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Abstract. To design amore efficient energy absorber, it is critical to evaluate how
changing the design parameters affects its performance, and also determine each
one’s order of significance. In this paper, using a new approach, the behavior and
response of straight, double-tapered, and triple-tapered thin-walled tubes with
rectangular cross sections under axial and dynamic loading are investigated by
performing a sensitivity analysis on a support vectormachine (SVM) as a surrogate
machine learning model. First, a finite element model of the energy absorber
is constructed and validated with available experimental and theoretical studies.
Next, a design of experiments was developed using the Sobol series sampling
method and an appropriate dataset was created. This information is then used to
develop an SVM model to predict the initial peak load and mean load of tubes.
The accuracy of the machine learning created in this study is then assessed, and it
is demonstrated that the developedmodel can precisely predict the performance of
the absorber. The machine learning model is then subjected to a Sobol sensitivity
analysis, and the outcomes are compared to those of the parametric study. The
results suggest that the thickness of the tube has a stronger effect on the absorber
performance than other geometric parameters. Comparing the effects of different
material parameters on the behavior of tubes, the results show that yield strength
has the greatest impact on the response of the energy absorber. It is also observed
that the tapered tubes have a much lower initial peak load compared to straight
ones.

Keywords: Thin-walled tube · Energy absorber · Finite element · Machine
learning · SVM · Surrogate model · Sensitivity analysis

1 Introduction

Recent innovations in crashworthiness studies enable the development of safe vehicle
designs that dissipate the most crash energy through material deformation. The dif-
ferent deformation modes of the structural elements acting during the crash are often
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what determine this energy-absorbing capacity of the structure [1]. The employment of
complicated high-fidelity FEM to mimic the response of mechanical components under
impact loads is motivated by the complexity that arises during theoretical analysis and
high-cost experimental investigations [2, 3]. The energy absorber transforms kinetic
energy into a different kind of energy that can either be irreversible (like plastic strain
energy) or reversible (like elastic strain energy) [4]. Different energy absorbers have
been designed depending on the use and application. Due to their availability, low cost,
optimal performance under dynamic loads, and high efficiency, thin-walled tube energy
absorbers are widely used in different industries [5]. Thin-walled energy absorbers can
have one or more oblique faces. Since the tapered thin-walled energy absorbers have
more stable and desirable performance under oblique and normal loads, they are typically
more desirable compare to the straight tubes [6].

Reid et al. [7] used experimental findings of the axial loading of rectangular tubes
under quasi-static and dynamic conditions to investigate the stability and energy-
absorbing properties of foam-filled and foam-empty tubes of various densities. They
also provided a straightforward theoretical model to describe how foam and metal tubes
interact. Reid and Reddy [6] investigated how tapered thin-walled tubes responded to
dynamic and quasi-static inclined loads. Their findings demonstrated that tapered tubes
are desirable to straight tubes because they are significantly less susceptible to global
buckling and can absorb energy in an oblique orientation. To analyze the impact of adding
foam to thin-walled tubes, Mirfendereski et al. [5] proposed a finite element model and
investigate the effects of foam density, the oblique sides, and boundary conditions on the
crushing behavior of rectangular-section tubes using a parametric research. This para-
metric study investigated the load-displacement curve, specific energy absorption, fold
length, and deformation mode of foam-filled tubes with respect to input parameters.

Several experimental and numerical studies in this area have been conducted recently
in addition to pioneering efforts. For instance, Zhigang et al. [8] tested the capacity of
magnesium and aluminum circular thin-walled tubes to absorb energy. They came to the
conclusion that the energy-absorbingmechanism in aluminum tubes is mostly controlled
by plastic yielding and folding, whereas it is primarily controlled by fracture in magne-
sium tubes. To increase crashworthiness, Jiang et al. [9] suggested a thin-walled square
tube that was filled with hollow aluminum metal spheres. They investigated crashwor-
thiness and deformation mechanisms using various stacking modes using experimental
and numerical simulations. They also conducted some parametric experiments, which
demonstrated that the size, wall thickness, and stacking modes of the hollow spheres are
the most important factors in crashworthiness.

Amachine learning-based optimization strategy for energy-absorbing structures was
presented by Li et al. [10]. Their approach, in contrast to the conventional optimization
method, may eliminate the undesirable deformations for energy-absorbing structures.
Ghasemi et al. presented a machine learning model to predict the energy absorbing
performance of tapered thin-walled tubes [11]. This work was focused only on the
triple-tapered thin-walled tubes. The least-squares boosting algorithm was used in this
study and the validity and accuracy of the model were also investigated.
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The goal of this study is to propose a new approach to investigate the thin-walled
tube’s absorbing performance using a surrogate machine learning model-based sensitiv-
ity analysis. The benefit of such amodel is that it gives us the capability of having infinite
and limitless access to the absorber’s performance in the design space without being con-
cerned about the high-fidelity finite element simulation’s time-consuming restrictions
and its computing costs. To do so, a finite element model is first created and verified. The
impact of different input parameters on the initial peak and mean loads is then investi-
gated using parametric analysis. Next and using Python scripting capability in Abaqus,
a script is built to simulate the tube energy absorbers and build a dataset while taking
into account an acceptable Design Of Experiment (DOE) based on the Sobol series sam-
pling approach. Next, a machine-learning model was trained using this data set, and the
performance of the trained model was evaluated. Finally, the machine-learned model is
subjected to a sensitivity analysis using Sobol’s sensitivity indices.

2 Finite Element Model and the Verification

2.1 Description of FE Model

To build the numerical model of the tube energy absorber in Abaqus [12], a similar
approach to [11] was used. The same reported input parameters were utilized to compare
the results to those of Mirfendereski et al. [5] (10◦ tapered angle, 1.5mm thickness,
300mm height, 100× 50mm2 cross-section). The tube was crushed between two rigid
flat plates with mass of 90 kg and impact speed of 15m/s that were placed on its top
and bottom [5]. The material of the tube is mild steel with 304.6MPa yield strength,
205GPa Young’s modulus, 0.3 Poisson’s ratio and 7700 kg/m3 density. To incorporate
the strain rate effect on the constitutive equation of the material, the Cowper-Symonds
(C.S.) equation was used here with the material constants ofD = 6844 s−1 and q = 3.91
[6, 7, 13].

The geometrywas discretized using the shell element type (S4R), and the appropriate
element size of 3 × 3mm2 was determined using a mesh convergence study. Using
symmetric boundary conditions, only half of the model was simulated. The energy-
absorbing process was modeled using the explicit dynamic technique. This approach
is particularly effective to simulate post-buckling. The deformation mode of the tube
during straight external loading is shown in Fig. 1.

Fig. 1. The deformation mode of the thin-walled energy absorber during straight loading.



Data-Driven Support Vector Machine 645

2.2 Finite Element Model Verification

To verify the numerical model, the load results of this simulations were compared to
those of Mirfendereski et al. [5]. Here, the same geometry and dimensions, material
model and boundary conditions were used to make the comparison possible. To have
a quantitative comparison, the initial peak and mean loads of both studies at 200mm
deflection were tabulated in Table 1 which show a maximum difference of 3% and 0.1%
in the initial peak and mean loads, respectively.

To also verify the results of the straight tube, the same methodology was repeated
for a straight tube with the same geometrical and material inputs as before, but without
any tapered wall. The results are tabulated in Table 2 which shows a difference of 6.38%
and 9.29% in the initial peak and mean loads with [14], respectively.

Nagel and Thambiratnam’s paper is considered to be a pioneer work in using FEM
to study thin-walled tube energy absorbers’ behavior and has been the basis of many
following studies. Mirfendereski et al. used the same consideration as Nagel et al. to
develop a finite element model and reported the results for the triple-inclined thin-walled
tubes as well. Hence, these two studies were chosen to be a criterion to assess the current
finite element model’s validation.

Table 1. Load comparison between the current study and Mirfendereski et al. [5] for the tapered
tube.

Load (kN) Mirfendereski et al. Current simulations Difference (%)

Initial peak load 170 165.17 2.84

Mean load 46 45.95 0.11

Table 2. Load comparison between the current study and Nagel and Thambiratnam [14] for the
straight tube.

Load (kN) Nagel and Thambiratnam Current simulations Difference (%)

Initial peak load 200 187.24 6.38

Mean load 45 49.18 9.29

3 Input Parameter Selection and Design of Experiments (DOE)

To have an effective design of experiments, the input parameters should be recognized
first. Here, two sets of geometrical and material inputs are considered. The thickness,
taper angle, and cross-sectional ratio are the geometrical input parameters. The limits of
these parameters are tabulated in Table 3 [5, 14, 15]. It should be noted that the section’s
width is considered to be constant (50mm according to [16, 17]) and only section’s
length controls the cross-sectional ratio.
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Table 3. The current study’s geometrical parameter range

Cross-sectional ratio Tube thickness (mm) Taper angle (◦)
[1, 2] [1, 2.5] (0, 20]

Here we have different material parameters which should be considered in the DOE.
First, the C.S. material constants for six materials were taken out from the available
studies and tabulated in Table 4. The other material constants of these materials like
elastic constants, plastic constants, and density are also extracted and listed in Table 5.
Here we suppose that the materials behave fully plastic in the plastic region resulting to
fewer input parameters and improved machine-learning accuracy.

Table 4. Material constants for Cowper-Symonds equation

Coefficient Mild
steel [6]

High-tensile
steel AH32
[18]

Stainless
steel 304L
[19]

Stainless
steel
S30408
[20]

Stainless
steel
S31608
[20]

Aluminum
alloy 6063 -
T6 [21]

D(s−1) 6844 3200 3000 996.1 1195.7 6500

q 3.91 5 2.8 3.456 5.222 4

The final eight parameters that have been determined as the uncertain input param-
eters are shown in Table 6. Utilizing the Sobol series sampling approach, 200 points are
selected from the parameter space to form the dataset at which the FE model will be
assessed. Furthermore, it’s obvious that the taper angle is not involved in the straight
tube’s uncertain parameters, and this specific tube has seven input parameters. The
outputs of the ML model were the initial peak and mean loads, respectively.
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Table 5. Mechanical properties of materials considered in this study

Property Mild
steel
[14]

High-tensile
steel AH32
[22]

Stainless
steel 304L
[22]

Stainless
steel
S30408
[20]

Stainless
steel
S31608
[20]

Aluminum
alloy 6063 -
T6 [23]

Young’
modulus
(GPa)

205 196 200.2 196 190 69

Poisson’s
ratio

0.3 0.3 0.3 0.3 0.3 0.33

Yield
Strength
(MPa)

304.6 357.35 309.48 298.46 267.38 225.78

Density
(gr/cm3)

7.7 7.8 8.0 8.0 8.0 2.7

Table 6. The statistical distribution of uncertain geometrical and material inputs

Parameter Definition (unit) Distribution type Mean Standard deviation

t Thickness (mm) Uniform 1.75 0.433

csr Cross-sectional ratio Uniform 1.5 0.289

α Taper angle (degree) Uniform 10.0 5.774

ρ Density (gr/cm3) Log-normal 1.888 0.439

E Young’s modulus (GPa) Log-normal 5.11 0.43

σY Yield strength (MPa) Log-normal 5.673 0.155

D C.S. constant, multiplier
(s−1)

Log-normal 7.946 0.815

q C.S. constant, exponent Log-normal 1.38 0.232

4 The Tube Energy Absorber Performance: A Parametric Study

The parametric study in this section examines how different input factors affect the
behavior of tube energy absorbers. A tube energy absorber should typically have a
greater mean load and a minor initial peak load [14]. To have a reference for the input
parameters, the tube thickness, tube cross-sectional ratio, tube taper angle, and material
were set to 1.5mm, 2.0, 10◦, andmild steel, respectively. It’s obvious that the taper angle
is not included in the straight tube’s parameters.
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4.1 Tube Thickness’s Effect on the Tube Performance

The tube thickness’s effect on the initial peak and mean loads is illustrated in Fig. 2.
It is quite clear from the figure that for all tubes, increasing the tube thickness results
in an increase in the initial peak load and mean load. For example, the peak load and
the mean load in the triple tapered thin-walled tube with a variation of thickness from
1 mm to 2.5 mm increase about 3 and 4 times, showing the dominant effect of thickness
on the energy absorbers. Although the tapered and straight thin-walled tube absorbers
have almost the same mean loads, the tapered tubes have a much lower initial peak load
which is a favorable behavior for tapered tubes (e.g., in the thickness of 1.5 mm, the
initial peak load of the tripled tube and the double tube is about 17% and 36% lower
than the straight tube).

Fig. 2. (a) The initial peak load’s variation versus thickness, (b) the mean load’s variation versus
thickness.

4.2 Cross-Sectional Ratio’s Effect on the Tube Performance

The cross-sectional ratio’s effect on the initial peak and mean loads is depicted in Fig. 3.
The figure shows that when the cross-sectional ratio increases, the initial peak load
increases, but the mean load does not change significantly. For example, for a triple-
tapered tube, by increasing this ratio from 1 to 2, the value of the initial peak load
increases by approximately 84%, while the mean load increases by about 18%. It is
clear in Fig. 3(a) that the tapered tubes have a lower initial peak load compared to the
straight tube. It is also clear that the thickness’s effect on the initial peak and mean loads
is more evident than the cross-sectional ratio’s effect. It is noteworthy that in this study,
only the effect of the cross-sectional ratio between 1 and 2 was investigated. Suppose
the behavior of the absorber is investigated in a wider range of cross-sectional ratios. In
that case, this parameter could have more significant effects on the amount of absorbed
energy by the absorber.

4.3 Taper Angle’s Effect on the Tube Performance

Taper’s angle effect on the tube behavior is shown in Fig. 4. Moving from the straight
state (zero-degree tapered angle) to the tapered state, Fig. 4(a) shows a 30% reduction
of initial peak load. Figure 4(b) shows the effect of the taper angle on the mean load,
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Fig. 3. (a) The initial peak load’s variation versus cross-sectional ratios, (b) the mean load’s
variation versus cross-sectional ratios.

which points out that the taper angle greater than zero does not significantly affect the
load value. As the slope increases, the mean load increases by about 16% in the tripled
taper tube and remains almost constant in double-tapered tubes.

In a nutshell, when the tube is moving from the straight state to the tapered state,
the amount of the peak load of the tube absorber changes suddenly, which demonstrates
the importance of the taper angle on the behavior of the tube absorber in this region
(the mean load does not undergo much change). After this region, the taper angle has
a smaller effect on the tube absorber behavior compared to the thickness and cross-
sectional ratio (the maximum initial peak load and mean load changes in tripled taper
tube with a change of taper angle from 5 to 20° are about 15% and 16%, respectively).
Also, it is clear that the primary peak load of the inclined double-sided loop is less than
that of the inclined three-sided loop, and on the contrary, the mean load of the inclined
three-sided absorber is more in these shapes.

Fig. 4. (a) The initial peak load’s variation versus taper angle, (b) the mean load’s variation versus
taper angle.

4.4 Material Effects on the Tube Performance

The material effects on the initial peak and mean loads are illustrated in Fig. 5 (the order
of materials in these two figures is based on the tube absorber mean load). In all types
of absorbers, aluminum alloy shows the minimum initial peak and mean loads. Besides,
for the mean load, it can be claimed that materials with higher yield strength show a
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higher mean load. For example, in all three kinds of absorbers, the high-resistance steel
alloy AH32 absorber with the highest yield strength has the highest mean load. Except
for alloyS31608, the same prediction is valid for the initial peak load. Noteworthy, apart
from the geometrical characteristics considered the same for all materials, the rest of
the material parameters of these materials, including density, yield strength, Young’s
modulus, and strain rate relationship constants, are different from each other. For this
reason, the difference in the behavior of these absorbers cannot be attributed to only one
specific parameter. Nevertheless, the relatively high impact of the yield strength on the
performance of the tube energy absorber is evident.

Fig. 5. (a) The variation of the initial peak load versus material, (b) the variation of the mean load
versus material.

Figure 5 also shows that the number of tapered sides in the tube absorber affects
the overall behavior of the tube energy absorber. The straight energy absorber has the
highest initial peak load, followed by the triple-tapered tube and then the double-tapered
tube, which shows the lowest initial peak load. It can also be concluded that the mean
loads of different energy absorbers are close together.

5 Machine Learning Algorithm

It is desirable to replace the FE model with a regression model since assessing the FE
model takes a lot of time. The regression model will then be utilized for sensitivity
analysis. For speed comparison, on average, each finite element simulation of a tube
impact test takes about 30min,while eachmachine learningmodel prediction of absorber
performance takes about 0.2 ms. The quickness of this surrogate model offers a great
opportunity to cover almost the entire design space in sensitivity analysis and be assured
its result is reliable and converged perfectly. The next step is to choose the right model.
Consequently, the support vector machine with a third-order polynomial kernel function,
which is called Cubic-SVM, is selected in this study. The proposed method is accurate
and has enough robustness to the outliers [24]. The command “fitrsvm” was used to train
a regression model on the data set in MATLAB’s Machine Learning toolbox. To do so,
120 (60% of the dataset) and 80 (40% of the dataset) samples are used to train and test
the model, respectively.
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5.1 Model Validation

Evaluation of the performance and accuracy of learned models is essential. The trained
model’s validity and accuracy are assessed in this section. Two different criteria were
used: Normalized Mean Squared Error (NMSE) and correlation coefficient (R):

NMSE =
1
n

∑n
i=1(xi − yi)2

1
n

∑n
i=1x

2
i

(1)

R =
∑n

i=1(xi − x)(yi − y)
√∑n

i=1 (xi − x)2
∑n

i=1 (yi − y)2
(2)

where xi, yi and n are actual values of the output parameter, predicted values, and the
number of data points, respectively. Also, the bar sign upon each symbol indicates the
mean of the values of that parameter (desired values of R and NMSE are 1 and 0,
respectively).

Figure 6(a) and (b) show a comparison between the ML predicted values and the
finite element ones, containing the best-fitted linear regression line. The slope of the
regression line is close to the unity which shows the validity of the machine learning
model.

Fig. 6. The finite element and ML predictions including linear regression analysis for (a) initial
peak load, and (b) for the mean load.

The simulation dataset has been split up randomly 50 times into train and test datasets,
to offer a statistic on the performance of the regression model. A model was trained for
each dataset, and then its performance was evaluated using R and NMSE, and the results
are summarized in Table 7. The correlation coefficient (R) was found to be close to 1.
Also, the NMSE values are close to zero in both cases, proving the effectiveness and
accuracy of the developed machine learning models.
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Table 7. The mean and standard deviation (SD) for validation measures on the test dataset

Type of energy absorber Initial peak load Mean load

R NMSE R NMSE

Mean SD Mean SD Mean SD Mean SD

Straight 0.9838 0.0051 0.003 0.0009 0.9902 0.0023 0.0028 0.0006

Double-tapered 0.9147 0.0231 0.0178 0.0048 0.986 0.0032 0.0036 0.0008

Triple-tapered 0.923 0.0165 0.0212 0.0065 0.9805 0.0047 0.0051 0.0013

5.2 Sensitivity Analysis

Additionally, a Sobol sensitivity analysis was conducted to look into how input factors
affected outcomes. For this, the UQLab plugin [25] was employed. The outcomes of this
study for the first peak and mean loads are displayed in Fig. 7. It can be concluded that
the tube thickness has the strongest effect on the initial peak and mean loads.

Also, yield strength is the second effective parameter for the mean load. Regarding
the initial peak load, it can be seen that after the thickness, most of the input parameters
are involved in the peak load of the absorber. Still, the stronger relative influence of the
yield strength after the thickness can be seen. In addition, the effect of the cross-sectional

Fig. 7. Sobol’s sensitivity indices (first-order and the total indices) of (a) for the straight tube’s
initial peak load, (b) for the straight tube’s mean load, (c) for double-tapered tube’s initial peak
load, (d) for the double-tapered tube’s the mean load, (e) for triple-tapered tube’s initial peak load,
(f) for the triple-tapered tube’s the mean load.
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ratio on the initial peak load of straight (Fig. 7(a)) and tripled taper absorbers (Fig. 7(c))
is greater compared to the double tapered absorber (Fig. 7(c)), which is also depicted in
Fig. 3(a). These results are a validation for the parametric studies’ findings.

6 Conclusion

This paper presents and validates a numerical model to predict thin-walled energy
absorber tubes’ behaviors based on FEM. To investigate the effects of input parameters
on the outputs (initial peak and mean loads), an appropriate parametric study was per-
formed. The results of the parametric study show that tube thickness and yield strength
are the most effective geometrical and material parameters on the tube performance,
respectively. Next, based on an appropriate DOE, a machine-learned model was trained
and tested to predict the thin-walled tubes’ performances. R and NMSE criteria were
used to examine the model’s validity and accuracy. It was established that the suggested
machine-learned model is accurate, reliable, and effective for the design and perfor-
mance assessment of energy absorbers. The machine-learned model was then subjected
to a Sobol sensitivity analysis. Finally, it is worth noting that in this research only the
axial dynamic loadingwas the case and changes in loading conditions were not included.
As a further attempt, one can involve loading variables as well, e.g. loading direction
(axial or oblique), crash speed, and lower rigid plate’s mass, and evaluate their impact
on the absorber’s performance.
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