
Type-Checking Modules and Imports using Scope Graphs
A Case Study on a Language with Relative, Unordered and Glob Import Semantics

Paul Hübner1

Supervisor(s): Dr. Casper Bach Poulsen1, Aron Zwaan1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Paul Hübner
Final project course: CSE3000 Research Project
Thesis committee: Dr. Casper Bach Poulsen, Aron Zwaan, Dr. Thomas Durieux

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Scope graphs provide a way to type-check real-
world programming languages and their constructs.
A previous implementation that type-checks the
proof-of-concept language LM, a language with
relative, unordered, and glob imports, does not
halt. This thesis discusses a five-step approach
for constructing and type-checking a scope graph
of an LM program. Using manually scheduled
queries and auxiliary algorithms, type-checking the
majority of examples failing in previous litera-
ture succeeds. The introduction of breadth-first-
traversal and multi-origin querying is discussed as
new scope graph primitives to aid in the reusability
of this thesis for type-checkers that require strati-
fied resolution.

1 Introduction
Presently, many representations of type systems omit an im-
portant functionality of real-world programming languages:
module systems [14]. Consequently, a language-agnostic rep-
resentation of a type system that easily enables the repre-
sentation of modules and imports would provide great value.
Scope graphs provide a formal representation of the naming
structure [8], with applications for type systems. MiniStatix
is a language that allows type-checking with scope graphs us-
ing predicates [9]. It aims to fulfill the characteristics of being
principled, expressive, declarative, executable, reusable, and
resilient [14]. MiniStatix implementations of Java and Scala
subsets [9] show that not only is it possible to elegantly de-
clare and type-check these languages with scope graphs, but
also highlight the possibility of resolution of classes/objects
(module-like structures) and their corresponding imports.

Nevertheless, there are still open questions regarding mod-
ules and their imports. While there exists a scope graph rep-
resentation [2] of the LM(R) [2] proof-of-concept language
(elaborated upon in Section 2.1), it is not executable in prac-
tice, as the type checker “gets stuck” [9, p.24] with regard to
modules and imports [9]. What differentiates LM from Java
and Scala is that its imports are relative and unordered, with
every import also being a glob import [9]. An example of a
real-world language that exhibits these properties is Rust [9].

This thesis answers the question of if and how scope graphs
constructed by a phased Haskell library can be used to type-
check a language with relative, unordered, and glob imports.
Since these semantics are present in at least one real-world
language, Rust, it is salient to investigate to what extent
scope graphs can live up to their premise of supporting name-
binding in the real-world [14]. Concretely, LM will be used
to research this, though the approach is language agnostic and
can be applied to for example Rust. In the MiniStatix case,
stuckness arises in conjunction with query scheduling [14].
In contrast, this thesis will consider an alternative phased ap-
proach, where the scope graph will be built up incrementally
over multiple passes of the AST1, and queries are manually
scheduled.

1Abstract Syntax Tree

(a) Glob imports.

module A {
def x = 1
def y = 2

}
module M {
import A
def z = x+y

}

(b) Rel. imports.

module A {
module B {
def x = 19

}
}
module M {
import A
import B
def y = x

}

(c) Unord. imports.

module A {
module B {
def x = 19

}
}
module M {
import B
import A
def y = x

}

Figure 1: Code snippets highlighting LM import semantics.

In summary, the contributions of this thesis are twofold.
For one, we present a five-step stratified approach to type-
checking LM, which is evaluated against test cases. On top
of that, we introduce two new primitives: BF-traversal and
multi-origin querying.

This thesis begins with a more in-depth insight into the
problem and scope graph resolution presented in Section 2.
This thesis’ contribution, Phased type checking, is explicitly
highlighted in Section 3. Analysis through the use of test
cases is elaborated upon and discussed in Section 4. Section
5 provides further related literature. Finally, Section 6 con-
cludes the research with further recommendations.

2 Problem Description
This section discusses the problems surrounding type-
checking with imports. To do so, a background of LM is
provided in Section 2.1, and scope graphs are explained with
reference to LM in Section 2.2. The problem itself is elabo-
rated upon in 2.3.

2.1 LM
This thesis considers a variation of the proof-of-concept lan-
guage LM (Language with Modules) by Neron et al. [8]. LM
closely resembles LMR as described by van Antwerpen et
al. [2], though it omits records. The focus of LM is such that
the module/import system can be used and example programs
can be run. The full grammar is shown in Appendix B, Figure
15.

LM’s imports are all glob imports. This is shown in Figure
1a, whereby all declarations of module A are visible directly
in M as A is imported. Note that this definition of LM does
not support transitive imports; a module importing M would
not be able to see x or y.

Furthermore, imports are unordered and relative, as shown
by Figures 1b and 1c. Due to relative imports, B can be im-
ported without requiring the reference A.B. Simultaneously,
whether the parent or child module is imported first is irrele-
vant, since imports are unordered.

We will consider the flavor of LM that consists of the fol-
lowing (non-)features [8]:

1. Qualified names: declarations can be referenced through
module names via dot notation.

0

(a) Scope

1 0LABEL

(b) Edge

0 x : IntV

(c) Variable sink

0 Foo @ 1M

(d) Module sink with
pointer

0x NAME

(e) Query

Figure 2: Scope graph notation for LM.

2. Glob imports: all declarations in an imported module are
visible in the module that imports it.

3. Non-transitive imports: declarations visible in imports
of imports are not visible.

4. Cyclic imports: both self and (indirect) cyclical imports
are supported.

5. Arbitrary nesting: modules can recursively nest each
other, which can be brought into scope by the above
rules.

2.2 Scope Graphs
Scope graphs are directed graphs in which every scope is rep-
resented as a node. Sinks attached to nodes provide name-
binding information. In the case of LM, sinks are variable
declarations denoting certain types and type variables or mod-
ule declarations. When type-checking, a query for a specific
name is run that originates at a specific scope and can take
edges based on a provided regular expression. Across differ-
ent papers, scope graph notation can differ [14]. This thesis
will consider (numbered) scope graph concepts to be denoted
as portrayed in Figure 2.

Two distinct sinks are required for variables and modules,
since they hold different data. Variable sinks are declarations
used for name binding; they specify a variable and its asso-
ciated type. In Figure 2c, the variable x has the integer type.
Module sinks are declarations that contain module metadata.
In Figure 2d, the module Foo has its scope body in scope 1.
There are four labels considered:

1. P denotes lexical parent

2. V is used exclusively for variable sink edges

3. M is used exclusively for module sink edges

4. I denotes an import edge

The scope graphs for the program in Figure 1a can be found
in Figure 3. Note that due to the unordered imports, the scope
graphs are identical for programs 1b and 1c. Such a scope
graph can be found in Figure 4. Although queries are also
visualized in these examples, they will be elaborated upon
further in Section 2.3.

0

1 2

A @ 1 M @ 2

x : Int

y : Int

z : Int

x

y

P P

M M

V

V

VI

var

var

Figure 3: Scope graph of the glob import example in Figure 1a.

0

1 2

3

A @ 1 M @ 2

B @ 3 y : Int

x : Int

x

P P

P

M M

M V

V

I

I var

Figure 4: Scope graph of the relative/unordered import example in
Figures 1b and 1c.

2.3 Resolution and Monotonicity
MiniStatix cannot perform import resolution for LM pro-
grams with imports due to the way it delays queries [9]. At
its core, querying for imports poses monotonicity issues. This
is explained in more depth in the below subsections.

Queries
Queries query paths that conform to particular edges and or-
der these paths based on some priority (for example, short-
est path). To specify which edges can be taken, regular ex-
pressions are used. In Figures 3 and 4, queries are visual-
ized in red and blue. Taking as an example the resolution
of x in Figure 4, a query is executed from scope 2 for all
sinks whose path labels match the regular expression P*I?V.
Some transitive-inclusive implementations in literature con-
sider P*I*V [14], though transitive imports were omitted for
simplicity as highlighted in 2.1. This yields a singular path,
that is shown in red. If there had been multiple results, the
highest priority edge [2] (elaborated upon in Section 3.3)
would have been selected. If establishing a priority is not
possible, then the program is ambiguous.

Monotonicity
Query results must remain valid throughout the entire lifecy-
cle of type-checking. Scope graph queries must be monotone
[9]: if a scope has been queried for a path containing label
X, an outgoing edge of label X may not be placed. Concern-
ing this, the semantics of LM’s modules and imports pose a
challenge.

An example that highlights the usefulness of monotonicity
can be seen in Figure 5a (and its corresponding scope graph
in Figure 5b). A query Q1 made for x before the import edge
(in red) is placed would result in the x of scope 1. However,

(a) Program

module A {
def x = 1
module B {
def y = x
import C

}
}
module C {
def x = 2

}

(b) Scope graph

0

1

2

3

A @ 1

C @ 2

B @ 3

x : Int

x : Int

x

P

P

P

I

M

M

M

V

V

Figure 5: Example program and its scope graph that could generate
monotonicity errors.

0

1 2

3

A @ 1 M @ 2

B @ 3

A

B

P P

P

M M

M I

modmod

Figure 6: Partial scope graph of the relative/unordered import exam-
ple in Figures 1b and 1c.

according to LM edge priorities [2], when the scope graph is
fully constructed, it should prefer I over P and resolve to the
x of scope 3. Thereby, Q1 would no longer be valid. Plac-
ing this import edge after Q1 is therefore forbidden to ensure
monotonicity of the scope graph.

Relating this concept to LM: consider the partial scope
graph in Figure 6. Here, module M in scope 2 would like
to import modules A and B by placing an import edge to both.
For a P*I?M query (the query to find module sinks) to find
B, we need to place an import edge to the scope of A. This is
shown as a red query, placing the red edge in Figure 6. Now
the previously executed query of resolving A via the red path
is (potentially) no longer valid, since the introduction of the
I edge may (but not in this example) yield a different most-
suitable path. More precisely, the aforementioned principle
of monotonicity is violated.

MiniStatix Scheduling

MiniStatix attempts to avoid monotonicity errors by defer-
ring queries to later points [9]. However, in the case of im-
ports, this yields a contradiction. To find module B, we must
query for module A. On the contrary, the query of module A
is delayed as the import edge of B would need to be placed
first. Consequently, MiniStatix enters a deadlock it cannot
recover from. So, while the mathematical model for LM’s
scope graph exists, it currently cannot be constructed for LM,
thereby violating the MiniStatix goal of being executable.

3 Phased Type-Checking
In order to avoid monotonicity errors, queries need to be ex-
ecuted only when strictly necessary and scheduled in a way
such that new edges do not invalidate existing queries. This
work presents a five-step procedure from creating the scope
graph to type-checking its members. An import resolution al-
gorithm of LM that does not violate monotonicity is derived.
These five steps are as follows:

1. Constructing a module hierarchy.

2. Constructing a scope graph consisting of scopes and
module sinks.

3. Iteratively resolving imports and placing import edges in
the scope graph.

4. Adding all declarations of all modules to the scope
graph.

5. Type-checking the bodies of all declarations with respect
to the scope graph.

3.1 Phase 1: Creating a Module Hierarchy
Modules in LM can be considered a hierarchy: arbitrary nest-
ing of modules is possible. The initial representation of the
AST of LM programs can be found in Appendix B. How-
ever, it is not a convenient module-centric representation of
the program.

Instead, an alternate representation is created, where mod-
ules have a list of imports ([LModule]), a list of recursive
child modules, and a list of declarations (LDecl). The spe-
cific definitions of these constructor parameters can be found
in Appendix B.

data ModTree
= Anon [LModule] [ModTree] [LDecl]
| Named String [LModule] [ModTree] [LDecl]

In this data structure, the Anon constructor is the top-level
anonymous module. Similarly, the Named constructor is a
module with a provided name.

3.2 Phase 2: Constructing Module Scope Graphs
The module tree obtained in phase needs to be turned into a
scope graph. In order to accomplish this, the above module
hierarchy is traversed, and a scope is created for every mod-
ule. Child module scopes are connected to parent module
scopes via a lexical parent P edge – this is such that declara-
tions made in the parent are reachable by query in the child.
For example, the scope graph from Figure 6 at this point can
be shown in Figure 7.

Furthermore, we create an extension of the module hierar-
chy. This extension considers the scope in which each module
exists, but is otherwise identical to the previous representation
of the tree (see Section 3.1). Such functionality is convenient
in the next three phases. It is represented as follows:

data AMT
= AAnon Sc [LModule] [AMT] [LDecl]
| ANamed Sc String [LModule] [AMT] [LDecl]

0

1 2

3

A @ 1 M @ 2

B @ 3

P P

P

M M

M

Figure 7: Scope graph containing just modules after phase 2.

Algorithm 1 Import resolution algorithm.

Require: I , F , m
while I ̸= ∅ do

(U,A)← partition I into unique and shadowing names
f ← poll F
if f is null then

error ”not all imports could be resolved”
end if
S ← ∅
for u ∈ U do

r ← query for u from f
S ← S ∪ r

end for
S′ ← ∅
for a ∈ A do

r ← multiple queries for a from all in {f} ∪ S
r′ ← lowest cost path via label from r or ∅
S′ ← S′ ∪ r′

end for
R← S ∪ S′

for r ∈ R do
place import edge from m to r

end for
F ← F ∪R
I ← remove modules in R from I

end while

3.3 Phase 3: Resolving Imports
The module hierarchy (the AMT of Section 3.2) is first flat-
tened into a list using breadth-first traversal. This allows for
the unordered imports to be given a concrete ordering: if A
occurs before B in the list, the resolution of A is attempted
before that of B. As a result, parents’ modules are always re-
solved before child modules when both of these are imported,
as can be with LM.

The resolution algorithm (Algorithm 1) resolves imports
for a single module m, given I imports and a queue F that
initially consists of the module itself. One caveat is that, as
aforementioned, the order of I must correspond to the order
of modules in the flattened hierarchy. All queries in this algo-
rithm use the regular expression P*I?M.

The core intuition behind the algorithm is to exploit the
module hierarchy. If module B comes after A in the hierar-
chy, then the resolution of A is attempted before that of B.
Therefore, if the resolution of B fails, this import is invalid,
as resolution of all other imports of modules that could possi-

(a) Unordered example.

module A {
module B {
def x = 19

}
}
module M {
import B
import A
def y = x

}

(b) Shadowing example.

module A {
module B {}

}
module B {}
module M {
import B
import C

}
module C {

module B {}
}

Figure 8: Example programs to highlight import resolution.

1. I = {A,B}, F = {M}
2. I ̸= ∅, pop M from the frontier.

(a) Try to resolve A, query yields {A}.
(b) Try to resolve B, query yields ∅.

3. S = {A}, R = S (no shadowing imports, these are not
considered).

4. Place edges from M to each in R, an edge is placed to
A.

5. F = F ∪R = {A}
6. I = I \R = {B}
7. I ̸= ∅, pop A from the frontier.
8. Try to resolve B, query yields {A.B}.
9. S = {A.B}, R = S

10. Place edges from M to each in R, an edge is placed to
A.B.

11. F = F ∪R = {A.B}
12. I = I \R = ∅
13. Iteration stops due to I = ∅.

Figure 9: Walk-through of program 8a.

bly be parents or siblings of B has already occurred. Further-
more, partitioning is also required, as resolution for shadow-
ing module names is non-trivial.

Example Resolution
To illustrate this algorithm, two programs are shown in Figure
8. Both of these programs only have a single module with
imports for simplicity.

The walk-through of the algorithms can be found in Fig-
ures 9 and 10. Note that to enhance readability, modules
are referred by their absolute paths with respect to the global
scope.

Modifications
For the algorithm to work, it is assumed to be possible to
query from multiple origins. This is simple to implement pro-
gramatically, but not part of the scope graph primitives. Com-
bined with breadth-first traversal (queue frontier) of the scope
graph, this enables the implementation of the algorithm.

1. I = {C,B}, F = {M} (Note: this could also be
{B,C}).)

2. Split I into U = {C} and A = {B}.
3. I ̸= ∅, pop M from the frontier.
4. Try to resolve C, query yields {C}.
5. S = {C}
6. Try to resolve B via C or M , query yields B,C.B.
7. Select the correct B via priority path, S′ = {C.B}.
8. R = S ∪ S′

9. Place edges from M to reach in R, an edge is placed to
C and C.B.

10. F = F ∪R = {C,C.B}
11. I = I \R = ∅
12. Iteration stops due to I = ∅.

Figure 10: Walk-through of program 8b.

M < P, M < I, V < P, V < I, I < P

Figure 11: Edge priorities.

Unique Module Resolution
To reiterate, it is essential to attempt the resolution of im-
ports in the correct hierarchical order: a parent needs to be
imported before its child can be resolved. The frontier ex-
tends with every resolved import. Hence, the discovery of
modules via querying from the frontier results in the frontier
being populated with modules in the same order as they ap-
pear in the flattened module list. Since imports are unique,
query results may return zero or one module. There is no
need to select a module according to priorities since queries
will never yield duplicate results here.

Shadowing Module Resolution
An issue with duplicate module names is to not resolve the
shallowest-possible module in the module hierarchy, as is
the case if the algorithm is not adapted to explicitly handle
shadowed names. To circumvent this problem, the resolu-
tion is performed at every iteration via multiple queries from
the frontier and non-ambiguous imports. This will yield the
shallowest-possible module, as well as other reachable mod-
ules.

When multi-querying, multiple results over multiple
queries may be yielded. Prioritization of all aggregated
results must be performed, which is why the shallowest-
possible module is not selected. This prioritization is done
via minimization of edge labels using ordering rules [2]. If no
comparison can be made for the first edge, the second edge
is considered. If no more edges are available for comparison
for one path, the shorter path takes priority. If two paths are
identical, the first one is chosen as a tiebreaker. These prior-
ities are as shown in Figure 11 (n.b.: the smallest value has
the highest priority).

Ambiguity
The program in Figure 12 is ambiguous. Without the import
edge between scopes 2 and 1, a query for module B resolves
in 2. However, when the import edge is placed, it will resolve

(a) Ambiguous program.

module A {
module A {}

}
module M {
import A

}

(b) Partial scope graph.

0

1

2

3

A @ 1

M @ 2

A @ 3

P

P

P

M

M

M

Figure 12: Example ambiguous program and partial scope graph.

0

1 2

3

A @ 1 M @ 2

B @ 3 y : τ1

x : τ2

P P

P

M M

M V

V

I

I

Figure 13: Scope graph containing declarations after phase 4.

in 3, as resolution prefers imports over lexical parents. This is
a contradiction, and no scope graph exists for such a program.

The algorithm cannot detect ambiguity during resolution.
Instead, when an import edge from m to m′ for the name X
is placed during resolution, this is memorized. Then, after all
imports have been resolved, every module is queried for the
names of all its imports again (via P*I?M). If the query result
of this query differs from the edge that was placed during
resolution, the program is rejected for ambiguity.

Termination
Invalid imports should be rejected – like MiniStatix, this al-
gorithm must be resilient [14]. Part of this is termination,
this is achieved implicitly in Algorithm 1 by exhausting the
frontier. The frontier is only ever populated with valid query
results, so eventually once all valid imports are resolved, it
will become empty, and an error is raised. Since the frontier
is used for both unique and shadowing names, the algorithm
will terminate for both.

3.4 Phase 4: Adding Declarations
Before type-checking of declaration bodies is possible, all
declarations need to be added with a type variable. Construct-
ing the declarations first allows for forward referencing, simi-
lar to how all modules must exist before import edges may be
drawn. In this phase, the annotated module tree is traversed,
and for every module’s scope, its defs are added to the scope
graph with a type variable. The partial scope graph at this
point for Figures 1b and 4 is shown in Figure 13.

3.5 Phase 5: Type-Checking
As the last phase, the body of declarations (i.e. expressions)
is type-checked using inference. Specifically, equality con-
straints are generated (with respect to the type variables laid
out in the previous phase) that are unified. The rules by which

JiKexprs,t := t ≡ Int

JtrueKexprs,t := t ≡ Bool

JfalseKexprs,t := t ≡ Bool

JxiK
expr
s,t := xR

i → s ∧ xR
i 7→ δ ∧ δ : t

Je1 + e2K
expr
s,t := t ≡ Int ∧ τ1 ≡ Int ∧ τ2 ≡ Int

∧ Je1Kexprs,τ1 ∧ Je2Kexprs,τ2

Je1 − e2K
expr
s,t := t ≡ Int ∧ τ1 ≡ Int ∧ τ2 ≡ Int

∧ Je1Kexprs,τ1 ∧ Je2Kexprs,τ2

Je1 ∗ e2Kexprs,t := t ≡ Int ∧ τ1 ≡ Int ∧ τ2 ≡ Int
∧ Je1Kexprs,τ1 ∧ Je2Kexprs,τ2

Je1 == e2K
expr
s,t := t ≡ Bool ∧ τ1 ≡ Int ∧ τ2 ≡ Int

∧ Je1Kexprs,τ1 ∧ Je2Kexprs,τ2

Jif ec then et else ef Kexprs,t := t ≡ τt ∧ τc ≡ Bool ∧ τt ≡ τf
∧ JecKexprs,τc ∧ JetKexprs,τt ∧ Jef Kexprs,τf

Jfun (xi : τ1) { body }Kexprs,t := t ≡ τ1 → τ2 ∧ s′
P→ s

∧ s′
V→ xV

i ∧ xV
i : τ1 ∧ JbodyKexprs′,τ2

Jef eaK
expr
s,t := τf = τa → t ∧ Jef Kexprs,τf

∧ JeaKexprs,τa

Jletrec (xi = e) in bodyKexprs,t := t ≡ τb ∧ s′
P→ s

∧ s′
V→ xV

i ∧ xV
i : τa ∧ JbodyKes′,τa ∧ JbodyKexprs′,τb

Figure 14: Typing constraint generation and scope graph modifica-
tions, based on that in [2].

one can type-check LM are laid out in Figure 14, which are
largely based on the rules presented by van Antwerpen, et al.
[2]. Every expression gets a type variable t and is then type-
checked with respect to the current scope s. Note that paren-
theses have been omitted, as these solely influence parser
rules. The notation JxJexprs,t denotes the behavior an expres-
sion x has with respect to the scope s it is type-checked in,
and the type variable t it should equate to. xR

i → s∧ xR
i 7→ δ

is a query using P*I?V in scope s that resolves to a δ. This
uses the prioritization rules of Figure 11 in Section 3.3.

4 Evaluation and Discussion
To evaluate the performance of phased type-checking, test
cases are used, a standard practice in programming language
research. Few test cases can already highlight and test for the
interesting semantics of LM. All the code and test cases men-
tioned in this section are available2 and distributed alongside

2https://doi.org/10.4121/288296b9-fcdf-4960-bab4-
8aee3a46927c

Table 1: Properties of the test cases (overlap is possible).

Property Amount
General Behaviour 8

Qualitative References 3
Qualitative Imports 1

Relative Imports 3
Unordered Imports 2

Duplicate Module Names 2
Ambiguity 1

Self Imports 2
Cyclical Imports 4

this thesis.
We also discuss this thesis’ contribution with respect to

performance, the new primitive extensions, and declarativi-
ty/feature extensibility. Reusability and limitations are fur-
ther emphasised.

4.1 Test Cases
The test cases shown by Rouvoet et al. [9] compose the core
of this evaluation. These are augmented by further tests de-
rived specifically for this thesis, forming a total of 26 cases.
Essentially, they aim to cover a breadth of LMR semantics
and corner cases such that in the absence of formal verifica-
tion, some conclusions can be drawn. This can be demon-
strated in Table 1, which highlights how many test cases test
certain LM properties. In particular, specific import types
(both in isolation and combination) are focused on. Since
an LM parser is out of the scope of this thesis, the test cases
were converted to annotated terms [13].

4.2 Implementation
The implementation of the type checker (complete in ac-
cordance with the algorithm of Section 3) uses the Phased3

Haskell template. This library provides a monadic way to
construct and query scope graphs based on the effect handler
theory laid out by Bach Poulsen and van der Rest [3]. Further-
more, it provides automatic unification, which is required, as
the type-checker generates constraints.

This implementation is in theory cross-platform com-
patible, though not all shells may support the characters
used in the visualization of scope graphs. We used GHC
8.10.7/Cabal 3.6.2.0 in a Unix development environment.

4.3 Results
A confusion matrix of test results is shown in Table 2. The
Phased implementation correctly type-checks 25 test cases,

3https://github.com/MetaBorgCube/scope-graph-scheduling-
bsc-template

Table 2: Confusion matrix of test results.

True behaviour
Accept Reject Total

Impl. Accept 20 0 20
Reject 1 5 6
Total 21 5 26

https://doi.org/10.4121/288296b9-fcdf-4960-bab4-8aee3a46927c
https://doi.org/10.4121/288296b9-fcdf-4960-bab4-8aee3a46927c
https://github.com/MetaBorgCube/scope-graph-scheduling-bsc-template
https://github.com/MetaBorgCube/scope-graph-scheduling-bsc-template

with their scope graphs being verified empirically. A singu-
lar false negative arises from the implementation as per Sec-
tion 4.2. The test case that fails (see Appendix C) has to do
with shadowing/duplicate module names and is rejected by
the ambiguity detection.

We learn that it is possible to type-check LM, to some ex-
tent, using a stratified approach. Many edge cases and import
semantics are covered by tests, which pass. Ergo, the imple-
mentation can be considered partially correct.

While implementation specific, it is worth elaborating
upon the Phased Haskell library. It was possible to integrate
auxiliary algorithms and strategies for LM into the library.
Additionally, it was also possible to extend the library primi-
tives themselves to provide a new query operation that returns
a full path as a result, not just a sink. This flexibility and fea-
ture extensibility was found to be a highlight of the library.

4.4 Performance
The Phased approach provides a huge benefit over that of
MiniStatix: it halts on all the test cases and provides cor-
rect judgment for the vast majority of them. Therefore, it is
now possible to use scope graphs to check at least parts of
the module system of LM. Concretely concerning LM, this
now means that scope graphs can be considered (partially)
executable – one of its target characteristics. Nonetheless, it
should be noted that with failing test cases, this implementa-
tion cannot possibly be fully correct.

Furthermore, computational performance should be
touched upon. Type-checker information is crucial to IDE in-
tegration [15], and must often be delivered swiftly for a good
editor experience [15]. The Phased implementation does not
consider efficient algorithms or code as it intends to be a proof
of concept.

4.5 Primitive Extensions
The import resolution algorithm described in Section 3 relies
on two new concepts to function: breadth-first traversal and
queries of multiple origins. These concepts could be con-
verted to primitives, such that the reusability of this research
increases. Reusability is further elaborated on in Section 4.7.

Breadth-First Traversal
Let G denote the scope graph and S(G) the scopes within
it. Then, traversal can be defined by the triplet ⟨S0, c, v⟩,
whereby:

• S0 ⊆ S(G) denotes the initial scopes in the frontier.
• c : F 7→ {T,F} is a function that takes the current fron-

tier and decides whether or not the next iteration will
occur. An iteration consists of polling the frontier and
performing an action.

• v : s 7→ S is a function, given the polled head of the
frontier, that will perform an action/side effect, and pro-
vide the next scopes to add to the frontier.

Since side effects can occur, monotonicity must be explic-
itly checked for and may not be violated. It should be noted
that v may require additional information – in the context of
Phased type-checking, this would be the set of imports that
still need to be resolved. If this traversal is implemented in a

pure language, it may be required to introduce a form of state
(in the Phased example, encoding the state within the Free
monad) for c and/or v.

Multi-Origin Querying
Presently, querying requires an origin, a regular expression, a
function to check if a sink matches a condition, and a function
to select the most appropriate path and its result. Let Q(x)
denote a function to query a scope x via regular expression
re with matcher m : s 7→ {T,F}. It returns a set of tuples
⟨p, r⟩ where p is the resolved path and r the resolved sink.
Then, the multi-origin query result given a set of n origins as
O may be defined as:

R =

n⋃
i=1

Q(Oi) (1)

Consequently, the final query result gives the sink for which
the path is minimized:

π2(argmin
r∈R

π1(r)) (2)

Which assumes |R| > 0, the existence of order given a path,
and denotes πi as a projection of the i-th tuple element.

4.6 Declarativity and Feature Extensibility
The current Phased implementation is not declarative, as a
manual implementation of the resolution algorithm is re-
quired. In that sense, MiniStatix is much more declarable
(and concise, with only 263 lines [9] compared to > 500),
although it is unable to resolve imports. Similarly, although
subjective, MiniStatix is much less verbose and provides a
concise and elegant way to define type checkers. However, if
multi-origin querying and in particular breadth-first traversal
were to become scope graph primitives, the Phased approach
would be much more declarative.

In terms of feature extensibility, the ability to manually
schedule queries provides a powerful tool to Phased that Min-
iStatix does not have. Indeed, this is one of the concepts re-
quired to allow import resolution in the first place. Manual
control provides superior extensibility than the convenience
of automatic scheduling in MiniStatix. Furthermore, the ex-
tensibility of the Phased library itself makes this solution very
extensible.

4.7 Reusability
It is important to discuss the reasons for and against the
reusability of the work laid out in this thesis. While rela-
tive, unordered and glob imports as in LM are not commonly
used together [9], there are still applications of the Phased
approach. Particularly, relative and glob imports are prone to
causing monotonicity issues.

We can see such properties in other languages, including
but not limited to Ruby and C++. Both Ruby’s modules
and C++’s namespaces can be nested arbitrarily, and be
“imported” (brought into scope) with include and using
namespace, respectively (see Appendix D). For both of these
languages and unlike LM, the imports need to be ordered and
are transitive. To resolve child compilation units, the par-
ent unit needs to be resolved first. Consequently, these lan-
guages would run into the same monotonicity error as LM as

described in Section 2.3. Thus, the import resolution portion
and new scope graph primitives of the Phased approach are
directly applicable to Ruby and C++.

On the contrary, the approach laid out in this thesis is nei-
ther simple to understand nor efficiently implemented. Tak-
ing Ruby as an example, the type-checker laid out by An et al.
[1] is much more elegant, though it does not take advantage
of scope graphs.

4.8 Limitations
An obvious limitation is that a test case fails (see Appendix
C). This program is an example of behavior that should be
supported. Unfortunately, this behavior cannot (easily) be
fixed without it affecting other test cases. Disabling ambi-
guity detection could potentially pass this test case, but con-
sequently, an ambiguous test would not be rejected. Instead
of a false negative, the test suite would then report a false
positive.

The ambiguity detection is very naive. It guarantees nei-
ther that ambiguous programs are caught, nor that all imports
rejected are truly ambiguous (as can be seen by the failing test
case). Improvement of the ambiguity checker poses a larger
challenge and should be considered as a separate and future
work.

Even considering a correct ambiguity detection, it remains
an open question whether the Phased approach is truly cor-
rect. It could be that there is more deviating behaviour that
was not unearthed by the test cases. Until a proof of correct-
ness is offered, no assertions on correctness can be made.

5 Related Work
A comprehensive summary of scope graph research and its
history has been curated in [14]. Both LM, scope graphs, and
the combination of both have been discussed extensively in
previous work. LM first appears by Neron et al. [8], and is
extended with records (to form LMR) by van Antwerpen et
al. [2]. Furthermore, it is included as a case study by Rou-
voet et al. [9], the paper whose results inspired this thesis. Al-
though these serve as an excellent theoretical basis on which
we based some of my research, they are mathematical mod-
els. The creation and execution of these scope graphs based
on input programs are delegated to meta-languages, where
there are significant challenges.

The first meta-language to support scope graphs was
NaBL2 [14], though it was unable to express scope graphs
where the presence of edges depends on resolution [9].
Nonetheless, an implementation of LM with NaBL2 did not
pose any issues and became complete, as highlighted in [2],
and traces of this can be found online [11]. However, requir-
ing the presence of edges is limited [7], and it further would
not work with the Phased library’s scope-graph representa-
tion. Consequently, Statix and MiniStatix were developed as
a successor of NaBL2 [10]. Their flaw, scheduling of queries
not halting with LM, left a knowledge gap and the oppor-
tunity to explore whether type-checking in phases resolves
these issues.

A formalization using environments of a type-checker for a
module system like that of Standard ML is provided by Leroy

[6]. Similar to LM, the Standard ML module system supports
arbitrarily nested modules. Furthermore, declarations within
modules can be accessed using the open directive [5], effec-
tively emulating LM’s glob imports.

6 Conclusions and Future Work
To conclude, scope graphs allow for name-binding that can be
used for type-checking applications [14]. Given the proof-of-
concept language LM with import semantics similar to Rust,
an existing type-checker written using MiniStatix does not
halt when resolving imports [9]. This is problematic as scope
graphs should be executable [14]. As such, the question was
if scope graphs constructed by a phased Haskell library can
be used to type-check a language with relative, unordered,
and glob imports, given that this could not be achieved in a
non-stratified approach.

LM can be represented in a scope graph using variable
and module sinks, module/variable declaration, import, and
parent edges. By using auxiliary data structures and man-
ual query scheduling over many AST passes, it is possible to
type-check LM examples with scope graphs, thereby making
it possible to type-check relative, unordered, and glob im-
ports in scope graphs. Precisely, a five-step Phased approach
is discussed and implemented in Haskell. It consists of cre-
ating a module ordering, adding modules to the scope graph,
import resolution, adding declarations to the scope graph, and
type-checking declaration bodies. This passes all but one of
the good-weather and bad-weather test cases and always halts
whereas MiniStatix does not [9].

Since relative/unordered imports are found in other lan-
guages, and it is important to consider reusability, two im-
provements to scope graph primitives are suggested. Both of
these stem from the Phased implementation and have been
generalized for scope graph applicability. Firstly, a way to
traverse a scope graph in a breadth-first fashion and perform
side effects during the traversal, such as placing edges. Sec-
ondly, multi-origin querying, whereby a query can be exe-
cuted from multiple origins and the results combined into
one. Integrating such features would further improve the
declarativity of the Phased type-checker, which is currently
not declarative and much less concise compared to the Min-
iStatix one.

While this thesis presents an introduction to type-checking
LM with the Phased approach, there are still limitations and
various areas that can and further should be researched. First
and foremost, this thesis presents a partially-correct imple-
mentation with no proof of correctness; a logical next step
is to resolve failing test cases (and potentially derive a fully-
correct ambiguity detection algorithm) and ultimately prove
an implementation to be correct. In parallel, it could be inves-
tigated how the Phased approach performs when applied to
Ruby or C++. Flavors of LM exist that contain transitive im-
ports, such as the one laid out by van Antwerpen et al. in [2].
The applicability of the Phased approach to transitive imports
and querying could be further researched. Lastly, the perfor-
mance of this algorithm could be investigated on real-world
programs with many imports due to this not being taken into
consideration in this thesis.

Acknowledgements
First and foremost, I would like to express my gratitude to-
wards my responsible professor Dr. Casper Bach Poulsen
and Aron Zwaan, who patiently guided me and answered
my many, many questions. Your feedback was not only in-
valuable in the development of this thesis but helped me de-
velop academic soft skills in a broader context. I would like
to also acknowledge the instructors of Academic Communi-
cation Skills and Responsible Research for conveying their
knowledge.

I am deeply appreciative of my family and friends who
have so kindly supported me throughout this thesis. I would
like to thank Jan, Philip and Eloise for diligently highlighting
my typos and Jeroen for helping me figure out C++. Lastly,
I would like to acknowledge the late Ollie, who may never
have grasped how to behave like a normal cat, let alone scope
graph theory, but provided me with purrs and moral support.

References
[1] J. An, A. Chaudhuri, J. S. Foster, and M. Hicks. Dy-

namic inference of static types for ruby. SIGPLAN Not.,
46(1):459–472, Jan 2011.

[2] H. van Antwerpen, P. Néron, A. Tolmach, E. Visser,
and G. Wachsmuth. A constraint language for static
semantic analysis based on scope graphs. In Proceed-
ings of the 2016 ACM SIGPLAN Workshop on Par-
tial Evaluation and Program Manipulation, PEPM ’16,
page 49–60, New York, NY, USA, 2016. Association
for Computing Machinery.

[3] C. Bach Poulsen and C. van der Rest. Hefty algebras:
Modular elaboration of higher-order algebraic effects.
Proc. ACM Program. Lang., 7(POPL), Jan. 2023.

[4] M. Dowson. The Ariane 5 software failure. ACM SIG-
SOFT Software Engineering Notes, 22(2):84, 1997.

[5] D. Gratzer. A crash course on ML modules.
https://web.archive.org/web/20230602041321/https:
//jozefg.bitbucket.io/posts/2015-01-08-modules.html,
Jan 2015. Accessed 22.06.2023.

[6] X. Leroy. A modular module system. Journal of Func-
tional Programming, 10(3):269–303, 2000.

[7] P. D. Mosses. A component-based formal language
workbench. Electronic Proceedings in Theoretical
Computer Science, 310:29–34, Dec. 2019.

[8] P. Neron, A. Tolmach, E. Visser, and G. Wachsmuth. A
theory of name resolution. In J. Vitek, editor, Program-
ming Languages and Systems, pages 205–231, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[9] A. Rouvoet, H. van Antwerpen, C. Bach Poulsen,
R. Krebbers, and E. Visser. Knowing when to ask:
Sound scheduling of name resolution in type checkers
derived from declarative specifications. Proc. ACM Pro-
gram. Lang., 4(OOPSLA), Nov. 2020.

[10] H. van Antwerpen, C. Bach Poulsen, A. Rouvoet, and
E. Visser. Scopes as types. Proc. ACM Program. Lang.,
2(OOPSLA), Oct. 2018.

[11] Hendrik van Antwerpen. nabl.
https://github.com/metaborg/nabl/blob/
4d06d2cf2519d461288ad7e7fb31575da1ea24af/nabl2.
test/testsuites/name-resolution/tests.spt#L141-L163,
2019. Accessed 25.06.2023.

[12] I. R. van de Poel and L. M. M. Royakkers. Ethics,
technology, and engineering: an introduction. Wiley-
Blackwell, United States, 2011.

[13] M. G. J. van den Brand, H. A. de Jong, P. Klint, and P. A.
Olivier. Efficient annotated terms. Software: Practice
and Experience, 30(3):259–291, 2000.

[14] A. Zwaan and H. van Antwerpen. Scope Graphs: The
Story so Far. In Ralf Lämmel, Peter D. Mosses, and
Friedrich Steimann, editors, Eelco Visser Commemora-
tive Symposium (EVCS 2023), volume 109 of Open Ac-
cess Series in Informatics (OASIcs), pages 32:1–32:13,
Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[15] A. Zwaan, H. van Antwerpen, and E. Visser. Incremen-
tal type-checking for free: Using scope graphs to derive
incremental type-checkers. Proc. ACM Program. Lang.,
6(OOPSLA2), Oct. 2022.

A Responsible Research
When performing research, it is critical to consider the ethi-
cal implications. Separatism and the tripartite model dictate
that the scientists/engineers are only responsible for the tech-
nical creations of products [12]. In contrast to such stigma,
it is important to consider the big-picture implications of this
research.

For one, it is necessary to consider validity. Specifically,
the impact that false positive and false negative findings have,
although neither was observed during research. It should be
noted that the software created in this thesis is not directly
applicable in the real world, rather it serves as a foundation
that real-world relevant programming languages can build
upon. False positives would reject the program of a user even
though it is semantically correct. Such a situation is frustrat-
ing, but aside from decreased productivity has no larger-scale
impact on society. However, false negatives delay the discov-
ery of bugs. Although the direct real-world applicability of
this research is limited, bugs can cause devastating damages
(such as Ariane 5 [4]). Nonetheless, the broader analysis of
the impact of bugs is outside the scope of this reflection, and
something that should be researched further.

In general, the research performed in this thesis does not
have a large-scale impact on individuals or society. Type-
checkers are tools that aim to provide certain guarantees or
help to the programmer. Consequently, research in this area
contributes positively towards programmer productivity and
it could be argued that this has a marginal impact on societal
output.

On the contrary, programs can be used for malicious pur-
poses, such as viruses or other forms of malware. While the
abstract nature of this research means it will most likely not
aid in the creation or augmentation of malicious software, the
possibility is always there. Furthermore, job security could

https://web.archive.org/web/20230602041321/https://jozefg.bitbucket.io/posts/2015-01-08-modules.html
https://web.archive.org/web/20230602041321/https://jozefg.bitbucket.io/posts/2015-01-08-modules.html
https://github.com/metaborg/nabl/blob/4d06d2cf2519d461288ad7e7fb31575da1ea24af/nabl2.test/testsuites/name-resolution/tests.spt#L141-L163
https://github.com/metaborg/nabl/blob/4d06d2cf2519d461288ad7e7fb31575da1ea24af/nabl2.test/testsuites/name-resolution/tests.spt#L141-L163
https://github.com/metaborg/nabl/blob/4d06d2cf2519d461288ad7e7fb31575da1ea24af/nabl2.test/testsuites/name-resolution/tests.spt#L141-L163

be impacted by a sharp but incredibly unlikely increase in
productivity.

Beyond ethics, important points of consideration are re-
producibility (reliability) and transparency. In terms of re-
producibility, the publication of source code, test cases, and
technology baseline ensures that this thesis is reproducible.
Furthermore, all assumptions and omissions have been ex-
plicitly highlighted and justified, ensuring that the research
is transparent. Should this thesis contain flaws in the code,
this can easily be fixed due to its distribution and permissive
license. Lastly, citations are used to provide further insight
into sources of information, such that this thesis’ context and
research can be reproduced by others.

B Representation
Figure 15 shows the grammar of LM. Similarly, Figure 16
shows the AST representation of the LM variant described by
the grammar in Figure 15, directly after being extracted from
ATerms.

prog ::= decl*

decl ::= module ident { decl* }
| import modref
| def ident = expr

expr ::= int
| true
| false
| varref
| expr + expr
| expr - expr
| expr * expr
| expr == expr
| if expr then expr else expr
| fun (ident : type) { expr }
| expr expr
| letrec ident = expr in expr
| (expr)

modref ::= modref . ident
| ident

varref ::= modref . ident
| ident

type ::= Int
| Bool
| type → type

Figure 15: BNF grammar for LM, a subset of the LMR grammar by
Van Antwerpen et al. [2].

C Failing Test Case
The test case that fails is falsely rejected is shown in Figure
17. Again, this occurs due to ambiguity detection.

type LProg = [LDecl]
data LDecl
= LMod String [LDecl]
| LImport LModule
| LDef String LExp

data LModule
= LMLiteral String
| LMNested LModule String

data LFDecl
= LFDecl String LType

data LType
= LInt
| LBool
| LFn LType LType

data LExp
= Num Int
| Tru
| Fls
| Id LIdent
| Plus LExp LExp
| Minus LExp LExp
| Mult LExp LExp
| Eql LExp LExp
| If LExp LExp LExp
| Fn (String, LType) LExp
| App LExp LExp
| LetRec (String, LExp) LExp

data LIdent
= LILiteral String
| LINested LModule String

Figure 16: AST representation of LM.

module B {}
module A {
module B {}

}
module C {
module A {}

}
module I {
import B
import A

}

Figure 17: The test case that fails.

D Other Languages
Ruby and C++ have similar relative and glob import seman-
tics as LM, though imports are unordered. This can be seen
in Figure 18. Note that in Ruby, x could not be referred via
B::x. This is however possible in C++.

(a) Ruby module example.

module A
module B
def x; 19; end

end
end
include A
include B
def y; x; end

(b) C++ namespace example.

namespace A {
namespace B {
int x = 19;

};
};
using namespace A;
using namespace B;
int y = x;
int main() {};

Figure 18: Relative and glob imports of arbitrarily nested compila-
tion units in other languages.

	Introduction
	Problem Description
	LM
	Scope Graphs
	Resolution and Monotonicity
	Queries
	Monotonicity
	MiniStatix Scheduling

	Phased Type-Checking
	Phase 1: Creating a Module Hierarchy
	Phase 2: Constructing Module Scope Graphs
	Phase 3: Resolving Imports
	Example Resolution
	Modifications
	Unique Module Resolution
	Shadowing Module Resolution
	Ambiguity
	Termination

	Phase 4: Adding Declarations
	Phase 5: Type-Checking

	Evaluation and Discussion
	Test Cases
	Implementation
	Results
	Performance
	Primitive Extensions
	Breadth-First Traversal
	Multi-Origin Querying

	Declarativity and Feature Extensibility
	Reusability
	Limitations

	Related Work
	Conclusions and Future Work
	Responsible Research
	Representation
	Failing Test Case
	Other Languages

