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Abstract
The Norwegian Public Roads Administration is reviewing the possibility of using floating bridges as fjord
crossings. The dynamic behaviour of very long floating bridges with novel designs are prone to uncertainties.
Studying the dynamic behaviour of existing bridges is valuable for understanding the in-situ performance.
We present a case study of the Bergsøysund Bridge, a 840 m long floating pontoon bridge located in Norway.
An extensive monitoring system is installed on the bridge, including a network of accelerometers. A finite
element model of the bridge is established. Using the measured acceleration output and recently developed
Kalman filter based methods (a joint input-state (JIS) estimation algorithm and a dual Kalman filter (DKF)),
we estimate accelerations at unmeasured locations. It is shown that the estimated response from the DKF
agrees well with direct reference measurements. For the JIS, numerical instabilities in the estimates occur
due to ill-conditioning of the matrices used in the system inversion.

1 Introduction

Understanding the dynamic response of civil engineering structures is important in order to build safe struc-
tures. In traditional design and dynamic analysis of structures, the response is obtained from an assumed load
state together with an established model of the relevant structure. Uncertainties and errors in the structural
model are thus propagated to the response. For unexplored or novel structural concepts, the degree of both
model and loading uncertainty is higher compared to traditional ones. If the increased uncertainties are not
met with any measures of improvement, the novel structures either face a higher probability of failure or can
be overly costly since high uncertainties implies high partial factors in design.

A ferry-free E39 coastal highway project has been launched by the Norwegian Government. It aims to
strengthen the highway and remove the need for ferries along the western coast of Norway, where most of
the population lives. The area is dominated by fjords and surrounding mountains, making infrastructure
such as tunnels and bridges indispensable. The fjords are typically 1-3 km wide and too deep for bottom-
founded bridges. New solutions to fjord crossings are therefore being researched and reviewed, e.g. floating
bridges, submerged tunnels and suspension bridges with floating towers. Common for all mentioned struc-
tures is that the dynamic behaviour is governed by fluid-structure interaction, which is typically more prone
to uncertainties than of dynamics of dry structures.

By performing site monitoring of existing structures, it is possible to learn more about the true dynamic per-
formance in complicated loading sceneries. In this contribution we present a case study of the Bergsøysund
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Bridge, a floating pontoon bridge along the E39 coastal highway in mid-western Norway. With the help of
recent developed techniques for system inversion, we estimate the dynamic response to ambient wave and
wind loading using acceleration data measured at the bridge.

This paper applies two methods for estimating the dynamic response. The first is a joint-input state algorithm
(JIS) for reduced order models [1], derived from minimum variance unbiased principles [2]. The method
has been tested numerically [3–5] as well as experimentally [6–9]. Implementing the method in structural
health monitoring schemes have also been proposed [10, 11], where the idea is to continuously monitor the
remaining service life. The second method we apply is the recently published dual Kalman filter (DKF)
[12–14], in which the states and forces are estimated from two filters working in conjunction.

2 Theory

2.1 Equations of motion for floating bridges

The governing equations of motion of a coupled fluid-structure system with nDOF degrees of freedom (DOF)
are for convenience first formulated in the the frequency domain:

−ω2M(ω)u(ω) + iωC(ω)u(ω) + K(ω)u(ω) = Sphpw(ω) (1)

where the displacement vector u(ω) and the wave excitation forces pw(ω) are Fourier transforms of their
time domain equivalents u(t) ∈ RnDOF and pw(t) ∈ Rnp , respectively. The selection matrix Sph assigns the
wave forces to a designated set of DOF with direct fluid contact. Furthermore, the system matrices are split
into two parts according to their nature of origin:

M(ω) = Ms + Mh(ω) (2)

C(ω) = Cs + Ch(ω) (3)

K = Ks + Kh (4)

Ms,Cs and Ks are the mass, damping and stiffness matrices of the dry structure. The fluid-structure in-
teraction gives rise to the hydrodynamic mass Mh(ω) and damping Ch(ω), both of which are functions of
frequency. Kh is the hydrostatic restoring stiffness, which is assumed not to vary with frequency. By apply-
ing the inverse Fourier transform to Eq. 1 and rearranging, the equations of motion can also be formulated
in the time domain as follows:

(Ms + Mh0)ü(t) + Csu̇(t) + (Ks + Kh)u(t) = Sphpw(t) + Sphpmi(t) = Sphph(t) (5)

where Mh0 = Mh(ω = 0). We define motion induced forces pmi(t) ∈ Rnp by the following expression:

Sphpmi(t) = −
∫ ∞
−∞

u̇(t− τ)k̃(τ) dτ (6)

The kernel k̃ can be seen as an alternative rewriting of the retardation function often encountered in marine
engineering [15]. Here, the definition of k̃ follows from the Fourier convolution theorem:

k̃(t) =
1

2π

∫ ∞
−∞

(iω(Mh(ω)−Mh0) + Ch(ω)) e
iωt dω (7)



For the response estimation, a choice is made to establish a time-invariant linear system model. In what
follows, the formulation in Eq. 5 is interpreted in the following way: the terms on the left hand side constitute
a linear system, while the right hand side is the input forces applied to the linear system. The actual input
forces are considered to be of less interest. For this reason, the motion induced and wave excitation forces
are collected in the hydrodynamic force vector ph(t) = pw(t)+pmi(t). In other words, ph(t) is by definition
the input forces as felt by the moving structure. M(ω) and C(ω) are not considered to be part of the linear
system model; effects of the added mass and damping are considered as motion induced forces felt by a
time-invariant system. As will be explained later, wind and traffic forces are neglected.

For large structures, it is often favoured to work with a set of nm structural modes rather than a full model.
Thus a reduced order model is constructed:

u(t) = Φz(t) (8)

where z(t) ∈ Rnm is the modal coordinate vector and Φ ∈ RnDOF×nm contains the mass normalized mode
shapes. When proportional damping of the linear system is assumed and Eq. 5 is premultiplied by ΦT the
modal equation reads:

z̈(t) + Γż(t) + Ω2z(t) = ΦTSphph(t) (9)

where Γ ∈ Rnm×nm and Ω ∈ Rnm×nm are both diagonally populated with natural frequencies ωj and modal
damping ratios ξj :

Ω =


ω1

ω2

. . .
ωnm

 Γ =


2ω1ξ1

2ω2ξ2
. . .

2ωnmξnm

 (10)

The modal properties are found from the chosen linear model as discussed above, i.e. the system consisting
of Ms, Cs, Ks together with Kh and Mh0. It is emphasized that the modal quantities do not correspond
to solving a complex eigenvalue problem, which would include Mh(ω) and Ch(ω) (see [16] for details).
Furthermore, a discrete time state-space representation of Eq. 9 is formulated under the assumption of a zero
order hold on the force and a sample rate of 1

∆t :

xk+1 = Axk + Bph,k (11)

xk is the modal state vector and ph,k is the force vector at time tk = k∆t (k = 1 . . . N):

xk =

(
z(tk)
ż(tk)

)
, ph,k = ph(tk) (12)

The state transition matrix A ∈ R2nm×2nm and input matrix B ∈ R2nm×np are given as:

A = eAc∆t, B = (A− I)A−1c Bc, Ac =

[
0 I
−Ω2 −Γ

]
, Bc =

[
0

ΦTSph

]
(13)

The application presented here is limited to acceleration output only. The output vector y ∈ Rnd,a reads:

yk = Saü(tk) = Gxk + Jph,k (14)



where Sa ∈ Rnd,a×nDOF is a selection matrix describing the linear relationship between the output and the
physical DOF. G ∈ Rnd,a×nm and J ∈ Rnd,a×np symbolizes the output influence matrix and direct transmission
matrix, respectively:

G = −SaΦ
[
Ω2 Γ

]
, J =

[
SaΦΦTSp

]
(15)

In the presence of noise, zero mean white noise vectors are added to Eq. 11 and 14, which completes the
stochastic state-space representation:

xk+1 = Axk + Bph,k + wk (16)

yk = Gxk + Jph,k + vk (17)

The process noise wk and measurement noise vk are assumed to have the following covariance relations:

E[wkw
T
l ] = Q δkl , E[vkvT

l ] = R δkl , E[wkv
T
l ] = 0 (18)

Additionally, a Guassian random walk is assumed for the DKF force evolution:

ph,k+1 = ph,k + ηk (19)

ηk is also a zero mean white noise vector, with covariance E[ηkηT
k ] = Qp.

2.2 Response estimation methodology

Two methods will be used to estimate the response from a limited set of acceleration data, namely a JIS
estimation algorithm [1] and the recently developed DKF [12]. Both are based on the widely popular Kalman
Filter [17]. The equations for the two algorithms are given below. We recommend looking into the original
works for the more details about the assumptions behind the filters. In addition, we especially point out
the necessity of matrix reduction in the JIS for the removal of numerical instabilities when the number of
measurements exceeds the model order (nd > nm), as is often the case for large bridges. Details can be found
in [1].

Joint input-state estimation:

Initial quantities:

State estimate: x̂0|−1 (20)

State error covariance: P0|−1 (21)

Input estimation:

R̃k = GPk|k−1G
T + R (22)

Mk = (JTR̃−1k J)−1JTR̃−1k (23)

p̂k|k = Mk(yk −Gx̂k|k−1) (24)

Pp[k|k] = (JTR̃−1k J)−1 (25)



Measurement update:

Lk = Pk|k−1G
TR̃−1k (26)

x̂k|k = x̂k|k−1 + Lk(yk −Gx̂k|k−1 − Jp̂k|k) (27)

Pk|k = Pk|k−1 − Lk(R̃k − JPp[k|k]J
T)LTk (28)

Pxp[k|k] = Ppx
T
[k|k] = −LkJPp[k|k] (29)

Time update:

x̂k+1|k = Ax̂k|k + Bp̂k|k (30)

Pk+1|k =
[
A B

] [ Pk|k Pxp[k|k]
Ppx[k|k] Pp[k|k]

] [
AT

BT

]
+ Q (31)

Dual Kalman Filter:

Initial quantities:

Force estimate: p̂0 (32)

Force error covariance: P
p
0 (33)

State estimate: x̂0 (34)

State error covariance: P0 (35)

Prediction of the input:

p−k = pk−1 (36)

Pp−
k = Pp

k−1 + Qp (37)

(38)

Kalman gain and filter estimate for the input:

Gp
k = Pp−

k JT (JPp−
k JT + R)−1 (39)

p̂k = p−k + Gp
k(dk −Gx̂k−1 − Jp−k ) (40)

Pp
k = Pp−

k −Gp
kJPp−

k (41)

Prediction of the state:

x−k = Ax̂k−1 + Bp̂k (42)

P−k = APk−1A
T + Q (43)

Kalman gain and filter estimate for the state:

Gx
k = P−k GT (GP−k GT + R)−1 (44)

x̂k = x−k + Gx
k(dk −Gx−k − Jp̂k) (45)

Pk = P−k −Gx
kGP−k (46)



Figure 1: The Bergsøysund Bridge. Photograph: K.A. Kvåle.

2.3 Conditions for response estimation

In the following, necessary conditions for successful response estimation is briefly discussed. Maes et al.
[18] presented the fundamental requirements for instantaneous system inversion when modally reduced order
models are used. Whether or not the requirements are met depends on the model representation as well as
the sensor network. Good results are however not guaranteed even if the requirements are met; they only
reflect the estimation feasibility from an algorithmic point of view. The requirements relevant for response
estimation at the Bergsøysund Bridge is mentioned below.

Firstly, system observability is necessary for state estimation. In the case of acceleration output only, observ-
ability is fulfilled if and only if the matrix SaΦ has no zero columns. This means all the modes in the model
must have an influence on the acceleration output.

Secondly, in order for the system to be instantaneously invertible, the rank of the matrix J in Eq. 14 must
be equal to np. This implies that the number of accelerations in the output, nd,a, must be greater or equal
to the number of unknown forces, np. In addition, np must not exceed the number of modes in the model
(nm ≥ np).

Lastly, the presence of transmission zeros determines the stability of the solution. A transmission zero
λj ∈ C is defined by the following equation:

[
A− λjI B

G J

] [
x0

ph,0

]
=

[
0
0

]
(47)

When transmission zeros are present, the force ph,k = ph,0λ
k
j (k = 0, 1, . . . N) will not be distinguishable

from the output, thereby making a unique system inversion impossible. It can be shown that a so-called
marginally stable transmission zero (λj = 1) always occurs when only acceleration outputs are available.
Owing to the fact that static forces always remain undistinguishable by accelerometers, measurements of
displacement or strains need be included in the output to eliminate the transmission zeros. In practical terms,
a slow frequency drift in the state and force estimates are observed under marginally stability. Is it usually
possible to filter out the drift.

3 Case study: the Bergsøysund Bridge

3.1 Description of the bridge and sensor network

Located in mid-western Norway, the Bergsøysund Bridge (see Fig. 1) is part of the E39 highway running
along the west coast. The water depth in the strait reaches 300 m, making a bottom-founded bridge an
impractical solution. A floating pontoon bridge was therefore chosen when it was built in 1992. The bridge
has a 840 m long floating span with free spans of 105 m between the pontoons. In total, seven concrete
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Figure 2: Monitoring system at the Bergsøysund Bridge

Figure 3: Selected instruments in the monitoring system. Left: accelerometer; middle: wave elevation radar;
right: GNSS station. Photograph: K.A. Kvåle.

pontoons support the steel truss superstructure. At the ends, neoprene bearings and axial steel rods anchors
the bridge to bedrock. The bridge is susceptible to dynamic excitations from wave actions, making it an
interesting case study.

An extensive monitoring system is installed at the bridge as part of the E39 coastal highway research project.
The sensor network consists of accelerometers, wave elevation radars, anemometers and a GNSS (Global
Navigation Satellite System) station, shown Fig. 2 and 3. When predefined trigger values in wind velocity
are exceeded, data is automatically recorded and saved. Data can either be retrieved locally or sent over the
mobile internet network. The data most relevant for response estimation is the accelerometer output. Two
triaxial accelerometers are installed at each pontoon. A more comprehensive description of the monitoring
system is given in [19].

3.2 System model

The structural mass and stiffness matrices are obtained from a finite element (FE) model of the dry structure.
Shown in Fig. 4, a model is created in the FE software ABAQUS using 3-node Timoshenko beam elements
for the truss and shell elements for the stiffened upper deck. The hydrostatic stiffness matrix Kh is obtained
in the software DNV HydroD WADAM. The pontoons, assumed to behave as rigid bodies, are discretized as
a single node with 6 DOF, to which the pontoon inertia as well as the hydrodynamic properties are assigned.
A Rayleigh model is assumed for the structural damping of the linear system in Eq. 5:

Cs = α(Ms + Mh0) + β(Ks + Kh) (48)

The dry structure is assumed to be lightly damped, the values α = 5× 10−3 and β = 10−3 are assigned.



Figure 4: Finite element model of the Bergsøysund Bridge
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Figure 5: Definition of the force and moment directions on the pontoons

We remark that the hydrodynamic matrices Mh(ω) and Ch(ω) can also be acquired from DNV HydroD
WADAM. However, in accordance with Eq. 5, we repeat that the frequency dependent matrices are not
considered part of the linear system model, but rather as input forces. It is possible to construct a state-space
model which includes the hydrodynamic mass and damping [15], but this option is beyond the scope of this
paper.

While input estimation is not the primary goal in this contribution, the location of the external forces must be
defined. The hydrodynamic forces are not considered as spatially distributed but rather as six force resultants
working in the gravity centre of each pontoon. Thus 6 × 7 = 42 modelled wave forces are acting on the
pontoons. A choice is made to neglect the force components Fx, My and Mz as defined in Fig. 5. As
shown in numerical simulations of the bridge [20], the influence on the output from the discarded forces
is negligible. They are also significantly smaller than the remaining components Fy, Fz and Mx when the
mean wave direction is approximately perpendicular to the bridge. Thus the number of unknown forces is
set to np = 3 × 7 = 21. Other sources of ambient excitation are assumed to be negligible or filtered out as
noise. The response to traffic loading is largely removed by a lowpass filter and the wind forces are by nature
significantly smaller compared to the hydrodynamic forces.

Next, a choice of modes for the reduced order model should be made. It is desired to exclude modes having
very little influence on the output or modes which the forces cannot control [11]. If the modes are not re-
moved, the system can suffer from ill-conditioning, giving rise to inaccurate estimates when noise is present.
There is no significant contribution in the output data above 2 Hz. Consequently the 29 lowermost modes are
considered, of which the lowest and highest natural frequency are 0.103 Hz and 1.93 Hz. Since the location
of the sensors and forces is predetermined, we seek to eliminate modes which has poor influence on the
output or which is not excited by the forces. This can be done by mapping the modal projection matrices
SaΦ and ΦTSp. Details are omitted here, see e.g. [18] for a tutorial. Two modes are removed, a total of
nm = 27 modes are included in the model. It is however hard to give any further physical interpretation of
these modes given the choice of the linear model, seeing that the modes do not directly represent the system
in Eq. 1.



4 Estimation of dynamic response

A data time series recorded on November 8th 2015 is considered. Approximated from 10 minute intervals,
the significant wave height ranged between 0.5–0.7 m and the mean wind velocity varied between 9 m/s and
16 m/s. The recorded acceleration data is originally sampled at 200 Hz, but is lowpass filtered (Chebyshev
Type II at 5 Hz) and resampled to 10 Hz for the presented application.

In the demonstration of response estimation, one of the accelerometers at pontoon 3 (cf. Fig. 2) is left out
to serve as a reference sensor. The remaining nd,a = 39 accelerometer signals constitute the sensor network.
The acceleration at an unmeasured location is estimated analogous to Eq. 14:

ŷk = G′x̂k + J′p̂h,k (49)

where x̂k and p̂h,k are the state and force estimates obtained from the filters and G′ and J′ are constructed
from Eq. 15 according to the new designated location. The following diagonal covariance matrices are used:

Q = diag( [10]1×19 [1]1×8 [10]1×19 [1]1×8 ) (50)

R = 5× 10−2 × I (51)

Qp = diag( [1010]1×14 [1012]1×7 ) (52)

The covariance is tuned manually, iterative trials with different values are performed whilst controlling the
parameters within limits set by engineering judgement; retaining a practical interpretation of the error co-
variance is desired. Q is constructed under the expectation that the 19 first modes of the model will have
larger excitation than the last 8 modes. The noise level reflects the approximate order of magnitude of the
modal states, the standard deviation of the first 19 estimates modes ranges between 1.2 and 60, while for the
last 8 it is between 0.05 and 1. The square root of the elements of R correspond to 5-15% of the standard
deviation of y(t). For Qp, a higher amount of regularization is prescribed to the seven moments, since they
are an order of magnitude higher than the fourteen translational forces.

Fig. 6 shows the estimated acceleration response from the two filters. In the x and y-direction, a very good
correspondence is seen. This can be attributed to the physics of the problem: due to the rigidity of the
pontoon and the high bending stiffness of the steel truss, the estimates are almost a repetition of signals
from the second accelerometer at the same pontoon. The z-direction is more interesting. While the DKF
mostly complies with the reference measurement, the accuracy of the JIS estimate is far from satisfactory.
Fig. 7 shows that the JIS estimate is inconsistent with the reference in most the higher frequency range. As
expected, some discrepancies in the frequency content is also seen for the DKF, but overall it matches well
with the reference.

The DKF has the advantage that any numerical instabilities of the force estimate is restrained from inflating
due to the control of the force evolution provided by the covariance parameter. On the other hand, the JIS
has no prior assumptions on the force evolution, which makes it sensitive to numerical instabilities from
ill-conditioning of the system. It is therefore required to carefully select the modes for the reduced order
model to reduce the ill-conditioning. It is plausible that the estimation errors of the JIS are caused by ill-
conditioning originating from one or more modes. While it is desired to remove any such modes, it may also
affect the accuracy of the model representation. We mention that several model configurations were tested,
however any overall improvement of the results from the JIS was not observed.

An inspection of the elements of the direct transmission matrix J indicates a strong local influence, i.e. the
response at a pontoon are strongly influenced by the forces on that pontoon. It is possible that when a sensor
is removed from the network, the estimated forces deteriorate, in turn affecting the estimated accelerations.
The torsional moments (Mx) also have significantly less influence on the output than the forces, though it is
also expected that the moments are much larger than the forces.
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Figure 6: Detail of estimated accelerations in the time domain: a) longitudinal direction; b) transverse
direction; c) vertical direction
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Figure 7: Fourier amplitudes of estimated accelerations: a) longitudinal direction; b) transverse direction; c)
vertical direction



The estimated states are briefly examined in an attempt to explain some of the errors in the results. High-pass
filtering of the state estimate is done with a 6th order Butterworth filter at 0.12 Hz. Modal displacements
for the the five lowermost modes in the model are shown in Fig. 8. Although no reference measurement
is available, it is seen both filters agree well, which supports the idea that ill-conditioning of the matrices
influencing the force estimates is the reason for the errors.
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Figure 8: Estimation of the five lowermost modes in the model

An alternative option to using the selected set of hydrodynamic forces is to use an other set of so-called
equivalent forces. If the objective is response estimation only, any set of input forces can be used in the
identification model as long as they are able to excite all the modes and thereby account for the observed
output.

5 Concluding remarks

This paper has shown an application of a joint input-state algorithm and a dual Kalman filter for estimating
the response of a floating bridge using acceleration output only. The results show that the acceleration
response can be estimated with adequate accuracy with the DKF. With the current sensor network and chosen
reduced order model, the acceleration estimate provided by the JIS is prone to instabilities, attributed to ill-
conditioning in the matrices used for the system inversion.

Expanding the sensor network could improve the results. More importantly, choosing a suitable set of modes
or using another set of equivalent forces is necessary to avoid ill-conditioning.

The authors also aim to extend the studies to input estimation.
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