
 
 

Delft University of Technology

Evaluation of FRET X for single-molecule protein fingerprinting

de Lannoy, Carlos Victor; Filius, Mike; van Wee, Raman; Joo, Chirlmin; de Ridder, Dick

DOI
10.1016/j.isci.2021.103239
Publication date
2021
Document Version
Final published version
Published in
iScience

Citation (APA)
de Lannoy, C. V., Filius, M., van Wee, R., Joo, C., & de Ridder, D. (2021). Evaluation of FRET X for single-
molecule protein fingerprinting. iScience, 24(11), Article 103239. https://doi.org/10.1016/j.isci.2021.103239

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.isci.2021.103239
https://doi.org/10.1016/j.isci.2021.103239


ll
OPEN ACCESS
iScience

Article
Evaluation of FRET X for single-molecule protein
fingerprinting
Carlos Victor de

Lannoy, Mike

Filius, Raman van

Wee, Chirlmin

Joo, Dick de

Ridder

c.joo@tudelft.nl (C.J.)

dick.deridder@wur.nl (D.d.R.)

Highlights
We propose a FRET-

based single-molecule

protein identification

method

Peptides are

experimentally

distinguishable by their

fingerprints

Our approach can classify

the constituents of

complex samples with

95% accuracy

de Lannoy et al., iScience 24,
103239
November 19, 2021 ª 2021
The Authors.

https://doi.org/10.1016/

j.isci.2021.103239

mailto:c.joo@tudelft.nl
mailto:dick.deridder@wur.nl
https://doi.org/10.1016/j.isci.2021.103239
https://doi.org/10.1016/j.isci.2021.103239
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.103239&domain=pdf


ll
OPEN ACCESS
iScience
Article
Evaluation of FRET X for
single-molecule protein fingerprinting

Carlos Victor de Lannoy,1,3 Mike Filius,2,3 Raman van Wee,2 Chirlmin Joo,2,* and Dick de Ridder1,4,*
1Bioinformatics Group,
Wageningen University,
Droevendaalsesteeg 1,
6708PB Wageningen, the
Netherlands

2Department of
BioNanoScience, Kavli
Institute of Nanoscience,
Delft University of
Technology, van der
Maasweg 9, 2629HZDelft, the
Netherlands

3These authors contributed
equally

4Lead contact

*Correspondence:
c.joo@tudelft.nl (C.J.),
dick.deridder@wur.nl (D.d.R.)

https://doi.org/10.1016/j.isci.
2021.103239
SUMMARY

Single-molecule protein identification is an unrealized concept with potentially
ground-breaking applications in biological research. We propose a method called
FRET X (Förster Resonance Energy Transfer via DNA eXchange) fingerprinting, in
which the FRET efficiency is read out between exchangeable dyes on protein-
bound DNA docking strands and accumulated FRET efficiencies constitute the
fingerprint for a protein. To evaluate the feasibility of this approach, we simu-
lated fingerprints for hundreds of proteins using a coarse-grained lattice model
and experimentally demonstrated FRET X fingerprinting on model peptides.
Measured fingerprints are in agreement with our simulations, corroborating
the validity of ourmodeling approach. In a simulated complexmixture of >300 hu-
man proteins of which only cysteines, lysines, and arginines were labeled, a sup-
port vector machine was able to identify constituents with 95% accuracy. We
anticipate that our FRET X fingerprinting approach will form the basis of an anal-
ysis tool for targeted proteomics.

INTRODUCTION

Proteins come in a wide variety of shapes, sizes, and forms. Each is attuned to fulfill one or more of themany

functions that are essential to living cells, including the catalysis of metabolic reactions, replication of ge-

netic information, provision of structural support, and transport of molecules. To fully understand the bio-

logical processes taking place in a cell, it is critical to identify and quantify constituents of its proteome at

any given time during the cell cycle.

Mass spectrometry (MS) is currently the gold standard for protein identification and quantification. Over

the past decades, MS techniques have improved tremendously in terms of accuracy and dynamic range;

however, detecting and distinguishing all proteins in complex samples remains challenging. Many biolog-

ically and clinically relevant proteins such as signaling molecules and disease biomarkers occur in such low

abundance that they remain undetectable by MS (Zubarev 2013). Moreover, the proteome complexity in-

creases through alternative splicing or posttranslational modifications, as a single gene can produce

dozens of distinct protein varieties, referred to as proteoforms (Aebersold et al. 2018). Not all of these pro-

teoforms can be distinguished by current approaches. As such, there is considerable incentive for the

development of new protein sequencing methods that operate at the single-molecule level (Restrepo-

Pérez et al., 2018; Alfaro et al., 2021).

Single-molecule techniques have boosted DNA sequencing, allowing for the identification of individual nu-

cleic acid molecules, and are now routinely used for genome and transcriptome mapping of single cells

(Gawad et al., 2016). However, the search for single-molecule protein sequencing techniques is not trivial

owing to the high complexity of protein molecules compared with DNA molecules. For example, the DNA

code consists of only four nucleotides, whereas there are twenty different amino acids for proteins. Further-

more, low abundant DNA molecules can be enzymatically amplified outside the cell, whereas such an

enzyme is absent for proteins.

Novel single-molecule protein analysis methods have been proposed to circumvent this additional

complexity. Only a subset of the theoretically possible combinations of polypeptide chains occurs in na-

ture, and a fraction of that subset is of importance in a given research setting. Therefore, proteins may

be identified by reading out a signature of incomplete information, which is then compared with a data-

base of relevant signatures. We refer to this approach as protein fingerprinting, and to said protein
iScience 24, 103239, November 19, 2021 ª 2021 The Authors.
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signatures as protein fingerprints. It has been shown that sufficiently distinct protein fingerprints only

require the readout of a small subset of residue types (Swaminathan et al., 2015; Yao et al., 2015; Ohayon

et al., 2019). In particular, simulations indicated that the majority of human proteins were uniquely identifi-

able if cysteine and lysine residues were orthogonally labeled and read out sequentially (Yao et al., 2015).

Several novel protein fingerprinting methods based on the readout of a subset of residue types have

recently been demonstrated, most of which require linearization of the polypeptide chain to allow for

the determination of the residue order (Nivala et al., 2014; Van Ginkel et al., 2018). This linearization can

be achieved by translocating the polypeptide chain through a nanopore (Alfaro et al., 2021) or by using

a fluorescently labeled motor protein (Yao et al., 2015) to recognize the modified residues required for

fingerprinting. Alternatively, the protein fingerprint can be obtained by labeling certain amino acids and

determining their location through several Edman degradation cycles (Swaminathan et al., 2018). Although

full-length proteins are difficult to analyze owing to the limited number of Edman cycles that can be per-

formed, its utility for analyzing shorter peptides has been shown in a proof of concept. All these approaches

have in common that they probe each protein only once, while the accuracy would increase if the same

molecule could be measured multiple times.

In this study, we present a protein fingerprinting method that builds further on the concept of residue-spe-

cific labeling of selected amino acids and obtains a protein fingerprint by determining the location of

amino acids in the 3D structure of a protein. As the size of most proteins lies in the low-nanometer range,

our protein fingerprinting approach requires a technique that can determine the location of residues with

sub-nanometer resolution. Single-molecule FRET is well suited for this task and comes with the benefit that

several thousands of molecules can be imaged at the same time, if full-length proteins can be immobilized

in amicrofluidic chamber (Lerner et al., 2021). Here we verify the feasibility of a single-molecule FRET-based

protein fingerprinting method. We first demonstrate that experimentally obtained fingerprints for four

model peptides are distinct and are reproduced by our simulation method. Then we show that simulated

fingerprints of 311 human proteome constituents can be identified with 95% accuracy. If mislabeling of res-

idues is assumed to occur, this accuracy decreases to 91%. This supports the notion that FRET X finger-

printing allows for the reliable identification of proteins in complex mixtures.
Approach

FRET X for protein fingerprinting

To realize protein fingerprinting using single-molecule FRET, a resolution sufficient to determine the loca-

tion of multiple amino acids in the protein structure is required. However, single-molecule FRET analysis is

limited to just one or two FRET pairs in a singlemeasurement (Hohng et al., 2004; Clamme andDeniz, 2005).

Recently, our group developed a concept to allow for the detection of multiple FRET pairs in a single nano-

scopic object. Our technique, FRET X (FRET via DNA eXchange), employs transient hybridization of DNA

strands labeled with a fluorophore to temporally separate FRET events that originate from different FRET

pairs. We have shown that FRET X can resolve the distance between multiple FRET pairs with sub-nano-

meter accuracy (Filius et al., 2021; Kim et al., 2021). Here, we apply FRET X for protein fingerprinting. By

detecting target amino acids one by one, FRET X produces a unique fingerprint, allowing identification

of the protein from a reference database.

Figure 1 illustrates the workflow for protein fingerprinting using FRET X. A subset of amino acids of a pro-

tein of interest is labeled with orthogonal DNA sequences, which serve as docking strands for their com-

plementary imager strands (Figure 1A). One of the protein termini is labeled with a unique DNA sequence,

which functions as a reference point and facilitates immobilization of the full-length protein to a microflui-

dic chip. To obtain a FRET X fingerprint for one of the amino acids, fluorescently labeled imager strands for

the terminal reference sequence and for the particular amino acid (e.g., Cysteine, Figure 1B) are added.

The imager strands for the reference point are labeled with an acceptor fluorophore, whereas those for

the cysteines carry a donor. FRET can occur only when both imager strands are simultaneously bound.

The transient and repetitive binding of imager strands reports on the relative location of a residue to

the reference point. Furthermore, since the pool of fluorophores is continuously replenished, the effect

of photobleaching is mitigated and we can probe each residue multiple times, thereby increasing the pre-

cision. After obtaining a sufficient number of FRET events, the FRET X fingerprint can be constructed, re-

porting on the distance of each target amino acid to the reference point. Then the microfluidic chamber is

washed and a new imaging solution is injected to probe a second amino acid (e.g., Lysine) (Figure 1C). The
2 iScience 24, 103239, November 19, 2021
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Figure 1. The concept of FRET X for protein fingerprinting

(A) A subset of amino acids (here cysteines and lysines) are labeled with orthogonal DNA sequences that function as docking sites for complementary,

fluorescently labeled imager strands. Another orthogonal DNA sequence is conjugated to one of the protein termini, which serves as an acceptor docking

site and facilitates immobilization of the protein to a microfluidic device.

(B) In the first round of FRET X imaging, imager strands that hybridize with the cysteine docking site (yellow circles) and those that hybridize with the reference

point (red circles) are injected in the microfluidic chamber. Both the donor and acceptor-labeled imager strands transiently interact with their

complementary docking strands. When both are present at the same time, FRET can occur and the FRET efficiency is determined between a cysteine and the

reference point. Each of the three FRET pairs is separately probed, giving rise to a number of FRET efficiencies (E), which constitute the cysteine fingerprint.

(C) The chamber is washed and FRET X imaging is repeated to probe the lysines. This FRET X cycle can be repeated to probe additional amino acids and

generate additional fingerprints.

(D) The FRET efficiencies for individual amino acids are combined to produce a protein fingerprint that can be mapped against a reference database to

identify the protein.
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FRET X cycle can be repeated for any number of different amino acids, as long as they are labeled with

orthogonal DNA docking sequences. The detection of multiple types of amino acids improves the unique-

ness of a protein fingerprint, thereby enhancing the chance of identification. The resolved FRET efficiencies

for each amino acid are combined to generate a protein fingerprint, with which a protein can be identified

from a reference database (Figure 1D).

Fingerprinting simulations

The usefulness of our method hinges on its ability to discern FRET X fingerprints derived from many

different proteins, and we run simulations to assess this. Simulating the FRET X fingerprint for a given pro-

tein is a complex endeavor, as the fingerprint incorporates both sequence and structural information.

Although protein structure prediction has seen major advancements recently, cutting-edge methods (Se-

nior et al., 2020; Xu et al., 2021) remain too computationally costly to assess many proteins. Furthermore,

they cannot account for the presence of conjugated DNA tags. Instead, we opted to use a computationally

much less intensive lattice modeling approach (Kolinski and Skolnick 2004), in which each residue is repre-

sented as a single pseudo-atom, restricted in space to only occupy the vertices of a lattice (Figure S7).

Structures are assigned an energy that is lower for structures more likely to occur in vitro. Pseudo-atoms

may interact with the solvent or with pseudo-atoms on adjacent vertices, incurring either energy bonuses

or penalties depending on the residue types involved. A structure can then be efficiently energy minimized

using a Markov chain Monte Carlo process. That is, random modifications to the structure are proposed

(Figure S9), and for each modification the incurred change in energy determines the probability of accept-

ing it. Despite their simplicity, past investigations have shown that lattice models can reproduce native pro-

tein folding behavior (Abeln et al., 2014; Coluzza et al., 2003; Bianco et al., 2017; Dijkstra et al., 2018; Van

Gils et al., 2020).

The attachment of DNA tags to selected residues, as required to accurately model our approach, has not

previously been included in lattice models. Coarse-grained models have been used to study the effect of

dyes linked directly to residues using short linkers, which were found to be minor (Chekmarev, 2019; Allen
iScience 24, 103239, November 19, 2021 3



ll
OPEN ACCESS

iScience
Article
and Paci, 2010); however, the additional effect of the longer, bulkier DNA tags on structure may be more

significant. Although data on DNA-tag-protein interaction is lacking, we find that implementation at the

coarse granularity required by lattice models may be built on two basic assumptions: that tags require suf-

ficient unoccupied space to avoid steric hindrance and that they repel each other if situated closely

together. Indeed, similar assumptions may be found in other models of ssDNA interaction (Pal and Levy,

2019). A residue marked as tagged loses its ability to interact with other residues and is outfitted with a

long, bulky side chain (Figure S11), which incurs heavy energy penalties for clashes with the main structure

and attempts to orient itself away from nearby tags.

In the lattice models thus produced, FRET values can then be estimated from the simulated dye positions.

To simulate the readout of FRET efficiencies at a given resolution, we bin efficiencies using the resolution as

bin width. As we have shown in previous work that a resolution of one FRET percentage point (0.01 E) is

achievable, we set the resolution of fingerprints to 0.01 E in simulations, unless otherwise noted. As

FRET X allows for orthogonal readout of multiple residue types, the sampling can be repeated to produce

the FRET X fingerprints associated with different residue types. Analogously to experimentally obtained

fingerprints, simulated FRET X fingerprints for several residue types are then combined to serve as features

for automated classification algorithms.

The simulation and classification procedures are described in more detail in the STAR Methods section.
RESULTS

Experimental FRET X fingerprinting of model peptides

To demonstrate the concept of protein fingerprinting using FRET X and to compare results with computa-

tional predictions, we designed an assay where DNA-labeled peptides were immobilized on a PEGylated

quartz surface via biotin-streptavidin conjugation (Figure 2A). Each peptide contains an N-terminal lysine

for the attachment of a DNA-docking strand, to allow for the transient binding of an acceptor (Cy5)-labeled

imager strand. In addition, an orthogonal DNA-docking strand was conjugated to a cysteine residue in the

peptide to facilitate transient binding of the donor (Cy3)-labeled imager strands (Figure 2A). The donor and

acceptor imager strands were designed to exhibit a dwell time of �2 s (Figure S2), so that dyes could be

frequently replenished. Furthermore, to increase the probability of the presence of the acceptor imager

strand upon donor imager strand binding and allow for FRET detection, we injected 10-fold molar excess

of the acceptor imager strand over the donor imager strand. Short-lived FRET events were recorded with

single-molecule total internal reflection microscopy upon binding of both donor and acceptor-labeled

imager strands to the immobilized target peptide.

Next, we plotted a kymograph to visualize the FRET efficiency of each binding event in a target peptide

(Figure 2B). The FRET efficiency for each data point (Figure 2B, lines) and the mean efficiency per binding

event are calculated (Figure 2B, circles). A histogram of the mean FRET efficiency per binding event shows

distinct FRET populations. Gaussian distributions were fit to resolve peak centers with high resolution

(Clamme and Deniz 2005), which together constitute the fingerprint of the peptide (Figure 2B, bottom

panel).

To demonstrate the ability of FRET X to distinguish different peptides with varying FRET pair separations,

we designed four model peptides. These peptides had an incrementing distance, in steps of 10 amino

acids, between donor and acceptor docking strands (Figure 2C). First, we performed single-molecule ex-

periments to obtain experimental FRET X fingerprints and found a clearly discernible peak for each peptide

(Figures 2D and S3). Then we simulated FRET X fingerprints for the same sequences using our simulation

pipeline and found a similar trend.We only fine-tuned the parameters for the repulsion effect between tags

to minimize the difference with experimental values (Figure 2E). Although each histogram showed a wide

distribution (full-width half-maximum [FWHM] of�0.1–0.2, Figures 2D and 2E), the Gaussian fit can be used

to resolve the peak with high precision of <0.01 (standard error of mean), where the achievable precision

depends on the number of binding events (Filius et al., 2021). Furthermore, in both simulations and exper-

iments we observed a monotonous decrease in FRET efficiency for increasing FRET pair separation.

Furthermore, the experimentally obtained fingerprints generally correlate well with values found by simu-

lations (Figure 2F). Since for each peptide the minimum inter-peptide difference in FRET (E) is larger than

the maximum standard deviation, we find that we can distinguish these four peptides by their FRET X

fingerprint.
4 iScience 24, 103239, November 19, 2021
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Figure 2. Model peptides can be fingerprinted with FRET X

(A) Depiction of the experimental system for peptide fingerprinting. The target peptide is immobilized through

conjugation of its N-terminal biotin with the streptavidin on the PEGylated surface. The donor (Cy3)-labeled imager

strand (yellow) can bind to the DNA-docking site on the cysteine, while the acceptor (Cy5)-labeled imager strand (red) can

hybridize to the docking site on the lysine. Simultaneous binding generates short FRET events and is observed with total

internal reflection microscopy.

(B) Representative kymograph for a peptide with a cysteine that is 10 amino acids separated from the acceptor-binding

site. The FRET efficiency for each data point in a binding event (lines) and themean FRET efficiency from all data points in a

binding event (dots) are indicated as a function of time. A Gaussian distribution (0.88 G 0.14) is fitted on a histogram of

average FRET efficiencies per FRET event. The means of the Gaussians are plotted in a separate panel (bottom) and are

referred to as the FRET X fingerprint of the peptide. The FRET population on the left is caused by donor leakage into the

acceptor channel.

(C) Our four model peptides have a lysine at the N terminus and a cysteine at position 10, 20, 30 or 40. See Table S1 for the

full amino acid sequences of the model peptides.

(D) Experimental distributions and fingerprints for each peptide show a downward trend in mean FRET (E) for increasing

FRET pair separation (mean G FWHM of the Gaussian fit: 0.89 G 0.14, 0.75 G 0.20, 0.72 G 0.11, 0.57 G 0.20). See also

Figures S2 and S3 for imager strand dwell times and kymographs for single peptides, respectively.

(E) The simulated distributions and fingerprints for the four peptides show a similar downward trend in distribution means

(0.82 G 0.08, 0.76 G 0.15, 0.68 G 0.20, 0.62 G 0.23).

(F) Experimental and simulated data correlate well. Whiskers denote G one standard deviation. Standard deviation of

experimental data points is over four kymographs (each consisting of hundreds of events). Experiments were performed

on separate days.
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Fingerprinting simulation of protein spliceoforms

We set out to evaluate the performance of our method for targeted proteomics, based on simulations. For

this we sought to identify the different spliceoforms of the apoptosis regulator Bcl-2 (UniProt ID: Q07817),

which are potential biomarkers for cancer (Kale et al., 2017) and are likely to produce different fingerprints.

BCL-XL is an anti-apoptotic regulator, whereas both Bcl-XS and Bcl-Xb are pro-apoptotic factors (Kale et al.,

2017; Shiraiwa et al., 1996). The ratio between these factors is important for cell fate. We simulated simul-

taneous labeling of cysteine (C) and lysine (K) to create C + K fingerprints for each of the spliceoforms,

Bcl-XL, Bcl-XS, and Bcl-Xb (Figures 3A and 3B). As the spliceoforms differ in the numbers and locations

of C and K residues, we expected their fingerprints to be dissimilar. This was indeed the case in simulation
iScience 24, 103239, November 19, 2021 5
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Figure 3. Representative FRET (E) fingerprints for three spliceoforms of BCL-X

(A) Fully atomic structure for BCL XL, Xs, and Xb (from top to bottom) as predicted by the RaptorX structure prediction tool (Källberg et al., 2012, 2014).

(B) Energy-optimized lattice model structures with DNA-docking strands attached to cysteines (orange) and lysines (purple). The reference acceptor docking

strand (red) is added to the N terminus of the proteins.

(C) The simulated fingerprint for spliceoform of the BCL proteins. Fingerprints are based on averaged donor-acceptor distances in 100 structural snapshots

of Markov chain-generated lattice model structures (distributions shown in Figure S4). Fingerprints for a second set of spliceoforms (PTGS1) are shown in

Figure S5.
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(Figure 3C). Fingerprints do vary across individual molecules of the same spliceoform; however, the finger-

prints remain sufficiently characteristic to identify each spliceoform by eye (Figure S5A). We also trained

and tested a support vector machine (SVM) classifier on 10 replicates in a 10-fold cross-validation scheme

and attained an accuracy of 100%.

We then simulated a more difficult scenario, in which we attempted to classify fingerprints for six spliceo-

forms of PTGS1 (UniProt ID: P23219) (Garcia-blanco et al., 2004). Although the higher number of C and K

residues made discrimination of fingerprints by eye harder, an SVM trained and tested in a 10-fold cross-

validation scheme was still able to separate the six spliceoforms with 100% accuracy (Figure S5B).

Analysis of simulated protein mixtures

To evaluate a test case displaying a complexity closer to that found in a single cell, we selected all UniProt

human proteome (ID: UP000005640) entries that were linked to a single-chain structure in the RCSB protein

database and for which latticemodelingwas able to find a configuration without steric hindrance of docking

strands (n = 311). Based on available targeted residue labeling chemistries and relative residue frequencies

in naturally occurring proteins, we simulated labeling schemes involving cysteine (C), lysine (K), and arginine

(R). For each protein we generated fingerprints based on 10 separately simulatedmolecules, after which we

trained and tested an SVM classifier in a 10-fold cross-validation scheme. Here wemeasure overall classifier

accuracy. To identify the subset of proteins for which ourmethodworks well, we also analyzed the number of

well-identifiable proteins, i.e., those for which more than five of the replicates were identified correctly.

We find that our classifier performs at 45%accuracy onC-labeled proteins.Of 311proteins, 126werewell iden-

tifiable, indicating that labeling only C residues is sufficient to consistently recognize this subset of proteins

(Figure 4A, orange circle). Fifty-seven proteins did not contain C residues and are thus impossible to identify

using only C labeling. The remaining 130 poorly identifiable proteins generally produced fingerprints contain-

ing few FRET values or highly variable fingerprints, the latter indicating a lack of structure stability.

When C + K or C + K + R residues were labeled, accuracy rose to 82% and 95%, respectively (Figure 4B). As

expected, fingerprints are more likely to obtain a characteristic signature if distances for more residue

types are tracked. Numbers of well-identifiable fingerprints also rose to 278 and 312 of 311, respectively.

Regardless of which residue types are labeled, we find that proteins containing more tagged residues

can be identified with higher accuracy (Figure 4C).
6 iScience 24, 103239, November 19, 2021
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Figure 4. FRET X fingerprinting simulation results assuming optimal and suboptimal experimental conditions

FRET X fingerprint classifier cross-validation performance measures are shown for three combinations of tagged residue

types, C, C + K, and C + K + R, and two labeling qualities, ‘‘optimal,’’ where all targeted residues and no off-target

residues were labeled, and ‘‘suboptimal,’’ where erroneous labeling occurred following the rules in Table S3.

(A) Venn diagram showing numbers of proteins that were found to be well identifiable, i.e., that were correctly identified in

more than 5 of 10 cross-validation folds. The total number of proteins is 311.

(B) The identification accuracy of proteins under optimal and suboptimal labeling conditions.

(C) Average classifier accuracy as a function of the number of tagged residues in structures, aggregated in five groups with

similar numbers of tags. Whiskers denoteG one standard deviation. Accuracies for different resolutions and fsuboptimal

labeling scenarios are shown in Figure S6.
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Robustness against suboptimal experimental conditions

To investigate the effect of labeling errors, we ran simulations for a suboptimal labeling scenario, with a

90% probability of labeling the target residue and a certain non-zero probability to label non-target

residues (C: 1%, K:1%, R:0.5%, Table S3). For C and K these probabilities were based on experimentally

determined efficiencies and specificities found in the literature (Boutureira and Bernardes, 2015; Abello

et al., 2007; Thompson et al., 2016).

Overall, we find that labeling errors incur a modest decrease in classifier performance; for C, C + K, and

C + K + R labeling, accuracy drops from 45%, 82%, and 95% to 39%, 74%, and 91%, respectively (Fig-

ure 4B). This indicates that FRET X fingerprints, particularly those gained from C + K + R labeling, contain

the redundant information required to mitigate the effect of imperfect labeling (Figure 4C). We also

investigated the effect of decreased measurement resolution; however, only after reducing resolution

far beyond experimentally attainable levels, past 0.10 E, did we find severe reductions in accuracy

(Figure S6).

DISCUSSION

Here we present a protein fingerprinting approach that determines the location of amino acids within a

protein structure using FRET X. We provide evidence of its ability to identify proteins in heterogeneous

mixtures using simulations and demonstrate its technical feasibility by producing experimental fingerprints

for designed peptides.
iScience 24, 103239, November 19, 2021 7
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We experimentally demonstrate fingerprinting of peptides of 40 amino acids and observe a monotonous

decrease in FRET efficiency. This trend is supported by simulations and suggests that our model peptide

has a relatively linear conformation. These peptides do not exhaust the lower end of the FRET-efficiency

domain, which implies that larger peptides and proteins with increased FRET pair separation can be finger-

printed. Although most proteins are considerably larger than 40 amino acids, they usually adopt a globular

structure, which reduces the FRET pair separation. The average protein is estimated to have a diameter of

5 nm (Erickson, 2009), whereas the FRET dyes (Cy3-Cy5) used here are expected to be accurate at distances

of up to�7 nm (Lerner et al., 2021). Therefore, our FRET X fingerprinting approach could be suitable for the

identification of a large set of human proteins. This notion is substantiated by the simulations run using our

lattice model, which shows that also for larger proteins the FRET X fingerprints remain discernible.

We show that simulated fingerprints are sufficiently unique and reproducible to consistently identify the

majority of the proteins in our simulation pool. Moreover, this result could be achieved by labeling up to

three types of amino acids: cysteine, lysine, and arginine, all of which can be targeted for specific labeling

using existing chemistries (Alfaro et al., 2021; Boutureira and Bernardes, 2015; Abello et al., 2007; Thomp-

son et al., 2016). Of interest, even if only cysteine is labeled we find that a considerable subset of proteins

remained consistently identifiable, although labeling additional residue types does increase accuracy, the

number of identifiable proteins, and robustness against labeling errors. It should also be noted that the set

of residue types targeted for FRET X fingerprinting can be expanded even further; labeling of, e.g., methi-

onine (Lin et al., 2017) or tyrosine (Alvarez Dorta et al., 2020) may be employed to further increase accuracy

or tailor our method to the detection of a given target protein.

A far-reaching goal of the proteomic community is to detect and analyze all proteoforms that can be

derived from a single protein encoding gene (Aebersold et al., 2018). Most proteoforms have subtle differ-

ences, e.g., alternative splicing or post-translational modification, and are difficult to detect with current

technologies, such as ELISA, MS, or native MS (Leney and Heck, 2017). We have shown that FRET X has

the ability to distinguish peptides based on the location of a single cysteine, a subtlety akin to those found

in many isoforms, and we have shown two cases in which clinically relevant spliceoforms are well distin-

guishable based on their simulated FRET X fingerprints. This suggests that our FRET X fingerprinting plat-

form would be a suitable complementary technique for the detection of clinically relevant proteoforms.
Limitations of study

Although care has been taken to account for the effects of our experimental method on target protein

structures, and thus the produced fingerprints, we note that the nature of several potentially influential fac-

tors has yet to be elucidated. For our simulations we investigated proteins for which the structure had

already been determined; however, in our experimental system, a microfluidic chamber with non-physio-

logical conditions, proteinsmay adopt a different structure or a set of several different structures, creating a

discrepancy between simulated and experimental fingerprints. Furthermore, although we model the ef-

fects of lower labeling efficiency and specificity, we have insufficient information to model how adjacency

of residues targeted for labeling will affect efficiency of labeling chemistries. Once proteins can be finger-

printed more routinely, more data will be available to support modeling choices accounting for these fac-

tors. We stress that it is primarily the uniqueness and reproducibility of a fingerprint that is important for

protein identification, not necessarily its predictability from a known structure. Although our current simu-

lations were performed on a set of 311 known protein structures, we envision that the number of proteins

that can be fingerprinted using our FRET X approach will increase significantly owing to recent develop-

ments in protein structure prediction tools (Xu et al., 2021; Jumper et al., 2021; Tunyasuvunakool et al.,

2021). Furthermore, we expect that, as the diversity of a sample decreases from several hundreds to

tens of different proteins through sample fractionation, the fingerprint uniqueness and thereby the fraction

of correctly identified proteins sharply increases. Adequate sample preparation and purification to reduce

sample complexity will be important for more targeted approaches.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

mPEG (MW 5,000) Lysan Cat# MPEG-SVA-5000-1g

mPEG-biotin (MW 5,000) Lysan Cat# Biotin-PEG-SVA-100mg

Amino-silane Sigma Cat# 281778

MS4-PEG Thermo Fisher Scientific Cat# 22341

Streptavidin Invitrogen Cat# S-888

Glucose oxidase Sigma Cat# G2133

TROLOX Sigma Cat# 238813

Catalase Roche Cat# 10106810001

Tris(2-carboethyl)phosphine Sigma Cat#646547

Dimethyl sulfoxide Sigma Cat#276855

Dibenzocyclooctyne-N-hydroxysuccinimidyl ester Sigma Cat#761524

Pierce� C18 Tips, 10 mL bed ThermoFisher Scientific Cat#87782

Model Peptides, See Table S1 This Study N/A

Deposited data

Lattice models and simulated fingerprints This study https://doi.org/10.5281/zenodo.5330741

Oligonucleotides

See Table S2 This Study N/A

Software and algorithms

IDL (ITT visual information solutions) http://www.harrisgeospatial.com/ N/A

Simulation code This study https://doi.org/10.5281/zenodo.5330741

Data analysis code https://github.com/kahutia/transient_

FRET_analyzer2

N/A
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Dick de Ridder (dick.deridder@wur.nl).
Materials availability

� 40-residue model peptide sequences are given in Table S1.

� Imager and docking strand sequences are given in Table S2.

Data and code availability

Section 1: data

d Simulated data have been deposited on Github and are publicly available as of the date of publication.

The DOI is listed in the Key resources table.

d Experimental data reported in this paper will be shared by the lead contact upon request.

Section 2: code

d All original code has been deposited on Github and is publicly available as of the date of publication.

DOIs are listed in the Key resources table.
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Section 3:

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

METHOD DETAILS

Peptide labeling

Custom designed polypeptides were obtained from Biomatik (Canada) and had a constant backbone

sequence (Table S1), differing only in the cysteine substitutions. Cysteine residues of the polypeptides

were reduced with 40-fold molar excess Tris(2-carboethyl)phosphine (TCEP) for 30 min and then donor-

labeled with 6-fold molar excess monoreactive maleimide-(50) functionalized DNA in 50 mM HEPES

pH 6.9 overnight at room temperature. The acceptor docking strand was labeled onto a single lysine

that is located at the N-terminus of the peptide. For this, Dimethyl sulfoxide (DMSO) was added to

50% (v/v) and the pH was increased to pH 7.5 through the addition of NaOH. Next, we addedmonoreactive

N-Hydroxysuccinimide (NHS)-ester functionalized Dibenzocyclooctyne (DBCO) (Sigma Aldrich, Germany)

in a 25-fold molar excess and incubated for 6 hours at room temperature. Free NHS-DBCOwas removed by

using C18 bed micropipet tips (Pierce) according to manufacturer’s protocol. Finally, monoreactive Azido-

benzoate-(50) functionalized-DNA was added in 5-fold molar excess and incubated overnight at room tem-

perature. See Tables S1 and S2 for the full list of substrates.

Single-molecule setup

All experiments were performed on a custom-built microscope setup. An inverted microscope (IX73,

Olympus) with prism-based total internal reflection was used. In combination with a 532 nm diode-pumped

solid-state laser (Compass 215M/50mW, Coherent). A 603 water immersion objective (UPLSAPO60XW,

Olympus) was used for the collection of photons from the Cy3 and Cy5 dyes on the surface, after which

a 532 nm long pass filter (LDP01-532RU-25, Semrock) blocks the excitation light. A dichroic mirror (635

dcxr, Chroma) separates the fluorescence signal which is then projected onto an EM-CCD camera (iXon

Ultra, DU-897U-CS0-#BV, Andor Technology). A series of EM-CDD images was recorded using a

custom-made program in Visual C++ (Microsoft).

Single-molecule data acquisition

Single-molecule flow cells were prepared as previously described (Chandradoss et al., 2014; Filius et al.,

2020). In brief, to avoid non-specific binding, quartz slides (G. Finkerbeiner Inc) were acidic piranha

etched and passivated twice with polyethylene glycol (PEG). The first round of PEGylation was performed

with mPEG-SVA (Laysan Bio) and PEG-biotin (Laysan Bio), followed by a second round of PEGylation with

MS(PEG)4 (ThermoFisher). After assembly of a microfluidic chamber, the slides were incubated with 20 mL

of 0.1 mg/mL streptavidin (Thermofisher) for 2 minutes. Excess streptavidin was removed with 100 mL

T50 (50mM Tris-HCl, pH 8.0, 50 mM NaCl). Next, 50 mL of 75 pM DNA-labeled peptide was added to

the microfluidic chamber. After 2 minutes of incubation, unbound peptide and excess Azide-DNA from

the earlier click reaction was washed away with 200 mL T50. Then, 50 mL of 10 nM donor labeled imager

strands and 100 nM acceptor labeled imager strands in imaging buffer (50 mM Tris-HCl, pH 8.0, 500 mM

NaCl, 0.8% glucose, 0.5 mg/mL glucose oxidase (Sigma), 85 ug/mL catalase (Merck) and 1 mM Trolox

(Sigma)) was injected. All single-molecule FRET experiments were performed at room temperature

(23 G 2�C).

Data analysis

Fluorescence signals are collected at 0.1-s exposure time unless otherwise specified. Time traces were sub-

sequently extracted through IDL software using a custom script. Through a mapping file, the script collects

the individual intensity hotspots in the acceptor channel and pairs themwith intensity hotspots in the donor

channel, after which the time traces are extracted. During the acquisition of the movie, the green laser is

used to excite the Cy3 donor fluorophores. For automated detection of individual fluorescence imager

strand binding events, we used a custom Python code (Python 3.7, Python Software Foundation, https://

www.python.org) utilizing a two-state K-means clustering algorithm on the sum of the donor and acceptor

fluorescence intensities of individual molecules to identify the frames with high intensities (Boutureira and

Bernardes, 2015). To avoid false positive detections, only binding events that lasted for more than three

consecutive frames were selected for further analysis. FRET efficiencies for each imager strand binding
12 iScience 24, 103239, November 19, 2021
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event were calculated and used to build the FRET kymograph and histogram. Populations in the FRET his-

togram are automatically classified by Gaussian mixture modeling. The automated analysis code in Python

is freely available at: https://github.com/kahutia/transient_FRET_analyzer2.
Simulations

Fingerprinting simulations were generated using a lattice folding model written in Python 3.7, on. Simula-

tion and analysis code are freely available at https://github.com/cvdelannoy/FRET_X_fingerprinting_

simulation. To run simulations, python and conda installations are required.

A protein folding simulation was implemented to incorporate DNA-tags attached to certain residues and

account for their effect on the protein structure. Lattice models were used because of the far lower

computational power needed for folding simulations compared to fully atomistic models allowing unre-

stricted movement, which is attained by reducing each amino acid to a pseudo-atom and restricting its

possible positions to the vertices of a lattice. Such models have previously been used in applications

where low computational requirements were essential (Kolinski and Skolnick, 2004; Abeln et al., 2014;

Coluzza et al., 2003; Bianco et al., 2017; Dijkstra et al., 2018; Van Gils et al., 2020). A schematic overview

of the simulation pipeline is given in Figure S7. The procedure starts with a fully atomistic native struc-

ture, which is converted to a lattice structure with tagged residues marked. This structure is then refolded

by making local modifications and calculating the effect these have on the model energy (Etot), as calcu-

lated by an energy function. Modifications that decrease Etot are accepted, whereas those that increase

Etot are more likely to be discarded the more they increase Etot. The procedure ends when all DNA-tags

fit in the structure without causing steric hindrance. Aspects of the modeling procedure are described in

more detail below.
Lattice structure

The lattice modeling procedure employed here largely resembles those in previously published applica-

tions. In particular, the model developed by Abeln et al. (2014) was used as a starting point, however

the cubic lattice was replaced by a body-centered cubic (BCC) lattice (Figure S1). The octahedral unit

cell of a BCC lattice borders eight neighboring cells through its hexagonal faces and four through its square

faces. Only connections through hexagonal faces are considered, as this allows all bonds to be of the same

length. As a result, only even coordinates in the lattice are valid vertices for residue placement (Thompson

et al., 2016). This implementation increases the number of contacts that each non-endpoint residue can

make from four to six (not including immediately neighboring residues) and increases the number of direc-

tions into which a bondmay extend. The resulting increased flexibility allows lattice models to more closely

resemble native folds. Moreover, alpha helices are represented better as the BCC lattice allows structures

that make one regular turn per five residues.
Tag implementation

As the precise effect of the presence of DNA-tags on protein structure is unclear, we relied on several basic

assumptions to include them in themodel. First, we assume that DNA-tags prefer to reside in the periphery

of a protein due to their polar backbones. Thus, labeling an internal residue should alter local structure to

accommodate sufficient space from the residue to the surface, while tagging a residue that already resides

on the protein surface should affect the structure less severely. This was implemented by adding a substan-

tial energy penalty if a tagged residue did not have space for a DNA tag to reach the periphery of the struc-

ture without clashing with the main chain. As DNA nucleotides are bulkier than amino acids, we account for

this by modeling the tag with a volume spanning vertices up to 2 vertices away from the tag backbone (Fig-

ure S11). Secondly, we assume that tags will electrostatically repel each other. This is represented by intro-

ducing a minimum angle and dihedral between tag pairs that are spatially close together in a given

configuration (Figure S10). To parameterize this effect, we compared predicted fingerprints of 40-residue

model peptides to the presented experimental data and found that values are reproduced well if at least a

70� angle and dihedral are enforced between tags situated within 20 Å of each other. Lastly, as DNA labels

obstruct or partially replace the residue, the labeled residue is assumed to lose its ability to interact with

other residues or contribute to secondary structure formation, including disulfide bridges in the case of

cysteine labeling (Figure S8).
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Simulated labeling scenarios

Two labeling scenarios are employed in this work. Under the optimal scenario, all target residues are

labeled and no off-target labeling takes place. Under the suboptimal scenario, both labeling efficiency

and specificity are decreased, following a similar procedure to Ohayon et al. (2019); each target residue

has a 90% chance of being labeled by its dedicated chemistry, while some off-target labeling probability

is defined for one or more other residue types. Where possible, efficiency and specificity parameters are

based on literature (Table S3).

Structure collection

We base the lattice models used in our fingerprinting simulations on fully atomistic structures as stored in

the RCSB PDB. To obtain a dataset of relevant structures, we analysed all available PDB entries correspond-

ing to entries in the Uniprot human proteome set (UP000005640). Of the 20,381 entries in the proteome,

7,133 solved structures were found. We further filtered this list on structure quality, retaining only those

with an R-free value below 0.21, and removed structures with non-canonical residues as our model contains

no energy modifiers for these residues. Lastly, quaternary structure is expected to be lost during sample

preparation, thus to avoid having to model the effect of losing other chains on the tertiary structure of

the target chain, we removed structures which were crystalized as a complex of multiple chains. After these

filtering steps, 746 structures remained for our simulations.

A lattice model is derived from a fully atomistic structure by reducing it to its Ca positions and placing each

Ca-atom on the nearest lattice vertex, while remaining connected to its neighboring Ca-atom, starting

from the residue with the lowest index. Alpha helices are forced to remain intact on the lattice, by first trans-

lating involved Ca-atoms to a lattice-compliant helix and then minimizing the distance between their

respective lattice positions simultaneously.

As no PDB structures are available for the 40-residue model peptides labeled in practical experiments,

starting structures for these peptides were stretched configurations. Starting structures for Bcl-X and

PTGS1 spliceoforms were generated using the RaptorX structure prediction server (Källberg et al., 2012,

2014).

Folding simulation

After initialization of the lattice model, a Markov Chain Monte Carlo (MCMC) procedure is employed to

minimize the structure energy Etot.

Etot = EAA +Esol +Ess +Edsb +Etag +Ereg

Residue interaction and residue-solvent interaction terms EAA and Esol are summed pairwise interaction

terms between contacting residues or residue-solvent contacts, the magnitudes of which are obtained

empirically (Miyazawa and Jernigan, 1999). The secondary structure formation energy term Ess is adapted

from Abeln et al. (2014) and incurs an arbitrarily high energy bonus of �25 if an alpha helix or beta

sheet is formed, but only if a given residue also was part of such a secondary structure in the

native fold. An alpha helical residue incurs this bonus if the exact shape of the helix is formed (i.e.

residue i up to i+4 take the same relative orientation at each step), while a bonus for beta sheet forma-

tion is applied if non-neighboring beta-sheet residues are adjacent to each other. The disulfide bridge

energy term Edsb incurs an arbitrarily high bonus of 50 for each pair of contacting cysteines. Each cysteine

may only contribute to one bond at a time. The tag energy term Etag incurs an arbitrarily high energy

penalty of 100 for each residue impeding the shortest route from a tagged residue to the periphery

of the structure. Lastly, the regularization term Ereg incurs a penalty for large structural reorganizations

occurring in a single MCMC step, as we found that this helps to retain the native fold as much as

possible.

To minimize the energy of a structure, three modifications may be applied (Figure S9). A branch rotation

modification rotates all pseudo-atoms after a randomly chosen point; a corner flip modification changes

the position of a single pseudo-atom to a new position without losing contact with its neighbors; and a

crankshaft move does the same for two pseudo-atoms. Note that these modifications are similar to those

used by Coluzza et al. (2003), with the difference that we do not restrict angles for corner flips and branch

rotations are less constricted, whereas Coluzza et al. (2003) only allow 180- and 90-degree rotations

respectively.
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At each MCMC iteration of the energy minimization process, one of the mentioned modifications is

applied at a random position. The energy difference incurred by the modification determines the prob-

ability with which it is accepted; modifications decreasing the model energy or keeping it the same

are always accepted, while those increasing the energy may still be accepted with some probability

to allow for better exploration of the search space. The probability of modification acceptance is

defined as:

Paccept = min

�
1; exp

��DE

T

��

Here DE is the energy difference and T is the simulation temperature, a unitless parameter which reg-

ulates the probability of acceptance of an energy-increasing modification. Two models are optimized

simultaneously in two chains, at two different simulation temperatures (0.01 and 0.001). The high-tem-

perature chain is less restrictive in its acceptance of energy-increasing modifications, thus allowing a

wider exploration of the structural search space, while the more stringent acceptance criterion of the

low-temperature chain is better at finding a local minimum. The two properties are combined by allow-

ing the chains to exchange models after each 100 MCMC iterations. The probability of exchange is

given by:

Pexchange = min
�
1;expðDE ,D1 =TÞ�

Lattice models are optimized for a maximum of 60,000 MCMC iterations using two separate chains. After

each 500 iterations, the steric hindrance incurred by DNA-tags is assessed. If no steric hindrance remains,

the model is not optimized any further.
Fingerprint extraction

To account for the fact that a structure may adopt several conformations over the course of measure-

ments, either due to native disorder or due to the presence of the DNA-tags, fingerprints are based on

a series of structure snapshots. After the folding simulation has finished and the structure which accom-

modates all DNA-tags without steric hindrance is found, another 1,000 MCMC steps are performed.

During these steps, snapshots are taken at intervals of 10 steps, thus measuring 100 slightly different

conformations. For each snapshot, dye positions are chosen randomly from all accessible lattice direc-

tions. If tags are found to be closer than 20Å to each other, a minimum angle and dihedral angle of 70�

each between those tags is enforced (Figure S10). Distances between donor and acceptor dye posi-

tions are estimated from the snapshots and averaged over 10 consecutive conformations, to emulate

the movement of the molecule over a single frame. Using this distance, the FRET efficiency is then

calculated as follows:

EFRET =
1

1+ ðR=R0Þ6

Here R is the modeled distance between donor and acceptor dye and R0 is the Förster radius, which char-

acterizes the used FRET dye pair (R0 assumed constant at 54Å for the Cy3-Cy5 FRET pair (Lerner et al.,

2021)). Finally, all FRET values are binned and normalized over the number of simulated frames to produce

the final fingerprint. The bin width is used here to represent the observation resolution. Resolution is fixed

at 0.01 unless otherwise noted, as previous work has shown that such a resolution can be achieved using

FRET X (Filius et al., 2021). If multiple residue types are tagged, each residue type generates its own finger-

print which is binned separately.
Classification

To classify simulated fingerprints a support vector machine (SVM) was implemented using the scikit-learn

package (v0.23.2) (Pedregosa et al., 2011). As a higher resolution is also more sensitive to noise by unstable

fingerprints, the resolution is tuned during training in steps of 0.01 E to produce the highest training

accuracy.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis details for experimental data are given in the captions of Figures 2D and 2F. Statistical

details for simulations of complex samples are found in the results section and Figure 4. We evaluated the

SVM classifier’s ability to classify simulated fingerprints in a ten-fold cross validation procedure; the SVM
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was fitted to a training set consisting of 90% of produced fingerprints and tested on the held-out test set. To

evaluate classifier performance, we calculated test accuracy, i.e. the number of correct classifications over

total number of test examples. The reported accuracy is the arithmetic mean of the accuracies produced for

each fold. As this measure obscures whether classification mistakes are consistently made for certain pro-

teins or are randomly distributed, we also determined which proteins were correctly classified in more than

half of replicates, which we denote as well-identifiable proteins.
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