
Learning State Machines faster using
Locality-Sensitive Hashing and an application

in network-based threat detection

Learning State Machines faster using
Locality-Sensitive Hashing and an application

in network-based threat detection

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Rafail SKOULOS

Master of Engineering in Electrical and Computer Engineering,
National Technical University of Athens, Greece

born in Mytilene, Greece

Student number: 4847482
Project duration: November 1, 2019 – August 25, 2020
Thesis committee: Dr. ir. S.E. Sicco Verwer, TU Delft, Supervisor

Prof. dr. ir. R.L. Inald Lagendijk, TU Delft
Dr. ir. Mauricio Finavaro Aniche, TU Delft

The work in the thesis was conducted together with APTA Technologies.

Style: TU Delft House Style, with modifications by Moritz Beller
https://github.com/Inventitech/phd-thesis-template

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

https://github.com/Inventitech/phd-thesis-template
http://repository.tudelft.nl/

v

Contents

Summary ix

Acknowledgments xi

1 Introduction 1
1.1 Motivation . 2
1.2 Research Questions . 4
1.3 Contributions . 5
1.4 Outline . 6

2 Background 7
2.1 Sequential Data . 7

2.1.1 Alphabet . 7
2.1.2 Length . 8

2.2 Trigram Model . 8
2.3 Finite State Machine . 9

2.3.1 Passive Learning . 10
2.3.2 Active Learning . 11

2.4 Flexfringe overview . 12
2.4.1 Input Format . 12
2.4.2 Output Format . 12
2.4.3 Merge Heuristics . 13
2.4.4 Create new merge Heuristics . 14
2.4.5 State Merging . 14
2.4.6 Red Blue Merging Algorithm . 15

2.5 Neflow Data . 16
2.6 Locality Sensitive Hashing . 17

2.6.1 P-stable distribution . 18
2.6.2 Random Hyperplanes . 19

2.7 Evaluation metrics . 21

3 Related work 23
3.1 Anomaly Detection Algorithms . 23

3.1.1 Classification-based . 23
3.1.2 Clustering and Outlier-based . 26
3.1.3 Statistical-based . 27

3.2 State Machines . 28
3.3 Locality-Sensitive Hashing (LSH). 29

vi Contents

4 Locality-Sensitive Hashing State-Merging Heuristic 31
4.1 Heuristic description . 31

4.1.1 Future traces distribution extraction 31
4.1.2 Future trace distribution update 34
4.1.3 Merge consistency check . 34
4.1.4 Merge score calculation . 35

4.2 Implementation . 37
4.2.1 Future traces distribution extraction 37
4.2.2 Evaluation data . 38
4.2.3 Evaluation function . 38

5 Data Exploration 43
5.1 CTU-13 dataset. 43

5.1.1 Data Description . 43
5.1.2 NetFlow features . 45
5.1.3 NetFlow features used for encoding 45
5.1.4 Distribution of the number of flows over time 47
5.1.5 Number of flows per host . 48

5.2 PAUTOMAC competition dataset . 51
5.2.1 Artificial data generation . 51
5.2.2 Data Description . 51

6 Methodology 53
6.1 Data . 53

6.1.1 Data split. 53
6.1.2 Data Discretization. 54
6.1.3 NetFlow Encoding . 54
6.1.4 Sliding Windows . 55

6.2 Recognizing a Host as Infected . 57
6.2.1 Acceptance ratio-based. 57
6.2.2 Error-based . 57
6.2.3 Fingerprint-based . 57

6.3 Single vs. Multi scenario simulation . 58
6.3.1 Single scenario simulation . 58
6.3.2 Multi scenario simulation . 58

6.4 Measuring runtime and model quality 60

7 Experiments 61
7.1 Experimental Configuration . 61
7.2 Hyper-parameter Tuning. 61
7.3 Experimental procedure . 63
7.4 Single Scenario . 63
7.5 Multi Scenario . 68
7.6 Comparison to state-of-the-art detection techniques 72
7.7 Runtime efficiency . 73
7.8 Discussion . 76

Contents vii

8 Conclusion 79
8.1 Reflection on Research Questions . 79
8.2 Limitations . 80
8.3 Future work . 81

Bibliography 83

ix

Abstract
The internet traffic is constantly rising nowadays due to the significant increase of the
devices connected to the Internet. As a consequence, many cyber risks have arisen. Cy-
bercriminals are trying to exploit the vulnerabilities of these devices to cause damage and
gain profit. Monitoring the network traffic and detecting such threats has become essen-
tial in order to keep safe systems that are connected to the Internet. The powerful proper-
ties of state machines and the sequential nature of the network traffic data, makes them
an interesting and promising solution for the implementation of an intrusion detection
system.

The goal of this thesis is to implement a new state-merging heuristic which will speedup
the state machine building procedure without a significant loss on the quality of the model,
and use it to detect malicious host on network traffic data. The new state-merging heuris-
tic is utilizing the Locality-sensitive Hashing concept to store the future traces of each
state and simplify the consistency check for the merge of two states. The network traffic
data used are in the NetFlow format, and they are encoded and converted into traces in
order to build the state machine model and measure its performance. The state machine
built is modeling a malicious behavior and used to classify other hosts.

We show that the models built can effectively detect the malicious hosts, with its per-
formance being comparable to the one of a state-of-the-art model. At the same time, the
time needed to build the model is much less when compared to the time needed by other
state-merging heuristics.

xi

Acknowledgments
Many people contributed to this thesis in their own way.

First of all, I would like to thank my supervisor Sicco Verwer, for his valuable guidance
and and his willingness to help throughout the process. With his great ideas, he helped
me to overcome all the problems I faced.

Of course I want to thank everyone from APTA Technologies. It was a great experience
for me to be member of the team. I would like to pay my special regards to Christian
Hammerschmidt who have willingly shared his precious time during the process to discuss
about my project and to impart his knowledge.

Last but not least, I am grateful to my family and friends who have been standing by
my side all these years. They kept me going on and this work would not have been possible
without their support.

Rafail
Delft, August 2020

1

1

1
Introduction

Internet is a technology invented in the 1960s, which allows the communication between
networks and devices worldwide. Since its invention, the number of people using it is
constantly rising. People use it for a plethora of their daily activities, including commu-
nication with other people worldwide, social media usage, entertainment and education
among others. It has been also proved vastly beneficial for many areas of the economy,
including finance, retail, industry, healthcare, education, and science. Especially, the rise
of the Internet of things (IoT) the last years has brought new possibilities and increased
vastly the volume of the Internet traffic. As of April 2020, 4.54 billion among the 7.77 bil-
lion people on the world, are active Internet users¹. In 2019, 167 petabytes of data were
exchanged per month the through Internet, while the predicted traffic volume per month
for 2022 is 333 petabytes ².

However, except from its positive aspects, the increasing number of machines con-
nected to the Internet has caused the rise of the cyber-attacks. As cyber-attacks are con-
sidered the actions performed by cyber-criminals whose goal is to harm the user. There
are many types of cyber-threats. Some of the most common ones are:

• Malware: A malicious software which performs a malicious task on the device, like
taking control of the system or stealing data.

• Phishing: Uses an email to trick the user to either reveal confidential information
(e.g. passwords) or download a malware by clicking on a hyperlink included on the
email.

• Trojans: Gets into the system looking like a normal software, and releases some
malicious code on the host.

• Denial of Service attack or Distributed Denial of Service Attack (DDoS): The
attacker takes control of a big number of devices to invoke functions of the target
system and make them unavailable to its intended users.

¹https://www.statista.com/statistics/617136/digital-population-worldwide/
²https://www.statista.com/statistics/267202/global-data-volume-of-consumer-ip-traffic/

1

2 1 Introduction

One of the biggest cyber-threats nowadays are botnets. A botnet is a number of
Internet-connected devices, each of which is running one or more bots ³. Bot is an in-
fected device that executes the commands of a controller, named botmaster. Botnets can
be used to perform large-scale attacks such as the aforementioned ones.

Considering the damage that can be caused to individual users, companies and gov-
ernments by getting infected, the need of a method to detect and prevent cyber-attacks
became crucial. An widely utilized method to prevent cyber-attacks on a network is the
deployment of an Intrusion Detection System on it. Intrusion is defined as a set of actions
aimed to compromise the security of computer and network components in terms of confi-
dentiality, integrity and availability[1]. Intrusion Detection Systems monitor and analyze
the network activities in order to detect the malicious host trying to attack the network.
Many times these systems has a consulting role, meaning that they rise an alarm when
they suspect that a host is malicious but the final decision for excluding this host from the
network is taken by the administrator of the network.

Several techniques has been used to implement an IDS. The rapid development is Arti-
ficial Intelligence in the recent years, has lead to the development of many machine learn-
ing methods which are used to detect anomalies in the network traffic. Some of the most
popular categories are the classification-based methods [2][3][4][5][6][7]. Also several
statistical based methods, like PCA[8][9][10][11] and the clustering-based[12][13] can be
used for the implementation of an intrusion detection system. Most of these methods,
despite their high performance, are not interpretable, meaning that the reasoning behind
the classification of a host as malicious cannot be presented or it is not understandable by
the user. This is a major disadvantage as it makes it difficult to the network administrator
to decide if the host was actually malicious or a false alarm has been risen.

An interesting method that can be used in order to detect malicious hosts is the State
machines [14][15] [16]. State machines are usually used to build the communication pro-
file of the malicious behavior and the to detect the anomalies in the network by comparing
the profiles of the examined host with the communication profile built.

1.1 Motivation
State machines is an interesting technique used to create the communication profile (model)
of a malicious host, mainly because the sequential nature of the network traffic data and
the interpretability of the model built. One of the most famous algorithms used to learn
state machines is the Blue-Fringe algorithm[17]. However one of its biggest disadvantages
is that it require a significant amount of time to build the model, because a requirement
for two states to be merged is that also their descendant states can be merged. That dis-
advantage becomes even more important when they are used to build an communication
profile and detect malicious hosts in a streaming fashion.

In order to overcame this, we are using the Locality-sensitive hashing [18] (LSH) con-
cept. LSH is a well-known hashing based algorithm which hashes similar items in the
same bucket with high probability. The number of buckets is much smaller than the num-
ber of possible input items, so by using LSH we can cluster similar items together in a fast

³https://en.wikipedia.org/wiki/Botnet

1.1 Motivation

1

3

and efficient way. There are many different kind LSH families, each one clustering the
items according to a different metric, e.g.,their Euclidean distance.

Our proposed state-merging heuristic, hashes all the future traces for each state into
buckets and then uses the discrete probability distribution extracted by these buckets when
trying to decide when two states should me merged or not. An example of traces stored
into LSH buckets and the distribution extracted from them, is presented in figure 1.1. The
intuition behind this idea is that similar traces will be hashed on the same bucket when
using the proper LSH family, so states with similar future traces will have similar distri-
butions. Thus instead of comparing all the children states of these states when we need
to decide whether to merge them or not, we can reduce significantly the time required by
comparing only the aforementioned distributions.

Given the procedure we follow to encode the flows, described in section 6.1.3, we
expect that the bigger the numerical difference between two symbols is, the more different
the two flows represented by these symbols is. So the numerical difference between two
symbols need to be taken into account when comparing two future traces. In addition,
we also need to take into account the order to the symbols in the traces. For example, the
traces <1,2,3> and <3,2,1> are different, although they contain the same symbols. Thus
we should treat the traces as vectors and not as sets. So measuring the Jaccard similarity
𝐽 (𝐴,𝐵) = |𝐴∩𝐵|

|𝐴∪𝐵| will not be accurate for our case. So we decided to proceed with LSH families
that stores in the same bucket traces whose distance as vectors is small. The simplest
distance metrics for two vectors are Manhattan, Euclidean and angular distance. Thus, we
decided to p-stable distribution (with p=1 and p=2) and random hyperplane LSH families
to capture the aforementioned distances between the traces.

1

4 1 Introduction

Figure 1.1: Example of extraction of the distribution of the future traces for a state from the LSH buckets

1.2 Research Questions
The objective of this work is to implement a new state-merging heuristic for state machines
utilizing the LSH concept which will significantly speedup the learning procedure, and use
it to learn state machine models from network traffic data that will be then used to detect
malicious hosts. We use the concept of LSH to hash into buckets the future traces of each
state, and compare their distribution as a consistency check for the merge of two nodes.
The main question we want to answer is:

• How can I use the concept of LSH to create a fast state-merging heuristic that builds
accurate state machines?

This question can be broken up in three parts. The first part is about the implementa-
tion of the proposed state-merging heuristic in a way that it will make the state-merging
process faster without a significant loss on the ”quality” of the models built. The second
part is about the LSH family that is the more efficient for this task. There are many LSH
families, each of which is capturing different kind of similarities between the input items.
For the reasons discussed section 1.1, the three LSH families we experimented with are
p-stable distribution (with p=1 and p=2) and random hyperplane LSH families. Finally,
the last part is about the performance of our method in building accurate models and how
fast this procedure is.

To sum up, the research questions that we attempt to answer are the following:

1. How can I use the concept of LSH to create a fast state-merging heuristic that is
accurate?

1.3 Contributions

1

5

(a) What should be stored to the LSH buckets?
(b) What should be compared during the consistency check for two merges and

how?
(c) How will this heuristic make the state-merging process faster than using other

heuristics ?

2. What kind of LSH family will be more efficient for the implementation of the heuris-
tic?

(a) LSH with 1-stable distribution which assigns to the same bucket traces with
small Manhattan (𝑙1) distance?

(b) LSH with 2-stable distribution which assigns to the same bucket traces with
small Euclidean (𝑙2) distance?

(c) LSH with random projections which assigns to the same bucket traces with
small angular distance?

3. Which will be the implications of using this heuristic in terms of speed and perfor-
mance?

(a) What is the performance of a state machine build with the proposed heuristic
on task of detecting malicious hosts on NetFlow data?

(b) How it compares with the performance of a state-of-the-art model?
(c) What is the performance of a state machine build with the proposed heuristic

on learning distributions over strings and what how fast the building of the
state machine is?

1.3 Contributions
In this thesis, we propose a new state-merging heuristic using the LSH hash-based algo-
rithm to speedup the state-merging algorithm, and evaluate its runtime and its efficiency
on detecting malicious hosts. We use the flexfringe tool [19] and integrate our heuristic
to the Red-Blue fringe state-merging algorithm[17]. We hash into the LSH buckets the
future traces for each state and compare the distribution extracted from the buckets when
we need to decide if a merge is consistent. By hashing the future traces, we make an ap-
proximation about the future of each state so we avoid comparing their descendants states
when trying to merge them. This significantly speedups the state-merging procedure. We
also tried three different LSH families which capture different types of similarities be-
tween the traces. We evaluate the performance of state machines build with our heuristic
on recognizing malicious host on CTU-13[20] dataset, by using three different evaluation
methods, and we compare the best one with the performance of a state-of-the-art model.
We also measured its runtime on the datasets of the PAUTOMAC competition[21].

Our experiments showed that by using the 1-stable distribution LSH family, we achieved
the best performance on classifying malicious hosts on both single and multi scenario sim-
ulation, when compared to other methods like a trigram model or a state machine using a
modified version of the alergia heuristic[22]. Regarding the runtime of out heuristic, when

1

6 1 Introduction

compared to the alergia heuristic it achieved an speedup of 5.4, without an significant loss
on the quality of the models produced. Hence, our main contributions are:

1. We introduced a new state-merging heuristic utilizing the LSH concept to measure
the similarity of two states when deciding if they should be merged or not. To the
best of our knowledge, there is no existing state-merging heuristic using the LSH
concept.

2. We provided an empirical evaluation of this state-merging heuristic on building ma-
chines that detect malicious hosts. We showed that its performance is comparable
with a state-of-the-art model.

3. We provided an empirical evaluation of its runtime, which according to our exper-
iments is 5.4 times smaller than the runtime of a state machine using the alergia
state-merging heuristic.

4. We provided a framework for fast detection of malicious hosts on NetFlow data.

1.4 Outline
The rest of this thesis is structured as follows: In chapter 2 the background information
needed to understand the topic and the basic concepts of this thesis are provided, along
with the description of the flexfringe tool used to build the models. In chapter 3, an
overview of some previous studies on anomaly detection in network data and Locality-
Sensitive Hashing is provided. Section 4.1 describes in detail the proposed state-merging
heuristic and explains its implementation. Then,in chapter 5 the dataset used for our re-
search is described and some data analysis is conducted. In chapter 6, the handling of
the data, the evaluation the state machine model and the simulations we used for this
evaluation are presented. Following, chapter 7 presents the experimental procedure fol-
lowed along with its results and a discussion of them. Finally, in chapter 8 the conclusions
that can be drawn from our work are presented, along with a reflection on the research
questions, the limitations of our work and some ideas about future work.

2

7

2
Background

This chapter contains the background information required to understand the concepts,
the term and the methods used in this thesis. Initially the concept of sequential data is
described, as it the type of data used to on this thesis, followed by the definition and the
description of the State Machines, which they are the main models used. Afterwards, the
flexfringe software tool is described along with the basic concepts needed to understand its
functionality. Following, the concept of Locality Sensitive Hashing is introduced and some
additional informational are provided about the LSH families used on this thesis. Finally,
we present the evaluations metrics used to evaluate the performance of the examined
models on the host classification task.

2.1 Sequential Data
Sequential data is data that are ordered according to some of their characteristic. Time se-
ries are a well known type of sequential data, which consists of data points equally spaced
in time. Other cases of sequential data are biological data from the DNA sequence, and
data from text documents, where the order of the words is taken into account. According
to V. Chandola et al. in [23], ”a discrete/symbolic sequence is defined as a finite sequence of
events, such that each event can be represented as a symbol belonging to a finite alphabet”.
Sequences contain subsequent values of a specific variable, hence are ideal for capturing
the behavior of a variable and the structural dependencies between the sequential values.

The sequential data used in this project are Netflow Data, which consist of a sequence
of network flows. These flows are characterized by several properties which are analyzed
in a section 5.1.2.

2.1.1 Alphabet
The alphabet of a sequence is the set of all the possible letters of numbers that a symbol
of a sequence can take. For example in the sequence <A,B,C,A>, the alphabet consists of
all the different letters, that is [A,B,C].

2

8 2 Background

2.1.2 Length
The length of a sequence is defined as the number of the symbols in a sequence. For the
above defined sequence <A,B,C,A>, the length is 4. Except from the finite sequences, as the
one mentioned before, there can be sequences with infinite length, such as the sequence
of all the positive numbers < 1,2,3,… >. However, in this project we will use only finite
sequences as the number of flows in the NetFlow data is finite.

2.2 Trigram Model
Trigrams (3-grams) are continuous sequences of three events from a given sequence. Tri-
gram can be used as a statistical model to assign probabilities to events of a sequence. Tri-
gram model approximates the probability of a given events given all the previous events
by calculating the conditional probability given the two previous events. The assumption
that the probability of the occurrences of an events depends only on a limited number of
previous events is known as Markov assumption. It can be formulated as:

𝑃(𝐸𝑛 |𝐸𝑛−11) ≈ 𝑃(𝐸𝑛 |𝐸𝑛−1,𝐸𝑛−2) (2.1)

Let’s assume that we have three consecutive events 𝐸1, 𝐸2 and 𝐸2. The conditional
probability 𝑃(𝐸3|𝐸2,𝐸1) can be computed by calculating the joint probability 𝑃(𝐸1 ∪𝐸2 ∪𝐸3)
and the marginal probability of the union of the two past events 𝑃(𝐸1 ∪𝐸2). According to
Kolmogorov’s definition [24], the conditional probability 𝑃(𝐸3|𝐸2,𝐸1) can be computed by
the following formula:

𝑃(𝐸3|𝐸2,𝐸1) =
𝑃(𝐸1 ∪𝐸2 ∪𝐸3)
𝑃(𝐸1 ∪𝐸2)

When the trigram model is built, every distinct pair of consecutive events is a different
state. For every of these states, there is a transition to another state according to the
following symbol of the sequence, whose probability is calculated by using the formulas
described above. An example of a trigram model is presented in figure 2.1.

Figure 2.1: Trigram model ¹

¹Source: http://www.phon.ox.ac.uk/jcoleman/old_SLP/Lecture_6/trigram-modelling.html

http://www.phon.ox.ac.uk/jcoleman/old_SLP/Lecture_6/trigram-modelling.html

2.3 Finite State Machine

2

9

2.3 Finite State Machine
A Finite State Machine (FSM), also called Finite State Automata (FSA) or Deterministic
Finite Automata (DFA), is a mathematical behavioral model representing a computer prob-
lem. It’s components are states, transitions between the states and actions triggered by
some transition. States represent the current situation after a sequence of actions have
happened. FSM can be only in one state at a time. Transitions represent a change to the
current state, while there is a condition for a transition to happen. Each transition can
trigger an action. FSM is the type of model used in this project to predict whether host is
malicious or benign.

The formal definition of State Machine as it is stated by Michael Sipser in the book
”Introduction to the Theory of Computation” [25] is the following:

A finite automaton is a 5-tuple (𝑄,Σ,𝛿,𝑞0, 𝐹) where

• 𝑄 is a finite set called the states,

• Σ is a finite state called the alphabet,

• 𝛿 ∶ 𝑄𝑥Σ is the transition function,

• 𝑞0 ∈ 𝑄 is the start state and,

• 𝐹 ⊆ 𝑄is the set of accepted states.

An example of a state machine is the one on Figure 2.2. From this example we can
derive that:

• The states are 𝑄 = 𝑞1, 𝑞2, 𝑞2
• The alphabet is Σ = 0,1
• The transition function 𝛿 is:

0 1
𝑞1 𝑞1 𝑞2
𝑞2 𝑞3 𝑞2
𝑞3 𝑞2 𝑞2

• The start state is 𝑞1
• The set of accepted states is 𝐹 = {𝑞2}
The State Machine reads one character (symbol) of the input string at a time and moves

to the next state according to the transition function, which in the provided figure means
that follows the arrow of the current state with the corresponding symbol. For example,
if we are on the initial state 𝑞1 and and the incoming symbol is 1, then the next state will
be 𝑞2.

2

10 2 Background

For a given input string (sequence) 𝜎 = 𝜎1,𝜎2,… ,𝜎𝑛 of length n, the final state 𝑞𝑛 is
reached by following a sequence of transitions (𝑞0, 𝛿(𝑞0,𝜎1), (𝑞1, 𝛿(𝑞1,𝜎2),𝑞𝑛). If 𝑞𝑛 is an
accepting state, then we say that the given string is accepted, otherwise it is rejected. The
set of all the accepting string by a State Machine M, is called the language L of the machine
M.

State machines can be represented by a graph, as the one in Figure 2.2. Each node
represents a state and each edge represents a transition. Each transition has a label which
represents the symbol that caused this transition. For example, the transition from state
𝑞1 to state 𝑞2 has label 1. An arrow without a source state indicates the initial state, while
the final state is depicted with a double circle. In our example, the initial state is 𝑞1 and
the final state is 𝑞2.

State machines are used build a model representing the behavior of a system. The state
machine of Figure 2.2 is modeling the following behavior:

𝐴 = {𝑤|𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 1
𝑎𝑛𝑑 𝑎 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 0𝑠
𝑓 𝑜𝑙𝑙𝑜𝑤 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 1}

In order to obtain the state machine which is modelling a specific system, a learning
procedure should be followed. There are two main approaches for this learning procedure,
the passive learning and the active learning.

Figure 2.2: An example of a State Machine as provided in [25]

2.3.1 Passive Learning
Passive learning [26] technique is the most common algorithm for learning state machines.
This algorithm tries to learn the simplest possible model from a set of traces extracted from
sequential data, which should demonstrate the behavior of the system that will be modeled.
These traces can contain both positive and negative traces. Positive traces are the ones
which belong to the targeted language, so they should be accepted by the produces state
machine. On the other hand, negative traces do not belong to the targeted language so
the should be rejected by the state machine. However, is is common that the training
data contain only positive data, which is the case in this project. The limitation of this
method is that the finite number of traces which are provided as a training set may not
capture the whole behavior of the modeled system. Conclusions can not be inferred from

2.3 Finite State Machine

2

11

unobserved behaviors, thus the modeled wont be able to model behaviors that are absent
on the training data. The passive learning technique is demonstrated in Figure 2.3

Figure 2.3: Passive learning

2.3.2 Active Learning
In 1987, Angluin proposed the 𝐿∗ algorithm which implements an active learning method
for learning state machines [27]. Most of the active learning algorithms proposed and
developed since then are based in Angluin’s approach. This approach is depicted in fig-
ure 2.4.

Active learning requires a continuous interaction between a learner and a teacher for a
model to be learned. The role of the teacher is usually played by an oracle. Active learning
learns the targeted behavioral models by performing repeatedly experiments on it.

There are two types of queries that the learner executes, in order to learn a behavioral
model. The first type are the membership queries where the learner executes queries
consisting of strings from the input set and gets a response (yes/no) from the teacher
indicating whether the proposed string belongs to the language or not. In this way, and
with the training data, the leaner builds a model. The second type of queries are the
equivalence queries, where the learning asks the teacher if the model leaned is equivalent
with the targeted model. If so, the learning process is terminated. If the proposed model
is wrong, the teacher returns a counterexample which is a string from the input data that
is accepted by the targeted model and rejected by the proposed model and vice-versa.
By analyzing the counterexample, the learner refines its observation table and construct
an improved version of the model. This process is continued until the targeted model is
obtained.

Figure 2.4: Active learning

2

12 2 Background

2.4 Flexfringe overview
The tool used to learn the Finite State Machine (FSM) model is flexfringe [19]. It is an open-
source software tool used to learn different variants of FSMs from traces with a specific
format, as presented in section 2.4.1. Flexfringe is an evolution of DFASAT, which won the
StaMiNa competition[28], [29], and had a very good performance on SPiCE competition
[30].

It’s core state-merging algorithm is the evidence-driven blue-fringe state-merging al-
gorithm [31]. It was implemented by using a union-find data structure to store and undo
merges, which makes it computationally efficient. However, this algorithm was adapted
so that it can deal with different heuristics and model types, including probabilistic and
non-probabilistic deterministic FSMs. Also, flexfringe was implemented in a way that is
easy to be extended by the user by adding their own heuristic for the state-merging pro-
cess. Furthermore, it contains many parameters that can be used to tune the model and
adjust its functionality according to the requirements of the examined task. Last but not
least, two important features of flexfringe is that it can make use of sink states, and it can
also operate in streaming mode [32].

2.4.1 Input Format
The format of the inputs files for the flexfringe tool, is based on the Abbadingo competition
format. In particular each input file contains a header line with two numbers, the number
of traces (sequences) that the file contains and the number of different symbols over all
the sequences. Each of the following lines is a sequence of elements separated by space,
representing one sequence. More specifically, the first element is the numeric label of the
sequence, the second is the length of the sequence and the following part is the symbol
sequence. The elements of the sequence can contain any character except from space
and backslash, while the may have data attached with them separated with backslash. An
example of such a symbolic sequence can be seen in figure 2.5. For this project we train our
model only with one type of sequences, so the first number of these line has no meaning.
Furthermore, for the streaming mode, the header is omitted.

Figure 2.5: Flexfringe input format

2.4.2 Output Format
While flexfringe is running and the model is being created, it outputs some the action
executed along with its evidence score. This action can be either extend (x) or merge (m).
The score indicates how strong are the evidence for this action. An example of such an
output can be seen in figure 2.6. This output can be very informative as it let user know
the decision made while building the state machine model. Thus, it help the user during
the reverse-engineering process where they can tune the model parameters or add extra
data, in order to obtain a better model.

2.4 Flexfringe overview

2

13

Figure 2.6: Flexfringe output example

When the State Machine learning procedure ends and the final model is obtained, it
is saved as a directed graph with labels for nodes and edges, in a Graphviz’s dot format.
Also the user has the option to adjust the output format, by modifying some of the print
methods of the tool.

2.4.3 Merge Heuristics
As we described in section 2.4.5, heuristics are used to check the consistency of the ex-
amined merge action. Flexfringe contains an implementation of some of the well-know
heuristics in the literature. In particular, it contains the implementation of the consistency
checking and the other methods and structures which are essential for the functionality
of the heuristic. The heuristics included to flexfringe, as explained by C. Hammerschmidt
[22], are the following:

• EDSM [31]: used for DFA inference from both positive and negative data. The
evidence score of the heuristic is the number of states merged, while the consistency
check is based on the label of the data.

• Overlap [29]: it is based on the EDSM used for DFA inference in the Stamina com-
petition [28]. The evidence score of the heuristic is based on the overlapping outgo-
ing transitions, while the consistency check is based on the number of overlapping
transitions.

• KL-divergence [33] : used for PDFA inference. The evidence score of the heuris-
tic is the KL-divergence between the two examined states, while the consistency
check is based on the distance between the distribution of the examined states, as
computed by the KL-divergence.

• Likelihood [34]: used for PDFA inference. The consistency check selects a model
according to its log-likelihood.

• Alergia [35]: used for PDFA inference. The evidence score of the heuristic is the
number of merged states, while the consistency check uses the Hoeffding bound to
measure the distance between distributions of the two examined states.

• ModifiedAlergia[22]: a modified version of alergia heuristic implemented by Sicco
Verwer and used for the SPiCE competition [30]. The two major modifications were
on the order the order the algorithm tries to merge the states and on the way of
dealing with low frequency symbols. More details can be found in [22].

• RSME [22] used for regression automata inference. The consistency check uses a
mean-squared-error penalized likelihood selection condition.

2

14 2 Background

2.4.4 Create new merge Heuristics
An important advantage of flexfringe is the fact that it can be easily extended by adding
a new merge heuristic. In order to do so, the user should implement their own function
for the consistency checking between the examined states, and the evidence score for the
quantification of the similarity of the two states. More information about the technical
details of new merge heuristic creation are provided in [19].

2.4.5 State Merging
One of the most important process during the State Machine learning procedure is the state
merging. The goal of state merging is to find the smallest possible FDA that is consistent
with the input data. One of the most popular algorithms for state merging is the Evidence-
Driven State Merging (EDSM) algorithm.

This algorithm begins by constructing a tree-shaped automaton called Augmented Pre-
fix Tree Acceptor (APTA) from the input traces. Every input sequence is modeled from
the APTA with states and transition labels between the states. For two sequences to share
a path, mean that these two sequences have a common prefix. An example of an APTA
with labeled data (positive and negative) is depicted in figure 2.7.

Afterwards, all the possible merges of two states are evaluated by computing its evi-
dence score and the one with the best score is performed[17][31]. The role of the score
metric is to calculate the similarity of the future behaviors of the two examined states. This
procedure is repeated iteratively until no merges with high scores are possible. The score
function is defined by the merge heuristic used. The decision of whether two state can
be merged or not depends on the heuristic utilized. There are many different heuristics
used in the literature, some of them are described in section 2.4.3. The threshold used to
determine is a merge should be considered consistent or not is an important parameter
of flexfringe. By setting it to a low value, ”bad” merges may be allowed, which usually
results into a bad model. Thus, its value should be chosen wisely. Also the merge decision
if affected by the type of the nodes, meaning positive or negative. However this does not
apply to this project as we learn FSMs from only positive data.

During the state merging process the two states are merges into one. So all the input
transitions of these states should point to the new merged state, while the outgoing tran-
sitions of both states should be maintained and assigned to the new merged state. This
procedure is depicted in figure 2.8.

Figure 2.7: An augmented prefix tree acceptor for S = (S+ = { a, abaa, bb } , S− = { abb, b }) . The start state is the
state with an arrow pointing to it from nowhere, Source: [36]

2.4 Flexfringe overview

2

15

Figure 2.8: A merge of two states from the APTA from figure 2.7, Source: [36]

2.4.6 Red Blue Merging Algorithm
The state merging algorithm used by flexfringe is similar to the Red-Blue Fringe state
merging algorithm, introduced in [17]. The main purpose of this method is to reduce the
number of pairs which are possible to be merged. In order to do so, it follows the state
merging procedure described in section 2.4.5, but has a restricted number of pairs that
are tested for merge. In particular, it keeps two sets, one of red nodes and one of blue
nodes, where red nodes are parts of the targeted DFA and blue nodes are candidate nodes
for merging. Initially, the root node is colored red and all the children nodes blue. The
remaining nodes are colored white. Then the following actions are performed:

1. Evaluate all the possible merges between red and blue nodes.

2. If there exists a blue node that cannot be merged with any of the red nodes, promote
the shallowest such blue node to red. Then go to step 1

3. Otherwise, perform the merge with the highest score among the examined ones.
Then go to step 1.

4. Halt, if there is no possible valid merge.

For the actions described above, it can be observed that once a node is colored red,
then it never changes as it is assumed that it has been correctly identified by the previ-
ous iterations. An example of an APTA in an intermediate step of the Red Blue Merging
process with its nodes colored, can be seen in figure 2.9.

2

16 2 Background

Figure 2.9: The Red Blue Merging Algorithm framework, Source: [36]

2.5 Neflow Data
NetFlow as a network protocol was introduced by Cisco in 1996. It is used to collect in-
formation about IP network traffic and monitor the network traffic activity. An overview
of the basics of way the Netflow data are collected can be found in [37]. The main compo-
nents of a NetFlow monitoring setup can be seen in figure 2.10 and are the following:

• Flow exporter: responsible for the aggregation of the packets into flows and their
exportation to the flow collector.

• Flow collector: gets the flows from the flow exporter, stores and pre-processes
them.

• Analysis application: analyzes the received flow data.

Figure 2.10: Main components of a NetFlow monitoring setup²

²Source: https://en.wikipedia.org/wiki/File:NetFlow_Architecture_2012.png

https://en.wikipedia.org/wiki/File:NetFlow_Architecture_2012.png

2.6 Locality Sensitive Hashing

2

17

Netflows are sequences of packets passing on network interface, from a source host
to a destination host. Each NetFlow is characterized by several properties, derived from
the aggregation of packet-based features. These properties differ according to the NetFlow
collector tool used to report the NetFlows. The most important ones, which are reported
by most of the tools, can be found in section 5.1.2

Name Description
Start Time The timestamp of the first packet sent
Duration The duration of flow
Source IP IPv4 source address in the packet header

Destination IP IPv4 destination address in the packet header
Source Port Source port in the transport header

Destination Port Destination port in the transport header
Protocol The transaction protocol (TCP,UDP, ICMP, …)
Packets The total transaction packet count
Bytes The total transaction bytes

Table 2.1: NetFlow data fields

Most of the projects analyzing network traffic are using NeTflow records instead of
actual packet captures. The reasons behind this choice is that NetFlows does not capture
the actual content of the message so they preserve their privacy. Thus, they are more fre-
quently logged by the network operators. The only disadvantage of the usage of Netflows
is that because of the high abstraction level, some information is lost.

2.6 Locality Sensitive Hashing
The idea of Locality-Sensitive Hashing (LSH) was introduced in 1998 by P. Indyk and R.
Motwani [18]. It’s initial purpose was to approximate the nearest neighbor algorithm
in sublinear time. In contrast to Hashing, whose purpose is to hash different items in
different buckets, LSH tries to hash similar items in the same bucket with high probability.
Usually, the number of data objects is usually much larger than the number of buckets.
In particular, the key idea of LSH is to use several hash functions such that objects that
are close in the original feature space have high probability of collision after hashing. On
the same way, objects that are not close in the original feature space will be assigned to
different buckets with high probabilities. Collision means means that the two items will
be assigned to the same bucket. In other words, LSH preserves the locality of the items
by exploiting locality-sensitive hash functions. An example of a hash function that maps
a set of objects to a smaller set of buckets is depicted in figure 2.11.

Let 𝐻 be a family of hash functions mapping ℝ𝑑 to some universe 𝑈 , and 𝐷 a similarity
measure. We choose a function ℎ from 𝐻 uniformly at random. The family 𝐻 is called
locality sensitive if it satisfies the following condition.

Definition 2.6.1 (Locality-sensitive hashing) A family 𝐻 is called (𝑟1, 𝑟2, 𝑝1, 𝑝2)-sensitive if
for any two points 𝑝,𝑞 ∈ ℝ𝑑 it applies that:

2

18 2 Background

Figure 2.11: A hash function that maps objects into buckets. Source: [38]

• if 𝐷(𝑞,𝑝) ≥ 𝑟1 then 𝑃𝑟𝐻 [ℎ(𝑞) = ℎ(𝑝)] ≥ 𝑝1,
• if 𝐷(𝑞,𝑝) < 𝑟2 then 𝑃𝑟𝐻 [ℎ(𝑞) = ℎ(𝑝)] ≤ 𝑝2.

In order for a locality-sensitive hash (LSH) family to be useful, it has to satisfy the inequalities
𝑝1 > 𝑝2 and 𝑟1 < 𝑟2.

Two representative techniques of locality sensitive hashing functions, which are the
ones used on this project are presented in the following subsections.

2.6.1 P-stable distribution
A popular hashing technique used in Locality-Sensitive Hashing is the one based on p-
stable distributions as introduced by Datar et al. [39]. According to [39], ”a distribution D
over IR is called p-stable, if there exists 𝑝 ≥ 0 such that for any n real numbers 𝑣1,… ,𝑣𝑛 and
i.i.d. variables 𝑋1,… ,𝑋𝑛 with distribution D, the random variable ∑𝑖 𝑣𝑖 ⋅ 𝑋𝑖 has the same
distribution as the variable (∑𝑖 |𝑣𝑖 |𝑝)1/𝑝 ⋅𝑋 , where X is a random variable with distribution
D”. It uses the 𝑙𝑝 distance ||𝑥𝑖 −𝑥𝑗 ||𝑝 , where 𝑥𝑖 and 𝑥𝑗 are two vectors, with p=1 or p=2, to
decide the decide the bin that the input will be assigned to. This method uses a randomly
selected vector 𝑥 with entries selected at random from a p-stable distribution, to assign
each data point to a bucket, Particularly, the data points are projected onto the vector and
these projections are partitioned into a set of buckets (bins), which are intervals of equal
length. This process is depicted in figure 2.12 The index of the bucket is decided by the
following formula:

𝑏 = ⎢⎢
⎣
𝑥 ⋅ 𝑢 +𝑏

𝑤
⎥⎥
⎦

(2.2)

where 𝑥 is the random vector, 𝑢 is the data point, 𝑤 is the width of each bin, and 𝑏 is a
random variable uniformly distributed between 0 and w that makes the quantization error
easier to analyze, with no loss in performance.

In particular, to hash the input under their Euclidean (𝑙2) distance, it chooses a 2-stable

distribution, like the Gaussian distribution with density function 𝑔(𝑥) = 1
√2∗𝜋 𝑒

−𝑥2
2 , to create

the 𝑥 vector and project the input vector into it. On the other hand, in order to hash
the input under their Manhattan (𝑙1) distance, it chooses a 1-stable distribution, like the
Cauchy distribution with density function 𝑐(𝑥) = 1

𝜋
1

1+𝑥2 , to create the 𝑥 vector.

2.6 Locality Sensitive Hashing

2

19

By the definition 2.6.1 the biggest the difference between 𝑝1 and 𝑝2, the strongest the
Locality-Sensitive hashing (LSH) family is. This can be achieved on the p-stable distribu-
tions LSH by performing more than one dot products in parallel. By performing k dot
products, the ratio of the probabilities that points close in the initial feature space will be
assigned to the same bucket after hashing increases, since (𝑝1𝑝2)

𝑘 > 𝑝1
𝑝2

.
In order to perform these k quantizations, we apply the formula equation (2.2) k times.

On this way we obtain k bin assignments for each data point, with the intention that
similar points will fall in the same bucket in all the quantizations.

The width 𝑤 of the bucket, is an important parameter of this technique. By increasing
the width 𝑤 of the bucket, the number of data points falling into the same bucket will
be increased, and vice-versa. Thus, there is a trade-off between the size of the LSH table
and the number of points to consider when searching for similar data points. When the
bucket size is large, there will be a small table with more points to consider for the final
search due to the collisions. On the other hand, when the bin size is smaller, the table will
be bigger but the final search will require less comparisons.

Figure 2.12: Random Projection LSH technique [40]

2.6.2 Random Hyperplanes
Another popular hashing technique used in Locality-Sensitive Hashing is the random-
hyperplane method as as introduced by [41]. It uses the angle-based distance 𝜃(𝑥𝑖 , 𝑥𝑗) =
arccos 𝑥𝑇𝑖 ⋅𝑥𝑗

||𝑥𝑖 ||2 ||𝑥𝑗 ||2
, where 𝑥𝑖 and 𝑥𝑗 are two vectors, to decide the decide the bin that the

input will be assigned to. Random hyperplanes method uses multiple randomly selected
hyperplanes 𝐻 = {ℎ1,ℎ2,…,ℎ𝑘} to partition the data space into several parts. Each of these
hyperplanes partitions the data space into 2 parts (sides). Then it assigns a label to each
data point according to side of the hyperplane they belong, meaning that the value 1 is
assigned to one side while 0 is assigned to the other side. By concatenating the bits gen-
erated for each hyperplane, each subspace is univocally labeled by a hash code. Each of

2

20 2 Background

these subspaces (hash codes) is a bucket for the LSH. An example of this technique can
be seen in figure 2.13. There we have three randomly selected hyperplanes ℎ1, ℎ2 and ℎ3,
and the hash code (bucket) for each of the partitioned subspaces.

A hyperplane ℎ𝑖 in ℝ𝑛 space can be expressed:

ℎ𝑖(𝑥) = 𝑐𝑖0 +𝑐𝑖1𝑥1 +𝑐𝑖2𝑥2 +…+𝑐𝑖𝑛𝑥𝑛 = 𝑐𝑖0 +𝑐𝑖 ⋅ 𝑥 (2.3)

where 𝑐𝑖 = (𝑐𝑖1, 𝑐𝑖2,… ,𝑐𝑖𝑛) is a vector in ℝ𝑛 whose components are sampled at random
from a Gaussian distribution, like the standard Gaussian distribution 𝑁(0,1). It has been
shown that for two vectors 𝑥𝑖 and 𝑥𝑗 , the possibility that their hash value is the same is:
𝑃(ℎ(𝑥𝑖) = ℎ(𝑥𝑗)) = 1− 𝜃(𝑥𝑖 ,𝑥𝑗)

𝜋 , where 𝜃(𝑥𝑖 , 𝑥𝑗) is the angle between the two vectors 𝑥𝑖 and 𝑥𝑗 .

Let 𝑠𝑥 be the label of the bucket for a data point 𝑥 in ℝ𝑛 space. As mentioned above,
the label 𝑠𝑥 is a bit string. For the data point 𝑥 , the 𝑖𝑡ℎ bit 𝑠𝑥 [𝑖] of the bit string label with
respect to the hyperplane ℎ𝑖 is computed as follows:

𝑠𝑥 [𝑖] = {1 if 𝑐𝑖0 +𝑐𝑖 ≥ 0
0 otherwise

(2.4)

After the bucket label 𝑠𝑥 [𝑖] has been computed for all the hyperplanes ℎ𝑖 , the bucket
𝑠𝑥 where the data point belongs is decided. As in the random projection technique, an
important parameter of the random hyperplanes method is the number of quantization
bins. Here, the number of the buckets is decided by the number of random hyperplanes
we are using. Specifically, by using 𝑘 random hyperplanes, we can have at most 2𝑘 buckets,
as each hyperplane partitions the original space into two subspaces.

2.7 Evaluation metrics

2

21

Figure 2.13: Random Hyperplane LSH technique [38]

2.7 Evaluation metrics
In order to evaluate the results of a binary classification task, the result of the classification
task for an instance should be compared with its ground-truth (label). The outcome of the
classifier is considered positive if it classifies the instance to one of the classes, and negative
if it classifies it on the other class. Also, a prediction is considered as true if the predicted
value for a sample is the same as the label, otherwise it is considered as false. Given that,
we have four possible outcomes for the outcome of the classification process:

• True Positive (TP): The classifier assigns correctly the instance to the positive class.

• False Positive (FP): The classifier assigns the instance to the positive class, but the
instance belongs to the negative class.

• True Negative (TN): The classifier assigns correctly the instance to the negative
class.

• False Negative (FN): The classifier assigns the instance to the negative class, but the
instance belongs to the positive class.

These possible outcomes of the evaluation process can be visualized in a confusion
matrix, as depicted in figure 2.14. The ideal outcome will be the lack of false predictions.
However, in most of the cases this is not possible. Instead, there is a trade-off between

2

22 2 Background

the reliability and the sensitivity of the system. More specifically, for the purpose of this
project where malicious hosts should be detected, it is important not to have false nega-
tives (undetected malicious hosts) because the consequences of a cyber attack to a system
can be very harmful. On the other hand, there are systems for which the reliability is
more important, thus the number of false positives, also called false alarms, should be
eliminated.

A
ct
ua

lV
al
ue

Prediction Outcome

P N

P True
Positive

False
Negative

N False
Positive

True
Negative

Figure 2.14: Confusion matrix

3

23

3
Related work

This chapter contains works related to the topic of this thesis, that is network anomaly
detection. Initially some works are presented about the different techniques used to ap-
proach the anomaly detection topic. Afterwards, some more specific studies about the us-
age of the State Machines, which is the model used on this project, are introduced. Finally,
there is a brief description of the works introduced several Locality Sensitive Hashing
techniques and their usage.

3.1 Anomaly Detection Algorithms
There are many studies that focus on detecting anomalies in network data. As a result,
there are several different kind of algorithms and techniques used to approach this task.
There are several surveys[42][43][44][45] about a plethora of different network anomaly
detection algorithms. These algorithms can be separated in the categories described below.

3.1.1 Classification-based
Classification is the task of predicting in which of the possible class a new observation be-
longs. The model used to perform the classification is trained on a dataset which contains
observation from all the possible classes. Each of these observations has several attributes
(features), which can be either numerical or categorical. It’s classification performance
is evaluated on an unseen dataset containing observations with the same features as the
ones on the training dataset. The classification model can be linear of non-linear. In the
task of network anomaly detection (intrusion detection), there usually many features and
they are both numerical (e.g. bytes exchanged) and categorical (e.g. protocol). Two of the
most popular classification-based techniques are discussed below.

Support vector machine (SVM)
Support vector machine [46] is a supervised machine learning technique, whose objective
is to find a hyperplane that maximizes the margin between the data points of both classes.
this process can be observed in figure 3.1. Hu et al. in [2] used Robust Support Vector
Machine (RSVM) [47] to detect anomalies over noisy data, and compared it’s performance

3

24 3 Related work

over a normal SVM. The presence of noisy data in the training set, leads in a highly non-
linear decision boundary and thus introduces an overfitting problem on standard SVMs.
RSVMs solve this issue by integrating an averaging technique which smoothens the deci-
sion boundary and controls the regularization. In addition, RSVMs are faster because they
produce significantly less support vectors in comparison with the standard SVMs. When
tested on noisy data, RSVM’s attack detection rate was 81.8% with less than 3% false posi-
tive rate while SVM had an attack detection rate of 54.2% with less than 3% false positive
rate.

Figure 3.1: SVM ¹

However, B.Schölkopf et al. [3] adapted the SVM algorithm into a unsupervised ma-
chine learning algorithm, called One Class SVM. One Class SVM which is an one class
classifier, gets data of one class and it’s objective is to determine a function which is pos-
itive when the examined sample is inside a boundary defined by the training data and
negative elsewhere. This process is depicted in figure 3.2. E. Eskin et al. in [4] used One
Class SVM, among other unsupervised techniques, to detect anomalies in dataset of net-
work connection records named KDD Cup². The algorithm used tries to find hyperplanes
which separate the data instances from their origins with the maximal margin, and subse-
quently solves an optimization problem to determine the best hyperplane. They achieved

¹Source: https://miro.medium.com/max/1088/1*6U9NrruycDBsPOyivpn8UQ.png
²http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

https://miro.medium.com/max/1088/1*6U9NrruycDBsPOyivpn8UQ.png
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

3.1 Anomaly Detection Algorithms

3

25

a detection rate of 98% with a 10% false positive rate.

Figure 3.2: One class SVM ³

Artificial Neural Network (ANN)
Artificial Neural Networks (ANNs) are computing techniques which consist of a mathe-
matical model inspired by the neural structure of human’s brain. ANNs imitate the way
human brain learns, that is through experience. Their main components are neurons and
connections between the neurons. They consist of an input layer, an output layer and a
arbitrary number of layers between them. These layers are called hidden layers. If there is
more than one hidden layer, then the it is called a deep neural network. Each layers con-
tains neurons and the neurons between the layers are connected with a specific weight.
The architecture of ANN with two hidden layers is demonstrated on figure 3.3. The most
basic type of ANN is the Feed-forward Neural Network, while other types widely used are
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN).

In [5], B. Subba et al. built a ANN model in order to introduce an intelligent agent
which is able to discriminate normal and abnormal audit records by identifying the under-
lying patterns, while is able to generalize on new and unseen records. The advantage of
this technique is that a ANN is able to model complex non-linear hypotheses. The model
built was a feed-forward neural network with a back propagation algorithm [6]. The data
fed to the ANN were prepossessed and converted to numerical. After some experimen-
tation, they achieved high performance in terms of accuracy and detection rate, 98.86%
³Source: https://www.researchgate.net/profile/Hany_Alashwal/publication/242572058/figure/fig1/AS:
393295319584771@1470780319210/Classification-in-one-class-SVM.png

⁴Source: https://icdn6.digitaltrends.com/image/digitaltrends/artificial_neural_network_1-791x388.
jpg

https://www.researchgate.net/profile/Hany_Alashwal/publication/242572058/figure/fig1/AS:393295319584771@1470780319210/Classification-in-one-class-SVM.png
https://www.researchgate.net/profile/Hany_Alashwal/publication/242572058/figure/fig1/AS:393295319584771@1470780319210/Classification-in-one-class-SVM.png
https://icdn6.digitaltrends.com/image/digitaltrends/artificial_neural_network_1-791x388.jpg
https://icdn6.digitaltrends.com/image/digitaltrends/artificial_neural_network_1-791x388.jpg

3

26 3 Related work

Figure 3.3: Artificial Neural Network Architecture ⁴

and 95.77% correspondingly, while the computational overhead was much less that other
methods like SVM.

Furthermore, J. Brown et al. in [7] used features of the application layer protocols,
like HTTP, SMTP, FTP, to build an Evolutionary General Regression Neural Network (E-
GRNN), in order to build a intrusion detection system that will be able to discriminate
abnormal from normal behavior. They tested their system on a simulated network data
obtained from the UNB ISCX Intrusion Detection Evaluation dataset [48]. Their system
achieved a detection rate of 95.53% and a true positive rate of 2.11%.

3.1.2 Clustering and Outlier-based
Clustering is an unsupervised machine learning techniques which groups similar items
in the same groups, called clusters [49]. Items in a cluster should be more similar to
each other than items outside of this cluster. The similarity of two items is defined by
a similarity measure, like Euclidean distance, and it differs according to the clustering
algorithm used. Since it is unsupervised, it does not require labeled data. An example of
clustering of 2-dimensional items in four clusters is demonstrated in figure 3.4a. Another
concept that originate from clustering is outliers. As outliers are considered the data points
whose distance (according to the similarity measure used) from the grouped data points
is high. An example of outlier detection on 2-dimensional data points is demonstrated
in figure 3.4b, where 𝑁1 and 𝑁2 are the two clusters formed and 𝑂1 and 𝑂2 are the two
groups of outliers.

In [12], I. Syarif et al. investigated the performance of five clustering algorithms on
detecting network intrusions on IDEVAL⁵ dataset. The clustering algorithms evaluated
were: k-Means, improved k-Means, k-Medoids, EM clustering and distance-based outlier
detection. The best performance was achieved by the distance-based outlier detection
algorithm with an accuracy of 80.15%. However the false positive rate was high (slightly
above 20%) for all the five clustering algorithms.

A. Blaise et al. in [13] uses a clustering technique to detect malicious hosts on CTU 13
dataset. In particular, they start by characterizing a host behavior with attribute frequency

⁵https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset

https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset

3.1 Anomaly Detection Algorithms

3

27

Figure 3.4: Clustering, Source: [44]

distribution signatures. By concatenating the signature of each attribute, they formed
a vector with the signature of each host. Then they are learning behaviour of benign
hosts and malicious hosts, by applying the DBSCAN (Density-Based Spatial Clustering
of Applications with Noise) [50] clustering algorithm to the vectors representing each
host. A cluster is characterized as malicious (bot) if it contains at least one bot, else it is
characterized as benign. The two hyperparameters need to be tuned for this algorithms
are the number of bins used in the attribute frequency distribution, and the density in
the clustering algorithm. Finally, the classification of a new host is done by finding its
closest cluster and assigning it its label. The distance between a new host and a cluster is
calculated by the 𝑙1 (Euclidean) distance between the signature of the new host and the
centroid of the vector. They used some of the scenarios of the dataset to train the model,
and the remaining scenarios to test it. The separation of the scenarios for the test and
training set was done as recommended in [20]. Regarding the results, they outperform
almost every other method they are comparing to, by achieving almost 100% accuracy.

3.1.3 Statistical-based
Statistical methods are widely used for anomaly detection. They fit a stochastic model to
the training data, usually to the data points that represent the normal behavior, in order
to capture the normal behavior of the system. Then they evaluate an event by whether or
not belongs to the fitted model. As an anomaly is considered an event that has low proba-
bility to be generated by the assumed model. To decide whether an instance belongs to a
model or not, usually a statistical inference test is performed, using either a threshold or a
probability condition to recognize anomalies. Statistical techniques can be parametric or
non-parametric. Parametric techniques assume knowledge of the underlying distribution
and use the training data to estimates it’s parameters, while non-parametric techniques
do not assume any knowledge of the underlying distribution.

Principal Component Analysis (PCA)
Principal component analysis (PCA) [51] is a popular statistical technique for anomaly
detection in network data. PCA is defined as a dimensionality reduction technique, which
maps the n correlated features (variables) of a data set onto a new reduced set of k features,
where k<n. These k variables are called principal components, and they are orthonormal
vectors (define a k-subspace) which are uncorrelated. The greatest variance of the data

3

28 3 Related work

variables is captured by the first principal component, the second greatest variance by the
second principal component, and so on.

A. Lakhina et al. [8] [9], were the first that used PCA for anomaly detection. They
used PCA to build a anomaly detection system that separates the high-dimensional space
of the network features into disjoint sub-spaces. Their intuition was that through PCA
they will obtain a reduced subspace of k variables which captures the behavior of the
normal traffic. Thus, the remaining subspace which is formed by the remaining variables
𝑛−𝑘, corresponds to the anomalies. Finally, they projected every new traffic measurement
onto both sub-spaces, and they used different thresholds to classify them as normal or
anomalies.

Callegari et al. [10] build an network anomaly detection system based on the idea of
anomaly detection with PCA ,as proposed by A. Lakhina et al. [8]. More specifically, they
introduced a novel method for identifying the specific flow that is anomalous inside the
aggregates. Also they applied, together with the entropy, the Kullback-Leibler divergence
to construct the time-series from the aggregate flows, which had as a result better and more
stable performance. The system was evaluated on a publicly available data-set of Netflow
data collected in the Abilene/Internet2 Network⁶, and the best detection rate achieved was
82%.

Finally, Y. Kanda et al. in [11], by combining sketches with random projections and
PCA, they created a novel method to not only detect the anomaly in the network traffic,
but also identify the source IP addresses associated with it in the backbone traces measured
at as single link. They evaluated their method on a part of the data from the MAWI traffic
repository from the WIDE project [52].

3.2 State Machines
As described in section 2.3, a Finite State Machine (FSM), also called Finite State Automata
(FSA) or Deterministic Finite Automata (DFA), is a mathematical behavioral model repre-
senting a computer problem.

In [14], C. Hammerschmidt et al. utilizes Finite State Machines to learn communication
profiles from NetFlow data in real-time, and uses them predict whether a host is benign
or malicious. In order to convert the data to a format that can be used for FSAs, they
initially encoded the numerical features by using percentiles as bin boundaries and the
categorical ones by assigning a symbol to every unique value. Then, for every flow they
concatenate the encoded value of the features in order to get the symbolic representation
of this flow. Afterwards, they used a sliding window of fixed time over the flows to obtain
the traces. In order to analyze the amount of data needed when learning the model in real
time, they used as criteria the Hoeffding bound [53] and freshness, which is a criterion
the introduced. They used the dfasat software package [54] with the Alergia and Overlap
heuristics to learn the model, which was evaluated by calculating the acceptance rate and
setting a threshold. The dataset used for the training and evaluation of the model was
the CTU-13 Dataset [20]. The results indicated that by choosing the right values for the
Hoeffding bound or the freshness criterion, they were able to recognize all the malicious
hosts without any false positives.

⁶https://www.internet2.edu/products-services/advanced-networking/

3.3 Locality-Sensitive Hashing (LSH)

3

29

G. Pellegrino et al. [15] used Probabilistic Deterministic Real Time Automata (PDRTA),
which are a probabilistic version of Real Time Automata[55] including guards on the tran-
sition timings, to learn behavioral fingerprints from NetFlow data and used them to detect
infected hosts. They also used the CTU-13 Dataset [20] for their experiments. In order to
learn from the training data the used the RTI+ [34] state machine learning algorithm. They
used their own algorithm to encode each flow and then they used a sliding window of fixed
time over the flows to obtain the traces. Regarding the strategies used to determine if a
new host should be classified as malicious or not according to the PDRTA learned from
the training data, they used two strategies, which they called error based and fingerprint
based. Finally, they tested their system in two different scenarios. On the first scenario
they tried to detect an already known infection (single scenario), while on the second
the they trained different models for different types of infection and then tried to detect
unseen botnet families, by testing if any of the learned models can detect it. The results
showed that in the single scenario they had very few false positives and false negatives.
Regarding the multiple scenario evaluation, the system detected most of the infected hosts
but also contained many false positives. In addition, they came to the conclusion that it is
beneficial to use limited NetFLow data rather than a large amount of them.

M. Su [16] implemented a framework using finite state machines, applying frequent
episode rules to detect Probe/Exploit (hacking) intrusions at real-time. These types of
attack are difficult to be detected by a firewall or an anti-virus software. Attack episodes
were mined from the log files, they were refined and the episode rules extracted the FSM
model. The FSM built was used to monitor the connections on a specific port and raise
an alarm whenever a predefined alarm state was reached. After the alarm was raised,
the integrated real-time firewall cut-off the malicious connection. The attack data were
collected by honeypots. Each attack (episode) consisted of a sequence of events. An sliding
window was employed to identify the frequent events in an episode. The experiments,
showed that the implemented system was able to successfully recognize complex intrusion
episodes.

3.3 Locality-Sensitive Hashing (LSH)
The concept of Locality-Sensitive Hashing was analyzed in section 2.6. It’s initial purpose
was to approximate the nearest neighbor algorithm in sublinear time. J. Wang et al. [56]
explain the concept pf LSH, demonstrate the different kind of LSH families that can be
used for the nearest neighbor search task and the kind of similarity captured by each LSH
family.

M. Slaney et al. [57] also deal with the nearest neighbor approximation problem. They
describe the theory and the implementation of the random projections method, and discuss
it implications in terms of accuracy and speed in applications like finding duplicate pages
on the web and retrieving image and music.

A. Andoni et al. [58] proposed the popular LSH method E2LSH, for the case where the
objects are data points in the d-dimensional Euclidean space. According to their method,
by calculating every bit in the codeword is calculated by a random linear projection and it
is followed by a random threshold, the Hamming distance between codewords will asymp-
totically approach the Euclidean distance between the items. The performance of this
method was proved near-optimal in the class of the locality-sensitive hashing algorithms.

3

30 3 Related work

L. Paulevé et al. [59] compare several families of space hashing functions used in con-
junction with LSH algorithm in the task of searching for high-dimension SIFT descriptor
[60]. The hashing families compared are random projections, lattice quantizers, k-means
and hierarchical k-means. From this comparison, they concluded that unstructured quan-
tizers as hash functions improves the accuracy of LSH with the random projection hash
function as they fit the data distribution. They also compared two other querying mecha-
nisms, namely multi-probe LSH [61] and query-adaptive LSH [62], with the one originally
proposed in LSH, and conclude that there are trade-offs in terms of complexity, memory
usage and recall.

4

31

4
Locality-Sensitive Hashing

State-Merging Heuristic
This chapter contains the description of the proposed state-merging heuristic, which is
one of the main contributions of that thesis. Initially,the functionality of this heuristic is
described in detail, and then the implementation steps followed to integrate it into the
flexfringe tool are presented.

4.1 Heuristic description
The main contribution of this project is the introduction of a new state-merging heuristic
for DFA inference by using Locality-Sensitive Hashing (LSH) for the consistency check of
the merge of two states. With this heuristic and some other modifications on the state-
merging process that will be described below, we expect to build models much faster in
comparison with the other heuristics used, but without a significant loss on the ”quality” of
the model. An example of a state machine with 41 states built with the LSH state-merging
heuristic is presented in figure 4.1.

4.1.1 Future traces distribution extraction
In order to implement our heuristic, we keep for every state of the APTA three different
LSH tables where we hash all the future traces for the corresponding state. The future
traces of a state are all the sequences of transition symbols from the examined state to all
the other states reached from this state. For example, in the APTA presented in figure 2.7,
the future traces will the ones presented in figure 4.3. The reason behind this choice is
the assumption that by using an LSH structure, whose functionality was explained in
section 2.6, and an appropriate hash function, similar traces will be assigned to the same
bucket. In particular we store in the first table the traces of length less or equal than three,
in the second the traces of length more than 3 and less or equal than 10, and in the last
table we store the traces of length greater than 10. These settings are presented in table 4.1.
We used three different tables in order to be able to have a representation of the short-term.
mid-term and long-term future of each state, which will allow us to have a more accurate

4

32 4 Locality-Sensitive Hashing State-Merging Heuristic

Figure 4.1: State machine with 41 states built with the LSH state-merging heuristic

representation of the future traces of a state. In order to avoid the keeping track of future
traces that are very long and are not comparable with future traces with few symbols, we
decided to hash traces that have 20 or less elements. Thus, after the APTA is created, the
aforementioned procedure is followed for each state.

An important decision taken when designing the proposed heuristic was about the
way we will handle traces of different length. As explained before, the LSH structure used
to hash the future traces depends on the length of the traces. An important issue created
is what actions should be followed when the length of a trace is between these bounds.
In order to solve this issue, we decided to follow a simple and common practise, that is
padding the vector with zeros (values of zero) until it reaches the next bound. An example
can be found in figure figure 4.2, where a trace of length six is padded with four zeros.
This trace it will be then hashed on the LSH structure used for the mid-term future.

Figure 4.2: The trace is in the figure has length six, so it should be hashed using the mid-term LSH structure.
However, because its length is less than ten we pad it with four zeros in the end, in order to reach the required
length.

We expect this to affect the capability of LSH to assign similar traces to the same bin.
However, we believe that future traces with different length should be treated as different.

4.1 Heuristic description

4

33

By padding the vectors of future traces with zero values, we will have similar vectors
with same length assigned to the same bucket. The similarity of two vectors is defined
by the LSH family used. As explained before, with random hyperplane LSH the vectors
in a bucket will have similar angular distance between them, while with 1-stable or 2-
stable distribution LSH the vectors in a bucket will have similar Manhattan and Euclidean
distance between them, respectively. When padding a vector with zero values, both the
three distance measures will be big for a vector padded with zeros and another vector
containing actual symbols. This difference increases when the number of zeros need to be
padded in increased. Thus, traces with different length is highly possible to end up to a
different bucket.

After the future traces has been hashed for each state and each of the the three LSH
structures, the future traces distribution is extracted for each of them. In our case the num-
ber of possible buckets a trace can be assigned is countable, so by dividing the number of
traces in each bucket with the total number of traces, we can extract a discrete probability
distribution. This procedure is depicted in figure 4.4.

LSH table Trace length
1 1-3
2 3-10
3 11-20

Table 4.1: The future traces stored in each of the three LSH tables

a, ab, aba, abaa, abb, b, bb

Figure 4.3: Future traces for APTA in figure 2.7

The hash families used for the LSH algorithm are random hyperplanes and p-stable
distributions with p=1 and p=2. Each LSH family utilizes a different similarity measure to
assign similar future traces to the same bin. The procedure followed to encode the flows
(section 6.1.3), entails that the bigger the numerical difference between two symbols is, the
more different the two flows represented by these symbols is. So the numerical difference
between two symbols need to be taken into account when comparing two future traces. In
addition, the order to the symbols in the traces plays an important role. For example, the
traces <1,2,3> and <3,2,1> are different, although they contain the same symbols. Thus
we should treat the traces as vectors and not as sets. So measuring the Jaccard similar-
ity 𝐽 (𝐴,𝐵) = |𝐴∩𝐵|

|𝐴∪𝐵| will not be accurate for our case. So we decided to proceed with LSH
families that stores in the same bucket traces whose distance as vectors is small. Thus,
we decided to p-stable distribution and random hyperplane LSH families to capture the
aforementioned distances between the traces. The kind of similarities tries to capture
with these LSH families are Manhattan (𝑙1) distance (1-stable distribution), Euclidean (𝑙2)
distance (2-stable distribution) and angle-based distance (random projections), which are
some of the simplest distance metrics for two vectors.

Each of the LSH families used has its own parameters need to be set. The most im-
portant of them, that exist in all the three families is the number of LSH buckets and the

4

34 4 Locality-Sensitive Hashing State-Merging Heuristic

number of hash functions, thus hash tables, used.

Figure 4.4: Example of extraction of the distribution of the future traces for a state from the LSH buckets

4.1.2 Future trace distribution update
An important step during the state-merging process, is what happens when two states are
merged. In this case, we need to redefine the distribution of the future traces for the state
resulting from the merge. In order to do so, for each bucket we add the elements of the
two states and we extract the new distribution. We follow these steps for each of the three
LSH structures. The opposite procedure is followed when we need to undo a merge of two
states.

4.1.3 Merge consistency check
During the state machine learning process, the consistency check for the merge of two
states is performed by comparing the three different distributions of the future traces
coming for the two states, as they are extracted by the corresponding three LSH struc-
tures of each state. As discussed above, the distribution of the future traces for each state
is extracted by measuring the percentage of traces assigned to each of the buckets of the
LSH structure. After the distributions of short-term, mid-term and long-term future traces
for the examined and the candidate for merge state are extracted, we compare the mea-

4.1 Heuristic description

4

35

sure the similarity of the equivalent (for the same LSH structure) distributions by using
the Kullback–Leibler (KL) divergence of the two distribution. Kullback-Leibler (KL) di-
vergence [63], is a well known method measuring the similarity of two distributions are
similar and it is defined as:

𝐾𝐿(𝑃,𝑄) =∑
𝑥
𝑃(𝑥) log2(𝑃(𝑥)/𝑄(𝑥)) (4.1)

where P and Q are the two distribution we want to compare. It should be mentioned
that the lower the KL divergence value is, the more ”similar” the two distributions are.
Therefore, when we compare the distributions of two states, we consider a merge as con-
sistent if the KL divergence value is lower than a user defined threshold. Otherwise, the
merge is considered as inconsistent. Of course we follow this procedure for all the three
different LSH structures to ensure that the distributions of short-term, mid-term and long-
term future traces for the two states are similar. The condition for a merge of two states
A and B to be considered as consistent is the following:

𝐾𝐿_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑠ℎ𝑜𝑟𝑡_𝑡𝑒𝑟𝑚 <= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and
𝐾𝐿_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑚𝑖𝑑_𝑡𝑒𝑟𝑚 <= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and
𝐾𝐿_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑙𝑜𝑛𝑔_𝑡𝑒𝑟𝑚 <= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

(4.2)

where KL_divergence_short_term, KL_divergence_mid_term and KL_divergence_long_term
are the KL divergence value when comparing the aforementioned distributions of the two
states for the three LSH structures. The threshold used on this decision is defined by the
user and plays an important role to the state-merging process as it defines how similar
two distributions should be in order to consider the merge of the states as consistent. In
particular, the bigger the threshold value is, the more states the state machine will have.

The important speedup we expect to achieve from our proposed state-merging heuris-
tic comes from the assumption that because we are comparing the distribution of the fu-
ture traces in order to decide whether two states should be merged or not, there is no need
to evaluate the consistency of the merging of their children states. This is an procedure
followed from the Red-Blue state-merging algorithm, which is computationally expensive.
In our case, we consider their merge as consistent and skip all the further checks for the
merge consistency of the descendant nodes. However, this procedure makes an approxi-
mation about the consistency of the merge of the examined states, so we expect to produce
slightly worse model than other heuristics which actually evaluate that consistency. For
example in the merge depicted in figure 4.5, when trying to merge the nodes 1 and 2 fol-
lowing the Red-Blue fringe algorithm we should check the consistency of the merge of
the nodes 3 and 4, so we need to check their consistency too. When using the proposed
heuristic we avoid this and all the following consistency checks as we assume that we
have already evaluated it by comparing the distribution of future traces.

4.1.4 Merge score calculation
Regarding the merge score used to decide the best merge between all the possible ones,
we defined a score metric using the Kullback–Leibler (KL) divergence. In particular, as

4

36 4 Locality-Sensitive Hashing State-Merging Heuristic

Figure 4.5: Example of the state-merging process

discussed in section 4.1.3, the smallest the value of KL divergence of the distribution of
the future graces extracted by the LSH buckets is, the more similar the two distributions
are. So we decided to use this value as a confidence score for the merge. However, the
merge score should be high for ”good” merges and low for ”bad” merges. Given that, and
the fact that the order of the KL divergence value can be very small, we decided to use the
following metric as merge score:

𝑚𝑒𝑟𝑔𝑒_𝑠𝑐𝑜𝑟𝑒 = 100000− (𝐾𝐿_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑠ℎ𝑜𝑟𝑡_𝑡𝑒𝑟𝑚 ∗ 100000)
3

+ 100000− (𝐾𝐿_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑚𝑖𝑑_𝑡𝑒𝑟𝑚 ∗ 100000)
3

+ 100000−𝐾𝐿_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑙𝑜𝑛𝑔_𝑡𝑒𝑟𝑚 ∗ 100000)
3

=
100000 ∗ (3−𝐾𝐿_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑠ℎ𝑜𝑟𝑡_𝑡𝑒𝑟𝑚

−𝐾𝐿_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑚𝑖𝑑_𝑡𝑒𝑟𝑚−𝐾𝐿_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑙𝑜𝑛𝑔_𝑡𝑒𝑟𝑚))
3

(4.3)

where KL_divergence_short_term, KL_divergence_mid_term and KL_divergence_long_term
are the KL divergence value when comparing the aforementioned distributions of the two
states for the three LSH structures. We can easily see that the value of the merge score is
the average value of three independent components 100000−(𝐾𝐿_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_1∗100000).
Each of them represents one of the three different distributions extracted from one of the
three LSH buckets, and can be easily observed that their value is inversely proportional to

4.2 Implementation

4

37

the KL divergence score. Therefore, we achieved our goal as we have a score metric that
is increases when the KL divergence decreases.

4.2 Implementation
In order to integrate our proposed state-merging heuristic as an evaluation class onflexfringe
we had to implement several functionalities. In particular, as explained before, flexfringe
has an evaluation class which is called during the state-merging process with the Red-Blue
Fringe state merging algorithm. Every heuristic used during the state-merging process
need to implement several functionalities (methods) which are essential for the merge of
two states. The first type of methods need to implemented is about the data kept on each
state:

• Update: Given the state that the current state is merge with, updates the data for
the current state.

• Undo: Given the state that the current state was merge with, undoes the changed
done by the merging of the two states.

• Read from: Called during the creation of the APTA and updates the data stored for
this state.

The second type of methods need to implemented is about the data action taken during
during the state-merging process:

• Consistent: Given two states, decides whether their merge is consistent.

• Compute score Given two nodes, computes the score for the merge of these two
nodes. The higher the score is, the better the merge is considered.

• Update score: Given two states, updates the score for the examined merge.

• Reset: Used to reset some parameters used to during the state-merging process.

4.2.1 Future traces distribution extraction
As described above, these were the main functionalities of the evaluation class that we
implemented in order to integrate my heuristic to the flexfringe tool. However, before
describing the implementation of these methods, we need to describe an extra step taken
before starting the state merging process. This was the traversal of the APTA in order to
store the future traces for each state using the LSH structure. In particular, for each state
of the APTA, we performed a Depth-first search (DFS) in order to find all the traces from
the examined node to all the other nodes that can be reached by it. For each of these traces,
I used the appropriate LSH structure according to its length as explained above, and stored
it to the bucket of the LSH structure in which it belongs according to the hash function
used. Finally, after we have stored all the traces, we compute the number of elements of
each bucket for each of the three LSH structures and keep it on the data of this state.

4

38 4 Locality-Sensitive Hashing State-Merging Heuristic

4.2.2 Evaluation data
For each node of the APTA, some data should be kept in order to perform the state-merging
process and build the state machine. For the implementation of the LSH heuristic, each
node contains the following data:

• Symbol occurrences: All the symbols that occurs during the transitions from this
state were stored, along with the number of occurrences of each symbol. It is used
to calculate the probability of each transition for each state of the final model.

• LSH counters: Three counters were kept, one for each of the three LSH structures.
Each counter contains the number of traces stored in each of the buckets of the LSH
structure. There counter are used to extract the distribution if of the future traces
for the state.

The data kept for each of the nodes, need to be updated during the state merging
process of during the creation of the APTA. The function need to perform these updates
were described above. The implementation of these functions is the following:

• Update: When two states are merged, the counter we keep about the buckets of
the LSH structures of the new formatted node need to be updated. In order to do
so, for each bucket we add the number of elements for the two states. This process
is repeated for each of the three LSH structures. Also, another thing that needs to
be updated during the merge of the merge of two states, is the symbol occurrences.
This is done by adding the symbol occurrences of the two states and updating the
counters accordingly. The pseudocode for its implementation is presented in alg. 1.

• Undo: When a merge of two nodes should be undone because it was decided that
the merge is inconsistent, the update of the data need to be undone too. In order
to do so, for each bucket we subtract the number of elements for the two states.
This process is repeated for each of the three LSH structures. Also the symbol oc-
currences which were combined for the two states should return into their previous
form. In order to do so we we subtract the symbol occurrences of the blue node from
the symbol occurrences of the red node. The pseudocode for its implementation is
presented in alg. 2.

• Read from: In order to store the symbols for the transitions of the node, along with
their count, we update them while creating the APTA. In particular, for each symbol
read we add one to the count of this symbols for current state. The pseudocode for
its implementation is presented in alg. 3.

4.2.3 Evaluation function
There are also some data need to be stored for the evaluation function. This data are reset
every time a new merge is tested. It is data required by the heuristic when evaluating if a
merge is consistent or not. In the LSH state-merging heuristic, these are the following:

• First merge: During the state-merging process we keep a Boolean variable indi-
cating whether this the first merge tried. This variable is used to make faster the

4.2 Implementation

4

39

Algorithm 1: LSH data update
input :a state S merged with the current state
output :Updates the symbol occurrences and the 3 counters
foreach symbol, count in other_state->symbol_occurrences do

occurrences[symbol] ← occurrences[symbol] + count
end
for 𝑖 ← 0 to number_of_buckets do

short_term_counter[i] ← short_term_counter[i] + S->short_term_counter[i];
mid_term_counter[i] ← mid_term_counter[i] + S->mid_term_counter[i];
long_term_counter[i] ← long_term_counter[i] + S->long_term_counter[i];

end

Algorithm 2: LSH data undo
input :a state S merged with the current state
output :Updates the symbol occurrences and the 3 counters
foreach symbol, count in other_state->symbol_occurrences do

occurrences[symbol] ← occurrences[symbol] - count
end
for 𝑖 ← 0 to number_of_buckets do

short_term_counter[i] ← short_term_counter[i] - S->short_term_counter[i];
mid_term_counter[i] ← mid_term_counter[i] - S->mid_term_counter[i];
long_term_counter[i] ← long_term_counter[i] - S->long_term_counter[i];

end

merges of the descendant state of the initial nodes examined for merge. As it was
discussed above, if the initial merge is consistent then we also consider as consis-
tent the merge of their children nodes, so by using this variable we avoid the the
unnecessary consistency checks.

• Merge score: A variable used to store the score of the merge, which is inversely
proportional to the Kullback–Leibler (KL) divergence score of the distributions ex-
tracted by the LSH buckets.

Furthermore, we had to implement the basic functionalities presented above for the
evaluation function, in order to decide about the consistency of a merge and compute the
score of each merge according to our proposed method. The methods implemented are
the following:

Algorithm 3: Read from
input :The symbol s read
output :Updates the symbol occurrences for the current state
occurrences[symbol] ← occurrences[symbol] + 1

4

40 4 Locality-Sensitive Hashing State-Merging Heuristic

• Consistent: Evaluates the consistency of a merge of states. First of all, if this is
not the first merge done for this state, which means that their descendant states are
tested for merge, it evaluates the merge as consistent without checking any other
criteria. The reasons for this choice were explained above. If this is the first merge
checked, then we evaluate the merge consistency with out standard criteria. Initially
we extract the distribution of the future traces from the LSH buckets for each of the
two examined nodes and each of the three LSH structures. Then we compute the
three KL divergence similarity scores between the distribution of the future traces of
each node, one for each LSH structure. Finally we consider the merge as consistent
if each of the three KL divergence similarity scores is less or equal than the user
defined threshold. The pseudocode for its implementation is presented in alg. 4.
The function get_distribution computes the discrete probability distribution given
the counter for each bucket.

• Compute merge score: Computes the score of the merge, which is used to choose
the best between all the possible merges of the Red-Blue fringe state-merging algo-
rithm. If this is not the first merge done for the initial red and blue pair of nodes,
then we already know the score of the merge. Otherwise, we need to compute it.
Initially we extract the distribution of the future traces from the LSH buckets for
each of the two examined nodes and each of the three LSH structures. Then we
compute the three KL divergence similarity scores between the distribution of the
future traces of each node, one for each LSH structure. Finally we compute the score
of the merge with the following formula:

𝑚𝑒𝑟𝑔𝑒_𝑠𝑐𝑜𝑟𝑒 =
100000 ∗ (3−𝑘𝑙_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑠ℎ𝑜𝑟𝑡_𝑡𝑒𝑟𝑚

−𝑘𝑙_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑚𝑖𝑑_𝑡𝑒𝑟𝑚−𝑘𝑙_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑙𝑜𝑛𝑔_𝑡𝑒𝑟𝑚))
3

(4.4)
where kl_divergence_short_term, kl_divergence_mid_term, and kl_divergence_long_term
are the KL divergence scores for the first, second and third LSH structure respec-
tively. The pseudocode for its implementation is presented in alg. 5.

• Update merge score: The score is only computed on the first merge and it is not
updated during the merge of the descendant states. Thus, this function is not used
in our case.

• Reset: During the reset of the data of the evaluation function, the merge score is
set to and the Boolean variable first_merge is set to True, because the next time the
evaluation function will be used, we we start examining from the merge of the initial
nodes. The pseudocode for its implementation is presented in alg. 6.

4.2 Implementation

4

41

Algorithm 4: Consistent
input :The two nodes n1 and n2, whose merge consistency is checked
output :A Boolean variable indicating if the merge is consistent or not
if first_merge==false then

return true
end
first_merge ← false
n1_short_term_distribution ← get_distribution(n1->short_term_counter)
n2_short_term_distribution ← get_distribution(n2->short_term_counter)
n1_mid_term_distribution ← get_distribution(n1->mid_term_counter)
n2_mid_term_distribution ← get_distribution(n2->mid_term_counter)
n1_long_term_distribution ← get_distribution(n1->long_term_counter)
n2_long_term_distribution ← get_distribution(n2->long_term_counter)
kl_divergence_short_term ←

compute_kl_divergence(n1_short_term_distribution,
n2_short_term_distribution)

kl_divergence_mid_term ← compute_kl_divergence(n1_mid_term_distribution,
n2_mid_term_distribution)

kl_divergence_long_term ← compute_kl_divergence(n1_long_term_distribution,
n2_long_term_distribution)

if kl_divergence_short_term > LSH_KL_THRESHOLD or kl_divergence_mid_term >
LSH_KL_THRESHOLD or kl_divergence_long_term > LSH_KL_THRESHOLD then

return false
else

return true
end

4

42 4 Locality-Sensitive Hashing State-Merging Heuristic

Algorithm 5: Compute merge score
input :The two nodes n1 and n2, whose merge score we want to compute
output :The score of the merge of the two nodes
if first_merge==false then

return true
end
first_merge ← false
n1_short_term_distribution ← get_distribution(n1->short_term_counter)
n2_short_term_distribution ← get_distribution(n2->short_term_counter)
n1_mid_term_distribution ← get_distribution(n1->mid_term_counter)
n2_mid_term_distribution ← get_distribution(n2->mid_term_counter)
n1_long_term_distribution ← get_distribution(n1->long_term_counter)
n2_long_term_distribution ← get_distribution(n2->long_term_counter)
kl_divergence_short_term ←

compute_kl_divergence(n1_short_term_distribution,
n2_short_term_distribution)

kl_divergence_mid_term ← compute_kl_divergence(n1_mid_term_distribution,
n2_mid_term_distribution)

kl_divergence_long_term ← compute_kl_divergence(n1_long_term_distribution,
n2_long_term_distribution)

kl_score ← 10 *(3 - kl_divergence_short_term - kl_divergence_mid_term -
kl_divergence_mid_term) / 3

return kl_score

Algorithm 6: Reset
output :Resets the value of the variables of evaluation function
kl_score ← 0
first_merge ← true

5

43

5
Data Exploration

This chapter contains the description of the two datasets used to measure the efficiency of
our proposed heuristic in building state machines to detect malicious host and to measure
its runtime efficiency. Initially there is a description of the CTU-13 dataset and its features.
An analysis on the features values is conducted to justify the choice of the features used for
the encoding of the flows and the choice of sliding window technique. Also, some graphs
about the number of flows per host are presented. Finally the datasets of the PAUTOMAC
competition are described, along with their generation procedure and some statistics about
them.

5.1 CTU-13 dataset
5.1.1 Data Description
The dataset we used to evaluate the performance of the proposed state-merging heuristic
is the CTU-13 dataset[20]. More specifically, we used the bidirectional NetFlow format
of this dataset, as the author of CTU 13 suggest, because it has better labels and better
quality of data in comparison with the unidirectional dataset. CTU-13 is a publicly avail-
able labeled dataset with network traffic that was captured from a large network in the
CTU University, Czech Republic, in 2011. The dataset is organized in 13 scenarios, each of
which consists of malicious, benign and background NetFlows. The malicious NetFlows
of each scenario comes from a specific type of botnet which used several protocols and
performed different actions¹. More details on the creation of the dataset, like the design
of the botnet scenarios, the network topology, the dataset preprocessing and labeling, can
be found in [20].

As mentioned above, each flow was labeled as normal, botnet or background. The dis-
tribution of the flow labels for each of the 13 scenarios can be seen in table 5.1. As it can
be noticed, in all the scenarios the majority of the flows (above 90% in almost every sce-
nario) are labeled as background flows. Regarding, the flows labeled as botnet or normal,
the situation differs according to the examined scenario, with some scenario having more

¹https://www.stratosphereips.org/datasets-ctu13

5

44 5 Data Exploration

botnet flows while other have more normal ones. It should be mentioned that the back-
ground flows were removed for the purpose of this project since no safe conclusion can
be drawn about whether they come from a malicious or a benign host. Also the duration
of recording of each scenarios along with the number of packets exchanged in it (after the
background flows were removed) can be observed in table 5.2.

Scenario Background Botnet Normal
1 2753288 (97.47%) 40961 (1.45%) 30387 (1.08%)
2 1778061 (98.34%) 20941 (1.16%) 9120 (0.50%)
3 4566929 (96.95%) 26759 (0.57%) 116950 (2.48%)
4 1093228 (97.52%) 2580 (0.23%) 25268 (2.25%)
5 124252 (95.7%) 901 (0.69%) 4679 (3.60%)
6 546795 (97.83%) 4630 (0.83%) 7494 (1.34%)
7 112337 (98.47%) 63 (0.06%) 1677 (1.47%)
8 2875281 (97.33%) 6127 (0.21%) 72822 (2.47%)
9 1872554 (89.70%) 184987 (8.86%) 29967 (1.44%)
10 1187592 (90.67%) 106352 (8.12%) 15847 (1.21%)
11 96369 (89.85%) 8164 (7.61%) 2718 (2.53%)
12 315675 (96.99%) 2143 (0.66%) 7653 (2.35%)
13 1853207 (96.26%) 40003 (2.08%) 31939 (1.66%)

Table 5.1: Distribution of the flow labels in each scenario of the dataset

Scenario Duration(hrs) # Packets
1 6.12 1115476
2 4.19 247622
3 66.82 1025399
4 4.19 1544016
5 0.5 290674
6 2.15 241698
7 0.35 53340
8 19.47 1653553
9 5.19 2742699
10 4.76 3790613
11 0.27 84970
12 1.22 186436
13 16.37 688591

Table 5.2: Number of packets exchanged in each scenario and its duration

Furthermore, as it was mentioned before, the network traffic for each scenario contains
malicious flows from a specific type of botnet. The types of botnets used were Neris,Rbot,
Virut, Menti, Sogou, Murlo and NSIS.ay. The type of botnet used to create the malicious
traffic for each scenario can be noticed in table 5.3. This table also contains the number

5.1 CTU-13 dataset

5

45

of botnet and normal hosts per scenario. Given that we evaluate the performance of the
proposed state-merging heuristic by classifying hosts as malicious or benign, the number
of malicious and benign hosts on each scenarios plays an important role. As it is explained
in chapter 6, the number of the malicious hosts and the type of botnet are very important
for the way that we split the dataset in a training and testing dataset. As it can observed
from table 5.3, all the scenarios contains five or six benign hosts. When it comes to the
malicious hosts, all scenarios expect 9, 10, 11 and 12 contain only one malicious hosts
while scenarios 11 and 12 contain three malicious hosts and scenarios 9 and 10 contain
ten malicious hosts.

Scenario Botnet Normal Bot
1 1 19 Neris
2 1 14 Neris
3 1 24 Rbot
4 1 22 Rbot
5 1 22 Virut
6 1 16 Menti
7 1 13 Sogou
8 1 23 Murlo
9 10 25 Neris
10 10 18 Rbot
11 3 15 Rbot
12 3 20 NSIS.ay
13 1 24 Virut

Table 5.3: Number of botnets and normal hosts, and type of botnet for each scenario

Table 5.4 contains the main characteristics of the scenarios and their behaviors. Es-
pecially, it describes the protocols used(IRC, P2P or HTTP), and if they sent SPAM, did
Click-Fraud, port scanned, did distributed denial-of-service (DDoS) attacks, used Fast-Flux
techniques or if they were custom compiled.

5.1.2 NetFlow features
Each flow is is described by some features. The most important of them can be seen in
table 5.5. It should be mentioned that the time difference and destination bytes were not
present in the dataset, but they were easily extracted by the other features. The features
start time, source IP and destination IP were not used as features for the encoding of the
flows (section 6.1.3). Instead, they were only used to group together the flows of one host.
Also, source and destination port features, contained many missing values, so we decided
not to use them.

5.1.3 NetFlow features used for encoding
The procedure followed to convert a NetFlow in to a discrete symbol is explained in sec-
tion 6.1.3. However, as it can be clearly noticed, the choice of the features used for the
flow encoding should be chosen by us.

5

46 5 Data Exploration

Id IRC SPAM CF PS DDoS FF P2P US HTTP Note
1 3 3 3

2 3 3 3

3 3 3 3

4 3 3 3 UDP and ICMP DDoS
5 3 3 3 Scan web proxies
6 3 Proprietary C&C. RDP
7 3 Chinese hosts
8 3 Proprietary C&C. Net-BIOS, STUN
9 3 3 3 3

10 3 3 3 UDP DDoS
11 3 3 3 UDP DDoS
12 3 Synchronization
13 3 3 3 Captcha. Web mail.

Table 5.4: Characteristics of botnet scenarios

Name Description
Start Time The timestamp of the first packet sent
Duration The duration of flow
Source IP IPv4 source address in the packet header

Destination IP IPv4 destination address in the packet header
Source Port Source port in the transport header

Destination Port Destination port in the transport header
Protocol The transaction protocol (TCP,UDP, ICMP, …)
Packets The total transaction packet count

Source Bytes The number of bytes sent by the source IP
Destination Bytes The number of bytes sent by the destination IP
Time difference The time difference (ms) between this flow and the next flow

Table 5.5: NetFlow data features

In order to choose the aforementioned features, we investigated the behavior of the
malicious and benign hosts. After discretizing the categorical features, the statistics pre-
sented in table 5.6 were calculated, so that an understanding on the behaviour between
the infected host and the normal ones could be acquired.

From table 5.6, it can be seen that all the features presented can be indicative on the
type of each NetFlow, since they demonstrate quite different behaviour between the in-
fected and the normal hosts (mostly in term of their mean values). We decided to exclude
the source and destination bytes features, as we can use total bytes features instead of
these. Thus, we used the protocol, direction, duration, packets, total bytes and time differ-
ence features to encode each flow of the dataset. To further highlight the difference on the
behaviour between infected and normal hosts on the two categorical features (direction
and protocol), the plots presented in figure 5.1 were created.

5.1 CTU-13 dataset

5

47

Host Type mean std min 25% 50% 75% max

Protocol infected 1.1 1.17 0 0 1 2 4
normal 0.56 0.53 0 0 1 1 4

Direction infected 1.6 0.56 0 1 2 2 2
normal 1.11 0.69 0 1 1 2 5

Duration infected 38.42 227.16 0 0 0.07 2.98 3599.94
normal 21.63 188.41 0 0 0 0.03 3600

Packets infected 12.97 857.23 1 1 2 3 176254
normal 18.51 436.75 1 2 2 6 68953

Source bytes infected 7369.03 682737.1 60 74 186 1066 138738600
normal 1080.93 94488.98 0 74 81 272 54929440

Destination Bytes infected 1997.36 61885.39 0 0 0 202 17196410
normal 12121.58 416735.9 0 149 149 326 68378090

Total Bytes infected 9366.41 685662.6 60 186 365 1066 138738600
normal 13202.51 436370.1 60 261 400 453 69267540

Time Difference infected 291.50 813.36 0 0 11 99 21392
normal 956.59 2488.94 0 0 1 141 20000

Table 5.6: Statistics derived from the infected and the normal hosts

(a) Percentage of protocol types present in the flows
of all scenarios

(b) Percentage of direction types present in the flows

Figure 5.1: Visualization of differences in the behaviour between the infected and the normal host for the cate-
gorical features: protocol and direction

5.1.4 Distribution of the number of flows over time
As it is described in section 6.1.4, in order to use this dataset to infer a state machine
model, we should first encode each flow and then use a sliding window technique to obtain
sequences of symbols. When using a window of fixed time, it is important that the number
of flows does not change very much over time, in order for all the windows to have similar
length.

Figure 5.3 and figure 5.4 depicts the distribution of the number of flows over time
for each of the 13 scenarios. As we can observe from these figures, in all the scenarios
there are some time periods with many flows (spikes on the plot) and some other periods
with a very small number of flows. This causes a significant problem during the window
extraction process because regardless of the window time range, there would be some
windows with many flows and some others with very few flows. That is the reason why
we chose to windows of fixed number of flows, as described in section 6.1.4.

5

48 5 Data Exploration

(a) Average flow duration (b) Average number of packets transmitted

(c) Average time difference (in ms) between two con-
secutive flows of a host

(d) Average number of bytes received

(e) Average number of bytes transmitted (f) Average number of bytes exchanged

Figure 5.2: Visualization of differences in the behaviour between the infected and the normal host for the nu-
merical features: duration, time difference, packets, source bytes, destination bytes and total bytes.

5.1.5 Number of flows per host
An important parameter in every machine learning model is the amount of data. More
specifically, in our project it is important to have many data for each host we want to
classify, in order to capture its behavior and either use it to build a model or to evaluate it.
figure 5.5 depicts the distribution of the number of flows for the benign and the malicious
hosts of the whole dataset. As it can be easily noticed, most of the normal hosts have a
small number of flows while the malicious hosts usually have an adequate number of flows.
This means that there is a high probability that some normal hosts will be missclassified
as malicious because there would be not enough data to make a correct judgment.

5.1 CTU-13 dataset

5

49

(a) number of flows per second for scenario 1 (b) number of flows per second for scenario 2

(c) number of flows per second for scenario 3 (d) number of flows per second for scenario 4

(e) number of flows per second for scenario 5 (f) number of flows per second for scenario 6

(g) number of flows per second for scenario 7

Figure 5.3: Visualization of the number of flows per second for scenarios 1-7

5

50 5 Data Exploration

(a) number of flows per second for scenario 8 (b) number of flows per second for scenario 9

(c) number of flows per second for scenario 10 (d) number of flows per second for scenario 11

(e) number of flows per second for scenario 12 (f) number of flows per second for scenario 13

Figure 5.4: Visualization of the number of flows per second for scenarios 8-13

(a) Benign hosts (b) Malicious hosts

Figure 5.5: Distribution of the number of flows for the benign and the malicious hosts

5.2 PAUTOMAC competition dataset

5

51

5.2 PAUTOMAC competition dataset
Another dataset used in this project is the one from the PAUTOMAC competition[21].
The description of this competition and the reason for using this data are described in
section 6.4.

Initially there were two types of data used to build the models and evaluate them,
namely : artificially generated and real-world data. However, because there was not an
unbiased way to evaluate the results from the real-world data, they finally used only the
artificial data.

5.2.1 Artificial data generation
The generation of the artificial data began with the building of a random probabilistic au-
tomaton with 5-75 states and an alphabet of 4-24 symbols. Then a number of state-symbol
pairs (between 20% and 80% of all possible) was generated from the aforementioned au-
tomaton. More specifically, they started by choosing an initial state at random and then
they chose a symbol from the symbol set not been previously selected. Following, one
transition was generated from from every state-symbol pair to to a randomly selected tar-
gets, and a percentage between 0% and 20% of all the possible transitions were selected
without replacement.

From each random probabilistic automaton, one train and one test set was constructed.
The train sets size was 100000 with probability 25%, otherwise it was 20000. Regarding
the testing set, it contained 1000 unique strings. On both the training and testing sets, the
length of each string was between 5 and 50 symbols. Finally 16 such machines and couples
of training and testing dataset were produced. Almost the same procedure followed also
for 16 Hidden Markov Models (HMM) and Probabilistic Deterministic Finite Automata
(PDFA), resulting in 48 pairs of training and testing sets. A more detailed description of
the generation of the artificial data can be found on [64].

5.2.2 Data Description
Tables 5.7 and 5.8 presents some statistics about number of traces, the number of symbols
and the average length of the traces for each of the 48 artificial training and testing sets
of PAUTOMAC competitions, accordingly. The number of traces in the training sets was
expected because as mentioned above, its size was 100000 with probability 25%, otherwise
it was 20000. The number of traces in the testing sets was fixed (1000) as expected. Re-
garding the number of symbols, it was expected that the training and testings sets for each
scenario will have exactly the same number of symbols. Finally, it can be easily noticed
that the length of the traces in the testing sets is in average significantly bigger than the
one of the training sets.

mean std median min max
Traces 41666.667 35551.215 20000 20000 100000

Symbols 11.625 5.943 10 4 23
Trace length 10.707 5.353 8.089 4.939 26.669

Table 5.7: Statistics for the number number of traces, the number of symbols and the average length of the traces
for all the artificial training sets of PAUTOMAC competition

5

52 5 Data Exploration

mean std median min max
Traces 1000 0 1000 1000 1000

Symbols 11.625 5.943 10 4 23
Trace length 14.691 5.238 13.421 8.323 29.1

Table 5.8: Statistics for the number number of traces, the number of symbols and the average length of the traces
for all the artificial testing sets of PAUTOMAC competition

6

53

6
Methodology

This chapter contains the description of the steps followed in order to classify a mali-
cious host. Firstly, the discretization and encoding the flows of the dataset is presented,
along with the procedure followed to extract the traces needed to build the state machine.
Then the three methods for recognizing a host as infected are discussed. Following, the
two types of simulations, namely single-scenario and multi-scenario, used to evaluate the
different models on the task of recognizing malicious hosts are described. Finally the pro-
cedure followed to measure the runtime efficiency of the proposed heuristic is described.

6.1 Data
As it was referred in the previous chapters, the dataset used in this project, namely CTU
13, consists of NetFlow data. Therefore, every scenario of this dataset contains a specific
number of flows with some attributes.

An initial step for each scenario, was the removal of the background flows. As said
in previous chapter, the background traffic is real traffic from other participants in the
network. In our case we want to classify a host as malicious or benign so we decided to
remove these flows because they do not match to our use-case.

Also, we have to add manually a new flow attribute, which derives from the existent
attributes. This feature was the amount of data sent. Since we have the total amount of
data exchanged for each flow and amount of data received for the source IP of this flow
record, we extracted this feature by subtracting these two values.

6.1.1 Data split
For each scenario we divided the data in three disjoint datasets, following the strategy
used in [15]:

• Configuration dataset: We randomly selected at least 30% of the benign flows of the
examined scenario. More specifically, all the flows of a host are collected until the
number of flows reach or pass the 30% of the benign flows of the examined scenario.
This dataset was used to calculate the percentiles for the discretization features and
for the tuning of the evaluation methods.

6

54 6 Methodology

• Training dataset: We randomly selected all the flows from one malicious host of the
examined scenario. These flows were used to build the State Machine model

• Evaluation Dataset: It consists of all the remaining flows from both malicious and
benign hosts, and it was used to evaluated the derived model.

From the three datasets described above, it is noticeable that is possible that the evalu-
ation dataset can be bigger that the training dataset. This does not agree with the common
way the dataset is divided in machine learning tasks, where the biggest part of the dataset
is used for training purposed. However, in this case the flows from one host are enough
to infer the model so there is no need to used more flows.

6.1.2 Data Discretization
Initially, each feature of the flow should be discretized. Discretization is a dimensional-
ity technique which diminishes data from a large domain of numerical values to a small
domain of categorical values. For the categorical features this process is simple as the
discretization is done by assigning a progressive non-negative number to every possible
value of the corresponding feature. For example, for the protocol type feature, we assign
0 if the protocol is UDP, 1 if it is UDP, 2 if it is ICMP, etc.

When it comes to the numerical features, the discretization was accomplished by using
percentiles to cluster them. In order to decide the optimal number of clusters, the ELBOW
method was used [65]. In order to apply the ELBOW method we start by applying the
K-means clustering for a specific range of values for k, which is the number of expected
clusters. In our case, the k parameter was between 1 and 10, inclusive. For each value of
the k parameters we calculate and plot the inertia value. Inertia is the the sum of squared
distances of samples to their closest cluster center. An sample output for this visualization
is depicted in figure 6.1. The optimal number of clusters is determined by choosing the
value of k in the plot, after which the inertia value start decreasing in a linear fashion. In
figure 6.1, we can conclude that the optimal number of clusters is 3. This point of the plot
has the shape of an ”elbow”, hence the name of the method.

After replacing each feature value by the cluster it belongs, a progressive non-negative
number is assigned to every value (cluster). For example, if for some feature the ELBOW
method suggests that there are 4 clusters then we assign 0 if the value is before the 25th
percentile, 1 if the value is between the 25th and 50th percentile, 2 if the value is between
the 50th and 75th percentile, and 3 if the value is after the 75th percentile.

6.1.3 NetFlow Encoding
In order to convert the Netflow data, where each flow consists of several features, to a
symbolic sequence which can be used as a input for State machine, we should encode
them. That means that every flow from the NetFlow data should be converted to a discrete
symbol. In order to do so, we follow the Algorithm 7 [15], where 𝑀𝑖 denotes the attribute
mapping for feature 𝑖 as has been computed with the aforementioned technique and |𝑀𝑖 |
the number of values for feature 𝑓𝑖 .

An example that demonstrates the process followed in alg. 7 is the following. Let’s
assume that each NetFlow has only 2 attributes: protocol and bytes. Regarding, the pro-
tocol let assume that the only values observed are TCP and UDP. The mapping described

6.1 Data

6

55

Figure 6.1: Sample visualisation of ELBOW method

above will assign 0 to the former and 1 to the latter. When it comes to the bytes attribute,
let assume that the values observed are: {20,35,35,40,90} and assume we are interested
in the 20th and 60th percentiles. The first step is to find out the ordinal ranks of these
values in the list of the observed values, using the formula: 𝑟(𝑝) = ⌈ 𝑝

100 ×𝑁⌉ , where p is

the required percentile, and N is the collection size. Therefore 𝑟(20) = ⌈ 20
100 × 5⌉ = 1 and

𝑟(60) = ⌈ 60
100 × 5⌉ = 3. Percentiles are the values of the observed list that corresponds to

the ordinal ranks. Therefore, the 20th percentile is 20 and the 60th percentile is 35. Thus,
the mapping for the bytes value is 𝑀𝑏𝑦𝑡𝑒𝑠(𝑣) = {0𝑖𝑓 𝑣 ≤ 20,1𝑖𝑓 1 < 𝑣 ≤ 35,2 𝑒𝑙𝑠𝑒}. where v
is the value of the bytes attribute for the examined NetFlow. Given the mappings for the
protocol and bytes features, the symbol for the ⟨𝑈𝐷𝑃,25⟩ is: 1× 6

2 +1×
3
3 = 4 while the one

for the instance ⟨𝑇𝐶𝑃,100⟩ is 1× 6
2 +2×

3
3 = 5.

6.1.4 Sliding Windows
State machines are sequential models, thus their input should be a sequence of symbols.
This means that after we have discretized all the features and converted each flow to a
discrete symbol, we should process them to obtain sequences of events. Theses sequences
were obtained by applying the sliding window technique.

Before describing the sliding window technique utilized, it should be mentioned that
since we are modeling the behavior on host level, before applying the sliding window
technique we grouped the NetFlows based on their source IP.

Firstly, as mentioned above, we group the Netflows of the examined scenario based
on their source IP. Then, we should apply a window to obtain sequential events. This
window can be either a time window, which means that all NetFlows with a time range

6

56 6 Methodology

Algorithm 7: Netflow encoding
input :a Netflow 𝑛 = ⟨𝑓0, 𝑓1,… ,𝑓𝑘⟩ with 𝑘 features
input :an attribute mapping 𝑀𝑖 for 𝑖 = 0,1,…,𝑘
output :an integer code for the NetFlow n
code ←0;
spaceSize ←∏𝑘

𝑖=0 |𝑀𝑖 |;
for 𝑖 ← 0 to k do

code ←code +𝑀𝑖(𝑓𝑖) × 𝑠𝑝𝑎𝑐𝑒𝑆𝑖𝑧𝑒
|𝑀𝑖 |

;

spaceSize ← 𝑠𝑝𝑎𝑐𝑒𝑆𝑖𝑧𝑒
|𝑀𝑖 |

;
end
return code;

will be assigned to the same sequence, or a fixed length window which means that all
sequences will contain a fixed number of windows. On the former case the start of the next
window is incremented by a specific time period smaller than the window range, while on
the latter case the start of the next window is incremented by a specific number of flows,
again smaller than the length of the window. This difference between the beginnings of
successive windows is called stride.

Our first attempt was to apply a time window of fixed time. However, the traffic vol-
ume didn’t have a relatively stable ratio, meaning for a small number of time periods there
was a great volume of NetFlows while for the remaining time the traffic was significantly
smaller. These ”spikes” on the traffic volume, led to obtaining many sequences with few
symbols (NetFlows) and few sequences with many NetFlows. As it can be understood,
there traces are not suitable for learning a state machine.

In order to solve this issue, we tried to customize the time range of the window based
on the dataset I had. Especially, the median value of the time difference between suc-
cessive flows was extracted from the configuration dataset. Then the time range of the
windows was set to n*median value, so as every window to contain approximately n sym-
bols (flows). Although the number of flows was more balanced than before, they keep
being inappropriate for learning a state machine model.

Finally, the approach that was finally chosen is the one with windows of fixed length.
The window size chosen was 20 flows with a stride size of 10 flows. The length of 20 was
chosen because we believe that this length is big enough to capture the behavior of the host.
Also this helps to produce ”shorter” state machines, thus easier to learn. By applying this
technique we obtained sequences of equal length which is a much more suitable format
than the aforementioned for learning a state machine. The disadvantage of this method
is that it may contain in the same sequence flows that are whose time difference is very
much, therefore they are not related.

6.2 Recognizing a Host as Infected

6

57

6.2 Recognizing a Host as Infected
6.2.1 Acceptance ratio-based
This method of recognizing a host as infected is based on the acceptance ratio of the win-
dows extracted for a host and the communication profile build, as described in [14]. In
particular after building the communication profile for the infected host(s), we measure
the acceptance ratio of each examined host based on its windows. The acceptance ratio is
given by:

𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒_𝑟𝑎𝑡𝑖𝑜 = # 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 (6.1)

Given that the communication profile is capturing the behavior of a malicious host,
a host is classified as malicious if the acceptance ratio value after t windows is bigger
than a threshold t. A preliminary analysis showed that the number of flows n should be
25. Regarding the classification threshold t, it was decided by measuring the maximum
acceptance ratio of the hosts in the configuration dataset after 25 flows has been examined,
and obtaining their average value. So this value differs according to the examined scenario.

6.2.2 Error-based
Symptoms are the states of the state machine models. The error-based method, inspired
by [15], for recognizing a host as infected is based on the counts of the symptoms on the
modeled host and on the candidate host. Let’s assume that C in the candidate host and
M is the malicious modeled host. For each candidate host we measure the error with the
following formula:

𝑆 = ∑𝑖 |𝐸𝑟𝑟𝑜𝑟𝑀𝑖 −𝐸𝑟𝑟𝑜𝑟𝑀𝑖 |
∑𝑖(𝐸𝑟𝑟𝑜𝑟𝑀𝑖 +𝐸𝑟𝑟𝑜𝑟𝑀𝑖) (6.2)

where 𝐸𝑟𝑟𝑜𝑟𝑀𝑖 and 𝐸𝑟𝑟𝑜𝑟𝑀𝑖 is the error on each symptom (state) i for the candidate
and malicious host respectively. Given that the communication profile is capturing the
behavior of a malicious host, a candidate host is classified as malicious if the error is below
a threshold t. This threshold is decided measuring the same error for the hosts of the
configuration dataset, and it differs per scenario.

6.2.3 Fingerprint-based
The fingerprint-based method [15] is based on the discrimination of the symptoms that
happen when a host is malicious but never when it is a benign one. In order, to measure
these occurrences of the specific symptom, we use again the configuration dataset to find
the symptoms that never occurs in the benign hosts. We also use the modeled host to
investigate which of these symptoms happen in the malicious hosts. Finally, when exam-
ining the candidate host, we classify it as malicious if there exists a symptom i such that
𝐶𝑜𝑢𝑛𝑡𝑠𝐵𝑖 = 0, 𝐶𝑜𝑢𝑛𝑡𝑠𝑀𝑖 > 0, and 𝐶𝑜𝑢𝑛𝑡𝑠𝐶𝑖 > 0, where B is the benign host. Otherwise, the
candidate host is classified as benign.

6

58 6 Methodology

6.3 Single vs. Multi scenario simulation
In order to evaluate the classification performance of our state machine inferring tech-
nique, we experimented with two different types of experiments, inspired by [20]. The
structure of these experiments is discussed below.

6.3.1 Single scenario simulation
The simpler one is the single scenario simulation. The goal of this experiment is to evaluate
our model on detecting known threats. For example, a state machine is inferred based
on NetFlow records from a host performing DDOS attacks, and then its performance is
evaluated on the remaining hosts, among which there are other hosts performing DDOS
attacks. The procedure followed in the single scenario simulation is the following:

For each scenario:

• Spit the dataset in configuration, training and evaluation sets.

• For each dataset, group the NetFlows by their source IP. Then apply data discretiza-
tion, flow encoding and sliding windows to obtain the windows for each host.

• Build a communication profile using the malicious host on the training dataset.

• Use the configuration dataset to tune the evaluation method described in section 6.2.

• Evaluate the performance of the communication profile on the evaluation dataset.

The whole procedure is presented in figure 6.2. It is important to mention that the
scenarios used on this simulation were the scenarios 9, 10, 11 and 12, as they were the only
scenarios containing more than one malicious hosts. This was necessary as we need one
malicious host to build the communication profile, but we also need other malicious hosts
to evaluate its performance. Therefore, there is no meaning on using the other scenarios,
we would end up evaluating the classification performance of the model only on benign
hosts.

6.3.2 Multi scenario simulation
The multi scenario simulation is a much more challenging experiment, because the infec-
tion models built have to detect unseen threats. More specifically, the following procedure
is being followed:

• Scenarios 3, 4, 5, 7, 10, 11, 12, and 13 are used for as training sets, with a part of them
being used as configuration dataset. With the procedure described in section 6.1.1,
at least 30% of each of these scenarios are is used as configuration dataset. On the
other hand, scenarios 1, 2, 6, 8, and 9 are used as evaluation datasets.

• For each dataset and scenario, group the NetFlows by their source IP. Then apply
data discretization, flow encoding and sliding windows to obtain the traces for each
host.

• Build a communication profile for every malicious host on the training dataset

6.3 Single vs. Multi scenario simulation

6

59

Figure 6.2: Pipeline of the single-scenario simulation

• Use the configuration dataset to tune the evaluation methods described in section 6.2.

• Evaluate the performance of the communication profile on the evaluation datasets.
In this simulation we have multiple models for the malicious hosts so consider a
candidate host as malicious if any of the communication profiles built recognizes it
as one.

As explained before, the separation of the scenarios into training and evaluation set
was done in a way that will ensure that the two datasets will include different types of
bots. As can be observed in chapter 5, the scenarios of the training dataset contain Rbot,
Virut, Sogou and NSIS.ay bots, while the scenarios of the evaluation dataset contain Neris,
Menti and Murlo bots.

6

60 6 Methodology

6.4 Measuring runtime and model quality
In order to measure the performance of our proposed state-merging heuristic in terms
of runtime, we used the dataset provided by the PAUTOMAC probabilistic automaton
learning competition [21]. The decision to use this dataset instead of the CTU-13 dataset,
was done because the number of windows extracted for each host of the CTU-13 dataset
was not big enough, so the models were built very fast. As a result, measuring the time
efficiency of our method there would not provide reliable results. Therefore we measured
the runtime of flexfringe for building the model when using our heuristic and compared
it with the runtime of flexfringe for building the model when using the modified alergia
heuristic.

The PAUTOMAC probabilistic automaton learning competition is an on-line challenge
that took place in 2012. As described in [64], ”the goal of PAUTOMAC was to provide
an overview of which probabilistic automaton learning techniques work best in which
setting and to stimulate the development of new techniques for learning distributions over
strings”. As described in section 5.2, the data were provided in the form of sequences of
symbols for this competition, so there was no need to follow the procedure followed for
the CTU-13 dataset.

Except from the runtime and the number of states that we measure for every test set
provided for this competition, we decided to measure also the efficiency of the our model
on learning the distribution over the given strings. Therefore, we calculated the score used
on this competition and compared with the one achieved with the modified version of the
alergia heuristic.

The evaluation measure use on the PAUTOMAC was based on the perplexity score.
Specifically, for a test set S the perplexity score achieved is calculated by the following
formula:

𝑆𝑐𝑜𝑟𝑒(𝐶,𝑆) = 2−∑𝑥∈𝑆 𝑃𝑇 (𝑥)∗log2(𝑃𝐶 (𝑥) (6.3)

where 𝑃𝑇 (𝑥) is the normalized probability of the trace x in the target model and 𝑃𝐶 (𝑥) is
the normalized candidate probability for the trace x of the examined model.

7

61

7
Experiments

This chapter contains the description of the experiments conducted in order to answer
the second and third research questions of thesis. Initially, we describe the experimen-
tal procedure and the hyper-parameter tuning for the models used in the experiments.
Then we present and discuss the results of the different models in the single-scenario and
multi-scenario simulation of detecting malicious botnets hosts on the CTU-13 dataset. We
compare the performance of the methods using the proposed state-merging heuristic with
other models and comment about the performance about of the different LSH families. Fol-
lowing we compare the performance of our method on the multi-scenario simulation with
the one achieved by a state-of-the-art work. Finally, the runtime and performance of out
proposed heuristic on building state machines is presents and its results are compared
with the results of the modified alergia heuristic.

7.1 Experimental Configuration
The core of this project, which is the flexfringe tool modified by adding the new state
merging method with the usage of LSH to compare the future traces of each state, was
implemented in C++. However, all the other parts of the experimental procedure were
implemented in Python 3.8. Especially, Python 3.8 was used for the data discretization
and flow encoding, as well as the conduction of the experiments and their evaluation,
including the visualization of the results.

The experiments were sun on a local machine with 8GB RAM and Intel Core i5 8550U
at 1.8 GHz.

7.2 Hyper-parameter Tuning
The most important hyperparameters need to be tuned for the LSH concept are the num-
ber of bins and the number of hash functions used. When the number of bins is small,
there is a high probability that some non-similar vectors will end up on the same bucket.
On the other hand, if the number of buckets is very big we will end up assigning on the
same bucket only same vectors. This will have no difference than a simple counter of dif-
ferent vectors, thus it will be computationally expensive and it will require much memory.

7

62 7 Experiments

Regarding the number of hash functions used, we can say that with more hash function
we will have more stable results. This happens because, a possible error being done by
one hash functions who assigned one vector to the ”wrong” bin, will not be done by all
the other hash functions. So the distribution of future traces we extract by combining
the buckets of each hash function will be more accurate. However, as for the number of
buckets, the more increase on the number of hash functions entails increase in the com-
putational cost of the LSH structure.

In order to tune these hyperparameters, we experimented with different values for the
number of buckets and the number of hash functions. The results from the hyperparame-
ter tuning for the error-based evaluation method and the 1-stable distribution LSH family
are presented in figure 7.1.Figure 7.1a contains the results for the single scenario simula-
tion, while figure 7.1b contains the results for the multi-scenario simulation. Given that
there was no undetected malicious host (false negative), we measure the number of false
positives for each configuration. It should be mentioned that for both simulation we count
the number of false positives for all the scenarios aggregated and not individually. As we
can observe, the behavior for both the simulations is the same. More specifically, when
using 10 hash functions or 10 buckets the number of false positives reaches its maximum
value in comparison with the other configurations. When increasing either of them, the
number of false positives decreases with the minimum value for both cased reached for 100
buckets and 100 hash functions. Finally, when we increase either of these two hyperpa-
rameters, we observe that the number of false positives does not decrease. Thus there is no
reason to increase the computational cost and the runtime of the system given that there
is no improvement in the results. The behavior of the other two LSH families (2-stable
distribution and random hyperplanes) is similar with the one described above. Therefore,
for the experiments presented in the following sections we used 100 hash functions and
100 buckets.

(a) False positive predictions for single-scenario sim-
ulation and various values for the number of buckets
and hash functions

(b) False positive predictions for single-scenario sim-
ulation and various values for the number of buckets
and hash functions

Figure 7.1: False positive predictions for single-scenario and multi-scenario simulations and various values for
the number of buckets and hash functions

Another important parameter is the threshold used when comparing the KL diver-
gence of two distributions to decide if a merge is consistent. This parameter significantly
affects the states machines built, because the higher the threshold is, the more merges will
be allowed. Thus, a model with less states will be built. After some preliminary analysis

7.3 Experimental procedure

7

63

with the value of this threshold, its value was set to 0.01.

7.3 Experimental procedure
The first part of the experiments is about the efficiency of our proposed method on detect-
ing the malicious hosts of the CTU-13 dataset. As was described in chapter 6, we evaluate
our method for two types of simulation, namely single scenario and multi scenario. In ad-
dition, we compare the performance of our best model in the host classification task with
the one of a state-of-the art model using the same configuration about the separation for
the datasets into test and training dataset. Initially, the dataset is separated into training,
configuration and testing datasets according to the type of simulation used. We discretized
and encoded each flow before we group the flows in host level. Then, the sliding window
method was used to extract sequential traces for each host. Afterwards, we build the the
models using the training datasets, we tuned the evaluation methods by using the configu-
ration dataset, and finally evaluated the models on the testing dataset. In order to build the
model using our method, we used flexfringe with the custom state-merging heuristic and
experimented with three different LSH families, namely random hyperplanes, 1-stable dis-
tribution and 2-stable distribution. Furthermore, we compared the aforementioned models
with a trigram baseline model and a models built with flexfringe using the modified version
of alergia as a state-merging heuristic. When reporting the results, we use the following
abbreviations:

• 3gram: The trigram model.

• ALERGIA: The state machine model built with the modified alergia state-merging
heuristic.

• RH: The state machine model built with the proposed state-merging heuristic using
the random hyperplanes LSH family.

• 1-SD: The state machine model built with the proposed state-merging heuristic us-
ing the 1-stable distribution LSH family.

• 2-SD: The state machine model built with the proposed state-merging heuristic us-
ing the 2-stable distribution LSH family.

The second part of the experiments, is mainly about measuring the runtime of our pro-
posed state-merging heuristic. In particular we used the data provided by the PAUTOMAC
competition and measured the runtime, the number of states of the created model and the
perplexity score of the model. We used the LSH family that provided the best results in
the classification task to build the model with our proposed state-merging heuristic, and
we compared its performance with a model built using the modified version of alergia as
a state-merging heuristic.

7.4 Single Scenario
On this simulation, we build a model from a malicious host of each scenario and evaluate
its performance on classifying the other hosts of the same scenario. As was explained in

7

64 7 Experiments

section 6.3.1, we are using only the scenarios 9,10,11 and 12 as they are the only ones that
contain more than one malicious host. Also, we have used three different methods that,
given the malicious host model and the traces for the examined host, decides whether a
host is malicious or not. These are the error-based, fingerprint-based and the acceptance
ratio-based. Since we are using a model built from a specific type of botnet to detect other
botnets of the same type, we expect that we will be able to recognize the most of the
malicious hosts successfully.

The results for the error-based evaluation method can be seen in table 7.1. It can be
easily observed that the trigram model detects all the malicious hosts for all the four sce-
narios while having very few false positives, one for scenario 9 and 12. On the other
hand the state machine build with the alergia state-merging heuristic, although raising
few false alarms, is not so sensitive as it fails to recognize two malicious hosts for scenario
9 and one for scenario 11. When it comes to the state machine built using our proposed
state-merging heuristic, for all the three LSH families it detects all the botnets of the three
first scenarios (9, 10 and 11) with few positive alarms. Regarding scenario 12, LSH with
1-stable distribution has no false positives while the LSH with random hyperplanes and
2-stable distribution raise one false alarm each.

In general, we can say that the best performance is achieved by the trigram baseline
method and state machine with our proposed state-merging heuristic and 1-stable distri-
bution LSH family. Both these two models, had only one false prediction, in scenario 9
where they raised a false alarm. Also it is worth mentioning that the error-based evalua-
tion method seems to be an effective method for deciding if a host is malicious, as for the
majority of scenarios and models almost all the predictions are correct.

Table 7.2 shows the results of the fingerprint-based evaluation method. As it can be
noticed there, for scenario 9 all methods classify correctly all the malicious hosts, but they
are raising a few false alarms. For scenario 10, all methods except for the state machine
with our state merging heuristic using LSH with 1-stable distribution, do not successfully
recognize all the botnet hosts. As for scenario 11, all methods achieve perfect score except
for the trigram model the state machine with our state merging heuristic using LSH with
random hyperplane, which fail to recognize on botnet host. Finally, in scenario 12 all only
the state machine with alergia heuristic and the one using LSH with random hyperplanes
fails to recognize all the malicious hosts.

Overall, again the trigram model and the the state machine with our state merging
heuristic using LSH with 1-stable distribution or 2-stable distribution, achieves the best
results. However, it is clear that the overall results achieved with the the fingerprint-based
evaluation method are worse than the ones of the fingerprint-based evaluation method.

The results for the acceptance ratio-based evaluation method can be seen in table 7.3.
It is clear that the results for this evaluation method are much worse that the previous
ones for all the different models. In particular, in scenarios 9 and 12 all methods fail to
recognize all the botnet hosts. On the other scenario, we have some models with 100%
while some other fail to recognize many malicious hosts.

We can conclude that this evaluation method is quite unstable, as in half the scenarios it
misclassifies almost all the malicious hosts as benign. Furthermore, it has a clear tendency
towards the negative class, thus we have few false positives but also many undetected
malicious hosts. In comparison with the other two evaluation methods, we can conclude

7.4 Single Scenario

7

65

Model TP FP TN FN

Scenario 9

3gram 9 1 22 0
ALERGIA 7 1 22 2

RH 9 2 21 0
1-SD 9 1 22 0
2-SD 9 1 22 0

Scenario 10

3gram 9 0 15 0
ALERGIA 9 1 14 0

RH 9 0 15 0
1-SD 9 0 15 0
2-SD 9 1 14 0

Scenario 11

3gram 2 0 12 0
ALERGIA 1 0 21 1

RH 2 0 12 0
1-SD 2 0 12 0
2-SD 2 0 12 0

Scenario 12

3gram 2 0 17 0
ALERGIA 2 1 16 0

RH 2 1 16 0
1-SD 2 0 17 0
2-SD 2 1 16 0

Table 7.1: Evaluation results for all scenarios and models, using the error-based evaluation method

that this is the one providing the worst results.
All in all, for the single scenario simulation we can reach to the conclusion that the

error-based evaluation method has provided the best results, meaning that in for most of
the scenarios and models, the accuracy was almost perfect. Also, it provided the more
stable results, as the performance of each method didn’t differ significantly per scenario.
Regarding the models evaluated, the trigram model method and the state machine with
the LSH with 1-stable distribution state-merging heuristic have achieved the best results
in the majority of the cases. Especially, their performance was almost perfect as they
had only one false prediction when the misclassified a benign host. It is impressive that
our state-merging heuristic using LSH with 1-stable distribution has better performance
than the alergia heuristic given that it makes many approximations when during the state-
merging process, so we expected an from alergia to have same or better performance. This
may be caused by the fact that the behavior of the hosts in CTU-13 is not so complicated, so
our method achieves better results by inferring ”simpler” models. In the single-scenario
simulation, we expected that the results will be almost perfect because the models are
trained on the same type of botnet with the ones they are trying to detect.

7

66 7 Experiments

Model TP FP TN FN

Scenario 9

3gram 9 3 20 0
ALERGIA 9 3 20 0

RH 9 5 18 0
1-SD 9 3 20 0
2-SD 9 3 20 0

Scenario 10

3gram 8 2 13 1
ALERGIA 8 0 15 1

RH 8 2 13 1
1-SD 9 2 13 0
2-SD 8 0 13 1

Scenario 11

3gram 1 0 12 1
ALERGIA 1 0 12 0

RH 1 0 12 1
1-SD 2 0 12 0
2-SD 2 0 12 0

Scenario 12

3gram 2 1 16 0
ALERGIA 0 1 16 2

RH 1 1 16 1
1-SD 2 1 16 0
2-SD 2 1 16 0

Table 7.2: Evaluation results for all scenarios and models, using the fingerprinting-based evaluation method

7.4 Single Scenario

7

67

Model TP FP TN FN

Scenario 9

3gram 0 0 23 9
ALERGIA 0 1 22 9

RH 0 0 23 9
1-SD 0 0 23 9
2-SD 0 0 23 9

Scenario 10

3gram 9 0 15 0
ALERGIA 9 0 15 0

RH 3 0 15 6
1-SD 6 0 15 3
2-SD 8 0 15 1

Scenario 11

3gram 1 0 12 1
ALERGIA 1 0 12 1

RH 1 0 12 1
1-SD 2 0 12 0
2-SD 2 0 12 0

Scenario 12

3gram 0 1 16 2
ALERGIA 0 0 17 2

RH 0 0 17 1
1-SD 0 0 16 2
2-SD 0 1 16 2

Table 7.3: Evaluation results for all scenarios and models, using the acceptance ratio-based evaluation method

7

68 7 Experiments

7.5 Multi Scenario
On this simulation, we build a model for every malicious host in scenarios 3, 4, 5, 7, 10,
11, 12 and 13, and evaluate its performance of the examined method on classifying the
hosts of scenarios 1, 2, 6, 8 and 9. If any of the models marks a host as malicious, then
it is classified as malicious. As was explained in section 6.3.2, we split the scenarios on
the aforementioned way, so as the scenarios in the training set contain different botnet
families than the evaluation set. Since we use different botnets families to build the models
than the botnet families we are trying to detect, we expect that the classification results
will be much more worse than the ones of the single scenario simulation. Our goal is to
build a system that will be able to detect all the botnets, while it minimizes the number of
false alarms. Also, we have used the three evaluation methods that we used on the single
scenario simulation.

Starting from the result of the error-based evaluation method presented in table 7.4, we
can observe that in all the scenarios and all the methods, there are no undetected malicious
hosts but there are many false positives. This behavior was expected because our detection
system focus more on the sensitivity than the reliability, because for a host to be classified
as benign it should be classified as benign by all of the models. Also, there is no significant
difference in the performance of the different models. However, we can observe that for all
the scenarios, the performance of the state machine using LSH with 1-stable distribution
as a state-merging heuristic has better or at least equal performance with the other models.
Thus, by taking into account all the scenarios, this is the best performing model.

Regarding the results of the fingerprint-based evaluation method presented in table 7.5,
is can be easily noticed that as in the error-based evaluation method discussed above, all
the botnet hosts are recognized. However, in that case the number of false alarms raised
is much bigger. This was an expected behavior because of the fact that the fingerprinting
evaluation method tends to be more sensitive on the way it classifies a host as malicious.

Finally, the results of the acceptance ratio based evaluation method as presented in
table 7.6. We can see that contrary to the two other evaluation methods, this ones fails
to detect some of the malicious hosts. When it comes to the performance of the different
models, we can observe that for all the scenarios, the performance of the state machine
using LSH with 1-stable distribution as a state-merging heuristic has better or at least
equal performance with the other models.

All in all, we can conclude that the error-based has provided the best results for almost
all the models, with no undetected malicious host and a few false alarms. The fingerprint-
ing evaluation method produced more false positives as expected, while the acceptance
rate one failed to recognize many of the botnets. Regarding the different models used
to build the communication profile of the hosts, the state machines using LSH as a state-
merging heuristic has provided equally good or even better classification results, which
means that the approximations made by our method when merging two states are accu-
rate. Especially the one using the 1-stable distribution LSH family, has the best overall
results in all the scenarios.

In the multi-scenario simulation, we expected that the number of false positives would
be higher that the ones in the single-scenario simulation because the models are trained in
different types of botnets than the botnets they are trying to recognize. The fact that they
succeed to recognize all the malicious hosts, without few false alarms is very impressive.

7.5 Multi Scenario

7

69

Model TP FP TN FN

Scenario 1

3gram 1 5 14 0
ALERGIA 1 2 17 0

RH 1 5 14 0
1-SD 1 2 17 0
2-SD 1 4 15 0

Scenario 2

3gram 1 0 14 0
ALERGIA 1 0 14 0

RH 1 1 13 0
1-SD 1 0 14 0
2-SD 1 0 14 0

Scenario 6

3gram 1 2 14 0
ALERGIA 1 3 13 0

RH 1 2 14 0
1-SD 1 1 15 0
2-SD 1 1 15 0

Scenario 8

3gram 1 2 21 0
ALERGIA 1 4 19 0

RH 1 2 21 0
1-SD 1 2 21 0
2-SD 1 3 20 0

Scenario 9

3gram 10 3 22 0
ALERGIA 10 5 20 0

RH 10 5 20 0
1-SD 10 3 22 0
2-SD 10 3 22 0

Table 7.4: Evaluation results for all scenarios and models, using the error-based evaluation method

7

70 7 Experiments

Model TP FP TN FN

Scenario 1

3gram 1 6 13 0
ALERGIA 1 7 12 0

RH 1 8 11 0
1-SD 1 4 15 0
2-SD 1 5 14 0

Scenario 2

3gram 1 3 11 0
ALERGIA 1 1 13 0

RH 1 5 9 0
1-SD 1 1 13 0
2-SD 1 2 12 0

Scenario 6

3gram 1 4 12 0
ALERGIA 1 3 13 0

RH 1 3 13 0
1-SD 1 2 14 0
2-SD 1 3 13 0

Scenario 8

3gram 1 6 17 0
ALERGIA 1 7 16 0

RH 1 8 15 0
1-SD 1 4 19 0
2-SD 1 6 17 0

Scenario 9

3gram 10 5 20 0
ALERGIA 10 6 19 0

RH 10 6 19 0
1-SD 10 5 20 0
2-SD 10 6 19 0

Table 7.5: Evaluation results for all scenarios and models, using the fingerprinting-based evaluation method

7.5 Multi Scenario

7

71

Model TP FP TN FN

Scenario 1

3gram 1 5 14 0
ALERGIA 1 6 13 0

RH 0 1 18 1
1-SD 1 4 15 0
2-SD 0 2 17 1

Scenario 2

3gram 1 0 14 0
ALERGIA 1 0 14 0

RH 1 1 13 1
1-SD 1 1 13 0
2-SD 1 1 13 0

Scenario 6

3gram 1 2 14 0
ALERGIA 1 2 14 0

RH 1 2 14 0
1-SD 1 1 15 0
2-SD 1 1 15 0

Scenario 8

3gram 1 4 19 0
ALERGIA 1 5 18 0

RH 1 5 18 0
1-SD 1 4 19 0
2-SD 1 4 19 0

Scenario 9

3gram 0 2 23 10
ALERGIA 0 2 23 10

RH 0 3 22 10
1-SD 0 2 23 10
2-SD 1 3 22 9

Table 7.6: Evaluation results for all scenarios and models, using the acceptance ratio-based evaluation method

7

72 7 Experiments

7.6 Comparison to state-of-the-art detection techniques
As discussed in chapter 3, A. Blaise et al. in [13] built a system called BotFP (Bot Finger-
Printing) a clustering technique to detect malicious hosts on CTU 13 dataset. They extract
a vector representation of each host by extracting an attribute frequency distribution sig-
nature for every attribute of its flows and concatenating them. Then, they are learning
the behaviour of benign hosts and malicious hosts by creating clusters using the DBSCAN
clustering algorithm, where each cluster is indicated as malicious if it contains at least
one bot host. Finally, the classification of a new host is done by finding its closest cluster,
by examining its distance to the centroid of each cluster, and assigning it the label of this
cluster.

This work performs the classification on host level and follows the same procedure for
splitting the dataset in training and test dataset, that is the one proposed in [20]. Thus,
their results can be compared with our results from the multi-scenario simulation. How-
ever there are two important differences that we should take into account during this
comparison. The first is that while we build state machines from only malicious hosts,
their method used the data from both malicious and benign hosts to create the clusters.
The second difference is that they use the unidirectional version of the dataset, while we
use the bidirectional one. An important difference between these two versions is that the
are labeled differently. In particular, in the description of the dataset is mentioned that
the bidirectional flows have better labels and better quality of data, so we should use these
files for our research. The outcome of the usage of different versions of the dataset, is that
in their case the number of benign hosts is much bigger in comparison with the version
we used.

By keeping these differences in mind, we are going to compare the results of our system
with the ones presented in the table 7.7. For our results, we are using the error-based
evaluation method and the state machine build with the LSH state-merging heuristic using
the 1-stable distribution, as this is the combination had the best performance.

The results of both method are presented in table 7.7. First of all we can observe that
both models recognize correctly all the malicious hosts, as there are no false negative pre-
dictions. Regrading the false positive predictions, both methods have a few of them with
my model outperforming in scenarios 1 and 8, and the BotFP outperforming in scenarios
6 and 9. In total, our model had 8 false alarms, while the false alarms of BotFp were 9.
However, as discussed before, the BotFP model examines much more benign hosts, which
can be easily seen from the number of true negative predictions, thus the comparison is
not so fair. With more benign hosts examined, we expect that our model will more false
alarms, so it performance will be worse than the BotFP model on this task. This is depicted
in the accuracy of the classification, where BotFp achieves slightly better accuracy in all
the scenarios, except for scenario 2 where both achieve 100% accuracy. However, this
behavior was expected because we anticipated a loss in the accuracy of the model due to
the approximations done to achieve a speedup. Also the fact that BotFP learns from both
benign and malicious hosts, gives it an advantage over our model.

7.7 Runtime efficiency

7

73

Model TP FP TN FN Accuracy

Scenario 1 My method 1 2 17 0 0.9
BotFP 1 3 163 0 0.98

Scenario 2 My method 1 0 14 0 1
BotFP 1 0 131 0 1

Scenario 6 My method 1 1 15 0 0.94
BotFP 1 0 111 0 0.1

Scenario 8 My method 1 2 21 0 0.92
BotFP 1 5 165 0 0.97

Scenario 9 My method 10 3 22 0 0.91
BotFP 10 1 133 0 0.99

Table 7.7: Comparison of the classification results between BotFP and a state machine build with the LSH state-
merging heuristic using the 1-stable distribution

7.7 Runtime efficiency
As discussed in the introduction of this chapter, the second part of the experiments con-
ducted was about measuring the runtime of flexfringe with our proposed state-merging
heuristic. More specifically, we used the 48 datasets used on the PAUTOMAC competi-
tion to measure the runtime of our method along with the quality of the models built. In
order to do so we compared the perplexity score of our model and we compared to the
perplexity score of the target model, which is the one used to build the dataset. The LSH
famlily used for our state-merging heuristic was the LSH with 1-stable distribution, as it
was the one achieved the best results in terms of classification performance, especially on
the single scenario simulation. In order to measure the speedup achieved with the state-
merging heuristic we propose, we compared it with the modified version of alergia heuris-
tic discussed in section 2.4.3, as alergia is a well-known and fast state-merging heuristic.
Also a team who took part in the PAUTOMAC competition with an alergia-based method
achieved on of the best scores.

The results for each of the 48 datasets of the PAUTOMAC competition are presented in
table 7.8, while some statistics about the performance of the two aforementioned methods
are presented in table 7.9. These two tables show the runtime, the number states of the
models and the perplexity score along with its difference from the optimal one. As it can
be observed from table 7.9 the average runtime of our heuristic much smaller than the one
of alergia heuristic. In particular, we achieved a speedup of 650.75

120.5 = 5.4. When the average
difference of the achieved perplexity score and the optimal one for the two heuristics is
examined, we can see that our heuristic’s average error is bigger and especially 74% more
bigger than the error of alergia heuristic. However, we expected this trade-off between
the runtime and the error of the model, as our heuristic makes approximations about the
children nodes of the nodes that are candidate for merge in order to achieve this significant
speedup. Finally, regarding the number of states of the state machines built with these
two heuristics, that the alergia heuristic tends to produce models with more states than
the models built with our heuristic. Especially the mean number of states for the alergia
heuristic is very high, but this happens because for some few datasets a model with too

7

74 7 Experiments

many states was produced. This becomes clear when we examine the median value of
the number of the states for alergia, which is much smaller than the mean value, but two
times bigger than the one of our heuristic.

Set Method Runtime (s) States Perplexity score Optimal Perplexity score

1 LSH 42 32 48.403 29.898ALERGIA 114 65 38.663

2 LSH 48 43 201.130 168.331ALERGIA 93 48 172.654

3 LSH 12 29 85.956 49.965ALERGIA 51 64 65.368

4 LSH 10 23 145.515 80.818ALERGIA 18 109 134.219

5 LSH 3 17 76.933 33.235ALERGIA 10 14 57.903

6 LSH 30 39 148.041 66.985ALERGIA 132 86 122.841

7 LSH 8 44 82.611 51.224ALERGIA 23 21 66.775

8 LSH 126 54 191.256 81.375ALERGIA 291 252 167.945

9 LSH 6 10 46.970 20.840ALERGIA 8 46 32.588

10 LSH 143 50 57.279 33.303ALERGIA 1093 135 47.024

11 LSH 553 78 88.409 31.811ALERGIA 765 120 67.647

12 LSH 132 50 46.190 21.655ALERGIA 203 117 28.259

13 LSH 31 45 104.436 62.806ALERGIA 41 180 86.840

14 LSH 8 36 131.557 116.792ALERGIA 11 40 118.713

15 LSH 117 41 80.947 44.242ALERGIA 1623 122 62.178

16 LSH 145 45 52.791 30.711ALERGIA 657 173 37.190

17 LSH 146 50 98.275 47.311ALERGIA 760 119 70.749

18 LSH 55 105 81.449 57.329ALERGIA 87 731532 67.850

19 LSH 175 58 26.101 17.879ALERGIA 183 175262 24.189

20 LSH 227 38 141.510 90.971ALERGIA 870 67 117.268

7.7 Runtime efficiency

7

75

21 LSH 610 61 100.072 30.519ALERGIA 3320 95 79.031

22 LSH 37 101 42.082 25.982ALERGIA 54 1322137 35.706

23 LSH 119 41 28.696 18.408ALERGIA 1332 179 26.119

24 LSH 11 36 72.560 38.729ALERGIA 15 21 59.528

25 LSH 56 3372 97.362 65.735ALERGIA 154 72 84.648

26 LSH 17 46 140.900 80.743ALERGIA 23 150 122.501

27 LSH 138 48 78.804 42.427ALERGIA 158 66 63.875

28 LSH 7 34 100.122 52.744ALERGIA 10 41 84.966

29 LSH 7 40 45.104 24.031ALERGIA 6 108 35.412

30 LSH 23 31 37.603 22.926ALERGIA 121 102 29.360

31 LSH 8 40 55.705 41.214ALERGIA 10 59 53.350

32 LSH 40 42 53.351 32.613ALERGIA 59 134 42.985

33 LSH 18 40 46.526 31.865ALERGIA 20 18 32.040

34 LSH 819 74 52.854 19.955ALERGIA 13545 145 41.253

35 LSH 140 97 55.210 33.777ALERGIA 135 108 41.130

36 LSH 377 37 46.083 37.986ALERGIA 789 86 41.658

37 LSH 45 32 22.1023 20.980ALERGIA 87 27 21.928

38 LSH 47 32 31.179 21.446ALERGIA 56 11 30.331

39 LSH 45 39 11.478 10.002ALERGIA 80 40 10.659

40 LSH 117 52 10.873 8.201ALERGIA 498 114 10.250

41 LSH 173 32 15.717 13.912ALERGIA 181 31 15.193

42 LSH 8 26 18.862 16.004

7

76 7 Experiments

ALERGIA 17 22 17.035

43 LSH 4 29 35.725 32.637ALERGIA 6 12 35.016

44 LSH 97 33 13.287 11.709ALERGIA 213 24 12.897

45 LSH 8 45 25.622 24.042ALERGIA 15 16 25.303

46 LSH 459 61 16.144 11.982ALERGIA 2494 69 15.512

47 LSH 97 84 6.813 4.119ALERGIA 150 343776 5.331

48 LSH 226 63 11.345 8.036ALERGIA 655 43 8.860

Table 7.8: Comparison of LSH and ALERGIA state merging heuristics for all the problem instances used in
PAUTOMAC probabilistic automaton learning competition.

Heuristic mean std median min max

Runtime (seconds) LSH 120.5 169.98 50.5 4 819
ALERGIA 650.75 1989.85 117.5 6 13545

States LSH 46.25 19.93 41 10 105
ALERGIA 53672.45 218603.96 79 11 1322137

Error LSH 27.18 23.52 21.76 1.22 109.88
ALERGIA 15.59 17.42 10.05 0.17 86.57

Table 7.9: Cumulative statistics for the comparison of runtime, number of states and KL divergence score differ-
ence from the optimal one, for LSH and ALERGIA state merging heuristics.

7.8 Discussion
Regarding the single scenario simulation, we can reach to the conclusion that the error-
based evaluation method has provided the best results, meaning that in for most of the
scenarios and models, the accuracy was almost perfect. Also, it provided the more stable
results, as the performance of each method didn’t differ significantly per scenario. Re-
garding the models evaluated, the trigram model method and the state machine with the
LSH with 1-stable distribution state-merging heuristic have achieved the best results in the
majority of the cases. Especially, their performance was almost perfect as they had only
one false prediction when the misclassified a benign host. It is impressive that our state-
merging heuristic using LSH with 1-stable distribution has better performance than the
alergia heuristic given that it makes many approximations when during the state-merging
process, so we expected an from alergia to have same or better performance. This may be
caused by the fact that the behavior of the hosts in CTU-13 is not so complicated, so our
method achieves better results by inferring ”simpler” models. In the single-scenario simu-
lation, we expected that the results will be almost perfect because the models are trained
on the same type of botnet with the ones they are trying to detect.

7.8 Discussion

7

77

When it comes to the multi-scenario simulation, the error-based has provided again
the best results for almost all the models, with no undetected malicious host and a few
false alarms. The fingerprinting evaluation method produced more false positives as ex-
pected, while the acceptance rate one failed to recognize many of the botnets. Regarding
the different models used to build the communication profile of the hosts, the state ma-
chines using LSH as a state-merging heuristic has provided equally good or even better
classification results, which means that the approximations made by our method when
merging two states are accurate. Especially the one using the 1-stable distribution LSH
family, has the best overall results in all the scenarios. On this simulation, we expected
that the number of false positives would be higher that the ones in the single-scenario sim-
ulation because the models are trained in different types of botnets than the botnets they
are trying to recognize. The fact that they succeed to recognize all the malicious hosts,
without few false alarms is impressive.

When we compare the performance of the state machine built with the LSH state-
merging heuristic using the 1-stable distribution LSH, and the one of the state-of-the -art
model BotFP, we observe that both achieve high accuracy with the one of BotFP being
slightly higher. However, the fact that in the work for BotFP were used more benign hosts
than in our project makes the comparison more difficult. Also the fact that BotFP learns
from both benign and malicious hosts, gives it an advantage over our model.

Finally, regarding the experiments conducted about the runtime of the proposed heuris-
tic and the quality built, we can conclude that the proposed state-merging heuristic sig-
nificantly reduces the runtime of the state machine learning procedure when comparing
it to the alergia heuristic, as it achieves a speedup of 5.4. However, its performance on
capturing the underlying distribution of the target machine is slightly worse. This means
that the proposed heuristic utilizing the LSH concept can be very beneficial in concepts
where the speed of the model inference is more important than the small possible loss
on the ”quality” of the model. Such a concept can be the one of learning state machine
models in real-time. We also observed by the experiments in chapters 7.4 and 7.5 that this
loss on the ”quality” of the model did not affect the performance on detecting malicious
hosts. On the other hand, in tasks where the objective is to learn the best possible models
without any concern about the time needed, other methods can be preferred.

8

79

8
Conclusion

The goal of this thesis is to introduce a new state-merging heuristic which will be faster
than the existing ones and it can be used in a streaming fashion, but also efficient. We
also use this heuristic to build state machines and use them to detect malicious hosts in
network traffic data.

We started by implementing the proposed heuristic and integrating it to the flexfringe
tool. Also, we experimented with three different LSH families in order to find out which
one performs better. We tested our method on the task of detecting malicious hosts on the
CTU-13 dataset. Two different types of simulation were used and three different methods
of recognizing a host as malicious were tested. The performance of the state machine
built with our proposed heuristic was compared with the performance of a state-of-the-
art model. Furthermore, we used the dataset provided by the PAUTOMAC competition
to compare the time needed to build a state machine with the proposed state-merging
heuristic with the one when using the alergia heuristic. We also compared the quality of
the aforementioned models using the perplexity score.

The results showed that the state machines built with our state-merging heuristic had
similar classification results with trigram models or states machines built with the alergia
heuristic. Also its results were comparable with the state-of-the-art model. Furthermore,
the runtime was significantly smaller for with our proposed heuristic when comparing it
with the alergia heuristic, while the quality of the model built was slightly worse.

8.1 Reflection on Research Questions
1. How can I use the concept of LSH to create a fast state-merging heuristic

that is accurate?
The whole procedure of how to use an LSH structure to store the future traces of
each state and compare their distributions during the state-merging process to de-
cide about the consistency of a merge was presented in section 4.1. By using this
heuristic, we make the assumption that there no need to check the consistency of
the merge of the descendant states (as done usually), as we had already examined the
similarity of their future traces by comparing the distributions extracted by the LSH

8

80 8 Conclusion

table. By exploiting the properties of LSH and skipping these consistency checks we
achieved a significant speedup without a significant loss in the model’s quality.

2. What kind of LSH family will be more efficient for the implementation of
the heuristic? Three different LSH families were examined, namely random hyper-
planes, 1-stable distributions and 2-stable distributions. There are used to assign the
vectors to a bin according to their angle-based, Manhattan and Euclidean distance
respectively. Judging by the results of our experiments, we can conclude that LSH
with 1-stable distribution was the one achieving the best results, especially on the
single scenario simulation. This mean that the Euclidean distance performed the
best on capturing the similarities between the future traces. However, its perfor-
mance did not differ much from the performance of the other two LSH families.

3. Which will be the implications of using this heuristic in terms of speed and
performance? Regarding the performance on detecting malicious hosts, the re-
sults of our state-merging heuristic were same or better than the results achieved
by using the alergia heuristic or a trigram baseline model. Also they were compara-
ble with the results of the state-of-the-art model. When it comes to the experiments
we did with the PAUTOMAC dataset, we achieved as speedup of 5.4, but the quality
(measured with the perplexity score) of the model built was slightly worse. This was
an expected behavior, because of the assumptions made during the state-merging
process. Overall, the the speedup achieved was significant. Regarding its perfor-
mance, it achieved same or better results than the other method on the classifica-
tion task, while the quality of the produced model, as measured in the PAUTOMAC
competition datasets, was slightly worse than the one achieved using the alergia
state-merging heuristic. Thus, as described in section 7.7, its usage can be beneficial
for some type of tasks whose biggest priority is the runtime of the model production
process.

8.2 Limitations
The work done on this projects has some limitations:

First of all, the heuristic proposed is using an LSH structure to store the future traces
and compares the distributions extracted from them in order to decide whether two states
can be merged or not. The buckets of the LSH structure will contain traces that are similar
but not necessarily the same. Thus we compare an approximation of the real distribution of
the future traces. Also the fact that we don’t check the merge the consistency of the merges
of the children states when following the procedure of Red-Blue fringe algorithm, is also an
important approximation done in order to achieve a speedup. These approximations done
during the state-merging process of the Red-Blue fringe algorithm, can lead to incorrect
merges, thus non accurate models. Of course the accuracy of these approximations is
affected mainly by the number of buckets used for the LSH structure. The more buckets
we use, the more accurate the approximation should be. However, there is a clear trade-
off between the accuracy of the approximation and the computational cost of the state-
merging process, meaning that more buckets will approximate more accurately the real
distribution of the future traces but they are more computationally expensive.

8.3 Future work

8

81

Another important limitation is the zero-padding done to the traces we store to the
LSH structure. In particular, because we have traces with different length, we are padding
them with zero values at the end until they reach the desired length. This is done in order
to be able to extract their hash value and assign them to an LSH bucket. We expect that
this padding will slightly affect the the capability of locality-sensitive hash functions to
assign similar vectors in the same bucket. As a result, the distribution of the future traces
extracted by the LSH buckets will be less accurate. However, as discussed in section 4.1.1,
we expect that for the hash families we use, the loss in the accuracy won’t be so high.

Also, as explained in section 5.1.5, in some scenarios of the CTU 13 dataset, there some
hosts, especially normal hosts, that contain a very small amount of flows. This create an
important issue during the host classification task, as the lack of a satisfying number of
flows impairs the classification process of a host. As a result, we expect that some errors
on the classification will occur because of the lack of data for the examined host.

8.3 Future work
On this project we used the LSH structure to hash the future traces for each state and then
use the distribution extracted from them to check whether their merge is consistent. An
improvement on this procedure would be to use some extra LSH structure to store also
the past traces of each state, and then use their distribution for the consistency check of
the merge. By using the past traces the comparison would be more robust, as we would
have a better indication about the similarity of two states.

Furthermore, future work can apply different on the encoding of the flows and mainly
on the extraction of the windows from the encoded flows of a host. In particular, we
are using windows of fixed length to extract these sequences of events. The issue with
that method is that one specific sequence may include events whose time difference is
big. The other method of extracting these sequences id to apply a sliding window of fixed
time. However, this will not work properly because of the spikes in the distribution of the
number of flows over time, as shown in section 5.1.4. This can be solved by adjusting the
time period of each window, but checking that the time difference of the flows is not big
and also that the flows belong to the same connection. This would lead to sequences of
flows which are actually meaningful.

Another interesting future work would be to experiment with different similarity mea-
sures when comparing two distributions to decide if a merge is consistent. There are many
different similarity measures belonging to different families presented in [66]. This can
possibly lead to a better judgement about the consistency of a merge, hence to better state
merges.

83

Bibliography

References
[1] Richard Heady, George Luger, Arthur Maccabe, and Mark Servilla. The architecture

of a network level intrusion detection system. Technical report, Los Alamos National
Lab., NM (United States); New Mexico Univ., Albuquerque …, 1990.

[2] Wenjie Hu, Yihua Liao, and V Rao Vemuri. Robust anomaly detection using support
vector machines. In Proceedings of the international conference on machine learning,
pages 282–289. Citeseer, 2003.

[3] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C
Williamson. Estimating the support of a high-dimensional distribution. Neural com-
putation, 13(7):1443–1471, 2001.

[4] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo. A
geometric framework for unsupervised anomaly detection. In Applications of data
mining in computer security, pages 77–101. Springer, 2002.

[5] Basant Subba, Santosh Biswas, and Sushanta Karmakar. A neural network based sys-
tem for intrusion detection and attack classification. In 2016 Twenty Second National
Conference on Communication (NCC), pages 1–6. IEEE, 2016.

[6] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego
La Jolla Inst for Cognitive Science, 1985.

[7] James Brown, Mohd Anwar, and Gerry Dozier. An evolutionary general regression
neural network classifier for intrusion detection. In 2016 25th International conference
on computer communication and networks (ICCCN), pages 1–5. IEEE, 2016.

[8] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing network-wide
traffic anomalies. ACM SIGCOMM computer communication review, 34(4):219–230,
2004.

[9] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anomalies using traf-
fic feature distributions. ACM SIGCOMM computer communication review, 35(4):217–
228, 2005.

[10] Christian Callegari, Loris Gazzarrini, Michele Pagano, and Teresa Pepe. A novel pca-
based network anomaly detection. pages 1–5, 01 2011.

[11] Yoshiki Kanda, Kensuke Fukuda, and Toshiharu Sugawara. Evaluation of anomaly de-
tection based on sketch and pca. In 2010 IEEE Global Telecommunications Conference
GLOBECOM 2010, pages 1–5. IEEE, 2010.

84 Bibliography

[12] Iwan Syarif, Adam Prugel-Bennett, and Gary Wills. Unsupervised clustering ap-
proach for network anomaly detection. In International conference on networked dig-
ital technologies, pages 135–145. Springer, 2012.

[13] Agathe Blaise, Mathieu Bouet, Vania Conan, and Stefano Secci. Botfp: Fingerprints
clustering for bot detection. In NOMS 2020-2020 IEEE/IFIP Network Operations and
Management Symposium, pages 1–7. IEEE, 2020.

[14] Christian Hammerschmidt, Samuel Marchal, Radu State, Gaetano Pellegrino, and
Sicco Verwer. Efficient learning of communication profiles from ip flow records. In
2016 IEEE 41st Conference on Local Computer Networks (LCN), pages 559–562. IEEE,
2016.

[15] Gaetano Pellegrino, Qin Lin, Christian Hammerschmidt, and Sicco Verwer. Learn-
ing behavioral fingerprints from netflows using timed automata. In 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), pages 308–316. IEEE,
2017.

[16] Ming-Yang Su. Discovery and prevention of attack episodes by frequent episodes
mining and finite state machines. Journal of Network and Computer Applications,
33(2):156–167, 2010.

[17] Kevin J Lang, Barak A Pearlmutter, and Rodney A Price. Results of the abbadingo
one dfa learning competition and a new evidence-driven state merging algorithm. In
International Colloquium on Grammatical Inference, pages 1–12. Springer, 1998.

[18] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing
the curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 604–613, 1998.

[19] Sicco Verwer and Christian A Hammerschmidt. flexfringe: a passive automaton
learning package. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 638–642. IEEE, 2017.

[20] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. An empirical
comparison of botnet detection methods. computers & security, 45:100–123, 2014.

[21] Sicco Verwer, Rémi Eyraud, and Colin Higuera. Results of the pautomac probabilistic
automaton learning competition. In International Conference on Grammatical Infer-
ence, pages 243–248, 2012.

[22] Christian Hammerschmidt. Learning Finite Automata via Flexible State-Merging and
Applications in Networking. PhD thesis, University of Luxembourg, Luxembourg,
2017.

[23] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection for dis-
crete sequences: A survey. IEEE Transactions on Knowledge and Data Engineering,
24(5):823–839, 2010.

References 85

[24] Nikolaevich Kolmogorov, Andreĭ and Albert T Bharucha-Reid. Foundations of the
theory of probability: Second English Edition. Courier Dover Publications, 2018.

[25] M Sipser. Introduction to the theory of computation, pws pub. Co., Boston, 1997.

[26] Alan W Biermann and Jerome A Feldman. On the synthesis of finite-state machines
from samples of their behavior. IEEE transactions on Computers, 100(6):592–597, 1972.

[27] Dana Angluin. Learning regular sets from queries and counterexamples. Information
and computation, 75(2):87–106, 1987.

[28] Neil Walkinshaw, Bernard Lambeau, Christophe Damas, Kirill Bogdanov, and Pierre
Dupont. Stamina: a competition to encourage the development and assessment of
software model inference techniques. Empirical software engineering, 18(4):791–824,
2013.

[29] Marijn JH Heule and Sicco Verwer. Software model synthesis using satisfiability
solvers. Empirical Software Engineering, 18(4):825–856, 2013.

[30] Borja Balle, Rémi Eyraud, Franco M Luque, Ariadna Quattoni, and Sicco Verwer. Re-
sults of the sequence prediction challenge (spice): a competition on learning the next
symbol in a sequence. In International Conference on Grammatical Inference, pages
132–136, 2017.

[31] K Lang. Evidence driven state merging with search. Rapport technique TR98–139,
NECI, 31, 1998.

[32] Borja Balle, Jorge Castro, and Ricard Gavalda. Adaptively learning probabilistic de-
terministic automata from data streams. Machine learning, 96(1-2):99–127, 2014.

[33] Franck Thollard, Pierre Dupont, Colin de la Higuera, et al. Probabilistic dfa inference
using kullback-leibler divergence and minimality. In ICML, pages 975–982, 2000.

[34] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. A likelihood-ratio test for
identifying probabilistic deterministic real-time automata from positive data. In In-
ternational Colloquium on Grammatical Inference, pages 203–216. Springer, 2010.

[35] Rafael C Carrasco and José Oncina. Learning stochastic regular grammars by means
of a state merging method. In International Colloquium on Grammatical Inference,
pages 139–152. Springer, 1994.

[36] SE Verwer, MM De Weerdt, and Cees Witteveen. An algorithm for learning real-time
automata. In Benelearn 2007: Proceedings of the Annual Machine Learning Conference
of Belgium and the Netherlands, Amsterdam, The Netherlands, 14-15 May 2007, 2007.

[37] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio Drago, Ramin Sadre, Anna Sper-
otto, and Aiko Pras. Flow monitoring explained: From packet capture to data analysis
with netflow and ipfix. IEEE Communications Surveys & Tutorials, 16(4):2037–2064,
2014.

86 Bibliography

[38] Kyung Mi Lee, Yoon-Su Jeong, Sang Ho Lee, and Keon Myung Lee. Bucket-size bal-
ancing locality sensitive hashing using the map reduce paradigm. Cluster Computing,
22(1):1959–1971, 2019.

[39] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the twen-
tieth annual symposium on Computational geometry, pages 253–262, 2004.

[40] M Visser. Feature fusion for efficient content-based video retrieval. 2013.

[41] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In
Proceedings of the thiry-fourth annual ACM symposium onTheory of computing, pages
380–388, 2002.

[42] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal K Kalita. Network
anomaly detection: methods, systems and tools. Ieee communications surveys & tuto-
rials, 16(1):303–336, 2013.

[43] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of network
anomaly detection techniques. Journal of Network and Computer Applications, 60:19–
31, 2016.

[44] Nour Moustafa, Jiankun Hu, and Jill Slay. A holistic review of network anomaly
detection systems: A comprehensive survey. Journal of Network and Computer Ap-
plications, 128:33–55, 2019.

[45] Gilberto Fernandes, Joel JPC Rodrigues, Luiz Fernando Carvalho, Jalal F Al-Muhtadi,
and Mario Lemes Proença. A comprehensive survey on network anomaly detection.
Telecommunication Systems, 70(3):447–489, 2019.

[46] Vladimir Vapnik. The support vector method of function estimation. In Nonlinear
Modeling, pages 55–85. Springer, 1998.

[47] Qing Song, Wenjie Hu, and Wenfang Xie. Robust support vector machine with bullet
hole image classification. IEEE transactions on systems, man, and cybernetics, part C
(applications and reviews), 32(4):440–448, 2002.

[48] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A Ghorbani. Toward develop-
ing a systematic approach to generate benchmark datasets for intrusion detection.
computers & security, 31(3):357–374, 2012.

[49] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a review. ACM
computing surveys (CSUR), 31(3):264–323, 1999.

[50] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Kdd, vol-
ume 96, pages 226–231, 1996.

[51] Ian T Jolliffe. Principal components in regression analysis. In Principal component
analysis, pages 129–155. Springer, 1986.

References 87

[52] CSL Sony and Kenjiro Cho. Traffic data repository at the wide project. In Proceedings
of USENIX 2000 Annual Technical Conference: FREENIX Track, pages 263–270, 2000.

[53] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities:
A nonasymptotic theory of independence. Oxford university press, 2013.

[54] Neil Walkinshaw, Kirill Bogdanov, Christophe Damas, Bernard Lambeau, and Pierre
Dupont. A framework for the competitive evaluation of model inference techniques.
In Proceedings of the First International Workshop on Model Inference In Testing, pages
1–9, 2010.

[55] Catalin Dima. Real-time automata. Journal of Automata, Languages and Combina-
torics, 6(1):3–24, 2001.

[56] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for similarity
search: A survey. arXiv preprint arXiv:1408.2927, 2014.

[57] Malcolm Slaney and Michael Casey. Locality-sensitive hashing for finding nearest
neighbors [lecture notes]. IEEE Signal processing magazine, 25(2):128–131, 2008.

[58] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In 2006 47th annual IEEE symposium on foun-
dations of computer science (FOCS’06), pages 459–468. IEEE, 2006.

[59] Loïc Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensitive hashing: A com-
parison of hash function types and querying mechanisms. Pattern recognition letters,
31(11):1348–1358, 2010.

[60] David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2):91–110, 2004.

[61] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe lsh:
efficient indexing for high-dimensional similarity search. In Proceedings of the 33rd
international conference on Very large data bases, pages 950–961, 2007.

[62] Hervé Jégou, Laurent Amsaleg, Cordelia Schmid, and Patrick Gros. Query adaptative
locality sensitive hashing. In 2008 IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 825–828. IEEE, 2008.

[63] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals
of mathematical statistics, 22(1):79–86, 1951.

[64] Sicco Verwer, Rémi Eyraud, and Colin De La Higuera. Pautomac: a probabilistic
automata and hidden markov models learning competition. Machine learning, 96(1-
2):129–154, 2014.

[65] Cyril Goutte, Peter Toft, Egill Rostrup, Finn A Nielsen, and Lars Kai Hansen. On
clustering fmri time series. NeuroImage, 9(3):298–310, 1999.

[66] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures between
probability density functions. City, 1(2):1, 2007.

	Summary
	Acknowledgments
	Introduction
	Motivation
	Research Questions
	Contributions
	Outline

	Background
	Sequential Data
	Alphabet
	Length

	Trigram Model
	Finite State Machine
	Passive Learning
	Active Learning

	Flexfringe overview
	Input Format
	Output Format
	Merge Heuristics
	Create new merge Heuristics
	State Merging
	Red Blue Merging Algorithm

	Neflow Data
	Locality Sensitive Hashing
	P-stable distribution
	Random Hyperplanes

	Evaluation metrics

	Related work
	Anomaly Detection Algorithms
	Classification-based
	Clustering and Outlier-based
	Statistical-based

	State Machines
	Locality-Sensitive Hashing (LSH)

	Locality-Sensitive Hashing State-Merging Heuristic
	Heuristic description
	Future traces distribution extraction
	Future trace distribution update
	Merge consistency check
	Merge score calculation

	Implementation
	Future traces distribution extraction
	Evaluation data
	Evaluation function

	Data Exploration
	CTU-13 dataset
	Data Description
	NetFlow features
	NetFlow features used for encoding
	Distribution of the number of flows over time
	Number of flows per host

	PAUTOMAC competition dataset
	Artificial data generation
	Data Description

	Methodology
	Data
	Data split
	Data Discretization
	NetFlow Encoding
	Sliding Windows

	Recognizing a Host as Infected
	Acceptance ratio-based
	Error-based
	Fingerprint-based

	Single vs. Multi scenario simulation
	Single scenario simulation
	Multi scenario simulation

	Measuring runtime and model quality

	Experiments
	Experimental Configuration
	Hyper-parameter Tuning
	Experimental procedure
	Single Scenario
	Multi Scenario
	Comparison to state-of-the-art detection techniques
	Runtime efficiency
	Discussion

	Conclusion
	Reflection on Research Questions
	Limitations
	Future work

	Bibliography

