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Abstract

The aim of this research is to study a method to find exomoons and to find specific characteristics
that point to the existence of exomoons. Exomoons are natural satellites orbiting an extrasolar
(exo)planet in an extrasolar system. By looking at eclipses on exoplanets, we can find these
characteristics.
We consider the reflected light signals of exoplanets with an exomoon. The reflected light signal is
the intensity of light the planet reflects from the host star towards the observer.
We derive the reflected light signal in a planetary system with one exoplanet and in a system with
an exoplanet and an exomoon. We made the assumptions that the exoplanets and exomoons have
a homogeneous surface (albedo is 1) and move in circular orbits around a star with an inclination
angle between the orbital planes. Along the orbit the planet and the moon have changing phases.
The moon is always close to its planet, so the phases of the exomoon and the exoplanet are the
same. For exoplanets, it is not possible to spatially separate a moon from its planet. One only
sees the total signal of both bodies, the light originating from the star, reflected by the two bodies
towards the observer.
Maybe we can find an exomoon by examining eclipses. Eclipses occur when the exoplanet and
exomoon are aligned with the star, so that the body closest to the star blocks the light towards the
body farthest from the star. Finding eclipses is one of the few methods to discover exomoons. The
systems are modeled with the assumption that any total eclipse happens every time r̂ = R̂ or −r̂
= R̂, we see short dips in the reflected light signal. These dips are periodic and make the complete
signal quasi-periodic. That is why we also calculate the Fourier transform of the reflected light
signal. This quasi-periodicity causes the Fourier spectrum to have side bands that are repeated
and are copies of themselves.
In this research, the orbit of the exomoon is tilted to see the effect of inclination in the reflected
light signal. The result is fewer eclipses. At most twice a year for a short amount of time an eclipse
can occur. In the Fourier domain, this results in more peaks, but the pattern is still repeated.
From this research, we cannot conclude whether or not an exomoon is present from measured data.
What we learned, is that if an exomoon is present, short dips in the received light signal occur and
this results in periodic side bands in the Fourier domain with respect to the system of one planet.
The duration of an eclipse is very short, so the detection of the eclipse can easily be missed. The
Fourier transform signal becomes stronger when a longer time has been measured.
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Nomenclature

Symbol Unit Value Description

t [s] Time

tn [s] Time the nth eclipse occurs

t̃n [s] Time the nth eclipse occurs on the planet

t̂n [s] Time the nth eclipse occurs on the moon

RJup [m] 69911 · 103 Jupiter radius

S [m] 109 Radius of the star

s [Radius Jupiter] 1 Radius of the exoplanet

s1 [Radius Jupiter] Radius of the planet

s2 [Radius Jupiter] Radius of the moon

ρJup [kg m−3] 1.33 · 103 Density of Jupiter

V1 [m3] 4
3πs

2
1 Volume of the planet

V2 [m3] 4
3πs

2
2 Volume of the moon

M [Solar Mass kg] 3 Mass of the star

m1 [Jupiter Mass kg] ρJup · V1 Mass of the planet

m2 [Jupiter Mass kg] ρJup · V2 Mass of the moon

ω [rad] 2π
73·24·3600 Angular frequency of binary orbit

Ω [rad] 2π
5·24·3600 + ω Angular frequency of the planet-moon orbiting

their barycenter

α [◦] Tilt in plane of the planet and the moon

α∗ [-] Inclination value

G [m3 s−2 kg−1] 6.674 · 10−11 Gravitation constant

P0 [W] The power of the star

Pob [W] Power observed by the observer

Ps [W] Power observed by the planet

R [m]
(
GM
ω2

) 1
3 Distance from the star to the center of mass of the

planet and the moon

~R(t) [m] Position vector of the center of mass of the planet
and the moon

~R1(t) [m] Position vector of the planet

~R2(t) [m] Position vector of the moon

R̂(t) [] Normalized ~R(t)

R̂1(t) [] Normalized ~R1(t)

R̂2(t) [] Normalized ~R2(t)

r [m]
(
G(m1+m2)

Ω2

) 1
3

Distance between the planet and the moon

~r(t) [m] Reduced vector from the planet to the moon

r̂(t) [] Normalized reduced vector

x, y and z [m] Cartesian coordinate system

µ [rad] Azimuthal angle on the planet or the moon surface

ν [rad] Polar angle to the z-axis in the planet or the moon
surface

θ [rad] ωt Angle between ~R and the x-axis in the z = 0 plane
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φ [rad] Ωt Angle between ~r and the x-axis in the z = 0 plane

~s(µ, ν) [m] Vector from the center of the planet/moon to a
surface point on the planet/moon

ŝ(µ, ν) [] Normalized vector of ~s(µ, ν)

ô [] x̂, ŷ or ẑ The normalized vector from the system towards the
observer

% [-] Domain on the surface that is illuminated and vis-
ible

d2Ωob [-] Solid angle to the observer

d2Ωs [-] Solid angle to the planet or moon

d~S [m2] Surface vector

M(ŝ, t) [-] 1 Mapping function

Nµ [-] 100 Number of values in µ

Nν [-] 100 Number of values in ν

~P [m] Point on the surface of the planet

~P ′ [m] ~P projected on ~R(t)

f(t) [-] Reflected light signal

f1(t) [-] Reflected light signal of the planet

f2(t) [-] Reflected light signal of the moon

fB(t) [-] Reflected light signal of the planet and the moon

f̂(ν) [-] Fourier transform of the reflected light signal

fD(t) [-] Part of the reflected light signal due to phases

fE(t) [-] Part of the reflected light signal due to eclipses

A [-] Rotational matrix

h [m] Heigth of the eclipse cone

l [m] Displacement in the motion of the moon with re-
spect to the planet

lmax [m] Maximum value of l
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1 Introduction

Extrasolar planets or exoplanets are planets that orbit a different star in space than the Sun. Exoplan-
ets are extremely difficult to discover, due to their small radius compared to their host star. Often
new exoplanets are discovered. Currently, there are already 3735 confirmed exoplanets by various
detection methods [1]. Scientists are mainly searching for Earth-like planets, planets that are in the
habitable zone of its star and that could contain life forms. Because more exoplanets are discovered
everyday, the number of opportunities to find life in the universe is constantly increasing.
An exomoon is a natural satellite of an exoplanet [2]. Some scientists think extrasolar moons, or
simply, exomoons, are good candidates for life elsewhere in the universe [2]. The Kepler mission found
hundred of exoplanets which could have a moon, including 70 where the radius of the exomoon is
expected to be larger than the Earth radius [3]. But up until now, no exomoon has been discovered
yet [4].
Some methods currently used to find exoplanets are: the transit method, radial velocity, microlensing
and direct imaging. Direct imaging is conceptually simple, but it is very difficult to achieve. The
transit method detects exoplanets by measuring a small dip in the light signal of a star as an orbiting
planet passes between it and the Earth [5]. The transit method is by far the most effective detection
method. Microlensing is an effect where two stars are aligned with the Earth. The star the farthest
from the Earth looks bigger by the bending of light rays by the gravity of the other star. If an exo-
planet orbits the closest star, the exoplanet bends the rays more intensely. From Earth it temporary
looks as if the farthest star is enormous. We see a temporary peak of brightness in the light signal.
The radial velocity method measures the perturbation in the movement of a star by gravitational pull
of a planet in orbit [6]. This method uses Doppler spectroscopy to display changes in the movement.
Proposed methods to detect exomoons are direct imaging, microlensing, transit timing effects and
the transit method. The transit timing effects have been exploited in research as in [7]. The transit
method is elaborated on in for example [8], [9] and [10].
In this thesis we study a different and not very common detection method using direct light. Some-
times, if the planet is very large and the distance to the star is big, the planet can be imaged. An
exomoon, however, cannot be resolved from an exoplanet by our telescopes, only the total light signal
can be measured. Therefore we look at the total reflected light signal by all the bodies around the
star. The reflected light signal has been studied for a system with one exoplanet in [11]. We calculate
the total light signal reflected by planet and its moon. For small planets the starlight is too bright.
In that case we block the direct light from the star with an coronagraph to see the weak reflection of
the planet.
We think eclipses and occultations are important for the discovery of exomoons. Eclipses occur when
the exoplanet and exomoon are aligned with the star. The body farthest from the star lies in the
shadow of the other for a short moment. The phase of the exoplanet and exomoon are the same, so
the reflected light for the planet and the moon give the same phase-dependent signal. Maybe we use
the effect of eclipses to find a moon. This is the reason why we calculate eclipses to find exomoons.
An occultation is an occurrence where the exoplanet, exomoon and Earth are aligned. A body blocks
the reflected light from the other body to the Earth. Eclipses and occultations occur with some pe-
riodicity, which will cause in dips in the reflected light signal. Furthermore, we compute the Fourier
spectra of the light signals to make the periodicity visible in peaks in the Fourier transform of the
signal.
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Figure 1.1: An simulated image of an eclipse on Pluto, created by its moon Charon
[12].

In this research the aim is to model an extra-solar system with an exoplanet with exomoon and
find characteristics in the light signals and Fourier spectra due to eclipses. In section 2 we will study
the reflected light signal of a system with a star and one exoplanet from Earth. In section 3 we will
study the reflected light signal of a system with a star and binary-planet. The change due to a moon
will be elaborated on. In section 4 the Fourier spectra of the light signals of the systems are displayed
and studied. In section 5, a slight inclination is taken into account in the system and the effect on the
reflected light signal is studied. The observer’s view is also changed. Finally in section 6, we conclude
with characteristics of the reflected light signal for a planet-binary system.
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2 One planet

To know what the reflected light signal is, we will start with a description of a model with one planet.
In this section the reflected light signal of this system is derived, as well as the variations it undergoes
by different phases of the planet.

2.1 Model and assumptions

First we will look at a extra-solar system with a star with radius S in the origin and one planet with
radius s orbiting the star. The motion of a planet around a star lies in a plane [13]. We choose the
planet in a circular orbit traveling in the xy-plane at a distance R from the star. An observer in the
positive x̂-direction is observing this system from far away, see figure 2.1.

x

y

ô

Planet

Star
~R

θ

S

s

Figure 2.1: A figure of the system. The figure is depicted face-on (top view). The
star with radius S is located in the origin. The planet with radius s orbits around
the star in a circular orbit in the xy-plane with phase θ = ωt at a distance R. The
observer is to the right of this system in the x̂-direction. ô is the direction from the
system to the location of the observer and in this system equal to x̂. The observer’s
view is edge-on. The figure is not to scale.

In this system, the planet travels in orbit around the star. At time t, the angle with orbital angular
frequency ω between the position of the planet and the x-axis is θ = ωt. As the orbit is circular, the
position vector of the planet is

~R(t) = R

cos(ωt)
sin(ωt)

0

 (2.1)

Initially at t = 0, ~R = Rx̂. We assume the system is observed from far away by an observer in the
x̂-direction. The normalized vector ô indicates the direction from the system towards the observer.

We will take ô =
(
1, 0, 0

)T
or ô = x̂, unless stated otherwise (see figure 2.1).

We assume that the planet is a sphere with a homogeneous surface. This means that the planet looks
the same from all viewing directions, so that rotation does not play a roll anymore. Furthermore, we
assume Lambertian reflection. Lambertian reflection is a property of a surface that scatters the light
from any incident direction into all viewing directions equally [14]. This means the brightness of the
surface is the same from all viewing directions. We also assume that S + s� R and thus that

S � R (2.2)

and
s� R (2.3)
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2.2 Phases

Exoplanets are too far from Earth to be observed directly. Astronomers can only observe a total
light signal, which consists of the light from the star in the direction of the observer plus the light
reflected by the planet towards the observer. The light signal by the star we take a constant. The
light signal reflected by the planet varies due to phases. For example, the sun always illuminates half
of the moon’s surface, so from the Sun’s point of view you would always see a full moon. On Earth we
don’t always see a full moon in the sky due to phases. Sometimes we see a crescent or a new moon,
as in figure 2.2.

Figure 2.2: A figure of the crescent moon, a phase of the moon.

Exoplanets can be studied by analyzing the reflected light signal and thus analyzing the phases. In
order to calculate the reflected light signal at a time t in the system discussed in section 2.1, we need
to know what part of light that falls on the surface is reflected to the observer. For this, we introduce
the vectors ŝ(µ, ν) and R̂(t). ŝ(µ, ν) is the normalized vector of ~s(µ, ν), the vector from the center of
the planet to a point on the surface of the planet:

~s(µ, ν) = s

cos(µ) sin(ν)
sin(µ) sin(ν)

cos(ν)

 = sŝ (2.4)

There µ is the azimuthal angle and ν is the polar angle of the spherical coordinates. So 0 ≤ µ < 2π and
0 ≤ ν ≤ π. R̂(t) is the normalized vector from the origin of the star to the planet, so the normalized
vector of ~R(t).

~s

ô
~R(t)

Terminator
Limb

Figure 2.3: An enlargement of the planet from figure 2.1. ~R(t) is the vector from
the center of the star to a point on the surface, ~s the vector from the center of the
planet that points to the surface of the planet and ô is the unit-vector towards the
observer. The illuminated part of the planet is the white area, the dark part is the
gray area. The invisible part of the planet by the observer is indicated with stripes.
The terminator is the border between the illuminated and the dark part of the planet
and the limb the border between the visible and invisible part of the planet. In this
figure, the observer will observe a crescent shown in figure 2.2.
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In figure 2.3 we see an enlargement of the planet in figure 2.1. We see how the planet is divided in
different parts. We have a distinction between the illuminated part and the dark part where no light
reaches the surface of the planet. There is also a distinction between the part visible and invisible to
the observer.
The white area is the illuminated part of the planet. For a point ~s(µ, ν) to lie in this part, the angle
between ~R(t) and ~s(µ, ν) must be larger than 90°. This is the part of the surface where ~R(t)·~s(µ, ν) ≤ 0.
The grey area is the dark part. For a point ~s(µ, ν) to lie in this part, the angle between ~R(t) and
~s(µ, ν) should be smaller than 90°. This is the part where ~R(t) ·~s(µ, ν) ≥ 0. The border between these
parts is called the terminator. On this curve, ~R(t) · ~s(µ, ν) = 0.
The planet is also divided parts that are visible and invisible to the observer. The visible part in
figure 2.3 is not striped. A point ~s(µ, ν) on the surface of the planet lies in the visible part if the
angle between the vectors ~s(µ, ν) and ô is smaller than 90°. This is given as ~s(µ, ν) · ô ≥ 0. The
invisible part is depicted in figure 2.3 as striped. A point ~s(µ, ν) on the surface of the planet lies in
the invisible part if the angle between the vectors ~s(µ, ν) and ô is larger than 90°. This is given as
~s(µ, ν) · ô ≤ 0. The border between the visible and invisible part of the planet is called the Limb, this
is where ~s(µ, ν) · ô = 0.
With these findings, we come to the conclusion that the observer sees light on the following region of
the planet surface:

% = {~s(µ, ν) · ô ≥ 0 ∧ ~s(µ, ν) · ~R(t) ≤ 0} (2.5)

These conditions change over time and lead to the phases of the planet in figure 2.4. When the planet
is fully lit observed (left in figure 2.4), then % is a hemisphere.

x

y

ô

~R

θ

Figure 2.4: Some possible phases of a planet. The phases of the planet depend
directly on the phase angle θ. The planets positioned at Rx̂, Rŷ, −Rx̂ and −Rŷ are
in phases called ’new moon’, ’first quarter’, ’full moon’ and ’last quarter’ respectively.
The star is located in the origin. The observer is in the x̂-direction. The observer’s
view is edge-on. The figure is depicted face-on (top view), and is not to scale.
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2.3 Reflected light signal

In this thesis we want to calculate the reflected light signal from the planet to the observer. The
reflected light signal we will call f(t) and is given as:

f(t) =
s2

πR2

x

%
(−R̂(t) · ŝ(µ, ν))(ŝ(µ, ν) · ô) sin(ν)dµdν (2.6)

We now will derive expression in 2.6.
Imagine the star in the system has total power output P0, see figure 2.5.

ô

d2Ωs

d2Ωob

d2Ωob

Figure 2.5: The system of figure 2.1. d2Ωob is the solid angle of a point on the
surface of the star or planet in the direction of the observer. d2Ωs is the solid
angle of a point on the surface of the star towards the planet. The eye indicates the
observers point of view. It is not a problem that the eye is apparently larger than
the star.

Consider the direct light from the star. The by the observer received total power Pob is a fraction
of the total emitted power P0. We only take in consideration the fraction emitted in the direction of
the observer, so in the direction of the solid angle d2Ωob. In spherical coordinates, the solid angle is
equal to d2Ωob = sin(θ)dθdφ. The received power Pob becomes:

Pob = P0
d2Ωob∫
d2Ωob

= P0
d2Ωob

4π
(2.7)

Next we calculate the light reflected by the planet towards the observer. We consider a small surface
element on the planet d~S. This vector is oriented outwards. We use the notation for a solid angle on
the planet as seen from the center of the planet

d2Ωs = sin(ν)dµdν (2.8)

in the spherical coordinates of the planet surface. Hence, d~S (see figure 2.6) will be equal to

d~S = s2ŝ(d2Ωs) = s2ŝ sin(ν)dµdν (2.9)

x

y

z

d~S

Figure 2.6: The planet surface. d~S is a small surface area of the planet.
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This surface element receives power

Ps = P0
(−R̂(t) · d~S)

4πR2
(2.10)

using the inverse-square law. An observer will only intercept a fraction d2ζ of Ps, namely the fraction
in the direction of the observer

d2ζ =
(ô · ŝ)
π

d2Ωob (2.11)

Then the total observed power at the reflected surface element d~S on the planet equals the product
of equation 2.10 with equation 2.11:

Psd
2ζ =

P0s
2

4π2R2
(−R̂(t) · ŝ)(ô · ŝ)d2Ωsd

2Ωob (2.12)

We compare this result with the power from the star (equation 2.7). Hence, relative to the star the
intensity from d~S is

Psd
2ζ

Pob
=

s2

πR2
(−R̂(t) · ŝ)(ô · ŝ)d2Ωs (2.13)

If we integrate equation 2.13 over the full planet surface, we obtain equation 2.6, the equation for
the reflected light signal. The same result is found in [11] as equation 6. The only difference is the
assumption that the planet is not homogeneous in [11]. Equation 6 gets an extra mapping term
M(ŝ, t) in [11]. In equation 2.6 this factor is 1 (homogeneous planet). There is also a small difference
in normalization. It remains to be shown that 2.11 is true. This we show by integrating over all
reflected directions in space

x ô · ŝ
π
d2Ωob =

1

π

∫ 2π

0

∫ π
2

0
cos(φ)12 sin(φ)dφdθ =

1

π
· 2π · 1

2
= 1 (2.14)

where φ is the polar angle, θ the azimuthal angle, 12 sin(φ) is the Jacobian of the integral.

2.4 Results

Equation 2.6 for the reflected light signal is programmed in MATLAB, see Appendix A. The integral
is calculated with the following Riemann sum

f(t) ≈ s2

πR2

2π

Nµ

π

Nν

∑
%

(
− R̂(t) · ŝ(µk, νl)

)(
ŝ(µk, νl) · ô

)
sin(νl) (2.15)

where Nµ the number of points in µ, Nν the number of points in ν, µk the kth value in µ and νl the
lth value in ν. The summation for k is from 0 to Nµ − 1 and for l from 0 to Nν − 1, constraint to the
lune %. Hereby we have a Riemann sum for the surface integral.
We calculate the integral (2.15) for one planet. The result is the graph in figure 2.7.
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0 π 2π 3π 4π
0

1

2

3

4

5

6

·10−7

θ

f
(t

)

Figure 2.7: The reflected light signal for one planet using equation 2.15. Here we
see the reflected light for two full orbits or from ωt = 0 until ωt = 4π. At ωt = π,
there is a maximum. This occurs because the planet is observed fully illuminated.

This is a smooth and periodic curve in the orbital phase θ = ωt. We clearly see the differences
in the phases of the exoplanet in the reflected light signal. When θ = π + 2πk for k ∈ Z, the phase
of the planet is ’full moon’ and a maximum should occur. The opposite phase is θ = 2πk for k ∈ Z.
At these values of θ, the phase is ’new moon’, so here we expect a minimum. In between we expect
a continuous process of the reflected light signal by the phases of the planet. We see that the light
signal is an even function around 0.
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3 Planet-Binary system

In the previous chapter we have described the reflected light signal for a system with one planet.
In this chapter an extra body is added to the system, so that we have a system with a planet with
companion. We will examine the effect on the reflected light signal by examining eclipses on both
bodies. The occurrence and the duration of an eclipse is examined. Furthermore, the radii of the
bodies is varied to examine the effect on the reflected light signal.

3.1 Theory

We will look at a system of a star and two bodies orbiting around the star. The center of mass of the
two orbiting bodies lies at a certain distance R from the star, see figure 3.1.

x̂

ŷ

ô

2

1
~r

~R θ

Figure 3.1: A figure of the binary planet system. The figure is depicted face-on
(top view). The star is located in the origin. The barycenter of the two bodies orbits
around the star in a circular orbit in the xy-plane with phase θ = ωt at a distance
R from the star. ~r is the relative vector between the planet and the moon, which
orbits with phase φ = Ωt. The observer ô, is in the x̂-direction. The observer’s view
is edge-on. The figure is not to scale.

We have the two bodies, which we will call planet 1 and planet 2. These have respective positions
~R1 and ~R2, masses m1 respectively m2 and radii s1 respectively s2. We will assume that s1 ≥ s2, so
we will call planet 1 ’the planet’ and planet 2, ’the moon’. The position of the barycenter ~R is given
by [13]

~R =
m1

~R1 +m2
~R2

m1 +m2
(3.1)

The vector from the planet to the moon which describes the relative motion is called the relative vector:

~r = ~R2 − ~R1 (3.2)

Equation 3.1 and 3.2 combined will give an expression for ~R1 and ~R2:

~R1 = ~R− m2~r

m1 +m2
(3.3)

~R2 = ~R+
m1~r

m1 +m2
(3.4)
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The motion of a planet around a star lies in a plane [13]. We choose ~R such that the barycenter orbits
the star at a certain distance R in a circular plane. Then

~R = R

cos(ωt)
sin(ωt)

0

 (3.5)

We assume that ~r is a rotating vector, describing a circular motion around the barycenter

~r = r

cos(Ωt)
sin(Ωt)

0

 (3.6)

Here |~r| = r is the distance between the planet and the moon and where Ω is the rotational frequency.
No inclination between the planets is assumed. Hence the two planets move according to

~R1(t) = R

cos(ωt)
sin(ωt)

0

− m2r

m1 +m2

cos(Ωt)
sin(Ωt)

0

 (3.7)

~R2(t) = R

cos(ωt)
sin(ωt)

0

+
m1r

m1 +m2

cos(Ωt)
sin(Ωt)

0

 (3.8)

The initial situation (at t = 0) will be aligned with the star in the x̂-direction.

~R1(0) =

R− m2r
m1+m2

0
0

 (3.9)

~R2(0) =

R+ m1r
m1+m2

0
0

 (3.10)

At that moment, the star, the planet and the moon are aligned and the planet is in between the star
and the moon. At t = 0, there is an eclipse, which will be explained in section 3.2.

3.2 Eclipses and occultations

In the system described in paragraph 3.1 eclipses and occultations can occur. An eclipse is an occur-
rence where one body blocks the light falling on a second body. An occultation is an occurrence where
a body blocks the reflected light from a second body to an observer. Searching for eclipses can be a
method for discovering exomoons, because eclipses do not occur in a system with only one planet.
An eclipse can occur in the system described in paragraph 3.1, when the moon (the planet) is in
between the planet (the moon) and the star and all are aligned. In figure 3.2, we see a representation
of an eclipse on the Earth. A cone named the umbra is the area of total eclipse, the penumbra is the
area of partial eclipse. For a total eclipse to happen like in figure 3.3, the planet has to be positioned
exactly in the cone. The height h of the cone is described by equation (A4) in [4].

h = S

(
R2

S − s2
− S − s2

R2

)
(3.11)

At the moment of an eclipse, we can assume that ~R2 ≈ ~R. We assumed in paragraph 2.1 that S � R
(2.2) and s� R (2.3) so s2 � R, in this case h→∞. In this case the cone becomes a cylinder. The
rays travel parallel to the planet.
We will explain the situation when the moon is in between the star and the planet, see figure 3.3. The
vector that points from the star to the moon is ~R2. Behind the moon, there exists an infinite cylinder
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where all the light is blocked. In this cylinder, ~R2 is the symmetry axis through the flat bottom and
backs of the cylinder. We assumed ~R2 ≈ ~R, so ~R is approximately the symmetry axis of the shadow
cylinder.

Figure 3.2: A figure of an eclipse on the Earth caused by the Moon passing between
the Sun and the Earth [15]. The Sun shines light towards the Earth. The light is
blocked by the Moon. The penumbra is the area where the light is totally blocked, so
a total eclipse occurs. The umbra is the area where the sun is partially blocked by
the Moon, so a partial eclipse occurs. In this figure, clearly the conditions 2.2 and
2.3 do not hold.

x̂

ŷ

ô

1

2

~R θ

Figure 3.3: A representation of an eclipse on the planet by the moon. The star is
in the origin. The barycenter is placed at phase θ = ωt at a distance R. The dotted
area is the shadow cylinder behind the moon and behind the planet with symmetry
axis ~R. The planet lies partly in the shadow cylinder behind the moon, thus the area
on the surface of the planet in the cylinder is where the eclipse occurs. The observer
is placed in the positive x̂-direction. The figure is depicted face-on (top-view).
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ô

1

2

R̂

~P

~P ′

Figure 3.4: An enlargement of the planet and the moon in figure 3.3. A point ~P
on the surface of the planet is specified. ~P ′ is the orthogonal projection of ~P on R̂.
The dotted area is the shadow cylinder of the moon or the planet. The symmetry
axis R̂ of the cylinder is displayed.

How do we know if the planet is located in the shadow cylinder of the moon? There are two
conditions. First, the planet has to be further away from the star than the moon. This happens when

|~R1| ≥ |~R2| (3.12)

Second, we have to look at d(~P , ~P ′), the distance from ~P to ~P ′, in figure 3.4. ~P is a point on the
surface of the planet

~P = ~R1 + ~s1 = ~R1 + s1ŝ(µ, ν) (3.13)

where ~s1 is the vector from the center of the planet to ~P . ~P ′ is the orthogonal projection of ~P on ~R.
The point ~P on the surface of the planet touches the cylinder if d(~P , ~P ′) = s2. So if d(~P , ~P ′) ≤ s2,
the point on the surface lies within the cylinder. ~P ′ is equal to

~P ′ =
~P · ~R2

~R2 · ~R2

~R2 =
~P · ~R2

|~R2|2
~R2 = (~P · R̂2)R̂2 (3.14)

R̂2 is the normalized vector of ~R2. Then the distance d(~P , ~P ′) is

d(~P , ~P ′) = |~P − (~P · R̂2)R̂2| =
√
|~P |2 − |~P · R̂2|2 =

√
|~P |2|R̂2|2 − |~P · R̂2|2 = |~P × R̂2| (3.15)

where the Lagrange’s identity is used in the last step (because |R̂2| = 1). Equation 3.15 we can write
as

|~P × R̂2| = |(~R2 − ~r + ~s1)× R̂2| = |~R2 × R̂2 + (−~r + ~s1)× R̂2| = |(−~r + ~s1)× R̂2| (3.16)

In the assumption that ~R2 ≈ ~R, we conclude

d(P, P ′) = |(−~r + ~s1)× R̂2| ≈ |(−~r + ~s1)× R̂| ≤ s2 (3.17)

The condition for an eclipse will now be given by combining the two conditions 3.12 and 3.17:(
d(~P , ~P ′) = |~P × R̂2| ≈ |(−~r + ~s1)× R̂| ≤ s2

)
∧
(
|~R1| ≥ |~R2|

)
(3.18)

The same derivation holds for an eclipse on the moon by the planet and will give as result:(
d(~P , ~P ′) = |~P × R̂1| ≈ |(~r + ~s2)× R̂| ≤ s1

)
∧
(
|~R1| ≤ |~R2|

)
(3.19)
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3.3 Occurrence of an eclipse

A total eclipse on the moon occurs when the axes R̂ and r̂ are aligned. If the planet is in between the
star and the moon, we get

r̂ = R̂ ⇔cos(Ωt)
sin(Ωt)

0

 =

cos(ωt)
sin(ωt)

0

 ⇔

Ωt = ωt+ 2πn ⇔

t̂n =
2πn

Ω− ω

for any n ∈ Z. The time t̂n is the time of total eclipse. Total eclipses also occur when the moon is
in between the planet and the star, see figure 3.3. In that case, r̂ = −R̂. This gives a phase shift so
t̃n = π+2πn

Ω−ω . We conclude that any total eclipse happens when

tn =
πn

Ω− ω
(3.20)

3.4 Duration of an eclipse

We now derive the condition for the duration of an eclipse. Because of assumption 2.3, we can take
~R1 ≈ ~R2 ≈ ~R, so R̂1 ≈ R̂2 ≈ R̂. That’s why figure 3.4 can also be pictured as

ô

1

2

R̂

~r

R̂

|R̂× ~r|

Figure 3.5: An image of an ending eclipse. The moon moves from in between
the planet and the star away from there. The dotted area is the shadow cylinder of
the moon or the planet, where R̂ is the symmetry axis. The distance between the
symmetry axes of the planet and the moon is |R̂×~r| or s1+s2. The same derivation
can be done for a starting eclipse.

Here we see that at the start and the end of an eclipse,
∣∣∣~r − (~r · R̂)R̂∣∣∣ = s1 + s2.∣∣∣~r − (~r · R̂)R̂∣∣∣ =

∣∣∣(1− R̂R̂) · ~r∣∣∣ = s1 + s2 ⇔∣∣∣(R− ~RR̂
)
· ~r
∣∣∣ =

√
R2r2 − (~r · ~R)2 = R

(
s1 + s2

)
⇔∣∣∣~R× ~r∣∣∣ = R

(
s1 + s2

)
⇔∣∣∣∣∣

cos(ωt)
sin(ωt)

0

× r
cos(Ωt)

sin(Ωt)
0

∣∣∣∣∣ = s1 + s2 ⇔

√(
cos(ωt) sin(Ωt)− cos(Ωt) sin(ωt)

)2
=
s1 + s2

r
⇔√

sin2((Ω− ω)t) =
∣∣ sin((Ω− ω)t)

∣∣ =
s1 + s2

r

17



We linearize this expression around the time of total eclipses tn (3.20), so tn = πn
Ω−ω + dt, this gives

for small dt

∣∣ sin ((Ω− ω)tn
)∣∣ =

∣∣ sin ((Ω− ω)dt
)∣∣ = (Ω− ω)dt ⇔∣∣ sin((Ω− ω)t)

∣∣ = (Ω− ω)|dt| = s1 + s2

r
⇔

dt = ± s1 + s2

(Ω− ω)r

Hence, the nth eclipse lies in the interval:

πn

Ω− ω
− s1 + s2

(Ω− ω)r
< tn <

πn

Ω− ω
+

s1 + s2

(Ω− ω)r
(3.21)

The total duration of one eclipse is equal to

2|dt| = 2(s1 + s2)

(Ω− ω)r
(3.22)

3.5 Occultations

In paragraph 3.2 we mentioned occultations. An occultation is an occurrence where a body blocks
the reflected light from a second body to an observer. We will evaluate the event where the moon is
in between the planet and the observer, see figure 3.6.

x̂

ŷ

ô

1

2

~r

Figure 3.6: An image of an occultation. The moon is in between the planet and
the observer. The striped areas are the cylinders behind the planet and the moon,
where the observer cannot see. The observer is in the x̂-direction.

In figure 3.6, the observer cannot see behind the moon. We approximate the space behind the
moon with a cylinder with symmetry axis ô. At the time of an occultation, the surface area of the
planet located in the cylinder is not contributing to the light signal. The condition for the surface area
to be in the cylinder, can be derived the same way as for an eclipse in paragraph 3.2. Take a point ~P
on the surface of the planet, project the point on ô, and check if d(~P , ~P ′) ≤ s2. If the derivation in
paragraph 3.2 is followed for this case, we get d(~P , ~P ′) = |~P × ô|.
It also has to be checked that the moon is closer to the observer than the planet. This we will do by
evaluating (~R2 − ~R1) · ô or ~r · ô. If this value is larger than zero, the moon is closer to the observer
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than the planet.
The conditions for an occultation (the moon is in between the observer and the planet) are(

|~P × ô| ≤ s2

)
∧
(
(~R2 − ~R1) · ô > 0

)
(3.23)

The condition for when the planet is in between the observer and the moon is derived in the same
way and that gives: (

|~P × ô| ≤ s1

)
∧
(
(~R1 − ~R2) · ô > 0

)
(3.24)

This condition is not being implemented in the MATLAB code, because we assume there is a slight
observer inclination (see section 5) ensuring that occultations never happen.

3.6 Reflected light signal for the planet-binary system

In paragraph 2.1 we saw that the reflected light signal from one planet could be evaluated by calculating
the integral in equation 2.6. An astronomer cannot separate the two bodies in the planet-binary system
with his telescope. He can only observe the total reflected light signal fB(t). Therefore we calculate
the total light signal of the system. To do this for the binary system, we can modify equation 2.6.
For the system with two bodies, we express the total reflected light signal as a sum of contributions
from the two individual bodies. We use the integral in equation 2.6 separately on both bodies and
add the result:

fB(t) = f1(t) + f2(t) (3.25)

where f1(t) is the contribution from the planet and f2(t) is the contribution from the moon.

3.7 Results for eclipses in time domain

In this section we calculate the total reflected light signal fB (3.25) of the planet-binary system de-
scribed in paragraph 3.1 with the MATLAB code in Appendix B. We take in consideration condition
2.5 for the phases of the bodies and conditions 3.18 and 3.19 for eclipses on the bodies.
First we will study the contributions of the separate bodies, the reflected light signals f1 and f2, with
s1 = s2 = RJup. The result is depicted in figure 3.7.
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f 1
(t

)

(a) Reflected light signal f1

0 5 10 15
0

2

4

6

·10−7

θ

f 2
(t

)

(b) Reflected light signal f2

Figure 3.7: The reflected light signals f1 (3.7a) and f2 (3.7b) plotted against θ for
s1 = s2 = RJup in red and green respectively. The figures have the same shape as
the reflected light signal of a system with one planet, but with additional jumps to
zero. These jumps to zero illustrate total eclipses on the surface of that body. We see
that figure 3.7a and figure 3.7b are almost the same (because the planet and moon
have the same radius) except for a phase change in the delta peaks. Three orbits of
the barycenter around his host star are plotted in this figure.
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The shape of the reflected light signals f1 and f2 look the same as the reflected light signal of a
system with one planet (2.7), but in f1 and f2 are jumps to zero. Every time a jump occurs, a total
eclipse occurs on that planet. A phase shift exists between the peaks of the reflected light signals f1

and f2. This effect can be explained by the fact that if a total eclipse occurs on the planet, there
cannot occur an eclipse on the moon by condition 3.18. The other body must be fully illuminated by
the star.
If the two signals in figure 3.7 are added, the total reflected light signal is obtained, see figure 3.8.
The total reflected light signal fB(t) also has the shape of the reflected light signal of one planet, but
is twice as high as one planet for two equal-size bodies. This agrees with equation 3.25. Jumps also
occur here, but these go to half the current value of the signal. Always one of the bodies must be
illuminated by the sun, so a signal is always obtained, which corresponds to this offset. Note how
the offset is exactly the signal of one body. Also note that the signal is almost periodic. The shape
remains the same, but the jumps (eclipses) are not on the same places in each orbit. So the signal is
quasi-periodic.

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6
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·10−6
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f B
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)

Figure 3.8: The total reflected light signal fB plotted against θ for a system with
two bodies with s1 = s2 = RJup. Three orbits of the barycenter around the star are
plotted in this figure. Every time an eclipse occurs, a sharp dip in the reflected light
signal is seen.

An astronomer will only observe the signal in figure 3.8, because the astronomer cannot separate
the different signals. If we zoom in on one of the jumps of the signal around θ = 1

2π, on one around
θ = π and on one around θ = 3

2π in figure 3.8, we will see the signals in figure 3.9.
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(a) An eclipse around θ = 1
2π. (b) An eclipse around θ = π. (c) An eclipse around θ = 3

2π.

Figure 3.9: The reflected light signal fB for eclipses around θ = π
2 , π and 3π

2 . Each
curve has a different shape. The different shapes are explained in the text by the
motion of the bodies.

The shape of the three dips in figure 3.9 are all different. The shape at θ = 1
2π occurs at θ = 1

2π
mod 2π as well, so the shape of the signal depends clearly on the phase. The same goes for the
other jumps. The explanation for the effect in figure 3.9 lies in the fact that the planets move
counterclockwise.

x̂

ŷ

θ

1

2
~r

1
2

~r

1

2

~r

Figure 3.10: The start of three eclipses at θ = 1
2π (in positive ŷ-direction), θ = π

(in negative x̂-direction) and θ = 3
2π (in negative ŷ-direction) of the planet by the

moon. The dotted area is a shadow cylinder behind the moon with symmetry axis
~R(t). The observer is placed in the positive x̂-direction. The figure is depicted face-
on (top-view). The arrows indicate the binary motion. The star is in the origin.
The relative vector ~r is the vector from the planet to the moon.
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At θ = 1
2π first the moon will move in front of the planet at the invisible side of the planet (see

figure 3.10). The eclipse only has an influence from the center of cylinder on. The surface region that
is dark due to the eclipse is larger in the middle of the cylinder than at the side of the planet. The
signal changes are therefore fast. At the end of the eclipse, less surface is dark, namely only the side
of the planet. The change in the signal is therefore more gradual. This corresponds to the signal in
figure 3.9a. At θ = 3

2π, the moon will move in front of the planet at the side of the planet that is
lit. Here the percentage of the surface area that is dark due to the eclipse is less than the percentage
that is dark at the end of the eclipse. The reflected light signal will first decrease slowly. At the end
of the eclipse, the reflected light signal will change fast, because it moves away from the middle of the
cylinder. At θ = π, the situation is symmetric. We expect the signal in figure 3.9b.
For all different phases, it can be verified that the duration of the eclipse equals equation 3.22.

3.7.1 Change planet moon ratio

We compare the total reflected light signal for different values of s1
s2

. We will take values of s1 = s2 =
RJup, s1 = 2s2 = 2RJup, s1 = 3s2 = 3RJup and s1 = 10s2 = 2RJup. Large values for the radius of the
moon are included, because planet-binary systems and thus large moons may exist [16]. We will plot
the reflected light signal f1, f2 and fB all in one figure for every situation, see figure 3.11.

(a) s1 = s2 (b) s1 = 2s2

(c) s1 = 3s2 (d) s1 = 10s2

Figure 3.11: The reflected light signal of fB in blue, f1 in red and f2 in green
plotted in one figure against θ. We see different values for s1

s2
in the subfigures

3.11a, 3.11b, 3.11c and 3.11d.

In figure 3.11b and 3.11c, the signal f1 is larger than signal f2. This is due to the difference in
planet radii. Also f1 has jumps that do not go to zero, while the jumps of f2 do go to zero. The planet
is never completely darkened by the moon. The moon can darken the surface area with a circle with
radius s2. s1 is larger than s2, so the circle will never cover the entire planet.
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The amount of eclipses does not change for the different situations.
For situation s1 = 10s2 in figure 3.11d, we almost do not see the jumps anymore. The contribution
of the eclipses is almost negligible. With an even larger ratio, the dips indicating eclipses will not be
visible anymore.
Astronomers will only see the reflected light signal fB (blue curve). If astronomers see a signal like
in figure 3.11, they would know that there is a chance of an eclipse. They see a quasi-periodic signal
that could be explained by a moon.
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4 Fourier spectra

In this section the Fourier spectra of the reflected light signals in section 2 and section 3 are derived.
The FFT, the fast or discrete Fourier transform, of MATLAB is used. Whether it is a fast or discrete
Fourier transform, depends on the number of points that is used.

4.1 Fourier transform of the reflected light signals

The complex Fourier series of a function that is periodic in θ mod 2π is defined as

f(θ) =

∞∑
n=−∞

fne
iθn (4.1)

We define the Fourier transform of the signal the following way

f̂(ν) =
1

2π

∫ ∞
−∞

f(t)e−iνtdt (4.2)

and the inverse Fourier transform

f(t) =

∫ ∞
−∞

f̂(ν)eiνtdν (4.3)

For a system with one planet described in paragraph 2.1, f is periodic in θ mod 2π. The Fourier
transform is

f̂(ν) =
1

2π

∞∑
n=−∞

fn

∫ ∞
−∞

ei(nωt−νt)dt =
1

2π

∞∑
n=−∞

fn2πδ(ν − nω) =
∞∑

n=−∞
fnδ(ν − nω) (4.4)

so the Fourier transform of a light curve from one planet is a series of equidistant δ-peaks.
For a system with a planet-binary described in paragraph 3.1, f is determined by configuration of
two planets, namely f = f1 + f2. If the orbital angle of f1 and f2 are θ and φ respectively, then we
deduce from this that f(t) = f(θ, φ), where θ = ωt and φ = Ωt. f is a periodic function in θ mod 2π,
so f(θ + 2π, φ) = f(θ, φ). f is also a periodic function in φ mod 2π, so f(θ, φ + 2π) = f(θ, φ), and
combining this with equation 4.1 gives equation 4.5:

f(θ, φ) =

∞∑
n=−∞

fn(φ)einθ (4.5)

Because f(θ, φ) is periodic in φ mod 2π, so is fn(φ). We have fn(φ + 2π) = fn(φ). Thus we have,
using a complex Fourier series in equation 4.1,

fn(φ) =
∞∑

m=−∞
fmn e

imφ (4.6)

Combining equation 4.5 and 4.6, we get

f(t) = f(θ(t), φ(t)) =

∞∑
n=−∞

∞∑
m=−∞

fmn e
inθeimφ (4.7)

If we apply equation 4.7 to the situation where θ(t) = ωt and φ(t) = Ωt, then equation 4.7 will change
in equation 4.8:

f(t) = f(ωt,Ωt) =
∞∑

n=−∞

∞∑
m=−∞

fmn e
i(nω+mΩ)t (4.8)

So f(t) can be written as a quasiperiodic function with double Fourier series. The Fourier transform
(4.2) of equation 4.8 is

f̂(ν) =
∑
n,m

fmn δ(ν − nω −mΩ) =
∑
n,m

fmn δ(nω +mΩ− ν) (4.9)
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We look at the Fourier Transform f̂(ν + Ω− ω) at a shifted frequency.

f̂(ν + Ω− ω) =
∑
n,m

fmn δ(−Ω + ω + nω +mΩ− ν) =
∑
n,m

fmn δ
(
(n+ 1)ω + (m− 1)Ω− ν

)
(4.10)

=
∑
n,m

fm+1
n−1 δ(nω +mΩ− ν) (4.11)

This means that shifting the frequency by Ω− ω is a shift in coefficients, m→ m+ 1, n→ n− 1.

4.2 Fourier spectra of the light signals

The Fourier spectrum of the reflected light signal in figure 2.7 for a system with one planet is given
in figure 4.1.
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Figure 4.1: The Fourier spectrum of the reflected light signal of a system with one
planet in figure 2.7 in section 2.4. The spectrum is made up of only a few δ-peaks
at very low frequencies ν = nω.

In figure 4.2, we zoom in on the δ-peaks at very low frequencies. The Fourier spectrum is symmetric
around 0. We recognize 5 different δ-peaks in the Fourier spectrum in figure 4.2. The one closest to
0 is a high peak with height f0 > 0. The second one is a high peak with height f1 < 0. The last one
is little peak with height f2 > 0.
In figure 4.3 the Fourier spectrum of the total reflected light signal of a system with a planet-binary
described in paragraph 3.1 in figure 3.8 is plotted.

25



−4 −3 −2 −1 0 1 2 3 4

·10−6

−4

−2

0

2

4

6

8
·10−4

ν

f(
ν

)

Figure 4.2: A zoomed in version of the Fourier spectrum of the reflected light signal
in figure 4.1. Five peaks are clearly visible. The spectrum is symmetric. The first
peak around ν = 0 has strength f0, the second around ν = ω has strength f1 and the
third around ν = 2ω has strength f2.
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Figure 4.3: The Fourier spectrum of the total reflected light signal in figure 3.8
for a system with a planet-binary. The Fourier spectrum is almost the same as the
spectrum of a system with one planet in figure 4.1. The difference are the little
disturbances at higher frequencies ν = mΩ. These are caused by eclipses.
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Notice that the spectrum in figure 4.1 and in figure 4.3 are much alike. There are small periodic
peaks in the spectrum in figure 4.3. These peaks zoomed in are seen in the signal in figure 4.4.
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Figure 4.4: The signal in figure 4.3 zoomed in. The structures at the side are
nearly identical.

If we zoom in on the Fourier spectra of the reflected light signal over only the planet and the moon
in figure 3.7, we get figure 4.5 and figure 4.6 respectively.
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Figure 4.5: The Fourier spectrum of the reflected light signal from the planet. The
side structures are alternatingly flipped in the ν-axis due to eclipses at t̃n.
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Figure 4.6: The Fourier spectrum of the reflected light signal from the moon. The
side structures are all almost equal due to eclipses at tn.

The Fourier spectra of the nett signal of the planet and moon is exactly the Fourier spectrum of
the total reflected light signal. The peaks in the Fourier spectra in figure 4.5 and figure 4.6 appear
twice as often as in the spectrum of the total reflected signal in figure 4.4. The spectrum of the light
signal of the planet has peaks that are each time mirrored in the ν-axis per peak. This is why in the
spectrum of the total light signal the peaks appear half as many times as in the spectrum in figure
4.5 or 4.6. The mirrored peaks of the signal in figure 4.5 cancel the peaks of the signal in figure 4.6.
The peaks are mirrored due to the initial conditions 3.9 and 3.10. At t = 0, the planet is in between
the moon and the star. An eclipse occurs at the surface of the moon. This makes the reflected light
signal of the moon an even signal and that is why the peaks are all the same.

4.3 Analysis of the Fourier spectra

We can split f(t) in two parts: a part that is due to only the phases of the year fD(t) and a part that
is due to the eclipses fE(t).

f(t) = fD(t) + fE(t) (4.12)

Notice that f(t), fD(t) ≥ 0 and that fE ≤ 0. fD(t) is periodic modulo 2π
ω . In figure 3.9 we can see

that the peaks of the eclipses have a very short duration. We can approximate the short peaks with
delta peaks at the times of the total eclipses tn = πn

Ω−ω . So then

fE(t) =

∞∑
n=−∞

gnδ(t− tn) (4.13)

with gn ≤ 0. The Fourier transform 4.2 of this signal is

fE(ν) =
1

2π

∞∑
n=−∞

gne
−iνtn (4.14)

We compute the Fourier transform of fE(ν + Ω− ω), combine that with tn = πn
Ω−ω . We get

fE(ν + Ω− ω) =
1

2π

∞∑
n=−∞

gne
−i(ν+Ω−ω)tn =

1

2π

∞∑
n=−∞

gne
−iνtn−i(Ω−ω) πn

Ω−ω = ± 1

2π

∞∑
n=−∞

gne
−iνtn

(4.15)
Notice that for even n

fE(ν) = fE(ν + Ω− ω) (4.16)
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so the Fourier transform of fE(t) is periodic with period Ω − ω. If from equation 4.9 and equation
4.10, we only assume the part that is due to the eclipses and fill this in in equation 4.16, we get:

fE(ν) =
∑
n,m

(fE)mn δ(nω +mΩ− ν) =
∑
n,m

(fE)m+1
n−1 δ(nω +mΩ− ν) = fE(ν + Ω− ω) (4.17)

and therefore we get
(fE)mn = (fE)m+1

n−1 ∀n,m ∈ Z (4.18)

Because this holds ∀n,m ∈ Z,
(fE)mn = (fE)m+k

n−k ∀n,m, k ∈ Z (4.19)

and with k = −m
(fE)mn = (fE)0

n+m (4.20)

From equation 4.20, we see that the peaks will repeat themselves. This is also what is noticed in
figures 4.2, 4.3, 4.5 and 4.6.
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5 Inclination of binary plane

A moon does not always orbit around the planet in the same plane as the planet around the star, see
table 2. For example, our own Moon has a tilt in its orbit of around 5 degrees. The Pluto/Charon
system has an even larger angle of 118 degrees. The tilt in the orbit of the moon with respect to the
orbit of the planet we will call inclination. For this reason we also consider inclination in this thesis.

System s1 [km] s2 [km] r [km] α [◦] α∗ [-] ω [rad/year] Ω [rad/day]

Earth/Moon 6371.0 1737.1 384400 5.145 4.25 2π 0.22997
Pluto/Charon 1186± 2 604± 1.5 19570 118 9.6 0.0253 0.9837
Saturn/Titan 58232 2575± 2 1221870 26.7 9.0 0.213 0.394

Table 2: Radii, distance, inclination and orbital frequencies of the Earth/Moon,
Pluto/Charon and Saturn/Titan system. The values are found (or calculated by
using values) at [12], [17], [18], [19], [20], [21], [22] and [23].

5.1 Theory of inclination

The plane in which the planet and the moon orbit each other, can be rotated with an angle α around
the x-axis, see figure 5.1.

Figure 5.1: Inclination of the plane of the orbit of the Moon with respect to the
orbit of the Earth [24]. The tilt of the plane is called the inclination α. The Moon is
aligned with the Earth and the Sun two times a year (in two not successive seasons).
An eclipse can occur at that time. In the other seasons, the Moon, the Sun and the
Earth can only be aligned if the tilt is very small.

This happens when ~r is multiplied by the rotational matrix from [13]:

A =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 (5.1)

then

A~r = r

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

cos(Ωt)
sin(Ωt)

0

 = r

 cos(Ωt)
cos(α) sin(Ωt)
sin(α) sin(Ωt)

 (5.2)

In this case we have for the positioning of the planet and the moon

~R1(t) = R

cos(ωt)
sin(ωt)

0

− m2r

m1 +m2

 cos(Ωt)
cos(α) sin(Ωt)
sin(α) sin(Ωt)

 (5.3)
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~R2(t) = R

cos(ωt)
sin(ωt)

0

+
m1r

m1 +m2

 cos(Ωt)
cos(α) sin(Ωt)
sin(α) sin(Ωt)

 (5.4)

Note that the node of the inclined plane is the x-axis. The initial situation (at t = 0) will still be the
same as with the situation without the inclination 3.9 and 3.10. Notice that if α = 0, equation 5.3
and 5.4 reduce to equation 3.7 and 3.8, the situation of zero inclination.

5.2 Effective inclination value

When projected on the plane perpendicular to R̂, there is a displacement l in the motion of the center
of the moon with respect to the center of the planet. If α = 0, then l = 0. If α 6= 0, then l could be
larger than 0. The duration of an eclipse is derived in paragraph 3.4 and is given in equation 3.22.
The duration of an eclipse in an inclined plane is always smaller or equal to that value of equation
3.22. This is explained by the displacement l in figure 5.2. If there is a displacement l > 0, the moon
is in between the star and the planet for a shorter period of time. The moon passes the planet faster.

l

s1

s2

(a) View from star.

~rl

α sin(ωtn)

(b) View rotated with π
2 around the z-axis.

Figure 5.2: An eclipse on the planet by the moon. In figure 5.2a, the view is
from the star. In figure 5.2a, the view is rotated by π

2 around the z-axis. l is the
displacement of the motion of the center of the moon with respect to the center of
the planet. At α = 0, l = 0.

The shadow displacement l is
l = αr sin(ωtn) (5.5)

The maximum value for l is
lmax = αr (5.6)

The value for lmax where just an eclipse can be seen is s1 + s2. We define the effective inclination
value α∗ as

α∗ =
lmax
s1 + s2

=
αr

s1 + s2
(5.7)

For an eclipse to be seen at lmax, α∗ ≤ 1.

5.3 Changing effective inclination value

We will study different values of α∗. The values for α∗ will be 0, 1
2 , 1 and 3

2 . We as well will vary s1
s2

with values 1, 2, 3 and 10. The results are in figure 5.3.
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(a) s1 = s2, α∗ = 0 (b) s1 = s2, α∗ = 1
2 (c) s1 = s2, α∗ = 1 (d) s1 = s2, α∗ = 3

2

(e) s1 = 2s2, α∗ = 0 (f) s1 = 2s2, α∗ = 1
2 (g) s1 = 2s2, α∗ = 1 (h) s1 = 2s2, α∗ = 3

2

(i) s1 = 3s2, α∗ = 0 (j) s1 = 3s2, α∗ = 1
2 (k) s1 = 3s2, α∗ = 1 (l) s1 = 3s2, α∗ = 3

2

(m) s1 = 10s2, α∗ = 0 (n) s1 = 10s2, α∗ = 1
2 (o) s1 = 10s2, α∗ = 1 (p) s1 = 10s2, α∗ = 3

2

Figure 5.3: Reflected light signals for different inclination values and different
radii. From left to right, the inclination value a∗ takes on values 0, 1

2 , 1 and 3
2 .

From top to bottom, the value s1
s2

takes on values 1, 2, 3, and 10. The red curve is
the reflected light signal over the planet f1, the green curve over the moon f2 and
the blue curve is the total reflected light signal fB of the bodies.

Notice the figures in the first row in figure 5.3. When α∗ = 1
2 , the eclipse peaks will not go to zero

anymore. Due to the inclination, the bodies do not completely block each other. We only see eclipses
around θ = π, when α∗ becomes larger. The inclination angle is too large to form eclipses when the
lift l = lmax. The peaks seen are the eclipses formed at the intersection line of the plane in which
the barycenter orbits the star and the plane in which the two bodies orbit. This intersection line is
then aligned with r, the vector between the two bodies. In the second and third row we see the same
happening, but with smaller peaks. In the last row we almost see no differences between the light
signals in the different figures.
The Fourier spectrum of each total reflected light signal is plotted in figure 5.4.

32



(a) s1 = s2, α∗ = 0 (b) s1 = s2, α∗ = 1
2 (c) s1 = s2, α∗ = 1 (d) s1 = s2, α∗ = 3

2

(e) s1 = 2s2, α∗ = 0 (f) s1 = 2s2, α∗ = 1
2 (g) s1 = 2s2, α∗ = 1 (h) s1 = 2s2, α∗ = 3

2

(i) s1 = 3s2, α∗ = 0 (j) s1 = 3s2, α∗ = 1
2 (k) s1 = 3s2, α∗ = 1 (l) s1 = 3s2, α∗ = 3

2

(m) s1 = 10s2, α∗ = 0 (n) s1 = 10s2, α∗ = 1
2 (o) s1 = 10s2, α∗ = 1 (p) s1 = 10s2, α∗ = 3

2

Figure 5.4: The Fourier spectra of the reflected light signals seen in figure 5.3.
From left to right, the inclination value a∗ takes on values 0, 1

2 , 1 and 3
2 . From

top to bottom, the value s1
s2

takes on values 1, 2, 3, and 10. The blue curve is the
Fourier transform of the sum of the planets. In every plot, the axes are the same.

The difference in the Fourier spectra for a binary-planet system with inclination with respect to
no inclination is a spreading of the eclipse peaks. The peaks becomes spread out, because the eclipse
do not occur with enough periodicity anymore to determine different peaks. In the fourth row, the
spectra do not change that much, since the signal is very small.
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5.4 Observer in ŷ and ẑ direction

In this section we will examine the change in the observer’s direction to the ŷ and ẑ-direction. The
imaginary and the real part of the Fourier transform are plotted. The phase of the Fourier spectra is
plotted as well.

5.4.1 ŷ-direction

(a) s1 = s2, α∗ = 0 (b) s1 = s2, α∗ = 1
2 (c) s1 = s2, α∗ = 1 (d) s1 = s2, α∗ = 3

2

(e) s1 = 2s2, α∗ = 0 (f) s1 = 2s2, α∗ = 1
2 (g) s1 = 2s2, α∗ = 1 (h) s1 = 2s2, α∗ = 3

2

(i) s1 = 3s2, α∗ = 0 (j) s1 = 3s2, α∗ = 1
2 (k) s1 = 3s2, α∗ = 1 (l) s1 = 3s2, α∗ = 3

2

(m) s1 = 10s2, α∗ = 0 (n) s1 = 10s2, α∗ = 1
2 (o) s1 = 10s2, α∗ = 1 (p) s1 = 10s2, α∗ = 3

2

Figure 5.5: Reflected light signals for different inclination values and different radii
with the observer in the ŷ-direction. From left to right, the inclination a∗ takes on
values 0, 1

2 , 1 and 3
2 . From top to bottom, s1

s2
takes on values 1, 2, 3, and 10. The

red curve is the reflected light signal over the planet f1, the green curve over the
moon f2 and the blue curve is the total reflected light signal fB of the bodies.

The reflected light signal of an observer in the ŷ-direction is plotted in figure 5.5. The shape of the
signals differs from the signal of an observer in the x̂-direction. This is because the planet and moon
have the same initial condition, but the phase at the initial condition changes with the change of
observer direction. That is the reason why it is only a phase shift with respect to the x̂-direction. We
also can see that eclipses are found around θ = kπ ∀k ∈ Z for every inclination angle. This is the
same as in the x̂-direction, because the intersection line of the two planes is then still aligned with r.
In figure 5.6, the real (in blue) and imaginary part (in purple) of the Fourier spectra of the reflected
light signals is plotted for every graph in figure 5.5.
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(a) s1 = s2, α∗ = 0 (b) s1 = s2, α∗ = 1
2 (c) s1 = s2, α∗ = 1 (d) s1 = s2, α∗ = 3

2

(e) s1 = 2s2, α∗ = 0 (f) s1 = 2s2, α∗ = 1
2 (g) s1 = 2s2, α∗ = 1 (h) s1 = 2s2, α∗ = 3

2

(i) s1 = 3s2, α∗ = 0 (j) s1 = 3s2, α∗ = 1
2 (k) s1 = 3s2, α∗ = 1 (l) s1 = 3s2, α∗ = 3

2

(m) s1 = 10s2, α∗ = 0 (n) s1 = 10s2, α∗ = 1
2 (o) s1 = 10s2, α∗ = 1 (p) s1 = 10s2, α∗ = 3

2

Figure 5.6: The Fourier spectra of the reflected light signals seen in figure 5.5 in
the ŷ-direction. The real part of the Fourier spectra is plotted in blue, the imaginary
part in purple. From left to right, the inclination a∗ takes on values 0, 1

2 , 1 and 3
2 .

From top to bottom, the s1
s2

takes on values 1, 2, 3, and 10. In every plot, the axes
are the same.

In the ŷ-direction, the reflected light signal is not an even function anymore. This is why an
imaginary part of the Fourier spectrum is present. We can still see δ-peaks visible in the spectra. The
same goes for the spreading of the spectra when the inclination plays a part.
If an astronomer would see this results, he could think of an exomoon, because the side bands occur
with periodicity. But it is not determined yet from these results.
In figure 5.7, the phase of the Fourier spectra of the reflected light signal of the ŷ-direction is given.
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(a) s1 = s2, α∗ = 0 (b) s1 = s2, α∗ = 1
2 (c) s1 = s2, α∗ = 1 (d) s1 = s2, α∗ = 3

2

(e) s1 = 2s2, α∗ = 0 (f) s1 = 2s2, α∗ = 1
2 (g) s1 = 2s2, α∗ = 1 (h) s1 = 2s2, α∗ = 3

2

(i) s1 = 3s2, α∗ = 0 (j) s1 = 3s2, α∗ = 1
2 (k) s1 = 3s2, α∗ = 1 (l) s1 = 3s2, α∗ = 3

2

(m) s1 = 10s2, α∗ = 0 (n) s1 = 10s2, α∗ = 1
2 (o) s1 = 10s2, α∗ = 1 (p) s1 = 10s2, α∗ = 3

2

Figure 5.7: The phase of the Fourier transform (in radians) of the reflected light
signal in the ŷ-direction. From left to right, the inclination a∗ takes on values 0, 1

2 ,
1 and 3

2 . From top to bottom, the s1
s2

takes on values 1, 2, 3, and 10. The real and
imaginary part of the Fourier spectra were plotted in figure 5.6.

5.4.2 ẑ-direction

In this section, the observer’s direction is changed to the ẑ-direction. In figure 5.8, the reflected light
signal is plotted. We now see a totally different signal than in the x̂ or ŷ-direction, because the
system is not edge-on anymore. The system is face-on here. A face-on system gives a constant signal,
because each position of the planets will give the phase half moon. But still, eclipses occur with some
periodicity, which result in dips in the reflected light signal.
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(a) s1 = s2, α∗ = 0 (b) s1 = s2, α∗ = 1
2 (c) s1 = s2, α∗ = 1 (d) s1 = s2, α∗ = 3

2

(e) s1 = 2s2, α∗ = 0 (f) s1 = 2s2, α∗ = 1
2 (g) s1 = 2s2, α∗ = 1 (h) s1 = 2s2, α∗ = 3

2

(i) s1 = 3s2, α∗ = 0 (j) s1 = 3s2, α∗ = 1
2 (k) s1 = 3s2, α∗ = 1 (l) s1 = 3s2, α∗ = 3

2

(m) s1 = 10s2, α∗ = 0 (n) s1 = 10s2, α∗ = 1
2 (o) s1 = 10s2, α∗ = 1 (p) s1 = 10s2, α∗ = 3

2

Figure 5.8: Reflected light signals for different inclination values and different radii
with the observer in the ẑ-direction. From left to right, the inclination a∗ takes on
values 0, 1

2 , 1 and 3
2 . From top to bottom, the s1

s2
takes on values 1, 2, 3, and 10.

The red curve is the reflected light signal over the planet f1, the green curve over
the moon f2 and the blue curve is the total reflected light signal fB of the bodies.

When α∗ becomes larger, we see that dips (so eclipses) only occur around θ = kπ ∀k ∈ Z. This
corresponds to the earlier results.
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(a) s1 = s2, α∗ = 0 (b) s1 = s2, α∗ = 1
2 (c) s1 = s2, α∗ = 1 (d) s1 = s2, α∗ = 3

2

(e) s1 = 2s2, α∗ = 0 (f) s1 = 2s2, α∗ = 1
2 (g) s1 = 2s2, α∗ = 1 (h) s1 = 2s2, α∗ = 3

2

(i) s1 = 3s2, α∗ = 0 (j) s1 = 3s2, α∗ = 1
2 (k) s1 = 3s2, α∗ = 1 (l) s1 = 3s2, α∗ = 3

2

(m) s1 = 10s2, α∗ = 0 (n) s1 = 10s2, α∗ = 1
2 (o) s1 = 10s2, α∗ = 1 (p) s1 = 10s2, α∗ = 3

2

Figure 5.9: The Fourier spectra of the reflected light signals seen in figure 5.8 in
the ẑ-direction. From left to right, the inclination a∗ takes on values 0, 1

2 , 1 and 3
2 .

From top to bottom, the s1
s2

takes on values 1, 2, 3, and 10. The blue curve is the
Fourier transform of the sum of the planets. In every plot, the axes are the same.

The real and imaginary part of the Fourier spectra of the reflected light signal observed in the
ẑ-direction are plotted in figure 5.9. Again, the side bands indicating eclipses are visible and become
spread out when inclination plays a part. The phase curves of the Fourier spectra of the reflected light
signal for an observer in the ẑ-direction is plotted in figure 5.10.
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(a) s1 = s2, α∗ = 0 (b) s1 = s2, α∗ = 1
2 (c) s1 = s2, α∗ = 1 (d) s1 = s2, α∗ = 3

2

(e) s1 = 2s2, α∗ = 0 (f) s1 = 2s2, α∗ = 1
2 (g) s1 = 2s2, α∗ = 1 (h) s1 = 2s2, α∗ = 3

2

(i) s1 = 3s2, α∗ = 0 (j) s1 = 3s2, α∗ = 1
2 (k) s1 = 3s2, α∗ = 1 (l) s1 = 3s2, α∗ = 3

2

(m) s1 = 10s2, α∗ = 0 (n) s1 = 10s2, α∗ = 1
2 (o) s1 = 10s2, α∗ = 1 (p) s1 = 10s2, α∗ = 3

2

Figure 5.10: The phase of Fourier spectra of the reflected light signals in the ẑ-
direction. From left to right, the inclination a∗ takes on values 0, 1

2 , 1 and 3
2 . From

top to bottom, the s1
s2

takes on values 1, 2, 3, and 10. The amplitude was shown in
figure 5.9.
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6 Conclusion and discussion

The aim of this thesis was to develop a method to detect exomoons or find typical features in the
reflection signal that point to the existence of exomoons. To achieve this the reflected light signals of
an extra-solar system consisting of one exoplanet (in section 2.4) and an extra-solar system consisting
of one exoplanet and one exomoon (in section 3.7) are modeled. The assumptions made are that the
bodies have a homogeneous surface (albedo is 1), that the bodies move in a circular motion, and have
Lambertian, and that the light from the star is a constant.
We have seen that the important difference between the two systems are eclipses. In section 2.4, we
have seen that the reflected light signal of an extra-solar system with one exoplanet is a smooth and
continuous periodic graph, due to the periodically changing phases. The maxima were at the phase
’full moon’, and the minima at the phase ’new moon’.
In section 3.7 we have seen that the reflected light signal of an extra-solar system with an exoplanet
and an exomoon has the same shape as a system with one planet, but is a quasiperiodic signal with
dips of short durations. These short dips are the effect of short during eclipses. We deduced that an
astronomer could not determine from the signal if an exomoon is present. The astronomer would only
know that there is a planet with a periodic disturbance.
In chapter 4 the Fourier spectra of the reflected light signals are calculated. We have found that
the Fourier spectrum of the reflected light signal for a system with one planet consists of a series of
equidistant δ-peaks. We have seen that the Fourier spectrum has a few peaks at very low frequencies.
The other peaks are all nearly zero.
In section 4.3 we split the reflected light signal in two parts, a part due to the phases of the year and a
part due to the eclipses. From the Fourier transform of the signal due to the eclipses we deduced that
there are peaks that are repeated, so are identical copies. In section 4.2 we have seen those repeated
peaks in the figures of the Fourier spectra of the reflected light signal. The repeated peaks indicate
short dips in the time-domain.
In chapter 5, an inclination angle was assumed, the ratio of the radii of the bodies was changed and
the observer’s direction was changed. We have seen that a slight inclination results in shorter during
eclipses with less effect. A large inclination angle will cause eclipses at most two times a year. Namely
when the exoplanet and exomoon are positioned along the line of intersection between the orbital
planes.
An equal sized exoplanet/exomoon ratio and no inclination causes that a planet can be fully darkened
by any eclipse. We have seen that a large ratio of the radii causes the eclipse peaks to become small
and not really visible with respect to the phase curve.

We conclude that if eclipses occur, the short-during dips in the time-domain give copies in the Fourier
domain. So these short dips are characteristics for an eclipse on an exoplanet or exomoon. An as-
tronomer could not tell if the observed signal would result in an exomoon. Other explanations like
surface patterns could be the cause of the dips. We cannot yet say if the found light signals would be
specific for the presence of an exomoon.
This could be a new method to find binaries and exomoons, but further research is necessary. For
instance, we are curious what happens when the surface of the exoplanet and exomoon have an albedo
map. For astronomers, it is recommended to find out what the effect of noise is to the signal. The
reflected light signal is very small signal. Noise from the star is very common. The signal could become
very blurred or not visible at all anymore.
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Appendices

A Matlab code for one planet

All data about Jupiter is taken from [25]. Other data is taken from [26] (mass of the Sun), [27] (radius
of the Sun) and [28] (Gravitational constant).

1 % Model BEP One p lanet
2 % Maaike Mol , 4395913 , Applied Mathematics and Applied Phys ics
3 %c l e a r a l l ; c l o s e a l l ; c l c ;
4

5 % Var iab l e s
6 year = 73 ; % Days per o r b i t o f the barycenter
7 N = 40* year ; % Number o f t imes teps
8 Orbits = 5 ; % Amount o f o r b i t s around s t a r
9

10 % Phys i ca l q u a n t i t i e s
11 Solar Mass = 1 .99*10ˆ30 ; % So la r Mass [ kg ]
12 Jupiter Mass = 1 .898*10ˆ27 ; % Jup i t e r Mass [ kg ]
13 Radius Sun = 695700000; % Radius Sun [m]
14 Radius Jup i te r = 69911000; % Radius Jup i t e r [m]
15 omega = 2* pi /( year *24*3600) ; % Orb i ta l f requency [ rad / s ]
16 rho = Jupiter Mass / . . .
17 (4/3* pi *( Rad ius Jup i te r ) ˆ3) ; % Density o f p lanet [ kg mˆ−3]
18 s = Radius Jup i te r ; % Radius p lanet [m]
19 S = Radius Sun ; % Radius s t a r [m]
20 G = 6.674*10ˆ(−11) ; % Grav i t a t i ona l con . [mˆ3 sˆ−2 kgˆ−1]
21 Vol = 4/3* pi * s ˆ3 ; % Volume o f p lanet [mˆ3 ]
22 m = rho*Vol ; % Mass o f p lanet [ kg ]
23 M = 3* Solar Mass ; % Mass o f s t a r [ kg ]
24 R dis t = (G*M/omega ˆ2) ˆ(1/3) ; % Distance between s t a r and p lanet
25

26 % Number o f measuring s t ep s
27 Total Time = Orbits *( year *24*3600) ; % Time p lanet o r b i t s around s t a r [ s ]
28 dt = Total Time /N; % Time step [ s ]
29 N2 = 150 ; % Number o f s t ep s in mu
30 dmu = 2* pi /N2 ; % Step in mu
31 N3 = 150 ; % Number o f s t ep s in nu
32 dnu = pi /N3 ; % Step in nu
33 t = 0 : dt : Total Time ; % Time vec to r
34 mu = 0 :dmu: ( 2* pi ) ; % Mu vecto r
35 nu = 0 : dnu : p i ; % Nu vecto r
36

37 % R vector
38 R = ze ro s (3 ,N+1) ;
39 R( 1 , : ) = R di s t * cos ( omega* t ) ;
40 R( 2 , : ) = R di s t * s i n ( omega* t ) ;
41 R( 3 , : ) = 0 ;
42

43 % Other ve c t o r s
44 R normal = ze ro s (3 ,N+1) ;
45 R normal ( 1 , : ) = cos ( omega* t ) ; R normal ( 2 , : ) = s i n ( omega* t ) ;
46 R normal ( 3 , : ) = 0 ;
47 o normal = ze ro s (3 , 1 ) ; o normal (1 , 1 ) = ones (1 , 1 ) ;
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48 s normal = ze ro s (N2+1,N3+1 ,3) ;
49 R normal dot = ze ro s (N2+1,N3+1 ,3) ;
50 o normal extended = ze ro s (N2+1,N3+1 ,3) ;
51 o normal extended ( : , : , 1 ) = ones (N2+1,N3+1) ;
52 s normal ( : , : , 1 ) = cos (mu) ’* s i n (nu) ;
53 s normal ( : , : , 2 ) = s i n (mu) ’* s i n (nu) ;
54 s normal ( : , : , 3 ) = ones (N2+1 ,1)* cos (nu) ;
55 s normal (N2+ 1 , : , : ) = 0 ;
56

57 second = dot ( s normal , o normal extended , 3 ) ;
58

59 %% Ref l e c t ed l i g h t s i g n a l
60 r e s u l t = ze ro s (1 ,N+1) ;
61 f o r i =1: l ength ( t )
62 som = 0 ;
63 R normal dot ( : , : , 1 ) = ones (N2+1,N3+1)*R normal (1 , i ) ;
64 R normal dot ( : , : , 2 ) = ones (N2+1,N3+1)*R normal (2 , i ) ;
65 R normal dot ( : , : , 3 ) = ones (N2+1,N3+1)*R normal (3 , i ) ;
66 f i r s t = −dot ( R normal dot , s normal , 3 ) ;
67 som = sum ( ( f i r s t >0) . * ( second>0) .* f i r s t .* second *( s i n (nu) ’ ) ) *(2* pi /N2)

*( p i /N3) ;
68 r e s u l t ( i ) = som ;
69 end
70 r e s u l t = r e s u l t .* s ˆ 2 . / ( p i * R dis t ˆ2) ;
71

72 %% Plot
73 f i g u r e ( )
74 p lo t ( omega* t , r e s u l t ) ;
75 a x i s ( [ omega* t (1 ) omega* t ( end )+dt /10*omega 0 max( r e s u l t )+max( r e s u l t ) * 0 . 1 ] )

;
76 ax = gca ;
77 xpo int s = 0 : ( p i ) : Orbits *2* pi ;
78 ax . XTick = xpo int s ;
79 x l a b e l s = { ’ 0 ’ , ’ \ pi ’ } ;
80 f o r i =2: l ength ( xpo int s )
81 x l a b e l s = horzcat ( x l abe l s , s t r c a t ( num2str ( i ) , ’ \ pi ’ ) ) ;
82 end
83 ax . XTickLabel = x l a b e l s ;
84 x l a b e l ( ’ \omega t ’ ) ; y l a b e l ( ’ f ( t ) ’ ) ;
85

86 %% Four ie r
87 f o u r i e r = f f t ( r e s u l t ,N+1) ;
88 Fs = (N+1)/Total Time ;
89

90 %Plot in middle
91 f i g u r e ;
92 f reqHz = (−(N/2) : (N/2) ) *Fs /(N+1) ;
93 f o u r i e r = [ f o u r i e r ( (N/2+1) : (N+1) ) f o u r i e r ( 1 : (N/2) ) ] ;
94 p lo t ( freqHz , r e a l ( f o u r i e r ) , ’ b ’ )
95 x l a b e l ( ’ \nu [ Hz ] ’ ) ; y l a b e l ( ’ f (\nu) ’ )
96 a x i s ([−3*10ˆ(−5) 3*10ˆ(−5) min ( r e a l ( f o u r i e r ) ) max( r e a l ( f o u r i e r ) ) ] )
97 s e t ( gca , ’ f o n t s i z e ’ , 15) ;
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B Matlab code for two planets

1 % Model BEP two p lane t s
2 % Maaike Mol , 4395913 , Applied Mathematics and Applied Phys ics
3 c l e a r a l l ; c l o s e a l l ; c l c ;
4

5 % Phys i ca l q u a n t i t i e s
6 G = 6.674*10ˆ(−11) ; % Grav i t a t i ona l con . [mˆ3 sˆ−2 kgˆ−1]
7 Solar Mass = 1 .99*10ˆ30 ; % So la r Mass [ kg ]
8 Mass J = 1 .898*10ˆ27 ; % Jup i t e r Mass [ kg ]
9 Radius J = 69911000; % Radius Jup i t e r [m]

10 Radius Sun = 695700000; % Radius Sun [m]
11 AU = 149597870700; % Distance Earth to Sun [m]
12

13 % Var iab l e s
14 year = 73 ; % Days per o r b i t o f p lanet 1 around 2
15 month = 5 ; % Days per o r b i t o f barycenter
16 N = 40*month* year ; % Number o f time s t ep s
17 Orbits = 5 ; % Number o f o r b i t s o f the barycenter
18 rho = Mass J /(4/3* pi *( Radius J ) ˆ3) ; % Density o f the bod ie s
19 i n c l i n a t i o n = 0 . 5 ; % I n c l i n a t i o n value
20

21 % Movement q u a n t i t i e s
22 S = 10ˆ9 ; % Radius s t a r [m]
23 s1 = 2*Radius J ; % Radius p1 [m]
24 s2 = 1*Radius J ; % Radius p2 [m]
25 Vol1 = 4/3* pi * s1 ˆ3 ; % Volume o f p1
26 Vol2 = 4/3* pi * s2 ˆ3 ; % Volume o f p2
27 M = 3* Solar Mass ; % Mass s t a r [ kg ]
28 m1 = rho*Vol1 ; % Mass p1 [ kg ]
29 m2 = rho*Vol2 ; % Mass p2 [ kg ]
30 omega = 2* pi /( year *24*3600) ; % Frequency [ rad/ s ]
31 OMEGA = 2* pi /(month*24*3600)+omega ; % Frequency [ rad/ s ]
32 R dis t = (G*M/omega ˆ2) ˆ(1/3) ; % Distance to cente r o f mass [m]
33 r d i s t = (G*(m1+m2) /OMEGAˆ2) ˆ(1/3) ; % Distance between two bod ie s [m]
34 alpha = i n c l i n a t i o n *( s1+s2 ) / r d i s t ; % I n c l i n a t i o n ang le [ rad ]
35

36 afstandtotmassamiddelpunt = R dis t /AU;
37 a f s tandp lane ten = r d i s t /AU;
38

39 % Calcu l a t i on durat ion E c l i p s e
40 d t e c l i p s e = ( s1+s2 ) / ( (OMEGA−omega ) * r d i s t ) ;
41 d omega dt e c l i p s e = omega* d t e c l i p s e ;
42

43 % Number o f Measuring s t ep s
44 Total Time = Orbits *( year *24*3600) ; % Time p lanet o r b i t s around the s t a r

[ s ]
45 dt = Total Time /N; % Time step [ s ec ]
46 N2 = 100 ; % Number o f s t ep s in mu
47 N3 = 100 ; % Number o f s t ep s in nu
48 dmu = 2* pi /N2 ;
49 dnu = pi /N3 ;
50
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51 % Code
52 t = 0 : ( dt ) : ( Total Time ) ;
53 mu = 0 : (dmu) : ( 2* pi ) ;
54 nu = 0 : ( dnu ) : p i ;
55

56 % Rotation matrix
57 A = [ 1 0 0 ; 0 cos ( alpha ) −s i n ( alpha ) ; 0 s i n ( alpha ) cos ( alpha ) ] ;
58

59 % Vectors
60 R = ze ro s (3 ,N+1) ;
61 R( 1 , : ) = R di s t * cos ( omega* t ) ;
62 R( 2 , : ) = R di s t * s i n ( omega* t ) ;
63 R( 3 , : ) = 0 ;
64

65 r = ze ro s (3 ,N+1) ;
66 r ( 1 , : ) = r d i s t * cos (OMEGA* t ) ;
67 r ( 2 , : ) = r d i s t * s i n (OMEGA* t ) ;
68 r ( 3 , : ) = 0 ;
69 r = A* r ;
70

71 R2 = ze ro s (3 ,N+1) ;
72 R2 ( 1 , : ) = R( 1 , : )+m1/(m1+m2) * r ( 1 , : ) ;
73 R2 ( 2 , : ) = R( 2 , : )+m1/(m1+m2) * r ( 2 , : ) ;
74 R2 ( 3 , : ) = R( 3 , : )+m1/(m1+m2) * r ( 3 , : ) ;
75 R1 = ze ro s (3 ,N+1) ;
76 R1 = R2−r ;
77

78 R normal = ze ro s (3 ,N+1) ;
79 R normal ( 1 , : ) = cos ( omega* t ) ; R normal ( 2 , : ) = s i n ( omega* t ) ;
80 R normal ( 3 , : ) = 0 ;
81

82 o normal extended = ze ro s (N2+1,N3+1 ,3) ; o normal extended ( : , : , 1 ) = ones (
N2+1,N3+1) ;

83 s normal = ze ro s (N2+1,N3+1 ,3) ;
84

85 s normal ( : , : , 1 ) = cos (mu) ’* s i n (nu) ;
86 s normal ( : , : , 2 ) = s i n (mu) ’* s i n (nu) ;
87 s normal ( : , : , 3 ) = ones (N2+1 ,1)* cos (nu) ;
88 s normal (N2+ 1 , : , : ) = 0 ;
89

90 second = dot ( s normal , o normal extended , 3 ) ;
91

92 f o r i =1:(N+1)
93 normR(1 , i ) = norm(R( : , i ) ) ;
94 end
95 rmatr ix = ze ro s (N2+1,N3+1 ,3) ;
96

97 % Ref l e c t ed l i g h t s i g n a l p lanet 1 and 2
98 r e s u l t 1 = ze ro s (1 ,N+1) ;
99 r e s u l t 2 = ze ro s (1 ,N+1) ;

100

101 f o r i =1: l ength ( t )
102 sum1 = 0 ;
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103 sum2 = 0 ;
104 lengthR = normR( i ) ;
105

106 R normal dot ( : , : , 1 ) = ones (N2+1,N3+1)*R(1 , i ) / lengthR ;
107 R normal dot ( : , : , 2 ) = ones (N2+1,N3+1)*R(2 , i ) / lengthR ;
108 R normal dot ( : , : , 3 ) = ones (N2+1,N3+1)*R(3 , i ) / lengthR ;
109

110 f i r s t 1 = −dot ( R normal dot , s normal , 3 ) ;
111 f i r s t 2 = −dot ( R normal dot , s normal , 3 ) ;
112

113 rmatr ix ( : , : , 1 ) = ones (N2+1,N3+1)* r (1 , i ) ;
114 rmatr ix ( : , : , 2 ) = ones (N2+1,N3+1)* r (2 , i ) ;
115 rmatr ix ( : , : , 3 ) = ones (N2+1,N3+1)* r (3 , i ) ;
116

117 point1 = ze ro s (N2+1,N3+1 ,3) ;
118 point1 = −rmatr ix+s1 .* s normal ;
119 point2 = ze ro s (N2+1,N3+1 ,3) ;
120 point2 = rmatr ix+s2 .* s normal ;
121

122 l e n g t h f o r e c l i p s e 1 = c r o s s ( point1 , R normal dot , 3 ) ;
123 norm3 = s q r t ( l e n g t h f o r e c l i p s e 1 ( : , : , 1 ) .ˆ2+ l e n g t h f o r e c l i p s e 1 ( : , : , 2 )

.ˆ2+ l e n g t h f o r e c l i p s e 1 ( : , : , 3 ) . ˆ 2 ) ; %N2+1 x N3+1
124 l e n g t h f o r e c l i p s e 2 = c r o s s ( point2 , R normal dot , 3 ) ;
125 norm4 = s q r t ( l e n g t h f o r e c l i p s e 2 ( : , : , 1 ) .ˆ2+ l e n g t h f o r e c l i p s e 2 ( : , : , 2 )

.ˆ2+ l e n g t h f o r e c l i p s e 2 ( : , : , 3 ) . ˆ 2 ) ;
126

127 sum1 = sum ( ( f i r s t 1 >0) . * ( second>0) .* not ( ( norm3<s2 ) . * ( dot (R( : , i ) , r ( : , i )
)<0) ) . . .

128 .* f i r s t 1 .* second *( s i n (nu) ’ ) ) .* ( 2* pi . /N2) . * ( p i . /N3) ;
129 sum2 = sum ( ( f i r s t 2 >0) . * ( second>0) .* not ( ( norm4<s1 ) . * ( dot (R( : , i ) , r ( : , i )

)>0) ) . . .
130 .* f i r s t 2 .* second *( s i n (nu) ’ ) ) .* ( 2* pi . /N2) . * ( p i . /N3) ;
131

132 r e s u l t 1 ( i ) = sum1 ;
133 r e s u l t 2 ( i ) = sum2 ;
134 end
135

136 r e s u l t 1 = r e s u l t 1 .* s1 ˆ 2 . / ( p i * R dis t ˆ2) ;
137 r e s u l t 2 = r e s u l t 2 .* s2 ˆ 2 . / ( p i * R dis t ˆ2) ;
138

139 %% Plot time domain
140 Result = r e s u l t 1 + r e s u l t 2 ;
141 f i g u r e ( )
142 hold on ;
143 p lo t ( omega* t , Result , ’b ’ , omega* t , r e su l t 1 , ’ r ’ , omega* t , r e su l t 2 , ’ g ’ )
144 a x i s ( [ omega* t (1 ) omega* t ( round (1*N/5) ) 0 max( Result )+max( Result ) * 0 . 1 ] ) ;
145 %a x i s ( [ omega* t (1 ) omega* t (N/5)+dt /10*omega 0 max( Result )+max( Result )

* 0 . 1 ] ) ;
146 x l a b e l ( ’ \ theta ’ ) ; y l a b e l ( ’ f B ( t ) ’ ) ;
147 s e t ( gca , ’ f o n t s i z e ’ , 15) ;
148

149 % Plot Four i e r domain
150 Result = r e s u l t 1 + r e s u l t 2 ;
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151 Four ie r = f f t ( Result ,N+1) ;
152 Fs = (N+1)/ Total Time ; %or 1/ dt
153 f reqHz = (−(N/2) : (N/2) ) *Fs /(N+1) ;
154 Four ie r = [ Four i e r ( (N/2+1) : (N+1) ) Four i e r ( 1 : (N/2) ) ] ;
155 f i g u r e ( )
156 p lo t ( freqHz , Fourier , ’b ’ )%, freqHz , imag ( Four i e r ) , ’m’ )
157 x l a b e l ( ’ \nu [ Hz ] ’ ) ; y l a b e l ( ’ f (\nu) ’ )
158 % Axis zoom
159 s e t ( gca , ’ f o n t s i z e ’ , 15) ;
160 a x i s ([−3*10ˆ−5 3*10ˆ−5 −4*10ˆ−4 6.5*10ˆ−4])
161

162

163 %% Plot phase o f Four i e r domain
164 f i g u r e ( )
165 hold on ;
166 p lo t ( freqHz , unwrap ( ang le ( Four i e r ) ) )
167 xlim ([−2*10ˆ−5 2*10ˆ−5]) ;
168 s e t ( gca , ’ f o n t s i z e ’ , 15) ;
169 x l a b e l ( ’ \nu ’ ) ; y l a b e l ( ’ Phase ’ ) ;
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