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1 Introduction

In industrial processes a lot of effort is put into reliability analysis of products. It is im-
portant to know how long one can expect a product or piece of equipment to last before
failing. For example, this knowledge is important in the aviation industry to forecast
when reparations should be scheduled for airplanes. In commercial industries this data
can be used to price insurances to turn a profit for the seller. The main distributions for
modelling these are the Weibull and the exponential distribution. However, it is common
to run into reliability data that cannot be described accurately by either of these models.
This prompted the development of a more general model for data analysis.

In 1962 the generalized gamma distribution was introduced to address this problem
(Stacy, 1962). The generalized gamma distribution is, as its name suggests, a gener-
alization of the gamma distribution and contains three parameters. The generalized
gamma reduces to, the exponential, the Weibull and the gamma distribution for certain
values of the parameters. This gives it great flexibility in data analysis as it can describe
a wider range of data sets. In other cases, the generalized gamma can aid in discerning
which model to use in an analysis, for example the choice of using the Weibull over the
exponential distribution.

For all the advantages that the GGD brings with it, parameter estimation has remained a
key barrier to the widespread adoption of the distribution. Often times, even for sample
sizes of 200 to 300, maximum likelihood estimates fail to converge, meaning that there
is still a large error between the estimated and the real value of the parameters. In this
paper I will highlight the difficulties in parameter estimation for the GGD and compare
multiple estimation methods that have been proposed.

In Chapter 2 I will give an introduction to the generalized gamma distribution by explain-
ing its parameters and properties and concluding with examples of applications of the
GGD to data analysis. In Chapter 3 I outline different estimation methods and give the-
oretical derivations before comparing the results of the methods in Chapter 4. I conclude
the paper in Chapter 5 with new findings for parameter estimation of the generalized
gamma distribution.
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2 The Generalized Gamma Distribution

In this chapter I will give a brief introduction to the generalized gamma distribution.
I will give an overview of what types of shapes the GGD can take on and some of the
properties the distribution has. This will give an intuitive sense of what the distribution
is. As mentioned in the introduction, the GGD is a very flexible model with lots of ap-
plications in statistics. I will highlight some of the aspects that give rise to the GGD’s
applicability.

The generalized gamma distribution (GGD) was introduced in (Stacy, 1962) as a unifica-
tion of distributions such as the Weibull, gamma and lognormal distribution. Its density
is given by

f(x|α, β, k) = βxβk−1

αβkΓ(k)
exp

[
−
(x
α

)β]

this is a reparametrization of the original GGD described in (Stacy, 1962),
with α = a, β = p, k = d

p
. The GGD encompasses distributions such as the Weibull dis-

tribution (for k = 1), the gamma distribution (β = 1), lognormal distribution (k →∞).
A list of sub-distributions is given in Subsection 2.2.

The flexibility of the GGD lends itself to being used for data analysis in various fields.
The GGD has been applied to: health cost, where the GGD was used in regression mod-
elling (Manning, Basu, Mullahy, & Manning, 2002). Civil engineering, where it was used
in a flood frequency model (Pham & Almhana, 1995). Economics, where it was used to
model income distributions (Kleiber & Kotz, 2003).

Despite its flexibility, parameter estimation is a key issue in applying the GGD to data
analysis. Estimators tend to peform poorly under low sample size. Additionally, param-
eter estimation through maximum likelihood result results in large mean square errors.
Various estimators have been proposed to circumvent these problems. The most well-
known of these being estimation through logarithmic cumulants (Gao, Ouyang, Luo,
Liang, & Zhou, 2016) and (Zhang et al., 2020). As well as an estimator through bayesian
inference (Ramos, Achcar, Moala, Ramos, & Louzada, 2017). We will also be analysing
an improvement of the maximum likelihood estimation described in (Noufaily & Jones,
2013). In this paper we will provide a comparison of these estimators and analyse the
strengths of one estimator over the other.
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2.1 Parameters of the GGD

The GGD contains three parameters. One is a scale parameter, controlling for the con-
centration of the mass of the distribution. Two of the parameters are shape parameters,
meaning simply that the general shape of the distribution is determined by these two
values.

The parameter α is a scale parameter. As α increases, the distribution becomes more
”spread out” while the distribution becomes more and more concentrated around a point
as α decreases to zero. In Figure 1 we see the plot of the GGD with values of α between
1 and 4.

Figure 1: The GGD for β = 3, k = 3, α = 1, 2, 3, 4
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β and k are shape parameters. The graph of the GGD can vary wildly with different val-
ues for these two parameters. Nevertheless I try to paint a picture of how each parameter
affects the GGD. In the following two figures, α is chosen equal to 10 as the graph will be
very slim for small values, which gets in the way of showcasing the influence of the other
parameters. In Figure 2 we see plots for varying values of k. We see that small values of
k can turn the GGD into a decreasing function. For higher values of k the distribution
tends to become more and more symmetrical and the peak moves asymptotically to the
right. In fact, for k →∞, the GGD reduces to a lognormal distribution.

Figure 2: The GGD for α = 10, β = 1, k = 0.5, 1, 3, 8
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In Figure 3 we see plots for β. We see that for low values of the parameter, the graph
turns into a decreasing function as well. As β increases, we see that the mass of the
distribution gets more and more concentrated.

Figure 3: The GGD for α = 3, k = 2, β = 0.5, 1, 3, 8
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2.2 Properties of the GGD

As mentioned at the start of the chapter the GGD encompasses many other distributions
used in statistics. In Table 1 we see a list of distributions that can be obtained for special
parameters of the GGD.

Distribution PDF Parameter values

Weibull β
α

(
x
α

)β−1
exp

(
−
(
x
α

)β)
k = 1

Gamma 1
αkΓ(k)

xk−1 exp
(
− x

α

)
β = 1

Chi-squared 1
2n/2Γ(n

2
)
xn/2−1 exp

(
−x

2

)
α = 2, β = 1, k = n

2

Exponential 1
α
exp

(
−x

β

)
β = 1, k = 1

Half-normal 2√
2π

exp
(
−x2

2

)
α =
√
2, β = 2, k = 1

2

Rayleigh x
σ2 exp

(
− x2

2σ2

)
α = σ

√
2, β = 2, k = 1

Table 1: Distributions encompassed by the GGD

Let X have pdf f(x|α, β, k), X ∼ f(x|α, β, k), where f denotes the generalized gamma
distribution. Then we have the following:

Property 1, a multiple of a rv from the GGD is also a rv from the GGD
If X ∼ f(x|α, β, k), cX ∼ f(x|cα, β, k), where c > 0

Property 2, powers of a rv from the GGD is also a rv from the GGD
If X ∼ f(x|α, β, k), Xm ∼ f(x|am, β/m, k)

Property 3, moments of the GGD

The rth moment of X is given by E(Xr) =

{
arΓ{(kβ + r)/β}/Γ(k), if r

p
> −k

∞, otherwise
.
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2.3 Applications of the GGD as a lifetime distribution

A good way to show the applicability of the GGD is through the applications of its sub-
distributions. Here I will explain the uses of three of the GGD’s sub-distributions; the
Weibull, the lognormal and the gamma distribution.

The Weibull distribution
A random variable X that has a Weibull distribution has PDF

f(x|λ, k) = k

λ

(x
λ

)k−1

exp

[(x
λ

)k]
The Weibull is used in lifetime analysis. Lifetime analysis is used in studying how long
a piece of equipment can be expected to function without failing. This can be useful
information when one wants to price their insurance policy for example. If an insurance
company knows how long a product will last without failing or breaking (on average).
And how much reparations will cost a company when insurance is exercised, then the
price of the insurance can be chosen such that the company will make a profit in the long
run. In vehicles such as airplanes this type of analysis can be used to schedule mainte-
nance before the vehicle breaks down.

Once the parameters for a Weibull distribution have been fitted, one can obtain informa-
tion such as:

• Reliability after a period of time: The probability that a product is still functional
after, for example, 12 months of use.

• Average life span: How long a product will function on average before becoming
unusable.

• Failure rate: How many units of a product can be expected to break after a certain
period of time.

The gamma distribution A random variable X that has a gamma distribution has
PDF

f(x|α, β) = xα−1e−βxβα

Γ(α)

The gamma distribution can be used in reliability analysis. Reliability analysis is used
in cases where it is possible for a product to fail multiple times, the gamma distribution
can then describe the expected time in between two failures.
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The lognormal distribution
A random variable X that has a lognormal distribution has PDF

f(x|µ, σ) = 1

xσ
√
2π

exp

[
−(ln(x)− µ)2

2σ2

]
Aside from being used in lifetime analysis like the Weibull distribution. The lognormal
is often times used in engineering analysis where negative values for random variables
are physically impossible. This makes the lognormal a preferred distribution over the
normal distribution in some cases. This property is used in analyzing stock returns as
well. Stock returns are often said to follow a lognormal distribution.

The GGD can contribute to research where one would like to use these distributions but
is unsure of which exact distribution can be best used for a given data set. For example,
let’s say one wants to examine whether a given data set follows a Weibull distribution. As
mentioned in Subsection 2.2, The GGD reduces to the Weibull for k = 1. Thus one can
test hypothesis k = 1 (the data is described by a Weibull distribution) versus k ̸= 1 (the
data follows a different distribution). In the case that k = 1 seems likely, a researcher
can then choose to model the data with a Weibull.

It can also happen that a given data set does not quite follow any of the previously listed
sub-distributions of the GGD. In this case the GGD might be preferable for modelling
the data, as it has similar properties to its sub-distributions but is more flexible.
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3 Parameter estimation methods

This section will highlight why maximum likelihood estimation for the parameters of the
GGD can be tricky. Section 3.2 until 3.5 will go into detail on 5 parameter estimation
methods for the generalized gamma. Some details on my implementation of the methods
will be given and each estimation method will be used to estimate samples from the
GGD for various values of the parameters. The results will be given in tables with some
comments provided alongside them. A side-to-side comparison of all the methods will be
given in Section 4.

3.1 Problems with Maximum Likelihood Estimation

In this section we will further explore the problems one encounters with the MLEs for
the GGD. Let x1, ..., xn denote random samples from the GGD with parameters α, β and
k. We then obtain the following system of equations.

− nk̂ +
n∑

i=1

(
ti
α̂

)β̂

= 0 (1)

n

β̂
+ k̂

n∑
i=1

log

(
ti
α̂

)
−

n∑
i=1

(
ti
α̂

)β̂

log

(
ti
α̂

)
= 0 (2)

− nψ(k̂) + β̂
n∑

i=1

log

(
ti
α̂

)
= 0 (3)

Where ψ(k) = d
dk
log(Γ(k)). Also known as the digamma function. This system of

equations are coupled and thus need to be solved simultaneously. Hager & Bain showed
that this system can be reduced to a single non-linear equation in the unknown quantity
b̂ (Hager & Bain, 1970). We do this by rewriting Equation (1) to

â =

[
n∑

i=1

tb̂i/(nk̂)

]1/b̂
(4)

Substituting this expression for â into Equation (2), we obtain

− k̂ =
{
b̂
[
(
∑

log ti)/n− (
∑

tb̂i)/
∑

tb̂i

]}−1

(5)

Equation (3) can then be rewritten to

− ψ(k̂) + b̂(
∑

log ti)/n− log(
∑

tb̂i) + log(nk̂) = 0 (6)

with k̂ as given above. With equation (6), we can find maximum likelihood estimates by
finding the root β̂ and then substituting into Equation (5). Finally, we obtain our estimate
α̂ from Equation (4). Finding the root for Equation (6) can be done by methods such as
Newton-Raphson and the bisection method. Unfortunately, Hager & Bain state that the
Newton-Raphson method does not work well in solving this final expression. They add
that the maximum likelihood estimators are not very well-behaved unless sample sizes
are large, meaning maximum likelihood estimates tend to have a large margin of error for
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lower sample sizes. Indeed, even for sample sizes of size three hundred, it can happen that
the m.l.e.’s fail to converge to the true parameter values. The problem of finding estimates
with maximum likelihood is further analysed in (Lawless, 1980). We reparametrise the
GGD to a different form. This form will be equivalent to the parametrisation given in the
introduction and will highlight why we run into trouble when estimating the parameters.
Let t1, ..., tn be samples from the generalized gamma distribution. Let yi = log(ti) for
i = 1, ..., n. Then the samples yi can be shown to have distribution function

f(y) =
kk−

1
2

σΓ(k)
exp

{√
kω − keω/

√
k
}

where ω = σ−1(y − µ), µ = log(α) + β−1log(k), σ = 1√
kβ2

and k = α
β
.

We will refer to this distribution as the log ggd. This parametrisation is equivalent to
the GGD in the sense that the same distributions can still be obtained from the GGD as
from this distribution, with the caveat that this distribution will produce the logarithm
of the distributions that the GGD produces. For example, for values k = 1, the GGD
reduces to the Weibull distribution. In the new distribution in y, the k = 1 produces the
log of the Weibull distribution. Similarly k =∞ produces the log-normal distribution in
the GGD, and produces the normal (the log of the log-normal) distribution in the new
distribution. Finally, where β = 1 produced the gamma distribution in the GGD, σ√

k
= 1

now produces the log-gamma distribution.

In this distribution, it is clear why parameter estimation is difficult. As can be seen in
the figure, different values of k can produce similar probability distribution functions.
Going back to the (α, β, k) parametrisation, for similar values for σ and µ, but different
values of k, will have very different values of α and β.

Figure 4: The GGD for various values of k
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3.2 Lawless method

Lawless solves the issue with ML estimation by assuming k to be fixed in the log ggd
and performing maximum likelihood estimation on the other two parameters, µ and σ.
Lawless states two reasons for this approach:

1. At the time, it was hard to estimate all three parameters at the same time, due to
the reasons stated in Section 3.1.

2. Often times, it is actually the case that the GGD is used with a fixed value for
k. For example, take the Weibull distribution which is often used to analyse the
lifespan of products. In this case k is chosen to be equal to 1.

After estimating values for µ and σ for a given k, we vary over k in order to maximize the
likelihood over all three parameters. First we derive the maximum likelihood estimators
for µ and σ. Again, let T1, ..., Tn be samples from the GGD, take Yi = log(Ti), then a
reparametrisation of the generalized gamma gives us probability density function.

f(y) =
kk−

1
2

σΓ(k)
exp

{√
kω − keω/

√
k
}

where ω = σ−1(y − µ), µ = log(α) + β−1log(k), σ = 1√
kβ2

and k = α
β
. It is mentioned in

the paper that a reasonable range for σ and is the interval (0,6). As for µ, a reasonable
interval is (-4,4).
This density admits log likelihood

n

{
− log σ + (k − 1

2
) log k − log Γ(k) +

√
k
Y − µ
σ
− k exp

(
−µ
σ
√
k

)
S0

}
where Sj ≡ 1

n

∑n
i=1 Y

j
i exp

(
Yi

σ
√
k

)
Differentiating the log likelihood with respect to µ, σ

and k, we get score equations

0 =
n
√
k

σ

{
exp

(
−µ
σ
√
k

)
S0 − 1

}
(7)

0 =
n
√
k

σ2

{
exp

(
−µ
σ
√
k

)
(S1 − µS0)−

σ√
k
− Y + µ

}
(8)

0 = n

{
exp

(
−µ
σ
√
k

)(
S1 − µS0

2σ
√
k
− S0

)
+ log k + 1− 1

2k
− ψ(k) + Y − µ

2σ
√
k

}
(9)

Solving the first equation, we get

µ̂ = σ
√
k logS0 (10)

Substituting this expression into Equation (8), we can write

R(σ) ≡ S1

S0

− Y − σ̂√
k
= 0 (11)
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The full estimation method can be described as follows:

1. Choose a range of values for k over which to estimate the other parameters µ and
σ with a certain step size. I have chosen the interval [0.3,30] with step size 0.1.

2. For a given value k, estimate σ by using the bisection method for Equation (11).

3. Substitute the estimated value σ̂ into Equation (10) to find µ̂

4. repeat this for all values k in the chosen range to obtain a set of vectors (σ,µ,k)

5. Within this set of vectors (σ,µ,k), choose the vector for which the loglikelihood
logL(σ̂,µ̂,k) is highest. Let’s denote this vector by (σ̂, µ̂, k)mid

6. For kmid, choose interval [kmid − ε, kmid + ε] with a chosen step size. I chose ε = 2,
and step size 0.01.

7. Repeat step 1 until step 4 for this new range of values for k.

8. Within this new set of vectors (σ,µ,k), choose the vector for which the loglikelihood
logL(σ̂,µ̂,k) is highest. This is the obtained estimator.
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3.2.1 Results

Results will be given based on 500 estimations for every set of parameters. Every method
will be used to estimate the following sets of parameters for (α, β, k): (3, 0.5, 3), (5, 2, 0.5),
(4, 0.5, 2), (7, 3, 1), (2, 5, 8). This will provide a varied range of values for the parameters
and various shapes for the GGD to test the estimation methods on. Since this section and
Section 3.3 contain a different parametrisation, these sets of parameters will correspond
to (1.15, 3.3, 3), (0.71, 1.26, 0.5), (1.41, 2.78, 2), (0.33, 1.95, 1), (0.07, 1.11, 8).

Lawless’ method is computationally intensive since we have to find σ and µ for every
single value of k in our range. Especially the repeated calculation of σ makes this a very
costly computation. The estimations with Lawless’ method took a significantly longer
time to compute than the other methods. The first thing we notice by looking at the
tables is that the estimates for k consistently have higher bias and MSE than the other
two parameters. The MSE for k tends to be larger for larger values of k. This will be
a recurring theme in the other estimation methods. The other two parameters however,
are estimated quite nicely by Lawless’ method. Even for small sample sizes the MSE for
σ and µ tend to stay small.

input (σ, µ, k) estimates bias MSE
(1.15, 3.3, 3) (1.05, 3.23, 7.60) (-0.11, -0.06, 4.60) (0.07, 0.31, 60.13)
(0.71, 1.26, 0.5) (0.65, 1.25, 1.51) (-0.05, -0.01, 1.00) (0.03, 0.05, 10.59)
(1.41, 2.78, 2) (0.60, 2.24, 3.78) (-0.81, -0.53, 1.78) (0.91, 0.59, 32.89)
(0.33, 1.95, 1) (0.29, 1.94, 4.40) (-0.04, -0.00, 3.40) (0.01, 0.02, 40.96)
(0.07, 1.11, 8) (0.07, 1.11, 10.55) (0.00, 0.00, 2.55) (0.00, 0.00, 38.74)

Table 2: 500 estimations with Lawless method with data sets of size n = 20

input (σ, µ, k) estimates bias MSE
(1.15, 3.3, 3) (1.10, 3.35, 3.62) (-0.05, 0.6, 0.62) (0.02, 0.05, 4.74)
(0.71, 1.26, 0.5) (0.64, 1.28, 1.84) (-0.06, 0.01, 0.22) (0.02, 0.03, 0.85)
(1.41, 2.78, 2) (1.33, 2.82, 2.70) (-0.08, 0.05, 0.70) (0.05, 0.12, 4.36)
(0.33, 1.95, 1) (0.33, 1.93, 1.55) (0.00, -0.01, 0.55) (0.00, 0.01, 2.14)
(0.07, 1.11, 8) (0.07, 1.11, 8.96) (0.00, 0.00, 0.96) (0, 0, 13.94)

Table 3: 500 estimations with Lawless method with data sets of size n = 50

input (σ, µ, k) estimates bias MSE
(1.15, 3.3, 3) (1.15, 3.30, 3.67) (-0.01, 0.01, 0.67) (0.01, 0.03, 3.50)
(0.71, 1.26, 0.5) (0.71, 1.24, 0.63) (0.00, -0.02, 0.13) (0.01, 0.03, 0.16)
(1.41, 2.78, 2) (1.37, 2.76, 2.78) (-0.04, -0.01, 0.78) (0.02, 0.04, 4.42)
(0.33, 1.95, 1) (0.32, 1.39, 1.02) (-0.01, -0.56, 0.02) (0.00, 0.31, 0.42)
(0.07, 1.11, 8) (0.07, 1.11, 9.05) (0.00, 0.00, 1.05) (0, 0, 26.29)

Table 4: 500 estimations with Lawless method with data sets of size n = 100
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input (σ, µ, k) estimates bias MSE
(1.15, 3.3, 3) (1.15, 3.28, 3.49) (0.00, -0.01, 0.49) (0.00, 0.00, 2.04)
(0.71, 1.26, 0.5) (0.70, 1.26, 0.51) (-0.01, 0.01, 0.01) (0.01, 0.00, 0.01)
(1.41, 2.78, 2) (1.41, 2.76, 2.08) (-0.01, 0.01, 0.08) (0.03, 0.01, 0.41)
(0.33, 1.95, 1) (0.33, 1.95, 0.99) (0.00, 0.00, -0.01) (0.00, 0.00, 0.07)
(0.07, 1.11, 8) (0.07, 1.11, 8.74) (0.00, 0.00, 0.74) (0.00, 0.00, 19.46)

Table 5: 500 estimations with Lawless method with data sets of size n = 500
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3.3 Noufaily and Jones method

Noufaily and Jones solve the issues of maximum likelihood estimation by using the same
parametrisation used by Lawless and finding new estimators for the resulting distribu-
tion. This method extends the work of Lawless. Where Lawless estimates the parameters
σ and µ with k as a given, Noufaily & Jones iteratively solves for all three parameters.

Returning to the equations
µ = σ

√
klogS0

R(σ) ≡ S1

S0

− Y − σ√
k
= 0

Substituting these two expressions, we can reduce Equation (9) to

T (k) ≡ log k − ψ(k)− L√
k
= 0 (12)

where L = (µ− Y )/σ

Noufaily and Jones showed that Equation (11) and (12) have a unique root given that
L > 0. This proof will be given in 3.2.1. Solving Equation (10), (11) and (12) iteratively
will give a closer and closer estimates for µ, σ and k. Thus the estimation proposed by
Noufaily & Jones can be explained as follows. We obtain an initial value for L, with
this we can obtain an initial value for k by solving Equation (12). After this We can
substitute this value into Equation (11) to obtain an estimate for µ from Equation (10).
Now that we have new values for µ and σ, we can again obtain a new value for k by way
of Equation (12). We can repeat this process again and again, and the fact that Equation
(12) and (11) have unique roots will guarantee that we get closer and closer to the actual
values of µ, σ and k. More formally, the procedure is given as follows:

1. Set i = 0, set L = L0 > 0

2. Set i = i + 1

3. With Li−1, compute k̂i by solving Equation (12) by the bisection method or Newton
Raphson.

4. Substitute k̂i into Equation (11) and solve for σ by the bisection method or Newton
Raphson.

5. Substitute k̂i and σ̂i into Equation (10) and compute µ̂i

6. Now compute Li to obtain the value of the log likelihood function

7. Repeat steps 2-6 until desired accuracy for the likelihood. That is, stop the process
once the change in likelihood is smaller than a chosen ε

To initialize the iterative process, we have to obtain initial values for σ, µ and k. The
authors of the paper suggested the initial values for σ and µ to be simulated by a gamma
distribution with scale parameter 1, shape parameter 2. And to simulate the initial value
for µ by a standard random normal. In the case that with these values L0 < 0, we set
k = 1/L2

0 and continue to Step 4. For time reasons, the ε in Step 7 is chosen rather large,
at ε = 0.1
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3.3.1 Proof of unique solutions for R(σ) and T (k)

Noufaily & Jones showed that the Equation (11) and (12) have unique solutions. The
proofs will be provided below. First we show that the function R(σ) is monotone de-
creasing:

∂R(σ)

∂σ
=

1√
k

(
S2
1 − S0S2

σ2S2
0

− 1

)
Both of the terms inside brackets are negative. For the first term this can be seen by
applying the Cauchy-Schwartz inequality:

(
n∑

i=1

aibi)
2 ≤ (

n∑
i=1

a2i )(
n∑

i=1

b2i )

Taking ai =
1
n
Yiexp

(
Yi

2σ
√
k

)
, bi =

1
n
exp

(
Yi

2σ
√
k

)
, we obtain[

1

n

n∑
i=1

Yiexp

(
Yi

σ
√
k

)]2
≤

[
1

n

n∑
i=1

Y 2
i exp

(
Yi

σ
√
k

)][
1

n

n∑
i=1

exp

(
Yi

σ
√
k

)]
which shows S2

1 ≤ S0S2 and consequently, S2
1 − S0S2 ≤ 0. We also have that

lim
σ→0

R(σ) = Ymax − Ȳ > 0

and
lim
σ→∞

R(σ) = −∞

So we know that R(σ) is a continuous, monotone decreasing function with values greater
than 0 and values less than zero. From this we can conclude (by the intermediate value
theorem), that there is a unique value σ for which R(σ) = 0.
As for the function T (k), we will try to prove uniqueness of a solution by the intermediate
value theorem as well. We know that for small values of k we have ψ(k) ∼ −k−1.
Thus for small values of k this function will dominate the other two. Thus we have
limk→0 T (k) = −∞. For large values of k, we can write ψ(k) ∼ log(k)− (2k)−1 and thus
limk→∞ T (k) = 0. To know whether this 0 is reached from 0+ or 0−, we first rewrite (10)
as follows: µ = σ

√
k logS0 =⇒ µ

σ
√
k
= logS0. Then we have

exp

(
µ√
kσ

)
= average

(
exp

(
Y

σ
√
k

))
> exp

(
average

(
Y

σ
√
k

))
= exp

(
Ȳ√
kσ

)
The inequality can be shown with Jensen’s inequality, which states that E[g(x)] ≥ g(E[x])
given that g(x) is a concave function. Which is true for the exponential function.

From this we can conclude that µ > Ȳ . This means that L = (µ−Y )/σ > 0. Since−L/
√
k

is negative and is the dominant term for large k, we approach zero from the negative side.
Now the only step that is left is to show that T (k) is a monotone decreasing function.
Let us rewrite T(k) to

T (k) ≡
√
k(log(k)− ψ(k))

and solve for T (k) = L. This is an equivalent problem. Theorem 1 of (Alzer, 1997)
states that kα(log(k) − ψ(k)) is completely monotonic on (0,∞) for any α ≤ 1. Thus,
our function T (k) is monotone decreasing. At last, we conclude that Equations (11) and
(12) have unique solutions.
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3.3.2 Results

Even for small sample sizes, the estimator seems to perform quite well for the parameters
σ and µ. The same can be said for when k is small. However, we can see that as k
gets larger, the estimation for k becomes more off-target. This is not surprising, as we
saw that the pdf of this parametrisation does not change that much as k gets larger and
larger. It is noteworthy, however, to see that the estimates for k have larger error than
Lawless’ way of estimation.

input (σ, µ, k) estimates bias MSE
(1.15, 3.3, 3) (0.97, 3.54, 1.63) (-0.18, 0.25, -1.37) (0.08, 0.22, 4.82)
(0.71, 1.26, 0.5) (0.75, 1.12, 1.84) (0.05, -0.14, 1.34) (0.04, 0.11, 5.57)
(1.41, 2.78, 2) (1.2, 3.07, 1.55) (-0.21, 0.3, -0.45) (0.13, 0.38, 2.79)
(0.33, 1.95, 1) (0.31, 1.95, 1.53) (-0.02, 0, 0.53) (0.01, 0.02, 2.89)
(0.07, 1.11, 8) (0.06, 1.12, 3.01) (-0.01, 0.01, -4.99) (0, 0, 30.24)

Table 6: 500 estimations with Noufaily method with data sets of size n = 20

input (σ, µ, k) estimates bias MSE
(1.15, 3.3, 3) (1.07, 3.44, 1.95) (-0.08, 0.15, -1.05) (0.03, 0.08, 3.26)
(0.71, 1.26, 0.5) (0.72, 1.19, 1.12) (0.01, -0.07, 0.62) (0.02, 0.04, 2.28)
(1.41, 2.78, 2) (1.33, 2.91, 1.81) (-0.08, 0.13, -0.19) (0.04, 0.12, 2.08)
(0.33, 1.95, 1) (0.32, 1.94, 1.9) (-0.01, -0.01, 0.9) (0, 0.01, 4.78)
(0.07, 1.11, 8) (0.07, 1.12, 3.25) (0, 0.01, -4.75) (0, 0, 26.83)

Table 7: 500 estimations with Noufaily and Jones method with data sets of size n = 50

input (σ, µ, k) estimates bias MSE
(1.15, 3.3, 3) (1.1, 3.41, 1.97) (-0.05, 0.11, -1.03) (0.01, 0.04, 2.49)
(0.71, 1.26, 0.5) (0.72, 1.21, 0.79) (0.01, -0.05, 0.29) (0.01, 0.03, 0.68)
(1.41, 2.78, 2) (1.35, 2.87, 1.87) (-0.06, 0.1, -0.13) (0.02, 0.07, 2.05)
(0.33, 1.95, 1) (0.33, 1.95, 1.47) (-0.01, 0, 0.47) (0, 0, 2.32)
(0.07, 1.11, 8) (0.07, 1.12, 3.4) (0, 0.01, -4.6) (0, 0, 24.92)

Table 8: 500 estimations with Noufaily and Jones method with data sets of size n = 100

input (σ, µ, k) estimates bias MSE
(1.15, 3.3, 3) (1.1, 3.41, 1.97) (-0.05, 0.11, -1.03) (0.01, 0.04, 2.49)
(0.71, 1.26, 0.5) (0.72, 1.21, 0.79) (0.01, -0.05, 0.29) (0.01, 0.03, 0.68)
(1.41, 2.78, 2) (1.35, 2.87, 1.87) (-0.06, 0.1, -0.13) (0.02, 0.07, 2.05)
(0.33, 1.95, 1) (0.33, 1.95, 1.47) (-0.01, 0, 0.47) (0, 0, 2.32)
(0.07, 1.11, 8) (0.07, 1.12, 2.67) (0.00, 0.02, -5.32) (0, 0, 32)

Table 9: 500 estimations with Noufaily and Jones method with data sets of size n = 500
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3.4 Gao method

Gao et al. uses yet another parametrisation of the GGD, namely

p(x) =
|β|kk

σΓ(k)

(x
σ

)kβ−1

exp

{
−k
(x
σ

)β}
The original parametrisation can be obtained by making the substitution σ = α exp

(
log k
α

)β
The estimator proposed is based on log cumulants of the GGD and expands on the work
of (Li, Hong, Wu, & Fan, 2011). Gao et al. (2016) proposes an estimator that can be
used in situations where the original method of log-cumulants (MoLC) fails analytical
conditions for application. The first three theoretical log cumulants are given below by
c1, c2 and c3 and their empirical counterparts are given by ĉ1, ĉ2 and ĉ3

c1 = log(α) + (ψ(k)− log(k))/β ĉ1 =
1

n

n∑
i=1

log(xi) (13)

c2 = ψ(1, k)/β2 ĉ2 =
1

n

n∑
i=1

(log(xi − ĉ1))2 (14)

c3 = ψ(2, k)/β3 ĉ3 =
1

n

n∑
i=1

(log(xi − ĉ1))3 (15)

where ψ(·) denotes the digamma function and ψ(m, ·) denotes polygamma function, the
mth order derivative of the digamma function. These quantities can be estimated by the
following equations: ĉ1 =

1
n

∑n
i=1 log(xi) ĉ2 =

1
n

∑n
i=1(log(xi− ĉ1))2 ĉ3 =

1
n

∑n
i=1(log(xi−

ĉ1))
3

From these log-cumulants and their estimators, we obtain a function g(k̂). This function
will be used to estimate the parameter k.

λ =
ĉ32
ĉ23

=
ψ3(1, k̂)

ψ2(2, k̂)
= g(k̂) (16)

(Li et al., 2011) showed that the remaining two parameters can be estimated by

β̂ = sgn(−ĉ3)
√
ψ(1, k̂)/ĉ2

α̂ = exp
{
ĉ1 − (ψ(k̂)− log(k̂))/β̂

}

For large values of k, we can approximate the polygamma functions by ψ(1, k) ≈ 1
k
+ 1

2k2

and ψ(2, k) ≈ − 1
k2
− 1

k3
with this we can rewrite

g(k̂) =
ĉ32
ĉ23

= λ ≈
( 1
k̂
+ 1

2k̂2
)3

(− 1

k̂2
− 1

k̂3
)2

using yet another approximation k2 + k ≈ (k + 1
2
)2 we can further rewrite the equation

to λ = k̂2

k̂+ 1
2

0 ≈ k̂2 − kλ− 1
2
λ. From this we get the final approximation for k:

k̂ =
λ+
√
λ2 + 2λ

2
(17)
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The proposed scheme for estimating parameters is given by the following:

1. For a given sample of data, compute the sample log-cumulants given in (7), (8) and
(9)

2. If λ < 0.25, estimate k̂ by equation (11). If not, go to the next step.

3. If λ ≥ 2.3052, the proposed estimator in (11) is still accurate. Otherwise, use the
original MoLC.

4. use the estimated k̂ to find estimates β̂ and σ̂.

As seen from these equations, Gao’s estimation method is a series of simple calculations
as opposed to iterative methods which can take multiple thousands of iterations before
admitting approximations.

3.4.1 Results

For Gao’s estimation method, we estimate parameters based on sample sizes n = 20,
n = 50 and n = 100 and n = 500. For each size we repeat the estimation procedure M =
500 times and calculate the sample mean, bias and MSE.

Looking at the bias we see that the β is consistently estimated to be lower than the actual
value. We also see that the MSE is highest for k = 8, especially in the cases where the
sample size is smaller.

The first thing that should be noted is that for almost all sample sizes, the estimates
for the third parameter k are off by a large margin. This can be seen most clearly when
looking at the MSE of each table. It can be seen that the error in the estimated value
gets larger as the real value of k grows. Though as the sample size grows, the estimated
values get closer and closer to the real values. It should be noted that the authors showed
reasonable results for this estimator for sample sizes of n = 50000.

The opposite seems to hold for the estimates for α and β, where the bias for these two
parameters is less than 1 in every table. The MSE for these two parameters stays under
1 as well, for the most part. With this it seems that the estimation method proposed by
(Gao et al., 2016) performs quite well under low sample sizes for the first two parameters.
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input (α, β, k) estimates bias MSE
(3, 0.5, 3) (2.79, 0.34, 1873.48) (-0.21, -0.16, 1870.48) (1.04, 0.2, 9.81 x 108)
(5, 2, 0.5) (4.02, 0.94, 344.26) (-0.98, -1.06, 343.76) (2.12, 1.45, 2.71 x 107)
(4, 0.5, 2) (3.72, 0.36, 6421.94) (-0.28, -0.14, 6419.94) (2.78, 0.15, 1.21 x 1010)
(7, 3, 1) (6.53, 1.72, 248.06) (-0.47, -1.28, 247.06) (0.73, 3.84, 1.00 x 107)
(2, 5, 8) (1.99, 3.53, 936.1) (-0.01, -1.47, 928.1) (0, 57.99, 8.21 x 107)

Table 10: 500 estimations with Gao method for data sets of size n = 20

input (α, β, k) estimates bias MSE
(3, 0.5, 3) (2.92, 0.43, 10473700) (-0.08, -0.07, 10473700) (0.58, 0.11, 5.48 x 1016)
(5, 2, 0.5) (4.29, 1.17, 1.67) (-0.71, -0.83, 1.17) (1.18, 0.93, 4.54)
(4, 0.5, 2) (3.75, 0.43, 162404) (-0.25, -0.07, 162402) (1.45, 0.08, 1.31 x 1013)
(7, 3, 1) (6.77, 2.3, 20.69) (-0.23, -0.7, 19.69) (0.35, 1.87, 8.61 x 104)
(2, 5, 8) (2, 4.81, 505.84) (0, -0.19, 497.84) (0, 24.3, 1.85 x 107)

Table 11: 500 estimations with Gao method for data sets of size n = 50

input (α, β, k) estimates bias MSE
(3, 0.5, 3) (2.95, 0.47, 362.36) (-0.05, -0.03, 359.36) (0.32, 0.07, 2.34 x 107)
(5, 2, 0.5) (4.51, 1.33, 1.06) (-0.49, -0.67, 0.56) (0.71, 0.66, 0.68)
(4, 0.5, 2) (3.85, 0.45, 20.07) (-0.15, -0.05, 18.07) (0.89, 0.05, 5.48 x 104)
(7, 3, 1) (6.85, 2.56, 2.01) (-0.15, -0.44, 1.01) (0.2, 1.17, 6.72)
(2, 5, 8) (2, 4.9, 3045.01) (0, -0.1, 3037.01) (0, 13.43, 2.02 x 109)

Table 12: 500 estimations with Gao method for data sets of size n = 100

input (α, β, k) estimates bias MSE
(3, 0.5, 3) (2.99, 0.5, 3.63) (-0.01, 0, 0.63) (0.08, 0.02, 4.47)
(5, 2, 0.5) (4.64, 1.46, 0.78) (-0.36, -0.54, 0.28) (0.26, 0.38, 0.12)
(4, 0.5, 2) (3.93, 0.48, 2.4) (-0.07, -0.02, 0.4) (0.21, 0.01, 1.16)
(7, 3, 1) (6.91, 2.7, 1.27) (-0.09, -0.3, 0.27) (0.05, 0.39, 0.24)
(2, 5, 8) (2, 5.1, 15.43) (0, 0.1, 7.43) (0, 2.99, 5309.04)

Table 13: 500 estimations with Gao method for data sets of size n = 500
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3.5 Zhang method

In (Zhang et al., 2020) the proposed estimator makes use of the maximum likelihood
equations. Equation (2) is rewritten to

k̂ =

[
β̂

(∑n
i=1 t

β̂
i log ti∑n

i=1 t
β̂
i

−
∑n

i=1 log ti
n

)]−1

(18)

and the estimator for α remains unchanged,

α̂ =

(
1

nk̂

n∑
i=1

tβ̂i

)1/β̂

(19)

Noting that both of these estimators are functions of β (and can be denoted k(β)andα(β)),
we only need a way of estimating β and the parameters α and will follow. In this paper
an estimator for β is found based on log-cumulants. Making use of the Mellin transform,
the equation for the second log-cumulant is obtained,

ξ2 =
1

β2
ψ(1, k)

Since we have an estimator for k, we can rewrite the second log-cumulant as

ξ2(β) =
1

β2
ψ

1,

[
β̂

(∑n
i=1 t

β̂
i log ti∑n

i=1 t
β̂
i

−
∑n

i=1 log ti
n

)]−1


The sample log-cumulant can be calculated with formulas

µ̂ =
1

n

n∑
i=1

log(ti), ξ̂2 =
1

n− 1

n∑
i=1

(log ti − µ̂)2

With this, we should have
ξ2(β)− ξ̂2 = 0 (20)
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3.5.1 Details of the estimation method

Given Equation (20), the paper gives details on how to find an interval from which to
start the bisection method to find the root. The main idea is to find values β1 and β2 such
that ξ2(β1) ≤ ξ̂2 and ξ2(β) > ξ̂2. In the first part of the procedure we simulate random
values βsim in the parameter space of β and find values of β such that ξ2(βsim) > ξ̂2. The
second part finds values βmin such that ξ2(βsim) ≤ ξ̂2 by finding a local minimum of ξ2(β)
by way of Gradient Descent.

1. Simulate Nβ values of βinitial within a preset parameter space. I chose Nβ = 30
values to be simulated in interval [0, 7]

2. From the Nβ values select N ′
β values of βinitial for which ξ2(βinitial) > ξ̂2

3. Generate N ′
β sets of vectors (βinitial, βmin, ξ2(βmin)), where βmin and ξ2(βmin) are

obtained for each βinitial as follows:

(a) Initialise β(0) = βinitial

(b) While |β(T )−β(T−1)| > ε: do
β(T+1) = β(T ) + η[−ξ′2(β(T ))],
where I chose ε = 0.1, T is the current iteration number, ξ′2(β) is the first
derivative of ξ′2(β), η is the learning rate which is found by a linear search in
the interval η ∈ [0,η̃] by η̂ = argmin

η
(|ξ′2(η)|). Given that β ∈ [0, 7], we have

η̃ =

{
(β(T ) − 7)/ξ′2(η) for ξ′2(η) < 0

β(T )/ξ′2(η) for ξ′2(η) > 0

(c) Return to Step 3(a) for the next βinitial

(d) Once Steps 3(a)-3(c) terminate, obtain βmin = β(T ) and ξ′2(βmin)

4. From the N ′
β sets of vectors, select N ′′

β sets of vectors (βinitial, βmin, ξ2(βmin)) ac-

cording to the criterion ξ2(βmin) ≤ ξ̂2

5. From the N ′′
β sets of vectors, select vector for which βmin is largest. Denote this

vector by (β∗
initial, β

∗
min, ξ2(β

∗
min)).

6. Find β̂ by performing the bisection method on Equation (20) with the interval for
the bisection method given by [min(β∗

initial, β
∗
min),max(β∗

initial, β
∗
min)].

7. Estimate k̂ =

[
β̂

(∑n
i=1 t

β̂
i logti∑n

i=1 t
β̂
i

−
∑n

i=1 logti
n

)]−1

8. Estimate α̂ =
(

1

nk̂

∑n
i=1 t

β̂
i

)1/β̂
In step 3 we have

ξ′2(β) =
1

β2

(
∂k

∂β
ψ[2, k(β)]− 2ψ[1, k(β)]

)
∂k

∂β
= − 1

β2
(∑n

i=1 t
β
i log ti∑n

i=1 ti
−

∑n
i=1 log ti

n

) −
∑n

i=1 t
β
i (log ti)

2∑n
i=1 ti

− (
∑n

i=1 t
β
i log ti)

2

(
∑n

i=1 ti
)2

β
(∑n

i=1 t
β
i log ti∑n

i=1 ti
−

∑n
i=1 log ti

n

)
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3.5.2 Results

It is clear that Zhang’s method gives very accurate estimates for β. However, in all
sample sizes the estimates for β = 5 are not accurate. Future results for β = 5 might
improve by increasing the number Nβ for initial samples of β. What can also be seen is
that across all sample sizes, the parameter α tends to get underestimated, similarly to
the results in Section 3.4.

input (α, β, k) estimates bias MSE
(3, 0.5, 3) (2.41, 0.46, 3.30) (-0.58, -0.04, 0.30) (3.82, 0.02, 2.14)
(5, 2, 0.5) (4.69, 1.96, 0.55) (-0.31, -0.04, 0.05) (1.24, 0.08, 0.03)
(4, 0.5, 2) (3.73, 0.46, 2.11) (-0.27, -0.04, 0.12) (8.13, 0.02, 0.74)
(7, 3, 1) (6.64, 3.00, 1.24) (-0.36, 0.00, 0.24) (0.85, 0.00, 0.23)
(2, 5, 8) (0.69, 1.80, 3.82) (-1.31, -3.20, -4.18) (2.57, 16.00, 47.33)

Table 14: 500 estimations with Zhang method for data sets of size n = 20

input (α, β, k) estimates bias MSE
(3, 0.5, 3) (2.86, 0.45, 2.80) (-0.14, -0.05, -0.20) (3.24, 0.025, 1.23)
(5, 2, 0.5) (4.72, 1.92, 0.51) (-0.28, -0.08, 0.01) (1.58, 0.16, 0.02)
(4, 0.5, 2) (3.39, 0.42, 1.78) (-0.61, -0.08, -0.22) (4.63, 0.04, 0.77)
(7, 3, 1) (6.78, 3.00, 1.07) (-0.22, 0.00, 0.07) (0.34, 0.00, 0.04)
(2, 5, 8) (0.58, 1.50, 2.76) (-1.42, -3.50, -5.24) (2.80, 17.50, 45.78)

Table 15: 500 estimations with Zhang method for data sets of size n = 50

input (α, β, k) estimates bias MSE
(3, 0.5, 3) (3.07, 0.47, 2.83) (0.07, -0.03, -0.17) (1.59, 0.02, 0.71)
(5, 2, 0.5) (4.92, 2.00, 0.51) (-0.08, 0.00, 0.01) (0.16, 0.00, 0.00)
(4, 0.5, 2) (3.61, 0.44, 1.81) (-0.39, -0.06, -0.19) (3.75, 0.03, 0.55)
(7, 3, 1) (6.95, 3.00, 1.04) (-0.05, 0.00, 0.04) (0.12, 0.00, 0.02)
(2, 5, 8) (0.71, 1.80, 3.16) (-1.29, -3.20, -4.84) (2.56, 16.00, 41.49)

Table 16: 500 estimations with Zhang method for data sets of size n = 100

input (α, β, k) estimates bias MSE
(3, 0.5, 3) (2.61, 0.45, 2.75) (-0.39, -0.05, -0.25) (1.02, 0.03, 0.94)
(5, 2, 0.5) (4.82, 1.92, 0.48) (-0.18, -0.08, -0.02) (1.04, 0.16, 0.01)
(4, 0.5, 2) (3.44, 0.44, 1.79) (-0.56, -0.06, -0.21) (2.20, 0.03, 0.50)
(7, 3, 1) (6.96, 3.00, 1.02) (-0.04, 0.00, 0.02) (0.04, 0.00, 0.01)
(2, 5, 8) (0.72, 1.80, 2.92) (-1.28, -3.2, -5.08) (2.56, 16.00, 41.01)

Table 17: 500 estimations with Zhang method for data sets of size n = 500
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4 Comparison

4.1 Computational speed

The estimation method with the fastest runtime is Gao’s method. For all parameter
values and sample sizes I tried the runtime was no longer than a few seconds to calculate
500 estimations. This is to be expected as Gao’s method contains no iterative processes
and only relies on various formulas to provide an estimate. After Gao’s method, Noufaily
and Zhang’s estimation method alternate in runtime. In Noufaily’s algorithm, the long
runtime comes from the fact that each iteration demands the execution of two bisection
methods, one for finding σ and one for k and each estimate needs anywhere from 3 to 50
iterations. In Zhang’s method the long runtime is caused by the gradient descent part
of the code. How many iterations are needed is strongly dependent on the value of β to
be estimated. By far the slowest running program is Lawless’ method. As mentioned in
Section 3.2, computing one estimate can demand 150 executions of the bisection method.
Heuristically, computing 500 estimates for the Noufaily algorithm took a similar amount
of time for to compute 50 estimates for the Lawless method.

4.2 Errors

Noufaily’s algorithm admitted errors most often. In roughly 25% of the runs the No-
ufaily algorithm was unable to produce an estimate before running into an error. The
Zhang method follows, where the calculation of ξ′2(β) sometimes produces ”NaN” results
and it can also happen that in Step 4 there are no vectors that fulfill the criterion, hence
terminating that estimation attempt . The other two algorithms showed little to no errors.
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4.3 Results

Comparing all four estimation methods will be hard given the two different parametrisa-
tions. We compare estimates for the parameter k and provide general comments on the
estimates of the other parameters, so as to not flood this section with tables.

We can see that Zhang performs the best for the first 4 values, having the lowest MSE
for all sample sizes. For k = 8, Lawless and Noufaily have better performance. We can
see that all methods tend to have higher MSE for higher k. Furthermore, Gao has the
worst MSE of all methods for sample sizes n = 20, 50, 100, but is better than Noufaily
for n = 500

k 0.5 1 2 3 8
Lawless 10.59 40.96 32.89 60.1 38.74
Noufaily 5.57 2.89 2.79 4.82 30.24
Gao 2.71 x 107 1.00 x 107 1.21 x 1010 9.81 x 108 8.21 x 107

Zhang 0.03 0.23 0.74 2.14 47.33

Table 18: MSE of all methods, n = 20

k 0.5 1 2 3 8
Lawless 0.85 2.14 4.36 4.74 13.94
Noufaily 2.28 4.78 2.08 3.26 26.83
Gao 4.54 8.61 x 104 1.31 x 1013 5.48 x 1016 1.85 x 107

Zhang 0.02 0.04 0.77 1.23 45.78

Table 19: MSE of all methods, n = 50

k 0.5 1 2 3 8
Lawless 0.16 0.42 3.50 4.42 26.29
Noufaily 0.68 2.32 2.05 2.49 24.92
Gao 0.68 6.72 5.48 x 104 2.34 x 107 2.02 x 109

Zhang 0.00 0.02 0.55 0.71 41.49

Table 20: MSE of all methods, n = 100

k 0.5 1 2 3 8
Lawless 0.01 0.07 0.41 2.04 19.46
Noufaily 0.68 2.32 2.05 2.49 32
Gao 0.12 0.24 1.16 4.47 5309.04
Zhang 0.01 0.01 0.50 0.94 41.01

Table 21: MSE of all methods, n = 500

Looking at α and β, Zhang has very good results for β, even for n = 20 the MSE is close
to zero for all values except for β = 5. For α, Gao has lower MSE than Zhang. For σ
and µ, Noufaily and Lawless provide similar results, which is to be expected as the only
difference between the methods is in estimating the k.
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4.4 Practical suggestions

If runtime for the estimation of the GGD is no issue (for example if the parameters of
the GGD only need to be calculated once), it is clear that Lawless method performs best
for small sample sizes (in this case meaning sample sizes between n = 20 and n = 500).
In the case that runtime becomes more important and errors become more tolerable, one
might opt to implement the other methods in the following order: Noufaily and Jones,
Zhang, Gao. Gao’s method was shown to perform quite poorly for the sample sizes in
this report. However, as sample sizes increase, the computation time needed for Gao’s
method becomes a significant factor. For sample sizes greater than n = 2000, the esti-
mates become similar to the estimates shown in this report for the other methods, while
only needing a fraction of the time. This property might be helpful when GGD parame-
ters need to be estimated repeatedly for large sample sizes.

Another consideration is the ease of implementation for the methods. For every method
except for Gao’s method one needs to adjust various values in the code, for example the
tolerance level ε in the iterative processes needs to be chosen, or a predetermined range for
possible values of the parameter to search through (this is the case for Lawless, Noufaily
and Jones, and Zhang). The choices for these values greatly impact the runtime for the
methods as well. For example. if one has a notion for the range of the β parameter (in
the (α, β, k) parametrisation), and no idea of a range for the other parameters, Zhang’s
method can be advantageous. Similarly, if one has knowledge of a possible range for k,
the runtime for Noufaily and Jones’ method as well as Lawless’ method can be sped up
rapidly. Thus these two are excellent choices. On the other hand, if no knowledge is
available of the parameter space, one has to choose a wide range for the implementations
of the methods. This is no problem if the parameters need to be estimated only once, but
in the case that multiple estimations are necessary, again the runtime can be an issue.
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5 New findings

As part of this project I would like to add to the existing estimation methods for the GGD.
To this end, I will be looking to extend an estimation method for the full conditional for
gamma shape parameters (Miller, 2019). In this Section I will introduce the proposed
method by Miller and will give an overview of the problem that it solves. We will take
a look at the theoretical results that produced this estimator before trying to extend the
idea to a method that can estimate the parameters of the GGD.

5.1 Miller’s method for the full conditional for gamma shape
parameters

The gamma distribution often comes up in Bayesian modelling. it is desirable to use a
conjugate prior for the shape parameters. However, there is no such prior that is easy
to use. The conjugate priors that do exist do not have a closed form, making it hard
to implement in modelling. This problem can be bypassed by way of Markov Chain
Monte Carlo sampling methods, namely the Metropolis-Hastings method, in which the
value of the shape parameter is updated iteratively until the value converges to a true
value. The downside to using Metropolis-Hastings however is that it can take a lot of
computation before an accurate estimate can be obtained. In modern applications, some
models contain a large number of parameters that need to be estimated, which makes it
so that efficient and accurate computation is necessary.

To solve this problem, Miller proposes to use a gamma distribution as a prior for
the shape parameter of a gamma. It turns out that the full conditional distribution can
be approximated well with again a gamma distribution. Miller goes on to propose an
algorithm that approximates this gamma distribution for the full conditional.

The basic idea is to find a gamma distribution g and match the first and second
derivatives log g to the first and second derivative of log f at a point near the mean of
f , where f is our full conditional. Since the mean of f is not known in closed form, the
approximation is done by iteratively matching the functions at the mean of the current g.
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5.2 Miller’s algorithm

Let X1, ..., Xn|α, µ ∼ Gamma(shape = a, rate = a/µ),witha, µ > 0. Assume that the
shape parameter has a gamma prior, a ∼ Gamma(shape = a0, rate = b0). The following
algorithm will produce A and B such that p(a|x1, ..., xn, µ, a0, b0) ≈ Gamma(a|shape =
A, rate = B). Note that the mean of Gamma(a|A,B) is given by A/B

Algorithm 1: Approximating the full conditional of the shape parameter.

Data: input x1, ..., xn > 0, parameters µ, a0, b0 > 0,
tolerance ε > 0,maximum number of iterations M

Result: A and B
begin;
R←

∑n
i=1 log(xi);

S ←
∑n

i=1 xi ;
T ← S/µ−R + n log(µ)− n;
A← a0 + n/2 ;
B ← b0 + T ;
for j = 1,...,M do

a← A/B;
A← a0 − na+ na2ψ′(a);
B ← b0 + (A− a0)/a− n log(a) + nψ(a) + T ;
if |a/(A/B)− 1| < ε then

return A,B
end

end
return A,B

The author recommends to set ε = 10−8 and M = 10. In the following subsection I will
give the derivation to this algorithm. This derivation will inform the extension of Miller’s
work to an estimation method for the parameters of the GGD.
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5.3 Derivation of Miller’s algorithm

Let f(a) = p(a|x1, ..., xn, µ, a0, b0) denote the full conditional density of parameter a,
where a0, b0 can be chosen to depend on µ. Let g(a) = Gamma(a|A,B) for some A,B.
Put simply the idea of the algorithm is to choose A and B such that for a point a near
the mean of f , we have that ∂

∂a
log f(a) = ∂

∂a
log g(a) and ∂2

∂a2
log f(a) = ∂2

∂a2
log g(a).

Since f(a) is not known in closed form, we approximate the point of the mean of f by
taking the mean of g. Then A and B are refined iteratively by setting A equal to the
second derivative of log f , setting B equal to the first derivative of log f , and then setting
a = A/B (where A/B is the mean of g) in the next iteration. The formulas for the first
and second derivative will be derived in Section 5.3.1. The iterative process is initialized
by choosing A and B based on an approximation of the Gamma function. The derivation
of this will be given in Section 5.3.2.

5.3.1 Derivatives of log f and log g

We have

g(a) = Gamma(a|A,B) =
aA−1e−BaBA

Γ(A)

Then

log g(a) = A log(B)− log Γ(A) + (A− 1) log(a)−Ba
∂

∂a
log g(a) =

A− 1

a
−B

∂2

∂a2
log g(a) = −A− 1

a2

We also have
f(a) ∝ p(x1, ..., xn|a, µ, a0, b0)p(a|µ, a0, b0)

and

p(x1, ..., xn|a, µ, a0, b0) =
n∏

i=1

(a/µ)a

Γ(a)
xa−1
i exp(−(a/µ)xi) (21)

=
(α/µ)na

Γ(a)n
exp((a− 1)R) exp(−(a/µ)S) (22)

=
ana

Γ(a)n
exp(−R− (T + n)a) (23)

where we define R =
∑n

i=1 log(xi), S =
∑n

i=1 xi and T = S/µ − R + n log(µ) − n.
Remember that we put a gamma prior on a so that p(a|µ, a0, b0) = Gamma(a|a0, b0)

log f(a) = const + log p(x1, ..., xn|a, µ, a0, b0) + log p(a|µ, a0, b0)
= const + na log(a)− n log Γ(a)− (T + n)a+ (a0 − 1) log(a)− b0a

where any term not proportional to a was lumped into ”const”. From this we further
derive

∂

∂a
log f(a) = n log(a) + n− nψ(a)− (T + n) +

a0 − 1

a
− b0 (24)

∂2

∂a2
log f(a) = n/a− nψ′(a)− a0 − 1

a2
(25)
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Setting ∂2

∂a2
log f(a) = ∂2

∂a2
log g(a), we obtain

A = a0 − na+ na2ψ′(a)

setting ∂
∂a

log f(a) = ∂
∂a

log g(a) gives us

B = b0 +
A− a0
a

− n log(a) + nψ(a) + T

5.3.2 Initialization by approximating Γ(a)

In order to find good initial values for A and B, we approximate the gamma function by
way of Stirling’s formula. Two situations should be discerned, when a is large and when
a is small. The second case is omitted as it will not be used in the algorithm.

Stirling’s approximation to Γ(a) is given by Γ(a) ∼
√
2πa−1/2

(
a
e

)a
as a → ∞. Here

h1(a) ∼ h2(a) as a → a∗ means that h1(a)/h2(a) → 1 as a → a∗. From this we get that
Γ(a)/aa ∼

√
2πa−1/2e−a. Plugging this into Equation (23) we get

p(x1, ..., xn|a, µ, a0, b0) ≈ (2π)−n/2an/2ena exp(−R− (T + n)a) ∝ an/2 exp(−Ta)

Adding that p(a|µ, a0, b0) ∝ aa0−1e−b0a, we get

f(a) ∝ aa0+n/2−1e−(b0+T )a

In other words, f(a) is proportional to Gamma(a|a0 + n/2, b0 + T ). For this reason, we
initialize with A = a0 + n/2 and B = b0 + T
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5.4 Extension to the GGD

My main idea for the extension will rely on the same principles as Miller’s algorithm in
order to estimate the α parameter. We put a GGD prior on α and then try to approximate
the full conditional posterior f by another GGD g. The parameters will be estimated
by matching the first and second derivative of log f and log g at the mean. This will
give us two formulas, one for α and one for k. This means that we need another way of
estimating β. Taking the third derivative of both log functions does not bear any useful
formulas. Instead we opt to use Zhang’s method for estimating β, as it is a standalone
procedure for estimating the parameter and thus can be used in our procedure without
any problem.

5.4.1 Derivation

Let f(α) = p(α|x1, ..., xn, β, k, α0, β0, k0) denote the full conditional density of parameter
α. Let g(α) = GGD(α|A,B,K) for some A, B, K. We have

g(α) =
B

AΓ(K)

(α
A

)BK−1

exp

[
−
(α
A

)B]
This gives us

log g(α) = logB + (BK − 1) logα−BK logA− log Γ(K)−
( a
A

)B
∂

∂α
log g(α) =

BK − 1

α
−Bα

B−1

AB

∂2

∂α2
log g(α) = −BK − 1

α2
− (B2 −B)

αB−2

AB

We also have
f(α) ∝ p(x1, ..., xn|α, β, k)p(α|α0, β0, k0)

This gives us

log f(α) = n log β − n log Γ(k) + (βk − 1) log

(
n∑

i=1

ti

)
− (nβk − n) logα−

∑n
i=1 t

β
i

αβ

+ log

(
β0
α0k0

)
+ (β0k0 − 1) logα− (β0k0 − 1) logα0 −

(
α

α0

)β0

∂

∂α
log f(α) = −nβk

α
+ β

1

αβ+1

n∑
i=1

tβi +
β0k0 − 1

α
− β0

αβ0−1

α0

∂2

∂α2
log f(α) =

nβk

α2
− (β2 + β)

∑n
i=1 t

β
i

αβ+2
− β0k0 − 1

α2
− (β2

0 − β0)
αβ0−2

α0
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Setting the first derivatives equal to one another gives us

A =

{
BαB−1

[
BK − 1

α
+
nβk

α
+ β0

αβ0−1

α0

− β 1

αβ+1
− β0k0 − 1

α

]−1
}1/B

Setting the second derivatives equal to one another gives us

K = −[nβk − (β2 + β)

∑n
i=1 t

β
i

αβ
− β0k0 − 1− (β2

0 − β0)
αβ
0

α0

+ (B2 −B)
αB

AB
− 1]/B

and B is estimated by making use of Zhang’s method. Now we only need to find initial
values A and K. I was unable to find a good way of calculating these initial values from
the data. So these values will be assumed known. Practically speaking, this will mean
that values close to the real values will be used to initiate this estimation method.

5.5 Procedure

Let Z(x1, ..., xn) denote the estimation of β by Zhang’s method. Then the following
produces A,B,K such that p(α|x1, ..., xn, β, k, α0, β0, k0) ≈ g(α|A,B,K), where g is
the GGD with parameters A,B,K After obtaining A,B,K, one can infer the value

Algorithm 2: Approximating the full conditional of the parameter α.

Data: input x1, ..., xn > 0, parameters β, k, α0, β0, k0, Ainit, Binit, Kinit

tolerance ε > 0,maximum number of iterations M
Result: A and B
begin;
A← Ainit ;
B ← Binit;
K ← Kinit;
for j = 1,...,M do

α← AΓ(K+β−1)
Γ(K)

;

A←
{
BαB−1

[
BK−1

α
+ nβk

α
+ β0

αβ0−1

α0
− β 1

αβ+1 − β0k0−1
α

]−1
}1/B

;

B ← Z(x1, ..., xn);

K ← −[nβk − (β2 + β)
∑n

i=1 t
β
i

αβ − β0k0 − 1− (β2
0 − β0)

αβ
0

α0
+ (B2 −B) α

B

AB − 1]/B

if |a/(AΓ(K+β−1)
Γ(K)

)− 1| < ε then
return A,B,K

end

end
return A,B,K

of α by simulation methods (Metropolis Hastings for example), or from the formula

α = AΓ(K+β−1)
Γ(K)

. Unfortunately, during implementation of this prodcedure the program
continuously produced errors or results that were not a number NaN . Further investi-
gation into how best to implement this idea is needed.
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6 Conclusions

The Generalized Gamma distribution can be used in various fields in statistics. The GGD
encompasses distributions oftentimes used in, among others, lifetime analysis. Despite
its flexibility, parameter estimation for the GGD through maximum likelihood estimation
did not produce good results. This is due to the fact that very different values for the pa-
rameters can produce very similar distribution functions. In this project I analysed four
estimators that were proposed to circumvent these problems with the MLE. Lawless’ and
Noufaily and Jones’ method proved to give very accurate results for low sample sizes in
exchange for runtime. Zhang’s method gives very accurate estimates for β in the (α, β, k)
parametrisation. Gao’s method showed poor performance for the low sample sizes used
in this project, but can be shown to have good performance for sample sizes greater than
n = 2000.

After comparing these four estimation methods. I aimed to extend Miller’s algorithm for
the gamma distribution into a method for the generalized gamma. This method would
give a way to estimate the first parameter of the GGD, α. Unfortunately, implementation
of this idea was not succesful.
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