WCEVs and condition numbers of the observation matri-
ces obtained with the four methods are shown in Figures 5.1(b) and (c). Similar to
the MSE in Figure 5.1(a), the WCEVs and condition numbers rapidly decrease with
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the growth of the number of spatial samples. Overall, CMPME and CSBS arrive
at better performances than CFS and the convex relaxed method in terms of both
WCEV and condition number. Moreover, with sufficient spatial samples, CMPME
results in smaller WCEVs and conditions numbers compared to CSBS. If we set the
WCEV threshold as 1.5, the numbers of the spatial samples selected by CMPME,
CSBS, and CFS are 90, 98 and 118, respectively. Meanwhile, the convex relaxed
method leads to more than 150 samples to be selected. Therefore, among the four
methods, CMPME selects the minimum number of spatial samples.

To further compare the imaging performance of the arrays obtained with the
four methods, we take arrays of 90 spatial samples as an example. The topolo-
gies of the circular arrays acquired with the four methods are shown in Figure 5.2.
Intuitively, the arrays selected with CMPME and CSBS have a relatively uniform
distribution of spatial samples within the aperture while the samples of the array
obtained with CFS are mainly located on the circles close to the edge of the aper-
ture. Although the spatial samples selected by the convex relaxed method are also
mainly distributed on two circles, they form a smaller effective aperture compared
to those acquired with the other three greedy algorithms. Therefore, it would result
in, according to array theory, lower cross-range resolution than with the other three
arrays.

Imaging simulations were performed for the four arrays with the measurement
setup shown in Figure 5.3. Ten point targets were placed on two planes y = 0.5 m
and y = 0.7 m [see Figures 5.3(b) and (c)] and the magnitudes of their reflectiv-
ity functions were set to two. The measurement errors and noise were assumed to
be zero-mean Gaussian distribution with the variance equal to 1, i.e., n ∼ N(0, 1)
(correspondingly, the signal to noise ratio ≤ 5.6 dB). Taking 50 Monte Carlo sim-
ulations each with a different noise realization, the average of the imaging results
on the two target planes are presented in Figures 5.4 and 5.5 on a logarithmic scale.
For comparison, the truths of the target configurations at the two slices are also
shown in Figure 5.4(a) and Figure 5.5(a), respectively. It is obvious that the arrays

Table 5.1: MSEs and WCEVs of the estimated images with the arrays optimized by the four algo-
rithms

Algorithms CMPME CFS CSBS ConvexOpt

MSE 88.96 185.11 96.06 5.08e+05

WCEV 0.88 2.41 0.96 1.24e+04
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Figure 5.2: Array topologies of 90 selected spatial samples with (a) CMPME, (b) CFS, (c) CSBS, and
(d) Convex optimization.

selected with CMPME, CFS, and CSBS result in much better estimations of the
imaging scenes in contrast to the array acquired with the convex relaxed method.
In the images estimated by the three greedy algorithms, some variations are no-
ticed in the “floor” region compared to their corresponding truths but the differ-
ences among them are hard to distinguish visually. The quantitative metrics, i.e.,
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Figure 5.3: Measurement setup for numerical simulations with the four arrays. (a) 3-D view, where
the gray area at y = 0 indicates the antenna array. (b) slice at y = 0.5 m, and (c) slice at y = 0.7 m.

MSE and WCEV, of the reconstructed 3-D images were examined and listed in
Table 5.1. One can see that the array selected by CMPME achieves the smallest
MSE and WCEV for the estimated images while the array obtained with the con-
vex relaxed method leads to the worst estimation of the image. As the WCEV=1.5
(the solid line in Figure 5.1(b)) was used as a threshold to determine the number of
spatial samples (i.e., 90 samples), it is indeed achieved with the array designed by
CMPME.
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Figure 5.4: Slice images at y = 0.5 m for synthetic point scatterer reconstructions. (a) shows the truth,
(b) is the slice image estimated with the array optimized using CMPME, (c) is estimated with the array
optimized using CFS, (d) is estimated with the array optimized using CSBS, and (e) is estimated with
the array optimized using the convex relaxed method.
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Figure 5.5: Slice images at y = 0.7 m for synthetic point scatterer reconstructions. (a) shows the truth,
(b) is the slice image estimated with the array optimized using CMPME, (c) is estimated with the array
optimized using CFS, (d) is estimated with the array optimized using CSBS, and (e) is estimated with
the array optimized using the convex relaxed method.
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Table 5.2: Computational complexities of the four sensor selection methods

ConvexOpt CSBS CFS CMPME

O
(
icL3

)
O

(
mNL2

)
O

(
2mL2

)
O

(
(m2 + mQ)ML

)

Table 5.3: Computation time of CMPME, CSBS, CFS and Convex relaxed method to select 90 spatial
samples from 600 candidates for planar circular array optimization.

Algorithm ConvexOpt∗ CSBS CFS CMPME

Time 4.14h 3.92h 126.4s 91.8s
∗ 21 iterations were taken.

Finally, the computational complexities of the four sensor/observation selec-
tion methods are compared. The computational costs of CFS and CMPME have
been discussed in the previous sections. As indicated in [9] and [12], the compu-
tational complexity of the convex relaxed method for selecting sensors with vector
measurements is O(icN3Q3), where ic is the iterative number of the convex opti-
mization. On the other hand, the CSBS costs O(mN3Q2) [15]. For the convenience
of comparison, the computational complexities of the four methods are summa-
rized in Table 5.2, where L = N · Q is used to simplify the notation. As typically
L � m,N,Q, one can see that among the four algorithms, CMPME has the lowest
computational complexity followed by CFS. This results from the fact that CMPME
is a sequential forward selection approach instead of the sequential backward selec-
tion schemes used in CSBS and CFS. This advantage could be even remarkable
when the number of selected samples is substantially smaller than that of the can-
didate samples. For the planar array imaging simulations above, the computational
time of the four algorithms also confirms this conclusion, as shown in Table 5.3.
In this simulation, the sensor selection simulations were performed on a PC with
an Intel Core i5-3470 CPU of 3.2 GHz and 8 GB RAM. All the four methods were
implemented in Matlab code. For the convex relaxed method, 21 iterations were
automatically performed by the SDPT3 optimization engine. From Table 5.3, one
can see that in this simulation CFS and CMPME are more than 100 times faster
than the convex relaxed method and CSBS. Moreover, the circular array selected by
CMPME achieves a comparable imaging performance as that obtained by CSBS.
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(a) (b)

Figure 5.6: Geometrical configuration of GPR numerical simulation. (a) is the 3-D illustration of the
simulation setup, and (b) is its xoz-view along the y-axis.

5.5.2 Optimization of the E-RadSAR

In this section, we present the sampling design and optimization of the E-RadSAR
for 3-D imaging by using the proposed algorithms. The objective of the sampling
design of the E-RadSAR is to explore the potential of utilizing synthetic aperture
technique in the down-range direction to reduce the number of antennas needed.

A 3-D subsurface imaging experiment with GPR was performed for illustration
of the proposed algorithm for the E-RadSAR design. The experimental configura-
tion is shown in Figure 5.6. Two perpendicularly oriented dielectric cylinders were
buried in the soil as the objects and they were joined at one end. The radius of the
cylinders is 10 cm and their lengths are 60 cm and 80 cm. The conductivity and rela-
tive permittivity of the cylinders are 0.05 S/m and 5.0, respectively. In addition, the
permittivity of the background soil is 9.0 and its conductivity 0.01 S/m.2 The GPR
antennas were placed along a radius of a circle centered at the origin on the ground
surface (i.e., xoz-plane in Figure 5.6). The orientations (i.e., polarizations) of the
dipole-like antennas were also along the radius. The Ricker wavelet of 900 MHz
was used as the excitation signal. To simulate the operation of the GPR system
used in the tunnel boring machine (TBM), the GPR signals were acquired over sev-
eral concentric circles with the rotation of the antennas around the origin. To get
2The dielectric parameters of a few typical geological materials measured at 100 MHz are given by:
ε = 7 (8), σ = 10−8 : 10−6 (10−2 : 10−1) for dry (wet) limestone; ε = 5 (7), σ = 10−8 : 10−6 (10−3 :
10−2) for dry (wet) granite; ε = 5 : 10, σ = 10−4 : 10−2 for wet sandstone, etc. The dielectric
parameters for more materials can be found in [25, 26].
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properly focused images of targets at a distance of 0.4 m, a circular planar array
aperture of the radius 0.5 m should be used. Based on the polar sampling criteria,
eight antennas were placed along a radial direction on eight concentric circles with
the radius ranging from 0.15 m to 0.5 m with steps of 5 cm. In azimuth, the signals
were sampled every 3◦. Therefore, in total 960 spatial samples were obtained over
the circular planar array.

To explore the possibility to reduce the number of antennas by taking advantage
of the forward motion for 3-D array synthesis, three different depths of the objects,
i.e., 0.3 m, 0.4 m, and 0.5 m, relative to the ground surface (i.e., antenna array)
were considered to simulate the E-RadSAR. Taking the aforementioned sampling
criteria, 2880 spatial samples were acquired over three circular planar arrays at
three depths, which form the candidate set for the E-RadSAR sampling design and
optimization.

For the convenience of description, let us set y = 0 at the closest position
of the antenna array to the objects. The imaging volume is a cuboid defined by
[−0.4, 0.4] m×[0.1, 0.5) m×[−0.5, 0.5] m along the x, y and z directions. The whole
volume is discretized as 41820 voxel cells of the dimensions 2 cm × 2 cm × 2 cm in
which the values of voxels represent the reflectivity functions at the corresponding
positions. Then the observation vectors of the antenna at each position relative to
the imaging volume can be obtained at different frequencies via accurate Green’s
functions for the scattering process based on the Born approximation [27]. The sig-
nal frequencies sweep from 557.8 to 1546.6 MHz with steps of 12.7 MHz to cover
the whole bandwidth of the Ricker wavelet. So considering different frequencies,
79 observation vectors are obtained at each sampling position. Stacking all the ob-
servation vectors associated with all candidate sampling positions at all frequencies,
a candidate sensing matrix Ã ∈ C(2880·79)×41820 is obtained. The candidate sensing
matrix corresponds to the volume array synthesized by using eight antennas, and
each antenna contributes 28440 (i.e., 120 × 3 × 79) candidate observation vectors.

To design and optimize the sampling strategy of the 3-D synthetic array, we
take two steps: the first step is to select a certain number of antennas from the eight
candidate antennas; the second step is to optimize the spatial sampling positions of
the selected antennas. Considering the number of voxels in the imaging volume and
slight redundancy, at least three antennas should be selected. That is to say, at least
three sub-matrices of dimensions 28440× 41820 should be chosen. Accounting for
the enormous size of the candidate sensing matrix Ã and computational time, the
first step was implemented by using CFS. The outer-most three antennas within the
circular aperture were selected, as shown in Figure 5.7(a).
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Figure 5.7: Spatial sample selection for 3-D synthetic array. (a) shows the candidate spatial samples
of the selected antennas; (b) and (c) show the 350 spatial samples selected for the three antennas with
CFS and CMPME, respectively.

Next, the spatial sampling positions of the three selected antennas are selected.
Considering both selection performance and computational time, CMPME and CFS
were used to select the (near-)optimal spatial samples, and the imaging performance
of their selected arrays was compared. In this example, 350 spatial sampling po-
sitions were selected for the three antennas. The selected results are shown in
Figures 5.7(b) and (c). Comparing Figures 5.7(b) and (c), one can see that the
CFS selects mainly the spatial samples that are far from the imaging volume while
CMPME selects the nearer ones. This can be explained as follows. CFS gradually
eliminates the spatial samples whose observation vectors have the largest frame po-
tential (i.e., correlations) with those of the rest samples, which works optimally for
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observation vectors with equal L2 norms. But for observation vectors with unequal
norms, the performance of CFS degrades. Considering attenuation and spreading
loss of wave propagation, the observation vectors at the spatial sampling positions
closer to the imaging volume have larger L2 norms than those at a longer distance.
So when evaluating the frame potential via the inner product, the observation vec-
tors with larger L2 norms could lead to larger frame potentials. Thus, the corre-
sponding spatial samples, i.e., those at short range, are discarded, which has been
indicated for the traditional FrameSense method in [10]. By contrast, CMPME
evaluates the complementary information introduced by the observation vectors as-
sociated with a new spatial sample relative to the existing ones, which takes into
account the effects of the magnitudes of the vectors. The spatial sampling positions
at a shorter distance form relatively diverse observation angles with respect to the
imaging volume and their observation vectors have large magnitudes, thus resulting
in large projections onto the minimum eigenspace. Consequently, the spatial sam-
ples closer to the imaging volume are preferably selected by CMPME algorithm.

To evaluate the imaging performance of the 3-D arrays obtained with the two
methods, image reconstruction was carried out as well. The focused images are
presented in Figure 5.8. One can see that the images of the cylinders are well re-
constructed with both arrays [Figures 5.8(a) and (c)]. From the top-views of the
3-D images [Figures 5.8(b) and (d)], it can be observed that the artifacts in the im-
age obtained with the 3-D array selected with CMPME are considerably suppressed
compared to that in the image with the array selected with CFS. So in terms of the
overall image quality, the 3-D array selected with CMPME outperforms that ob-
tained with CFS. Moreover, some other differences are also noticed in the focused
images with the two 3-D arrays. From Figure 5.8(d), it seems that the focused im-
ages of the cylinders are slightly distorted, i.e., curved. This is because the antennas
in the array selected with CMPME form relatively large observation angles from the
broadside of the antennas. Then due to the weighting effects of the antenna radi-
ation pattern, reflected signals from some scatterers are not well acquired or even
missing. Thus it causes slight distortion in the focused images.

Here we have to mention that 350 spatial samples selected in this example lead
to an observation matrix A ∈ C27650×41820 whose rank is still smaller than the num-
ber of voxel cells. This could also be a reason for the distortion of the focused
image with the arrays selected with CMPME. By increasing the number of selected
spatial samples, the imaging performance of the 3-D array obtained with CMPME
could be further improved.
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(a) (b)

(c) (d)

Figure 5.8: Imaging results of the selected 3-D synthetic arrays with CFS and CMPME algorithms.
(a) and (c) are the reconstructed 3-D images with the 3-D arrays selected by CFS and CMPME; (b)
and (d) display their top-views, respectively.

5.6 Discussion of 3-D Imaging Array

The 3-D synthetic array, i.e., E-RadSAR, provides a novel and flexible spatial sam-
pling strategy, which exploits one more degree of freedom in space compared to
the traditional planar array. Nevertheless, topologically we can still consider that
the 3-D sampling is performed over a warped surface. For example, a 3-D array
synthesized by the E-RadSAR with three antennas is illustrated in Figure 5.9(a),
where the spatial samples are located on three cylindrical surfaces formed by the
forward movement of the antennas. If we sequentially connect the cylindrical sur-
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(a) (b)

Figure 5.9: (a) Illustration of an E-RadSAR synthesized with three antennas over three cylindrical
surfaces; (b) a warped 3-D surface for the E-RadSAR sampling obtained by sequentially connecting
the cylindrical surfaces.

faces, a folded surface is constructed in the 3-D space [see Figure 5.9(b)]. Then the
E-RadSAR measurements can be regarded as the spatial samples of the scattered
field over this folded surface. Taking advantage of the explosive reflector model
for the scatterers and Gauss’ theorem, the degree of freedom of the scattered field
acquired over this folded surface is determined by the dimensions of its flux cross
section (i.e., cross-range extension). Therefore, the E-RadSAR provides the similar
cross-range resolving capability as a planar array with equal cross-range extension.
However, by warping the sampling surface, the E-RadSAR gains more flexibility
to take spatial samples of the scattered fields, thus providing a cost-efficient solu-
tion for 3-D imaging. This idea can also be applied to develop more sophisticated
array/spatial sampling schemes. Regarding the detailed sampling strategy over a
warped surface, it can be determined by taking advantage of the algorithms pro-
posed above, which select the most informative samples by optimizing the corre-
sponding observation matrix for accurate image reconstruction. In addition, taking
more spatial samples than the degrees of freedom required by resolutions would
lead to more accurate image reconstruction.
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5.7 Conclusion

In this chapter, we have extended the RadSAR to the E-RadSAR by taking advan-
tage of the SAR techniques in both cross- and down-range directions. To handle
the 3-D spatial sampling of the E-RadSAR, the sampling problem is transformed
into a sensor/observation selection problem through the linear system formulation,
which provides a general frame for multi-dimensional sampling design and facili-
tates the integral exploration of the spatial, frequency, and polarization diversities
for microwave imaging.

Moreover, two approaches, i.e., clustered FrameSense (CFS) and clustered max-
imum projection onto minimum eigenspace (CMPME), have been proposed for the
near-optimal selection of sensors/positions with vector measurements. Both ap-
proaches have much higher computational efficiency in contrast to the state-of-the-
art. When the set of candidates is moderately larger than or comparable to the
selected subset, CFS is slightly faster than CMPME. However, CMPME outper-
forms CFS in terms of both mean square error (MSE) and worst case error variance
(WCEV). Moreover, CMPME is much more efficient than CSBS although they
achieve almost identical performance in both MSE and WCEV. Furthermore, as a
forward greedy algorithm, CMPME gradually expands the subspace spanned by
the observation vectors. So it guarantees the constructed observation matrix to be
well conditioned as long as the number of selected sensors/observations is suffi-
cient, which is inherited from MPME. The selection performances of these two ap-
proaches have been demonstrated through numerical experiments for imaging array
design. Additionally, thanks to the forward selection scheme, CMPME can be used
for adaptive sampling point selection during the data acquisition based on the exist-
ing measurements, which is its advantage over the backward selection approaches
and convex relaxed optimization methods.

Finally, an intuitive physical explanation for the 3-D array sampling is given
from the wave field point of view, which connects the spatial sampling over arbitrary
surfaces and the degree of freedom of scattered field.
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6
Signal Fusion for Enhanced

Imaging

6.1 Introduction

High-resolution microwave imaging typically requires broad operational signal band-
width to get fine down-range resolution. For example, to achieve a cm/sub-cm
level resolution in the down-range direction, several GHz or even larger operational
bandwidth is essential. To radiate and receive such wideband signals, ultrawideband
(UWB) antennas are usually needed. However, designing an antenna operating over
such a wide band is challenging due to some practical constraints (such as dimen-
sions, cost), especially for subsurface imaging systems (e.g., GPR). To circumvent
this problem, the ultrawide bandwidth might be split into several sub-bands and
then relatively narrow-band antennas are used to work at each sub-band for sig-
nal acquisition. Furthermore, for long-range radar systems the existing spectrum
regulations [e.g., Federal Communications Commission (FCC) radio spectrum al-
location] may make the continuous wide/UWB spectrum unavailable for the desired
applications. In such circumstances, only some separate spectral bands can be used.
So to get high-resolution images, one can see that the narrow subband signals have
to be coherently stitched to get an equivalent UWB one.

Part of this chapter was published as: J. Wang, P. Aubry, and A. Yarovoy, "Wavenumber Domain
Multiband Signal Fusion With Matrix-Pencil Approach for High Resolution Imaging", IEEE Trans-
actions on Geoscience and Remote Sensing, 2018, accepted.

121
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In this chapter, we aim at developing a coherent-fusion approach to resolution-
improved microwave imaging by making use of multiple narrowband signals. In
the open literature, many studies have been carried out to improve the range res-
olution of radar profiles by coherently extrapolating and/or interpolating the sig-
nal spectrum [1–7]. The basic ideas of these approaches are to model the f α-type
scattering behaviors of canonical scatterer centers over a wide bandwidth with the
autoregressive (AR) or autoregressive moving average (ARMA) signal models, and
then use different parametric estimation methods to get an estimated signal model
for incoherence correction and coherent fusion of the separate subband signals.
The parameter estimation algorithms used in these approaches include the modified
root-MUSIC algorithm [1], Burg’s method [6] and the matrix-pencil approach [2].
Moreover, for the deramped signals in different subbands, the all-phase fast Fourier
transform (apFFT) is suggested to estimate phase differences for incoherence com-
pensation and then the iterative adaptive approach (IAA) is employed to fuse multi-
band radar signals to obtain high-resolution range profiles of targets [5]. However,
all these methods fuse the multiband signals that are acquired in (quasi) monos-
tatic/collocated radar configurations. For array-based microwave imaging, the sig-
nals at different subbands are generally acquired with different spatial sampling
intervals, i.e., non-collocated data in different frequency bands. Therefore, these
approaches cannot be directly used to fuse such EM datasets. For high-resolution
microwave imaging, we propose to coherently fuse the EM data at different sub-
bands in the wavenumber domain (i.e., k-space) based on the matrix-pencil ap-
proach (MPA), named as k-MPA. Taking advantage of the wavenumber-domain sig-
nal properties, the algorithm is suitable to fuse either collocated or non-collocated
radar data in different subbands to get high-resolution images.

The remainder of this chapter is organized as follows. In section 6.2, the signal
model in the k-space is formulated and analyzed for microwave imaging. Then, the
k-space signal fusion is discussed in detail based on the matrix-pencil approach in
section 6.3, which includes both signal incoherence correction and multiband signal
fusion. To demonstrate the effectiveness and accuracy of the proposed approach,
numerical simulations and experimental results of multiband fusion are presented
in sections 6.4 and 6.5. Finally, some conclusions are drawn in section 6.6.

6.2 k-space Signals for Array Based Imaging

Many imaging algorithms have been developed for microwave imaging, which are
implemented in either time-space domain or frequency-wavenumber domain. Due
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Figure 6.1: Geometrical configuration of 3-D imaging.

to the high computational efficiency, frequency-wavenumber domain imaging algo-
rithms become more and more popular, especially, in real-time/near real-time imag-
ing systems. One typical frequency-wavenumber domain imaging approach is the
range migration algorithm [8], which is used for image formation in the following.

Let us consider the geometrical configuration shown in Figure 6.1. A rectilinear
planar antenna array is placed on the xoy plane and the object is located in the near
field of the array. The transceiver position is denoted as (xa, ya, 0). The radiated
signals by the antenna array can be continuous wave, pulse signal or step-frequency
signal, denoted as p(t) in the time domain.

Assuming that the Born approximation is applicable, the signal measured by an
antenna at (xa, ya, 0) is given by

s(xa, ya, t) =

$
o(x,y,z)

f (x, y, z)
4πR

· p(t − 2R/c) dx dy dz (6.1)

where f (x, y, z) is the reflectivity coefficient of a scatterer at (x, y, z), o(x, y, z) is
the space formed by all the scatterers, and R =

√
(x − xa)2 + (y − ya)2 + z2 is the

distance between a scatterer and the antenna. Taking the FT of s(xa, ya, t) with
respect to time and two cross-range directions, the frequency-wavenumber (i.e., f -
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k) domain signal S f k(kxa , kya , k) is obtained

S f k(kxa , kya , k)

=

$
o(x,y,z)

f (x, y, z)P(ω) dx dy dz
"

exp
[
− jkR

]
4πR

exp
[
− j

(
kxa xa + kyaya

)]
dxa dya

= P(ω)
$
o(x,y,z)

f (x, y, z) exp
[
− j

(
kxa x + kyay + kzz

)] j
2kz

dx dy dz (6.2)

where k = 2ω/c is the wavenumber with respect to the angular frequency ω = 2π f ,

kxa and kya are the wavenumber counterparts of xa and ya, and kz =

√
k2 − k2

xa − k2
ya .

P(ω) is the spectrum of p(t). In the derivation of (6.2), the method of stationary
phase is used [9].1

After correcting the spectrum weighting of the radiated wavelet and compensat-
ing the wave propagation effect (i.e., propagation spreading loss) and the wavefront
curvature [8], then the resulting signal spectrum in k-space can be represented as

S (kxa , kya , kz) =

$
o(x,y,z)

f (x, y, z) exp
[
− j

(
kxa x + kyay + kzz

)]
dx dy dz (6.3)

In a spherical coordinate system, the wavenumbers kxa , kya , and kz are given by
kxa = k cos θ sin φ

kya = k sin θ sin φ

kz = k cos φ

(6.4)

where θ and φ are the observation angles of the antenna with respect to a scatterer
in the spherical coordinates (see Figure 6.1) and are defined as

φ = arccos
( z
R

)
θ = arctan

(
y − ya

x − xa

) (6.5)

From (6.4) and (6.5), one can see that the point (kxa , kya , kz) is located on a sphere
of the radius k (also known as, Ewald sphere [11]), and for a specific frequency the

1Here the spectrum of exp[− jkR]
4πR can also be accurately evaluated by using the Weyl identity of the

plane-wave representations [10]. Then, the term j
2kz

in (6.2) should be replaced by j
4πkz

.
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signal spectra of a point target lie on an arc spanned by the observation angles of
the antennas with respect to the target. Meanwhile, from (6.4), one can see that
with the increase of the radar signal frequency the signal spectrum of a point target
expands along a radius of the spherical coordinate system at a specific observation
angle. For 2-D imaging scenarios, a similar feature can also be observed for the
2-D signal spectrum of a point target in the polar coordinate system, which can
be obtained by setting θ to zero in (6.4). Then, the support area of the target 2-D
spectrum becomes a sector of a circular ring. For example, Figure 6.2 shows the 2-
D signal spectra of two point targets in k-space with different frequency subbands.
The combined spectrum of these two point targets is presented in Figure 6.3 [Note
in Figures 6.2 and 6.3, kx and ky are used to denote the two dimensions of the 2-D
k-space instead of kx and kz obtained from (6.4)].

Substituting (6.4) for kxa , kya , and kz, (6.3) can be rewritten as

S (kxa , kya , kz) =

$
o(x,y,z)

f (x, y, z) exp
[
− jkx sin φ cos θ

]
× exp

[
− jk (y sin φ sin θ + z cos φ)

]
dx dy dz

= S (k, θ, φ)

(6.6)

In a discrete form, the target signal spectrum along a particular radial direction from
the origin in the k-space can be represented as

S (k, θ, φ) =

N∑
n=1

f (xn, yn, zn) exp
[
− jk · xn sin φ cos θ

]
× exp

[
− jk (yn sin φ sin θ + zn cos φ)

]
=

N∑
n=1

f (xn, yn, zn) exp
[
− jk · dn(θ, φ)

] (6.7)

where
dn(θ, φ) = xn sin φ cos θ + yn sin φ sin θ + zn cos φ (6.8)

and f (xn, yn, zn) is the reflectivity function of a point-like scatterer at (xn, yn, zn),
N is the number of point-like scatterers that contribute to the signal spectrum at
(k, θ, φ) in the k-space. Note that the summation cell ∆V = ∆x ∆y ∆z has been
omitted in (6.7) for simplification. According to (6.5), the observation angles are
just determined by the relative geometry between antennas and scatterers, which
are independent of the signal frequencies. We assume that, at a specific aspect



126 Chapter 6. Signal Fusion for Enhanced Imaging

-200 -100 0 100 200

Kx [rad/m]

50

100

150

K
y 

[r
ad

/m
]

0

20

40

m
ag

n 
of

 s
pe

ct
.[V

/m
]

(a)

-200 -100 0 100 200

Kx [rad/m]

50

100

150

K
y 

[r
ad

/m
]

0

20

40

60

m
ag

n 
of

 s
pe

ct
.[V

/m
]

(b)

-200 -100 0 100 200

Kx [rad/m]

50

100

150

K
y 

[r
ad

/m
]

0

10

20

30

m
ag

n 
of

 s
pe

ct
.[V

/m
]

(c)

-200 -100 0 100 200

Kx [rad/m]

50

100

150

K
y 

[r
ad

/m
]

0

20

40

m
ag

n 
of

 s
pe

ct
.[V

/m
]

(d)

-200 -100 0 100 200

Kx [rad/m]

50

100

150

K
y 

[r
ad

/m
]

0

20

40

m
ag

n 
of

 s
pe

ct
.[V

/m
]

(e)

-200 -100 0 100 200

Kx [rad/m]

50

100

150

K
y 

[r
ad

/m
]

0

20

40

60

m
ag

n 
of

 s
pe

ct
.[V

/m
]

(f)

Figure 6.2: Spectra of point targets in k-space. (a), (c) and (e) are the k-space spectra of a point
target opposite to the center of linear array at the low-frequency subband (1–2 GHz), high-frequency
subband (3–4GHz) and their superposition, respectively; (b) (d) and (f) show the corresponding k-
space spectra of a point target which is offset with respect to the center.

(θ, φ), the number of scatterers N is constant over all the frequencies (assume the
antenna beam is wide enough compared to the target). Then the signals in dif-
ferent frequency bands share the same form and order of the signal models as in
(6.7) where the signal is expressed as a superposition of exponential components.
Therefore, the multiband signal fusion can be converted to parameters estimation
of exponential damped/undamped sinusoids. By estimating the number of scatter-
ers and the reflectivity function f (xn, yn, zn), the signal model in (6.7) is obtained
for a specific aspect (θ, φ). Then the signal can be extrapolated based on the esti-
mated signal model. Such a model takes into account the interference between the
fields scattered by different voxels of the scatterer but ignores multiple scattering
between different voxels. Note that the complex reflectivity function f (xn, yn, zn)
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Figure 6.3: The k-space spectrum summation of two point targets with both low- (1–2 GHz) and
high-frequency (3–4 GHz) subbands.

can be modeled using different tools (for example, geometrical theory of diffraction
(GTD) models and exponential models) according to different scenarios. Also, the
frequency dependence of the material parameters of the target can be considered by
the reflectivity function.

6.3 k-space Signal Fusion

Based on the discussion on the k-space signal models in the previous section, one
can see that the signals in different frequency bands can be coherently fused along
each radius of the Ewald sphere (circle). The detailed operations of the k-space
signal fusion are discussed in the following. Without loss of generality, the fusion
principle is illustrated in Figures 6.4 and 6.5 for, as an example, a 2-D imaging
case. In Figure 6.4, the effective regions of signal spectra of two point targets, i.e.,
P1 and P2, are sketched. One can see that the signal spectrum of a point target in
k-space occupies an angular segment of a ring defined by the minimum and max-
imum radiated frequencies. The angular range of this segment is determined by
the observation angles of the target with respect to the antenna array. For different
point targets, different observation angles are formed and then the signal spectrum
in k-space slides along the ring according to the corresponding observation angles.
Combining the signal spectra of all the individual scatterers in k-space, we get the
signal spectra for the whole imaging scene. As extended targets can be roughly con-
sidered as a composition of a group of point scatterers (voxels), a similar approach
can also be used to synthesize their signal spectra in k-space.

In terms of different radiated frequencies, the resultant signal spectrum of a
point target expands along the radius within a conical sector. Figure 6.5 shows
the signal spectra of two point targets in two different frequency bands. Although
the signal spectra of different targets occupy different regions in k-space (see Fig-
ures 6.4 and 6.5), as mentioned above, the signal spectra along a radial direction are
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Figure 6.4: Illustration of the signal spectrum in k-space related to two point targets P1 and P2. The
red-shadowed area is related to the spectrum of P1 while the blue-shadowed area is related to the
spectrum of P2.
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Figure 6.5: Illustration of the signal spectrum in k-space for two point targets (P1 and P2) with two
subband signals. The outer angular sector is attributed to the high frequency subband and the inner
angular sector is associated with the low frequency subband.

attributed to the same group of scatterers for all the radiated frequencies. This lays
the foundation for the k-space signal fusion to improve the image resolution. As the
signals in multiple frequency bands can be acquired with different radar systems,
the acquired signals may not be coherent, which could result in increased artifacts
in the integrated images. Therefore, incoherence compensation is needed before the
coherent fusion of the multiband signals.

6.3.1 Signal Incoherence Compensation

In this section, the signal model for multi-band fusion is formulated. Without loss
of generality, two subband signals are considered below. According to (6.7), the
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k-space signals at the low- and high-frequency subbands are given by

S 1(k1 + m∆k, θ, φ) =

N∑
n=1

f (xn, yn, zn) exp
[
− j (k1 + m∆k) dn(θ, φ)

]
+ n1(m),

m = 0, 1, · · · ,M1 − 1 (6.9)

S 2(k2 + m′∆k, θ, φ) =

N∑
n=1

f (xn, yn, zn) exp
[
− j

(
k2 + m′∆k

)
dn(θ, φ)

]
× exp

[
j
(
α + βm′

)]
+ n2(m′), m′ = 0, 1, · · · ,M2 − 1 (6.10)

where ∆k = 4π∆ f /c is the wavenumber counterpart of the frequency sampling in-
terval ∆ f , M1 and M2 are the numbers of frequency samples in the two subbands,
k1 = 4π f1/c and k2 = 4π f2/c are the wavenumbers associated with the starting
frequencies f1 and f2 of the low- and high-frequency subbands, respectively, and
k2 > k1 + M1∆k. n1 and n2 are with zero-mean Gaussian distribution and represent
measurement errors and noise. In (6.10), the first exponential term exp[ j(α + βm′)]
accounts for the phase incoherence between the two subbands. To simplify the nota-
tion, we use S 1(m) and S 2(m′) to denote S 1(k1+m∆k, θ, φ) and S 2(k2+m′∆k, θ, φ) in
the following. After some simple algebraic operations, the signals in both subbands
can be rewritten as

S 1(m) =

N∑
n=1

f (1)
n Zm

n + n1(m), m = 0, 1, · · · ,M1 − 1 (6.11)

S 2(m′) =

N∑
n=1

f (2)
n Z′m

′

n + n2(m′), m′ = 0, 1, · · · ,M2 − 1 (6.12)

where

f (1)
n = f (xn, yn, zn) exp

[
− jk1 · dn(θ, φ)

]
(6.13)

Zn = exp
[
− j∆k · dn(θ, φ)

]
(6.14)

f (2)
n = f (xn, yn, zn) exp

[
jα

]
· exp

[
− jk2 · dn(θ, φ)

]
(6.15)

Z′n = exp
[
− j∆k · dn(θ, φ) + jβ

]
(6.16)

From (6.13) to (6.16), one can see that the phase differences between the two sub-
bands affect both the signal poles and their coefficients in (6.11) and (6.12). More
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specifically, the constant phase difference influences the coefficients while the lin-
ear phase difference term causes the rotation of signal poles over the unit circle in
the complex plane. Therefore, to compensate the phase differences between the two
subbands, both signal poles and their coefficients have to be estimated.

To get the signal poles and their coefficients in (6.11) and (6.12), the signal
model order should be estimated first. In practice, it can be estimated by using
the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC)
[12]. After obtaining the signal model order estimation N̂, the signal poles can be
estimated via the root-MUltiple Signal Classification (MUSIC), ESPRIT [13], the
matrix-pencil approach (MPA), etc., while their coefficients are solved through a
least squares estimation. Considering the estimation accuracy and computational
efficiency, we take advantage of the MPA for signal pole estimation in this chapter.
To implement the MPA, two Hankel matrices are formed in each subband, where
the measurement data, for example, S 1 are organized as

P1 = [D0,D1, · · · ,DL−1] (6.17)

P2 = [D1,D2, · · · ,DL] (6.18)

where Di = [S 1(i), S 1(i+1), · · · , S 1(M1−L−1+i)]T and the superscript T represents
the matrix transpose. L is the matrix pencil parameter, which satisfies N̂ < L <

M1 − L. Following the suggestion in [14], we choose L = round(M1/3) here.
Taking the singular value decomposition (SVD) of P1 and P2 [2], we get

P1 =
[
U1 U′1

] [Σ1,N̂ 0
0 Σ1,L−N̂

] [
V1 V′1

]H
(6.19)

P2 =
[
U2 U′2

] [Σ2,N̂ 0
0 Σ2,L−N̂

] [
V2 V′2

]H
(6.20)

where the superscript H denotes Hermitian transpose, Σ1,N̂ and Σ2,N̂ are the diagonal
matrices of the N̂ dominant singular values in the two subbands. U1,U2,V1, and V2
are the matrices with the columns as the left and right singular vectors related to the
dominant singular values. On the other hand, Σ1,L−N̂ and Σ2,L−N̂ are the diagonal
matrices of the near-zero singular values, which represent the noise information.
U′1,V

′
1,U

′
2, and V′2 are the matrices with the columns as the noise-associated left-

and right-singular vectors. Taking the “pre-filtering” operation, then P1 and P2 can
be approximated by their truncated SVD’s denoted as P1T and P2T , which are given
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by

P1 ≈ P1T = U1Σ1,N̂VH
1 (6.21)

P2 ≈ P2T = U2Σ2,N̂VH
2 (6.22)

Then we can estimate the signal poles {Zn}
N̂
n=1 of S 1 by solving the generalized

eigenvalue problem P2T − λP1T , which is also equivalent to

P2T − λP1T ⇔ Σ
−1
1,N̂

UH
1 U2Σ2,N̂VH

2 V1 − λI (6.23)

where I is the N̂ × N̂ identity matrix. The coefficients { f (1)
n }

N̂
n=1 can be obtained via

the least squares method to approximately solve the following linear system

S1 = A1f1 (6.24)

where

S1 = [S 1(0), S 1(1), · · · , S 1(M1 − 1)]T

A1 =
[
a1, a2, · · · , aN̂

]
an =

[
1,Zn, · · · ,ZML−1

n

]T

f1 =
[
f (1)
1 , f (1)

2 , · · · , f (1)
N̂

]T

The estimation of the coefficients is explicitly written as f1 =
(
AH

1 A1
)−1

AH
1 S1.

Repeating the same operations with the signal S 2, its signal poles
{
Z′n

}N̂
n=1 and

{ f (2)
n }

N̂
n=1 can also be estimated. Then according to (6.14) and (6.16), the linear

phase difference parameter β can be obtained as

β =
1
N̂

N̂∑
n=1

[
angle

(
Z′n

)
− angle (Zn)

]
(6.25)

According to (6.13) and (6.15), the constant phase difference parameter α is ob-
tained through

α =
1
N̂

N̂∑
n=1

[
angle

(
f (2)
n

)
− angle

(
f (1)
n

)]
+

k2 − k1

N̂

N̂∑
n=1

dn(θ, φ) (6.26)
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where
N̂∑

n=1

dn(θ, φ) = −
1

∆k

N̂∑
n=1

angle (Zn) (6.27)

Then combining (6.25) and (6.26), the incoherence phase differences of the high-
frequency subband from the low subband can be compensated by

S ′2 (k2 + m · ∆k, θ, φ) = S 2 (k2 + m · ∆k, θ, φ) exp
[
− j (α + mβ)

]
(6.28)

Thus, the signal S ′2 (k2 + m · ∆k, θ, φ) in the high-frequency subband is coherence-
aligned with S 1 in the low-frequency subband. Note that we explicitly write S 2(m)
as S 2 (k2 + m · ∆k, θ, φ) to emphasize that S ′2 is also a function of θ and φ.

6.3.2 Subband Signal Fusion

This section presents the method to fuse the multiband signals in each radial direc-
tion [i.e., (θ, φ)] in k-space. Generally, the coherence-aligned subband signals can
be integrated by estimating a unified signal model which then is used to extrapolate
the missing data in the frequency gap between the low and high subbands. Many
approaches used to fill the gap of time sequences can also be adapted to extrapolate
the k-space signals. Here we take the MPA based iterative method [2] to fuse the
k-space multiband signals. To be clear, we briefly introduce the fusion processing
as follows.

After incoherence correction, the k-space coherent multiband signals, i.e., S 1
and S ′2, are obtained. For the convenience of notation, S ′2 will be replaced by S 2 in
the following. The common signal model of the S 1 and S 2 can be expressed as

S̃ (k1 + m∆k, θ, φ) =

N∑
n=1

f̃nZ̃m
n + b(m) (6.29)

where { f̃n}Nn=1 and {Z̃n}
N
n=1 are the coefficients and the signal poles, respectively.

b is the Gaussian noise. The signal poles and their coefficients in (6.29) can be
estimated with the MPA based on the S 1 and S 2. However, as a frequency gap
exists between the two subbands, the two data matrices should be constructed by
vertically cascading two corresponding Hankel matrices formed by the data at two
subbands, which is given by

Y1 =

P(1)
1

P(2)
1

 Y2 =

P(1)
2

P(2)
2

 (6.30)
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where

P(p)
1 =

[
D(p)

0 ,D(p)
1 , · · · ,D(p)

L−1

]
(6.31)

P(p)
2 =

[
D(p)

1 ,D(p)
2 , · · · ,D(p)

L

]
(6.32)

and D(p)
q = [S p(q), S p(q+1), · · · , S p(Mp−L−1+q)]T , p = 1, 2 and q = 0, 1, · · · , L.

Taking advantage of the MPA as presented above, the signal poles {Z̃n}
N
n=1 and their

coefficients { f̃n}Nn=1 can be obtained. Then utilizing the acquired full-band signal
model in (6.29), the full-band signal S̃ (m), m = 0, 1, · · · ,M − 1, can be estimated,
where M is the number of samples in the full band with sampling intervals of ∆k.
To refine the estimation of the full-band signal, the same iterative scheme as in [2]
can be used. For conciseness, the iterative scheme is omitted here.

Repeating the fusion processing in all the radial directions, coherent wideband
signals are obtained in k-space. Finally, the image reconstruction operations can be
performed to get a focused image with improved resolutions.

6.3.3 More Remarks on the Implementation

The complete processing flowchart for multiband fusion imaging is shown in Fig-
ure 6.6. In principle, the processing operations are divided into three major parts:
(1) preprocessing for the k-space data preparation, (2) k-space signal fusion and (3)
image reconstruction, all of which are indicated on the left side of the flowchart.
The main operations for the k-space signal fusion part have been discussed in the
previous two subsections. The operations for the other two parts as well as some
key points for the k-space fusion part are given in the following.

In the preprocessing part, as mentioned before, spectrum weighting effects,
propagation spreading loss and the wavefront curvature are corrected. Firstly, the
spectrum weighting effect P(ω) should be compensated in the frequency domain,
which is caused by the wavelet itself and the antenna transfer functions. The spec-
trum weighting effect introduced by the wavelet itself can be removed by multiply-
ing the inverse of the corresponding weighting factors. The amplitude weighting
effect and phase shift resulting from the antenna transfer function can be obtained
by measuring the S -parameters in the calibration process and then compensated
through inverse filtering. Next, the cross-range processing is performed to correct
the wavefront curvature and propagation spreading loss. The operations are as fol-
lows. Applying the FT with respect to the cross-range, the weighting-corrected sig-
nals are transformed into the frequency-wavenumber (i.e., f -k) domain. Then the
propagation spreading loss is compensated through a high-pass filter − j2kz and the
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Figure 6.6: Flowchart of the k-space subband fusion for imaging.

wavefront curvature is corrected by the Stolt interpolation [8]. Hence, the k-space
signals S (kxa , kya , kz) for one subband are obtained. Repeating the preprocessing
operations for all the subband signals, we get all their k-space counterparts. Putting
all the k-space spectra in a unified coordinate system, the spectra resulting from all
the subbands are obtained.

The next step is to convert the spectral data at each subband from rectilinear
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grid to an aligned polar grid via an interpolation, and the polar grid is given by

I =

(kx, ky, kz)

∣∣∣∣∣∣∣∣∣∣
kx = k cos θ sin φ

ky = k sin θ sin φ

kz = k cos φ

 (6.33)

where k = k1 + m∆k and m = 0, 1, · · · ,M1 − 1 for the low subband while k = k2 +

m′∆k and m′ = 0, 1, · · · ,M2 − 1 for the high subband. Meanwhile, k2 = k1 + (M1 +

h)∆k and h > 0 is an integer. The observation angles θ and φ take uniform discrete
samples, i.e., θ = {θ0, θ0 + ∆θ, · · · , θ1} and φ = {φ0, φ0 + ∆φ, · · · , φ1}, where θ0 and
θ1, φ0 and φ1 are the minimum and maximum values of the observation angles θ
and φ, respectively; ∆θ and ∆φ are their corresponding sampling intervals. To avoid
aliasing of the focused image in the space domain, the sampling intervals ∆k, ∆θ

and ∆φ should satisfy 
∆k ≤ 2π/dmax

∆θ ≤ λmin/(4r)

∆φ ≤ λmin/(4r)

(6.34)

where dmax is the largest dimension of the imaging scene in the range direction. λmin
is the wavelength corresponding to the highest frequency, and r is the maximum
cross-range radius of the imaging scene (i.e., the minimum radius of a cylinder
with its axis along the down-range that encloses the imaging scene).

In addition, we have to mention that the cross-range focusing can also be imple-
mented in the time-space domain via the Kirchhoff migration [15] which actually
leads to focused images. Then applying the IFT to the focused images, the k-space
spectra associated with each subband are obtained. The rest of the operations re-
main the same.

After getting the k-space spectra on an aligned polar grid (as illustrated in Fig-
ure 6.3 or Figure 6.5), the k-space signal fusion is carried out along each radial
direction with the matrix pencil based approach presented in the previous section.
After obtaining the fused signals in k-space, a 2-D/3-D interpolation is needed to
convert the data from the polar grid to a rectilinear grid. Then an inverse FT is ap-
plied to the k-space data to reconstruct an image in space. Furthermore, to improve
the computational efficiency, the interpolation operation and the inverse FT can
be replaced by a 2-D/3-D Nonuniform fast Fourier transform operation (NUFFT)
[16, 17], which was actually used for the image formation in this chapter.
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Table 6.1: Simulation parameters for point targets

Parameter Value
Low-frequency band 2–4 GHz
High frequency band 6–8 GHz

Antenna aperture 2 m

Case 1
Element spacing of low-freq antenna 1 cm
Element spacing of high-freq antenna 1 cm

Case 2
Element spacing of low-freq antenna 2 cm
Element spacing of high-freq antenna 1 cm

6.4 Numerical Simulations

Without loss of generality, in this section we use two subband signals to demonstrate
the proposed fusion approach for improved microwave imaging via both numerical
simulations and experimental measurements.

6.4.1 Point Targets

Firstly, a numerical simulation was performed for point targets with two-band sig-
nals. The simulation parameters are listed in Table 6.1. Assume the antenna array
was placed on the x-axis with its center at the origin and the y-axis pointing to-
wards the illuminated scene. The antenna array was 2 m in length and operated in
two separate subbands, i.e., 2–4 GHz and 6–8 GHz. Four point targets were placed
in front of the antenna array at the positions (−0.5, 1) m, (0, 0.95) m, (0, 1.05) m and
(0.4, 1.2) m, respectively. The Hertz dipole was used as the radiator in the antenna
array, and the interelement spacings of antennas were 1 cm at both bandwidths (see
Case 1 in Table 6.1). The electromagnetic (EM) data at the two bandwidths were
synthesized by the Commercial EM software FEKO with the Method of Moments
solver in the frequency domain with frequency steps of 20 MHz.

Taking advantage of the range migration algorithm [8], two images were re-
constructed with the EM data at the low- (i.e., 2–4 GHz) and high-frequency (i.e.,
6–8 GHz) subbands, which are shown in Figures 6.7(a) and (b). As in both cases
the same antenna aperture was used for signal acquisition, the high-frequency band
signal results in finer cross-range resolution of the focused image compared to the
low-frequency band one. In the range direction, similar resolutions are obtained in
both cases as their signal bandwidths are equal. Due to their “low” down-range res-
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Figure 6.7: Fused images (normalized amplitude) of point targets: (a) and (b) are the images of point
targets with bandwidths of 2–4 GHz and 6–8 GHz, respectively. (c) is the fused image with bandwidth
of 2–8 GHz and (d) is the reference image obtained with bandwidth of 2–8 GHz.

olution, the two point-targets on the y-axis (i.e., x = 0) cannot be well resolved in
both cases. To improve the down-range resolution, the signals acquired at the two
subbands were fused by using the proposed fusion approach and the focused im-
age is shown in Figure 6.7(c). As an equivalent bandwidth of 2–8 GHz is achieved
in the fused image, one can see that in Figure 6.7(c) the two point-targets on the
y-axis are more clearly resolved than those in the two individual subband images
[Figures 6.7(a) and (b)]. For comparison, the focused image with the real full-band
(i.e., the bandwidth of 2–8 GHz) signal is shown in Figure 6.7(d). It can be seen that
the fused image obtains comparable spatial resolution as the real full-band image.

In practical imaging systems, the inter-element spacing in a low-frequency an-
tenna array is generally larger than that in a high-frequency one. That is to say, the
antenna arrays in different frequency bands are usually non-collocated. To emulate
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Figure 6.8: Signal fusion of point target with non-collocated antennas in the low- and high-frequency
subbands. (a) is the low-frequency images acquired with a down-sampled linear array and (b) the
fusion image with the signals collected by down-sampled low-frequency array and the same high-
frequency array as in Figure 6.7.

this, we kept the element spacing in the high-frequency antenna array but doubled
the sampling intervals (i.e., down-sampled the spatial samples by a factor of two) of
the low-frequency array for a second experiment (Case 2 in Table 6.1). Taking the
imaging process, the signals collected with the down-sampled low-frequency array
were focused and the formed image is shown in Figure 6.8(a). As the inter-element
spacing of the low-frequency array in case 2 still satisfies the Nyquist criterion, the
focused image in Figure 6.8(a) is comparable to that in Figure 6.7(a). Moreover,
in Case 2 the signals synthesized with the high-frequency antenna array were the
same as that in Case 1; so the same image as Figure 6.7(b) was obtained, which is
omitted here. Applying the proposed fusion approach to the signals in the low- and
high-frequency subbands, a fused wideband image was obtained again, as shown
in Figure 6.8(b). It can be seen that the image in Figure 6.8(b) is nearly identical
to that in Figure 6.7(b) and the two point-targets on the y-axis are better resolved
again, compared to those in the two subband images.

6.4.2 Extended Object

An extended target was also used for a numerical simulation to further validate the
proposed approach. The extended target was a “V”-shaped perfect electric conduc-
tor (PEC) object (see Figure 6.9). The two bars of the object are 20.16 cm in length
and 5 mm in both width and thickness, and they form an obtuse angle of 120.5◦. A
linear antenna array formed by elementary dipoles was used as the radiator. Here
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(a) (b)

Figure 6.9: Geometrical configuration for extended target simulation. (a) is the 3-D geometry; (b) is
the top view against z-axis.

we consider the 2-D imaging scenario. The linear antenna array was set along the
x-axis with its center at the origin and the “V”-shaped object was placed on the xoy
plane at a distance of 0.4 m from the array, as shown in Figure 6.9. The linear array
was 1 m in length with inter-element spacings of 1 cm. The operational bandwidths,
i.e., 2–5.5 GHz and 8.5–12 GHz, were used as the low- and high-frequency signal
bands. The EM synthetic data at the two operational subbands were generated by
using the commercial EM software FEKO with the Method of Moments (MoM)
solver in the frequency domain with frequency steps of 100 MHz.

The EM synthetic data in the two operational bands were focused with range
migration algorithm [8] and the reconstructed images are shown in Figures 6.10(a)
and (b). As for point targets, the down-range resolutions of the two reconstructed
subband images are relatively coarse and strong artifacts around the target are also
observed in the images.

To improve the spatial resolution and suppress the strong artifacts, the two sub-
band signals can be coherently integrated by taking advantage of the proposed fu-
sion approach. Although some fusion results with point targets have been pre-
sented above, here more details of the k-space fusion procedure are illustrated to
demonstrate the effectiveness and accuracy of the proposed approach by taking the
extended “V”-shaped target as an example. Firstly, some preprocessing and the
pre-focusing operation in the cross-range direction have been done for the two in-
dividual subband signals. The resulting k-space spectra are shown in Figure 6.11,
which can be regarded as the 2-D Fourier transform of the images in Figures 6.10(a)
and (b), respectively. From Figures 6.11(a) and (b), one can see the k-space spec-
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Fused image, bandwidth: 2~12GHz
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Figure 6.10: Fused images (normalized amplitude) of the extended target. (a) and (b) are the focused
images of the “V”-shaped scatterer with bandwidth of 2–5.5 GHz and 8.5–12 GHz, respectively. (c)
is the fused image of the “V”-shaped scatterer with bandwidth of 2–12 GHz and (d) is the reference
image obtained with bandwidth of 2–12 GHz.

trum at each subband lies in a sector of a circular ring defined by the signal band-
width and the range of observation angles. Then the k-space spectra resulting from
the two subbands were fused in a polar coordinate system. For the convenience
of description, we define the k-space polar coordinates as (k, θ), where k is the po-
lar coordinate from the origin and θ is the angle formed counterclockwise with the
positive kx-axis.

Transforming the k-space data into a polar coordinate system, the signals from
the two subbands can be fused along each radial direction. As an example, the
complex signals in the two subbands at an aspect angle of θ = 94◦ are shown in
Figure 6.12. Applying the BIC as a rule to estimate the model orders of the com-
plex signals in both low- and high-frequency subbands, the computed BICs with
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Figure 6.11: The k-space spectra related to the images in Figure 6.10 (a) and (b) obtained with low-
and high-frequency bands. (a) low-frequency subband, (b) high-frequency subband.

different model orders are displayed in Figure 6.13(a). From Figure 6.13(a), the
BIC for the lower subband signal obtains a first “minimum” with the model order
of two while for the high subband signal it arrives at a first minimum with the model
order of three. Taking the maximum of the model orders obtained at the two sub-
bands, the model order at this aspect is selected to be three. Correspondingly, from
Figure 6.13(b), the first three singular values of a Hankel matrix formed by either
the lower or higher subband signal drop sharply (specifically more than one order
of magnitude) and with the increase of the indices the singular values decrease rela-
tively slowly. So the model order of three could be a proper selection for the signals
at this aspect. Moreover, we want to mention that although some model orders
larger than three [for instance, nine in Figure 6.13(a)] could lead to much lower
BIC, they may result in severe overfitting for the available data but less predictive
to the missing one in the frequency gap.
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Figure 6.12: The real and imaginary parts of the k-space spectrum at θ = 94◦.
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Figure 6.13: The singular-value spectra of the Hankel matrix formed by the spectrum data at θ = 94◦

and the related BIC values for model order selection. (b) Singular value spectra in the logarithmic
scale, and (a) the BICs with different model orders.

Using the estimated signal model order, the subband signals can be fused with
the iterative scheme. Figure 6.14 displays the fused signal and the original one at
an aspect angle of θ = 94◦, where the original full-band signal is obtained after
some preprocessing for the full-band synthetic EM data and the lower and higher
subbands are located at the two ends of the full-band spectrum. Although slight
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Figure 6.14: The real and imaginary parts of the original k-space signal and the fused signals at the
aspect angle θ = 94◦. Here the “ith iter” refers to the estimated signal after the ith iteration.

differences may be noticeable at some points, it can be seen that the fused signal
agrees with the original one very well. Moreover, some estimated signals during
the iteration are also shown in Figure 6.14 to demonstrate the convergence of the
iterative scheme. At the beginning of the iteration, one can see that the estimated
signal (i.e., the 1st iteration) oscillates with similar frequencies as the original full-
band signal but its amplitude is significantly different from that of the original one.
After ten iterations, the amplitude of the oscillating signal converges to the original
one (see both the real and imaginary parts of the signals). By minimizing the differ-
ence between the estimated and the measured signals, the fused signal at this aspect
angle was achieved after 21 iterations. One can see that the signal converges very
fast to a relatively accurate signal estimation after the first few iterations but it takes
more iterations to reach the minimum difference between the estimated signals and
the measured ones at the two frequency subbands.

Taking the fusion operation for the signals in all radial directions, the k-space
spectrum corresponding to an equivalent ultra-wide bandwidth were obtained. Then
higher down-range resolution is achieved in the fused image [Figure 6.10(c)] where
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Figure 6.15: Fused images of the extended target acquired by non-collocated low- and high-frequency
antennas. (a) is the focused low-frequency image with the antenna element spacing of 2 cm at 2–
5.5 GHz, (b) is the fused image with the bandwidth 2–12 GHz.

the strong artifacts perceived in the subband images are significantly suppressed. To
examine the quality of the fused UWB image, the focused image with the signals
of the entire bandwidth of 2–12 GHz is shown as a reference in Figure 6.10(d).
Comparing Figures 6.10(c) and (d), the fused image achieves a similar down-range
resolution to that of the reference one. However, slight differences are noticed in the
sidelobe levels in the two images. This may be caused by the estimation errors of
the fused signals with respect to the real full-band signals in k-space. Nevertheless,
these differences in sidelobe levels have little influence on the target detection and
recognition. So a satisfactory image was obtained by fusing the data of the two
frequency sub-bands.

Similar to the point-targets simulation, we also took every other spatial sample
of the linear array (i.e., element spacing of 2 cm) for the low-frequency subband
to emulate the non-collocated low- and high-frequency antenna arrays in practi-
cal imaging systems. The focused image for the signals acquired with the down-
sampled low-frequency linear array is shown in Figure 6.15(a), which is nearly
identical to the low subband image in Figure 6.10(a). Again, the same image
as that in Figure 6.10(b) was obtained with high-frequency subband signals and
we omit it here. Taking the fusion operation for the two subband signals in k-
space, a focused image with the enhanced resolution was obtained. Figure 6.15(b)
presents the fused image with the bandwidth of 2–12 GHz. It is visually equiv-
alent to that in Figure 6.10(c) fused with the signals acquired by collocated low-
and high-frequency antenna arrays. Moreover, this fused image [Figure 6.15(b)] is
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Figure 6.16: (a) Experimental setup, and (b) the metallic sphere targets and (c) the antipodal Vivaldi
antenna used for the measurement.

comparable to the fullband image in Figure 6.10(d), especially in terms of the spa-
tial resolution. Therefore, the proposed k-space fusion approach works effectively
for multi-band signals acquired with non-collocated antenna arrays as well.

6.5 Experimental Results

Measurements were carried out in the anechoic chamber for further demonstra-
tion. The experimental setup is shown in Figure 6.16(a). An antipodal Vivaldi
antenna [18] with the operational frequency band from 2.7 till 35 GHz was used
as a transceiver, shown in Figure 6.16(c). It was fixed on a planar scanner with
polyethylene foam and connected to a Vector Network Analyzer (VNA) [see Fig-
ure 6.16(a)]. With the translation of the planar scanner, the transceiver antenna
took samples over the xoz plane to synthesize a rectilinear aperture of dimensions
of 0.5 m × 0.5 m. The spatial sampling intervals of the antennas in both x and z
directions are 1 cm. Three metal spheres of the diameter 2 cm were placed on the
xoy plane in front of the array center. The two nearer spheres were separated with
an interval of 10 cm and placed at a distance of 54.3 cm away from the antenna
aperture. The third sphere was set 7 cm further away than the center of gravity of
the other two [Figure 6.16(b)]. Two subband signals with operational frequencies
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Figure 6.17: Focused images with two subband signals and the whole bandwidth. (a)–(d) are the 3-D
image and its projection views on the xoz, yoz and xoy planes for the low frequency signal (4–7 GHz);
(e)–(h) are the 3-D image and its projection views on the three planes for high frequency signal (11–
14 GHz); (i)–(l) are the fused 3-D image and its projection views on the three planes for the full-band
signal (4–14 GHz); (m)–(p) are the fused 3-D image with the MFT method and its projection views
on the three planes for the full-band signal(4-14GHz); (q)–(t) are the 3-D benchmark image and its
projection views on the three planes for the real full-band signal (4–14 GHz). All 3-D images show
the isosurfaces of −10 dB in the focused volume.
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Figure 6.18: Illustration of model order selection and fused experimental signal at the aspect of
(θ, φ) = (78◦, 9◦) in the k-space. (a) shows the BICs for different model orders, and (b) shows the
singular value spectra of a Hankel matrix formed by the k-space experimental data. (c) displays the
real and imaginary parts of the full-band data and the fused signal which are obtained by fusing the
signals in the lower and higher subbands in the shaded regions.

ranging from 4 to 7 GHz and 11 to 14 GHz, respectively, were used. The signals
were measured in the frequency domain with steps of 20 MHz by the VNA. In ad-
dition, calibration was carried out before taking the measurement to eliminate the
reflections between the VNA and the antenna.
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Then the acquired EM data were focused with the range migration algorithm for
the two subband signals, respectively. The formed 3-D images, as well as their pro-
jection views, are shown in Figures 6.17(a)–(h). In both low- and high-frequency
subbands, the images of spheres are relatively well reconstructed. Thanks to the
short wavelengths of the high-frequency signals, finer cross-range resolution is
achieved in the image of the high-frequency band [see Figures 6.17(f) and (h)].
On the other hand, the equally lower down-range resolutions were obtained in the
images of both subbands due to the equal signal bandwidths (i.e., 3 GHz).

To improve the down-range resolution, the signals acquired in both low- and
high-frequency subbands are processed and fused in k-space by using the proposed
fusion approach. Similar to the extended target case, the signal model order selec-
tion and fusion at an aspect is illustrated first. The k-space counterparts of the spa-
tial coordinates defined in Figure 6.1 are used in the following description. Taking
the complex signals at the two subbands [see the shaded regions in Figure 6.18(c)]
as an example, the BICs with different model orders were computed, as shown in
Figure 6.18(a). Based on the first minina of the BICs at both subbands in Fig-
ure 6.18(a), the model order can be chosen to four. Again, a drastic decrease from
the first to the fourth singular values of a Hankel matrix constructed by the complex
data in either subband is observed [Figure 6.18(b)], which confirms that four could
be a proper model order selection in this case. After fusion operation, the complex
signal in an equivalently larger bandwidth was obtained, as shown in Figure 6.18(c).
For comparison, the k-space complex signal resulting from the full-band measure-
ments from 4 to 14 GHz is also presented in Figure 6.18(c). Clearly, one can see
that the signals in the two subbands are well fused. Although slight amplitude dif-
ferences are observed at some frequencies, the extrapolated data in the frequency
gap also demonstrate very good agreement with the real signal.

Applying the proposed fusion approach to the 3-D k-space spectra, a fused
image with improved down-range resolution can be acquired, as shown in Fig-
ures 6.17(i)–(l). One can see that the images of objects are well focused in the
fused image and the down-range resolution along the y-axis is noticeably improved
compared to that of the images reconstructed with each individual subband (i.e.,
4–7 GHz and 11–14 GHz). For comparison, the two subband signals are also fused
with the Matrix Fourier Transform (MFT) approach proposed in [19], and the fused
images are displayed in Figures 6.17(m)–(p). One can see that the fused image
is focused very well in the cross-range direction [Figure 6.17(n)] and the down-
range resolution is improved [Figures 6.17(o)–(p)]. However, split main lobes are
observed along the down-range direction. This results from the fact that in the
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MFT approach the k-space data from different subbands are only registered in an
aligned coordinate system without any operation to deal with the missing data in
the frequency gap. Hence, split main lobes are obtained. In contrast, the MPA
based method not only coherently registers the k-space data but also extrapolates
the missing data to fill the frequency gap, which leads to the sharply focused main
lobe and enhances the down-range resolution.

As a benchmark, the images focused with the fully measured data within the
bandwidth 4–14 GHz (i.e., full-band images) are also shown in Figures 6.17(q)–(t).
Compared with the benchmark images, the fused images achieve comparable image
qualities, especially, in terms of the down-range resolution [see Figures 6.17(i)–(l)].
However, relatively high sidelobes are observed in the fused image and the sphere
at the further position exhibits weaker intensity in the fused image than that in the
full-band benchmark images. This is mainly caused by the differences between
the estimated data and the real data in the missing frequency gap. As in the fusion
process, the reflectivity functions were assumed to be constant over the entire signal
bandwidth, i.e., frequency independent. Based on this assumption, a signal model
was estimated with the measured data in the low- and high-frequency subbands.
Using the estimated signal model, the missing data in the frequency gap between the
low- and high-frequency bands can be extrapolated. Consequently, the equivalent
full band data were obtained by combining the low-frequency, high-frequency and
the extrapolated data, which leads to resolution-improved images after focusing
operation. Nevertheless, the reflectivity function of the practical target can never
be absolutely frequency independent. Therefore, extrapolated data in the missing-
frequency band may have some differences from the real one, thus resulting in slight
differences in the focused image. To be more accurate in capturing the features
of the reflectivity functions of targets, a more advanced model should be used to
characterize the targets’ scattering signatures over a wide bandwidth, e.g. the state-
space based modeling [4, 20].

Although the background reflections and clutter were almost perfectly elim-
inated by taking the experimental measurement in the anechoic chamber, which
suppresses their impact on the fusion of the scattered signals from the targets, the
suggested fusion method should work as well with their presence. This is because,
also for background reflections, the k-space signals along a radial direction from
the origin are attributed to a set of scatterers (including the background scatterers)
in the imaging scene. With the presence of background reflections, the only con-
sequence is that the signals from background scatterers are also fused. Thus, the
corresponding background scatterers also appear in the fused images at appropriate
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places (outside the target area) and with improved resolution.

6.6 Conclusion

This chapter has presented a matrix-pencil based approach to fuse multi-band sig-
nals in the k-space for high-resolution microwave imaging. This approach works
on the k-space data after compensating the spectrum weighting effects, wavefront
curvature and propagation spreading loss for raw EM signals. The fusion method is
based on the Born approximation of the field scattered from a target resulting in the
fact that, in a given direction, the scattered field can be represented over the whole
frequency band as a sum of the same number of contributions. By modeling the k-
space signals in each radial direction as the sum of exponential/damped exponential
sinusoids, the incoherence between the signals in different frequency subbands can
be compensated via signal estimation methods, such as the matrix-pencil approach.
The missing data in the gap between different frequency bands can be extrapolated
using the estimated signal models. Hence, an equivalent wide bandwidth can be
synthesized by combining the incoherence corrected data and the extrapolated ones,
which lead to resolution-improved images. As the proposed fused method tackles
the multiband signals in k-space, it is applicable to multiband data collected over
either the same or different spatial sampling grids (i.e., collocated or non-collocated
antennas) in different frequency bands.
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7
Conclusions

The work described in this dissertation addresses the major problems and chal-
lenges of the UWB RadSAR imaging, including both fundamental problems and
practical issues of the UWB RadSAR. This work is presented to the radar and re-
mote sensing community to show the latest developments related to microwave
imaging with UWB rotated antenna arrays. In particular, the following problems
have been considered and solved. Firstly, we addressed the effects of the variation
of antenna polarizations in RadSAR in two ways: (1) specifically designing rotated
antenna arrays for signal acquisition, and (2) signal processing. Then by utilizing
the down-range movement of the radar platform, the RadSAR has been developed
to the Elevation-RadSAR, which extends the traditional surface sampling to 3-D
sampling schemes and further exploits the spatial diversity for signal acquisition.
Considering the effects of UWB signals on the spatial sampling, a unified sampling
design approach has been established via a linear formulation. Finally, multiband
signal fusion has been addressed through signal processing to circumvent the un-
availability of UWB antennas or signals in practical imaging systems, which allows,
as an alternative, the use of multiple relatively narrow-band systems to achieve an
equivalent UWB imaging. With the works described above, we have demonstrated
the potential and feasibility of the UWB RadSAR (and the Elevation-RadSAR) for
high-resolution and high-quality polarimetric imaging.

7.1 Results and Novelties of the Research

The major novelties and achievements of this thesis are summarized as follows.

153



154 Chapter 7. Conclusions

Rotated antenna array design for full-pol imaging. Two novel approaches were
proposed for rotated antenna arrays design, which overcomes the effects of polar-
ization variations of the antennas within the aperture and facilitates the extraction
of fully polarized scattering properties of objects through traditional scalar-wave
based algorithms and polarimetry techniques. The rotated arrays, designed accord-
ing to the proposed approaches, provide a cost-efficient solution to fully polarimet-
ric imaging array systems.

Efficient implementation of Linear inversion of polarization-varied EM data.
A linear inversion approach derived from the Born approximation was applied to
address the high-quality image reconstruction from the EM data acquired with arbi-
trarily oriented antennas based on the full-wave radiation characteristics. In the nu-
merical implementation, two approaches, i.e., an interpolation based approach and
a NUFFT based approach, have been proposed to efficiently compute the accurate
Green’s functions. These approaches have significantly accelerated (for instance,
from O(N2) to O(N log N) for the NUFFT based approach) the observation matrix
construction for linear inversion. By taking advantage of the full-wave radiation
characteristics of the antennas, the linear inversion approach compensates for the
effects of the polarization variations within the array and substantially improves the
imaging quality compared to the traditional scalar-wave based algorithms.

Sampling design of three-dimensional arrays for 3-D imaging. A novel con-
cept and design strategies were proposed for three-dimensional arrays, which is,
to our best knowledge, the first attempt to investigate three-dimensional arrays for
3-D imaging. Specifically, we extended the RadSAR to the Elevation-RadSAR (E-
RadSAR) by taking advantage of the movement of the radar platform in the down-
range direction, which aimed at reducing the number of antennas needed in the
imaging system implementation. To address the 3-D sampling problem of the
UWB E-RadSAR, two greedy algorithms, i.e., the Clustered FrameSense (CFS)
and the Clustered Maximal Projection on Minimum Eigenspace (CMPME), have
been proposed to optimize the sampling scheme of the 3-D synthetic arrays of the
E-RadSAR. As these two algorithms abstractly tackle the sampling design prob-
lem as an observation/sample selection problem with a linear system of equations,
they are broadly applicable to high-dimensional sampling problems. In terms of the
designed E-RadSAR, its spatial samples are taken over several cylindrical surfaces
with a small number of available antennas, which provides a cost-efficient/compact
solution to practical imaging systems, though probably at the expense of a slight
image quality degradation, as compared to optimal planar arrays with the same
number of spatial samples.
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Multiband signal fusion. A novel wavenumber domain fusion approach has
been proposed to coherently fuse multiple subband signals scattered from targets
for radar imaging based on the matrix-pencil method. Using this approach, we
compensate the phase incoherence between the different subband signals and ex-
trapolate the missing data in the frequency gap between different subbands. Then
the coherence-aligned signals are fused to get an equivalent wideband/UWB signal,
which leads to the focused images with enhanced spatial resolution, especially the
down-range resolution. Compared to the signal fusion in the space-frequency do-
main, the wavenumber domain method allows integrating the signals acquired by
either collocated or non-collocated arrays (say, different spatial sampling interval)
at different frequency subbands. The validity of the proposed fusion approach has
been verified through numerical and experimental examples.

7.2 Recommendations

In this section, a few recommendations are given for further research as a contin-
uation of the present work in this thesis. Some of the problems are inspired and
identified in the investigation process of the present work while some have not been
covered in this thesis. Several possible research directions are listed below.

• Moving target tomography.
In the thesis, we mainly focused on the stationary imaging scenarios with the
array-based system and only the motion of the array itself was considered
for the synthetic aperture radar imaging. In practice, moving target scenar-
ios may be more general. Simultaneously identifying and reconstructing the
images of both stationary and moving targets in a dynamic scenario with mi-
crowave imaging provide the spatial-temporal, i.e., four-dimensional (4-D)
information about the imaging scene, which will significantly improve the
probability of target detection and recognition. This study will definitely
boost the development of radar-based autonomous driving, which is one of
the hottest interdisciplinary applications in recent years.

• Multiband signal fusion based on matrix completion.
Multiband signal fusion can be considered as an estimation problem which
aims at estimating the full signals from the incomplete measurements. For
computational microwave imaging, the multiband signal fusion imaging in
the wavenumber domain can also be converted to estimate a 2-D matrix/3-D
tensor based on part of its entries. In other words, the fusion operation at-
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tempts to estimate the unknown entries based on the existing ones so as to
get a complete matrix, namely, matrix completion. In terms of implementa-
tion, it can be formulated as an optimization problem

M : minF (M) subject to Ml = M0
l

where M is the estimated matrix after fusion, M0 is the initial matrix formed
by the measurements for some entries but zeros for others and the subscript l
represents the set of indices of the existing entries in matrix M (or M0). F is
a functional of M, which can be the rank of a matrix, matrix norms, etc.

• Exploration of the potential for enlargement of the class of EM properties to
be reconstructed with the rotated array configurations.
Compared to the traditional planar arrays, the rotating antenna array acquires
differently polarized EM signals within the aperture. That is, rotated array
configurations result in an observation operator different from that with tradi-
tional arrays, thus perceiving different information of targets. So one possi-
ble question that arises is whether the signals acquired with the rotated arrays
combining its observation operator would lead to the enlargement of the class
of EM properties to be reconstructed through the inversion process. This
question could be a future research topic to further explore the potential of
the rotated array configuration.

• Orbital-Angular-Momentum imaging with rotated antenna arrays.
Electromagnetic fields have an angular momentum, which can be decom-
posed as spin angular momentum (SAM) and orbital angular momentum
(OAM) in quantum mechanics [1]. The SAM is associated with the polar-
ization in the classical electromagnetic theory and describes the spin charac-
teristic of the rotational degree of freedom. Meanwhile, the OAM is associ-
ated with the spatial distribution and depicts the orbital characteristic of the
rotational degree of freedom, which has a helical phase front of exp ( jnθ),
where θ is the azimuthal angle and n is an integer that indicates the index of
the OAM mode. For different values of n, the OAM are orthogonal, which
provides one more degree of freedom to encode information and has been
extensively studied in the optical domain for high-speed communication. In
the microwave region, the OAM can be generated by using a circular antenna
array with a specific phase for each element. Its application for communica-
tions starts to be extended to microwave domain [2–5]. However, the study
about the OAM based sensing and imaging is still scarce [6, 7]; this could be
a new field for future research.
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• Cognitive Sensing for target-matched illumination.
Investigating the possibility to optimize the sequential illumination scheme
with respect to targets based on previous observations is very important for
efficient sensing. By fully exploiting the spatial-, frequency- and polarization-
agilities, a set of operational signals can be generated at different instants, for
instance, to avoid the null-space of the observation operator of targets. So it
can improve the efficiency of signal acquisition about the target and probably
also the signal to noise ratio, which will significantly benefit target detection
and recognition. Moreover, by improving the efficiency of the information
acquisition about the targets, one more straightforward reward is the reduc-
tion of the redundancy of the acquired data, thus saving memory requirements
for data storage and processing.

• Extension of the 3-D synthetic array technique to automotive radar applica-
tions.
Considering the forward motion of a vehicle, it is possible to synthesize a
3-D synthetic array using the forward-looking automotive radar which typi-
cally uses a small MIMO planar antenna array for transmission and reception.
The 3-D sampling scheme supplements the insufficient samples in the cross-
range direction acquired with the real array. Therefore, it will improve the
signal-to-noise ratio after coherent processing. Moreover, the MIMO array
also introduces extra diversity to the synthesized 3-D array. Consequently, it
brings new challenges to the signal processing as well.
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Summary

The expansion of microwave imaging applications in various fields proposes in-
creasingly higher requirements (including spatial resolution, dynamic range, and
signal-to-noise ratio) for microwave imaging systems. To achieve high-quality
imaging, microwave imaging systems generally exploit spatial-, frequency- and
polarization-diversities to probe objects of interest for information extraction. In
practice, they are implemented by using array-, wideband/Ultra-wideband (UWB)-
and polarimetry-techniques. So properly exploring these techniques is of great im-
portance to design an advanced microwave imaging system. A motivation for the re-
search presented in the thesis is to develop a ground penetrating radar (GPR) system
to predict hazards ahead of tunnel boring machines (TBM) during tunnel excava-
tion. In this circumstance, GPR antennas are mounted on the cutter-head of a TBM.
With the rotation of the TBM cutter-head, GPR antennas collect electromagnetic
(EM) signals over a synthetic circular aperture, which leads to the Radial-scanned
Synthetic Aperture Radar (RadSAR). The rotation of the antenna array benefits the
formation of the RadSAR but makes it distinct from traditional SAR modalities as
well.

The first part of the thesis focuses on the investigation of the RadSAR for high-
quality 3-D imaging by exploring the polarization and spatial diversities. Due to the
rotation of the antenna array, EM signals acquired with the RadSAR have various
(i.e., misaligned) polarizations over the aperture, which degrades imaging perfor-
mance of traditional scalar-wave based imaging algorithms. In the thesis, we pro-
pose two solutions, i.e., through either antenna array design or image formation, to
overcome the effects of polarization misalignment of EM waves on the qualities of
formed images. In the first solution, novel antenna array topologies are devised for
signal acquisition with the RadSAR. The designed rotated antenna arrays not only
enable to overcome the polarization misalignment of EM signals within the aperture
but also provide fully polarimetric imaging capability. However, these arrays have
higher system complexity (i.e., need maximally two times the number of antennas).
As an alternative solution, a linear inversion approach is suggested for image for-
mation by taking advantage of accurate Green’s functions of the rotated antennas,
which partly compensates the effects of polarization misalignment of EM waves
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acquired by the RadSAR. This approach reconstructs the shape of an object with
sufficient accuracy for both free-space and subsurface imaging applications, but the
computational load significantly increases compared to the first solution. There-
fore, some trade-offs between the two solutions should be considered in practical
applications.

Moreover, the RadSAR is extended to the Elevation-RadSAR (E-RadSAR) with
attempts to further reduce the array system complexity (i.e., fewer antennas) for 3-D
imaging. The E-RadSAR exploits a synthetic aperture technique in both cross- and
down-range directions; thus it takes a 3-D spatial sampling for signal acquisition.
To investigate the 3-D imaging capability of the E-RadSAR, its 3-D spatial sam-
pling is a key problem, which is tackled by converting to a sensor selection problem
in the shape of an abstract linear system formulation. This formulation provides a
general multi-dimensional sampling framework for microwave imaging systems to
exploit spatial-, frequency- and polarization-diversities, that are only partly cov-
ered by the traditional monochromatic and UWB array theories. The developed
selection tools address the sampling design of a microwave imaging system by op-
timizing its sensing matrix/operator and also adapt physical constraints for specific
tasks. Moreover, these selection tools can also be used for frequency-modulated
array design, MIMO array optimization, sensor selection, etc.

The second part of this thesis explores multiband signal fusion for improved
microwave imaging. Based on the signal spectrum distribution of focused images,
a wavenumber-domain multiband data fusion approach is proposed. Compared
to signal-level fusion approaches, the wavenumber-domain fusion strategy facili-
tates to coherently fuse multiband signals collected by either collocated or non-
collocated arrays at different frequency bands. The proposed fusion approach is
attractive for high-resolution imaging with multiple narrowband data when UWB
data are unavailable due to system constraints, strong interference at a certain fre-
quency within a wide bandwidth, or due to other causes.

Although the research presented in the thesis is triggered by studying the Rad-
SAR related imaging systems, some of the research results can generally benefit the
development of more advanced microwave imaging systems by exploiting various
signal/system diversities for a wide range of applications.



Samenvatting

De uitbreiding van microgolf beeldreconstructie toepassingen in verschillende om-
gevingen stelt steeds hogere eisen (met inbegrip van ruimtelijke resolutie, dyna-
misch bereik, en signaal ruis verhouding) aan microgolf beeldreconstructie syste-
men. Om hoge kwaliteit beeldreconstructie te bereiken, maken microgolf beeldre-
consructie systemen in in zijn algemeenheid gebruik van ruimtelijke-, frequentie-
en polarisatie- verschillen om informatie van objecten te verkrijgen. In de praktijk,
worden deze geimplementeerd door gebruik te maken van aaray, wideband/Ultra-
wideband (UWB)- en polarimetrische technieken. Dus het op de juiste manier
toepassen van deze technieken is van groot belang om een geavanceerd microgolf
beeldrecontructie systeem te ontwerpen. Een motivatie voor het onderzoek dat in
dit proefschrift wordt gepresenteerd, is om een Ground Penetrating Radar (GPR)
systeem te ontwikkelen om gevaren te voorspellen die opdoemen bij Tunnel Boring
Machines (TBM) gedurende de uitgraving van een tunnel. In deze omstandigheid
worden de GPR-antennes op de snijkop van de TBM gemonteerd. Met de rota-
tie van de TBM-snijkop verzamelen de GPR-antennes elektromagnetische (EM)
signalen met een synthetische circulaire apertuur, welke leidt tot de Radiaal opge-
nomen Synthetic Aperture Radar (RadSAR). De rotatie van het antenne-array komt
de formatie van de RadSAR ten goede, maar onderscheidt zich daarmee ook van
traditionele SAR modaliteiten.

Het eerste deel van het proefschrift richt zich op het onderzoek van de RadSAR
voor hoge kwaliteit 3-D beeldreconstructie door gebruik te maken van polarisatie
en ruimtelijke verschillen. Door de rotatie van het antenne array hebben de verkre-
gen EM-signalen met de RadSAR verschillende (bijv. niet uitgelijnde) polarisaties
over de apertuur, die de werkzaamheid van traditionele op scalaire golven geba-
seerde beeldreconstructie algoritmen verminderen. In het proefschrift stellen we
twee oplossingen voor, deze zijn, door mogelijk antenne array ontwerp of beeld-
formatie, het verhelpen van de effecten van niet uitgelijnde polarisatie van EM gol-
ven op de kwaliteiten van de geformeerde beelden. In de eerste oplossing worden
nieuwe antenne array topologieen toegepast om signalen te verkrijgen voor de Rad-
SAR. De ontworpen roterende antenne arrays maken het mogelijk niet alleen de
niet uitgelijnde polarisatie van EM signalen in de apertuur te verhelpen, maar ma-
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ken ook een volledige polarimetrische beeldreconstructie mogelijk. Deze arrays
hebben evenwel een hogere systeem complexiteit (bijv. hebben twee maal zoveel
antennes nodig). Als alternatieve oplossing wordt een lineaire inversie benadering
voorgesteld voor beeldreconstructie, door gebruik te maken van nauwkeurige func-
ties van Green behorende bij de roterende antennes, die gedeeltelijk het effect van
de niet uitgelijnde polarisatie van de verkregen EM golven door de RadSAR com-
penseerd. Deze benadering reconstrueerd de vorm van de objecten met voldoende
nauwkeurigheid voor zowel de vrije ruimte en ondergrond beeldreconstructie toe-
passingen, maar de rekenkundige belasting neemt significant toe vergeleken met de
eerste oplossing. Daarom zouden bij praktische toepassingen enkele afwegingen
tussen de twee oplossingen moeten worden genomen.

Behalve dat is de RadSAR uitgebreid tot de Elevation-RadSAR (E-RadSAR)
met pogingen om de complexiteit van het array systeem (bijv. minder antennes)
te reduceren voor 3-D beeldreconstructie. De E-RadSAR maakt gebruik van een
synthetische apertuur techniek in zowel “cross” als “down-range” richtingen; Het
meent dus een 3-D ruimtelijke bemonstering voor de signaal acquisitie. Om de 3-
D beeldreconstructie mogelijkheden van de E-RadSAR te onderzoeken, is de 3-D
ruimtelijke bemonstering het sleutelprobleem welke wordt aangepakt door omzet-
ting naar een sensor selectie probleem in de vorm van een abstracte lineaire sys-
teem formulering. Deze formulering levert een algemeen multi-dimensionaal be-
monsterings raamwerk voor microgolf beeldreconstructie systemen om gebruik te
maken van ruimtelijke-, frequentie- en polarisatie-verschillen, die alleen gedeelte-
lijk afgedekt worden door de traditionele monochromatische en UWB array theo-
rieen. De ontwikkelde selectie gereedschappen hebben betrekking op het bemon-
steringsontwerp van een microgolf beeldreconstructie systeem door zijn “sensing
matrix/operator” te optimaliseren en ook de fysische randvoorwaarden voor spe-
cifieke taken aan te passen. Bovendien kunnen deze selectie gereedschappen ook
gebruikt worden voor frequentie-gemoduleerd array ontwerp., MIMO array opti-
malisatie, sensor selectie, etc.

Het tweede gedeelte van dit proefschrift verkent de fusie van multi-band sig-
nalen voor verbeterde microgolf beeldreconstructie. Gebaseerd op de distributie
van het signaalspectrum van gefocuseerde beelden, wordt een benadering van een
fusie van multiband data voorgesteld. Vergeleken met signaal-niveau fusie benade-
ringen, maakt de golfgetal-domein fusie strategie het mogelijk om coherent mul-
tiband signalen te fuseren, die door gecollokeerde of niet-gecollokeerde arrays in
verschillende frequentiebanden zijn verkregen. De voorgestelde fusie-benadering is
aantrekkelijk voor hoge-resolutie beeldreconstructie bij veel smalbandige data, als
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UWB data niet beschikbaar is vanwege systeembeperkingen, sterke interferentie bij
een zekere frequentie binnen een brede bandbreedte, of vanwege andere redenen.

Hoewel het onderzoek dat in dit proefschrift wordt gepresenteerd is voortge-
komen door de bestudering van RadSAR gerelateerde beeldreconstructie systemen,
kunnen enkele van de onderzoeksresultaten in zijn algemeenheid profiteren van de
ontwikkeling van meer geavanceerde microgolf beeldreconstructie systemen door
gebruik te maken van verscheidene signaal/systeem verschillen voor een uitgebreid
aantal toepassingen.
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