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A B S T R A C T

Multicomponent alloys with multiple principal elements including high entropy alloys (HEAs) and composi-
tionally complex alloys (CCAs) are attracting rapidly growing attention. The endless possibilities to explore new
alloys and the hope for better combinations of materials properties have stimulated a remarkable number of
research works in the last years. Most of these works have been based on experimental approaches, but ab initio
calculations have emerged as a powerful approach that complements experiment and serves as a predictive tool
for the identification and characterization of promising alloys.

The theoretical ab initio modeling of phase stabilities and mechanical properties of multi-principal element
alloys by means of density functional theory (DFT) is reviewed. A general thermodynamic framework is laid
down that provides a bridge between the quantities accessible with DFT and the targeted thermodynamic and
mechanical properties. It is shown how chemical disorder and various finite-temperature excitations can be
modeled with DFT. Different concepts to study crystal and alloy phase stabilities, the impact of lattice distortions
(a core effect of HEAs), magnetic transitions, and chemical short-range order are discussed along with specific
examples. Strategies to study elastic properties, stacking fault energies, and their dependence on, e.g., tem-
perature or alloy composition are illustrated. Finally, we provide an extensive compilation of multi-principal
element alloys and various material properties studied with DFT so far (a set of over 500 alloy-property com-
binations).

1. Introduction

Multicomponent alloys with multiple principal elements — in-
cluding the class of high entropy alloys (HEAs) and compositionally
complex alloys (CCAs) — have attracted remarkable attention in the
last decade from both experimentalists and theoreticians. This is evi-
denced by the exponentially growing number of research articles on
these alloys shown in Fig. 1. Originally, HEAs were loosely defined as
single-phase solid solutions with at least five principal elements each
with an atomic concentration between 5% and 35% (see, e.g., Refs. [1-
3]). These alloys owe their name to the assumption that the solid so-
lution is stabilized by a high configurational entropy of mixing.
Meanwhile, the definition has been broadened to also include four-
component alloys. Alloys with three and four principal elements are
sometimes referred to as medium entropy alloys [4]. More recently,
interest has emerged in multi-principal element alloys forming

secondary phases and these alloys have been generally called CCAs.
Although the field of multi-principal element alloys is still com-

parably young — the seminal works by Yeh et al. [5] and Cantor
et al. [6] are less than 15 years old — the underlying key concept of
exploring the previously unknown compositional space has stimulated
not only an amazing number of original research articles (Fig. 1) but
already two books and more than thirty review papers (see Table 1). In
2017, the number of research articles published per year reached 300,
mainly dominated by experimental studies. It is, however, clear that the
immense compositional space spanned by HEAs and CCAs cannot be
explored by experimental efforts alone.

A particularly important computational tool is first-principles, i.e.,
ab initio, calculations. Such calculations are based only on quantum
mechanical laws and natural constants and enable thus the prediction
and investigation of materials properties without empirical input. The
most common practical realization of ab initio calculations is density
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functional theory (DFT) [40] in the Kohn-Sham formalism [41] in
which the quantum mechanical many-electron Schrödinger equation is
mapped onto an effective one-electron problem utilizing the electron
density as a key variable. DFT has become one of the dominant ap-
proaches in theoretical solid state physics for exploring materials
properties [42,43]. It is therefore not surprising that, with some delay,
DFT calculations also entered the field of HEAs and CCAs and that the
number of corresponding studies is now greatly increasing, see inset in
Fig. 1. To the best of our knowledge, previous ab initio works on HEAs/
CCAs have been exclusively based on DFT calculations and we will take
the liberty to use the two terms, ab initio and DFT, interchangeably in
most of our survey.

In practice, the DFT formalism comes along with an inherent lim-
itation. The exchange-correlation functional of the electron density is
not known exactly and must be approximated. The two most frequently
used approximations are the local density approximation (LDA) [44,45]
and the generalized gradient approximation (GGA) [46,47]. For se-
lected unaries and ordered compounds, LDA and GGA (partly including
the +U correction) have been shown to provide an ab initio confidence
interval for experimental materials properties [48-51]. As for HEAs and
CCAs, the vast majority of studies have employed GGA. One reason is
that many of the interesting alloys are magnetic and thus require a
treatment with the spin-polarized version of DFT [52]. One of the early
successes of GGA was the correct prediction of ferromagnetic bcc as the
ground state of Fe, while LDA is notorious for predicting the wrong
ground state (non-magnetic fcc) [53]. In this respect, it is important to
note that the non-magnetic (spin unpolarized) version of DFT is gen-
erally not applicable to study materials in the paramagnetic regime
where, despite the loss of long-range magnetic order, finite local mag-
netic moments are preserved. Part of our review will deal with different
approaches to simulate HEAs and CCAs in the paramagnetic state and to
predict the critical magnetic ordering temperature.

DFT in its original formulation is a ground state theory, i.e., strictly
speaking DFT only provides the ground state energy at 0 K for a given
configuration of atoms. Finite-temperature excitations such as, e.g.,
lattice vibrations are not a priori included. Fortunately, DFT can be
combined with thermodynamic concepts and statistical sampling
techniques allowing us to bridge from 0 K towards finite temperatures.
A major part of this review will introduce the necessary tools for that
purpose.

The overarching goal of the present work is to provide a compre-
hensive overview of the key theoretical concepts for simulating HEAs
and CCAs and their properties from ab initio with a focus on phase
stabilities (Section 3) and mechanical properties (Section 4). Along with
this discussion of the theory, we provide a comprehensive review of the
original works on the relevant topics. An extensive compilation of
multi-principal element alloys investigated up to now with ab initio is
presented in the Appendix in Table 9.

The general thermodynamic framework for multicomponent alloys
and its relation to ab initio simulations is laid down in Section 2.
Building upon this framework, Section 3 discusses phase stabilities.
Specifically, in Section 3.1, challenges related to phase decomposition
are described. A generic feature of HEAs and CCAs is their chemical
randomness and we introduce different techniques to cope with che-
mical disorder within DFT in Section 3.2. Practical approaches for in-
cluding finite-temperature effects due to electronic excitations, mag-
netic excitations, and lattice vibrations in multicomponent alloys are at
the heart of Section 3.3. More elaborate ab initio techniques for cap-
turing vibrations of random solid solutions are summarized in
Section 3.4. Magnetic properties of HEAs and CCAs and in particular
schemes to efficiently predict the magnetic ordering temperatures are
provided in Section 3.5. Lastly, Section 3.6 introduces the state-of-the-
art techniques for addressing chemical short-range order and predicting
chemical phase stabilities beyond the concept of ideal mixing.

Section 4 is devoted to ab initio concepts related to mechanical
properties and it reviews related works on this topic. Most of these
works focused on computing elastic properties, which is the subject of
Section 4.1. Recent works suggest a relation between local lattice dis-
tortions, one of the original core effects of HEAs [2,3], and solid solu-
tion strengthening as discussed in Section 4.2. A key quantity linking
atomistic simulations and hence DFT with macroscopic mechanical
properties is the stacking fault energy. Corresponding simulation
techniques as well as associated previous works are summarized in
Section 4.3. We conclude Section 4 by reviewing recent efforts to
achieve better mechanical properties that utilize ab initio phase stabi-
lities in order to promote the formation of secondary phases in the spirit
of CCAs (Section 4.4).

We would like to stress that the introduced concepts are based on
the assumption of thermodynamic equilibrium. It should be clear that
thermodynamic equilibrium may not always be attained in experiments
due to kinetic limitations and thus some of the predicted phase de-
compositions may not be observed in experiments under realistic time
scales. Unfortunately, ab initio works on the topics of diffusion and ki-
netics in multicomponent alloys are still rare and kinetic aspects will be
therefore touched only very briefly at the end of Section 3.3 and will
otherwise not be part of the present review. We further note that apart
from ab initio calculations there are also a number of atomistic studies
mainly based on empirical potentials which we will not discuss in this
work.

We have attempted to provide a careful and comprehensive review
of all the related literature, but may have unintentionally missed arti-
cles owing to the extremely rapid pace of research in this field.

2. General Gibbs Energy Approach

The thermodynamic stability of HEAs and CCAs is in general de-
termined by the same thermodynamic rules that have been applied
since many decades for the computation of multicomponent phase
diagrams, e.g., within the CALPHAD methodology [54-56]. The central
quantity is the extensive Gibbs energy of the total system, Gext(P,T,{ni}),
as a function of pressure P, temperature T, and the number of moles ni
for each element i=1, …, N with N the number of elements. For HEAs
and CCAs, N ≥ 4 typically. The total Gibbs energy is typically de-
composed into a sum

Fig. 1. Number of published articles on HEAs and CCAs until the present (mid-
2018). Inset: Works including ab initio calculations. Source: Web of Science.
Employed keywords: “high entropy alloy” OR “compositionally complex alloy”
OR “concentrated solid solution”. For ab initio works in addition: “density
functional theory” OR “ab initio” OR “first principles”. Created on 14.05.2018.
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∑=G P T n G P T n( , , { }) ( , , { }),i
α

α i
αext ext

(1)

where α runs over the different phases that can be stabilized in the
considered system (fcc A1, bcc A2, hcp A3, B1, B2, L10, …) and Gα

ext is
the extensive Gibbs energy of phase α for ni

α moles. Note that the same
crystallographic structure can be sometimes stabilized at different
compositions which results into different phases that need to be sepa-
rately considered in Eq. (1) (e.g., fcc A1 #1, fcc A1 #2, …). Whether
and how many different phases can form for a certain global compo-
sition is determined by the chemical potentials = ∂ ∂μ G n/i

α
α i

αext . Only
when the chemical potentials of each element are equal in different
phases (α, β, γ, …, max),
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the phases can coexist in equilibrium. According to the Gibbs phase
rule, there is a maximum number of phases that can coexist. For ex-
ample, for a five-component alloy at constant pressure the maximum is
six phases. (Note that the maximum number of phases can coexist only
at a single invariant point in the phase diagram.) When some of the
chemical potentials do not match the potentials in other phases, the
number of coexisting phases is smaller. When none of the chemical
potentials matches any other one, only a single phase will be present and
the system will constitute a HEA. Otherwise, the system will be a CCA.

From a simulation perspective, it is convenient to rewrite Eq. (1) in
terms of intensive, molar Gibbs energies, G=Gext/n and =G G N/α α α

ext

where = ∑n ni i and = ∑n nα i i
α, and molar fractions, xi= ni/n and

=x n n/i
α

i
α

α, as

∑=G P T x f G P T x( , , { }) ( , , { }),i
α

α α i
α

(3)

where fα= nα/n is the fraction of the phase α. For a HEA, fα=1 for a
single phase while all other fractions become zero. Above equation can
be also interpreted as a multi-dimensional minimization problem
where, at a given P and T, the phase fractions fα and the phase con-
centrations x{ }i

α are optimized such as to give the minimum molar Gibbs
energy G (P,T, {xi}) under the condition ∑ =f 1α α .

A main challenge for a phenomenological theory (such as the
CALPHAD approach) is to obtain G P T x( , , { })α i

α . The great advantage of ab
initio calculations is that they can be used to compute G P T x( , , { })α i

α

without any experimental input. Typically, the Helmholtz free energy
Fα is calculated first and Gα is obtained from a Legendre transformation:

= +G P T x F V T x PV( , , { }) ( , , { }) ,α i
α

α i
α (4)

where V is the volume per mole. The computation of Fα requires in
principle a sampling over all relevant degrees of freedom, i.e., atomic
configurations, electrons, magnetism, and vibrations, including mutual
coupling effects. Such a complete sampling is not possible in practice
and approximations need to be introduced. Since the configurational
degree of freedom is significantly slower than the remaining ones, an
adiabatic decomposition (see, e.g., Ref. [57]) is a very reasonable first
approximation and we thus write the free energy as

∑ ⎜ ⎟= − ⎛

⎝
− ⎞

⎠
′

′

∈ ′

′
F V T x k T

F V T x
k T

( , , { }) ln exp
( , , { })

,α i
α

B
c α

c i
α

B

el,mag,vib

(5)

Table 1
Books and reviews on HEAs/CCAs. Number of pages (#pp) in bold indicates ab initio content.

Year Reference Title #pp

2014 Murty et al. [2] High-entropy alloys (book) 218
2016 Gao et al. [3] High-entropy alloys: Fundamentals and applications (book) 516

2006 Yeh [7] Recent progress in high-entropy alloys 18
2007 Yeh et al. [4] High-entropy alloys — a new era of exploitation 9
2011 Guo and Liu [8] Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase 14
2012 Zhang et al. [9] Alloy design and properties optimization of high-entropy alloys 9
2013 Tsai [10] Physical properties of high entropy alloys 8
2014 Cantor [11] Multicomponent and high entropy alloys 20

Tsai and Yeh [12] High-entropy alloys: A critical review 17
Zhang et al. [13] Microstructures and properties of high-entropy alloys 93

2015 Diao et al. [14] Local structures of high-entropy alloys (HEAs) on atomic scales: An overview 5
Kozak et al. [15] Single-phase high-entropy alloys: An overview 14
Lu et al. [16] An assessment on the future development of high-entropy alloys: Summary from a recent workshop 10
Troparevsky et al. [17] Beyond atomic sizes and Hume-Rothery rules: Understanding and predicting high-entropy alloys 14
Raabe et al. [18] From high-entropy alloys to high-entropy steels 12
Yeh [19] Physical metallurgy of high-entropy alloys 8

2016 Pickering and Jones [20] High-entropy alloys: A critical assessment of their founding principles and future prospects 20
Tsai [21] Three strategies for the design of advanced high-entropy alloys 14
Ye et al. [22] High-entropy alloy: Challenges and prospects 14

2017 Diao et al. [23] Fundamental deformation behavior in high-entropy alloys: An overview 15
Gao et al. [24] Thermodynamics of concentrated solid solution alloys 13
Gao et al. [25] Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity 15
Li and Raabe [26] Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties 8
Miracle [27] High-entropy alloys: A current evaluation of founding ideas and core effects and exploring “nonlinear alloys” 7
Miracle and Senkov [28] A critical review of high entropy alloys and related concepts 64
Qiu et al. [29] Corrosion of high entropy alloys 15
Shi et al. [30] Corrosion-resistant high-entropy alloys: A review 18
Tian [31] A review of solid-solution models of high-entropy alloys based on ab initio calculations 36
Toda-Caraballo et al. [32] Simulation and modeling in high entropy alloys 13
Wu et al. [33] Phase stability, physical properties and strengthening mechanisms of concentrated solid solution alloys 18
Zhang et al. [34] Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys 17
Zhao et al. [35] Unique challenges for modeling defect dynamics in concentrated solid-solution alloys 8

2018 Chen et al. [36] Fatigue behavior of high-entropy alloys: A review 11
Praveen and Kim [37] High-entropy alloys: Potential candidates for high-temperature applications — An overview 22
Senkov et al. [38] Development and exploration of refractory high entropy alloys — A review 37
Zhang et al. [39] Science and technology in high-entropy alloys 21
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where kB is the Boltzmann constant and c runs over different atomic
configurations with corresponding free energies Fc

el,mag,vib that are
evaluated from averages over the electronic, magnetic, and vibrational
degrees of freedom, i.e., excluding the configurational degree of
freedom. The prime in α′ indicates that this index distinguishes only
between different lattices (fcc, bcc, hcp, …) in contrast to α which
additionally distinguishes between different chemical orderings, since
by explicitly sampling over different atomic configurations (on the
same lattice) the system will automatically attain the equilibrium
chemical order or disorder (i.e., fcc A1 vs. L10, or bcc A2 vs. B2) in Eq.
(5).

Solving Eq. (5) is a formidable task and further approximations need
to be applied, typically along the following two routes. The first route
focuses on the configurational degree of freedom and typically ap-
proximates ′F V T x( , , { })c i

αel,mag,vib by the total electronic energy
′E V x( , { })c i

α at T=0K for each configuration c. Still, further approx-
imations and elaborate techniques are required to practically solve Eq.
(5); those will be discussed in Section 3.6. The second route focuses on
phases that can be reasonably well approximated by a single re-
presentative atomic configuration and for which the configurational
entropy can be expressed analytically (ordered, disordered, or partially
disordered phases). The majority of HEA/CCA works so far has utilized
this second route and we will devote the main part of Section 3 to the
corresponding techniques.

To calculate the free energy of the representative atomic structure, a
further approximation is typically applied, i.e., an adiabatic decom-
position of the remaining degrees of freedom by utilizing the free en-
ergy Born-Oppenheimer approximation [58-60] which is justified by
the different time scales. The free energy is then written as follows,
using again the unprimed index α because different lattices and che-
mical orderings are now explicitly distinguished:

Adiabatic free energy decomposition

= −

+ +

+

F V T x E V x TS x

F V T x F V T x

F V T x

( , , { }) ( , { }) ({ })

( , , { }) ( , , { })

( , , { }).

α i
α

α i
α

α i
α

α i
α

α i
α

α i
α

conf

el mag

vib (6)

Here, E V x( , { })α i
α is the total electronic energy of the representative

atomic structure of the α phase with all atoms relaxed to their T=0K
equilibrium positions, S x({ })α i

αconf the chemical configurational entropy,
F V T x( , , { })α i

αel is the free energy due to electronic excitations,
F V T x( , , { })α i

αmag is the magnetic free energy, and F V T x( , , { })α i
αvib is the

free energy due to atomic vibrations. For a magnetic system, the
magnetic energy is often absorbed into E V x( , { })α i

α (for example of a
ferromagnetic or a paramagnetic state; see Section 3.5). Note that
adiabatic coupling contributions, for example changes of the electronic
density of states due to explicit vibrations affecting the electronic and
magnetic free energy [61,62], are implicitly included in Eq. (6).

Computing the full set of contributions to Eq. (6) is still a challen-
ging task even for lower order systems (binaries, ternaries), in fact even
for unary materials [63-65]. For HEAs and CCAs, further approxima-
tions are at present unavoidable. Different approaches and their ap-
plication will be discussed in Section 3. Yet, it is useful to state already
here that for a disordered multicomponent phase with high con-
centrations of the elements, as given in HEAs and CCAs, an important
role is played by the configurational entropy. This is particularly true
when phase decomposition into ordered phases is investigated for
which =S 0α

conf . A reasonable approximation for the configurational
entropy of a fully disordered system is to assume an ideal mixing be-
havior (i.e., no short-range order),

Ideal mixing configurational entropy

∑= −
=

S x k x x({ }) ln .α i
α

B
i

N

i
α

i
αconf

1 (7)

Clearly, the virtue of Eq. (7) is that Sα
conf is immediately available not

requiring any involved computation. If a system is partially disordered,
for example ordered on one sublattice and disordered on another, the
ideal mixing entropy can be applied to the disordered part of the system
(see, e.g., Ref. [66]). When a system is close to its order-disorder
transition temperature, the entropy cannot be well approximated by Eq.
(7), it may become additionally temperature and even volume depen-
dent, and its calculation can be rather involved. In such cases, the re-
presentation of the system by a single atomic structure [Eq. (6)] be-
comes inappropriate as well (at least in DFT accessible supercells). Then
one has to resort to a proper sampling of the configurational degree of
freedom [Eq. (5)] using the techniques discussed in Section 3.6.

The discussion of mechanical properties in Section 4 can be nicely
connected to the above framework. Relatively straightforward is the
connection to the stacking fault energy (SFE; Section 4.3) and the
multiple phase alloys (Section 4.4) where only phase stability differ-
ences (i.e., differences between different Gα′s or Fα′s) are required. For
the case of the SFE, the phases can be (mostly disordered) fcc, hcp, and/
or dhcp [ANNNI model discussed in Section 4.3; Eqs. (42) and (43)] or
fcc and a stacking fault supercell (explicit SFE). In general, elastic
properties (Section 4.1) require an extension to a generalized free en-
ergy surface

→ ⋅εF V T x F T T xA( , , { }) ( ( ), , { }),α i
α

α i
α (8)

where the volume V dependence has been replaced by a dependence on
the strain tensor ε applied to the matrix of the lattice vectors A. The cell
geometry is assumed to take its thermodynamic equilibrium shape at
each temperature, A=A(T), where the largest contribution typically
stems from the thermal expansion. Application of different strain ten-
sors gives access to different elements of the elastic tensor, i.e., to dif-
ferent elastic constants or the bulk modulus (the latter requiring in fact
only a volumetric strain dependence). Local lattice distortions
(Section 4.2) relate to atomic positions and demand therefore an ato-
mistic description in addition to the thermodynamic potentials. An
atomistic description is naturally provided within an ab initio frame-
work and thus extracting local lattice distortions, i.e., the displacements
away from ideal lattice positions (fcc, bcc, hcp, …), is readily possible.
The relaxation energy due to local distortions is defined as

= −E E E ,α α α
relax lat (9)

with Eα from Eq. (6) and with Eα
lat the energy of the same atomic

structure but with atoms sitting on their ideal lattice positions. Note
that, when the vibrational contribution is explicitly included in Eq. (6),
atomic displacements can be defined only in a time averaged manner by
using mean atomic positions.

In contrast to the statement above regarding the importance of the
configurational entropy for phase decomposition, calculations related
to mechanical properties such as the elastic properties discussed above
and further in Section 4 do not (to a good extent) depend on the con-
figurational entropy. The reason is that the configurational entropy
typically cancels out of the corresponding calculations because the
considered, e.g., strained phases [cf. Eq. (8)] have the same composi-
tion and the same chemical disorder. In this way the configurational
entropy can be assumed to have a negligible impact on elastic proper-
ties, i.e., Sα

conf does not depend on the strain tensor ε. Note that this does
not imply that the impact of chemical ordering is negligible by itself,
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the ordered and disordered alloys can — and usually they do — have
different mechanical properties. If, as often done, one neglects further
the electronic, vibrational, and magnetic free energies, the relevant
phase stabilities for mechanical properties and the elastic properties (of
ordered, disordered, or partially disordered phases) can be calculated
solely from E V x( , { })α i

α [Eq. (6)] or its generalized version:

→ ⋅εE V x E xA( , { }) ( , { }).α i
α

α i
α (10)

3. Thermodynamic Phase Stabilities

3.1. The Challenge of Determining Phase Decomposition

A critical input to the design of HEAs and CCAs is the knowledge
about an alloy's tendency to decompose into different phases. The
thermodynamic rules governing phase decomposition are available and
have been stated in Section 2, but to determine the possible equality of
the chemical potentials [Eq. (2)] the Gibbs energy G P T x( , , { })α i

α of
each relevant phase α needs to be accurately known over the full range
of concentrations x{ }i

α . Typically, this knowledge is not available.
In the early days of the HEA development, empirical rules have been

used to determine compositions which can form a single-phase solid
solution. These rules are an extension of the Hume-Rothery rules and
rely mainly on the elemental atomic radii, crystal structure of solutes,
difference in valency as well as electronegativity [2,3]. The idea is to
find systems made of elements that are neither too attractive nor too
repulsive among each other, both of which would lead to phase se-
paration, either into ordered compounds or into the phases of the pure
elements. Given a proper set of elements, the configurational entropy,
Eq. (7), is supposed to stabilize a single multicomponent phase. Al-
though such empirical rules had originally proven rather successful in
understanding binary solid solutions, their application to multi-
component alloys appears to be not straightforward as experiments,
e.g., for the CoCrFeMnNi alloy, revealed [67].

Troparevsky et al. [68] proposed an extension to a semi-empirical
rule by introducing ab initio information on binary compound phases,
which can be expected to play a dominant role in the decomposition of
multicomponent alloys. The quantity they used for that purpose is the
energy of formation, EAB

form, of a binary phase referenced with respect to
the most stable unary phases with energies, EA and EB,

= − +E E x E x E( ),AB
form

AB A A B B (11)

where EAB is the molar energy of the considered binary compound with
xA and xB mole fractions of the elements A and B. For each binary,
Troparevsky et al. [68] investigated various compounds using in-
formation from existing DFT libraries and selected the compound with
the lowest formation energy as exemplified in Fig. 2. These formation
energies are assumed to compete with the −TSα

conf term of the multi-
component alloy with the ideal mixing entropy Sα

conf according to Eq.
(7) and with T set to the annealing temperature of the alloy. The rule
states in particular that a single phase HEA is obtained when none of
the formation energies EAB

form of the sub-binaries is lower than −TSα
conf .

Since this condition only covers one of the above statements, i.e., that
the elements should not be too attractive, it needs to be supplemented:
None of the formation energies should be too high to prevent decom-
position into the pure element phases. A critical value of +37meV/
atom was empirically chosen by adjusting it to reproduce experimen-
tally observed single phase HEAs. The rule can for example rationalize
the formation of the CoCrFeMnNi HEA. Taking 1000 K for the annealing
temperature −TSα

conf amounts to −139meV/atom. Fig. 2 reveals that
none of the binary formation energies is below −TSα

conf (MnNi is lowest
with −115meV/atom) and none is too high (FeMn is highest with
+9meV/atom).

The virtue of this approach is its simplicity and efficiency. Note that
no explicit ab initio calculation for the HEA is required. This simplicity
implies however shortcomings. The rule does not distinguish between

different lattices (fcc, bcc, hcp) for the HEA. The electronic, vibrational,
and magnetic free energy contributions in Eq. (6) are neglected. Fur-
ther, the rule does not explicitly consider the formation energy of the
potential HEA,

∑= − ⎛

⎝
⎜

⎞

⎠
⎟E E x E ,α α

i

N

i
α

i
form

(12)

where Eα is the total energy of the multicomponent system [Eq. (6)] and
the Ei are the energies of the most stable unary phases1, since the binary
formation energies are only compared to the −TSα

conf term. The for-
mation energy can take significant values as calculations clarify. For
example, Eα

form of bcc NbTiV and MoNbTaVW are found to be 52 and
−139meV, respectively [69], exemplifying the possible range of values
for the formation energy (cf. Table 2). It should not, however, be
thought that the knowledge of the formation energies alone would be in
general sufficient for a prediction of single-phase alloys. In another
work, Troparevsky et al. [17] showed that single-phase alloys can have
similar formation energies as closely-related multi-phase formers. The
chief problem is that empirical or semi-empirical rules require some
simplifying assumption about phase decomposition. To avoid such an
assumption, the knowledge of G P T x( , , { })α i

α for the different lattices
and various compositions is indispensable, and a more advanced
treatment is unavoidable.

Ab initio calculations performed directly for the multicomponent
alloy provide, in principle, the possibility to calculate the required in-
formation on phase decomposition. We will discuss the required com-
putational methodology in Sections 3.2 to 3.6, but it is useful to an-
ticipate a result related to phase decomposition to highlight the
potential and also a difficulty. Already five years ago, Tian et al. [70]
studied the phase stability of Aly(CoCrFeNi)1−y alloys using ab initio
calculations. Experiments suggest that depending on the Al-content,
these alloys reveal an fcc (y ≤ 0.110), a double fcc/bcc
(0.110< y<0.184) or a bcc region (y ≥ 0.184) [71]. To investigate
the relative phase stability, Tian et al. [70] employed EMTO-CPA cal-
culations (Section 3.2) in combination with the common tangent con-
struction. The Gibbs energy of formation including the magnetic con-
tribution (Section 3.3) was computed in the range of y∈ [0.0, 0.5], i.e.,
Gα

form(y)=Gα(y)− (1− 2y)Gfcc(0)− 2yGfcc(0.5) where the energies
are given per atom and α denotes the fcc or bcc phase, respectively. In
Fig. 3, the common tangent constructions are shown for different
temperatures. At room temperature, a double phase fcc/bcc region is
predicted for 0.13< y<0.24 and single phase regions for y ≤ 0.13
(fcc) and y ≥ 0.24 (bcc), in good qualitative agreement with experi-
ment. In a subsequent study employing a similar methodology, Sun
et al. [72] studied the phase stability of the same alloy system and
found that adding Mn widens the double phase region by shrinking the
fcc stability range and delaying the occurrence of the bcc phase upon Al
alloying. They could also confirm that both structures, fcc and bcc,
remain elastically stable (Section 4.1) within the double phase region
and thus decomposition into fcc and bcc is theoretically clearly sup-
ported.

While being informative, studies as performed by Tian et al. [70]
and Sun et al. [72] reveal a general difficulty when computing phase
decomposition directly from ab initio. To render such studies compu-
tationally feasible the high dimensional compositional space must be
reduced to a lower dimension, typically a pseudobinary alloy as done in
the above studies. Sometimes, the reduction can be motivated by ex-
perimental information, but even then it remains unclear whether dif-
ferent results would be obtained if an extended part of the composi-
tional space was investigated. A promising route to tackle this challenge
in the future may be a combination of selective ab initio calculations in
designated parts of the compositional space with CALPHAD type

1 The definition of the formation energy requires some caution as discussed in
the last paragraph of this subsection (Section 3.1).
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parameterizations along the composition and temperature axes. Such
combined studies have been already put forward for lower order sys-
tems (e.g., binaries in Refs. [73,74]). In any case, whether pursuing a
combined ab initio-CALPHAD approach or brute force ab initio calculations,
an accurate determination of G P T x( , , { })α i

α is a critical premise. The
following subsections of Section 3 will detail the required methodology
and the respective studies performed so far. A special role is played by
the methods introduced in Section 3.6 that treat phase transitions and
decomposition on the same lattice driven by a competition of order
versus disorder. As will be discussed, for such special cases it may be
possible to find the product phases of a decomposition without prior
knowledge of the exact composition ranges.

Before moving on, it seems appropriate to comment on potential
inconsistencies in the definition and usage of the term formation energy
and the related term mixing energy. In Eq. (12), we have used the most
stable unary phases as the reference, i.e., phases that do not necessarily
have the same crystal lattice as the investigated multicomponent alloy.
This definition makes a direct comparison with the binary formation
energies in Eq. (11) possible and also with formation energies as typi-
cally stored in DFT databases. The definition Eq. (12) is often used in
the HEA/CCA literature, but sometimes the resulting formation energy
is denoted as mixing energy. We prefer the term formation energy, be-
cause in the computation of phase diagrams (e.g., in the CALPHAD ap-
proach) the mixing energy is more commonly defined with isostructural
reference energies, i.e., the Ei’s in Eq. (12) correspond then to the unary

end-member phases on the same lattice as the considered multi-
component phase [3,55]. A feature of the isostructural mixing energy is
that it vanishes naturally for the end-members, i.e., when only a single
element is left in the alloy and thus no mixing is possible. Besides using
unary phases as a reference, one may also define a formation energy
with respect to the energies of the reactant phases (may they be unary,
binary, or ternary) as encountered in the experimental synthesis pro-
cedure of the actual multicomponent alloy. (In such cases, the term
enthalpy of formation is typically used.) Any of these definitions is
equally valid and one may in fact choose an arbitrary reference, cf.
Fig. 3 where y=0 and y=0.5 serve as the reference points. Caution is
only required when comparing differently defined formation energies,
and in general it is advisable to state clearly which reference is used in
the definition.

3.2. Ab Initio Modeling of Chemical Disorder

The total energy E V x( , { })α i
α is a critical contribution to the free

energy of a phase α in Eq. (6) when determining phase stabilities, and in
its generalized form ⋅εE xA( , { })α i

α dominates elastic properties
(Section 4.1). For an ordered compound, this energy can be efficiently
computed within an ab initio DFT framework (e.g., Fig. 2), in particular
by employing periodic boundary conditions. The primitive cell is suf-
ficient for handling an ordered compound and thus corresponding
calculations are reasonably small with respect to the number of atoms.
The configurational entropy vanishes and Eα becomes the dominant
term. The situation is much more complicated if chemical disorder
becomes thermodynamically favorable with increasing temperature
due to the −TSα

conf term in Eq. (6). If the configurational entropy
contribution becomes strong enough to compete with the ordering
tendency of the alloy, an isostructural second order transition to a
disordered state occurs. At temperatures close to the critical order-
disorder transition temperature the system exhibits complex geome-
trical features — arising from the transition from perfect long-range
order to local short-range order — that cannot be easily captured by
DFT accessible supercells. For multicomponent alloys, the situation is
typically further complicated by the occurrence of multiple order-dis-
order transition temperatures as sketched in Fig. 4.

The DFT based simulation of multicomponent alloys close to the
order-disorder transition temperature is thus a highly non-trivial task
requiring a proper sampling over many atomic configurations [Eq. (5)]

Fig. 2. DFT computed energies of formation
for the energetically lowest structures of a
wide range of binaries relative to their
phase separation into pure elements. If the
numbers are in bold blue, the energies were
evaluated with respect to the respective
solid solution. (For interpretation of the
references to color in this figure legend, the
reader is referred to the web version of this
article.)
Source: Taken from Ref. [68].

Table 2
Formation energies, Eα

form, of HEAs/CCAs computed employing the supercell
method and VASP [69]. The corresponding relaxation energy, Eα

relax , and the
configurational entropy contribution to the free energy, −TSα

conf , at 1000 K are
also displayed. All contributions are given in meV/atom.

Alloys Crystal structure α Eα
relax Eα

form −TSα
conf

HfNbZr bcc −80 25 −95
HfNbTiZr bcc −65 33 −119
HfNbTaTiZr bcc −43 28 −139
MoNbTaVW bcc −29 −139 −139
NbTiV bcc −22 52 −95
AlNbTiV bcc −43 −94 −119
CoFeNi fcc −13 4 −95
CoCrFeNi fcc −19 −14 −119
CoCrFeMnNi fcc −4 7 −139
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using elaborate statistical approaches (Section 3.6). The complexity of
such simulations is most likely the reason why the majority of DFT
based HEA and CCA investigations focused on modeling a perfectly

disordered state, which is much more amenable to direct DFT calcula-
tions. Nevertheless, additional concepts are required and those will be
introduced in the remainder of this subsection (Section 3.2). The as-
sumption of perfect disorder also makes the calculation of the finite
temperature effects due to electrons, magnetism, and vibrations much
more amenable as introduced in Sections 3.3 to 3.5.

A perfectly disordered state [cf. Fig. 4(c)], i.e., a solid solution, is a
reasonable approximation when the system is sufficiently high above its
highest order-disorder transition temperature. To calculate the energy
Eα of such a fully disordered multicomponent solid solution on the
lattice α a proper average over the chemical disorder is required, which
can be achieved using the methods introduced in the following. The
corresponding configurational entropy is given directly by Eq. (7). In
fact, the same methods can be also used for systems that are partially
disordered, for example on one or more sublattices [cf. Fig. 4(b)], but
are sufficiently away from any order-disorder transition temperature.
One has only to remember that the disorder is confined to a certain
sublattice and that the configurational entropy needs to be properly
adjusted (see, e.g., Ref. [66]). The available state-of-the-art methods
within DFT for simulating disorder can be roughly categorized into two
classes, those based on supercell models, usually in combination with
the concept of special quasirandom structures (SQS) [75], and those
based on the coherent-potential approximation (CPA) (see, e.g., Refs.
[76,77]). Both classes of methods have their advantages and dis-
advantages, and it depends on the specific type of application which
one is better suited.

In the supercell-based methods, a disordered chemical configuration
is simulated based on a large yet finite supercell employing periodic
boundary conditions as sketched in Fig. 5(a). In practice, supercell
calculations for HEAs and CCAs are typically performed employing a
plane-wave basis and the projected augmented wave (PAW)
method [78] as implemented, e.g., in the VASP simulation package
[79,80]. In principle, an atomic configuration derived from a uniform
random distribution could be used for simulating chemical disorder
within a supercell. However, corresponding supercells would require
several hundreds of atoms to represent perfect chemical randomness
well enough, due to the long-range order imposed by the periodic
boundary conditions. A better approach is to use the SQS concept [75].
In this approach, the different species in the supercell are distributed in
such a way as to minimize the atomic pair correlation functions. A good
representation of chemical randomness can be often achieved with
supercells of several tens of atoms already. The larger the supercell, the
more shells and also higher order correlation functions (e.g., triplets)
can be included in the minimization thus further increasing the quality
of the chemical randomness.

A very important advantage of the supercell methods is the
straightforward inclusion and analysis of the impact of local lattice

Fig. 3. Gibbs energies of bcc and fcc Aly(CoCrFeNi)1−y as a function of the Al
content from EMTO-CPA calculations at temperatures 600 K, 300 K, 0 K (from
top to bottom).
Source: Adapted from Ref. [70].

Fig. 4. Schematics for the transition of a four component alloy from (a) a phase-separated state consisting of two ordered binaries to (b) a partially disordered state at
the critical transition temperature T1

crit and further to (c) a fully disordered state at a second critical transition temperature T2
crit. Note that in (b) the blue atoms are

confined to one sublattice but light and dark blue are disordered on this sublattice, and that red atoms are confined to the other sublattice again with light and dark
red being disordered. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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distortions. Lattice vibrations can be also accurately modeled based on,
e.g., the finite-displacement method or molecular dynamics (MD) si-
mulations (see Section 3.3). A disadvantage is the relatively high
computational costs, even when combined with the SQS concept, as
compared to CPA calculations which are usually orders of magnitude
less expensive. Further, although it is in principle possible to mimic
magnetically disordered configurations with the supercell approach, it
is often difficult to stabilize such magnetic configurations during the
electronic minimization. In practice, supercell calculations initialized
with a well-defined magnetic configuration can converge into en-
ergetically close-by but different magnetic configurations. This makes,
in particular, the simulation of paramagnetic HEAs and CCAs with the
supercell approach challenging from a technical standpoint.

CPA based methods rely on a mean field approach to chemical
disorder as sketched in Fig. 5(b). The CPA is typically combined with
muffin-tin based Kohn-Sham methods [81] and implemented in, e.g.,
exact muffin-tin orbitals (EMTO) [77,81] or Korringa-Kohn-Rostoker
(KKR) methods [82,83]. In CPA, each of the elements in the alloy is
embedded into an effective medium that is determined self-consistently
from the mutual effect of all elements together. Due to this mean field
approach, CPA-based methods can mimic perfect chemical disorder
within a single primitive cell and thus they have very low computa-
tional requirements. Additionally, CPA methods are not limited to
specific compositions. These advantages enable a computationally very
efficient exploration of large compositional spaces. Within CPA, it is
also comparably straightforward to simulate magnetically disordered
configurations within the disordered-local-moment (DLM) approach.
The DLM approach is nowadays routinely employed to investigate the
paramagnetic (PM) state of magnetic materials. Further, CPA-based
techniques such as the generalized perturbation method enable an ef-
ficient extraction of chemical interaction parameters which can be
combined with mean field (e.g., concentration wave analysis) or Monte
Carlo (MC) methods to study chemical SRO (see Section 3.6). However,
the computational amenities come along with limitations. The probably
most severe one is the inability to include local lattice distortions within
the standard CPA. Another related limitation of CPA is the inability of
computing interatomic forces hindering an accurate modeling of vi-
brations (e.g., via the direct force constant method or MD simulations).
Approximate models need therefore to be employed to include vibra-
tional contributions, e.g., the Debye-Grüneisen model (Section 3.3).

Many studies of E x({ })α i
α for disordered multicomponent systems

have been performed with both supercell and CPA methods, mostly
focusing on equiatomic compositions, i.e., =x xi

α
j
α for each i and j. A

fairly complete compilation is given in the Appendix (see “Phase sta-
bility” in Table 9). Derived elastic constants are additionally discussed
in Section 4.1. Here, we focus on the study of Song et al. [69] based on
the supercell approach, which allows us to gain an idea about possible
values for the formation energy of multicomponent solid solutions and
also about the size of the relaxation energy.

The formation energy, Eα
form, can be obtained from Eα and the

ground states of the unary phases according to Eq. (12). Using Eα
form in

addition to the binary formation energies EAB
form (Fig. 2) it is, for ex-

ample, possible to extend the semi-empirical rule of Troparevsky

et al. [68] discussed in Section 3.1. The alloy's tendency to form a solid
solution or decompose into binary compounds can be then obtained by
comparing the binary formation energies EAB

form to the −E TS( )α α
form conf

term of the respective multicomponent alloy, instead of comparing
them just to −TSα

conf . Positive Eα
form’s work against the configurational

entropy requiring thus higher temperatures to form a multicomponent
solid solution, while negative Eα

form’s favor solid solution formation
even at lower temperatures. Formation energies for the two important
HEA classes, bcc refractory and fcc 3d HEAs, from the work of Song
et al. [69] are shown in Table 2. The data clarify that formation en-
ergies can be sometimes of a similar magnitude as the −TSα

conf term and
thus cannot be a priori neglected.

The formation energy can be formally separated into a contribution
evaluated on the ideal lattice, Eα

lat, and a contribution arising from local
lattice relaxations, Eα

relax [cf. Eq. (9)]. Results for the relaxation energies
of the systems investigated in the work of Song et al. [69] are re-
produced in the Eα

relax column of Table 2. It can be seen that the impact
of local lattice relaxations can be rather significant. For instance, the
formation energy of bcc HfNbZr is reduced by −80meV/atom (from
105 down to 25meV/atom) when relaxations are included in the cal-
culations. It is thus evident that, in general, the impact of local re-
laxations and respective energy contributions cannot be disregarded
and can contribute to phase stability considerations.

This point needs to be carefully considered when using CPA for the
calculation of formation energies. A possible approach to exploit the
immense efficiency of CPA, yet to secure oneself for accurate formation
energies is a coupled approach. CPA can be first used to efficiently scan
wide ranges of composition space to create a reasonably approximate
mapping of the desired quantity. Explicit and computationally sig-
nificantly more expensive supercell computations can be then used at
designated compositions to evaluate the impact of local lattice distor-
tions.

We also note here an ab initio informed work on formation energies
of multicomponent solid solutions that may be relevant for some spe-
cific applications. Leong et al. [84] extended the rigid-band approx-
imation (RBA) to HEAs, in particular magnetic HEAs. The rigid band
model assumes that the overall shape of the electronic density of states
(DOS) is unaffected by a solvent. One can thus compute the DOS of a
certain base alloy (e.g., CoCrFeNi) once with ab initio using for example
an SQS and then use this DOS to scan efficiently but approximately for
formation energies of this alloy plus additional solvents (e.g., Al, Pd, Ti,
V). In this way, at least, the relaxations for the base alloy are accounted
for. For the investigated elements, Leong et al. [84] found qualitative
agreement with experiments.

3.3. Finite-temperature Excitations

So far in this section (Section 3), we have discussed the formation
and stability of multicomponent phases concentrating mainly on the
total electronic energy E V x( , { })α i

α (from which the formation energy
can be derived) and the configurational entropy term −TSα

conf , i.e., the
first two terms of the free energy formula, Eq. (6). We have assumed a
perfect random solid solution so that the configurational entropy can be
approximated by Eq. (7). Originally, the −TSα

conf term was considered
as the main temperature dependent contribution to the stabilization of
a solid solution over potential phase decomposition [5,6] (see also
Section 3.1). More recent experiments [67] questioned the dominant
role of configurational entropy and indicated the potential importance
of other entropy contributions related to finite-temperature excitations
of electronic, magnetic, and vibrational degrees-of-freedom. A proper
consideration of finite-temperature excitations is moreover important
for the alloys' thermodynamic, magnetic and mechanical properties at
elevated temperatures. The challenge is thus to accurately compute the
free energy contributions entering Eq. (6).

As mentioned in Section 2, the standard approach is to decompose
the free energy, Eq. (6), into separate contributions due to electronic

Fig. 5. Schematics for (a) the supercell and (b) CPA approach.
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Fα
el, magnetic Fα

mag, and vibrational Fα
vib excitations. Similarly as for the

total energy Eα, the calculation of each of these free energy contribu-
tions for a disordered multicomponent phase requires to properly
mimic a random alloy. Available approaches will be discussed in the
following. Intrinsic point defects such as vacancies also contribute to
the total Gibbs energy, but this contribution is in general small, with a
possible exception close to the melting point. A few recent studies in
this respect will be discussed at the end of this subsection (Section 3.3).

The most easily accessible finite-temperature excitations are due to
the electronic degrees-of-freedom. The basic reason for this is that there
is an exact theory which extends the original Hohenberg-Kohn DFT
formalism [40] to finite electronic temperatures [85]. Practically, this
means that the electronic free energy Fα

el(V,T) can be computed from a
usual self-consistent Kohn-Sham calculation [41] (applied either to a
supercell or CPA calculation to mimic chemical disorder) by using the
Fermi-Dirac distribution to populate the electronic energy levels ac-
cording to the temperature of interest. In fact, there is a very good
approximation available that simplifies the calculation further. In this
approximation, the electronic density of states (DOS) Dα(ε) of a phase α,
with ε denoting an energy dependence, is used to obtain the full tem-
perature dependence of Fα

el(V,T).2 The electronic DOS is a direct output
of any DFT calculation and thus Fα

el(V,T) is readily accessible, specifi-
cally using (see, e.g., Ref. [62]):

Fixed DOS approximation

= −F V T U V T TS V T( , ) ( , ) ( , ),α α α
el el el (13)

∫ ∫= −
−∞

∞

−∞
U V T D ε f T εdε D ε εdε( , ) ( ) ( ) ( ) ,α α

ε
α

el F

(14)

∫=
−∞

∞
S V T k D ε s ε T dε( , ) ( ) ( , ) ,α B α

el
(15)

= − + − −s ε T f f f f( , ) [ ln( ) (1 )ln(1 )]. (16)

Here, f= f(ε,T) is the Fermi-Dirac function and εF denotes the Fermi
energy at 0 K. The two terms in s(ε,T) above can be interpreted as a
temperature-weighted, configurational entropy contribution due to the
creation of electrons and holes. Note that the above formulation as-
sumes a temperature-independent Dα(ε), which gives rise to the name
fixed DOS approximation. In principle electronic excitations could im-
pact the electronic DOS at elevated temperatures, but it was shown for a
wide range of unaries [62] that this impact on Dα(ε) is minor and can
thus be neglected. In contrast, the impact of the volume on Dα(ε) is in
general important and needs to be considered in conjunction with the
thermal expansion due to lattice vibrations. In practice, Eq. (13) is
usually evaluated at several volumes and parametrized [86] to facilitate
the evaluation of the total free energy, Eq. (6), and thus the inclusion of
the thermal expansion. Lattice vibrations therefore have an indirect
impact on F T( )α

el via the alloys' thermal expansion. Recent ab initio
molecular dynamics simulations revealed that there can be also a strong
explicit impact of lattice vibrations on Dα(ε) and thus on Fα

el(T) [61,62].
This explicit coupling of lattice vibrations and electronic free energies
for HEAs and CCAs has, however, not yet been thoroughly explored by
ab initio simulations. Eventually, the inclusion of magnetic excitations
and magnetic disorder may also impact Dα(ε) and thus the corre-
sponding electronic free energy. This could be studied, e.g., by com-
puting a spin dependent electronic DOS in different magnetic states.

Computation of the magnetic free energy,

= −F V T U V T TS V T( , ) ( , ) ( , ),α α α
mag mag mag (17)

is from a conceptional standpoint very challenging since no unified
approach exists to bridge in a general manner from ground state spin-
polarized DFT calculations to finite magnetic temperatures for alloys
with different magnetic characteristics, i.e., ranging from an itinerant-
type of band ferromagnetism to localized magnetic moment systems
(see, e.g., Ref. [87]). In practice, different approaches are chosen de-
pending on the considered material system and involved elements. For
example, for elements which feature strongly itinerant magnetic char-
acteristics such as, e.g., pure nickel, it is important to take longitudinal
spin fluctuations into account (see, e.g., Ref. [88]). Corresponding
techniques are, however, not yet advanced enough to be generally
applicable to HEAs and CCAs. Instead, HEAs and CCAs are so far mainly
simulated by mapping the magnetic energetics onto a localized mag-
netic moment picture. Even though the input parameters for such
models can be computed from ab initio, the models are usually not
straightforward to solve and require sometimes even the application of
advanced quantum Monte Carlo techniques (see, e.g., Refs. [64,89-91]).
For an overview on recent progress in describing magnetic contribu-
tions from ab initio for pure elements and selected ordered binaries, we
refer to Refs. [64,92].

For HEAs and CCAs, the ab initio calculation of the magnetic free
energy is, in the majority of studies, subject to further approximations.
Within a localized magnetic moment picture one can consider the high
temperature limit of fully disordered magnetic moments, i.e., tem-
peratures well beyond the Curie temperature TC (or Néel temperature
TN for antiferromagnetic systems), which also highlights the im-
portance of determining TC (see Section 3.5 below). In the considered
high-temperature limit, the internal magnetic energy of the system is
assumed to be temperature independent, ≫ ≈U V T T U V( , ) ( )α C α

mag DLM .
The contribution U V( )α

DLM is usually absorbed into the total energy
Eα(V) resulting in a simplified magnetic free energy expression (see,
e.g., Ref. [87]):

High temperature approximation for magnetism

≫ ≈ − ≫ ≡ −F V T T TS V T T TS V( , ) ( , ) ( ),α C α C α
mag mag mag (18)

∑= +S V k x m V( ) ln(| ( )| 1).α B
i

i
α

i
αmag

(19)

The magnetic entropy Sα
mag is given here in a mean field approximation

[87,93,94] and m V( )i
α is the magnetic moment of the i’th element with

concentration xi
α in the phase α. Note that in general, the magnetic

moments depend on volume giving rise to a volume dependent set of
formulas, Eqs. (17)–(19).

The expression for the magnetic entropy Sα
mag(V) above can be in-

terpreted as a configurational entropy of spins [91]. This can be
intuited by considering the high-temperature limit of a quantum me-
chanical spin model with spin quantum number S which can take half-
integer values S=1/2, 3/2, …. The number of possible spin states is
given by 2S+1 giving rise to a maximum entropy of ln(2S+1). Re-
lating the spin S with a magnetic moment, m, via m= gμBS with the
Bohr magneton μB and the Landé factor g ≈ 2 one directly ends up with
Eq. (19) above. Despite the general limits of mapping itinerant mag-
netic systems with non-integer local magnetic moments onto localized
magnetic spin Hamiltonians, this interpretation reveals the close ana-
logy between magnetic and chemical configurational entropy.

As standard ground-state spin-polarized DFT calculations provide
direct access to the local magnetic moments mi

α of any of the alloy
components (defined within a sphere around each atom; see, e.g.,
Ref. [95]), the usage of Eqs. (18) and (19) is straightforward and
therefore a common approach to take magnetic free energy contribu-
tions into account. In this way, the task of introducing chemical dis-
order into the magnetic contribution is reduced to modeling the che-
mical disorder in the ground-state energy E V x( , { })α i

α as already

2 Note that it is crucial to take the full energy dependence of the DOS into
account. The Sommerfeld approximation, which employs only the DOS at the
Fermi level and thereby corresponds to a low-temperature expansion of Eq.
(14), reveals severe errors at high temperatures [62].
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discussed in Section 3.2. In fact, the high-temperature, magnetically
disordered state is modeled in an analogous fashion as for the chemical
disorder. A magnetic element A can be represented in terms of two
magnetically distinct, spin up and spin down atoms, i.e., A↑ and A↓.
Thus, in a very similar way as for a chemically disordered A-B alloy, the
paramagnetic state with randomized up- and down-spins can be mod-
eled as an effective A↑-A↓ alloy. This is the so called disordered local
moment (DLM) approach [96,97] which is nowadays commonly em-
ployed in CPA simulations to introduce magnetic disorder. Alter-
natively, the supercell approach (for example in conjunction with the
SQS concept) can be utilized by employing a magnetic supercell in
which the magnetic correlation functions of A↑ and A↓ spins are mini-
mized. In order to establish whether a fully magnetic disordered sce-
nario is appropriate, the knowledge of the magnetic ordering tem-
perature (e.g., TC) is crucial. Related ab initio works and techniques to
compute TC for HEAs and CCAs will be therefore discussed in
Section 3.5.

The last term in Eq. (6) corresponds to the free energy of atomic
vibrations which, in absolute numbers, is typically the largest con-
tribution and known to play an important role in forming solid solu-
tions (see, e.g., Refs. [98,99]). In principle, atomic vibrations break the
periodic symmetry of the crystal and thus require explicit supercell
calculations with large enough supercells and also many separate cal-
culations, for example different displacements in the direct force con-
stant method. Corresponding studies for multicomponent alloys are
therefore very rare. We will treat them separately in Section 3.4. Here,
we focus first on a very efficient approximate treatment of the vibra-
tional free energy as enabled by the Debye-Grüneisen approach [100]
that requires only the total energy surface E V x( , { })α i

α as input. Due to
the immense computational efficiency and the reasonable accuracy, the
Debye-Grüneisen approach has become the standard approach for
computing the vibrational free energy of disordered alloys from ab in-
itio, in particular for HEAs [66,101-103]. The task of introducing che-
mical disorder into the vibrational contribution is thus reduced to
modeling the chemical disorder in E V x( , { })α i

α as discussed in
Section 3.2. Note that the Debye-Grüneisen approach makes it in par-
ticular possible to compute the vibrational free energy within the
EMTO-CPA methodology (albeit without relaxations).

Within the Debye-Grüneisen model, the vibrational free energy is
given as:

Debye-Grüneisen approximation

= −F V T U V T TS V T( , ) ( , ) ( , ),α α α
vib vib vib (20)

= +U V T k V k TD y( , ) 9
8

Θ ( ) 3 ( ),α B
α

B α
vib

D (21)

= ⎛
⎝

− − − ⎞
⎠

S V T k D y y( , ) 3 4
3

( ) ln(1 exp( )) .α B α α
vib

(22)

The Debye function is denoted as D(y) and y=ΘD(V)/T with the Debye
temperature ΘD(V). In practical applications, the ground state ΘD(V
0)=ΘD is usually obtained based on the Moruzzi approach [100], i.e.,

= C r B
M

Θ ,D
0 0

(23)

where C is an empirical constant, M the (averaged) atomic mass, r0 the
equilibrium Wigner-Seitz radius and B0 the bulk modulus at zero tem-
perature. Note that M, r0, and B0 in general depend on the composition
x{ }i

α and considered phase α. The volume dependence is included in the
Debye-Grüneisen approach [100] as

=V V V VΘ ( ) Θ ( )( / ) ,γ
D D 0 0 (24)

where the Grüneisen parameter γ is given by

= − + + ′γ g B1
2

(1 ),0 (25)

where ′B0 is the bulk modulus derivative with respect to pressure. The
parameter g is dependent on the choice of the approximation and can
take values of g=2/3 proposed for high temperatures by Slater
et al. [104] or g=1 proposed for low temperatures by Dugdale and
MacDonald [105].

Based on the above introduced methodologies for Fα
el, Fα

mag, and
Fα

vib, Ma et al. [101] employed EMTO-CPA calculations to investigate
the crystal phase stabilities and entropy contributions for the equia-
tomic CoCrFeMnNi HEA, specifically for α=bcc, fcc, and hcp (all
disordered). As the composition is constant for all considered α, the
ideal mixing configurational entropy is constant as well, i.e.,

= ≈S k kln(5) 1.6α B B
conf . The results for the entropy contributions

arising from electronic, magnetic, and vibrational excitations according
to Eqs. (13)–(25) are shown in Fig. 6. It becomes clear that the vibra-
tional contribution can be in fact four times larger than the config-
urational contribution. The absolute values of the vibrational entropies
should be however not directly employed for phase stability con-
siderations, because any phase for any alloy system (also unaries and
binaries) will acquire a similarly appreciable vibrational entropy. The
observed spread (up to about 1 kB) of the vibrational entropies among
the different phases is a more representative quantity for phase stabi-
lities. Magnetic as well as electronic contributions also show an ap-
preciable spread (up to about 0.8 kB). These findings indicate that en-
tropic contributions beyond the configurational one can become
significant, in particular when considering crystal phase stabilities. It
was moreover shown in Ref. [101] that at T=0K, the hcp phase is
thermodynamically the most stable phase of the CoCrFeMnNi alloy.
This finding was later confirmed by explicit supercell calculations in
Ref. [106]. The fcc phase, which is also observed experimentally at high
temperatures [107], becomes stabilized (as compared to hcp at fixed
equiatomic composition) mainly due to lattice vibrations [101].

The importance of entropy contributions beyond the configurational
one was likewise pointed out in the study of Li et al. [108] who in-
vestigated the fcc-hcp phase stability of CoCrFe1−xMnNix HEAs based
on a similar approach as in Refs. [101]. Li et al. [108] showed that, also
for these alloys, the different finite-temperature excitations tend to
stabilize the fcc over the hcp phase, similarly as for CoCrFeMnNi. Since
Li et al. [108] mainly focused on the implication on mechanical prop-
erties, we discuss their work in more detail in Section 4.4. Several
works on entropy contributions beyond the configurational one are
compiled in Table 3.

Fig. 6. Temperature dependence of the vibrational entropy Svib (left), the
electronic entropy Sel (middle), and the magnetic entropy Smag (right) for
CoCrFeMnNi in comparison with the configurational entropy. Dash-dotted,
solid, and dashed curves are for the hcp, fcc, and bcc structures, respectively.
Black, red, and blue colors are for the NM, FM, and DLM states, respectively.
Gray horizontal lines indicate the configurational entropy Sconf. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Source: Taken from Ref. [101].
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For completeness we note that intrinsic point defects such as va-
cancies can also contribute to the total Gibbs energy in Eq. (4). Explicit
investigations for unary materials [63,86] including all relevant ex-
citation mechanisms revealed, however, that the contribution of va-
cancies to the bulk Gibbs energy is usually negligible. Note that this
does not in general apply to derived quantities such as, e.g., the specific
heat capacity or thermal expansion coefficient, in particular close to the
melting point [63]. Similar studies for HEAs and CCAs have not been
performed so far, but one can expect that the contribution of vacancies
to the bulk Gibbs energy is likewise negligible for most temperatures.
An exception may be temperatures close to the melting point because of
the exponentially increasing vacancy concentration. To explicitly
compute the vacancy induced Gibbs energy contribution to bulk
properties, one needs the Gibbs energy of vacancy formation which in
general depends on temperature in a non-Arrhenius fashion [65,109-
111]. Due to the additional challenge of a proper statistical sampling
over the locally different chemical environments, the few available ab
initio works for HEAs [112-115] have concentrated on the temperature
independent vacancy formation energy at T=0K. It was shown that
the vacancy formation energy strongly depends on the local chemical
environment with variations of up to 1 eV and even qualitative differ-
ences (e.g., with negative and positive formation energies for Cr).

Note that, while vacancies may not significantly contribute to phase
stabilities from a thermodynamic perspective, their migration en-
ergetics is of importance for diffusion properties and thus for the ki-
netics of diffusive phase transformations. A few ab initio works have
been reported on the migration energies of vacancies [112,114], but we
do not go into detail in the present review.

3.4. Beyond the Debye-Grüneisen Approximation

As discussed in the previous subsection (Section 3.3), the free en-
ergy contribution due to atomic vibrations can be large and can
strongly impact phase stabilities. It is therefore important to evaluate
the accuracy of the widely used Debye-Grüneisen approximation by
explicitly considering lattice vibrations.

For HEAs and CCAs, the impact of atomic vibrations beyond the
Debye-Grüneisen model has been investigated only in a few works so
far, likely due to the high computational costs. These works employed
the quasiharmonic approximation which — for unaries and ordered
compounds — has become a common computational technique to ob-
tain an accurate description of the vibrational free energy. In this ap-
proximation, the vibrational free energy reads:

Quasiharmonic approximation
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Here, ℏ is the reduced Planck constant and the ωj are phonon

frequencies (i.e., the energies of the atomic vibrations) which typically
have a significant volume dependence and which also implicitly depend
on the concentration x{ }i

α and the phase α. The sum runs over the 3N
(exact) frequencies for a supercell with N atoms. In general, two well
established approaches exist to compute the ωj, linear response
theory [116] and the finite-displacement supercell method (aka direct
force constant method) [117-119]. For unaries and ordered compounds
with small primitive cells, linear response theory is computationally
advantageous as the full phonon spectrum can be obtained from pri-
mitive cell calculations. This advantage does not apply anymore to
disordered multicomponent systems for which the supercell (with many
atoms) equals the primitive cell due to the chemical disorder.

The finite-displacement method works directly with a supercell.
Specifically, interatomic force constants are computed by slightly (i.e.,
within the harmonic regime) displacing atoms in the supercell from
their T=0K equilibrium positions. The force constants determine the
key quantity within the harmonic framework, i.e., the dynamical matrix
D, with matrix elements given by:

= ⎡
⎣
⎢
∂
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⎤
⎦
⎥D

M M
E
R R

R1 ({ }) .kχ lζ
k l

α I

kχ lζ R
,

2
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0 (27)

Here, Eα ({RI}) is the total electronic energy at T=0K as used so far,
but now extended to depend on the full set of atomic coordinates {RI}
of all atoms in the supercell. The second derivative in Eq. (27) is per-
formed with respect to the atomic coordinate Rkχ (Rlζ) of atom k (l) with
mass Mk (Ml) in spatial direction χ (ζ) at the equilibrium atomic posi-
tions R{ }I

0 . The phonon frequencies are obtained by diagonalizing the
dynamical matrix, i.e.,

=D ωw w ,j j j
2

(28)

where wj are the corresponding eigenvectors. A number of established
tools exist which implement these equations typically as an add-on to
existing DFT codes. A collection is given in Ref. [120] (see Table 2 in
this reference).

The finite-displacement method requires in general 3N calculations.
For systems with a high number of symmetries, such as, e.g., unary
materials, the actual number of calculations can be drastically reduced.
For example, for pure fcc Al in a 3× 3×3 cubic supercell containing
108 atoms, only a single calculation is required to determine the in-
equivalent force constants and hence the complete set of ωj’s inherent to
the supercell (for a fixed volume). Unfortunately for HEAs and CCAs
crystal symmetries cannot be in general employed due to the chemical
disorder. For example, a similarly sized supercell for a four-component
fcc CoCrFeNi alloy would require 3×108=324 calculations for each
considered volume V. This example reveals that the quasiharmonic
approximation, Eq. (26), is in its standard implementation typically two
orders of magnitude computationally more expensive as compared to
ordered alloys or unaries. It is therefore not surprising that most of the
previous works on the vibrational free energy for HEAs and CCAs relied
on the Debye-Grüneisen approximation rather than on the quasi-
harmonic approximation.

Recently, Wang et al. [121] investigated phase separation of bcc

Table 3
Collection of EMTO-CPA based ab initio works of HEAs/CCAs including entropy contributions beyond the configurational one. Sα

conf : Ideal mixing configurational
entropy. Sα

vib: Vibrational entropy based on the Debye-Grüneisen model. Sα
el: Electronic entropy. Sα

mag: Magnetic entropy obtained using the mean field approximation.

Year Reference Alloys Crystal structures α Magnetic states Entropy contributions

Sα
conf Sα

el Sα
vib Sα

mag

2013 Tian et al. [70] AlxCoCrFeNi fcc, bcc DLM ✓ ✓
2015 Ma et al. [101] CoCrFeMnNi fcc, bcc, hcp NM, FM, DLM ✓ ✓ ✓ ✓
2017 Li et al. [108] CoCrFe1−xMnNix fcc, hcp DLM ✓ ✓ ✓

Sun et al. [72] AlxCoCrFeMnNi fcc, bcc FM, DLM ✓ ✓
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MoNbTaVW and its subsystems using supercell calculations in con-
junction with the quasiharmonic approximation. They computed the
free energies of in total 178 single phases for each of the 5 pure ele-
ments, 130 ordered binaries, 2 ordered quaternaries, 10 disordered
binaries, 10 disordered ternaries, 5 disordered quaternaries, 1 quinary
disordered MoNbTaVW, and 15 partially disordered B2 phases. The
fully and partially disordered phases were modeled using the SQS
technique. One result from these calculations is that the high-tem-
perature quaternary bcc MoNbTaW HEA undergoes a phase transition
at temperatures below 594 K into a partially-ordered B2 (NbTa)(MoW).
Körmann and Sluiter [102] studied the same transition employing si-
milar techniques (VASP+supercell) except for using the Debye-Grü-
neisen approach, Eq. (20). The resulting transition temperature from
the work of Körmann and Sluiter [102], considering only vibrations for
consistency, is 508 K and thus reasonably close to the one found by
Wang et al. [121]. Although one has to be careful in transferring this
finding to HEAs and CCAs in general, it indicates that the Debye-Grü-
neisen model is a reasonable starting point for the exploration of phase
stabilities in multicomponent systems.

The wave-vector dependence ωj(q) of the phonon frequencies, i.e.,
the phonon spectrum in reciprocal space, provides an important ana-
lysis of atomic vibrations. The challenge in computing phonon spectra
of disordered alloys is related to the missing crystal symmetries. An
approach which can overcome this issue is the band unfolding method
[123,124] which has been recently employed to study binary solid
solutions [125,126]. Körmann et al. [122] applied the band unfolding
method to investigate a wide range of bcc refractory alloys, from
random binaries up to five-component HEAs. As an example, we display
in Fig. 7 the computed phonon spectra of the disordered bcc NbTaTiVW
HEA and several of its subsystems (first column on the left). These
multicomponent phonon spectra show a significantly different ap-
pearance than (quasiharmonic) phonon spectra of unary materials or
ordered compounds, which are made of well-defined phonon bands.
Körmann et al. [122] showed that spectra of disordered alloys show a
strong broadening in their spectral function (spread of colors in Fig. 7)
above a frequency of about 4 THz. The main origin of the broadening
originates from the atomic mass fluctuations. The importance of the
atomic masses can be intuited by the decomposition of the total phonon
spectra (left column) into the contribution from each of the involved
elements (all other plots in Fig. 7). For example, for the VW alloy (first
row) it is well visible that the light V [Fig. 7(b)] is mostly responsible
for the high frequency spectrum whereas the heavier W [Fig. 7(c)]
determines the low frequency spectrum. While mass fluctuations are
the dominant factor for the phonon broadening, Körmann et al. [122]
further showed that force fluctuations are likewise important to obtain
accurate spectra.

Körmann et al. [122] used the computed phonon spectra, specifi-
cally the phonon density of states, to derive the harmonic vibrational
entropy. Their results for several of the investigated alloys at a tem-
perature of 1500 K are reproduced in Fig. 8 (black dots). It can be seen
that taking only mass fluctuations into account (red lines) is a very good
approximation for the vibrational entropy. Taking only force constant
fluctuations into account (blue lines) and the harmonic Debye results
that we have additionally included (gray crosses) show slightly larger
deviations with the full phonon based calculations (of up to 5% for the
VW alloy). Note that this does not necessarily imply a similar error for
phase stability considerations as there might be effective error cancel-
lation.

More recently, Jin et al. [127] studied the lattice expansion and
specific heat capacity of several magnetic fcc Co–Cr–Fe–Ni alloys em-
ploying the quasiharmonic approximation based on ferromagnetic cal-
culations. The comparison with experimental data revealed significant
magnetostriction effects in particular for FeNi which could not be
captured when neglecting the impact of spin-phonon contributions.
Indeed, the importance of magnetic excitations on the vibrational
contribution has been also shown in other studies [50,128-130]. To

account for such coupling effects, the so-called spin-space averaging
method was originally developed for magnetically disordered systems
[128,129,131] and later extended to ordered compounds [50]. In this
approach, the magnetic degree of freedom is adiabatically decoupled
from the atomic motion and a statistical average is performed over
many magnetic configurations to compute effective force constants. If
coupled to the magnetic energy contribution, Eq. (17), the approach
enables the computation of vibrations over the whole range of tem-
peratures across the magnetic transition temperature [131]. Recently,
Ikeda et al. [126] combined this approach with the band unfolding
method to investigate magnetic random solid solutions. The application
to binary Fe–Pd and Fe–Pt random alloys revealed the predictive power
of this method for the computation of vibrations in magnetic random
alloys exposing this method as a promising route for computing lattice
vibrations of magnetic HEAs.

At high temperatures in particular close to the melting temperature,
the quasiharmonic approximation, Eq. (26), becomes less accurate in
describing the vibrational free energy. The reason is the contribution
originating from explicit anharmonic vibrations, i.e., phonon-phonon
interactions, which are not contained in the second derivative of Eq.
(27) but rather require the inclusion of higher order derivatives. It is in
principle possible to capture the anharmonic vibrations by employing
ab initio MD simulations. However, computing the corresponding an-
harmonic free energy brute-force by MD is computationally prohibitive
due to the entropic contribution, and efficient schemes to coarse grain
the configuration space are indispensable [65]. One recent develop-
ment in this respect is the TU-TILD approach (two-stage upsampled
thermodynamic integration using Langevin dynamics) [132] that has
strongly improved the efficiency of calculating anharmonic free en-
ergies even for systems with strong anharmonicity. So far the explicitly
anharmonic free energy was investigated mostly for unary materials
and ordered compounds [63,74,86,91,132-134]. To the best of our
knowledge, such studies are lacking for HEAs/CCAs, although a number
of ab initio MD simulations has been performed mainly in combination
with MC sampling [135-138] (cf. Table 7 and Section 3.6).

We finally note that ab initio MD simulations give also access to
liquid properties such as, e.g., the pair-distribution function [139,140].
The determination of the Gibbs energy of the liquid phase [i.e., α =
liquid in Eqs. (3) and (4)] is in principle also possible but very chal-
lenging. Very recent developments (TOR-TILD method by Zhu
et al. [51]) made an efficient calculation for unary materials possible.
We also note recent advances in computing the entropy of liquids by
taking ab initio MD computed pair correlation functions into ac-
count [141]. Future extensions towards multicomponent systems may
provide helpful information for the design of HEAs/CCAs via the
casting route.

3.5. Calculation of the Critical Magnetic Temperature

For magnetic HEAs and CCAs, finite-temperature magnetic fluc-
tuations as well as the degree of magnetic ordering play an important
role for the thermodynamic stability and for mechanical properties. As
discussed in Section 3.3, a complete inclusion of finite-temperature
magnetic effects and the computation of the magnetic free energy from
ab initio constitutes a formidable task. A common approximation to
include magnetic effects is to resort to magnetically fully disordered,
paramagnetic simulations corresponding to the high temperature limit.
Efficient schemes exist to mimic a random magnetic alloy, e.g., the DLM
method, and analytic magnetic free energy expressions are readily
available as discussed in Section 3.3 [Eqs. (18)–(19)]. However, this
high temperature approximation may not be the best one for the con-
sidered system and a low temperature approximation considering
magnetically ordered (e.g., ferromagnetic) configurations may be more
suitable. Magnetically ordered configurations are well accessible by
ground-state spin-polarized DFT calculations and the magnetic entropy
for this low temperature limit becomes zero.
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The key quantity which ultimately determines whether a magneti-
cally ordered or disordered configuration is — at a given temperature
— the more realistic magnetic scenario, and hence whether the high-
temperature magnetic free energy approximation [Eqs. (18)–(19)] is
applicable, is the critical magnetic temperature. The knowledge of the
critical temperature thus plays an important role in any ab initio cal-
culation of magnetic alloys providing the inherent justification of the
underlying magnetic treatment and determining in the first place
whether calculations shall be carried out including magnetic disorder
(e.g., via the DLM approach) or whether calculations shall be performed
based on magnetically ordered, e.g., ferromagnetic configurations. For
ferro- or ferrimagnetic alloys, the critical magnetic temperature is
known as the Curie temperature TC and for antiferromagnetic alloys as

the Néel temperature TN. Several calculations suggest ferrimagnetic-like
ordering for some HEAs, e.g., an antiferromagnetic alignment of Cr and
Mn in CoCrFeMnNi [101]. Since most magnetic HEAs and CCAs are
prone to ferro- or ferrimagnetic ordering, we refer in the following to
the Curie temperature TC but note that the discussed methodologies are
generic and also applicable to antiferromagnetic alloys.

The computation of TC of HEAs and CCAs has been the subject of
several studies. Most works in this respect employed the EMTO-CPA
framework and are summarized in Table 4. The most common approach
to derive the magnetic ordering temperature from ab initio calculations
relies on a mapping of the ab initio energetics onto the classical Hei-
senberg Hamiltonian,

Fig. 7. Phonon spectra of disordered bcc refractory alloys (binary to quinary from top to bottom) decomposed into contributions of the individual chemical elements
(numbers indicate the atomic mass) using the projection scheme as introduced in Ref. [122]. The seemingly weaker contribution of each element when going from
top to bottom is a consequence of the reduced concentration of each element in the given alloy, i.e., from 50 at.% for the binary (first row) to 20 at.% in the bottom
row (quinary). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
Source: Taken from Ref. [122].
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states (harmonic approximation). The black solid circles in-
clude both mass and force constant fluctuations. The red and
blue lines represent the vibrational entropy derived from the
approximate spectra including either mass or force constant
fluctuations. These data is based on the work of Körmann
et al. [122]. Additionally, the vibrational entropy based on
the harmonic Debye approximation has been added (gray
crosses). The harmonic Debye approximation neglects the
volume dependence of the Debye-Grüneisen approach and
considers only the Debye temperature at the equilibrium
volume calculated according to Eq. (23). (For interpretation
of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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ij i j
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(29)

where Jij denotes the magnetic interaction (exchange parameter) be-
tween local magnetic moments ⎯→⎯mi and

⎯→⎯mj located at lattice sites i and j.
In practice, the Jij parameters are typically computed using perturba-
tion theory [147] which, if combined with CPA, allows one to evaluate
additionally the impact of magnetic disorder on these parameters (see,
e.g., Ref. [148]). Alternatively, the energies of supercell calculations
with different (typically collinear) magnetic configurations can be fitted
to Eq. (29) (see, e.g., Refs. [149,150]). Note that the model above
captures mainly the magnetic energetics due to the transverse magnetic
moment degree of freedom. For unaries and selected binaries several
extensions of the model exist to account for higher order coupling terms
or longitudinal spin fluctuations, i.e., variations in the magnitude of the
local moments (see, e.g., Refs. [88,151]). However, these methods have
not yet been extended to multicomponent alloys.

Besides the different ways of deriving the magnetic exchange
parameters, there are also distinct strategies to solve Eq. (29). The
methods range from approximate analytic solutions for TC based on
mean field or Green's function based techniques (e.g., random phase
approximation) to numerical approaches such as classical and quantum
Monte Carlo simulations (see, e.g., Refs. [130,152], and references
therein). In Monte Carlo simulations, TC is usually computed by iden-
tifying the singularity in the magnetic susceptibility [cf. Fig. 10 (b)
below] or the peak in the specific heat contribution (see, e.g., Refs.
[87,130,152]). For HEAs, two different approaches have been so far
employed to compute TC, classical Monte Carlo simulations as well as
the mean field approach. The latter is computationally significantly
more efficient and has been thus employed more often (see Table 4).
Note however that mean field approximations are known to usually
overestimate TC.

The mean field approach was originally proposed for diluted semi-
conductors and a single magnetic species by Sato et al. [153] and later
extended to multi-magnetic element alloys in Körmann et al. [142]. The
alloy is considered to be an effective medium mixture of a magnetic and
a non-magnetic species. Under this assumption, the mean field Curie
temperature is obtained as [142,153]:

Mean field approximation for the Curie temperature

= −k T
x

E E2
3

( ).B C FM DLM (30)

Here, x denotes the fraction of magnetic elements and EFM and EDLM
denote the total energies of the considered alloy in the ferromagnetic
and disordered local moment (paramagnetic) state. The approach is
computationally very efficient because only the two total energies, EFM

and EDLM, are required instead of an explicit determination of the Jij
parameters and additional Monte Carlo simulations.

Körmann et al. [142] employed the mean field approach, Eq. (30),
to explore the Curie temperatures for a large range of different HEAs
and highlighted the tuneability of TC upon alloying. The energies en-
tering Eq. (30) were determined based on EMTO-CPA calculations. As
an example, we show in Fig. 9 the predicted “Treasure Maps” for
CoCrFeNiM (M=Ag, Au, Pd, Cu) alloys. The concentrations marked
with filled circles and stars were compared with experimental data and
revealed an excellent agreement [142]. Such maps are in particular
useful to explore and design alloys with well-defined magnetic prop-
erties for, e.g., potential applications in magnetic refrigeration tech-
nology.

Huang et al. [143] went beyond the mean field approximation and
employed Monte Carlo simulations to investigate the TC of AlxCoCrFeNi
alloys as a function of the Al concentration and crystal structure. The Jij
parameters were determined from perturbation theory [147] based on
EMTO-CPA calculations in the FM state.3 It was found that the bcc
structure, which can be stabilized under certain Al concentrations (see
Section 3.1) reveals a larger TC (355 K) as the fcc structure (205 K).
Their computed magnetizations and susceptibilities are shown in
Fig. 10(a) and (b), respectively.

The impact of crystal structure on TC for HEAs was also explored for
the CoCrFeMnNi alloy by Ma et al. [101] and for AlxCoCrFeMnNi alloys
by Sun et al. [72]. More recently Huang et al. [146] extended these
calculations to more than 42 alloys. In all cases, it was found that the
computed TC’s for the bcc crystal structures are significantly larger than
the ones for the corresponding fcc crystal structures [72,101,146].

All calculations of TC mentioned so far were based on the EMTO-
CPA approach, i.e., local lattice distortions were ignored. Recently,
Song et al. [69] investigated the impact of local lattice distortions on TC
for several multicomponent alloys employing Eq. (30) in combination
with the supercell approach for the computation of the total energies
EFM and EDLM. Since at present no unrelaxed calculations based on the
supercell model have been reported for TC,4 the results in Ref. [69]
including local relaxations can at present only be compared with pre-
vious EMTO-CPA calculations. Here, it is found that apart from the
CoCrFeMnNi alloy, for which a slight increase in TC is observed
(< 10 K), the distortions somewhat decrease TC for fcc CoFeNi and
CoCrFeNi as compared to the EMTO-CPA predictions by ≈ 150 and
70 K, respectively [69].

For fcc CoCrFeNi, Niu et al. [154] investigated the energetic and

Table 4
Ab initio works focusing on the Curie temperature and magnetic ordering of HEAs/CCAs.

Year Reference Alloys Crystal structures Magnetic states TC calculation

2015 Körmann et al. [142] Various CoFeNi base HEAs fcc FM, DLM Mean field
Ma et al. [101] CoCrFeMnNi fcc, bcc, hcp FM, DLM Mean field

2016 Huang et al. [143] AlxCoCrFeNi fcc, bcc FM Monte Carlo

2017 Song et al. [69] CoFeNi, CoCrFeNi, CoCrFeMnNi fcc FM, DLM Mean field + distortions
Sun et al. [72] AlxCoCrFeNiMn fcc, bcc FM, DLM Mean field
Huang et al. [144] CoCuFeNi, CoCuFeNiX (X = V, Cr, Mn) fcc, bcc, hcp FM, DLM Mean field

2018 Huang et al. [145] AlxCoCrFeMn fcc, bcc, hcp FM, DLM Mean field
Huang et al. [146] 42 alloys fcc, bcc FM, DLM Mean field
Huang et al. [146] CoCrFeMnNi fcc FM Monte Carlo

3We note that the Jij parameters can depend on the global magnetic state.
This can have consequences for TC predictions, e.g., if Jij are computed from the
DLM state see, e.g., Table IV in Ref. [148].
4 Song et al. [69] mentioned computational difficulties in converging the

paramagnetic calculations for the considered alloys on an unrelaxed lattice.
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magnetic properties using the supercell approach. It was found that the
local atomic magnetic moments strongly depend on their surrounding
moments as shown in Fig. 11. Particularly, Cr tends to have negative
magnetic moments resulting in magnetic frustration of Cr moments
when surrounded by other Cr atoms. Including the configurational
entropy, Eq. (7), a Cr-ordered L12 phase has been predicted with larger
saturation magnetization. Indeed, the accompanying experiments re-
vealed an alloy with twice larger saturation magnetization and sig-
nificantly enhanced TC [154]. This example exposes the possibility to
explore the impact of TC due to chemical ordering.

3.6. Chemical Long- and Short-range Order

The methodology discussed until this point has mostly relied on the
decomposition of the free energy as given in Eq. (6). The underlying
assumption of this decomposition is that the system can be reasonably
well represented by a single atomic configuration (possibly with a high
degeneracy captured by the configurational entropy) which applies to
ordered, disordered, and partially disordered phases. As already men-
tioned in Section 3.2 with reference to Fig. 4, the situation is much
more complex close to the transition temperatures where the alloys are
prone to chemical short-range order (SRO). The calculation of the free
energy requires then the sampling over many locally distinct chemical
configurations as indicated in Eq. (5). In principle, for each config-
uration the free energy including electronic, magnetic, and vibrational
excitations could be calculated utilizing the free energy Born-Oppen-
heimer approximation and also the methods discussed in Sections 3.3
and 3.4. Due to the computational requirements, typically only the
T=0K ground state energy is calculated for each configuration. Some
exceptions employing, e.g., combined MC-MD methods will be dis-
cussed below.

A direct and complete ab initio determination of the free energy
according to Eq. (5) is not possible even when only the T=0K energy
for each configuration is considered. However, approaches exist and
will be discussed to address the problem to some extent. Of primary
importance is the computation of the order-disorder transition tem-
peratures, i.e., the critical temperatures at which a specific long-range
chemical ordering occurs or vanishes. The knowledge of these critical

temperatures is crucial as it ultimately determines the alloy's chemical
phase stability and at which temperatures a HEA is prone to long-range
ordering. Similarly as remarked for the critical magnetic temperature in
Section 3.5, the critical order-disorder transition temperatures de-
termine the appropriate chemical state and simulation cell for the ab
initio simulations at a given temperature. Under certain circumstances
(detailed below), a critical temperature can be obtained with the pre-
viously introduced methods, i.e., under the ideal mixing assumption. A
more advanced treatment is necessary if one is interested in the explicit
inclusion of chemical SRO which becomes important at temperatures
near the order-disorder transitions. The corresponding approaches ty-
pically utilize a mapping of the ab initio energetics onto a simpler Ha-
miltonian which is solved using for example MC simulations, in close
analogy to the treatment discussed for the transverse magnetic degree-
of-freedom. These approaches can be used to obtain a more accurate
transition temperature and give also access to thermodynamic proper-
ties (see Fig. 15) as will be discussed in the present subsection.

An order-disorder transition can be approximately obtained based
on, e.g., the mean field approximation or the Bragg-Williams ap-
proach [55], if the set of phases α and their mole fractions x{ }i

α that
compete in the transition are known a priori. Then for each of the
phases the respective Gibbs energy is calculated for the whole tem-
perature range according to Eqs. (4) and (6) and using the set of
techniques introduced in Sections 3.3 and 3.4 within the ideal mixing
assumption. As already mentioned, if disorder is present on a certain
sublattice only then the configurational entropy needs to be appro-
priately adjusted. Crossing points of the Gibbs energies are the esti-
mates for the transition temperatures. Note that the assumption of ideal
mixing renders transitions to be of first order whereas many order-
disorder transitions are of second order. This highlights the importance
of taking chemical short-range order into account discussed below.

Körmann and Sluiter [102] utilized such a mean field approach to
investigate the bcc MoNbTaW HEA. From previous simulations, it had
been reported that the high temperature disordered bcc A2 solid solu-
tion of MoNbTaW transforms into a partially ordered B2 phase at lower
temperatures, with Mo and W randomly mixed on one sublattice (cf.
Fig. 4; light and dark blue balls) and Nb and Ta on another (light and
dark red balls). Körmann and Sluiter [102] computed the Gibbs

Fig. 9. “Treasure Maps” of (a)–(d) TC and (e)–(h) magnetization for CoCrFeNiM alloys. The x- and y-axis define the Cr- and M (= Ag, Au, Pd, Cu)-content. Thick lines
indicate room temperature values. The symbols (stars and circles) indicate experimentally explored compositions.
Source: Reproduced from Ref. [142] with the permission of AIP Publishing.
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energies for both these phases using the ideal mixing approximation
and derived the transition temperature investigating various effects.
Employing unrelaxed calculations without finite-temperature excita-
tions, they found a transition temperature of 717 K. Finite-temperature
excitations turned out to be negligible, but lattice distortions had a
significant impact reducing the transition temperature down to 508 K.

The key challenge usually lies in finding for a given alloy system the
relevant phases competing with the single-phase solid solution. A pos-
sible but computationally expensive approach is to choose a large pool
of candidate phases, compute all Gibbs energies, choose at each tem-
perature the phase with the lowest Gibbs energy (or a combination of
phases at different compositions), and determine the respective crossing
points. The work of Wang et al. [121] on the bcc Mo–Nb–Ta–V–W
system including in total 178 phases (introduced already in Section 3.3)
can be classified as such an approach. By computing the individual
G P T x( , , { })α i

α of each phase including vibrational and configurational
(ideal mixing) entropy contributions, they determined the phase se-
paration and ordering tendencies of the quinary and quaternary bcc
Mo–Nb–Ta–V–W HEAs.

To reduce computational requirements, a selection of potential
phases can be attempted, e.g., by resorting to empirical rules and se-
lecting the most stable binary combinations as discussed in Section 3.1.

However, as suggested by Fig. 4 (b), a HEA does not necessarily de-
compose into unaries and/or binaries only, so that additional phases
need to be considered as well (e.g., for bcc MoNbTaW the B2 ordered
phase as just discussed). An alternative is to employ prior to the actual
ab initio calculations thermodynamic modeling techniques such as, e.g.,
the CALPHAD approach to select potential candidate phases. One possible
route was utilized by Rogal et al. [66] who studied partial sublattice
ordering in Al15Hf25Sc10Ti25Zr25. Inspecting the binary phase diagrams
of the involved elements, a partially ordered D019 structure where Al is
constrained to a specific sublattice was selected as a potential candidate
phase. Indeed, a D019 to hcp A3 transition was found at 1230 K (see
Fig. 12) in good agreement with corresponding experimental mea-
surements. We note that partial sublattice ordering was also in-
vestigated for CoCrCuFeNi with a similar ab initio approach, resulting in
the prediction of an L12 phase [155].

It should be stressed that, besides forcing the order-disorder tran-
sition to be of first order type, the assumption of ideal mixing also in-
troduces an error in the predicted transition temperature [102,163]. To
go beyond and improve the description, chemical SRO needs to be
taken into account. In order to quantify chemical SRO it is convenient
to introduce the Warren–Cowley SRO parameters [172,173],

≡ −α
c
c c

1 ,ij
m ij

m

i j (31)

where ci is the concentration of the i’th element, and cij
m is the prob-

ability to find the combination of the i’th and the j’th elements in the
m’th pair cluster. If there is no SRO, the probability cij

m equals the
product cicj and the corresponding αij

m vanishes. Temperature depen-
dent Fourier transformed Warren–Cowley SRO parameters can be ex-
tracted from diffuse-scattering experiments providing an elegant link
between experimentally accessible quantities and DFT simulations. One
possibility to include SRO is to explicitly set up a priori known config-
urations mimicking a specific chemical SRO [167], i.e., constructing a
supercell which matches specific SRO parameters αij

m. However, usually
the degree of SRO and hence the αij

m and thus the relevant configura-
tions are unknown.

A natural way to study SRO, requiring no a priori knowledge about
specific configurations, is to perform ab initio Monte Carlo (MC) simu-
lations, where at each MC step the energies are directly computed by
DFT calculations. Due to the computational cost of this technique only a
few works have been reported so far for HEAs [157,161,174]. Tamm
et al. [157] investigated the chemical SRO in CoCrNi and CoCrFeNi,
and found a strong Cr–Cr repulsion at low temperatures for the first
neighboring shells in both alloys. Such approaches suffer, however, if
secondary phases form which may introduce large strains at the inter-
phase boundaries. In this case, large and computationally even more
expensive supercells are required to ensure that the strain energy does
not dominate the total energy which ultimately determines the pre-
dicted ordering and phase formation tendencies. To overcome this
issue, Niu et al. [174] proposed a multi-cell Monte Carlo scheme in
which two parallel supercells are employed allowing for atoms to swap
between the cells as well as within both cells. The approach thus cir-
cumvents the issue of an interface energy between both phases (su-
percells) and might be therefore useful for studying ordering or phase
decomposition where large mismatch between different phases is an-
ticipated. Niu et al. [174] applied the method to study phase decom-
position of bcc HfNbTaZr.

Ab initio molecular dynamics (MD) simulations were also combined
with MC simulations in order to include the impact of atomic vibrations
at finite temperatures [135-137]. These hybrid MD/MC simulations
were performed for bcc MoNbTaW [135,137], where the elements were
exchanged on the lattice sites according to the MC formalism after
every 10 MD steps. Fig. 13 shows the obtained partial radial distribu-
tion functions at T=300 K and T=1800 K (inset). It was found that at
T=300 K, the Mo–Ta pairs have the largest probability in the first shell
indicating their strong tendency for SRO. The different peak positions of

Fig. 10. Monte Carlo simulations showing the (a) normalized magnetization
and (b) susceptibility for AlCoCrFeNi in the fcc and bcc phase. The magnetic
susceptibilities are shown for different simulation cell sizes revealing the impact
of finite-size effects. The Curie temperature in the bcc phase is often found to be
larger for magnetic HEAs (see text for details).
Source: Taken from Ref. [143].
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the partial radial distributions for different chemical pairs further in-
dicate rather different bond lengths depending on the considered che-
mical pairs. In general, such MC simulations do not directly provide the
configurational entropy which requires additional statistical treatments
discussed below. Also, the computational costs of direct ab initio MC
approaches are very high, because each MC and MD step requires a full
DFT calculation.

Several alternative DFT-based methods exist in literature to account
for SRO that are computationally more efficient than full DFT-based MC
simulations. An overview over the works employed so far for HEAs and
CCAs is given in Table 5. After briefly introducing the methods, we
focus on their previous applications to HEAs and CCAs. The methods
can be broadly categorized into two classes. One class is based on
perturbation theory combined with the CPA approach and includes the
concentration wave method [96,175,176] and the generalized pertur-
bation method (GPM) [148,177]. The other class can be broadly de-
fined as comprising cluster expansion approaches (see, e.g., Refs.
[178,179]).

Both, the concentration wave and generalized perturbation method,
are based on the CPA formalism (Section 3.2) which makes them par-
ticularly suitable for HEAs. The concentration wave formalism is based
on the idea that an alloy can be described as a variation of chemical
components from site to site which can be formally defined as a wave
[96,156,160,169,175,176]. Infinitesimally small concentration varia-
tions of these waves are sampled allowing one to determine the alloy's
chemical stability matrix in reciprocal space. The concentration wave
method was recently applied to study various HEAs and CCAs
[156,160,169,170]. As an example, we show in Fig. 14 the results [156]
for the chemical stability matrix, S k( )νμ

(2) , of fcc AlCoCrFeNi, where ν

and μ represent the atomic pairs. From the analysis of S k( )νμ
(2) , the A2

ordering tendency of the alloy can be determined by inspecting the X-
point. In this example, the Cr–Al pairs provide the strongest contribu-
tion, i.e., largest peak for this wave vector. The concentration wave
method can be also combined, e.g., with a mean field approach to de-
rive the Warren–Cowley parameters at finite temperatures (see, e.g.,
Ref. [156]).

Within the GPM approach, the alloy is mapped onto an Ising-type
Hamiltonian with effective cluster interactions which are determined
by a perturbative approach [148,163,177]. To arrive at finite tem-
peratures, the GPM derived real-space interactions are usually com-
bined with MC simulations to determine SRO parameters and order-
disorder transitions [163]. Following this route, the GPM was recently
applied to study phase transitions and SRO in MoNbTaW [163]. Spe-
cifically, Körmann et al. [163] employed the so-called screened gen-
eralized perturbation method (SGPM) [148] which additionally in-
cludes a screening correction to the conventional GPM formalism.
Based on the computed pair interactions, MC simulations were carried

out with a focus on long-ranged interactions. Fig. 15 exemplifies the
impact of taking long-ranged effective pair interactions on (a)–(d) the
specific heat capacity and (e)–(h) on the lattice site occupation at
(0,0,0) and (1/2,1/2,1/2) (in reduced coordinates) into account. It can
be seen that the B2-A2 order-disorder phase-transition temperature
[peak at higher temperatures in Fig. 15(a)] decreases by almost a factor
of two to a value of ∼ 750 K if long-ranged interactions are taken into
account, i.e., by going from Fig. 15(a) to (d). If only nearest-neighbor
pair interactions are taken into account, Fig. 15(a), a transition tem-
perature of ∼ 1250 K is found in good agreement with results based on
a cluster expansion (also restricted to nearest-neighbor pair interac-
tions), see below. At low temperatures, the alloy separates into a B32
NbW and a B2 MoTa alloy consistent with previous calculations [168].
We note that a more recent study corroborated the finding of long-
ranged interactions in bcc NbMoTaW and traced them back to Fermi-
surface nesting effects [169]. The concentration wave method and GPM
are computationally very efficient but are restricted to the lattice on
which the CPA calculations are carried out. A main limitation of both
methods is the neglect of lattice relaxation effects. The supercell
counterpart of these methods is given by the cluster expansion (CE)
technique.

Within CE, the alloy is also mapped onto an Ising-type Hamiltonian
as in GPM. The effective cluster interactions can be obtained, e.g., by
the Connolly-Williams method (aka structure inversion method) [180],
in which the energies of a sufficiently large pool of DFT supercell cal-
culations are used to fit the cluster interactions. Since the energies are
obtained from supercell calculations the inclusion of local lattice re-
laxations is straightforward, which is a key advantage of the CE. The
cluster expanded Hamiltonian can then be solved, e.g., by MC techni-
ques.

The CE was utilized in combination with MC simulations to compute
the Warren–Cowley SRO parameters of bcc MoNbTaVW by Toda-
Caraballo and Rivera-Díaz-del Castillo [181] and Toda-Caraballo et al.
[32]. Toda-Caraballo et al. [32] employed a 2000-atom supercell model
where chemical point, pair, and three-body interactions were included.
The dominant contributions were found to arise from the first and
second pair interactions [158]. Fig. 16 shows their computed

Fig. 11. Atomic magnetic moment, m, as a function of the average magnetic
moment, mNN, over the 12 first nearest-neighbor atoms from (a) a 24-atom SQS
and (b) a 120-atom SQS for fcc CoCrFeNi.
Source: Reproduced from Ref. [154] with the permission of AIP Publishing.

0K
0K + vib
0K + vib + el
0K + vib + el + conf

Temperature (K) 

D
el

ta
 G

ib
b
s 

en
er

g
y
 (

m
eV

/a
to

m
) 

0                  500               1000             1500             2000 

20 

10 

0 

-10 

hcp D019 hcp A3 

co
nf

ig
ur

at
io

na
l e

nt
ro

py
 

-20 

30 

1
2

3
0

 K
 

bcc A2 

Fig. 12. Difference in the Gibbs energies of D019 and A3 hcp for the
Al15Hf25Sc10Ti25Zr25 at% HEA as a function of temperature (D019 corresponds
to the zero line). The Gibbs energy difference is decomposed into the T=0K
energy (0 K), the vibrational (vib), electronic (el), and configurational (conf)
contribution. The final curve corresponds to the blue solid line, resulting in a
transition temperature of 1230 K as indicated by the vertical dashed line. The
dotted line shows the difference between the Gibbs energy of D019 and bcc A2
containing all contributions. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Source: Taken from Ref. [66].
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Warren–Cowley SRO parameters for the first and second neighboring
shell as a function of temperature for this alloy. A strong tendency of
Mo–Ta pairs in the first shell (most negative α parameter) can be seen
indicating the strong role of Mo–Ta SRO in this alloy. MC simulations
were also used to analyze the order-disorder phase transition in bcc
MoNbTaW by Huhn and Widom [135] and Huhn [136]. In these works,
the dependence of chemical SRO on temperature was examined using
nearest-neighbor pair interactions derived from a CE. A transition from
disordered A2 to partially ordered B2 at 1280 K was found similarly as
in Ref. [163] when nearest-neighbor interactions were included, see
also the comparison for the site occupations reported in Refs. [136,163]
shown in Fig. 15(e).

Progress has been also made in adding the magnetic degree of
freedom into the CE [159,182,183]. For example, Wróbel et al. [159]
and Lavrentiev et al. [183] investigated the ordering in Cr–Fe–Ni and its
binary subsystems employing a magnetic CE as well as the conventional
CE in combination with MC simulations. As an example, we show in
Fig. 17 the results of Wróbel et al. [159] for the computed order-dis-
order temperatures of bcc and fcc Cr–Fe–Ni alloys.

Another CE for a HEA was performed by Nguyen et al. [165] who
investigated the chemical interactions in bcc Al–Co–Fe–Ni–Ti. They
computed the order-disorder phase transition in this system and re-
ported a new partially-ordered D03 phase below 973 K consisting
mainly of Ni and Al.

An alternative to MC simulations is the cluster variation method
(see, e.g., Ref. [178]) in which an approximate expression for the
configurational entropy is provided by taking into account correlations
up to a certain cluster size. The CVM was recently applied by Schön
et al. [168] to study the phase stability of bcc Mo–Nb–Ta–V–W. They
found that the configurational entropy has only a small effect on the
phase transitions and that the competition between interactions in the
solid solution is the relevant factor behind the observed stabilization of
the disordered states in the investigated HEA. A similar finding was
previously made by Körmann et al. [163] for bcc MoNbTaW, where the
long-ranged interactions resulted into frustrated configurations thus
stabilizing the solid solution. An advantage of the CVM is that it pro-
vides analytic expressions linking the correlation functions to the con-
figurational entropy. It is therewith possible to link the CVM expres-
sions to correlation functions obtained via MC simulations. In this way,
Widom [184] extracted the configurational entropy from MC simula-
tions for bcc CrMoNbV and NbTiVZr alloys.

A more approximate approach, but technically far simpler and thus
easier to implement compared to the CVM, is the so-called

quasichemical approximation (see, e.g., Ref. [185]). This approxima-
tion allows one to investigate in a straightforward manner a large
amount of phases, e.g., by resorting to ab initio databases. Based on this
approach, Lederer et al. [164] performed a high-throughput study using
the data in AFLOW [186] and evaluated the order-disorder phase-
transition temperatures employing the quasichemical approximation.
They evaluated the cross-validation (CV) score for each chemical
combination. For those showing a CV score of less than 50meV, they
evaluated the phase stability. In total, their approach covered 1110
quaternary and 130 quinary combinations, out of which 571 alloys
were identified as solid solution formers. Among these alloys, 17 were
verified as single-phase solutions by experiment.

4. Implications on Mechanical Properties

4.1. Impact of Alloy Composition and Phase Stability on Elastic Properties

Elastic properties of HEAs and CCAs have been the subject of about
thirty ab initio works so far, see Table 6. The majority of works em-
ployed EMTO-CPA calculations due to its computational efficiency as
we have discussed in Section 3.2 [70,101,103,144,145,187-201]. More
recently, an increasing number of works has employed explicit super-
cell calculations thus enabling the investigation of local lattice relaxa-
tions and ordering effects [66,69,102,121,161,188,194,199,202-205].

Overall, a wide range of alloys has been investigated, mostly fcc
Co–Cr–Fe–Mn–Ni base alloys [69,70,101,103,144,145,187,188,194
,197,201,204] as well as bcc refractory alloys such as Hf–Nb–Ti–V–Zr
base ones [69,102,121,189-193,195,196,199,200,202,203,205]. Few
studies dealt with the more rare hcp HEAs, namely HfScTiZr [206] and
an Al–Hf–Sc–Ti–Zr alloy [66].

The above-mentioned works mainly focused on the bulk modulus B
and elastic constants Cij extracted from T=0K total energies at dif-
ferent volumes or volume-conserving deformations [81,207,208]. The
key quantity needed for that purpose is the total electronic energy of
the static lattice at T=0K, i.e., ⋅εE xA( , { })α i

α as a function of the strain
tensor ε applied to the matrix of lattice vectors A (Section 2). For ex-
ample, the tetragonal shear modulus C′=(C11− C12)/2 of cubic-lattice
systems can be obtained by fitting the energy-deformation data

⋅ ≡ = + ′εE x E δ E VC δA( , { }) ( ) 2α i
α

0
2 resulting from the volume-conser-
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where δ is the deformation parameter, which is varied, e.g., between 0
and 0.05 [187,188,194].

Elastic properties computed from such strain deformations corre-
spond to perfect, single crystal quantities. Elastic properties of isotropic
polycrystalline systems can be approximated by averages over the
single-crystal elastic quantities. For cubic-lattice systems, for example,
the polycrystalline bulk modulus B can be simply set equal to that of the
single crystal. The polycrystalline shear modulus G may be computed,
e.g., via the Hill average G=(GV+GR)/2, which is the arithmetic
average of the Voigt and Reuss bounds [81,209] given as

= − +G C C C3
5V
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(33)

and

= −
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respectively. The Young's modulus
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and the Poisson's ratio

Fig. 13. Partial radial distribution functions [denoted as gαβ(r)] of bcc
MoNbTaW at T=300 K obtained using hybrid MC/MD simulations. Inset:
T=1800 K.
Source: Taken from Ref. [137].
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can be computed from B and G. The ratio of bulk and shear modulus,
the B/G or Pugh's ratio [210,211], is often employed to estimate the
brittle-ductile transition. A value of B/G>1.75 indicates ductility
otherwise the alloy is supposed to be brittle.

Elastic anisotropy of cubic-lattice HEAs and CCAs can be likewise
investigated utilizing elastic constants. Several criteria are available
such as the Zener ratio AZ ≡ C44/C′, where AZ= 1 indicates an iso-
tropic system [212]. An alternative introduced by Every [213] is to
inspect AE ≡ (C11− C12− 244)/(C11− C44), where an isotropic system
would have a value of AE= 0. The polycrystalline shear moduli can be
also used to measure the elastic anisotropy via AVR ≡ (GV−GR)/
(GV+GR), where the isotropic system exhibits AVR=0.

Table 5
Collection of ab initio works on chemical long- and short-range order in HEAs/CCAs.

Year References Alloys Methods

2013 Huhn and Widom [135] MoNbTaW CE + MC, hybrid MC/MD

2014 Huhn [136] MoNbTaW CE + MC, hybrid MC/MD
Widom et al. [137] MoNbTaW Hybrid MC/MD

2015 Niu et al. [154] CoCrFeNi Selected configurations, Cr sublattice ordering
Singh et al. [156] CuNiZn, AlNbTi, AlCoCrFeNi Concentration wave
Tamm et al. [157] CoCrNi, CoCrFeNi MC
Toda-Caraballo et al. [158] Mo–Nb–Ta–V–W CE + MC
Wróbel et al. [159] Co–Fe–Ni and its binaries CE + MC, magnetic CE

2016 Khan et al. [160] AgAuCu, NiPdPt, AgPdRh, CoCuNi Concentration wave
Körmann and Sluiter [102] MoNbTaW Selected configurations, Debye-Grüneisen model

2017 Feng et al. [138] Cr–Mo–Nb–V Hybrid MC/MD, harmonic phonons
Feng et al. [161] (AlSi)xCoFeNi MC
Fernández-Caballero et al. [162] MoNbTaVW CE + MC
Körmann et al. [163] MoNbTaW SGPM + MC
Lederer et al. [164] >1200 alloys CE + quasichemical approximation
Nguyen et al. [165] Al–Co–Fe–Ni–Ti CE + MC
Ogura et al. [166] AlxCoCrFeNi Selected configurations
Rogal et al. [66] AlHfScTiZr Selected configurations, Debye-Grüneisen model
Toda-Caraballo et al. [32] MoNbTaVW CE + MC

2018 Ma et al. [167] Al–Co–Cr–Fe–Ni Selected configurations
Schön et al. [168] Mo–Nb–Ta–V–W CVM
Singh et al. [169] Mo–Nb–Ta–W Concentration wave
Singh et al. [170] Mo–Ta–Ti–W–Zr Concentration wave
Singh et al. [171] AlxCoCrFeMn Concentration wave
Wang et al. [121] Mo–Nb–Ta–V–W Selected configurations, quasiharmonic phonons
Wu et al. [155] CoCrCuFeNi Selected configurations

Fig. 14. Elements of the chemical stability matrix, S k( )νμ
(2) , as a function of the

wavevector k for atomic pairs ν and μ in disordered fcc AlCoCrFeNi. The peaks
in S k( )νμ

(2) are related to chemical instabilities. For example, the strongest pair in
driving A2 ordering is Cr-Al (maximum at the X point).
Source: Adapted from Ref. [156].

Fig. 15. Specific heat capacity (a)–(d) and site occupation (e)–(h) of bcc MoNbTaW when including different numbers of pair interactions (pmax). White circles in the
panel (e) denote the result of the MC simulations obtained in Ref. [136].
Source: Adapted from Ref. [163].
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Zaddach et al. [188] computed elastic constants for fcc CoCrFeNi
and CoCrFeMnNi using EMTO-CPA as well as the supercell method
employing VASP. The results shown in Fig. 18 indicate deviations be-
tween the two methods. The authors reasoned that the observed dif-
ferences are a consequence of the magnetic treatment. For the EMTO-
CPA calculations, the DLM approach was employed to mimic the
magnetic disorder whereas the VASP calculations were done employing
a ferrimagnetic solution. Later work confirmed that a ferrimagnetic
configuration with Cr and Mn spin moments antiferromagnetically
aligned to Fe, Co, and Ni spin moments is lower in energy as compared
to the fully magnetically disordered solution [101]. It is therefore in-
deed likely that the discrepancies observed in Fig. 18 are mainly due to
the differences in the magnetic treatment. This statement is further
supported by a recent comparison [121]. For non-magnetic refractory
HEAs, Wang et al. [121] revealed a close agreement between EMTO-
CPA and supercell based approaches, indicating that elastic properties
are less sensitive to, e.g., local lattice distortions and hence the actual
computational treatment.

The explicit impact of local lattice distortions on elastic properties
has been investigated recently by Körmann and Sluiter [102], Tian et al.
[199], and Zheng et al. [205] for different refractory alloys using su-
percell calculations. Körmann and Sluiter [102] investigated the impact
of lattice distortions on the bulk modulus of bcc NbMoTaW and found
negligible changes. Tian et al. [199] found likewise a negligible influ-
ence of lattice distortions on the elastic constants of bcc NbTiVZr,
MoNbTiZr, and MoNbTiVZr, despite their noticeable impact on the
mixing energies (cf. Section 3.2). Similarly, Song et al. [69] reported

minor variations in the computed bulk moduli for a set of six bcc HEAs
and three fcc HEAs including bcc HfNbTaTiZr. For the latter alloy,
Zheng et al. [205] also studied the impact of lattice distortions on
elastic constants and found a strong effect. For instance, Zheng
et al. [205] reported a decrease of the shear modulus G of about 25%
for HfNbTaTiZr if distortions are taken into account.5 A possible ex-
planation for this decrease is a tendency to dynamical instability that
can be expected for this bcc alloy due to a joint effect of Ti, Zr, and Hf
all of which are dynamically unstable in the bcc phase [214]. Thus, the
impact of local distortions on elastic properties cannot be in general a
priori neglected but appears to be minor for most of the investigated
HEAs and CCAs.

The computational efficiency of EMTO-CPA has given rise to a series
of works on elastic properties with a focus on compositional trends
[70,101,103,144,145,187-200]. For example, Tian et al. [70] in-
vestigated the impact of Al alloying on elastic properties of
AlxCoCrFeNi as shown in Fig. 19. The results reveal different compo-
sitional dependences of the elastic constants in the fcc and bcc phase
(see also the corresponding phase-stability discussion in Section 3.1).
Both dependences are nearly linear (Vegard's-law type dependence),
increasing with Al concentration for fcc and decreasing for bcc. More
recent high-throughput calculations for elastic properties based on
EMTO-CPA were reported in Niu et al. [194]. Fig. 20 shows their
computed B/G ratio for 2736 different fcc Co–Cr–Fe–Ni alloys, where
the blue regions indicate brittle alloys. Their results demonstrate the
computational efficiency of EMTO-CPA and further show that linear
compositional trends cannot be always expected. The computed maps
can be employed to tune the ductile-brittle transition.

Very recently third-order elastic constants, which provide, e.g., an
insight into crystal anharmonicity, were computed based on EMTO-CPA
for four bcc refractory HEAs [200]. Fig. 21 shows the reported relation
between valence electron concentration and elastic constants. It has
been found that the C111 elastic constant is largest in magnitude and
that it shows the largest dependence on electron concentration, re-
vealing the potential of compositional tuning of anharmonic properties
of HEAs and CCAs.

Ideal materials strength can be also computed by applying an elastic
strain to the lattice vectors, albeit a strain larger than for elastic con-
stant calculations. The ideal strength is defined as the maximum stress
before an alloy in a perfect crystal structure becomes dynamically un-
stable against the applied strain. Dynamical stability is often evaluated
utilizing elastic constants via the Born criteria [215]. There are several
reports on ab initio computed ideal strength for HEAs/CCAs
[145,193,195,201]. For example, Li et al. [193] computed the ideal
tensile strength under an [001] strain for four refractory HEAs. Fig. 22
shows the results for HfNbZr, HfNbTiZr, NbTiVZr, and HfNbTiVZr. All
alloys maintained the ideal BCT structure [Fig. 22(b)] in their simula-
tions except for NbTiVZr, for which a branching towards a symme-
trically reduced orthorhombic structure was observed [denoted as
NbTiVZr (ort) in Fig. 22(c)]. The authors traced back the origin of the
observed trends to the structural energy difference between fcc and bcc.
The latter was shown to correlate with the d-band filling [193], high-
lighting that the d-band filling is a good descriptor for ideal materials
strength.

In order to investigate explicitly the relation between local elec-
tronic structure and mechanical properties, Wang et al. [216] employed
the cluster+glue-atom model which had been originally proposed to
study quasicrystals and bulk metallic glasses [217]. In this approach,
the alloy structure is split into a cluster and a glue atom part as sketched

Fig. 16. Computed (a) 1NN and (b) 2NN Warren–Cowley SRO parameters for
bcc quinary equiatomic MoNbTaVW as a function of temperature.
Source: Taken from Ref. [32].

5We note slightly different bulk modulus predictions in Song et al. [69] and
Zheng et al. [205] which might be caused by different computational settings,
in particular the choice of the basis set. Song et al. [69] employed VASP cal-
culations based on the PAW formalism, whereas Zheng et al. [205] employed
CP2K calculations based on Gaussian basis set.
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in Fig. 23(a). For the bcc structure, the cluster consists of the first and
second neighboring shell (6 and 8 atoms), i.e., in total 14 atoms sur-
rounding the glue atoms located at the center and vertex positions.
Fig. 23(b) shows the electronic charge density analysis for a number of
different clusters and glue atoms. Based on this local bond analysis,
Wang et al. [216] revealed the important role of relatively strong
electronic bonds between elements from different transition metal
groups of the periodic table and relatively weak bonding between ele-
ments from the same group for the mechanical performance of re-
fractory HEAs.

Most of the studies on elastic properties have relied on the T=0K
energy surface ⋅εE xA( , { })α i

α neglecting free energy contributions [Eq.
(6)]. A more complete approach is to consider the generalized free
energy surface ⋅εF T xA( , , { })α

i
α [cf. Eq. (8)], but corresponding studies

are rare. Finite-temperature effects on elastic properties have so far
been mainly considered based on the quasiharmonic Debye model (cf.
Section 3.3) and have been studied for fcc CoCrFeMnNi [101], bcc re-
fractory alloys [102,103,121] as well as for an hcp Al-base HEA [66].
Most of the works focused on the bulk moduli and in all considered
examples, the elastic properties show the typical softening behavior due

Table 6
Collection of ab initio works on elastic properties for HEAs/CCAs. The symbol Cij in the column “Remarks” indicates that the second-order elastic constant tensor was
computed. Note that polycrystalline moduli like bulk modulus, shear modulus, and Poisson ratio can be computed from Cij as described in the main text.

Year Reference Alloys Method Remarks

2013 Tian et al. [70] AlxCoCrFeNi EMTO-CPA Cij, shear modulus, impact of crystal structure.
Tian et al. [187] CoCrFeNi, CoCrCuFeNiTix EMTO-CPA, EMTO-SC Cij, shear modulus, CPA vs. 4-atom SC w/o relaxations.
Zaddach et al. [188] CoCrFeNi, CoCrFeMnNi, variations EMTO-CPA, VASP-SQS Cij, SQS vs. CPA, discussion on magnetism.

2014 Fazakas et al. [189] HfNbTiVZr, CrHfNbTiZr EMTO-CPA Cij, shear modulus.
Tian et al. [190] NbTiVZr, MoNbTiVZr EMTO-CPA Cij, shear modulus.

2015 Cao et al. [191] AlxMoNbTiV EMTO-CPA Cij, shear modulus.
Li et al. [192] AlxHf1−xNbTaTiZr EMTO-CPA Cij, shear modulus.
Li et al. [193] NbTiVZr, HfNbTiZr, HfNbTiVZr EMTO-CPA Cij, shear modulus, ideal tensile strength, CPA vs. VCA.
Ma et al. [101] CoCrFeMnNi EMTO-CPA Bulk modulus, Impact of T (Debye-Gr).

2016 Körmann and Sluiter [102] MoNbTaW VASP-SQS Bulk modulus, impact of T (Debye-Gr), lattice distortions and
ordering.

Niu et al. [194] CoCrFeNi-base alloys EMTO-CPA, VASP-SQS Cij, shear modulus, SQS vs. CPA, over 2700 alloys.
Rogal et al. [206] HfScTiZr VASP-SC Cij.
Tian et al. [195] MoNbTiV EMTO-CPA, CASTEP-VCA Cij, shear modulus, ideal tensile and shear strength.

2017 Feng et al. [161] (AlSi)xCoFeNi VASP-SC+MC Cij, shear modulus, impact of chemical SRO.
Ge et al. [196] AlMoTiV, CrMoTiV, MoNbTiV EMTO-CPA Cij, shear modulus.
Huang et al. [197] CoCrFeGaNi EMTO-CPA Cij, shear modulus.
Huang et al. [144] CoCuFeNi, CoCuFeNiX(X = V, Cr, Mn) EMTO-CPA Cij, shear modulus.
Rogal et al. [66] Al15Hf25Sc10Ti25Zr25 VASP-SQS Bulk modulus, impact of T (Debye-Gr) and ordering.
Song et al. [69] Al–Hf–Nb–Ta–Ti–Zr, Co–Cr–Fe–Mn–Ni VASP-SQS Bulk modulus, lattice distortions.
Tian et al. [198] CrMoWX (X = Mn, Co, Ni) EMTO-CPA Cij, shear modulus.
Tian et al. [199] NbTiVZr, MoNbTiZr, MoNbTiVZr EMTO-CPA VASP-SQS Cij, shear modulus, SQS vs. CPA, lattice distortions.
Yao et al. [203] MoNbTaTiV VASP-SQS Cij, shear modulus.

2018 Feng and Widom [202] NbTiVZr, CrMoNbV, HfNbTaZr, MoNbTaW VASP-MC/MD Cij, shear modulus, lattice distortions.
Ge et al. [103] CoCrFeMnNi EMTO-CPA T-dependent Cij (Debye-Gr), shear modulus.
Huang et al. [145] AlxCoCrFeMn EMTO-CPA Cij, shear modulus, ideal tensile strength.
Li [200] MoNbTiV, MoNbTaW, NbTiVZr, HfNbTiVZr EMTO-CPA Third-order elastic constants.
Li et al. [201] CoCrFeMnNi & subsystems EMTO-CPA Cij, shear modulus, ideal shear strength.
Wang et al. [121] Nb–Mo–Ta–V–W VASP-SQS Bulk modulus, impact of ordering, Debye temperature.
Ye et al. [204] Co–Cr–Fe–Mn–Ni VASP-SQS Cij.
Zheng et al. [205] 5- and 6-equi-comp. Al–Hf–Mo–Nb–Ta–Ti–V–Zr CP2K-SC Cij, shear modulus, lattice distortions.

Fig. 17. Order-disorder temperatures of fcc (a) and bcc (b) Cr–Fe–Ni alloys computed using Monte Carlo simulations in combination with a magnetic cluster
expansion.
Source: Taken from Ref. [159].
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to the thermal expansion [66,101-103,121].
Another implicit approximation in the majority of the performed

studies has been the assumption of full chemical disorder. Studies on
the impact of partial chemical ordering or short-range order on elastic
properties are so far rare. The impact of B2-ordering in bcc MoNbTaW
was investigated by Körmann and Sluiter [102], and the bulk modulus
was found to be almost unaffected by the ordering in this alloy. The
impact of SRO on elastic properties in (AlSi)xCoFeNi HEAs was in-
vestigated by Feng et al. [161]. For this purpose, they employed a
combined ab initio Monte Carlo approach to equilibrate the atomic
positions at ambient temperature. They equilibrated the atomic posi-
tions at 300 K by swapping atomic positions in the ab initio calculations
following a Metropolis algorithm. The deduced SRO containing super-
cells revealed a slight increase of the elastic moduli for all considered
compositions.

4.2. Solid Solution Strengthening — Local Lattice Distortions

Solid solution strengthening (SSS) is one of the key strengthening

mechanisms in solid solutions and thus crucial for HEAs and CCAs. The
basic underlying mechanism of SSS is resistance to dislocation mobility
resulting from local disturbances of the crystal lattice making plastic
deformation more difficult. In the picture of dilute solutes embedded in
a solvent lattice, the dislocation mobility depends on the energetics of
the elastic interaction of a dislocation with single, separated solute
atoms. For binaries, traditional models have been developed based on a
dominant principal element and dislocations moving through a solvent
lattice (see, e.g., Section 4.1 in Ref. [33] and references therein). This
picture is limited in HEAs and CCAs where no clear distinction between
solvent and solute atoms can be made [33,158,218,219]. Recently
generalized SSS models have been proposed for random solid solutions
[158,218,219]. Key input parameters for these models are the averaged
misfit volume, VΔ n, of a solute n and its standard deviation, σ VΔ n, when
different local chemical environments are considered [218,219]. From
the viewpoint of ab initio investigations, the local lattice distortions —
one of the originally proposed core effects of HEAs — are readily ac-
cessible with supercell calculations by, e.g., evaluating the atomic dis-
placements from the ideal sites or the distribution of bond lengths. A
comprehensive list of previous ab initio based investigations of local
distortions is given in Table 7.

Oh et al. [223] studied local lattice distortions for fcc CoCrFeMnNi
with a focus on the element-resolved dependence of bond lengths on the
local chemical environment. For this purpose, Oh et al. [223] employed
the supercell (SQS) approach [see sketch in Fig. 24(a)] with fully re-
laxed internal atomic positions {RI}. The bond lengths

≡ −b R R| |IJ I J (37)

were defined between each site I and each of its nearest-neighbors lo-
cated at site J, and the set {bA}≡ {bIJ|I ∈ SA} was referred to as the
bond distribution for an element A, where SA is the set of the indices for
the sites occupied by A. The average element-resolved bond lengths b A

were then obtained based on several supercell calculations and were
found to be in good agreement with experimental data from extended
X-ray absorption fine structure (EXAFS) measurements conducted in the
same study [223]. An important finding in Ref. [223] was that the
atomic element-resolved bond lengths do not only deviate from the
overall mean value of the alloy, but that the bond fluctuations (standard
deviation) σbA due to different local chemical environments can be
significant. This is exemplified in Fig. 24(b) for the local bond distor-
tions of Mn in the CoCrFeMnNi HEA. The results thus suggest that a part
of the strength of the materials may be due to local lattice distortions as
a consequence of the different local chemical environments.

Song et al. [69] investigated local lattice distortions based on the
supercell approach for a more extensive set of in total nine alloys, in-
cluding a set of bcc refractory HEAs. Their results revealed that local
distortions are much more significant for the refractory bcc alloys as
compared to the considered fcc ones. This is likely due to the fact that
the considered bcc alloys in Song et al. [69] reveal mostly larger atomic
size mismatch as the fcc ones.

An alternative to quantify local lattice distortions is to inspect the
deviation of the relaxed atomic positions {RI} from the ideal atomic
sites R{ }I

ideal of the underlying crystal structure. Based on this, Okamoto
et al. [224] analyzed the mean squared atomic displacements (MSAD)
for each constituent element A,

∑= −
∈S

R RMSAD 1
| |

( ) ,
I S

I IA A
ideal 2

A (38)

for different fcc HEAs based on the supercell approach. Fig. 25(a) shows
their computed MSAD values for the principal elements in fcc CoCr-
FeMnNi revealing a clear dependence of the MSAD values on the in-
dividual chemical elements. Okamoto et al. [224] further suggested a
relation between the ab initio computed MSAD values and experimen-
tally derived yield strengths σYS (extrapolated to 0 K). For this relation,
a number of fcc Co–Cr–Fe–Mn–Ni suballoys was considered. Okamoto
et al. [224] empirically found that σYS normalized by the shear modulus

Fig. 18. Elastic constants for fcc (a) CoCrFeNi and (b) CoCrFeMnNi based on
EMTO-CPA calculations as well as VASP simulations employing the supercell
approach. The results for fcc CoCrFeNi indicated by “lit.” are from Ref. [187].
Source: Taken from Ref. [188].
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scales linearly with the square root of the MSAD values averaged over
the constituent elements as

= ⋅σ G k/ (Averaged MSAD) ,YS
1/2 (39)

where G denotes the shear modulus and k a fitting parameter. Fig. 25(b)
shows the application of Eq. (39) revealing an almost linear depen-
dence. Note that the experimental shear modulus G employed in Eq.
(39) could be alternatively derived from ab initio calculations of elastic
constants [cf. Eqs. (33) and (34)] as described in Section 4.1.

At elevated temperatures, the atoms are subject to thermal excita-
tions which further broadens the distribution of atomic bond lengths bIJ
from Eq. (37). Assuming a local harmonic potential for each atom, the
atoms vibrate around their mean positions and hence the bond length

Fig. 19. Impact of crystal structures on the computed Poisson's ratio (upper
panel), Cauchy pressure (middle panel), and Pugh's ratio (lower panel) for
AlxCoCrFeNi alloys as a function of Al fraction. The theoretically predicted fcc,
bcc and dual-phase bcc-fcc regions are highlighted in different colors. (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Source: Taken from Ref. [70].

Fig. 20. Ratio of bulk modulus and shear modulus, B/G ratio, for fcc Co–Cr–Fe–Ni alloys based on EMTO-CPA calculations. (For interpretation of the references to
color in this figure, the reader is referred to the web version of this article.)
Source: Taken from Ref. [194].

Fig. 21. Computed third-order elastic constants (TOECs) for four bcc refractory
HEAs and their relation to the valence electron concentration.
Source: Taken from Ref. [200].
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broadening σbA is modified by an additional thermal broadening
σ thermalA. If we assume that both contributions, i.e., the static local
distortions as well as the temperature and time-dependent fluctuations
due to thermal vibrations are independent from each other and random,
the standard deviation for the total bond fluctuations, σ totA, can be
written as

= +σ σ σ ,
btot

2
thermal
2 2

A A A (40)

where σ thermalA denotes the standard deviation (broadening) due to
lattice vibrations for the element A. Note that experiments are typically
carried out at ambient temperatures and hence sample the total
broadening σ totA.

An elegant way to include both static distortions as well as lattice
vibrations is to employ ab initio molecular dynamics (AIMD) simula-
tions and to evaluate the pair distribution function (PDF) (see Fig. 13)
which is sometimes also called partial radial distribution function
[135,137,139,140,184,202,216,220,222]. The PDF describes how the
element density varies as a function of distance from a given reference
particle. Employing AIMD calculations at finite T takes thermal ex-
citations into account and thus includes thermally induced variations of
the bond lengths. A separation of the chemical environment induced

intrinsic contributions, σb, and thermal excitation induced contribu-
tions, σthermal, to the overall lattice distortions requires, however, ad-
ditional static zero temperature calculations.

We finally note current developments enabling more efficient
computations of interatomic distances as compared to the supercell
approach. For example, Toda-Caraballo et al. [158] derived a model to
predict interatomic distances in HEAs/CCAs based on lattice constants
and bulk moduli of the constituent elements, i.e., parameters which are
accessible via routine ab initio calculations. The proposed model re-
vealed a reasonable predictability when compared to explicit supercell
calculations [158] exemplifying a promising route for further reducing
the required amount of computationally costly explicit supercell ab
initio calculations.

4.3. Twinning and Transformation-induced Plasticity — The Stacking Fault
Energy

One of the most important quantities linking macroscopic me-
chanical properties and quantities accessible via ab initio calculations is
the stacking fault energy (SFE). The SFE is the energy carried by the
interruption of the normal atomic stacking sequence as exemplified for

Fig. 22. Structures (a) without and (b) with tensile strain along the [001] direction. (c) Computed relation between the tensile stress and the applied tensile strain for
four refractory bcc HEAs/CCAs. A branching is observed for bcc NbTiVZr from the tetragonal to the orthorhombic deformation path at ∼ 12.7% strain.
Source: Adapted from Ref. [193].

Fig. 23. Wang et al. [216] investigated the correlation between strength and local electronic arrangement for refractory bcc HEAs. The figure exemplifies the
application of the cluster+glue-atom model to bcc HfNbTiZr. (a) Supercell view of the 14-coordinated cluster with its glue atoms (golden atoms at edge centers and
blue atoms in the vertex positions). (b) Bonding-charge-density isosurface (δρ=0.008 e−1Å) of configurational transformations of different configurations for the
cluster+glue-atom model. The inserted table presents the first four nearest neighbors of the center atom and the atoms in the cluster are written in red letters. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: Adapted from Ref. [216].
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the fcc structure in Fig. 26. It is known that the SFE determines whether
a material reveals transformation induced plasticity (TRIP) or twinning
induced plasticity (TWIP) [225,226]. Furthermore, a low SFE is known
to suppress dislocation climb and cross-slip [227], thereby modifying
dislocation gliding and possibly decreasing dislocation mobility.
Table 8 summarizes previous ab initio studies on the SFE for HEAs/CCAs
[106,188,228-235].

The (intrinsic) SFE, γSF, for the fcc structure is defined as

= −γ E E
A

,SF
SF fcc

int (41)

where ESF and Efcc represent the energies of the fcc structure with
(Fig. 26 right panel) and without (left panel) a stacking fault, respec-
tively, and Aint denotes the interface area over which the stacking fault
extends in the (111) plane. An ab initio SFE can be thus computed using
explicit supercell calculations with and without a stacking fault. It is
also possible to approximate γSF by using perfect bulk calculations only.
The schematic in Fig. 26 indicates that the stacking fault can be inter-
preted as a local hcp stacking sequence embedded in an fcc bulk
structure. This suggests that the SFE is related to an fcc-hcp energy
difference. Formally, the relevant equations can be derived based on
the axial interaction model [236]. Specifically, the SFE can be

approximated by considering the interactions of the (111) layers up to
the nearest neighbor layers as

≈
−

γ
E E

A
2( )

SF
hcp fcc

int (42)

or up to the next-nearest neighbor layers as

≈
+ −

γ
E E E

A
2 3

,SF
hcp dhcp fcc

int (43)

where Ehcp and Edhcp denote the energies of the hcp and dhcp structures,
respectively. The approach based on Eq. (42) is sometimes called the
axial-nearest-neighbor-Ising (ANNI) model and the one based on Eq.
(43) the axial-next-nearest-neighbor-Ising (ANNNI) model. The nota-
tion of “first order ANNNI” for Eq. (42) and “second order ANNNI” for
Eq. (43) appears to us to be somewhat more frequent. In any case, note
that a full treatment considering finite-temperature excitations requires
to replace the energies in Eqs. (41)–(43) by the respective free energies
including the relevant contributions.

Both CPA and supercell based approaches can be applied to re-
present chemical disorder and to compute the explicit SFE according to
Eq. (41) as well as the approximate SFEs according to Eqs. (42) and
(43). The main challenges in calculating SFEs are: (i) small changes on

Table 7
Collection of ab initio works focusing on local lattice distortions and the related impact on materials properties in HEAs. Note that works focusing on chemical
ordering and elastic properties are also collected in Tables 5 and 6, respectively.

Year Reference Alloys Methods Remarks

2013 Gao and Alman [220] Al1.3CoCrCuFeNi, HfNbTaTiZr, CuNiPPdPt VASP-MD PDF at finite T.
Huhn and Widom [135] MoNbTaW VASP-MC/MD PDF at finite T.
Zaddach et al. [188] Co–Cr–Fe–Mn–Ni VASP-SQS Impact on elastic constants.

2014 Widom et al. [137] MoNbTaW VASP-MC/MD PDF at finite T.

2015 Egami et al. [221] CoCrNi, CoCrFeNi Supercell Local atomic volume, atomic-level stresses.
Santodonato et al. [139] Al1.3CoCrCuFeNi (liquid) VASP-MD PDF at finite T.

2016 Gao et al. [222] HfNbTaTiVZr VASP-MD PDF at finite T.
Körmann and Sluiter [102] MoNbTaW VASP-SQS Impact on stability and bulk modulus.
Niu et al. [194] Co–Cr–Fe–Ni VASP-SQS Impact on elastic constants.
Oh et al. [223] CoCrFeMnNi VASP-SQS Element resolved displacements, relation to SSS.
Okamoto et al. [224] CoCrFeMnNi and equiatomic subsystems VASP-SQS Mean displacements, relation to SSS.
Widom [184] CrMoNbV, NbTiVZr VASP-MC/MD PDF at finite T.

2017 Song et al. [69] HfNbTaTiZr, MoNbTaVW, AlNbTiV, CoCrFeMnNi, and
variations

VASP-SQS Element resolved displacements, impact on stability and
bulk modulus.

Tian et al. [199] NbTiVZr, MoNbTiZr, MoNbTiVZr VASP-SQS Impact on elastic constants.
Wang et al. [216] MoNbTaW, MoNbVW, MoTaVW, HfNbTiZr, and others VASP-SC/MD Quantification and relation to SRO.

2018 Feng et al. [140] Al1.5CrFeMnTi (liquid) VASP-MD PDF at finite T.
Feng and Widom [202] NbTiVZr, CrMoNbV, HfNbTaZr, MoNbTaW VASP-MC/MD PDF at finite T, mean displacements.
Ye et al. [204] Co–Cr–Fe–Mn–Ni VASP-SQS Relation to local strain and SSS.
Zheng et al. [205] 5- and 6-equi-comp. Al–Hf–Mo–Nb–Ta–Ti–V–Zr CP2K-SC Impact on elastic constants.
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Fig. 24. (a) Projection of a SQS supercell model of fcc
CoCrFeMnNi onto the (100) plane. The black arrows in-
dicate the nearest-neighbor bonds for Mn atoms that are
used to extract the distribution of the local bond distor-
tions as shown in (b). In (b), the first-principles computed
lattice distortion histogram of Mn-bonds in CoCrFeMnNi is
based on 1500 evaluated Mn-bonds. The experimentally-
measured averaged distortion is indicated by the red solid
line. Although the mean distortion is rather small (<
0.5%), the range of local distortions — indicated by the
standard deviation — is significant (≈ 2%), as indicated in
(b). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of
this article.)
Source: Taken from Ref. [223].
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the order of a few ∼mJ/m2 (which typically translate into a few meV/
atom) can be decisive for the dominant deformation mechanism (TRIP
vs. TWIP) [225,226] and (ii) SFEs can be sensitive to thermal excita-
tions, i.e., the free energy versions of Eqs. (41)– (43) can become im-
portant [106,228]. A particular challenge for HEAs and CCAs that can
be addressed only with explicit SFE calculations is: (iii) the stacking
fault can locally induce chemical SRO or element-specific segregation
modifying thereby the SFE [237,238]. Local lattice relaxations induced
by the stacking fault can likewise only be studied with explicit SFE
calculations.

Zaddach et al. [188] conducted one of the first ab initio based SFE
studies for HEAs, focusing on CoCrFeMnNi and its subsystems with the
aim of designing low-SFE alloys. They did not actually apply any of the
Eqs. (41)–(43) but rather examined the SFE of these alloys based on an
empirical relation using experimental stacking fault probabilities and
ab initio derived elastic constants, which were determined using the
EMTO-CPA or the VASP-SQS approach at T=0K (cf. Section 4.1). They
showed how the SFE can be tuned by varying composition [reproduced
in Fig. 27(a)] and found that Co20Cr26Fe20Mn20Ni14 [denoted as the
“Best HEA” in Fig. 27(b)] shows an even lower SFE than the equiatomic
CoCrFeMnNi alloy and other known low-SFE alloys [Fig. 27(b)]. The
work of Zaddach et al. [188] highlights the material-design potential
inherent to ab initio calculations and the alloy design possibilities in-
herent to the compositional degree of freedom of HEAs. However, in
their study, besides using a semi-empirical approach to obtain the SFEs,
also thermal excitations (i.e., lattice vibrations, magnetic as well as
electronic excitations) were not taken into account.

An explicit SFE [Eq. (41)] including the impact of finite-temperature
magnetic excitations was first evaluated by Huang et al. [228] for the
CoCrFeMnNi alloy. They used the EMTO-CPA approach to model the
chemical disorder. To separate the periodic stacking faults from each
other they extended the respective dimension of their simulation cell.
The thermal expansion was taken into account by employing the ex-
perimental lattice constant at a given temperature. We note that the SFE
of fcc CoCrFeMnNi is negative at the theoretical T=0K lattice constant
as discussed below on Fig. 29 and in Section 4.4 on Fig. 30 (see also

Refs. [106,108]). As visible by comparing Fig. 28(b) and (c), the change
in the difference of the magnetic moments with temperature clearly
correlates with the temperature dependence of the SFE. Huang
et al. [228] also found that the local magnetic moments around the
stacking fault substantially depend on the distance from the stacking
fault [see Fig. 28(a)]. It should be emphasized that such properties
originating from the local electronic environment around a stacking
fault are not accessible via the first or second order ANNNI model, and
the results of Huang et al. [228] clearly highlight the advantage of
employing an explicit stacking fault supercell model for the ab initio
simulations.

The unstable SFE, i.e., the energy barrier between the structures
with and without a stacking fault, also provides important insights on
the deformation mechanisms of HEAs and CCAs and was computed by
Patriarca et al. [229]6, Beyramali Kivy and Asle Zaeem [230], Zhang
et al. [232], Zhao et al. [106], Alkan et al. [233], Huang et al. [234],
and Niu et al. [235] using explicit supercell calculations with and
without a stacking fault. For example, Beyramali Kivy and Asle
Zaeem [230] investigated the intrinsic and the unstable SFE of CoCr-
FeNi-based HEAs/CCAs using supercell models in which chemical ele-
ments were randomly distributed on the fcc atomic sites. They em-
ployed a 108-atom supercell consisting of nine fcc (111) layers and
performed non-spin-polarized calculations. One result was that the
addition of Mn and Cu reduces both the intrinsic and the unstable SFEs
of CoCrFeNi. We stress, however, that spin polarization and thermal
excitations, which were not included in that study, substantially affect
the energies of HEAs/CCAs, as described in Section 3 [101], and hence
also affect the SFEs.

The impact of lattice vibrations on SFEs was analyzed by Zhao
et al. [106]. They utilized the harmonic approximation in combination
with the finite-displacement method and inspected ten systems ranging
from pure Ni up to five-component HEAs including the CoCrFeMnNi
alloy. All calculations were performed with VASP and employing the

Fig. 25. (a) Computed MSAD values for the chemical ele-
ments in the CoCrFeMnNi alloy. (b) Correlation between 0 K
yield strength (normalized by the shear modulus) and local
lattice distortions quantified by the average MSAD values
over the chemical elements for various 3d fcc HEAs, revealing
a linear relation.
Source: Reproduced from Ref. [224] with the permission of
AIP Publishing.

Fig. 26. Sketch of a perfect fcc crystal structure (left)
and one with a stacking fault (SF; right). Different
stacking sequences are represented by different
colors. The highlighted ABAB order around the
stacking fault corresponds to a local hcp sequence.
This suggests that the SFE can be approximated by
an fcc–hcp energy difference [Eq. (41)]. Formally,
the axial Ising model can be used to derive the ap-
proximate relation. (For interpretation of the refer-
ences to color in this figure legend, the reader is
referred to the web version of this article.)

6 Detailed computational conditions such as the number of atoms in the su-
percell models were not given in Ref. [229].
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explicit stacking fault approach as well as the first and second order
ANNNI model. Fig. 29(a) shows the variation of the SFE for the ten
investigated alloys and indicates again the large compositional freedom
to tune SFEs. Zhao et al. [106] further verified the performance of the
first and second order ANNNI models in comparison with the supercell
approach [Fig. 29(a)]. Fig. 29(b)–(g) further reveal the temperature
dependent free energy contributions to the hcp-fcc phase stability and
SFE [within the first order ANNNI model, Eq. (42)] for two alloys,
CoCrNi and CoFeNi. The two examples demonstrate that the vibrational
contribution to the SFE can be significant and can even induce a sign-
change in the phase stability (for CoCrNi at around ambient tempera-
tures). For this example, the change of SFE due to thermal excitations
can amount up to 60mJ/m2. However, if Cr is replaced with Fe, the
situation for the CoFeNi alloy is now completely reversed compared to
CoCrNi; the SFE now decreases with temperature and moreover the
variation is much smaller and amounts to less than 10mJ/m2. The
examples highlight that the neglect of lattice excitations can result in
quantitatively and qualitatively wrong SFE predictions.

Despite the recent progress, SFE simulations for many HEAs as well
as a complete consideration of all thermal excitations (i.e., electronic,
magnetic, lattice vibrations) are still lacking. The inclusion of higher-
order coupling terms into finite-temperature SFE predictions such as,

e.g., the coupling between lattice vibrations and electronic free energies
by performing explicit ab initio molecular dynamics simulations, has
only recently become possible for pure elements. The extension towards
a complete finite-temperature description of SFEs of magnetic alloys is
one of the current challenges in ab initio modeling.

4.4. Multi-phase High Entropy and Compositionally Complex Alloys

Until recently, most of the works on HEAs/CCAs aimed at single
phase solid solutions. Li et al. [239] proposed an alternative design
strategy of HEAs/CCAs based on their experimental finding of a dual-
phase (DP) HEA7 consisting of the fcc and the hcp phases, namely the
Co10Cr10Fe50Mn30 alloy. This alloy revealed the TRIP effect as well as
enhanced mechanical properties.

In close analogy to the discussion for SFEs in Section 4.3, the hcp-fcc
energy difference can be interpreted as an indicator whether a dual-
phase alloy is likely to form or not. In Ref. [108], a combined ab initio
and experimental work was proposed to reveal DP-HEAs. First, EMTO-

Table 8
Collection of ab initio works on stacking fault energies (SFEs) for HEAs/CCAs. SF stands for “stacking fault”. NM indicates that the SFE calculations are done under the
non-magnetic condition. Unless remarked, the calculations are done without including any thermal excitations.

Year Reference Alloys Method SFE method Remarks

2013 Zaddach et al. [188] FeNi, CrFeNi, CoCrFeNi,
CoCrFeMnNi, and variations

EMTO-CPA
VASP-SQS

Ab initio elastic constants +
experimental SF probabilities

2015 Huang et al. [228] CoCrFeMnNi EMTO-CPA Explicit SF Magnetic excitations included, lattice
excitations indirectly via experimental lattice
constant.

2016 Patriarca et al. [229] CoCrFeMnNi VASP-SQS Explicit SF Unstable SFE, Computational details not
provided.

2017 Beyramali Kivy and Asle
Zaeem [230]

CoCrFeNi + additions of
Cu,Mn,Al,Ti,Mo

VASP + random
supercell

Explicit SF Unstable SFE, NM

Zhang et al. [231] CoCrNi, CoCrFeNi VASP-SQS Explicit SF NM
Zhang et al. [232] CoCrNi VASP + random

supercell
Explicit SF, ANNNI Unstable SFE, NM

Zhao et al. [106] CoCrFeMnNi, CoCrFeNiPd, and
equiatomic subsystems

VASP-SQS Explicit SF, ANNNI Unstable SFE, Phonon calculations.

2018 Alkan et al. [233] CoCrFeMnNi VASP-SQS Explicit SF Unstable SFE, Relation to strain hardening.
Huang et al. [234] CoCrNi, CoCrMnNi, CoCrFeNi,

CoCrFeMnNi
EMTO-CPA Explicit SF Unstable SFE, Relation to critical resolves shear

stress.
Niu et al. [235] CoCrNi, CoCrFeMnNi VASP-SQS Explicit SF Unstable SFE, Impact of magnetism, thermal

excitations.

Fig. 27. (a) Variation of the SFE when going from pure Ni towards the 5-component CoCrFeMnNi alloy. (b) Comparison of the SFE for the CoCrFeMnNi alloy,
conventional alloys, and Co20Cr26Fe20Mn20Ni14 denoted as “Best HEA”.
Source: Taken from Ref. [188].

7 According to the present definition of HEAs as single-phase materials it
would be more appropriate to use the notation of a CCA for the “dual-phase
HEA” of Li et al. [239].
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CPA calculations were performed to determine the phase stabilities of
Co20Cr20Fe40−xMn20Nix (x=0–20 at.%) HEAs and to explore pro-
mising compositions. The calculations included thermal excitations of
lattice vibrations and magnetic fluctuations via the Debye model and
the mean field approach, respectively, as discussed in Section 3.3 and in
Ref. [101]. Fig. 30 (a) reveals the hcp-fcc Gibbs energy difference for
Co20Cr20Fe40−xMn20Nix alloys. The impact of thermal magnetic and
vibration excitations is highlighted by the shaded green and blue areas,
respectively. The simulations performed at the theoretical and experi-
mental lattice constant highlight the sensitivity of the hcp-fcc energy
difference with respect to the chosen lattice parameter. It can be also
seen that the finite-temperature contributions of lattice vibrations and
magnetic fluctuations substantially affect the phase stability of the
Co20Cr20Fe40−xMn20Nix alloys. In order to select promising DP HEAs,
the hcp-fcc Gibbs energy difference of the previously reported
Co10Cr10Fe50Mn30 served as a reference energy. According to the si-
mulations, three alloys, namely the CoCrFeMnNi alloy,
Co20Cr20Fe34Mn20Ni6, as well as Co20Cr20Fe40Mn20, were selected and
synthesized, and their mechanical properties experimentally evaluated.
Fig. 30 shows the XRD patterns for the three alloys including the non-

equiatomic Co20Cr20Fe34Mn20Ni6 (middle row). The latter alloy indeed
exhibits both phases, hcp and fcc, reveals the TRIP effect and much
higher ultimate tensile strength as well as strain-hardening ability
compared to the corresponding equiatomic CoCrFeMnNi alloy [108].

This combined experimental–ab initio work highlights the design
potential for mechanical properties by introducing the TRIP-DP effect
into HEAs and once more the predictive power of ab initio simulations
in exploring the compositional space for alloy design purposes.

5. Summary and Outlook

We have provided a comprehensive review of the exponentially
growing ab initio efforts in simulating multicomponent alloys with
multiple principal elements, specifically focusing on high entropy alloys
(HEAs) and compositionally complex alloys (CCAs). Even though in-
vestigations of these materials classes are generally dominated by ex-
periments, a considerable number of material properties and atomistic
quantities have also been explored by ab initio simulations utilizing in
particular density functional theory (DFT). This is impressively sum-
marized in Table 9 in the Appendix where all HEAs and CCAs (and

Fig. 28. (a) Dependence of local magnetic moments on the distance from the stacking fault in the CoCrFeMnNi alloy where N denotes the N-th nearest-neighbor layer
from the stacking fault (see also sketch in Fig. 26). The differences of magnetic moments to the bulk values are shown. (b) Temperature dependence of the local
magnetic moments in the layer close to the SF, where the temperature effect originates from the lattice expansion taken from experiment. (c) Temperature de-
pendence of the computed SFEs. (d) Separation of the SFE into magnetic, chemical, and strain contributions. Note that the chemical contribution, γchem, indicates the
ab initio derived hcp–fcc energy differences at the given experimental lattice constant.
Source: Adapted from Ref. [228].

Fig. 29. (a) SFE at 0 K for a set of ten
alloys. Calculations were based on su-
percell models with explicit stacking
faults (denoted as “Supercell”), as well
as the first and the second order ANNNI
model denoted in the figure as “AIM1”
and “AIM2”. (b)–(e) Electronic and vi-
brational free energy difference (de-
noted as ΔFele and ΔFph) between the
hcp and fcc phase. (f) and (g) show the
computed SFEs for NiCoCr and NiCoFe
alloys.
Source: Adapted from Ref. [106].
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related lower order systems) are listed that have been investigated so
far with DFT. In this review we have not only summarized the previous
research on these alloys, but we have also explained the state-of-the-art
DFT methodologies used to explore thermodynamic and mechanical
properties. We stress that these computational tools and concepts are
not limited to HEAs and CCAs but are likewise applicable to ordered
alloys, conventional random solid solutions, and to multicomponent
alloys in general.

The main approximation within DFT relates to the treatment of the
exchange-correlation functional. Out of the two standard approxima-
tions, LDA and GGA, the vast majority of previous works on HEAs and
CCAs have employed GGA. For magnetic materials, this is a reasonable
choice because of the well-known failure of LDA to predict the ground
state of pure iron. However, at least for non-magnetic alloys, it would
be desirable to evaluate both functionals in order to clarify whether a
similar ab initio confidence interval for experimental data exists for
HEAs and CCAs as it does for unary elements and ordered compounds.

One of the most important concepts for practical DFT calculations of
random solid solutions is the assumption of ideal mixing, which can be
treated using established methodologies based on either a supercell
approach or the coherent potential approximation (CPA). The CPA is a
very computationally efficient framework as it enables the simulation
of disordered alloys using only the primitive cell. It lacks, however, the
inclusion of local lattice distortions — one of the originally proposed
core effects of HEAs — and thus cannot be applied to include relaxation
effects or to extract interatomic forces for the computation of lattice
vibrations. In contrast, lattice distortions can be straightforwardly in-
cluded in the computationally more expensive supercell-based ap-
proaches (SQS, Monte Carlo, molecular dynamics, phonon calcula-
tions). For some alloys, the impact of distortions can be significant for
various properties (e.g., formation energies), whereas other alloys are
largely unaffected. Some properties, such as elastic constants, tend not
to be significantly impacted in any alloy. For wide-range studies, CPA is
the preferable choice in terms of computational efficiency, but for
quantitative predictions the impact of lattice distortions may require
subsequent supercell calculations.

The main advantage of the ideal mixing assumption is that many
quantities such as, e.g., elastic or finite-temperature properties, can be
derived directly from the ground state energy surface; of course this is
limited by the approximation of the chosen thermodynamic concept.
Finite-temperature excitations can result in important entropy con-
tributions and can be decisive for determining phase stabilities.
Excitations related to electrons (number of electron-hole pairs) and
magnetic excitations (number of quantum spin states) can be

understood in a nice analogy to chemical disorder (number of de-
generated configurations). For lattice vibrations the approximate
Debye-Grüneisen model is highly efficient and provides reasonable
accuracy. Only recent advances in modeling vibrations in random al-
loys have resulted in explicit phonon calculations showing, for example,
a strong broadening of the phonon dispersion at higher frequencies. The
inclusion of anharmonic contributions for HEAs and CCAs, in particular
anharmonic free energies, is still in its infancy. Recent advances for
unaries and selected ordered compounds using sophisticated molecular-
dynamics based methods reveal, however, promising routes in this di-
rection.

There is a large class of HEAs and CCAs with magnetism, which thus
requires the spin-polarized version of DFT. We stress in particular that
realistically modeling alloys in their paramagnetic state, i.e., above the
Curie temperature, is not generally possible by resorting to non-spin-
polarized DFT calculations. In most cases, local magnetic moments are
preserved, even in the paramagnetic regime, and are disordered. The
concepts within DFT to model magnetic disorder are analogous to those
for chemical disorder and thus commonly based on the supercell or CPA
formalism. In order to establish the most realistic magnetic state for
practical DFT simulations the knowledge about the magnetic order-
disorder temperature (i.e., the Curie or Néel temperature) is crucial.
Different concepts to determine these values from DFT and their ap-
plications to HEAs and CCAs in previous works have been discussed.
The modeling of magnetic excitations for magnetic free energy con-
tributions for HEAs and CCAs is so far mainly based on rather ap-
proximative mean field theories suggesting a large potential for further
method development.

It is challenging to determine the phase stability regions of HEAs
and CCAs from DFT. The reason is the possibility of decomposition into
phases at different, generally unknown compositions. If the competing
phases and their compositions are known, e.g., from phase diagram
calculations or experiments, or can be deduced from semi-empirical
selection rules, then the described DFT based techniques can be used to
compute the Gibbs energy for each of the relevant phases and the most
stable phase(s) can be determined. In such a case, approximate order-
disorder transition temperatures can also be straightforwardly derived
utilizing the ideal mixing approximation. The main challenge, however,
is to select the competing phases. A brute-force approach is to consider
a large pool of subsystems, e.g., to take for a given HEA a large number
of binary and ternary ordered and disordered phases into consideration.
This approach is computationally costly and system dependent. One of
the most promising alternatives is the combination of DFT with ther-
modynamic approaches such as CALPHAD. Such a coupling is of mutual

Fig. 30. (a) Ab initio computed hcp-fcc Gibbs energy
difference for Co20Cr20Fe40−xMn20Nix alloys [108].
Calculations were performed at the theoretical
(∼3.52 Å) and experimental lattice constant
(∼3.60 Å). The hcp-fcc energy difference of the re-
ference Cr10Co10Fe50Mn30 alloy is indicated by a
green dashed line. (b) Complementary experiments
in Ref. [108] confirmed that Co20Cr20Fe34Mn20Ni6 is
a hcp-fcc dual-phase alloy consistently with the
theoretical predictions. (For interpretation of the
references to color in this figure legend, the reader is
referred to the web version of this article.)
Source: Adapted from Ref. [108]
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benefit — many currently available thermodynamic databases are not
yet optimized for HEAs and CCAs and lack information, e.g., on many
ternary alloys required for a reliable extrapolation to multi-principal
element alloys. DFT computations can provide the required information
and thus pave the way for the next-generation of HEA/CCA thermo-
dynamic databases.

For order-disorder transitions that are not accompanied by a
structural transition, DFT based techniques are available that enable the
prediction of phase decomposition without an a priori knowledge of the
relevant phases. These techniques go beyond the ideal mixing approx-
imation by taking chemical short-range order into account. This renders
them conceptionally and computationally challenging. Different
schemes have been reviewed with a focus on CPA-based (GPM method,
S2-formalism) and supercell-based approaches (e.g., cluster expansion).
Similar advantages and disadvantages apply as discussed for the re-
presentation of chemical disorder, mainly: high computational effi-
ciency for CPA calculations and the possibility to include local lattice
distortions in the supercell calculations. The techniques can be used to
compute ordering tendencies, chemical short-range order, accurate
order-disorder transition temperatures, and phase decomposition of the
solid solution. The strength of these techniques is demonstrated by the
various applications to different alloy systems discussed and we expect
further developments in these directions.

We have shown how various mechanical properties, which can be
linked to the alloys' strength and plasticity, are accessible via DFT si-
mulations. Elastic constants for example are readily accessible from
DFT (if finite-temperature excitations are neglected) and consequently a
large portion of the previous DFT studies on HEAs and CCAs has been
devoted to these materials properties. Theories for solid solution
strengthening provide a further link to DFT calculations, e.g., via the
local misfit volume. Recent works that suggest a correlation between
local lattice distortions and the solid solution strengthening contribu-
tion to the yield strength have been discussed, further corroborating the
potential of DFT computations for accessing mechanical properties. The
present research in this direction appears promising and encourages the
development of a stronger connection between ab initio calculations and
models for solid solutions strengthening. The SFE, a central quantity
linking DFT calculations to macroscopic mechanical behavior, is also
calculable by DFT simulations. We have discussed how temperature
effects can be included in such calculations and how the SFE can vary
under finite-temperature excitations. Based on this, more recent design
strategies of dual-phase alloys by tuning the fcc-hcp phase stability have
been reviewed. This opens a path to new classes of multiple-phase
CCAs.

State-of-the-art thermodynamic concepts and computational tech-
niques have impressively paved the way to address various materials
properties of multi-principal element alloys by ab initio calculations.
The success of DFT to simulate key properties for these alloys is de-
monstrated by the present exponential increase in the number of DFT-
based research papers for HEAs and CCAs. A number of encouraging
directions to improve and strengthen previous thermodynamic and si-
mulation concepts have been pointed out above. In the following, we
summarize some more research topics which can be addressed by

means of DFT, but will require new method developments.
Kinetic aspects of multicomponent alloys such as the often raised

sluggish diffusion effect in HEAs — one of the originally proposed core
effects — could significantly influence creep properties in practical
(long-timescale) applications, but are still poorly understood. This is
mainly due to the fact that the required DFT methods to address ki-
netics in these alloys are still in their infancy. Progress has been made
for random binaries, e.g., by applying cluster expansion techniques to
capture the kinetic parameters in combination with kinetic Monte Carlo
techniques. Such methods — although not yet advanced enough to be
applicable to multi-principal element alloys — could in the future
provide access to many so-far unexplored and unknown kinetic prop-
erties of HEAs and CCAs.

Oxidation and corrosion resistance is another important factor de-
termining the practical applicability of HEAs and CCAs under realistic
conditions. DFT-based investigations in this direction would require a
number of methodological developments such as the extension of bulk
stabilities (discussed in the present review) to surface stabilities and the
computation of oxide formation under corrosive environments in-
cluding, e.g., electric fields. Related methodological advances — al-
though very challenging — would certainly fall on fertile ground in the
field of HEAs and CCAs.

In general, it is our view that for specific materials properties, e.g.,
strength or corrosion resistance, highly-tuned established alloys exist
(e.g., high-strength steels) which are likely superior for a given specific
property than any HEA or CCA. We therefore see the strongest potential
of multi-principal element alloys in general not in overcoming the
performance for one particular materials property against established
alloys, but in the tuning and optimization of multiple materials prop-
erties by exploring the immense compositional space. To this end, we
envision a multiple optimization of HEAs and CCAs to design alloys
with a well-defined set of appreciative properties by means of ab initio
simulation techniques which can quantitatively predict various mate-
rials properties.

Acknowledgment

We gratefully acknowledge K. Albe, B. Alling, M. Gao, L. Huber, D.
Irving, D. Raabe, M. Selleby, S.L. Shang, P. Singh, M.H.F. Sluiter, F.
Tian, W.Y. Wang, M. Widom, and X. Zhang for fruitful discussions.

Y.I. acknowledges the Grant-in-Aid for Scientific Research on
Innovative Areas “Nano Informatics” (Grant No. 25106005) from the
Japan Society for the Promotion of Science (JSPS), the Funding by the
Ministry of Education, Culture, Sports, Science and Technology
(MEXT), Japan, through Elements Strategy Initiative for Structural
Materials (ESISM) of Kyoto University, and the Grant-in-Aid for Young
Scientist (B) of JSPS (Grant No.16K18228). Funding from the Deutsche
Forschungsgemeinschaft (SPP 1568, SPP 2006), from the Netherlands
Organisation for Scientific Research (NWO) under VIDI grant 15707
and the European Research Council (ERC) under the European Union's
Horizon 2020 research and innovation programme (Grant agreement
No. 639211) is gratefully acknowledged.

Appendix A

In Table 9, we provide a comprehensive overview over all HEAs and CCAs investigated in the literature until the present (mid-2018). We have
also included binaries and ternaries when they were investigated within any of the HEA or CCA studies. Note that this does not imply a complete
overview over all binaries and ternaries studied by means of DFT in the literature so far. Additionally, we provide a set of properties to facilitate the
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search through the database. The complete materials-property list in Table 9 contains more than 200 alloys and more than 500 materials-property
entries.

Table 9
Summary of alloys and properties that have been investigated with ab initio until mid-2018. Note that only those binary and ternary alloys
have been taken into account that were part of HEA/CCA studies. We also refer to the study of Lederer et al. [164] where the phase stability
of approximately 1800 equiatomic HEAs/CCAs from binaries up to quinaries was calculated based on the AFLOW database [186].

Alloy Property References

AgAuCu Chemical SRO Khan et al. [160]
Magnetic properties Khan et al. [160]

AgxCoCryFeNi Magnetic properties Körmann et al. [142]

AgCoCuFeNi Magnetic properties Huang et al. [146]

AgPdRh Chemical SRO Khan et al. [160]
Magnetic properties Khan et al. [160]

AlCoCrCuFeNi Magnetic properties Huang et al. [146]

Al1.3CoCrCuFeNi Chemical SRO Santodonato et al. [139], Gao and Alman [220]
Diffusion Gao and Alman [220]
Local lattice distortions Santodonato et al. [139], Gao and Alman [220]

AlxCoCrCuFeNi SFE Beyramali Kivy and Asle Zaeem [230]

AlCoCrCuFeNiSi Magnetic properties Huang et al. [146]

AlCoCrCuNi Magnetic properties Huang et al. [146]

AlCoCrFeMn Magnetic properties Huang et al. [146]

AlxCoCrFeMn Chemical SRO Singh et al. [171]
Elastic properties Huang et al. [145]
Magnetic properties Huang et al. [145], Singh et al. [171]
Phase stability Huang et al. [145], Singh et al. [171]

AlxCoCrFeMnNi Finite-T excitations Sun et al. [72]
Magnetic properties Sun et al. [72]
Phase stability Sun et al. [72]

Al0.3CoCrFeMo0.1Ni SFE Beyramali Kivy and Asle Zaeem [230]

AlCoCrFeNi Chemical LRO Singh et al. [156]
Chemical SRO Singh et al. [156]
Magnetic properties Huang et al. [146]
Phase stability Singh et al. [156]

AlCoCrFeNix Magnetic properties Jasiewicz et al. [240]
Phase stability Jasiewicz et al. [240]

AlCoCrFexNi Magnetic properties Jasiewicz et al. [240]
Phase stability Jasiewicz et al. [240]

AlCoCrxFeNi Magnetic properties Jasiewicz et al. [240]
Phase stability Jasiewicz et al. [240]

AlCoxCrFeNi Magnetic properties Jasiewicz et al. [240]
Phase stability Jasiewicz et al. [240]

Al0.25CoCrFeNi Magnetic properties Körmann et al. [142]

AlxCoCrFeNi Chemical LRO Singh et al. [156], Ogura et al. [166]
Chemical SRO Singh et al. [156]
Elastic properties Tian et al. [70]
Finite-T excitations Tian et al. [70]
Magnetic properties Huang et al. [143], Ogura et al. [166], Jasiewicz et al. [240]

(continued on next page)
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Table 9 (continued)

Alloy Property References

Phase stability Tian et al. [70], Leong et al. [84], Singh et al. [156], Ogura
et al. [166], Jasiewicz et al. [240]

SFE Beyramali Kivy and Asle Zaeem [230]

Al–Co–Cr–Fe–Ni Chemical SRO Ma et al. [167]
Local lattice distortions Ma et al. [167]

AlCoCrFeNiTi Magnetic properties Huang et al. [146]

Al0.3CoCrFeNiTi0.1 SFE Beyramali Kivy and Asle Zaeem [230]

AlCoCuFeNi Magnetic properties Huang et al. [146]

AlCoCuFeNiSi Magnetic properties Huang et al. [146]

AlCoCuFeNiTi Magnetic properties Huang et al. [146]

AlCoCuNi Magnetic properties Huang et al. [146]

AlCoFeNi Magnetic properties Huang et al. [146]

AlxCoFeNiSix Chemical SRO Feng et al. [161]
Elastic properties Feng et al. [161]
Local lattice distortions Feng et al. [161]
Phase stability Feng et al. [161]

Al–Co–Fe–Ni–Ti Magnetic properties Nguyen et al. [165]
Phase stability Nguyen et al. [165]

AlCrCuFeNi Magnetic properties Huang et al. [146]

AlCrFe Magnetic properties Huang et al. [146]

AlCrFeMn Magnetic properties Huang et al. [146]

Al1.5CrFeMnTi Chemical LRO Feng et al. [140]
Chemical SRO Feng et al. [140]
Diffusion Feng et al. [140]
Local lattice distortions Feng et al. [140]
Phase stability Feng et al. [140]

AlCrFeMnV Magnetic properties Huang et al. [146]

AlCrFeV Magnetic properties Huang et al. [146]

AlCrMn Magnetic properties Huang et al. [146]

AlCrMnTi Magnetic properties Huang et al. [146]

AlCrMnTiV Magnetic properties Huang et al. [146]

AlCrMnV Magnetic properties Huang et al. [146]

AlCrMoNbVW Magnetic properties Huang et al. [146]

AlCrNbVW Magnetic properties Huang et al. [146]

AlCrV Magnetic properties Huang et al. [146]

AlCuFeNiTi Magnetic properties Huang et al. [146]

AlCuNi Magnetic properties Huang et al. [146]

AlFeMnV Magnetic properties Huang et al. [146]

Al–Fe–Ni Magnetic properties Nguyen et al. [165]
(continued on next page)
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Table 9 (continued)

Alloy Property References

Phase stability Nguyen et al. [165]

AlFeTiV Magnetic properties Huang et al. [146]

AlFeV Magnetic properties Huang et al. [146]

Al0.05Hf0.25Sc0.20Ti0.25Zr0.25 Chemical LRO Rogal et al. [66]
Finite-T excitations Rogal et al. [66]
Phase stability Rogal et al. [66]

Al0.15Hf0.25Sc0.10Ti0.25Zr0.25 Chemical LRO Rogal et al. [66]
Elastic properties Rogal et al. [66]
Finite-T excitations Rogal et al. [66]
Phase stability Rogal et al. [66]

AlxHf1−xNbTaTiZr Elastic properties Li et al. [192]

AlMnTiV Magnetic properties Huang et al. [146]

AlMnV Magnetic properties Huang et al. [146]

AlMoNbTiV Elastic properties Zheng et al. [205]
Local lattice distortions Zheng et al. [205]

AlxMoNbTiV Elastic properties Cao et al. [191]
Phase stability Cao et al. [191]

AlMoNbV Elastic properties Ge et al. [196]
Finite-T excitations Ge et al. [196]
Magnetic properties Huang et al. [146]

Al0.05Mo0.40Ta0.05Ti0.05W0.40Zr0.05 Chemical SRO Singh et al. [170]

AlNbTaTiZr Elastic properties Li et al. [192]

Al–Nb–Ti Chemical LRO Singh et al. [156]
Chemical SRO Singh et al. [156]
Phase stability Singh et al. [156]

AlNbTiV Elastic properties Song et al. [69]
Local lattice distortions Song et al. [69]

AlNbVW Magnetic properties Huang et al. [146]

AuxCoCryFeNi Magnetic properties Körmann et al. [142]

AuPt Chemical LRO Niu et al. [174]
Phase stability Niu et al. [174]

Be0.225Cu0.125Ni0.10Ti0.14Zr0.41 Chemical SRO Wang et al. [216]

CoCr Elastic properties Ye et al. [204]
Local lattice distortions Chen et al. [113], Ye et al. [204]
Phase stability Chen et al. [113]
Point defects Chen et al. [113]

CoCrCuFeMn Magnetic properties Huang et al. [146]
Phase stability Wu et al. [33]

CoCrCuFeMnNi Magnetic properties Huang et al. [146]
SFE Beyramali Kivy and Asle Zaeem [230]

CoCrCuFeNi Chemical LRO Wu et al. [155]
Chemical SRO Wu et al. [155]
Elastic properties Huang et al. [144]

(continued on next page)

Y. Ikeda et al. Materials Characterization 147 (2019) 464–511

496



Table 9 (continued)

Alloy Property References

Finite-T excitations Huang et al. [144], Wu et al. [155]
Magnetic properties Huang et al. [144, 146]
Phase stability Huang et al. [144], Wu et al. [155]
SFE Beyramali Kivy and Asle Zaeem [230]

CoCrCu0.5FeNi SFE Beyramali Kivy and Asle Zaeem [230]

CoCrxCuyFeNi Magnetic properties Körmann et al. [142]

CoCrCuFeNiTi Elastic properties Tian et al. [187]
Magnetic properties Tian et al. [187]

CoCrCuFeNiTi0.5 SFE Beyramali Kivy and Asle Zaeem [230]

CoCrCuFeNiTix Elastic properties Tian et al. [187]
Magnetic properties Tian et al. [187]

CoCrFe Elastic properties Ye et al. [204]
Local lattice distortions Ye et al. [204]

CoCrFeGaNi Elastic properties Huang et al. [197]
Finite-T excitations Huang et al. [197]
Magnetic properties Huang et al. [143,197]
Phase stability Huang et al. [197]

CoCrFeGeMnNi Magnetic properties Huang et al. [146]

CoCrFeMn Chemical SRO Singh et al. [171]

Co0.1Cr0.1Fe0.4Mn0.4 Elastic properties Li et al. [201]

CoCrFeMnNi Elastic properties Song et al. [69], Ma et al. [101], Ge et al. [103], Zaddach
et al. [188], Li et al. [201], Ye et al. [204], Patriarca et al. [229]

Finite-T excitations Sun et al. [72], Ma et al. [101], Ge et al. [103], Zhao et al. [106],
Huang et al. [228], Niu et al. [235]

Local lattice distortions Wu et al. [33], Song et al. [69], Zaddach et al. [188], Ye
et al. [204], Oh et al. [223], Okamoto et al. [224]

Magnetic properties Wu et al. [33], Song et al. [69], Sun et al. [72], Ma et al. [101], Ge
et al. [103], Körmann et al. [142], Huang et al. [146, 228], Niu
et al. [235], Jin et al. [241], Schneeweiss et al. [242]

Phase stability Troparevsky et al. [17], Wu et al. [33], Sun et al. [72], Ma
et al. [101], Niu et al. [235], Huang et al. [243]

SFE Zhao et al. [106], Zaddach et al. [188], Huang et al. [228],
Patriarca et al. [229], Beyramali Kivy and Asle Zaeem [230], Alkan
et al. [233], Huang et al. [234], Niu et al. [235], Huang et al. [243]

Co0.20Cr0.14Fe0.20Mn0.20Ni0.26 Elastic properties Zaddach et al. [188]
SFE Zaddach et al. [188]

Co0.20Cr0.17Fe0.20Mn0.20Ni0.23 Elastic properties Zaddach et al. [188]
SFE Zaddach et al. [188]

Co0.20Cr0.26Fe0.20Mn0.20Ni0.14 Elastic properties Zaddach et al. [188]
SFE Zaddach et al. [188]

Co0.215Cr0.215Fe0.215Mn0.215Ni0.14 Elastic properties Zaddach et al. [188]
SFE Zaddach et al. [188]

CoCrFeMnNiTi Magnetic properties Huang et al. [146]

CoCrFeMnNiV Magnetic properties Huang et al. [146]

CoCrFeNi Chemical LRO Niu et al. [154], Singh et al. [156]
Chemical SRO Singh et al. [156], Tamm et al. [157]
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Diffusion Middleburgh et al. [112], Zhao et al. [114]
Elastic properties Song et al. [69], Ge et al. [103], Tian et al. [187], Zaddach

et al. [188], Li et al. [201], Ye et al. [204]
Finite-T excitations Gao et al. [24, 25], Ge et al. [103], Zhao et al. [106], Jin

et al. [127]
Local lattice distortions Wu et al. [33], Song et al. [69], Chen et al. [113], Zaddach

et al. [188], Ye et al. [204], Egami et al. [221], Okamoto
et al. [224]

Magnetic properties Troparevsky et al. [17], Wu et al. [33], Song et al. [69], Ge
et al. [103], Chen et al. [113], Körmann et al. [142], Huang et al.
[143, 146], Niu et al. [154], Tamm et al. [157], Tian et al. [187],
Jin et al. [241]

Phase stability Troparevsky et al. [17], Gao et al. [24, 25], Wu et al. [33], Leong
et al. [84], Chen et al. [113], Niu et al. [154], Singh et al. [156],
Tamm et al. [157], Zhang et al. [231, 244]

Point defects Middleburgh et al. [112], Chen et al. [113], Zhao et al. [114]
SFE Zhao et al. [106], Zaddach et al. [188], Beyramali Kivy and Asle

Zaeem [230], Zhang et al. [231], Huang et al. [234]

CoCrxFeNi Magnetic properties Körmann et al. [142]

Co–Cr–Fe–Ni Elastic properties Niu et al. [194]
Magnetic properties Niu et al. [194]
Phase stability Niu et al. [194]

CoCrFeNiPd Finite-T excitations Zhao et al. [106]
Local lattice distortions Wu et al. [33]
Magnetic properties Wu et al. [33], Huang et al. [146], Jin et al. [241]
Phase stability Wu et al. [33]
SFE Zhao et al. [106]

CoCrFeNiPdx Phase stability Leong et al. [84]

CoCrxFeNiPdy Magnetic properties Körmann et al. [142]

CoCrFeNiTi Elastic properties Tian et al. [187]
Magnetic properties Huang et al. [146], Tian et al. [187]

CoCrFeNiTix Phase stability Leong et al. [84]

CoCrFeNiVx Phase stability Leong et al. [84]

Co0.1Cr0.1Fe0.8−xMnx Phase stability Huang et al. [243]
SFE Huang et al. [243]

CoCrFe1−xMnNix Finite-T excitations Li et al. [108]
Phase stability Li et al. [108]

CoCrMnNi Elastic properties Ge et al. [103]
Finite-T excitations Ge et al. [103]
Local lattice distortions Okamoto et al. [224]
Magnetic properties Ge et al. [103]
SFE Huang et al. [234]

CoCrMnNiV Phase stability Troparevsky et al. [17], Wu et al. [33]

CoCrMoW Elastic properties Tian et al. [198]
Magnetic properties Tian et al. [198]
Phase stability Tian et al. [198]

CoCrNi Chemical SRO Tamm et al. [157], Ding et al. [245]
Diffusion Zhao et al. [114]
Elastic properties Ge et al. [103], Li et al. [201], Ye et al. [204]

(continued on next page)

Y. Ikeda et al. Materials Characterization 147 (2019) 464–511

498



Table 9 (continued)

Alloy Property References

Finite-T excitations Ge et al. [103], Zhao et al. [106], Zhang et al. [232], Niu
et al. [235]

Local lattice distortions Ye et al. [204], Okamoto et al. [224], Zhang et al. [232]
Magnetic properties Wu et al. [33], Ge et al. [103], Huang et al. [146], Tamm

et al. [157], Zhang et al. [232], Niu et al. [235], Jin et al. [241]
Phase stability Tamm et al. [157], Zhang et al. [231, 232], Niu et al. [235], Huang

et al. [243], Ding et al. [245]
Point defects Zhao et al. [114]
SFE Zhao et al. [106], Zhang et al. [231, 232], Huang et al. [234], Niu

et al. [235], Huang et al. [243], Ding et al. [245]

CoCuFeMnNi Elastic properties Huang et al. [144]
Finite-T excitations Huang et al. [144]
Magnetic properties Huang et al. [144,146]
Phase stability Huang et al. [144]

CoCuFeMoNi Magnetic properties Huang et al. [146]

CoCuFeNi Elastic properties Huang et al. [144]
Finite-T excitations Huang et al. [144]
Magnetic properties Huang et al. [144, 146]
Phase stability Huang et al. [144]

CoCuFeNiPt Magnetic properties Huang et al. [146]

CoCuFeNiV Elastic properties Huang et al. [144]
Finite-T excitations Huang et al. [144]
Magnetic properties Huang et al. [144, 146]
Phase stability Huang et al. [144]

CoCuNi Chemical SRO Khan et al. [160]
Magnetic properties Khan et al. [160]

CoFe Elastic properties Ye et al. [204]
Local lattice distortions Chen et al. [113], Ye et al. [204]
Phase stability Chen et al. [113]
Point defects Chen et al. [113]

CoFeGaMnNi Magnetic properties Huang et al. [146]

CoFeMnMoNi Magnetic properties Huang et al. [146]
Phase stability Wu et al. [33]

CoFeMnNi Elastic properties Ge et al. [103]
Finite-T excitations Ge et al. [103], Zhao et al. [106]
Local lattice distortions Okamoto et al. [224]
Magnetic properties Wu et al. [33], Ge et al. [103], Huang et al. [146]
SFE Zhao et al. [106]

CoFeMnNiV Magnetic properties Huang et al. [146]
Phase stability Troparevsky et al. [17], Wu et al. [33]

CoFeNi Chemical SRO Feng et al. [161]
Elastic properties Song et al. [69], Ge et al. [103], Feng et al. [161], Ye et al. [204]
Finite-T excitations Ge et al. [103], Zhao et al. [106], Niu et al. [235]
Local lattice distortions Song et al. [69], Feng et al. [161], Ye et al. [204], Egami

et al. [221], Okamoto et al. [224]
Magnetic properties Wu et al. [33], Song et al. [69], Ge et al. [103], Körmann

et al. [142], Huang et al. [146], Niu et al. [235], Jin et al. [241]
Phase stability Troparevsky et al. [68], Feng et al. [161], Niu et al. [235]
SFE Zhao et al. [106]

CoMnNi Elastic properties Ge et al. [103]
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Finite-T excitations Ge et al. [103], Niu et al. [235]
Local lattice distortions Okamoto et al. [224]
Magnetic properties Wu et al. [33], Ge et al. [103], Niu et al. [235]
Phase stability Niu et al. [235]

CoNi Elastic properties Ge et al. [103], Ye et al. [204]
Finite-T excitations Ge et al. [103], Zhao et al. [106], Jin et al. [127]
Local lattice distortions Chen et al. [113], Ye et al. [204]
Magnetic properties Wu et al. [33], Ge et al. [103], Jin et al. [241]
Phase stability Chen et al. [113]
Point defects Zhao et al. [35], Chen et al. [113]
SFE Zhao et al. [106]

CoOsReRu Finite-T excitations Gao et al. [24, 25]
Phase stability Gao et al. [24, 25]

CrCuFeMnNi Magnetic properties Huang et al. [146]

CrCuFeMoNi Magnetic properties Huang et al. [146]

CrCuMoW Elastic properties Tian et al. [198]
Magnetic properties Tian et al. [198]
Phase stability Tian et al. [198]

CrFe Elastic properties Ye et al. [204]
Local lattice distortions Chen et al. [113], Ye et al. [204]
Phase stability Chen et al. [113]
Point defects Chen et al. [113]

Cr–Fe Chemical LRO Wróbel et al. [159]
Chemical SRO Wróbel et al. [159]
Magnetic properties Wróbel et al. [159]
Phase stability Wróbel et al. [159]

CrFeMnNiTi Phase stability Troparevsky et al. [17], Wu et al. [33]

CrFeMnV Magnetic properties Huang et al. [146]

CrFeMoNiW Elastic properties Tian et al. [198]
Magnetic properties Tian et al. [198]
Phase stability Tian et al. [198]

CrFeMoTiV Magnetic properties Huang et al. [146]

CrFeMoV Magnetic properties Huang et al. [146]

CrFeMoW Elastic properties Tian et al. [198]
Magnetic properties Tian et al. [198]
Phase stability Tian et al. [198]

CrFe1.2MoW Elastic properties Tian et al. [198]
Magnetic properties Tian et al. [198]
Phase stability Tian et al. [198]

CrFeNi Elastic properties Ge et al. [103], Zaddach et al. [188], Ye et al. [204]
Finite-T excitations Ge et al. [103]
Local lattice distortions Ye et al. [204]
Magnetic properties Ge et al. [103], Huang et al. [146]
SFE Zaddach et al. [188]

Cr–Fe–Ni Chemical LRO Wróbel et al. [159]
Chemical SRO Wróbel et al. [159]
Magnetic properties Wróbel et al. [159]
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Phase stability Wróbel et al. [159]

CrFeV Magnetic properties Huang et al. [146]

CrHfNbTiZr Elastic properties Fazakas et al. [189]

CrMnMoW Elastic properties Tian et al. [198]
Magnetic properties Tian et al. [198]
Phase stability Tian et al. [198]

CrMnTiV Magnetic properties Huang et al. [146]

CrMnV Magnetic properties Huang et al. [146]

Cr–Mo Phase stability Feng et al. [138]

CrMoNbV Chemical SRO Widom [184], Feng and Widom [202]
Elastic properties Feng and Widom [202]
Finite-T excitations Widom [184]
Local lattice distortions Widom [184], Feng and Widom [202]
Magnetic properties Huang et al. [146]

Cr–Mo–Nb–V Finite-T excitations Feng et al. [138]
Phase stability Feng et al. [138]

CrMoNiW Elastic properties Tian et al. [198]
Magnetic properties Tian et al. [198]
Phase stability Tian et al. [198]

CrMoTi Elastic properties Ge et al. [196]
Finite-T excitations Ge et al. [196]
Magnetic properties Huang et al. [146]

CrMoTiV Elastic properties Ge et al. [196]
Finite-T excitations Ge et al. [196]
Magnetic properties Huang et al. [146]

CrMoW Elastic properties Tian et al. [198]
Magnetic properties Tian et al. [198]
Phase stability Tian et al. [198]

CrNi Local lattice distortions Chen et al. [113]
Phase stability Chen et al. [113]
Point defects Chen et al. [113]

Cr0.2Ni0.8 Finite-T excitations Jin et al. [127]
Point defects Zhao et al. [35]

Cr–Ni Chemical LRO Wróbel et al. [159]
Chemical SRO Wróbel et al. [159]
Magnetic properties Wróbel et al. [159]
Phase stability Wróbel et al. [159]

CrW Chemical SRO Lederer et al. [164]

CuNi Phase stability Singh et al. [156]

CuNiPPdPt Chemical SRO Gao and Alman [220]
Diffusion Gao and Alman [220]
Local lattice distortions Gao and Alman [220]

Cu2NiZn Chemical LRO Singh et al. [156]
Phase stability Singh et al. [156]
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CuZr Local lattice distortions Egami et al. [221]

FeMnNi Finite-T excitations Niu et al. [235]
Local lattice distortions Okamoto et al. [224]
Magnetic properties Wu et al. [33], Huang et al. [146], Niu et al. [235]
Phase stability Niu et al. [235]

FeMnV Magnetic properties Huang et al. [146]

FeNi Elastic properties Ge et al. [103], Ye et al. [204]
Finite-T excitations Ge et al. [103], Zhao et al. [106], Jin et al. [127]
Local lattice distortions Chen et al. [113], Ye et al. [204]
Magnetic properties Wu et al. [33], Ge et al. [103], Jin et al. [241]
Phase stability Chen et al. [113]
Point defects Zhao et al. [35], Chen et al. [113]
SFE Zhao et al. [106]

Fe0.2Ni0.8 Point defects Zhao et al. [35]

Fe–Ni Chemical LRO Wróbel et al. [159]
Chemical SRO Wróbel et al. [159]
Magnetic properties Wróbel et al. [159]
Phase stability Wróbel et al. [159]

HfMoNbTaTiZr Elastic properties Zheng et al. [205]
Local lattice distortions Zheng et al. [205]

HfMoTaTiZr Phonon spectrum Körmann et al. [122]

HfNbTaTiVZr Chemical SRO Gao et al. [222]
Local lattice distortions Gao et al. [222]

HfNbTaTiZr Chemical SRO Gao and Alman [220]
Diffusion Gao and Alman [220]
Elastic properties Song et al. [69], Fazakas et al. [189], Li et al. [192], Zheng

et al. [205]
Local lattice distortions Song et al. [69], Zheng et al. [205], Gao and Alman [220]

Hf0.080Nb0.308Ta0.308Ti0.177Zr0.127 Phase stability Heidelmann et al. [246]

Hf0.151Nb0.069Ta0.206Ti0.046Zr0.528 Phase stability Heidelmann et al. [246]

HfNbTaZr Chemical SRO Feng and Widom [202]
Elastic properties Feng and Widom [202]
Local lattice distortions Feng and Widom [202]
Phase stability Niu et al. [174]

HfNbTiVZr Elastic properties Fazakas et al. [189], Li et al. [193], Li [200]
Phase stability Li et al. [193]

HfNbTiZr Chemical SRO Wang et al. [216]
Elastic properties Song et al. [69], Li et al. [193]
Local lattice distortions Song et al. [69]
Phase stability Li et al. [193]

HfNbZr Elastic properties Song et al. [69], Fazakas et al. [189], Li et al. [193]
Local lattice distortions Song et al. [69]
Phase stability Li et al. [193]
Phonon spectrum Körmann et al. [122]

HfScTiZr Elastic properties Rogal et al. [206]

HfZr Phase stability Niu et al. [174]
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MoNb Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]

Mo–Nb Phase stability Huhn and Widom [135]

MoNbReTa Phase stability Wu et al. [33]

MoNbTa Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Troparevsky et al. [68], Wang et al. [121], Schön et al. [168]
Phonon spectrum Körmann et al. [122]

MoNbTaTiV Elastic properties Yao et al. [203], Zheng et al. [205]
Local lattice distortions Zheng et al. [205]
Phase stability Yao et al. [203]

MoNbTaV Chemical LRO Wang et al. [121], Schön et al. [168]
Chemical SRO Toda-Caraballo et al. [32, 158]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Local lattice distortions Toda-Caraballo et al. [158]
Phase stability Wang et al. [121], Toda-Caraballo et al. [158], Schön et al. [168]

MoNbTaVW Chemical LRO Wang et al. [121], Schön et al. [168]
Chemical SRO Toda-Caraballo et al. [32, 158], Fernández-Caballero et al. [162],

Schön et al. [168]
Elastic properties Wang et al. [121], Fazakas et al. [189], Zheng et al. [205]
Finite-T excitations Wang et al. [121]
Local lattice distortions Wu et al. [33], Toda-Caraballo et al. [158], Zheng et al. [205]
Phase stability Wu et al. [33], Wang et al. [121], Toda-Caraballo et al. [158],

Schön et al. [168]
Phonon spectrum Körmann et al. [122]

MoNbTaW Chemical LRO Körmann and Sluiter [102], Wang et al. [121], Huhn and
Widom [135], Huhn [136], Körmann et al. [163], Schön
et al. [168], Singh et al. [169]

Chemical SRO Toda-Caraballo et al. [32], Huhn and Widom [135], Huhn [136],
Widom et al. [137], Toda-Caraballo et al. [158], Körmann
et al. [163], Singh et al. [169], Feng and Widom [202], Wang
et al. [216]

Elastic properties Körmann and Sluiter [102], Wang et al. [121], Fazakas et al. [189],
Li [200], Feng and Widom [202], Wang et al. [247]

Finite-T excitations Gao et al. [24, 25], Körmann and Sluiter [102], Wang et al. [121]
Local lattice distortions Körmann and Sluiter [102], Huhn and Widom [135], Widom

et al. [137], Toda-Caraballo et al. [158], Feng and Widom [202]
Phase stability Gao et al. [24, 25], Wu et al. [33], Körmann and Sluiter [102],

Wang et al. [121], Huhn and Widom [135], Huhn [136], Toda-
Caraballo et al. [158], Körmann et al. [163], Schön et al. [168],
Singh et al. [169], Wang et al. [247]

Phonon spectrum Körmann et al. [122]

Mo–Nb–Ta–W Chemical SRO Singh et al. [169]
Phase stability Singh et al. [169]

MoNbTi Elastic properties Ge et al. [196]
Finite-T excitations Ge et al. [196]
Magnetic properties Huang et al. [146]

MoNbTiV Elastic properties Cao et al. [191], Tian et al. [195], Ge et al. [196], Li [200]
Finite-T excitations Ge et al. [196]
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Magnetic properties Huang et al. [146]
Phase stability Cao et al. [191]

MoNbTiVZr Elastic properties Tian et al. [199], Zheng et al. [205]
Local lattice distortions Tian et al. [199], Zheng et al. [205]
Phase stability Tian et al. [199]

MoNbTiVxZr Elastic properties Tian et al. [190]

MoNbTiZr Elastic properties Tian et al. [190, 199]
Local lattice distortions Tian et al. [199]
Phase stability Tian et al. [199]

MoNbV Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121], Ge et al. [196]
Finite-T excitations Wang et al. [121], Ge et al. [196]
Magnetic properties Huang et al. [146]
Phase stability Wang et al. [121], Schön et al. [168]

MoNbVW Chemical LRO Wang et al. [121], Schön et al. [168]
Chemical SRO Toda-Caraballo et al. [32, 158], Fernández-Caballero et al. [162],

Wang et al. [216]
Elastic properties Wang et al. [121, 247]
Finite-T excitations Wang et al. [121]
Local lattice distortions Toda-Caraballo et al. [158]
Phase stability Wang et al. [121], Toda-Caraballo et al. [158], Schön et al. [168],

Wang et al. [247]

MoNbW Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]

MoTa Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]
Phonon spectrum Körmann et al. [122]

Mo–Ta Phase stability Huhn and Widom [135]

MoxTaTiWZr Phase stability Singh et al. [170]

Mox/2TayTiz/2Wx/2Zrz/2 Chemical SRO Singh et al. [170]
Elastic properties Singh et al. [170]
Phase stability Singh et al. [170]

MoxTayTiz/2Zrz/2 Elastic properties Singh et al. [170]
Phase stability Singh et al. [170]

MoTaV Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]

MoTaVW Chemical LRO Wang et al. [121], Schön et al. [168]
Chemical SRO Toda-Caraballo et al. [32, 158], Fernández-Caballero et al. [162],

Wang et al. [216]
Elastic properties Wang et al. [121, 247]
Finite-T excitations Wang et al. [121]
Local lattice distortions Toda-Caraballo et al. [158]
Phase stability Wang et al. [121], Toda-Caraballo et al. [158], Schön et al. [168],

Wang et al. [247]
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MoTaW Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]

MoTiV Elastic properties Ge et al. [196]
Finite-T excitations Ge et al. [196]
Magnetic properties Huang et al. [146]

MoV Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]

MoVW Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]

MoW Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]

Mo–W Phase stability Huhn and Widom [135]

NbTa Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]

Nb–Ta Phase stability Huhn and Widom [135]

NbTaTiV Phonon spectrum Körmann et al. [122]

NbTaTiVW Elastic properties Zheng et al. [205]
Local lattice distortions Zheng et al. [205]
Phonon spectrum Körmann et al. [122]

NbTaV Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]

NbTaVW Chemical LRO Wang et al. [121], Schön et al. [168]
Chemical SRO Toda-Caraballo et al. [32, 158]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Local lattice distortions Toda-Caraballo et al. [158]
Phase stability Wang et al. [121], Toda-Caraballo et al. [158], Schön et al. [168]
Phonon spectrum Körmann et al. [122]

NbTaW Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]

NbTiV Elastic properties Song et al. [69]
Local lattice distortions Song et al. [69]
Magnetic properties Huang et al. [146]

NbTiVZr Chemical SRO Widom [184], Feng and Widom [202]
Elastic properties Li et al. [193], Tian et al. [199], Li [200], Feng and Widom [202]
Finite-T excitations Widom [184]

(continued on next page)
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Table 9 (continued)

Alloy Property References

Local lattice distortions Widom [184], Tian et al. [199], Feng and Widom [202]
Phase stability Li et al. [193], Tian et al. [199]

NbV Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]

Nb–V Phase stability Feng et al. [138]

NbVW Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]
Phonon spectrum Körmann et al. [122]

NbW Chemical LRO Wang et al. [121], Schön et al. [168]
Chemical SRO Lederer et al. [164]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]

Nb–W Phase stability Huhn and Widom [135]

NbZr Phase stability Li et al. [193]

NiPd Finite-T excitations Zhao et al. [106]
Magnetic properties Wu et al. [33]
SFE Zhao et al. [106]

NiPdPt Chemical SRO Khan et al. [160]
Magnetic properties Khan et al. [160]

TayTiz/2WxZrz/2 Elastic properties Singh et al. [170]
Phase stability Singh et al. [170]

TaV Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]

TaVW Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]
Phonon spectrum Körmann et al. [122]

TaW Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]

Ta–W Chemical LRO Singh et al. [169]
Chemical SRO Singh et al. [169]
Phase stability Huhn and Widom [135], Singh et al. [169, 170]

TiV Phase stability Li et al. [193]

VW Chemical LRO Wang et al. [121], Schön et al. [168]
Elastic properties Wang et al. [121]
Finite-T excitations Wang et al. [121]
Phase stability Wang et al. [121], Schön et al. [168]
Phonon spectrum Körmann et al. [122]
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