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Weak convergence of stochastic integrals with respect to the state
occupation measure of a Markov chain

H. M. Jansen

Abstract
Our aim is to find sufficient conditions for weak convergence of stochastic integrals with
respect to the state occupation measure of a Markov chain. First, we study properties
of the state indicator function and the state occupation measure of a Markov chain.
In particular, we establish weak convergence of the state occupation measure under
a scaling of the generator matrix. Then, relying on the connection between the state
occupation measure and the Dynkin martingale, we provide sufficient conditions for
weak convergence of stochastic integrals with respect to the state occupation measure.
We apply our results to derive diffusion limits for the Markov-modulated Erlang loss
model and the regime-switching Cox–Ingersoll–Ross process.

Keywords: Markov chain; state occupation measure; stochastic integral; diffusion limit;
Markov modulation; regime switching.
AMS MSC 2010: 60F17; 60H05.

1 Introduction
Stochastic integrals with respect to the state occupation measure of a Markov chain arise
naturally in the analysis of queueing systems and diffusions under Markov modulation. We
are interested in weak convergence properties of this type of stochastic integrals, as they
play a key role in the derivation of scaling limits for such processes.

To make the problem concrete, we introduce some notation. Let Y · X denote the
Itô integral of Y with respect to X and let ⇒ denote weak convergence. In addition, let
Hn and Gn be stochastic processes satisfying Hn ⇒ H and Gn ⇒ G, with Hn being a
suitable integrand and Gn denoting the (scaled and centered) state occupation measure of
an irreducible continuous-time Markov chain. We would like to find conditions under which
the convergence

Hn ·Gn ⇒ H ·G (1.1)

holds as well.
Rather remarkably, this case does not seem to be covered by the known results dealing

with convergence as in (1.1). To guarantee convergence as in (1.1), it is typically required
that Gn is a martingale or that Gn has the so-called P-UT property (cf. [5, 6, 9, 16]).
However, neither of these requirements is satisfied if Gn is the state occupation measure
of a Markov chain, even though Gn has very nice convergence properties in this important
case. An exception is [10], which considers a class of Markov-modulated ordinary differential
equations that have bounded integrands and feature the state occupation measure as an in-
tegrator. The proof there relies on integration by parts under an appropriate differentiability
condition, after which the P-UT machinery can be utilized.

The goal of this paper is to formulate practical conditions that guarantee convergence
as in (1.1) and can be easily applied to relevant examples such as queueing systems and
mean-reverting diffusions under Markov modulation. Because the state occupation measure
Gn is a given, we have to impose restrictions on the integrand Hn to obtain convergence as
in (1.1). The key insight is that convergence of Hn · Gn is related to the behavior of the



total variation process of Hn. Under the condition that this total variation process does not
grow too quickly, we prove that (1.1) holds. Relying on tightness arguments, we extend this
result and show weak convergence of integral equations of the form

Yn(t) = Xn(t) +

∫ t

0

Hn(s) dGn(s) +

∫ t

0

Γγn(Yn)(s) d 1√
n
Gn(s) +

∫ t

0

∆δn(Yn)(s) ds,

where Γγn and ∆δn are functions mapping right-continuous paths to right-continuous paths.
We demonstrate the relevance of these results by applying them to two examples, in which
we derive diffusion limits of the Erlang loss model and the Cox–Ingersoll–Ross (CIR) process
under Markov modulation.

The remainder of this paper is organized as follows. In Section 2, we introduce notation
and collect a number of basic results needed to prove the main results. In particular, we
derive properties of an irreducible, continuous-time Markov chain, its state occupation mea-
sure, and its Dynkin martingale. We also establish weak convergence of the state occupation
measure. In Section 3, we state and prove the main results in two theorems. The first theo-
rem concerns weak convergence of stochastic integrals with respect to the state occupation
measure Gn and provides conditions under which (1.1) holds. The second theorem extends
this to a class of stochastic integral equations involving Gn. In Section 4, we apply the
main results to derive the diffusion limit for the Markov-modulated Erlang loss model and
to establish a small-noise limit for the Markov-modulated CIR process. In Section 5, we
draw conclusions and point out some directions for further research. The appendix explores
the P-UT property and its relation to Gn in some more detail. It also contains two technical
lemmas that are important for proving the main results.

2 Preliminaries
We consider stochastic processes X defined on the interval [0,∞) and taking values in Rp.
We interpret vectors in Rp as column vectors and equip Rp with the usual Euclidian norm
‖·‖. Unless stated otherwise, we assume that X is càdlàg, meaning that its paths are right-
continuous and admit finite left-hand limits. We denote the space of càdlàg paths on [0,∞)
with values in Rp by D([0,∞);Rp) and we assume that D([0,∞);Rp) is equipped with the
Skorokhod J1 topology (cf. [5, Ch. VI]). Weak convergence is denoted by ⇒. We refer
to uniform convergence on compacts in probability as ucp convergence. The element in
D([0,∞);Rp) that is identically equal to 0 is denoted by η0. We often refer to η0 as the zero
process. We let c be a positive constant that may change from line to line.

Throughout this paper, J denotes a right-continuous, irreducible, continuous-time Markov
chain with state space {1, . . . , d} for some d ∈ N. We denote by Q the d× d generator ma-
trix corresponding to J . The state indicator function of J is the {0, 1}d-valued process K
defined via K(i; t) = 1{J(t)=i} for i ∈ {1, . . . , d} and t ≥ 0, so it takes values in the set of
unit vectors. The process K is closely related to the state occupation measure, which is the
Rd-valued stochastic process L(t) =

∫ t
0
K(s) ds. On an intuitive level, the state indicator

function K registers in which state J is, while the state occupation measure L measures how
much time J has spent in each state up to a certain time.

2.1 Basic properties of the deviation matrix
Anticipating upcoming results, we present a number of equalities. Given the irreducible
generator matrix Q, we let the d× 1 column vector π denote its stationary distribution, so
π is the unique probability vector solving the equation πTQ = 0. Additionally, D denotes
the deviation matrix corresponding to Q; its entries are given by

Dij =

∫ ∞
0

(
P(J(s) = j | J(0) = i)− πj

)
ds.
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The integral is well defined, because the irreducibility of Q implies that the probability
P(J(t) = j | J(0) = i) converges exponentially fast to πj as t → ∞ (cf. [3, p. 356]). Thus,
the deviation matrix D provides a measure for how much the Markov chain J deviates from
its stationary distribution if it starts in a fixed point.

Following [3], we define the ergodic matrix Π = 1πT and the fundamental matrix F =
D + Π, where 1 denotes a d × 1 vector with each entry being 1. Some straightforward
arguments (cf. [3]) demonstrate that πTD = 0 and

QF = FQ = Π− I = DQ = QD. (2.1)

Applying these identities, we find that (QF )Tdiag(π)F = (QD)Tdiag(π)D+(QD)Tdiag(π)Π,
while (QD)Tdiag(π)D = −diag(π)D and (QD)Tdiag(π)Π = 0. This leads to the equality

FT
(
QTdiag(π) + diag(π)Q

)
F = −

(
diag(π)D +DTdiag(π)

)
. (2.2)

Given the irreducible generator matrix Q, the vectors and matrices 1, π, Π, F , and D are
always as defined above.

2.2 The Dynkin martingale

Markov chains are closely connected to martingales via Dynkin’s formula. In the next result
(which follows from [1, Lem. 2.6.18] and [1, Lem. 3.8.5]), we define a martingale M , which
is the Dynkin martingale corresponding to J . Additionally, we note that M is a locally
square-integrable martingale. For this class of martingales there are powerful convergence
results available, which often depend on the predictable quadratic variation process of such
martingales converging in a suitable manner. One of these results is the Martingale Central
Limit Theorem (MCLT). We would like to invoke it later on, so we present the explicit form
of the predictable quadratic variation process of M as well.

Lemma 2.1. The process M defined via

M(t) = K(t)−K(0)−
∫ t

0

QTK(s) ds (2.3)

is a càdlàg, locally square-integrable martingale having predictable quadratic variation process

〈M〉(t) =

∫ t

0

diag
(
QTK(s)

)
ds−

∫ t

0

QTdiag(K(s)) ds−
∫ t

0

diag(K(s))Qds. (2.4)

We refer to the process M defined above as the Dynkin martingale associated with the
Markov chain J .

2.3 Scaling the Markov chain

In the remainder of this paper, we are mainly concerned with the Markov chain Jn, which
is a scaled version of J . Formally, we fix α > 0 and let Jn denote a continuous-time Markov
chain with state space {1, . . . , d} and generator matrix nαQ, where n ∈ N. As usual, we
assume that Jn has right-continuous paths. Note that we may obtain Jn by applying the
time scaling Jn(t) = J(nαt), so Jn is essentially a sped-up version of J .

The state indicator function of Jn is Kn, while the corresponding state occupation mea-
sure is Ln and the corresponding Dynkin martingale is Mn. We let Gn denote a scaled and
centered version of the state occupation measure Ln, with

Gn(t) = nα/2
∫ t

0

(Kn(s)− π) ds. (2.5)
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This process is connected to Mn via

Gn(t) = n−α/2FTMn(t)− n−α/2FT(Kn(t)−Kn(0)), (2.6)

which follows from (2.1) and (2.3).
The process Gn in (2.5) is the process that we would like to use as an integrator. There-

fore, it is the most important object in this paper. For ease of exposition, we often abuse
terminology and refer to Gn as the state occupation measure, leaving out the fact that it is
scaled and centered in a specific way.

2.4 Weak convergence of the state occupation measure
A first step towards proving the main result is to derive weak convergence of the Dynkin
martingale Mn and the state occupation measure Gn. We settle this in the next lemma. In
particular, it shows that the fluctuations of Gn are well described by a Brownian motion
whose predictable quadratic variation process strongly depends on the deviation matrix D
of the underlying Markov chain. Its proof relies on a double application of the MCLT.

Lemma 2.2. For n→∞, the stochastic process n−α/2Mn converges weakly to a Brownian
motion C having predictable quadratic variation process

〈C〉(t) = −
(
QTdiag(π) + diag(π)Q

)
t. (2.7)

Additionally, for n→∞, the stochastic process Gn converges weakly to a Brownian motion
B having predictable quadratic variation process

〈B〉(t) =
(
diag(π)D +DTdiag(π)

)
t. (2.8)

Proof. We first show how the second statement follows from the first. Suppose that M̂n =
n−α/2Mn converges weakly to the Brownian motion C. In this case, the process−nα/2

∫ t
0
QTKn(s) ds

must converge weakly to C as well, due to (2.6). Then the process

Gn(t) = nα/2
∫ t

0

(Kn(s)− π) ds = −nα/2
∫ t

0

FTQTKn(s) ds

converges weakly to the Brownian motion B = FTC, so

〈B〉(t) = FT
(
−
(
QTdiag(π) + diag(π)Q

)
t
)
F =

(
diag(π)D +DTdiag(π)

)
t.

For a justification of the last equality, see (2.2).
In view of the previous considerations, it suffices to prove that M̂n converges weakly to

the Brownian motion C. We would like to invoke the MCLT (cf. [16, Th. 2.1]) to establish
this convergence. To this end, we have to verify several properties: we need ucp convergence
of the predictable quadratic variation process 〈M̂n〉 to 〈C〉, together with bounds on the
maximum jump sizes of M̂n and 〈M̂n〉.

As a first step, we use Lemma 2.1 to obtain that

〈M̂n〉(t) =

∫ t

0

diag
(
QTKn(s)

)
ds−

∫ t

0

QTdiag(Kn(s)) ds−
∫ t

0

diag(Kn(s))Qds. (2.9)

Clearly, 〈M̂n〉 is continuous and the jumps of each entry of M̂n are bounded by n−α/2, so
the maximum jump size of M̂n and 〈M̂n〉 converges to 0 as n→∞. In this case, the MCLT
implies that weak convergence of M̂n to C follows from 〈M̂n〉 converging ucp to 〈C〉.

The key to proving convergence of 〈M̂n〉 to 〈C〉 is the convergence of n−αMn to the
zero process η0. To establish the latter convergence, we again rely on the MCLT. Clearly,
〈n−αMn〉 = n−α〈M̂n〉 and 〈M̂n〉 is bounded on compact intervals, so 〈n−αMn〉 converges
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ucp to η0. Additionally, the maximum jump size of n−αMn and 〈n−αMn〉 converges to 0 as
n→∞, so the MCLT implies that n−αMn converges ucp to η0.

Recall that we aim to prove that 〈M̂n〉 converges ucp to 〈C〉. Because we showed that
n−αMn converges ucp to η0 and Kn is bounded by 1, it follows from the definition of Mn

in (2.3) that

−
∫ t

0

FTQTKn(s) ds (2.10)

converges ucp to η0, too. From the matrix equalities related to the deviation matrix D and
the fundamental matrix F we get

FTQTKn(s) = (QF )TKn(s) =
(
π1T − I

)
Kn(s) = π −Kn(s). (2.11)

Combining this with the convergence of the process in (2.10), we conclude that the process∫ t
0
(Kn(s)− π) ds converges ucp to η0. This implies that 〈M̂n〉 presented in (2.9) converges

ucp to∫ t

0

diag
(
QTπ

)
ds−

∫ t

0

QTdiag(π) ds−
∫ t

0

diag(π)Qds = −
(
QTdiag(π) + diag(π)Q

)
t.

The last equality is based on the fact that πTQ = 0. We conclude that 〈M̂n〉 converges ucp
to 〈C〉, which establishes weak convergence of M̂n to C.

3 Main results

In this section, we state and prove our main results, which we present in two theorems. The
first theorem concerns weak convergence of stochastic integrals with respect to the state
occupation measure Gn. The second theorem partly relies on the first and concerns weak
convergence for a rather general class of stochastic integral equations involving Gn. These
results are the key to deriving the diffusion limits for the Markov-modulated Erlang loss
model and the regime-switching CIR process, which we focus on in the next section.

3.1 Stochastic integrals with respect to the state occupation mea-
sure

Convergence of stochastic integrals with respect to a semimartingale Xn is a delicate subject
in general. Even ifHn andXn are well-behaved deterministic processes converging uniformly
to the zero process, the integral Hn ·Xn may not converge as n → ∞. Nevertheless, there
are two well-known cases in which the analysis simplifies considerably. The first case deals
with Xn being a martingale. Then Hn ·Xn is typically a martingale, which may be analyzed
using tools such as the MCLT. The second case (partly covering the first) deals with Xn

being P-UT. Then (Hn, Xn)⇒ (H,X) implies that Hn ·Xn ⇒ H ·X under mild conditions,
according to [5, Th. VI.6.22].

However, if we integrate against the state occupation measureGn, neither the first nor the
second case applies. Indeed, Gn is not a martingale and does not satisfy the P-UT property,
as we show in the appendix. We get around this problem by restricting the integrands to
be processes of finite variation that converge in a specific way. Under this restriction, we
exploit properties of both the Dynkin martingale and the state indicator function to prove
weak convergence of stochastic integrals with respect to Gn.

We proceed to develop this idea in the following theorem, which is the first main result
of this paper. The statement of the theorem also features an auxiliary process Zn. It is not
relevant for the proof, but its inclusion can be quite useful for applications.
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Theorem 3.1. For fixed m ∈ N, let H1,n, . . . ,Hm,n, and Zn be càdlàg processes, with
H1,n, . . . ,Hm,n taking values in Ra×d and Zn in Rb. Assume that these processes are adapted
to some underlying filtration with respect to which the Dynkin martingale Mn is still a
martingale. Also assume that each entry of n−α/2Hk,n is a finite variation process whose
total variation process converges ucp to the zero process η0. If

(H1,n, . . . ,Hm,n, Gn, Zn)⇒ (H1, . . . ,Hm, B, Z) (3.1)

for n→∞, then

(H1,n ·Gn, . . . ,Hm,n ·Gn, H1,n, . . . ,Hm,n, Gn, Zn)

⇒ (H1 ·B, . . . ,Hm ·B,H1, . . . ,Hm, B, Z)
(3.2)

for n → ∞. The process B is a Brownian motion whose predictable quadratic variation
process is given by (2.8).

Proof. We first summarize some known results. According to Lemma 2.2, the martingale
n−α/2Mn converges weakly to a Brownian motion C and the state occupation measure Gn
converges weakly to B = FTC, which has the predictable quadratic variation process given
by (2.8). We also note that Hk,n ·Gn = H−k,n ·Gn, with X− being the left-hand limit of a
càdlàg process X.

We have established a relation between Gn and n−α/2Mn in (2.6). This relation implies
that (

H−k,n ·Gn
)
(t) =

∫ t

0

H−k,n(s) dn−α/2FTMn(s) +Rk,n(t),

where

Rk,n(t) = −
∫ t

0

n−α/2H−k,n(s)FT dKn(s).

We now verify that Rk,n converges weakly to η0. Its (i, j)-th entry is given by

Rk,n,i,j(t) = −
∫ t

0

H̃k,n,i,j(s) d1{Jn(s)=j},

where H̃k,n,i,j is the (i, j)-th entry of n−α/2H−k,nF
T. We denote the total variation process

of H̃k,n,i,j by Vk,n,i,j . The crucial observation here is that the process 1{Jn(s)=j} is right-
continuous and jumps between 0 and 1. Therefore, we can apply Lemma A.1 to get

sup
0≤s≤t

∣∣∣∣∫ s

0

H̃k,n,i,j(r) d1{Jn(r)=j}

∣∣∣∣ ≤ Vk,n,i,j(t) + sup
0≤s≤t

∣∣∣H̃k,n,i,j(s)
∣∣∣. (3.3)

The process Hk,n is of finite variation and converges weakly to Hk, while the total variation
process of n−α/2Hk,n converges ucp to η0. As a consequence, both H̃−k,n and its total
variation process converge ucp to η0, too. Combining this with the inequality in (3.3), it
follows that Rk,n converges weakly to η0.

The previous arguments show that

H−k,n ·Gn = H−k,n · M̃n +Rk,n,

where M̃n = n−α/2FTMn. The processes Rk,n converge weakly to η0, so it suffices to prove
that

(H−1,n · M̃n, . . . ,H
−
m,n · M̃n, H1,n, . . . ,Hm,n, Gn, Zn) (3.4)
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converges weakly to the limiting vector of stochastic integrals in (3.2).
We exploit the P-UT framework from [5, Th. VI.6.22] to derive weak convergence of the

processes in (3.4). As a first step, recall thatMn is a locally square-integrable martingale and
that n−α/2Mn converges weakly to C, so M̃n = n−α/2FTMn is a locally square-integrable
martingale that converges weakly to B. Moreover, the jumps of Mn are bounded by 1, so
M̃n has bounded jumps, too. Then [5, Cor. VI.6.29] implies that the sequence of martingales
M̃n has the P-UT property.

For notational convenience, we define M̃k,n = M̃n and Bk = B for k = 1, . . . ,m. For an
application of [5, Th. VI.6.22], we have to verify that(

H1,n, . . . ,Hm,n, M̃1,n, . . . , M̃m,n, Zn
)
⇒
(
H1, . . . ,Hm, B1, . . . , Bm, Z

)
. (3.5)

The validity of this weak convergence result follows from (2.6) and (3.1). With M̃n being
P-UT and having the convergence in (3.5) at our disposal, we invoke [5, Th. VI.6.22] to
obtain the weak convergence of the vector of stochastic integrals in (3.4) to the limit vector
of stochastic integrals in (3.2). As argued before, this establishes the weak convergence in
(3.2).

3.2 Stochastic integral equations involving the state occupation
measure

The goal of this paper is to give practical conditions for weak convergence that can be easily
applied to relevant examples involving Markov modulation. Therefore, we also introduce
the stochastic integral equation

Yn(t) = Xn(t) +

∫ t

0

Hn(s) dGn(s) +

∫ t

0

Γγn(Yn)(s) dḠn(s) +

∫ t

0

∆δn(Yn)(s) ds, (3.6)

where we define Ḡn = n−α/2Gn. The process Yn takes values in Rp, while the functions Γγn
and ∆δn map D([0,∞),Rp) into D([0,∞),Rp×d) and D([0,∞),Rp), respectively. The γn and
δn are parameters. We impose three natural conditions on Γγn and ∆δn . First, we assume
that these functions are continuous with respect to the Skorokhod J1 topology. Second, we
assume that these functions are uniformly Lipschitz continuous with respect to the supre-
mum norm, meaning that sup0≤t≤T ‖Γγn(x)(t)− Γγn(y)(t)‖ ≤ c sup0≤t≤T ‖x(t)− y(t)‖ for
all possible parameter values γn. This implies in particular that (3.6) has a unique solution.
Third, we assume that these functions are continuous in their parameters in the sense that
Γγn(x)− Γγ(x)→ η0 in D([0,∞),Rp×d) if γn → γ.

The next theorem, which is the second main result of this paper, shows that Yn converges
weakly to the solution of the stochastic integral equation

Y (t) = X(t) +

∫ t

0

H(s) dB(s) +

∫ t

0

∆δ(Y )(s) ds, (3.7)

provided that (Hn, Gn, Xn) ⇒ (H,B,X), γn → γ, δn → δ, and some additional mild
conditions are met. The proof relies on Theorem 3.1 as well as tightness arguments. We
give examples of the use of Theorem 3.2 in the next section.

Theorem 3.2. Impose the conditions of Theorem 3.1. Additionally, let Hn and Xn be càdlàg
processes, with Hn taking values in Rp×d and Xn in Rp. Assume that all processes involved
are adapted to some underlying filtration with respect to which the Dynkin martingale Mn

is still a martingale. Also assume that each entry of n−α/2Hn is a finite variation process
whose total variation process converges ucp to the zero process η0. If γn → γ, δn → δ, and

(H1,n, . . . ,Hm,n, Hn, Gn, Xn, Zn)⇒ (H1, . . . ,Hm, H,B,X,Z) (3.8)
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for n→∞, then

(H1,n ·Gn, . . . ,Hm,n ·Gn, Hn ·Gn, H1,n, . . . ,Hm,n, Hn, Gn, Xn, Yn, Zn)

⇒ (H1 ·B, . . . ,Hm ·B,H ·B,H1, . . . ,Hm, H,B,X, Y, Z),
(3.9)

for n → ∞, where Yn and Y are the unique solutions to (3.6) and (3.7), respectively. The
process B is a Brownian motion whose predictable quadratic variation process is given by
(2.8).

Proof. It follows from Theorem 3.1 that

(H1,n ·Gn, . . . ,Hm,n ·Gn, Hn ·Gn, H1,n, . . . ,Hm,n, Hn, Gn, Xn, Zn)

⇒ (H1 ·B, . . . ,Hm ·B,H ·B,H1, . . . ,Hm, H,B,X,Z),
(3.10)

which is just the convergence in (3.9) without the processes Yn and Y . If we prove weak
convergence of Yn to Y , then joint convergence with (3.10) is a direct consequence of [5,
Pr. VI.2.2], because the jumps of Yn coincide with the jumps of Xn. Therefore, it remains
to show that Yn ⇒ Y .

We complete the proof in two steps. In both steps, a crucial role is played by the
stochastic process Ŷn given by

Ŷn(t) = Xn(t) +

∫ t

0

Hn(s) dGn(s) +

∫ t

0

Γγ(Ŷn)(s) dḠn(s) +

∫ t

0

∆δ(Ŷn)(s) ds, (3.11)

which is the solution to (3.6) with γn replaced by γ and δn replaced by δ. In the first step,
we show that Yn is asymptotically equivalent to Ŷn if Ŷn converges weakly. In the second
step, we show that Ŷn ⇒ Y , which implies that Yn ⇒ Y due to the asymptotic equivalence.

For the first step, suppose that Ŷn converges weakly. To establish the asymptotic equiv-
alence of Yn and Ŷn, note that∥∥∥Yn(t)− Ŷn(t)

∥∥∥ ≤ ∥∥∥∥∫ t

0

(
Γγn(Yn)(s)− Γγn(Ŷn)(s)

)
dḠn(s)

∥∥∥∥
+

∥∥∥∥∫ t

0

(
Γγn(Ŷn)(s)− Γγ(Ŷn)(s)

)
dḠn(s)

∥∥∥∥
+

∥∥∥∥∫ t

0

(
∆δn(Yn)(s)−∆δn(Ŷn)(s)

)
ds

∥∥∥∥
+

∥∥∥∥∫ t

0

(
∆δn(Ŷn)(s)−∆δ(Ŷn)(s)

)
ds

∥∥∥∥
and thus ∥∥∥Yn(t)− Ŷn(t)

∥∥∥ ≤ I0,n(t) + c

∫ t

0

∥∥∥Yn(s)− Ŷn(s)
∥∥∥ ds

for every t ∈ [0, T ], where

I0,n(t) =

∥∥∥∥∫ t

0

(
Γγn(Ŷn)(s)− Γγ(Ŷn)(s)

)
dḠn(s)

∥∥∥∥+

∥∥∥∥∫ t

0

(
∆δn(Ŷn)(s)−∆δ(Ŷn)(s)

)
ds

∥∥∥∥.
The last inequality above is based on the Lipschitz property of Γγn and ∆δn . An application
of Gronwall’s Lemma (cf. [8, pp. 287–288]) shows that

sup
0≤t≤T

∥∥∥Yn(t)− Ŷn(t)
∥∥∥ ≤ ( sup

0≤t≤T
I0,n(t)

)
ecT .
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With Ŷn converging weakly and the functions Γγn and ∆δn being continuous in their pa-
rameters, it follows that sup0≤t≤T I0,n(t) converges to 0 in probability, so Yn and Ŷn are
stochastically equivalent if Ŷn converges weakly.

For the second step, we define I1,n(t) =
∫ t

0
Γγ(Ŷn)(s) dḠn(s) and I2,n(t) =

∫ t
0

∆δ(Ŷn)(s) ds

to ease notation. We aim to show that Ŷn ⇒ Y , which implies that Yn ⇒ Y in view of
the asymptotic equivalence of Yn and Ŷn. We take the classical tightness approach to
prove that Ŷn ⇒ Y . First, we establish that Ŷn is stochastically bounded (meaning that
sup0≤t≤T ‖Ŷn(t)‖ is tight for every T > 0). This implies stochastic boundedness of I1,n and
I2,n. Using this, we argue that I1,n and I2,n are C-tight, from which we derive tightness
of Ŷn. Finally, we prove that every converging subsequence of Ŷn converges weakly to Y ,
demonstrating that Ŷn ⇒ Y .

We start by establishing stochastic boundedness of Ŷn. The Lipschitz property of Γγ
and ∆δ implies that

‖Ŷn(t)‖ ≤ ‖Xn(t)‖+

∥∥∥∥∫ t

0

Hn(s) dGn(s)

∥∥∥∥+

∫ t

0

‖Γγ(Ŷn)(s)(Kn(s)− π)‖ ds+

∫ t

0

‖∆δ(Ŷn)(s)‖ds

≤ ‖Xn(t)‖+

∥∥∥∥∫ t

0

Hn(s) dGn(s)

∥∥∥∥+ c

∫ t

0

(1 + sup
0≤u≤s

‖Ŷn(u)‖) ds.

As before, an application of Gronwall’s Lemma then leads to the inequality

sup
0≤t≤T

‖Ŷn(t)‖ ≤
(

sup
0≤t≤T

‖Xn(t)‖+ sup
0≤t≤T

∥∥∥∥∫ t

0

Hn(s) dGn(s)

∥∥∥∥+ cT

)
ecT ,

so

P
(

sup
0≤t≤T

‖Ŷn(t)‖ > a

)
≤ P

((
sup

0≤t≤T
‖Xn(t)‖+ sup

0≤t≤T

∥∥∥∥∫ t

0

Hn(s) dGn(s)

∥∥∥∥+ cT

)
ecT > a

)
.

The probability on the right-hand side can be made arbitrarily small uniformly in n by
taking a large enough, because Xn and Hn · Gn converge weakly and are therefore tight.
Consequently, sup0≤t≤T ‖Ŷn(t)‖ is tight and thus Ŷn is stochastically bounded. The Lipschitz
property of Γγ and ∆δ implies that Γγ(Ŷn) and ∆δ(Ŷn) are stochastically bounded as well.

It also follows from the previous arguments that the processes I1,n and I2,n are stochas-
tically bounded. We now argue that these processes are C-tight. For ε > 0, note that

P

(
sup

t1,t2∈[0,T ]
0<t2−t1<ε

‖I1,n(t2)− I1,n(t1)‖ > a

)

≤ P
(

sup
0≤t≤T

‖Γγ(Ŷn)(t)‖ > b

)
+ P

(
sup

t1,t2∈[0,T ]
0<t2−t1<ε

∫ t2

t1

‖Γγ(Ŷn)(s)(Kn(s)− π)‖ ds > a; sup
0≤t≤T

‖Γγ(Ŷn)(t)‖ ≤ b

)
.

Since Γγ(Ŷn) is stochastically bounded, the first term on the right-hand side can be made
arbitrarily small uniformly in n by choosing b large enough. For fixed b, the second term
equals zero for each n for small enough ε. Consequently, the term on the left-hand side can
be made arbitrarily small uniformly in n by choosing ε small enough. Together with I1,n
being stochastically bounded, this means that I1,n is C-tight (cf. [5, Pr. VI.3.26]). Analogous
arguments show that I2,n is C-tight.

The next step is to derive tightness of Ŷn. The processes Xn and Hn ·Gn converge weakly
to X and H · B, so Xn and Hn · Gn are tight. Since Hn · Gn has a continuous limit by
Theorem 3.1, we know that Hn ·Gn is also C-tight. With Xn being tight and Hn ·Gn, I1,n,
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and I2,n being C-tight, it follows from [5, Lem. VI.3.32] that Ŷn = Xn+(Hn ·Gn)+I1,n+I2,n
is tight with respect to the Skorokhod J1 topology.

Knowing that Ŷn is tight, it remains to verify that Y is the unique limit point of Ŷn.
We take an arbitrary weakly converging subsequence of Ŷn (which we also denote by Ŷn for
simplicity) having limit point Ỹ . Now consider the terms on the right-hand side of (3.11).
By J1 continuity of Γγ and ∆δ, the processes Γγ(Ŷn) and ∆δ(Ŷn) converge weakly to Γγ(Ỹ )

and ∆δ(Ỹ ), which implies that I2,n converges weakly to
∫ t

0
∆δ(Ỹ )(s) ds, while I1,n converges

weakly to η0 by Lemma A.2. Consequently, the right-hand side of (3.11) converges to the
right-hand side of (3.7) with Y replaced by Ỹ , which implies that the limit point Ỹ satisfies
(3.7). Thus every limit point of Ŷn satisfies (3.7). Because the integral equation (3.7) has a
unique solution, we conclude that Ŷn converges weakly to the unique solution Y of (3.7).

4 Applications

In this section, we present two applications of our main results as formulated in Theorem 3.1
and Theorem 3.2. The purpose of these examples is to demonstrate that the main results
can be applied to a wide range of models. The first example establishes diffusion limits
for the Markov-modulated Erlang loss model as well as related models, which are finite-
variation processes with a reflecting boundary. The second example establishes a small-
noise limit for the Markov-modulated Cox–Ingersoll–Ross (CIR) process, which is not a
finite-variation process. Our main results are instrumental in proving both diffusion limits:
each example requires weak convergence of a stochastic integral Hn ·Gn to H ·G, as well as
weak convergence of the solution of (3.6) to the solution of (3.7). The assumptions of the
main results are readily verified in both examples.

We use the following notation and conventions throughout this section. Given a function
λ : {1, . . . , d} → R, we identify it with a d-dimensional column vector that we also denote by
λ. Additionally, we define λπ = λTπ. This quantity may be interpreted as a time-averaged
version of λ, because

∫ t
0
λ(Jn(s)) ds converges to λπt by Lemma 2.2.

4.1 Markov-modulated many-server queues with finite waiting room

We are interested in a class of many-server queues with a finite or infinite waiting room. An
important example is the Erlang loss model, which is the special case in which there is no
waiting room. We study such systems under Markov modulation, meaning that the parame-
ters depend on an independently evolving Markov chain (also referred to as the background
process). The background process represents an external environment to which the system
reacts, for instance by having an extremely large arrival rate when the environment is in
some emergency state.

We now describe the model in more detail. We consider a queueing system with n ∈ N
servers and a waiting room of size mn ∈ {0} ∪N ∪ {∞}. We focus on the scenario in which
the parameters of the queueing system are influenced by an independent background process
Jn, where Jn is the usual Markov chain with state space {1, . . . , d}, irreducible generator
matrix nQ, and stationary distribution π. While the background process is in state i, jobs
arrive to the system according to a Poisson process with rate λn(i) and servers work at speed
µ(i). Each job has an independent service requirement that has an exponential distribution
with unit mean. If a job arrives to the system and there are less than n jobs in service,
then it goes into service immediately. If all servers are busy when a new job arrives, then
there are two possible cases. In the first case, there are less than mn jobs waiting and the
new job enters the system to wait for service. In the second case, there are already mn jobs
waiting and the new job is rejected from the system. Once a job finishes service, it leaves
the system. If there are jobs waiting for service when a job finishes service, then one of those
jobs is sent to the corresponding server on a first-come, first-served basis.
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We denote the number of jobs in the system with n servers at time t by Qn(t) and
represent it as

Qn(t) = Qn(0) +A

(∫ t

0

λn(Jn(s)) ds

)
− S

(∫ t

0

µ(Jn(s))(Qn(s) ∧ n) ds

)
− Un(t).

Here, Qn(0) is an independent random variable denoting the initial number of jobs in the
system, while A and S are independent, unit-rate Poisson processes. The loss process
Un records the number of arrivals when there are mn jobs waiting for service. It may
be interpreted as the downward reflecting barrier at n + mn for Qn, meaning that Un is
the unique, nonnegative, nondecreasing stochastic process such that Qn(t) ≤ n + mn and∫∞

0
1{Qn(s)<n+mn} dUn(s) = 0 (cf. [12]).
We consider this system in the Quality-and-Efficiency-Driven (QED) or Halfin–Whitt

regime (cf. [12]), suitably modified to incorporate the Markov modulation (cf. [2, 7, 11]).
More specifically, we impose the following condition.

Condition 4.1. As n→∞, the initial condition
√
n( 1

nQn(0)− 1) converges in distribution
to a random variable X(0). Additionally, it holds that

λn(i)

n
→ λ̄(i) (4.1)

for every i ∈ {1, . . . , d} and

√
n

d∑
i=1

(
µ(i)− λn(i)

n

)
π(i)→ γµπ (4.2)

where γ ∈ R is fixed. The waiting room mn satisfies

mn√
n
→ κ (4.3)

for some κ ∈ [0,∞].

This condition reduces to the standard QED regime if there is no modulation and thus
d = 1. Indeed, in that case (4.2) states that

√
n
(
µ − λn

n

)
→ γµ for certain real-valued

variables λn, µ, and γ, which implies in particular that λ̄ = µ.
The convergence in (4.2) trivially holds if the system operates in the standard QED

regime for any state of the background process, meaning that
√
n
(
µ(i) − λn(i)

n

)
converges

to a constant for every i ∈ {1, . . . , d}. However, (4.2) may also hold if the system does
not operate in the standard QED regime for certain states of the background process. This
is the most interesting scenario, because the system switches between QED-behavior and
non-QED-behavior.

We now derive the diffusion limit for the scaled and centered queue content process
Q̂n =

√
n
(

1
nQn − 1

)
in the QED regime formulated in Condition 4.1, utilizing the main

results. The limit coincides with the usual diffusion limit for nonmodulated many-server
queues in the QED regime (cf. [12]) if the system operates in the standard QED regime
for any state of the background process. However, if the system does not operate in the
standard QED regime for a certain state of the background process, then the limit includes
an additional Brownian term capturing the extra variability introduced by the modulation.

Theorem 4.2. Under Condition 4.1, the process Q̂n converges weakly to the solution of the
stochastic integral equation

Q̂(t) = X(0)− γµπt+

√
λ̄π + µπW (t) +

∫ t

0

(λ̄− µ)T dB(s)−
∫ t

0

µπ(Q̂ ∧ 0) ds− Û(t),

(4.4)
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where Û is the downward reflecting barrier at κ for Q̂. The processes B and W are inde-
pendent Brownian motions, where W is a standard Brownian motion and the predictable
quadratic variation process of B is given by (2.8).

Proof. The first step is to rewrite Q̂n in the form required for an application of Theorem
3.2. Observe that

√
n

(
1

n
Qn(t)− 1

)
=
√
n

(
1

n
Qn(0)− 1

)
+
√
n

(
1

n
A

(
n

∫ t

0

λn(Jn(s))

n
ds

)
−
∫ t

0

λn(Jn(s))

n
ds

)
+
√
n

(∫ t

0

λTn
n
Kn(s) ds−

∫ t

0

λTn
n
π ds

)
+
√
n

∫ t

0

λTn
n
π ds

−
√
n

(
1

n
S

(
n

∫ t

0

µ(Jn(s))

(
1

n
Qn(s) ∧ 1

)
ds

)
−
∫ t

0

µ(Jn(s))

(
1

n
Qn(s) ∧ 1

)
ds

)
−
√
n

(∫ t

0

µ(Jn(s))

(
1

n
Qn(s) ∧ 1

)
ds−

∫ t

0

µ(Jn(s)) ds

)
−
√
n

(∫ t

0

µTKn(s) ds−
∫ t

0

µTπ ds

)
−
√
n

∫ t

0

µTπ ds− 1√
n
Un(t),

so

Q̂n(t) = Xn(t) +

∫ t

0

(
λn
n
− µ

)T

dGn(s)−
∫ t

0

(Q̂n(s) ∧ 0)µT dḠn(s)

−
∫ t

0

µπ(Q̂n(s) ∧ 0) ds− 1√
n
Un(t)

with

Xn(t) = Q̂n(0) + Ân(τ1,n(t))− Ŝn(τ2,n(t)) +
√
n

(
λn
n
− µ

)T

πt.

Here, we denote Ân(t) =
√
n
(

1
nA(nt)− t

)
and Ŝn(t) =

√
n
(

1
nS(nt)− t

)
. The random time

changes τ1,n and τ2,n are given by τ1,n(t) =
∫ t

0
λn(Jn(s))

n ds and τ2,n(t) =
∫ t

0
µ(Jn(s))

(
1
nQn(s) ∧ 1

)
ds.

Theorem 3.2 is not directly applicable to Q̂n, due to the presence of the process 1√
n
Un.

We get around this issue via the application of a standard method (cf. [12, 14]). The key
observation here is that 1√

n
Un is the downward reflecting barrier at κ̂n = mn√

n
for Q̂n, since

Un is the downward reflecting barrier at n+mn for Qn.
Define the functions Ψδ and Φδ mapping D([0,∞),R) into D([0,∞),R) via Ψδ(x)(t) =

sup0≤s≤t((x(s) − δ) ∨ 0) and Φδ(x)(t) = x(t) − Ψδ(x)(t). Both Ψδ and Φδ are Lipschitz
continuous in the supremum norm and in the J1 metric for a fixed boundary level δ (cf. [15,
Th. 13.5.1]). A minor variation on the arguments in [14] establishes that

Yn(t) = Xn(t) +

∫ t

0

(
λn
n
− µ

)T

dGn(s)−
∫ t

0

(Φκ̂n
(Yn)(s) ∧ 0)µT dḠn(s)

−
∫ t

0

µπ(Φκ̂n
(Yn)(s) ∧ 0) ds

is a well-defined stochastic process and that Φκ̂n
(Yn) = Q̂n. If Yn converges weakly to some

limiting process Y , then Φκ̂n(Yn) converges weakly to Φκ(Y ), since κ̂n → κ and the map
Φδ(x) is continuous both in δ and in x. Consequently, to prove weak convergence of Q̂n, it
suffices to prove weak convergence of Yn.

The process Yn has exactly the form required for an application of Theorem 3.2. Clearly,
Yn satisfies (3.6) with Hn = (λn

n − µ)T, Γγn = Γκ̂n
= (Φκ̂n

∧ 0)µT and ∆δn = ∆κ̂n
=

µπ(Φκ̂n
∧ 0). The continuity properties of Γγn and ∆δn follow from [15, Ch. 13], so it
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remains to verify weak convergence of (Hn, Gn, Xn). Since Hn converges to the constant
λ̄− µ by Condition 4.1, we only have to show weak convergence of (Gn, Xn).

We prove the required weak convergence of (Gn, Xn) as follows. The intial condi-
tion Q̂n(0) is independent and converges to some random variable X(0), while

√
n(λn

n −
µ)Tπ converges to a constant. Therefore, weak convergence of (Gn, Xn) follows from weak
converges of (Ân ◦ τ1,n, Ŝn ◦ τ2,n, Gn), which in turn follows from weak convergence of
(Ân, τ1,n, Ŝn, τ2,n, Gn) by the continuous-mapping theorem (CMT) if Ân and Ŝn converge
to continuous processes (cf. [15, Th. 13.2.2]).

The processes Ân and Ŝn are independent, scaled and centered standard Poisson pro-
cesses, so they converge jointly to two independent, standard Brownian motions W1 and
W2. Additionally, Gn converges to a Brownian motion B that is independent of W1 and
W2. Therefore, the required convergence of (Ân, τ1,n, Ŝn, τ2,n, Gn) follows if τ1,n and τ2,n
both converge ucp to a deterministic limit.

To prove this convergence of τ1,n and τ2,n, we apply Theorem 3.2 to the process Ȳn =
1√
n
Yn. Writing κ̄n = 1√

n
κ̂n, we get

Ȳn(t) =
1√
n
Q̂n(0) +

1√
n
Ân(τ1,n(t))− 1√

n
Ŝn(τ2,n(t)) +

(
λn
n
− µ

)T

πt

+

∫ t

0

1√
n

(
λn
n
− µ

)T

dGn(s)−
∫ t

0

(Φκ̄n
(Ȳn)(s) ∧ 0)µT dḠn(s)

−
∫ t

0

µπ(Φκ̄n
(Ȳn) ∧ 0) ds.

The processes 1√
n
Ân and 1√

n
Ŝn both converge ucp to η0. With τ1,n and τ2,n being bounded

on compact intervals, it follows that 1√
n
Ân ◦ τ1,n and 1√

n
Ŝn ◦ τ2,n converge ucp to η0, too.

Condition 4.1 implies that 1√
n
Q̂n(0) converges to 0 in probability and that both

(
λn

n −

µ
)T
π and 1√

n

(
λn

n − µ
)
converge to 0. Also κ̄n converges to 0. Consequently, Theorem 3.2

guarantees weak convergence of Ȳn to the unique process Ȳ satisfying

Ȳ (t) = −
∫ t

0

µπ(Φ0(Ȳ ) ∧ 0) ds.

The zero process is the unique solution of this equation, so Ȳ = η0 and Ȳn converges ucp
to η0. Recall that we aim to prove that τ1,n and τ2,n both converge ucp to a deterministic
limit in order to obtain weak convergence of (Ân, τ1,n, Ŝn, τ2,n, Gn). By Condition 4.1 and
Lemma 2.2, the process τ1,n converges ucp to the deterministic function τπ1 with τπ1 (t) = λ̄πt.
It follows from Lemma 2.2 and Ȳn converging ucp to η0 that the process τ2,n converges ucp
to the deterministic function τπ2 with τπ2 (t) = µπt.

We conclude that (Ân, τ1,n, Ŝn, τ2,n, Gn) converges weakly to (W1, τ
π
1 ,W2, τ

π
2 , B). This

implies weak convergence of (Ân ◦ τ1,n, Ŝn ◦ τ2,n, Gn) to (W1 ◦ τπ1 ,W2 ◦ τπ2 , B) by the CMT,
where we note that W1 ◦ τπ1 and W2 ◦ τπ2 have the same law as

√
λ̄πW1 and

√
µπW2. As

argued before, this proves weak convergence of (Gn, Xn) to (B,X), where the process X is
given by

X(t) = X(0) +
√
λ̄πW1 −

√
µπW2 − γµπt

Then Theorem 3.2 implies that Yn converges weakly to the process Y satisfying

Y (t) = X(t) +

∫ t

0

(λ̄− µ)T dB(s)−
∫ t

0

µπ(Φκ(Y ) ∧ 0) ds.

Here, the process B is the Brownian motion given in the theorem and X(0), W1, W2, and
B are independent.
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Deriving weak convergence of the scaled and centered queue content process Q̂n =
Φκn(Yn) is now a simple matter of applying the CMT. It follows that Q̂n converges weakly
to the process Q̂ = Φκ(Y ), so Q̂ satisfies the stochastic integral equation

Q̂(t) = X(t) +

∫ t

0

(λ̄− µ)T dB(s)−
∫ t

0

µπ(Q̂ ∧ 0) ds− Û(t), (4.5)

with Û being the downward reflecting barrier at κ for Q̂.

4.2 The Markov-modulated CIR process

The previous example concerns the Markov-modulated Erlang loss model, which is a finite-
variation stochastic process with reflection. In the next example, we focus on a process
that does not have sample paths of finite variation, namely the CIR process under Markov
modulation.

In interest rate models, the CIR process is often used to model the short rate. The CIR
process R is defined via the stochastic integral equation

R(t) = x+ λt− µ
∫ t

0

R(s) ds+ σ

∫ t

0

√
R(s) dW (s),

where λ and µ are positive constants and σ is some real number. The processW is a standard
Brownian motion. This conventional CIR process with fixed parameters may be enhanced
with a modulating process that makes the parameters change stochastically over time. In
a financial context, this is often referred to as regime switching. An example is switching
from a bull market (good economic conditions) to a bear market (bad economic conditions),
which may influence the volatility of the short rate, for instance. Another example may
be an influential person tweeting messages at random: parameters change when a tweet is
posted, but go back to their original values when the tweet loses its effect.

In this example, we consider the following Markov-modulated CIR process with small
noise and study its scaling limit. Let λ, µ, and σ be real-valued functions on {1, . . . , d} with
λ and µ taking positive values. Let x ≥ 0 be the initial condition and fix α > 0. We are
interested in the process Rn defined via

Rn(t) = x+

∫ t

0

(λ(Jn(s))− µ(Jn(s))Rn(s)) ds+
1√
n

∫ t

0

σ(Jn(s))
√
Rn(s) dW (s),

where Jn is the usual Markov chain with state space {1, . . . , d}, irreducible generator matrix
nαQ, and stationary distribution π. A well-known property of the nonmodulated CIR
process is that it is nonnegative if it starts from a nonnegative position (cf. [4]). Clearly,
this property carries over to its Markov-modulated version, so Rn is nonnegative.

We use the parameter α to reflect that the background process may operate on a different
time scale than the CIR dynamics. For instance, switches between a bull market and a bear
market occur on a much slower time scale than fluctuations in the interest rate, which can
be modeled by taking α < 1. The value of α has a significant influence on the behavior
of Rn. Roughly speaking, the fluctuations of Rn are dominated by the dynamics on the
slowest time scale. If α < 1, then the background process operates on the slowest time scale
and the fluctuations of Rn are dominated by the fluctuations of Jn. If α > 1, then the CIR
dynamics operates on the slowest time scale and dominates the fluctuations of Rn, with the
background process averaging out. The boundary case α = 1 incorporates the effects of both
the CIR dynamics and the background process, leading to the most complicated behavior.

As mentioned, our aim is to find a scaling limit for the Markov-modulated CIR process
Rn. We consider the case in which n becomes large, so the noise term becomes small and
the background process switches states relatively rapidly. The next theorem presents the
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corresponding diffusion limit for Rn. In its proof, we first show that Rn converges ucp to
the unique solution r of the integral equation

r(t) = x+ λπt− µπ
∫ t

0

r(s) ds.

We then proceed by studying the fluctuations of Rn around this limit and prove via an
application of the main results that R̂n = nβ(Rn − r) converges weakly to a diffusion
process, where β = min{1/2, α/2}.

We apply the scaling factor nβ instead of the usual
√
n to account for the influence of

the background process. As indicated earlier, the time scale of the background process is
relatively slow compared to the time scale of the CIR dynamics if α < 1, in which case the
fluctuations of Rn are dominated by the fluctuations of the background process. Because
the fluctuations of the background process are of order n−α/2, we have to use the scaling nβ
to obtain a nondegenerate limit.

The limiting diffusion of R̂n depends explicitly on properties of the background process
and on the value of α. If α < 1, then the small-noise term disappears and the diffusion
part of the limiting process is completely determined by the fluctuations of the background
process. If α > 1, then the background process averages out and the diffusion part arises
from the small-noise term. As explained earlier, the boundary case α = 1 incorporates both
effects.

Theorem 4.3. The process R̂n converges weakly to the Ornstein–Uhlenbeck process Y sat-
isfying

Y (t) = 1{α≤1}

∫ t

0

(λ− r(s)µ)T dB(s)

+ 1{α≥1}

∫ t

0

√
σTdiag(π)σ

√
r(s) dW (s)− µπ

∫ t

0

Y (s) ds,

(4.6)

The processes B andW are independent Brownian motions, whereW is a standard Brownian
motion and the predictable quadratic variation process of B is given by (2.8).

Proof. We start by showing that Rn converges ucp to r. Given Rn, it is convenient to define

R∗n(t) = x+

∫ t

0

(λ(Jn(s))− µ(Jn(s))Rn(s)) ds

and

R†n(t) =
1√
n

∫ t

0

σ(Jn(s))
√
Rn(s) dW (s),

so Rn may be represented as Rn = R∗n + R†n. We also define R̄n = Rn − r. Then, for fixed
T > 0, some straightforward calculations lead to the inequality

E sup
0≤s≤t

∣∣R̄n(s)
∣∣ ≤ EĪ(1)

n (T ) + EĪ(2)
n (T ) + E sup

0≤s≤t

∣∣R†n(s)
∣∣+ c

∫ t

0

E sup
0≤u≤s

∣∣R̄n(u)
∣∣ ds (4.7)

for each t ∈ [0, T ], where

Ī(1)
n (t) = sup

0≤s≤t

∣∣∣∣∫ s

0

(λ(Jn(u))− λπ) du

∣∣∣∣
and

Ī(2)
n (t) = sup

0≤s≤t

∣∣∣∣∫ s

0

r(u)(µ(Jn(u))− µπ) du

∣∣∣∣.
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The expectations EĪ(1)
n (T ) and EĪ(2)

n (T ) converge to 0, due to Theorem 3.1 and the fact
that both random variables are bounded. We use here that r is of finite variation.

We would like to get a bound on E sup0≤s≤t
∣∣R†n(s)

∣∣, so that we can apply Gronwall’s
Lemma (cf. [8, pp. 287–288]) to the inequality in (4.7). To this end, we rely on the
Burkholder–Davis–Gundy Inequalities (cf. [8, Th. 3.3.28]) as well as Jensen’s Inequality
to obtain that

E sup
0≤s≤t

∣∣R†n(s)
∣∣ ≤ c√

n

√∫ t

0

r(s) + E
∫ t

0

∣∣R̄n(s)
∣∣ds

≤ c√
n

(
1 +

∫ t

0

r(s) +

∫ t

0

E sup
0≤u≤s

∣∣R̄n(u)
∣∣ ds).

Plugging this in into (4.7) and applying Gronwall’s Lemma, we conclude that the expectation
E sup0≤s≤t

∣∣R̄n(s)
∣∣ = E sup0≤s≤t|Rn(s)− r(s)| converges to 0 as n → ∞. This implies in

particular that Rn converges ucp to r.
The next step is to study the fluctuations of the Markov-modulated CIR process Rn

around its limit r. More precisely, we would like to characterize the asymptotic behavior of
R̂n = nβ(Rn − r). Recall that the state occupation measure Gn related to the background
process Jn converges weakly to a Brownian motion B with predictable quadratic variation
process 〈B〉 given by (2.8). Because the background process and the Brownian motion W
are independent, we may assume that B and W are independent.

To study the fluctuations of Rn around r, we consider the process R̂n = nβ(Rn − r),
which satisfies

R̂n(t) = nβ−1/2

∫ t

0

σ(Jn(s))
√
Rn(s) dW (s) + nβ−α/2

∫ t

0

(
λ− r(s)µ

)T
dGn(s)

−
∫ t

0

R̂n(s)µT dḠn(s)− µπ
∫ t

0

R̂n(s) ds.

(4.8)

To be able to apply Theorem 3.2 to R̂n, it suffices to show weak convergence of (Hn, Gn, Xn),
where Hn(t) = nβ−α/2(λ− r(t)µ)T and Xn(t) = nβ−1/2

∫ t
0
σ(Jn(s))

√
Rn(s) dW (s). We first

observe that Hn is a deterministic process of finite variation and converges uniformly on
compacts to the process H given by H(t) = 1{α≤1}(λ − r(t)µ)T. Therefore, we only have
to prove weak convergence of (Xn, Gn), which follows from a straightforward application of
Theorem 3.1 combined with the MCLT, as we demonstrate next.

We know from (2.6) thatGn is equal to the locally square-integrable martingale n−1/2FTMn

plus a term that converges uniformly to η0, so it suffices to show that (Xn, n
−1/2FTMn)

converges weakly. This is a local martingale whose maximum jump size converges to 0,
so weak convergence of (Xn, n

−1/2FTMn) follows from its predictable quadratic covariation
process converging ucp to a deterministic function (cf. [16]). Since Xn is a stochastic integral
with respect to W and the processes W and n−1/2FTMn are independent, we know that
〈Xn, n

−1/2FTMn〉 = η0, so we only have to show convergence of 〈Xn〉 and 〈n−1/2FTMn〉.
In Lemma 2.2 we established ucp convergence of 〈n−1/2FTMn〉 to 〈B〉. It remains to prove
convergence of 〈Xn〉.

Note that Xn is a continuous local martingale with 〈Xn〉 given by

〈Xn〉(t) = n2β−1

∫ t

0

σTdiag(Kn(s))σRn(s) ds

= n2β−1

∫ t

0

σTdiag(Kn(s))σ(Rn(s)− r(s)) ds+ n2β−1

∫ t

0

σTdiag(Kn(s))σr(s) ds.

The penultimate integral above converges ucp to η0, due to Rn converging ucp to r. The
last integral above converges ucp to

1{α≥1}

∫ t

0

σTdiag(π)σr(s) ds, (4.9)
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due to Theorem 3.1 and 2β − 1 being equal to min{0, (α − 1)/2}. We use here that r is of
finite variation. Consequently, 〈Xn〉 converges ucp to the process in (4.9), too. The MCLT
then implies that Xn converges weakly to a Brownian motion whose predictable quadratic
variation process is given by (4.9).

The previous arguments establish weak convergence of (Xn, Gn). Now applying Theo-
rem 3.2 to R̂n, we conclude that R̂n converges weakly to the process Y given by (4.6).

5 Summary and concluding remarks

We investigated weak convergence of stochastic integrals with respect to the state occupation
measure of a Markov chain. The motivation behind this was that standard results do not
apply to this elementary yet important case. Indeed, the state occupation measure is not
a martingale nor has the P-UT property. One of the underlying problems turned out to
be that the total variation of the integrand may grow too quickly. Relying on this insight,
we formulated a condition for the total variation of the integrand. In the first main result,
we proved that stochastic integrals with respect to the state occupation measure converge
weakly under this condition. We extended this to a class of stochastic integral equations in
the second main result.

We demonstrated the relevance of these results by applying them to two examples. The
first concerned a finite-variation process with a reflecting boundary, whereas the second con-
cerned a diffusion process whose sample paths were not of finite variation. Clearly, the main
results can also be used to investigate a large class of related models involving Markov mod-
ulation, such as single-server queues, networks of many-server queues, and multidimensional
diffusion processes.

There are several other possible directions for further research. An interesting question
is whether it is possible to derive similar results in the Skorokhod M1 topology, which is
weaker than the Skorokhod J1 topology. The results in this paper require for instance
that the arrival process for the Erlang loss model converges weakly in the J1 topology, but
convergence in the M1 topology is more natural for certain applications (cf. [13]). This
appears to be a little explored area and may necessitate a different approach. Finally, we
remark that the main results are only valid for finite-dimensional processes. Since many
models feature infinite-dimensional processes, it would also be interesting to see whether the
main results can be extended to that setting.

A Auxiliary results

Weak convergence of stochastic integrals Hn ·Gn is the central problem of this paper. As in-
dicated earlier, the so-called P-UT property is often the key to establishing such convergence
results. In this appendix, we explore the P-UT property and its relation to the problem at
hand. First, we give a formal definition of the P-UT property. Second, we sketch an example
showing that Gn does not have the P-UT property. This example also indicates why Gn
does not have the P-UT property. Third, we derive a bound for a class of Lebesgue–Stieltjes
integrals that are closely connected to integrals with respect to Gn. This bound provides
another perspective on the reason why Gn does not have the P-UT property. Moreover, it
suggests what conditions we have to impose on the integrand Hn to guarantee weak con-
vergence of Hn · Gn. We end this appendix with a continuity result for state occupation
measures.
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A.1 The state occupation measure and the P-UT property
Let Xn be a sequence of one-dimensional semimartingales relative to a filtration F. We say
that Xn has the P-UT property or simply that Xn is P-UT if the collection

{|(Hn ·Xn)(t)| : n ∈ N, Hn is F-predictable with |Hn| ≤ b}

is tight for all t > 0 and b > 0. We say that a sequence Xn of d-dimensional semimartingales
is P-UT if each of its components is P-UT (cf. [5, p. 377] and [5, p. 381]). The acronym
P-UT stands for ‘Predictably Uniformly Tight’; see [5, 6, 9] for more details.

The main reason for introducing the P-UT property can be found in [5, Th. VI.6.22].
Loosely speaking, this result states that Hn · Xn ⇒ H · X if (Hn, Xn) ⇒ (H,X) and Xn

is P-UT. This is exactly the type of result we are interested in, with the semimartingale
Xn being the state occupation measure Gn. However, Gn is not P-UT, so this result is not
applicable if we integrate against Gn.

The following arguments demonstrate that the state occupation measure Gn is not P-UT.
Recall the connection between Gn and n−α/2Mn established in (2.6). The process n−α/2Mn

is a locally square-integrable martingale with bounded jumps and converges weakly to a
Brownian motion by Lemma 2.2, so n−α/2Mn is P-UT according to [5, Cor. VI.6.29]. In
turn, this implies that Gn is P-UT if and only if n−α/2Kn is P-UT (cf. [5, p. 377]).

Knowing this, we aim to show that n−α/2Kn (and thus Gn) is not P-UT by finding
an integral HT

n · n−α/2Kn that grows without bound as n → ∞, even though Hn is a
bounded and predictable process as in the definition of the P-UT property. Define Hn as
the left-continuous version of 1 −Kn, so Hn(0) = 1 −Kn(0) and Hn(t) = 1 −Kn(t−) for
t > 0. Because Hn is bounded and predictable, the family {(HT

n ·n−α/2Kn)(t) |n ∈ N} must
be tight for each t > 0 if n−α/2Kn is P-UT. However, the random variable (HT

n · Kn)(1)
counts the number of jumps that Jn makes in the time interval [0, 1]. Because Jn is a
Markov chain with generator matrix nαQ, its number of jumps in [0, 1] is of the order
nα. Consequently, (HT

n · n−α/2Kn)(1) is of the order nα/2, so it does not converge and
{(HT

n · n−α/2Kn)(1) |n ∈ N} is not tight. We conclude that Gn cannot be P-UT.
The underlying problem here is that a Lebesgue–Stieltjes integral may not converge if

the total variation of the integrand or the integrator grows without bound. Because the
total variation of the integrator Gn is a given, this suggests that we have to put restrictions
on the total variation of the integrand Hn if we want the stochastic integral Hn · Gn to
converge.

A.2 A bound for Lebesgue–Stieltjes integrals
Here, we derive an upper bound for a class of Lebesgue–Stieltjes integrals. This result is
closely related to the previous insight, which connects Gn not being P-UT to the behavior of
Lebesgue–Stieltjes integrals. The upper bound is important in two ways. First, it indicates
what type of restrictions we should impose on the supremum and on the total variation of
an integrand Hn if we would like the stochastic integral Hn ·Gn to converge. Second, we use
this result to prove Theorem 3.1, which concerns weak convergence of stochastic integrals
with respect to Gn.

Lemma A.1. Let y : [0,∞) → R be a function of bounded variation and let x : [0,∞) →
{0, 1} be a right-continuous function. Then the Lebesgue–Stieltjes integral y · x satisfies

sup
0≤t≤T

∣∣∣∣∫ t

0

y(s) dx(s)

∣∣∣∣ ≤ vy(T ) + sup
0≤t≤T

|y(t)| (A.1)

for every fixed T > 0, where vy denotes the total variation function of y.

Proof. To prove the lemma, it suffices to show that∣∣∣∣∫ t

0

y(s) dx(s)

∣∣∣∣ ≤ vy(t) + sup
0≤s≤t

|y(s)| (A.2)
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for every fixed t ≥ 0. Note that x has alternating jumps of size +1 and −1, and is constant
between jumps. Thus, if x has at most one jump in [0, t], then (A.2) holds trivially.

Suppose that x has exactly 2m jumps in [0, t] (where m ∈ N) and denote the jump
times by 0 < s1 < . . . < s2m ≤ t. If the first jump equals +1, then

∫ t
0
y(s) dx(s) =∑m−1

k=0 (y(s2k+1)− y(s2k+2)), so∣∣∣∣∫ t

0

y(s) dx(s)

∣∣∣∣ ≤ m−1∑
k=0

|y(s2k+2)− y(s2k+1)| ≤ vy(t). (A.3)

If the first jump equals −1, then
∫ t

0
y(s) dx(s) =

∑m−1
k=0 (−y(s2k+1) + y(s2k+2)), so (A.3)

holds in this case, too. Hence, (A.2) holds if x has an even number of jumps.
Suppose that x has exactly 2m + 1 jumps in [0, t] (where m ∈ N) and denote the

jump times by 0 < s1 < . . . < s2m < s2m+1 ≤ t. Taking δ = (s2m+1 − s2m)/2, we get∫ t
0
y(s) dx(s) =

∫ s2m+δ

0
y(s) dx(s) +

∫ t
s2m+δ

y(s) dx(s) and∣∣∣∣∣
∫ s2m+δ

0

y(s) dx(s) +

∫ t

s2m+δ

y(s) dx(s)

∣∣∣∣∣ ≤ vy(s2m) + |y(s2m+1)| ≤ vy(t) + sup
0≤s≤t

|y(s)|.

Consequently, (A.2) also holds if x has an odd number of jumps.

A.3 A convergence result for deterministic state occupation mea-
sures

Here, we state an elementary convergence result for deterministic state occupation measures
and outline its proof, which is closely related to well-known results for absolutely contin-
uous functions. We denote by V ⊂ D([0,∞);R) the collection of all absolutely continuous
functions f that admit a representation f(t) =

∫ t
0
g(s) ds, where g ∈ W. The collection W

comprises all functions g ∈ D([0,∞);R) with g(t) ∈ [−1, 1]. To each f ∈ V corresponds a
unique g ∈ W such that f(t) =

∫ t
0
g(s) ds and we denote this unique function g by ḟ . In the

special case that ḟ takes values in {0, 1}, we may interpret ḟ as a state indicator function
and f as the corresponding state occupation measure.

Lemma A.2. Let f, f1, f2, . . . ∈ V and h, h1, h2 ∈ D([0,∞);R). If fn → f in V and hn → h
in D([0,∞);R) in the Skorokhod J1 topology as n→∞, then

sup
0≤t≤T

∣∣∣∣∫ t

0

ḟn(s)hn(s) ds−
∫ t

0

ḟ(s)h(s) ds

∣∣∣∣→ 0 (A.4)

as n→∞ for each T > 0.

Proof. Since the functions f, f1, f2, . . . are continuous, convergence of fn → f in the Sko-
rokhod J1 topology is equivalent to fn → f under the supremum norm. In turn, this implies
that (A.4) holds if hn = h and h is a step function.

If hn = h but h is not a step function, then there exist step functions h̃m that converge
uniformly to h for m → ∞. Decomposing ḟnh− ḟh = (ḟn − ḟ)(h− h̃m) + (ḟn − ḟ)h̃m and
using that (ḟn − ḟ)(h− h̃m) converges uniformly to 0 as m→∞, it follows that (A.4) also
holds if hn = h and h is not necessarily a step function.

Finally, in the general case that hn → h in D([0,∞);R), we note that ḟnhn − ḟh =
ḟn(hn − h) + (ḟnh− ḟh). Since ḟn(hn − h) converges pointwise to 0 at all continuity points
of h and is bounded uniformly in n on compact sets, we may use the previous considerations
to conclude that (A.4) is also valid in this case.

This lemma is useful if we have a sequence of stochastic processes Yn ⇒ Y in D([0,∞);R)
and a sequence of state occupation measures Xn ⇒ X in V, where X is a deterministic limit.
In this case, the CMT and the lemma together imply that Yn ·Xn ⇒ Y ·X.

19



References
[1] Lakhdar Aggoun and Robert Elliott. Measure Theory and Filtering. Cambridge Uni-

versity Press, New York, 2004.

[2] Ari Arapostathis, Anirban Das, Guodong Pang, and Yi Zheng. Optimal control of
Markov-modulated multiclass many-server queues. Stochastic Systems, 9(2):155–181,
2019.

[3] Pauline Coolen-Schrijner and Erik A. van Doorn. The deviation matrix of a continuous-
time Markov chain. Probability in the Engineering and Informational Sciences,
16(3):351–366, 2002.

[4] John C. Cox, Jonathan E. Ingersoll, Jr., and Stephen A. Ross. A theory of the term
structure of interest rates. Econometrica, 53(2):385–407, 1985.

[5] Jean Jacod and Albert N. Shiryaev. Limit Theorems for Stochastic Processes. Springer-
Verlag, Berlin Heidelberg, second edition, 2003.

[6] A. Jakubowski, J. Mémin, and G. Pages. Convergence en loi des suites d’intégrales
stochastiques sur l’espace D1 de Skorokhod. Probability Theory and Related Fields,
81(1):111–137, 1989.

[7] H. M. Jansen. Scaling limits for modulated infinite-server queues and related stochastic
processes. PhD thesis, University of Amsterdam and Ghent University, 2018.

[8] Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus.
Springer-Verlag, New York, second edition, 1998.

[9] Thomas G. Kurtz and Philip Protter. Weak limit theorems for stochastic integrals and
stochastic differential equations. The Annals of Probability, 19(3):1035–1070, 1991.

[10] Thomas G. Kurtz and Philip Protter. Wong–Zakai corrections, random evolutions,
and simulation schemes for SDE’s. In Eddy Meyer-Wolf, Ely Merzbach, and Adam
Shwartz, editors, Stochastic Analysis: Liber Amicorum for Moshe Zakai, pages 331–
346. Academic Press, Boston, 1991.

[11] M. Mandjes, P. G. Taylor, and K. De Turck. The Markov-modulated Erlang loss system.
Performance Evaluation, 116:53–69, 2017.

[12] Guodong Pang, Rishi Talreja, and Ward Whitt. Martingale proofs of many-server
heavy-traffic limits for Markovian queues. Probability Surveys, 4(1):193–267, 2007.

[13] Guodong Pang and Ward Whitt. Continuity of a queueing integral representation in
the M1 topology. The Annals of Applied Probability, 20(1):214–237, 2010.

[14] Josh Reed, Amy R. Ward, and Dongyuan Zhan. On the generalized drift Skorokhod
problem in one dimension. Journal of Applied Probability, 50(1):16–28, 2013.

[15] Ward Whitt. Stochastic-Process Limits: an Introduction to Stochastic-Process Limits
and Their Application to Queues. Springer, New York, 2002.

[16] Ward Whitt. Proofs of the martingale FCLT. Probability Surveys, 4(1):268–302, 2007.

20



H. M. Jansen
Delft Institute of Applied Mathematics
Delft University of Technology
Van Mourik Broekmanweg 6
2628 XE Delft
the Netherlands
h.m.jansen@tudelft.nl

Part of this research was performed while the author was affiliated with the Centre for Applications in Nat-
ural Resource Mathematics (CARM), School of Mathematics and Physics, The University of Queensland,
Australia. The author was funded by Australian Research Council (ARC) Discovery Project DP180101602
and by the NWO Gravitation Programme NETWORKS, Grant Number 024.002.003.

21


