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Abstract: Container transport requires real-time control and a high degree of cooperation to
alleviate disturbances and perform smoothly without unnecessary environmental impact and
monetary losses. The involved operators are, however, often reluctant to cooperate as they fear
loosing valuable information and autonomy, eventually leading their clients to choose another
(cooperating) operator. In this paper we propose a real-time co-planning method, called Secure
Departure Learning that in real-time lets several truck operators indicate to a barge operator
what departure schedules they prefer without revealing any sensitive information. The method
uses Paillier encryption and a learning method inspired by Bayesian Optimization in a model
predictive control framework. At frequent time intervals a number of potential barge schedules
are communicated to the co-planning truck operators. They evaluate their operation cost for
each schedule and communicate it to the barge operator encrypted using several public keys. The
barge operator computes the encrypted total cost for each schedules, which hereafter is decrypted
by several truck operators. The first action of the schedule that results in the lowest total cost is
implemented in a model predictive control fashion. Simulated experiments on a realistic, Dutch
transport network illustrate that Secure Departure Learning is a good alternative for replacing
the current method in practice, where barge departures are scheduled ahead of time and only
mode-decisions can be updated in real time. Secure Departure Learning offers a new perspective
on cooperation at the operational level in freight transport where co-planning and information
protection can go hand in hand.

Keywords: Cooperative logistics; Multi-modal transport modeling, monitoring and control;
Scheduling and optimization of transportation systems; Co-planning; Pailler encryption;
Synchromodal transport; Artificial intelligence in transportation

1. INTRODUCTION

Increased real-time cooperation between container trans-
port stakeholders can improve efficiency. This is generally
agreed upon among both scholars (Giusti et al., 2019) and
practitioners (PWC, 2016). At the operational level it is
however difficult to establish close cooperation as many
cooperation schemes rely on heavy information sharing or
loss of autonomy. In practice, cooperation is often a hierar-
chy of decisions, where earlier decisions cannot be changed
later, thus impeding real-time control. In the following we
use the term co-planning to describe the, preferably real-
time, act of planning transport at the operational level
with sharing of limited, consciously chosen information
and a clear division of responsibilities and autonomy.

The current literature on cooperation methods at the op-
erational level falls generally into two categories: auctions
and distributed optimization. Neither can be classified as
co-planning. In auction schemes, shippers and transport

� This research is supported by the project ”Complexity Methods for
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providers choose what demand and supply they bring
to and bid on at the auction, hence keeping full auton-
omy. They must however often share sensitive informa-
tion like pick up and delivery locations before a deal is
made (Gansterer et al., 2020). Many auction methods
furthermore rely on a neutral, central entity (Li et al.,
2015). Often, only very few decisions are re-evaluated or a
fixed plan for a future planning period is agreed upon as
auctions typically are formulated as computationally com-
plex binary optimization problems. Auction schemes are
frequently used in cooperative vehicle routing problems.

Cooperation schemes based on distributed optimization
are more common for intermodal transportation. They
do often rely on full information sharing and almost
infinite communication (Li et al., 2017). Some researchers
ensure the interpretability of the methods (Guo, 2020,
Chapter 7), but often distributed optimization appears to
practitioners as “Black-box” methods giving them a feeling
of loosing autonomy. Both static and dynamic/real-time
control methods use distributed optimization.

In this paper, we propose a real-time co-planning method,
called Secure Departure Learning (SDL), that allows a
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1. INTRODUCTION

Increased real-time cooperation between container trans-
port stakeholders can improve efficiency. This is generally
agreed upon among both scholars (Giusti et al., 2019) and
practitioners (PWC, 2016). At the operational level it is
however difficult to establish close cooperation as many
cooperation schemes rely on heavy information sharing or
loss of autonomy. In practice, cooperation is often a hierar-
chy of decisions, where earlier decisions cannot be changed
later, thus impeding real-time control. In the following we
use the term co-planning to describe the, preferably real-
time, act of planning transport at the operational level
with sharing of limited, consciously chosen information
and a clear division of responsibilities and autonomy.

The current literature on cooperation methods at the op-
erational level falls generally into two categories: auctions
and distributed optimization. Neither can be classified as
co-planning. In auction schemes, shippers and transport
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providers choose what demand and supply they bring
to and bid on at the auction, hence keeping full auton-
omy. They must however often share sensitive informa-
tion like pick up and delivery locations before a deal is
made (Gansterer et al., 2020). Many auction methods
furthermore rely on a neutral, central entity (Li et al.,
2015). Often, only very few decisions are re-evaluated or a
fixed plan for a future planning period is agreed upon as
auctions typically are formulated as computationally com-
plex binary optimization problems. Auction schemes are
frequently used in cooperative vehicle routing problems.

Cooperation schemes based on distributed optimization
are more common for intermodal transportation. They
do often rely on full information sharing and almost
infinite communication (Li et al., 2017). Some researchers
ensure the interpretability of the methods (Guo, 2020,
Chapter 7), but often distributed optimization appears to
practitioners as “Black-box” methods giving them a feeling
of loosing autonomy. Both static and dynamic/real-time
control methods use distributed optimization.

In this paper, we propose a real-time co-planning method,
called Secure Departure Learning (SDL), that allows a
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barge operator and multiple truck operators to jointly
decide on barge departures. The method ensures the oper-
ators’ autonomy and individual responsibility by keeping
the final decision power local and by only committing to
actions when they are to be carried out. The latter is pos-
sible under modern concepts, like synchromodal transport,
where shippers give full authority over the execution of the
transport to the operators. The proposed method builds
upon the method presented by Larsen et al. (2020) where
one barge and one truck operator cooperate on departure
time based on cost information. We expand this method
to co-planning with multiple truck operators and ensure
no valuable information can be interpreted from the com-
municated data. The improved data privacy is achieved
using Paillier encryption (Paillier, 1999). We furthermore
improve the model predictive controller used by the truck
operators in Larsen et al. (2020).

To introduce SDL, firstly modelling assumptions, the ideal
centralised controller for the problem, and the responsi-
bilities and restrictions of each operator are introduced in
Section 2. In Section 3 SDL is presented and discussed and
in Section 4 the performance of SDL is shown on simulated
experiments. Finally, in Section 5, we provide conclusions
and recommendations for further work on co-planning.

2. CONTAINER TRANSPORT CONTROL

If barge and truck operators cooperated without information-
exchange limitations, the method used to take decisions in
the shared transport system could be formulated centrally.
The performance of this method is thus the performance
we strive to replicate without sharing sensitive informa-
tion. In this section the “ideal” centralised controller is
thus presented.

Transport at the operational level is constantly facing
delays and other disturbances. Synchromodal transport
and other modern transport concepts allow transport op-
erators to re-plan container routes freely to accommodate
unforeseen events. On the other hand, container deadlines
have to be met and each decision incurs a cost. To balance
the tradeoff between quick response to changes in the
transport system and optimal costs in the long run, the
model predictive control (MPC) detailed in Larsen et al.
(2020) is used as the centralised transport controller. The
formulations have been extended to represent co-planning
between a barge operator and multiple truck operators.
The MPC has, furthermore, been improved by adding a
cost to stacked containers, by encouraging early action,
and by including information about due dates that lie
outside the prediction horizon.

2.1 Modelling Assumptions

The transport system model used by the centralised con-
troller builds on the following assumptions:

• Network is synchromodal (a-modal bookings and no
commitment until departure)

• One barge with sufficient capacity serves two termi-
nals

• Unsatisfied demand is penalized
• Driving trucks loaded and empty cost the same
• One truck can transport one container at a time

Fig. 1. Transport networks for co-planning with one barge
and three truck operators. The networks can overlap.

• Containers and trucks are modelled as integer flows
• Operating hours, terminal capacity, etc., are omitted

The different truck operators in the transport network
have different, possibly overlapping, route networks they
operate on. Each of these can be described by a graph
where the set of nodes, Vn are the terminals, hubs and
way-points used by truck operator n. The two terminals
the barge transports between comprise set B and are part
of all truck operators’ networks, B ∈ Vn ∀n ∈ N , where
N is the set of truck operators participating in the co-
planning. For each node i, the set of nodes connected by
barge is Bi (maximum one element) and the set connected
by truck from operator n is Vn

i . The travel time for a truck
from operator n from node i to node j is denoted by τnij
while the travel time from node i to j by barge is denoted
by τ bij . Figure 1 shows an example of a transport network.

Containers with the same destination transported by the
same truck operator are modelled as one commodity and
described as a flow. The state and decision variables
are thus vectors, where each element in the vector is
representing one commodity. The demand vector dni (k) ∈
Zmn

≥0 describes, therefore, both containers ready to be
released into the network and containers needed from the
network at node i at time step k. The location in the
vector determines what commodity the demand is of, and
thus if it has destination at node i or not. Truck operator
n transports mn different commodities. Two mapping
vectors, ψn

i ∈ {0, 1}1×mn and ωn
i ∈ {0, 1}1×mn are defined

such that ψn
i d

n
i (k) is the total number of new containers to

be released and ωn
i d

n
i (k) is the total number of containers

due at node i at time step k.

2.2 Centralized MPC

An MPC reacts to unpredicted events by re-planning the
best actions to take at regular time intervals (called time
steps). Each plan predicts the effect on the system over
the next Tp time steps and optimizes the corresponding
actions. Only the actions corresponding to the first time
step in the plan, κ = 0, are implemented before the plan
is re-optimized at time step k+ 1. Throughout the paper,
k represents the time of the system and κ ∈ {0, ..., Tp}
describes time in the predicted plan. The feasibility of the
current plan is ensured by penalizing unsatisfied demand
and by using the current states as initial states of the
prediction problem. The latter means that at time step
k the predicted number of barges berthed at node i,
zbi (κ) ∈ {0, 1}, for the initial prediction time step κ = 0

is the actual number of berthed barges, z̄bi,k ∈ {0, 1}. The
same is true for the predicted unsatisfied demand, yni (κ),
the stacked containers, xn

i (κ) and the parked trucks, zni (κ),
as indicated in (2). The MPC optimization problem is
given as follows:

min

Tp−1∑
κ=0


∑

n∈N

∑
i∈Vn

(
γxn

i (κ+ 1) + (1 + ξκ)
∑
j∈Vn

i

(
πn
ijv

n
ij(κ)

)

+φnyni (κ+ 1)

)
+
∑
i∈B

∑
j∈Bi

(
πb
ijv

b
ij(κ) +

∑
n∈N

ρijν
n
ij(κ)

)


(1)

s.t. zbi (0) = z̄bi,k, y
n
i (0) = ȳni,k, x

n
i (0) = x̄n

i,k,

zni (0) = z̄ni,k ∀ i ∈ Vn, ∀n ∈ N (2)

and ∀ i ∈ Vn, ∀n ∈ N , ∀κ = 0, ..., Tp − 1 :

zbi (κ+ 1) = zbi (κ) +
∑
j=Bi

(
vbji(κ− τ bji)− vbij(κ)

)
(3)

yni (κ+ 1) = yni (κ)− rni (κ)− wn
i (κ) + dni (κ|k) (4)

ψn
i w

n
i (κ) = 0 (5)

ωn
i r

n
i (κ) = 0 (6)

xn
i (κ+ 1) = xn

i (κ) +
∑
j=Bi

(
νnji(κ− τ bji)− νnij(κ)

)
+

rni (κ)− wn
i (κ) +

∑
j∈Vn

i

(
un
ji(κ− τnji)− un

ij(κ)
)

(7)

zni (κ+ 1) = zni (κ) +
∑
j=Vn

i

(
vnji(κ− τnji)− vnij(κ)

)
(8)

1mnun
ij(κ) ≤ vnij(κ) ∀ j ∈ Vn

i (9)

where 1mn is a row-vector of size mn of all ones. The
binary decision variable vbij(κ) = 1 if it is predicted that
the barge departs from node i at time step k+κ, otherwise
vbij(κ) = 0. The due-demand at node i for operator n
is satisfied by using wn

i (κ) ∈ Zmn

≥0 containers from the
stack, and the released demand is satisfied by adding
rni (κ) ∈ Zmn

≥0 containers to the stack. Equation (5) and

(6) differentiate due and released demand. Containers that
depart with the barge at timestep k + κ from node i to j
are denoted by νnij(κ) ∈ Zmn

≥0 and those departing by truck

from operator n are denoted by un
ij(κ) ∈ Zmn

≥0 . Trucks from
operator n departing from node i towards node j at time
step k + κ are denoted by vnij(κ) ∈ Z≥0.

Decisions taken at previous time steps k are known, and
can hence be used in the prediction. For example, the
number of trucks arriving at node j at time step k + κ
from node i are vij(κ − τnij), which were decided at time
step k+κ−τnij if k+κ−τnij < k and is otherwise a decision
variable in the optimization problem at time step k. When
necessary, the time of prediction will be specified as, e.g.
for truck departures, vij(κ|k).
The demand dni (κ|k) is the demand that at time step k is
expected to be released at k+κ for all κ = 0, ..., Tp−2. The
demand dni (Tp−1|k) is the sum of the expected demand at
time step k+Tp−1 and the demand due at time step k+Tp

to k + Tp + θ. Hereby, the MPC can utilize that due date
information often is available when release information is.

The optimization problem minimizes the cost of sailing the
unloaded barge, φb

ijv
b
ij(κ), the additional cost of sailing

a (partially) loaded barge, ρijν
n
ij(κ), the cost of driving

the trucks, πn
ijv

n
ij(κ), and the penalty for not satisfying

due demand or not accepting released demand on time,
φnyni (κ). Furthermore, in contrast to Larsen et al. (2020),
the objective function also includes a small cost on stacked
containers γxn

i (κ) and a small penalty for driving trucks
later rather than earlier, ξkπn

ijv
n
ij(κ).

The transport system can be controlled using this central-
ized MPC only if all parties are willing to share real-time
information on the position of their vehicle fleet and their
clients’ containers at a commodity level, their (expected)
future demand and their cost of operation.

2.3 Co-planning

Both the barge and the truck operators benefit when
the barge departures are well aligned with the need for
transport of containers by barge. The barge operator
avoid sailing empty barges and the truck operators can
utilize the cheaper, but slower, barge connection without
delivering containers to late. This is the core assumption
behind SDL. It is furthermore assumed that the barge
operator does not have contact to shippers, and thus does
not have other demand than what the truck operators
bring. The truck operators do not cooperate among each
other, so the demand submitted to a given truck operator
must be satisfied by that truck operator, possibly with the
use of the barge service. The truck operators are not willing
to communicate cost or demand information to the barge
operator, neither any information from which this may be
inferred. In conclusion, the challenge SDL solves is that
all operators have a common goal, but neither operator
will share information or let their decision being taken in
“black box” fashion.

3. SECURE DEPARTURE LEARNING

In this section SDL is introduced. Firstly, Pailler encryp-
tion is described and events are defined. Then follow de-
tails of the key steps in SDL and, finally, SDL is presented.

3.1 Preliminaries and definitions

SDL uses Paillier encryption to ensure no information can
be interpreted by any one of the cooperating operators.
In the following, the encryption method and its main
property is described. For more information, we refer to
Paillier (1999).

Definition 1. The cost J ∈ Z is encrypted using encryp-
tion scheme n by

En(J) = gn
Jhon mod o2n, (10)

where on = pnqn > J , pn and qn being large prime
numbers, and 0 < h < on is a random number. gn is a
random element from the set Ψn. Ψn is the disjoint union
of all Ψn(a), which are the sets of elements of order ona for
a = 1, ..., λ(on). λ(on) is the Carmichael’s function taken
on on. The encrypted number a < o2n is decrypted using
encryption scheme n by

Dn(a) =
L(aλ(on) mod o2n)

L(gλ(on) mod o2n)
mod on, (11)
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utilize the cheaper, but slower, barge connection without
delivering containers to late. This is the core assumption
behind SDL. It is furthermore assumed that the barge
operator does not have contact to shippers, and thus does
not have other demand than what the truck operators
bring. The truck operators do not cooperate among each
other, so the demand submitted to a given truck operator
must be satisfied by that truck operator, possibly with the
use of the barge service. The truck operators are not willing
to communicate cost or demand information to the barge
operator, neither any information from which this may be
inferred. In conclusion, the challenge SDL solves is that
all operators have a common goal, but neither operator
will share information or let their decision being taken in
“black box” fashion.

3. SECURE DEPARTURE LEARNING

In this section SDL is introduced. Firstly, Pailler encryp-
tion is described and events are defined. Then follow de-
tails of the key steps in SDL and, finally, SDL is presented.

3.1 Preliminaries and definitions

SDL uses Paillier encryption to ensure no information can
be interpreted by any one of the cooperating operators.
In the following, the encryption method and its main
property is described. For more information, we refer to
Paillier (1999).

Definition 1. The cost J ∈ Z is encrypted using encryp-
tion scheme n by

En(J) = gn
Jhon mod o2n, (10)

where on = pnqn > J , pn and qn being large prime
numbers, and 0 < h < on is a random number. gn is a
random element from the set Ψn. Ψn is the disjoint union
of all Ψn(a), which are the sets of elements of order ona for
a = 1, ..., λ(on). λ(on) is the Carmichael’s function taken
on on. The encrypted number a < o2n is decrypted using
encryption scheme n by

Dn(a) =
L(aλ(on) mod o2n)

L(gλ(on) mod o2n)
mod on, (11)
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where L(χ) = χ−1
on

.

Definition 2. (on, gn) is the public key for encryption
scheme n. (pn, qn) or equivalently λ(on) is the private key
for encryption scheme n.

If an operator knows the public key, he can encrypt data
using scheme n. If he knows both the public and the private
key, he can encrypt and decrypt data.

Fact 1. Paillier encryption is additively homomorphic,
such that ∀ J1, J2 ∈ Z<on and σ ∈ Z>0:

Dn(En(J1)En(J2) mod o2n) = J1 + J2 mod on (12)

Dn(En(J1)
σ mod o2n) = σJ1 mod on (13)

SDL uses learning based on ideas from Bayesian opti-
mization to decide on departure schedules. To decrease
the complexity of the learning problem, the sequences of
departures are described as events. For more information
on events, we refer to Larsen et al. (2020).

Definition 3. An event e(k) is the sum of two departure
sequences vbij(κ) and vbji(κ) ∀κ = 0, ..., Tp − 1, {i, j} = B.
The set of feasible events E(k) contains all the events that
are feasible at time step k, i.e. satisfies zbi (0) = z̄bi,k and

(3) ∀κ = 0, ..., Tp − 1.

An example of the construction of an event is:
[vbij(0) · · · vbij(Tp − 1)] = [ 0 0 1 0 0 0 ]
[vbji(0) · · · vbji(Tp − 1)] = [ 1 0 0 0 1 0 ]
e = [ 1 0 1 0 1 0 ]

Conjecture 2. When the current location of the barge
is known, i.e. z̄bi,k and vbij(0|k − a), ∀ a ∈ {τji, ..., 2τji}
∀ i ∈ B, j ∈ Bi are known. Then the sequences of depar-
tures vbij(κ|k) and vbji(κ|k) ∀κ = 0, ..., Tp − 1, {i, j} = B
can be inferred error-free from an event e using

vbij(κ|k) ≤ z̄bi,k +

τb
ji∑

a=τb
ji
−κ

vbji(0|k − a) ∀κ ≤ τ bji. (14)

Definition 4. A timeless event e∞ is an event e seen over
an infinite time horizon, i.e. e∞ =

[
01:k e 0k+Tp:∞

]
, where

0a:b = {0}1×b−a is a zero-vector of suitable size. Note that
different events e at different time steps k can have the
same timeless event.

Definition 5. A neighbouring event is an event e2 that
differs from e1 by only one departure time. This departure
is shifted one time step either earlier or later and as
such e1 and e2 are considered neighbours. The set of
neighbouring events for event e1 ∈ E(k) is He∞1

(k) = {e2 ∈
E(k) \ {e1}|v2(κ) = v1(κ) ∀κ ∈ {0, ..., Tp − 1} \ {a, a +
1},where v2(a) = v1(a+ 1) and v1(a) = v2(a+1)}, where
va(κ) = vbij(κ) + vbji(κ), {i, j} = B for event ea.

Below are examples of timeless events and neighbours:
ea1 ∈ E(k) = [ 0 1 0 0 1 0 ]
ea2 ∈ E(k + 1) = [ 1 0 0 1 0 0 ]

e∞a1 = e∞a2 = e∞a = 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

eb ∈ He∞a
(k) = [ 1 0 0 0 1 0 ]

ec1 ∈ He∞a
(k) = [ 0 0 1 0 1 0 ]

ec2 ∈ He∞a
(k + 1) = [ 0 1 0 1 0 0 ]

3.2 Schedule evaluation

The truck operators do not have authority to decide on
when the barge departs. They can optimize the movements
of containers and trucks in accordance with the schedule
decided by the barge operator. From a truck operator’s
point of view, each event e at time k thus has a cost of
Jn(e, k), which can be computed as:

Jn(e, k) = min

Tp−1∑
κ=0

∑
n∈N

∑
i∈Vn


(1 + ξk)

∑
j∈Vn

i

πn
ijv

n
ij(κ)+

∑
j∈Bi

ρijν
n
ij(κ) + γxn

i (κ) + φnyni (κ)


 (15)

s.t. yni (0) = ȳni,k, x
n
i (0) = x̄n

i,k, z
n
i (0) = z̄ni,k ∀ i ∈ Vn

(16)

(4)− (9) ∀ i ∈ Vn, ∀κ = 0, ..., Tp − 1. (17)

The truck operators are willing to give encrypted informa-
tion about the cost associated with η events at each time
step k. The set of evaluated events is denoted by I(k).

3.3 Favourable schedules

The barge operator is interested in minimizing the cost of
transport for all the cooperating operators, i.e. at every
time step k finds the schedule that minimizes (1)-(9).
Since the barge operator only has authority to decide
upon departures, he needs cost information from the truck
operators to find the cost of an event.

Definition 6. The fitness of the timeless event e∞ for event
e ∈ E(k) at time step k is

Fe∞(k) =
∑
n∈N

Jn(e, k) +

Tp−1∑
κ=0

∑
i∈B

∑
j∈Bi

πb
ijv

b
ij(κ), (18)

where the departure sequences vbij(κ) and vbji(κ) ∀κ =
0, ..., Tp − 1, {i, j} = B are inferred from e using (14).

Since the transport system is controlled in an MPC fashion
(with receding horizon), only the actions corresponding to
κ = 0 are implemented before a new schedule is made.
It is therefore assumed that performance information
about a schedule at time step k can help estimating
the performance of similar schedules at time step k + 1.
Specifically, it is assumed that events sharing the same
timeless event or being neighbours incur similar costs.

Definition 7. The set of events that are feasible at both
time step k and k + 1 is H+

e∞(k) = He∞(k) ∪ He∞(k + 1)
and contains ηe∞(k) events.
The estimated fitness of the event e ∈ E(k + 1) is

F̃e∞(k + 1) = αF̃e∞(k) +
1− α

ηe∞(k)

∑

a∈H+
e∞ (k)

F̃a∞(k), (19)

if e∞ ∈ E(k); otherwise F̃e∞(k + 1) = maxa∈I(k) F̃a∞(k).
0 ≤ α ≤ 1.

If an event’s timeless event is evaluated recently, it is more
likely to estimate the fitness well. For each event a measure
of uncertainty is defined.

Definition 8. The uncertainty value for event e ∈ E(k+1)
is

Algorithm 1 Barge operator’s strategy for deciding I(k)
1: input F̃e∞(k), s̃e∞(k), E(k)
2: return I(k) with η unique events
3: I(k) = ∅
4: for i ← 1 to floor(η/6) do

5: I(k) = I(k) ∪ argmine∈E(k)\I(k) F̃e∞(k) + s̃e∞(k)

6: I(k) = I(k) ∪ argmine∈E(k)\I(k) F̃e∞(k)

7: I(k) = I(k) ∪ argmaxe∈E(k)\I(k) s̃e∞(k)

8: I(k) = I(k) ∪ argmine∈E(k)\I(k) F̃e∞(k)− s̃e∞(k)
9: for j ← 1 to 2 do

10: I(k) = I(k) ∪ rand (e ∈ E(k) \ I(k))
11: end for
12: end for
13: for i ← floor(η/6)6 to η do
14: I(k) = I(k) ∪ rand (e ∈ E(k) \ I(k))
15: end for

s̃e∞(k + 1) = (α+ β)s̃e∞(k) +
1− α

ηe∞(k)

∑

a∈H+
e∞ (k)

s̃a∞(k),

(20)
if e∞ ∈ E(k); otherwise s̃e∞(k + 1) = snew. snew is a large
number. The factor β ∈ R≥0 increases the uncertainty of
earlier estimates.

The core idea in SDL is that the barge operator at
every time step k consciously chooses η events that the
truck operators evaluate and provide feedback on. It is
important that the set of events to be evaluated I(k)
contains events that both exploit the information known
from previous time steps and explore the search space.
This balance is achieved by using Algorithm 1 from Larsen
et al. (2020).

3.4 Secure departure learning

In SDL the barge and the truck operators communicate
forth and back three times before it is decided if the
barge should depart right now or not. The first time,
the barge operator sends the truck operators a set of
schedules he believes will either be close to optimal or
valuable for future estimations (computed using Algorithm
1). The truck operators compute individually how much
the total cost of transport would be if each of the schedules
were implemented in full (using (15)-(17)). Each truck
operators has the public encryption key from all of the
participating truck operators. Truck operator n encrypts
the cost for each schedule with all the available public
keys individually (Ea(J

n(e, k) ∀ e ∈ I(k), ∀ a ∈ N ) and
communicates them back to the barge operator.

The barge operator then computes his cost for each sched-
ule, encrypts it and adds it to the received costs using (12)
(resulting in En(Fe∞(k)) ∀n ∈ N ). The barge operator
now scales the encrypted total cost with an integer only
known to him σn(k). This integer varies over time and
for each event to ensure the truck operators can not infer
the true total cost. The scaled total cost encrypted with
operator n’s key (Dn(En(Fe∞(k))σn(k) mod o2n)) is sent
to operator n, who decrypts it using his private key and
returns σn(k)Fe∞(k).

The best schedule can now be found by the barge operator
after de-scaling the received costs. This schedule is com-
municated to all truck operators, who ensure they plan
in accordance. All operators implement the first decisions
in their plans and the barge operator updates the fitness
estimates and uncertainty values to prepare to repeat the
process at the next time step. All action and communica-
tion steps of SDL are shown in Figure 2.

The total cost is scaled by the barge operator to hide the
total cost of the cooperation from the competing truck
operators. It is thus only the barge operator who knows
the true total cost. The public keys of everybody must
be known by all operators such that the barge operator
can sum the encrypted costs from the truck operators
and add his own encrypted cost. If it is undesirable that
the truck operators know how many operators are co-
planning, a subset of the keys can be distributed. It is in
that case important that sufficiently many keys are known
by all operators such that the barge operator can compare
the incoming results to ensure they have been decrypted
truthfully. The barge operator must not have access to any
of the private keys, since this will enable him to decrypt
individual truck operators’ costs.

If it is undesirable that the barge operator knows the true
total cost, one solution is that the truck operators modify
the returned costs by scaling with a constant factor δ ∈ R.
To ensure the barge operator cannot infer the scaling
factor δ easily, the truck operators can choose δ ≥ 1 and
add a number smaller than an agreed minimum value for
σn(k). This way the barge operator cannot simply find
the δ through the greatest common divisor of the received
costs, while the error in the precision of the total cost will
not be more severe than the error introduced by using
integer values for the encryption.

Using Paillier encryption, the costs will be rounded to
integer values. This is assumed acceptable as the decimals
of transport cost often can be disregarded and if deemed
important communication precision can be agreed upon,
e.g., using cents instead of euros.

SDL relies on estimates of the fitness of each feasible
event to learn good departure schedules. This requires a
large memory and computations over many entities. The
method is however easily parallelizable both for truck op-
erators, where each event can be evaluated independently,
and for the barge operator, where Algorithm 1 and the
updates (19) and (20) can be parallelized. See Larsen et al.
(2020) for further information.

4. SIMULATION EXPERIMENTS

The performance of SDL is in this section compared to that
of the centrallized MPC, (1)-(9), and the performance of
a fixed schedule. We refer to these as the central and the
fixed methods. The fixed method represents the current
practice where a barge departs at the beginning of the
simulation from Nijmegen and departs hereafter every 6,5
hours alternating between this terminal and Rotterdam.
Each truck operator knows this schedule and employs their
own MPC using (15)-(17).

The experiments were simulated in Matlab formulated
with Yalmip (Löfberg, 2004) and solved by Gurobi. Ex-
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Algorithm 1 Barge operator’s strategy for deciding I(k)
1: input F̃e∞(k), s̃e∞(k), E(k)
2: return I(k) with η unique events
3: I(k) = ∅
4: for i ← 1 to floor(η/6) do

5: I(k) = I(k) ∪ argmine∈E(k)\I(k) F̃e∞(k) + s̃e∞(k)

6: I(k) = I(k) ∪ argmine∈E(k)\I(k) F̃e∞(k)

7: I(k) = I(k) ∪ argmaxe∈E(k)\I(k) s̃e∞(k)

8: I(k) = I(k) ∪ argmine∈E(k)\I(k) F̃e∞(k)− s̃e∞(k)
9: for j ← 1 to 2 do

10: I(k) = I(k) ∪ rand (e ∈ E(k) \ I(k))
11: end for
12: end for
13: for i ← floor(η/6)6 to η do
14: I(k) = I(k) ∪ rand (e ∈ E(k) \ I(k))
15: end for

s̃e∞(k + 1) = (α+ β)s̃e∞(k) +
1− α

ηe∞(k)

∑

a∈H+
e∞ (k)

s̃a∞(k),

(20)
if e∞ ∈ E(k); otherwise s̃e∞(k + 1) = snew. snew is a large
number. The factor β ∈ R≥0 increases the uncertainty of
earlier estimates.

The core idea in SDL is that the barge operator at
every time step k consciously chooses η events that the
truck operators evaluate and provide feedback on. It is
important that the set of events to be evaluated I(k)
contains events that both exploit the information known
from previous time steps and explore the search space.
This balance is achieved by using Algorithm 1 from Larsen
et al. (2020).

3.4 Secure departure learning

In SDL the barge and the truck operators communicate
forth and back three times before it is decided if the
barge should depart right now or not. The first time,
the barge operator sends the truck operators a set of
schedules he believes will either be close to optimal or
valuable for future estimations (computed using Algorithm
1). The truck operators compute individually how much
the total cost of transport would be if each of the schedules
were implemented in full (using (15)-(17)). Each truck
operators has the public encryption key from all of the
participating truck operators. Truck operator n encrypts
the cost for each schedule with all the available public
keys individually (Ea(J

n(e, k) ∀ e ∈ I(k), ∀ a ∈ N ) and
communicates them back to the barge operator.

The barge operator then computes his cost for each sched-
ule, encrypts it and adds it to the received costs using (12)
(resulting in En(Fe∞(k)) ∀n ∈ N ). The barge operator
now scales the encrypted total cost with an integer only
known to him σn(k). This integer varies over time and
for each event to ensure the truck operators can not infer
the true total cost. The scaled total cost encrypted with
operator n’s key (Dn(En(Fe∞(k))σn(k) mod o2n)) is sent
to operator n, who decrypts it using his private key and
returns σn(k)Fe∞(k).

The best schedule can now be found by the barge operator
after de-scaling the received costs. This schedule is com-
municated to all truck operators, who ensure they plan
in accordance. All operators implement the first decisions
in their plans and the barge operator updates the fitness
estimates and uncertainty values to prepare to repeat the
process at the next time step. All action and communica-
tion steps of SDL are shown in Figure 2.

The total cost is scaled by the barge operator to hide the
total cost of the cooperation from the competing truck
operators. It is thus only the barge operator who knows
the true total cost. The public keys of everybody must
be known by all operators such that the barge operator
can sum the encrypted costs from the truck operators
and add his own encrypted cost. If it is undesirable that
the truck operators know how many operators are co-
planning, a subset of the keys can be distributed. It is in
that case important that sufficiently many keys are known
by all operators such that the barge operator can compare
the incoming results to ensure they have been decrypted
truthfully. The barge operator must not have access to any
of the private keys, since this will enable him to decrypt
individual truck operators’ costs.

If it is undesirable that the barge operator knows the true
total cost, one solution is that the truck operators modify
the returned costs by scaling with a constant factor δ ∈ R.
To ensure the barge operator cannot infer the scaling
factor δ easily, the truck operators can choose δ ≥ 1 and
add a number smaller than an agreed minimum value for
σn(k). This way the barge operator cannot simply find
the δ through the greatest common divisor of the received
costs, while the error in the precision of the total cost will
not be more severe than the error introduced by using
integer values for the encryption.

Using Paillier encryption, the costs will be rounded to
integer values. This is assumed acceptable as the decimals
of transport cost often can be disregarded and if deemed
important communication precision can be agreed upon,
e.g., using cents instead of euros.

SDL relies on estimates of the fitness of each feasible
event to learn good departure schedules. This requires a
large memory and computations over many entities. The
method is however easily parallelizable both for truck op-
erators, where each event can be evaluated independently,
and for the barge operator, where Algorithm 1 and the
updates (19) and (20) can be parallelized. See Larsen et al.
(2020) for further information.

4. SIMULATION EXPERIMENTS

The performance of SDL is in this section compared to that
of the centrallized MPC, (1)-(9), and the performance of
a fixed schedule. We refer to these as the central and the
fixed methods. The fixed method represents the current
practice where a barge departs at the beginning of the
simulation from Nijmegen and departs hereafter every 6,5
hours alternating between this terminal and Rotterdam.
Each truck operator knows this schedule and employs their
own MPC using (15)-(17).

The experiments were simulated in Matlab formulated
with Yalmip (Löfberg, 2004) and solved by Gurobi. Ex-
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Fig. 2. Action (black arrows) and communication (bold, blue arrows) flow for SDL.

periments with Paillier encryption were performed using
the toolbox by D’Errico (2020) to ensure precision of the
large integers. However, as encryption does not impact the
performance, the shown experiments were performed in
plaintext.

For the experiments, a period of 5 days of transport
on the network shown in Figure 1 is considered. The
truck networks are not overlapping except for the barge
terminal nodes. This is not a limitation of DSL, but is
chosen to simplify the presentation of the experiments.
Time was discretized with intervals of 15 min, giving
a total simulation length of 480 time steps. All three
methods used prediction horizon Tp = 70, θ = 70 and the
parameters shown in Table 1. The same table shows the
costs and the non-zero initial states. SDL was initialized
with F̃e∞(0) = 10000 and s̃e∞(0) = snew = 5000, and used
α = 0.8, β = 0.1 and η = 30.

The experiments were conducted with both stable de-
mand and demand with peaks. All methods know the
exact demand for the prediction horizon Tp at every
time step. For both profiles, between 0 and 3 contain-
ers of each commodity are released at all time steps at
all terminals except Nijmegen. They are each assigned
a leadtime of minimum 70 time steps and added to the
due-demand at the corresponding time step at the cor-
responding terminal. No containers are due at Nijmegen.

The demand with peaks simulate how a hinterland net-
work typically is stressed by the large amounts of con-
tainers arriving and departing by ships in Rotterdam.
The stable demand forms the basis of this demand pro-
file, but in addition it adds between 0 and 4 release
containers at all nodes (except Nijmegen) at time steps
k =[14:20,60:65,100:104,150:162,199:208,250:258,301:311,
344:350,400:408,430:436]. Their due-time is computed as
for the stable demand.

4.1 Results

SDL performs better than the fixed method but, as ex-
pected, not as well as the centralized MPC for both de-
mand profiles. This is as expected, since more cooperation

Table 1. Network parameters, costs (in e) and
non-zero initial states used in the experiments

τb14 = τb41 = 24 πb
14 = πb

41 = 60 z̄b4,0 = 1 ρ14 = 28.18

τ112 = τ121 = 6 π1
12 = π1

21 = 44.26 z̄11,0 = 33 ρ41 = 28.18

τ123 = τ132 = 6 π1
23 = π1

32 = 45.98 z̄12,0 = 33 γ = 0.0001

τ134 = τ143 = 5 π1
34 = π1

43 = 37.37 z̄13,0 = 33 ξ = 0.001

τ124 = τ142 = 5 π1
24 = π1

42 = 39.10 φ1 = 1000
τ215 = τ251 = 9 π2

15 = π2
51 = 63.19 z̄21,0 = 35 φ2 = 1000

τ245 = τ254 = 4 π2
45 = π2

54 = 33.93 φ3 = 1000
τ316 = τ361 = 8 π3

16 = π3
61 = 54.59 z̄36,0 = 30

τ346 = τ361 = 3 π3
46 = π3

64 = 21.88

Table 2. Simulation results
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s SDL 685 12 333 13,156 761 1,087 1074

fixed 696 19 245 13,485 1065 1,050 1104
central 679 9 408 13,181 715 1,095 1035

enables better utilization of the vehicles. This is especially
clear from the number of barge departures, where SDL
plans for significantly fewer departures than what is in
the fixed schedule but does not decrease as much as the
centralized MPC. When the demand is stable, the per-
formance of SDL is closer to that of the fixed method.
On the other hand, it is closer to that of the centralized
MPC when the demand has peaks. This is explained by
the increased importance of aligning barge departures with
demand when many containers have the same transport
need. The same pattern is observed for truck departures,
especially in the number of empty departures. The trucks
are however used on longer routes more frequently for the
centralized MPC, which results in an increase in the total
distance driven by trucks. The additional cost and CO2
from extra barge departures are, however, lower than the
savings achieved by using fewer, better utilized barges,
such that the total cost of transport and the resulting CO2
emissions decrease. All three methods satisfy the demand
in time.

The CO2 emissions for the transports are computed us-
ing the guidelines by ECTA (2011). It is not directly
considered by any of the methods (it is not part of the
objective functions). This shows that it is important to
create methods that are realistic for transport operators
to use for co-planning - not only for the cost and efficiency,
but also for the environment.

5. CONCLUSIONS AND FUTURE RESEARCH

The presented method, Secure Departure Learning (SDL),
lets a barge operator co-plan departure times with multiple
truck operators without revealing any sensitive informa-
tion between the cooperating parties. This is achieved
using Paillier encryption and a model predictive con-
trol based method integrated with learning using ideas
from Bayesian optimization. The method can be used
without either party giving up autonomy or risk loosing
information-based advantages and can as such easier re-
place the current practice, where the barge operator fixes
the schedule ahead of time.

Compared to using a fixed schedule, SDL increases the
utilization rate of especially barges but also trucks. A
centralized decision maker outperforms SDL as expected,
but is almost impossible to implement in real world ap-
plications due to lack of interested participants. Increased
utilization rates improve not only the total transport cost,

but also the CO2 emissions. In conclusion, SDL is a proof
of concept for the idea that it is possible for transport
operators to co-plan without revealing any sensitive infor-
mation.

Future research on SDL should include experiments on
multiple cases to strengthen the conclusions. The method
could furthermore be improved by considering the envi-
ronmental impact directly and including opening hours
and similar constraints in the mathematical model. SDL
does not consider the environmental impact directly, nor
does it consider opening hours and similar constraints. An
extension of the method towards more realistic assump-
tions and direct consideration of environmental impact
are interesting future research directions. An important
assumption to overcome before SDL can be deployed for
practitioners is the unlimited barge capacity. This may
only be overcome by the use of more advanced encryption
techniques. Further investigation into the impact of SDL’s
meta-parameters would also improve the understanding
of the method and the possibilities for extension towards
more complex co-planning with multiple barges that de-
cide both departure times and routing.
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Table 2. Simulation results
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enables better utilization of the vehicles. This is especially
clear from the number of barge departures, where SDL
plans for significantly fewer departures than what is in
the fixed schedule but does not decrease as much as the
centralized MPC. When the demand is stable, the per-
formance of SDL is closer to that of the fixed method.
On the other hand, it is closer to that of the centralized
MPC when the demand has peaks. This is explained by
the increased importance of aligning barge departures with
demand when many containers have the same transport
need. The same pattern is observed for truck departures,
especially in the number of empty departures. The trucks
are however used on longer routes more frequently for the
centralized MPC, which results in an increase in the total
distance driven by trucks. The additional cost and CO2
from extra barge departures are, however, lower than the
savings achieved by using fewer, better utilized barges,
such that the total cost of transport and the resulting CO2
emissions decrease. All three methods satisfy the demand
in time.

The CO2 emissions for the transports are computed us-
ing the guidelines by ECTA (2011). It is not directly
considered by any of the methods (it is not part of the
objective functions). This shows that it is important to
create methods that are realistic for transport operators
to use for co-planning - not only for the cost and efficiency,
but also for the environment.

5. CONCLUSIONS AND FUTURE RESEARCH

The presented method, Secure Departure Learning (SDL),
lets a barge operator co-plan departure times with multiple
truck operators without revealing any sensitive informa-
tion between the cooperating parties. This is achieved
using Paillier encryption and a model predictive con-
trol based method integrated with learning using ideas
from Bayesian optimization. The method can be used
without either party giving up autonomy or risk loosing
information-based advantages and can as such easier re-
place the current practice, where the barge operator fixes
the schedule ahead of time.

Compared to using a fixed schedule, SDL increases the
utilization rate of especially barges but also trucks. A
centralized decision maker outperforms SDL as expected,
but is almost impossible to implement in real world ap-
plications due to lack of interested participants. Increased
utilization rates improve not only the total transport cost,

but also the CO2 emissions. In conclusion, SDL is a proof
of concept for the idea that it is possible for transport
operators to co-plan without revealing any sensitive infor-
mation.

Future research on SDL should include experiments on
multiple cases to strengthen the conclusions. The method
could furthermore be improved by considering the envi-
ronmental impact directly and including opening hours
and similar constraints in the mathematical model. SDL
does not consider the environmental impact directly, nor
does it consider opening hours and similar constraints. An
extension of the method towards more realistic assump-
tions and direct consideration of environmental impact
are interesting future research directions. An important
assumption to overcome before SDL can be deployed for
practitioners is the unlimited barge capacity. This may
only be overcome by the use of more advanced encryption
techniques. Further investigation into the impact of SDL’s
meta-parameters would also improve the understanding
of the method and the possibilities for extension towards
more complex co-planning with multiple barges that de-
cide both departure times and routing.
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