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A B S T R A C T

Peer-to-Peer (P2P) energy trading, which allows energy consumers/producers to directly trade with each other,
is one of the new paradigms driven by the decarbonization, decentralization, and digitalization of the energy
supply chain. Additionally, the rise of blockchain technology suggests unprecedented socio-economic benefits
for energy systems, especially when coupled with P2P energy trading. Despite such future prospects in energy
systems, three key challenges might hinder the full integration of P2P energy trading and blockchain. First, it is
quite complicated to design a decentralized P2P market that keeps a fair balance between economic efficiency
and information privacy. Secondly, with the proliferation of storage devices, new P2P market designs are
needed to account for their inter-temporal dependencies. Thirdly, a practical implementation of blockchain
technology for P2P trading is required, which can facilitate efficient trading in a secured and fraud-resilient
way, while eliminating any intermediaries’ costs. In this paper, we develop a new decentralized P2P energy
trading platform to address all the aforementioned challenges. Our platform consists of two key layers: market
and blockchain. The market layer features a parallel and short-term pool-structured auction and is cleared
using a novel decentralized Ant-Colony Optimization method. This market arrangement guarantees a near-
optimally efficient market solution, preserves players’ privacy, and allows inter-temporal market products
trading. The blockchain layer offers a high level of automation, security, and fast real-time settlements through
smart contract implementation. Finally, using real-world data, we simulate the functionality of the platform
regarding energy trading, market clearing, smart contract operations, and blockchain-based settlements.
1. Introduction

Local P2P energy trading brings multifold benefits to all involved
stakeholders. On the demand side, prosumers are given the opportunity
to engage in a true decentralized form of energy trading without
the need of an intermediary. For example, they can act as sellers
when they have energy production surplus from their Photo-Voltaic
(PV) panels, as buyers to charge their electric vehicles (EVs), or both
if they have stand-alone batteries. On the societal level, local P2P
energy trading can promote renewable energy integration either by
incentivizing prosumers to invest in local distributed energy resources
(DERs) or encouraging consumers to purchase green energy certificates–
which ensure they consume only green energy—if they are incapable
of investing in renewable energy sources (RES) [1]. Finally, on the grid
level, P2P trading can provide the necessary flexibility to system oper-
ators to manage network congestions resulting from the lack of DERs
operation coordination among prosumers and the high intermittency
of renewables. By optimally managing and coordinating all flexible
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sources through organized P2P markets, we can exploit their full-scale
participation and improve grid reliability. Despite the opportunities
and benefits that P2P trading can bring to the energy system, its full
exploitation is facing many design and practical challenges. We divide
these challenges into those related to the P2P market structure and
those related to data storage, security and financial settlements.

Regarding the P2P structure, the market design must satisfy the
target market performance metrics (e.g., social welfare or total cost).
Apart from satisfying such overall objectives, a properly designed mar-
ket should also feature multiple other characteristics. For example, it
must prevent market manipulations such as misreporting actual cost
functions [2]. Additionally, the market design should be versatile to
allow different ranges of market products to be traded, accounting for
all possible types of local energy devices. It should also protect the
prosumers’ privacy without revealing their true identities [3]. Besides,
it should offer low transaction costs, which can be achieved if it is fully
decentralized [4,5] without any central market operator. Finally, with
vailable online 10 November 2020
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decentralized market designs, efficient market clearing methods should
be in place that also protect the prosumers’ privacy while maximizing
their profits.

Developing a complete and adequate P2P energy market also faces
other challenges regarding data storage and security. Indeed, P2P
market mechanism must be complemented with a secured and trusted
distributed system that records all the transactions in an immutable,
transparent and tamper-proof manner. By enabling an automated trad-
ing and billing system, energy costs and price signals can be delivered
to all prosumers in an efficient way, inducing more active participa-
tion in energy trading. An excellent tool and emerging technology to
foster value in the secure exchange of energy and data is blockchain
technology [1,6]. Blockchain technology fits most naturally in the P2P
energy trading domain. It can provide an innovative trading plat-
form with immutable registration and recording of assets, generation
and consumption data, notably in complex energy systems with many
subsystems interactions and intersections. Moreover, it can also help
energy utilities exploit new information sources that could unleash
more flexibility from the energy system, especially with the wide
integration of DERs and renewables. As a result, blockchain has been
drawing much attention among industries and research scholars as an
integral tool in the energy sector digitalized future, and earning the
label of a ‘‘disruptive technology’’ [7].

The new dynamics of energy systems’ digitalization have called
the attention of many researchers towards digital energy platforms. A
platform is a digital blueprint that shows how an ecosystem functions,
allowing users to interact with each other, and trade products or
services [8]. In that sense, in order to fully exploit the potential of
P2P energy trading with blockchain technology, the objective of this
work is to structure a trusted decentralized platform that offer real-
time, efficient, and secured orchestration of all distributed flexible
devices and sources within a distributed network. To the best of our
knowledge, there are no existing P2P energy platform in the literature
that addresses the aforementioned challenges. Therefore, in this paper,
we design and develop a decentralized P2P energy trading platform that
is composed of two layers: (1) Market layer: an efficient decentralized
short-term parallel market, offering a diverse range of market products,
and with a novel clearing method, achieving near-optimum social wel-
fare solutions. (2) Blockchain layer: integrated with the market layer to
ensure data security and privacy, fast settlements, and low transactions
costs. The rest of this section elaborates on how this work differs from
related literature and what the main contributions are.

1.1. Literature review

Our proposed platform consists of a market layer and a blockchain
layer. Accordingly, we first discuss the related academic literature on
P2P market mechanisms and clearing methods. Then, we provide a
comprehensive review on the related academic research, as well as
relevant active projects using blockchain for energy markets.

1.1.1. P2P market mechanisms and clearing methods
The discussion surrounding energy systems decentralization has

drawn much attention among researchers to look into P2P energy
trading. Ref. [9] provides a thorough and comprehensive review and
discussion on the design of peer-to-peer markets, as well as their chal-
lenges and opportunities. Other studies focusing on different structure
aspects and design classification for P2P markets according to the
optimization objective and market clearing methods, can be found
in [4,5]. Ref. [2] offers an interesting view for the structure and design
of P2P markets, as they are classified using general criteria by auction
models, multi-agent models and analytical models. Ref. [10] explores
the potential benefits of implementing game and auction theoretic
models in P2P energy trading settings. The authors further explore the
feasibility of game theoretic approaches in P2P energy trading settings
in [11,12] by studying the feasibility of social cooperation between
2

prosumers in establishing their sustainable participation in P2P trading
markets.

Most P2P trading platforms developed in recent literature rely on
a so-called Continuous Double Auction (CDA) design as for their market
mechanism [13,14]. In [15], an auction mechanism based on a combi-
natorial double auction framework is proposed that facilitates energy
trading between micro-grids. The model uses a hybrid optimization
method of particle swarm optimization (PSO) and genetic algorithms
(GA) to clear the auction market. [16] proposes a P2P market frame-
work based on CDA for low-voltage networks. Another CDA based
P2P energy trading market, which runs on one-hour ahead basis, is
introduced in [17].

In a CDA format, buyers and sellers place their buy and sell orders
respectively, hence the term double; and the market is in a continuous
state of clearing, hence the term continuous. A CDA design is an
efficient market mechanism that allows prosumers to trade with each
other through bilateral agreements, thus the specific traded quantities
amongst them can be easily determined. However, the CDA design
has certain limitations when used for energy systems. One of the most
important limitations is that CDA is incapable of adequately integrating
energy products with inter-temporal commitments. The complexity of
inter-temporality originates from market bids that have dependencies
on multiple time periods within the time horizon of the market, much
like the payback (rebound) effect in demand flexibility markets [18].
In P2P markets, the inter-temporal impact of market bids can be
due to the unique nature of charging/discharging of batteries and/or
uninterruptible loads, such as washing machines and dryers. Indeed,
the continuous state of matching bids means that the market is only
able to accommodate single time-step bids that are composed of a single
quantity and price. The market clearing mechanism of the CDA is only
dependent on the time that it is being traded. Thus, the CDA’s orders
matching process limits the prosumers’ options to a single time slot
for buying and selling energy. These limitations affect the types of
flexible local devices that can participate in the market. For example,
battery storage systems often need to charge by a certain amount over
a certain period of time, or require maintaining a continuous charging
or discharging state for consecutive periods to avoid negative effects on
the battery’s life and efficiency.

Other literature focus on different angles in the paradigm of P2P
energy trading. For example, a non-cooperative game theory simulation
approach for a P2P energy market model is proposed in [19]. In [20],
a multi-agent-based framework is presented to model the behavior of
prosumers with respect to different P2P sharing mechanisms. Ref. [21]
assesses the impact of P2P energy trading mechanisms between smart
homes by proposing an energy cost optimization algorithm that man-
ages the trading processes. In [22], a decentralized P2P market based
on the multi-bilateral economic dispatch formulation is proposed. A
prosumer-centric framework for a P2P trading platform is proposed
in [23] which motivates prosumer to participate in the trading activ-
ities. Ref. [12] offers an interesting insight into a coalition formation
game for prosumers with battery systems. There are also some studies
that consider different P2P trading settings that are without bidding
capabilities, in which a central authority manages (sells and buys)
the energy between the local prosumers. In [24], a P2P market man-
aged by a central agent is proposed that access to all local resources
and manages the supply and demand as well as price settings. Such
setting in [24] allows battery owners to participate. However, the
inter-temporal impact is based a non-stationary battery storage which
does not allow stationary battery storage such as EVs to participate
in the market. A similar work is presented in [25] where an energy
sharing structure, also without bidding capabilities, is managed by a
central energy sharing agent that sells/buys energy to/from prosumers
depending on their local PV generation capacity.

The decentralized design of P2P markets requires an efficient de-
centralized optimization algorithm that enables the market players

to clear the market while protecting their identities, maximizing the
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social welfare, and being able to handle the complexity arising from
the inter-temporal characteristics of market products. The first two
requirements are usually addressed in the literature. However, little
attention has been given to decentralized methods that can handle
the trading of market products with inter-temporal characteristics. For
example, one of the common decentralized methods used in literature
is the alternating direction multiplier method (ADMM) [26]. Refs. [24,27]
adopt ADMM as clearing algorithms of the decentralized P2P markets.
However, both market mechanisms are of simple nature with market
products that consist of a single quantity and price. Other studies adopt
decentralized methods for the clearing P2P energy markets but do not
account for the inter-temporal behavior of different market products.
For example, in [22], a decentralized P2P market based on the multi-
bilateral economic dispatch formulation is presented, where the authors
use a consensus+innovation method for decentralized market clearing.
The market setup only allows market players to trade one bid per player
with a single quantity and price. A distributed primal–dual gradient
descent method for distributed clearing as adopted to clear the P2P
marker proposed in [28]. However, they only consider single bids of
quantity and price in their P2P market design. Similarly, Ref. [29]
does not investigate the inter-temporal market products in the adaptive
segmentation method used for the P2P market clearing. Even though
all previous work provided high quality contributions, more research
is yet needed to add more complexity in the market bids that can be
traded in P2P settings. This is what this research is aiming to explore
and present.

1.1.2. Blockchain based energy markets
The proliferation of blockchain start-ups and projects have raised

the interest of many researchers towards their application in local
energy trading. As a result, multiple start-ups and businesses worldwide
are racing to take a leading role in developing blockchain platforms that
facilitates decentralized and local P2P energy trading [30,31]. In a re-
cent work, [32] provide an interesting study that assesses the potential
of blockchain on the energy system’s actor configuration. EnerChain1

is a wholesale trading platform based on blockchain with the objective
of enabling the trading of smart energy products, optimizing the grid
management process and P2P trading. Another blockchain platform
developed for customers access to wholesale electricity markets is
called Grid+.2 This platform behaves like an energy retailer that enable
prosumers to save in the energy bills using artificial intelligent (AI)
agents. Energy21 and Stedin3 developed a blockchain platform that al-
lows peer trading between local markets and with wholesale electricity
markets. Other examples of decentralized P2P trading platforms are
Volt Markets,4 Pylon,5 LO3 Energy project6 [33], and Power Ledger.7 In
the Netherlands, Alliander in cooperation with Spectral Energy are de-
veloping a P2P trading platform based on blockchain.8 In the literature,
the blockchain implementation in energy trading has been a subject of
interest as well. In [34], a transactive decentralized platform for energy
trading among micro-grids is presented which uses a blockchain-based
smart contract to record the transactions on the blockchain. A demand-
side management program based on blockchain technology is presented
by [35]. The proposed model uses the blockchain distributed ledger
for data storage and implements smart contracts to ensure the delivery
of required energy volumes for demand response events. In [36], an

1 https://enerchain.ponton.de/index.php/21-enerchain-p2p-trading-
roject

2 https://gridplus.io/
3 https://www.energy21.com/
4 https://voltmarkets.com/
5 https://pylon-network.org/
6 https://lo3energy.com/
7 https://www.powerledger.io/
8

3

https://spectral.energy/
energy blockchain environment is implemented for electricity trad-
ing using a game-theory model approach. In [37], smart contracts
in blockchain were used to enable secure and efficient trading in a
distributed energy system. Refs. [38,39] introduces a P2P market based
on double CDA model, and integrated with blockchain technology.

1.2. Contribution

Although the current literature has provided significant contribu-
tions in the area of P2P energy trading platforms, there are still key
areas that require further investigation. Take for example Ref. [40],
where a well-formulated blockchain-based energy management plat-
form for trading between micro-grids is presented. However, the de-
centralized market modeled follows a bilateral-form (much like a CDA
mechanism). This arrangement limits the inter-temporal dependency
and clearing setup to a single time slot; hence, excluding a diverse range
of inter-temporal market products. Such limitation can be accredited
to the complexity of the ADMM used for market clearing. Furthermore,
blockchain technology is widely involved in the market clearing process
which can be challenging in realistic settings. While blockchain as
settlement mechanism has unprecedented potentials in future local
energy systems, there is a need to address practical challenges such as
scalability and fraud management.

In general, the potential of blockchain in the area of P2P energy
trading should be well comprehended and recognized from a more
practical perspective. Also, there are yet some key steps that needs to
be taken towards efficient future local energy trading platforms. Based
on the comprehensive literature review carried out here, we are aiming
in this work to fill the above-mentioned research gaps by developing a
new decentralized local energy trading platform, called DeTrade, with
a practical and realistic integration of blockchain technology. Our key
contributions are:

• Market mechanism: development of a decentralized short-term
multi-stage, and multi-period parallel auction called DeMarket.
The DeMarket is a pool-structured P2P market, which is new to
the literature. The market’s objective is to maximize the social
welfare of all prosumers while enabling the trading of market
products with and without inter-temporal dependency.

• Decentralized market clearing method: The DeMarket is com-
plemented by a novel decentralized market clearing method
called Decentralized Ant-Colony Optimization DACO. The devel-
oped method is able to handle the complexity of the market prod-
ucts modeled. Also, the DACO produces a near-optimal market
solution, within a small error margin of the optimal solution, in a
reasonable number of iterations, while respecting the information
privacy of the prosumers.

• Blockchain integration: The trading in the DeMarket is carried
out in a secure and efficient manner by integrating blockchain
logic in a more practical way. This adds automated, fast, and
real-time settlements to the DeMarket. In particular, we leverage
smart contract functionality to manage balances of digital tokens,
called EuroTokens, that represent monetary value outside the
blockchain.

• Simulation based on real-world data: Using a distribution net-
work real-world data, a simulation is carried out to showcase how
the decentralized clearing method will perform when compared
with a central method for market clearing. In addition, the smart
contract is implemented in the Solidity programming language,
deployed on a permissioned blockchain using Hyperledger Bur-
row, and evaluated on our nation-wide research cluster with the
output from the decentralized clearing method.

The paper is arranged as follows. Section 2 provides some back-
ground information about local energy markets and P2P trading. Sec-

tion 3 describes the general structure of our decentralized local energy

https://enerchain.ponton.de/index.php/21-enerchain-p2p-trading-project
https://enerchain.ponton.de/index.php/21-enerchain-p2p-trading-project
https://gridplus.io/
https://www.energy21.com/
https://voltmarkets.com/
https://pylon-network.org/
https://lo3energy.com/
https://www.powerledger.io/
https://spectral.energy/
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trading platform, DeTrade. Section 4 presents the market layer of the
DeTrade, as well as the developed DACO method. Section 5 describes
the functionality of the blockchain layer, especially the use and imple-
mentation of smart contracts. Section 6 presents a case study carried
out on a real distribution feeder. Section 7 provides some discussion
points along with assumptions and limitation considered in this work.
Finally, Section 8 concludes the work presented in the paper.

2. P2P trading framework

This section provides some background information about P2P
energy trading, its challenges and opportunities, and the value of
blockchain within such a framework.

2.1. Market design

Local P2P energy trading is a market setup that enables prosumers
in a local network to directly trade energy with each other [41]. Based
on the local market prices and energy availability, prosumers take the
role of sellers or buyers, aiming to maximize their profits. Potential
sellers include those with local generators (such as diesel generators
or PV panels), while any prosumer can act as a buyer to partially or
fully serve his/her demand at any point in time [23]. Prosumers who
own energy storage systems (for example batteries and EVs) can either
take the role of a buyer or a seller by charging or discharging their
capacity. The design of P2P markets is a multi-dimensional problem.
Following [42], we focus on three of the most important dimensions:

• Temporal dimension: refers to the time in advance the delivery
of electricity is contracted at. It is common to have a series of
consecutive markets with multiple clearing stages for a number of
future delivery periods. Electricity markets can start from years-
ahead and up to minutes before the actual time of delivery [43].
Local energy markets are expected to be designed on short-term
basis, e.g. from day-ahead and up to real-time of operation.
This allows prosumers to better manage their local devices and
flexibility.

• Contractual dimension: defines the basis upon which buyers and
sellers trade. In general, contracts can take the form of bilateral
trading or pool market trading, both of which can be mapped to
the P2P structure. According to [44] and with slightly changing
their terminology, we can categorize P2P structures into: (1) Full
P2P market, where peers can negotiate directly with each other
in a complete decentralized manner with no central authority.
This is a strict P2P market with multi-bilateral contracts. (2)
Pool-based structured P2P market, which requires a community
manager that manages trades within its community and with
neighboring communities. This structure does not uniquely match
a certain buyer to a certain seller; rather it creates a pool of
buyers and sellers, ensuring overall supply–demand matching. (3)
Hybrid P2P market, which combines the design of the two above
structures.

• Price clearing dimension: defines the price setting mechanisms
implemented in the market. Two arrangements are typically made
for price clearing in electricity markets [24]: (1) Uniform pricing,
where the market supply and demand are matched, and the result-
ing price is set to be the market price for all buyers and sellers. (2)
Discriminatory pricing (also known as pay-as-bid pricing) is when
the activated customers pay/receive according to their bidding
prices.

Existing literature on P2P energy trading opted for a CDA design for
he P2P markets that are short-term, full P2P, and with discriminatory
ricing mechanism. Indeed, a full P2P contractual setup is well-aligned
ith the basic concept of P2P trading. However, it limits the types of
arket products that can be traded. For this reason and unlike most

xisting literature, in this paper, we choose to design our P2P market
4

s a pool-based with uniform pricing mechanism (see Section 4).
2.2. Opportunities and challenges

The future prospects to P2P energy trading are undeniable and re-
quires a thorough investigation, as done by [44]. On the economic side,
and with the decentralized structures of P2P markets, all intermediary
entities and their corresponding costs are eliminated, which induces
more competition among prosumers; hence, improving market liquidity
and social welfare [45]. Furthermore, P2P markets have the potential of
be the main drivers to incentivize investments in DERs, which in return
reduce the societal carbon emission level. In terms of social impacts,
P2P markets increase transparency with regards to the source of energy,
thus giving consumers the freedom to choose the type of energy they
can purchase. This transparency allows eco-friendly and conscious
prosumers to serve their load demand only from green energy sources;
something that is not possible without P2P trading. Also, the concept
of P2P trading, which is a form of shared economy [46,47], cultivates
trust and collaboration as resources are shared within the community.
Finally, the grid’s resiliency and security are directly improved, since
P2P markets raise the prosumers’ awareness regarding the network
capabilities.

On the other hand, some challenges and barriers must be levered to
reach the full potential of P2P trading [48,49]. One of these challenges
is that P2P markets require additional regulations, for example, to
ensure fairness, and to define the legal boundaries of market players
and their eligibility for taxing and network usage tariffs [17]. Also,
from a technical aspect, it is difficult to differentiate between energy
traded from/to the grid and in the P2P market. This can be alleviated
by the introduction of smart meters; albeit only when there exists a
highly secured database for P2P transactions. On the organizational
side, it is essential to incentivize market players to actively engage
in trading [50], otherwise the lack of market competition can lead to
sub-optimal clearing prices. Additionally, market prices should be more
competitive and attractive than the status quo; i.e., smaller than retail
prices for buying energy, and larger than Feed-in tariff (FIT) for selling
energy. Finally, on the social side, P2P trading is highly influenced by
individual decisions and interactions, and this additional uncertainty
caused by human behavior can be challenging to handle [23].

2.3. Blockchain potential and value

Blockchain was developed to enable a secure and reliable dis-
tributed cash system through a digital currency called Bitcoin [51]. In
its most basic form, blockchain is a tool that allows storing and sharing
a digital database that contains an expanding log of digital transaction,
data records or any other form of data [52]. Such transactions are
aggregated into so-called blocks, where every block is time-stamped,
immutable, traceable and cryptographically linked to previous blocks,
thus forming a chain of blocks, or blockchain [53]. Furthermore, users
who have a digital copy of the ledger, collaborate in order to ver-
ify and safeguard the transactions, thus maintaining the integrity of
the distributed ledger. Beside the high security and functionality of
blockchain, it enables the so-called smart contracts. Smart contracts
are self-executing programs that reside on the blockchain ledger car-
rying out specific functions if certain pre-programmed conditions or
rules are met. Smart contracts can be programmed to react to cer-
tain events in the system. For example, contract owners (prosumers)
experiencing shortage of energy generated from their PV generation,
can pre-program their smart contracts to automatically buy from other
prosumers to meet any deficit in energy [54].

Blockchain technology can provide several benefits to energy sys-
tems, as shown by [55]. For example, it enables automated and efficient
billing systems for local DERs and prosumers [56]. This can eliminate
third parties, remove transaction intermediary costs, maintain fairness
in trading, and enable accurate billing between traders [57]. Conse-
quently, it facilitates P2P energy trading by offering fast and real-time

settlements. This promotes more investment and better management
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on DERs. In addition, smart contracts ensure supply and demand are
closely matched through automatic trades, thus improving system re-
liability. Another important benefit of blockchain in energy systems is
that it enables full transparency. This means that prosumers can choose
their suppliers according to their preferences, for example one can trade
only with prosumers who use sustainable sources. Blockchain can also
benefit energy systems in terms of privacy and security through its
cryptographic and digital signatures features. Its tamper-proof nature
can digitally secure all relevant information with high resiliency to
attacks and forgery. This in turn, generates trust among all traders and
facilitates the verification of shared information. Finally, in the era of
energy decentralization and digitalization, having a central point for
data may not be the most efficient approach, which makes blockchain
technology very appealing.

3. Decentralized energy trading platform (DeTrade)

Here, we introduce the general structure of the proposed Decentral-
ized P2P Energy Trading Platform, called DeTrade. The DeTrade enables
prosumers (peers) to trade among each other, while guaranteeing the
privacy and security of their identities and market bids. As stated
earlier, DeTrade is composed of two main layers: the market layer
and the blockchain layer (see Fig. 1). The market layer encompasses a
decentralized P2P energy market, called ‘DeMarket’, which is a short-
term parallel auction market that allows prosumers to trade various
market products. An AI smart agent is assigned to every prosumer, with
the following responsibilities: (1) monitoring (through direct access
to smart meters) and controlling consumption and production of pro-
sumers’ local devices, (2) acting as the bidding entity in the DeMarket,
(3) being responsible for market clearing (see Section 4.4), and (4)
serving as a contact point with the blockchain layer. In the blockchain
layer, the market results derived from the decentralized market clearing
method are stored in a secured manner (see Section 4.4). In addition, a
smart contract is implemented to enable efficient real-time settlements
by ensuring that money is only transferred if the energy traded is
actually delivered (see Section 5.2).

It should be noted that all processes carried out on the market and
blockchain layers are separated. This means that all communication
and information exchanges among the agents take place on the market
layer only. The only direct communication that takes place between the
two layers is through the agents after they clear the DeMarket and store
the results in a smart contract on the blockchain layer. In Section 4,
we introduce the DeMarket structure and products, the social welfare
maximization problem, and the developed decentralized method for
market clearing. Section 5 explains the functionality of the blockchain
layer along with the smart contract developed.

4. DeTrade: Market Layer

In this section, we introduce the market structure and products, and
accordingly formulate the market optimization problem.

4.1. Market structure

The general setting of the proposed DeMarket follows a different
arrangement to the commonly-used in the literature of full P2P market
with a CDA mechanism. The DeMarket is a short-term and parallel pool-
based market that adopts a uniform pricing mechanism and is divided
into multiple stages of market clearing and multiple periods of energy
delivery. The time-ahead and pool-based features of the market are
similar to the current electricity spot markets, such as day-ahead and
intra-day markets [58].

Fig. 2 presents the general structure of the DeMarket. The market’s
temporal dimension, 𝑇 , entails two time horizons, called the clearing
horizon 𝑇𝑟 and the delivery horizon 𝑇𝑥; i.e., 𝑇 = {𝑇𝑟, 𝑇𝑥}. The delivery
orizon is divided to 𝑋 equal consecutive periods, where the length of
5

a single period ranges from minutes to hours. The consecutive delivery
periods allow the trading of time dependent market products, as will be
explained later in the types of market products. In every period, sellers
and buyers inject and withdraw respectively their allocated energy.
In the clearing horizon, the DeMarket includes 𝑅 consecutive stages.
During every stage, all delivery periods are cleared together (hence,
the word ‘parallel auction’) accounting for all inter-temporal depen-
dencies. Due to the decentralized structure of the DeMarket, reaching
the optimal clearing of all the delivery periods takes several stages of
information exchange among the prosumers, (see Section 4.4). Indeed,
in a centralized structure of the P2P market, the delivery periods can
be optimally cleared at once.

The time sequence of the DeMarket starts at time step −𝑅, with the
learing horizon, which ends at time step −1. Then, the energy delivery
orizon starts at time step 1 and the market terminates at time step 𝑋.
he clearing horizon stages can be written as 𝑇𝑟 = {−𝑅,… ,−1}, and

the delivery horizon periods as 𝑇𝑥 = {1,… , 𝑋}. The realization of the
final stage market clearing results as well as storing them in the smart
contract (on the blockchain) take place between the clearing horizon
at −1 and the switching time to the delivery horizon at time step 0.

4.2. Market products

The bidding protocol of the DeMarket incorporates the market
bidding behavior of prosumers in terms of ‘quantity bidding’ with the
following market mechanism assumptions: (1) Prosumers are truthful
in terms of their market bid unit pricing, which is a public information
within the DACO method steps (see Section 4.4), (2) The quantities
attached with the prices are within the actual capacity limits of the
devices used by the prosumers in their bidding (see Section 4.4), and
(3) Since the smart contract is able to detect any fraudulent information
submitted by the prosumers (see Section 5.2), prosumers have no
incentive to over-commit above their actual capacity.

We define a market product as a market acceptable bid format, in
terms of energy–price relationships. The DeMarket’s structure allows
trading of a diverse range of market products. In this paper, we account
for two types of market products: single products and continuous
products. Before we explain these products, it should be noted that the
DeMarket is not limited to these market products and it can be easily
extended to incorporate other types of bidding structures if needed in
future.
∙ Single product: A single product reflects bids that are only valid for
a single delivery period and do not have inter-temporal dependencies.
This product allows multiple blocks of quantities and prices to be traded
within a single time period. This product type suits those suppliers
(consumers) that have an increasing (decreasing) valuation of energy
depending on the energy quantity. For example, single products can be
used by prosumers offering supply bids with ramp-up constraints for
their local devices, such as local diesel generators. Besides, prosumers
with demand bids can use this type of product to either charge their
battery devices, or to directly supply their household demand. Fig. 3(a)
and (b), respectively, show an example of a three-blocks supply (in an
increasing merit order), and a two-block demand (in a decreasing merit
order) single product.
∙ Continuous product: A continuous product reflects bids with inter-
temporal dependencies, which can spread across multiple delivery
periods. This is a ‘‘take it all or leave it’’ type of bid, which means
that this product does not allow partial quantity bidding. A prosumer
with a non-zero continuous product bids for its full quantity and all
the delivery periods of that market product at the same time. If the bid
is accepted, it will be activated for full quantity and for all delivery
periods the market product entails. If it gets rejected, nothing will be
activated. Unlike single products, continuous products feature only one
single block, which is reasonable since partial quantity bidding is not
allowed with these products. Fig. 3(c) and (d), respectively, show an
example of a supply and demand continuous product that stretches
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Fig. 1. The decentralized local energy trading platform architecture (DeTrade).

Fig. 2. DeMarket structure: Market ‘Clearing’ horizon (𝑇𝑟) with 𝑅 trading ‘stages’ and ‘Delivery’ horizon (𝑇𝑥) with 𝑋 delivery ‘periods’.

Fig. 3. DeMarket Products: (a) Single product for a seller, (b) Single product for a buyer, (c) Continuous product for a seller, (d) Continuous product for a buyer.
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across two consecutive periods. Continuous products are very relevant
with uninterruptible loads: household devices that operate on cycle-
basis, such as washing machines and dryers, which require to maintain
their state of operation until they finish their cycle. Moreover, devices
such as batteries and EVs can also benefit from the inter-temporal
commitments that this market product can provide, since they also
need to maintain their state of operation (charging or discharging) for
a specific number of consecutive periods.

4.3. Social welfare maximization problem

The objective of the market layer of DeMarket, and the general
bidding strategy of the prosumers, is to maximize the overall social
welfare, which is the summation of the utility of all buyers minus the
summation of cost of all sellers [4] across all delivery periods. To be
more precise, sellers and buyers submit bids in each stage of clearing
horizon for all periods of the delivery horizon in parallel. The goal
of the DeMarket is to maximize the social welfare across all delivery
periods when we are at the last trading stage. Before formulating
social welfare maximization problem, we introduce some notation (See
Table 7 for a list of notation).

Let 𝑀 be the set of all market players. Any market player can either
belong to the set of buyers 𝐵 or sellers 𝑆, but not both; i.e., 𝐵 ∪𝑆 = 𝑀
and 𝐵 ∩ 𝑆 = ∅. Let 𝑄𝑟,𝑥

𝑖 be the set of all quantity bids of market
player 𝑖 at clearing stage 𝑟 for delivery period 𝑥. Such a quantity bid
has multiple components, depending on whether it is a single or a
continuous product. Denote 𝐿𝑠

𝑖 and 𝐿𝑐
𝑖 , respectively, the set of all single

and continuous products of market player 𝑖.
A continuous product has a single component which is the quantity.

For a market player 𝑖 ∈ 𝑀 , denote 𝑞𝑟,𝑥𝑖,𝑙 the quantity bid of a continuous
product 𝑙 ∈ 𝐿𝑐

𝑖 that is traded at clearing stage 𝑟 for delivery period 𝑥.
According to ‘‘take it all or leave it’’ property of a continuous product,
it can either be fully activated or not being used at all. Thus, if 𝑞𝑟,𝑥𝑖,𝑙
epresents the quantity of the continuous product, we can express 𝑞𝑟,𝑥𝑖,𝑙
y introducing a binary variable 𝑣𝑟,𝑥𝑖,𝑙 ∈ {0, 1} as follows

𝑟,𝑥
𝑖,𝑙 = 𝑣𝑟,𝑥𝑖,𝑙 𝑞

𝑟,𝑥
𝑖,𝑙 ∀𝑖 ∈ 𝑀,∀𝑙 ∈ 𝐿𝑐

𝑖 ,∀𝑟 ∈ 𝑇𝑟,∀𝑥 ∈ 𝑇𝑥 (1)

A continuous product can be active (non-zero) for two or more con-
secutive periods. This means that for any delivery period 𝑥, the total
continuous quantity from product 𝑙 and market player 𝑖 at clearing
tage 𝑟 should account for all continuous products that are scheduled
or any delivery period 𝑦 ≤ 𝑥 and might continue to exist at 𝑥. Math-

ematically, the total continuous quantity from product 𝑙 and market
player 𝑖 at clearing stage 𝑟 for delivery period 𝑥 is ∑

𝑦≤𝑥 𝑞
𝑟,𝑦
𝑖,𝑙 .

A single product might have different prices within one clearing
stage. Let 𝐾𝑖,𝑙 be the set of all price blocks within one clearing period of
the single product 𝑙 ∈ 𝐿𝑠

𝑖 of market player 𝑖. To linearlize our problem
formulation, we express a single product by the sum of all products
in each price block. For single products, the energy quantity that can
be activated from every block is constrained between the minimum
and maximum quantities of that block. While usually market bids with
multiple blocks are presented in an aggregated form (see Fig. 3(a) or
(b)), we model it by splitting these aggregated blocks into individual
blocks. In this way, we can identify the amount of activated energy per
every block separately. Therefore, for single product 𝑙 ∈ 𝐿𝑠

𝑖 of market
player 𝑖 in clearing stage 𝑟 for delivery period 𝑥, we denote by 𝑞𝑟,𝑥

𝑖,𝑙,𝑘
and 𝑞𝑟,𝑥𝑖,𝑙,𝑘, respectively, the minimum and maximum bounds that limit
he amount of energy that can activated from every block. Accordingly,
e have

𝑟,𝑥
𝑖,𝑙,𝑘

𝑣𝑟,𝑥𝑖,𝑙,𝑘 ≤ 𝑞𝑟,𝑥𝑖,𝑙,𝑘 ≤ 𝑣𝑟,𝑥𝑖,𝑙,𝑘𝑞
𝑟,𝑥
𝑖,𝑙,𝑘 ∀𝑖 ∈ 𝑀,∀𝑙 ∈ 𝐿𝑠

𝑖 ,∀𝑘 ∈ 𝐾𝑖,𝑙 ,∀𝑟 ∈ 𝑇𝑟,∀𝑥 ∈ 𝑇𝑥

(2)

Combining both products, the set of all quantity decision variables for
market player 𝑖 at delivery period 𝑥 for a clearing time 𝑟 is given by

𝑄𝑟,𝑥 = {𝑞𝑟,𝑥 ∣ ∀𝑘 ∈ 𝐾 ,∀𝑙 ∈ 𝐿𝑠} ∪ {𝑞𝑟,𝑥 ∣ ∀𝑙 ∈ 𝐿𝑐} (3)
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𝑖 𝑖,𝑙,𝑘 𝑖,𝑙 𝑖 𝑖,𝑙 𝑖
Accordingly, the set of all decision variables can be written as

𝑉 = {𝑄𝑟,𝑥
𝑖 ∣ ∀𝑖 ∈ 𝑀,∀𝑟 ∈ 𝑇𝑟,∀𝑥 ∈ 𝑇𝑥}. (4)

At any clearing stage 𝑟, the market should ensure the matching between
the total scheduled supply, for all sellers 𝑗 ∈ 𝑆, and the total scheduled
demand, for all buyers 𝑖 ∈ 𝐵, for all delivery periods 𝑥. It should be
noted that the DeMarket does not guarantee that the supply and the
demand flexibility are met fully (or all market bids will be allocated).
Here, we assume the DeMarket is an on-grid system, thus, it does
not substitute the dependency on the grid, but rather it reduces it. It
ensures that market equilibrium is achieved (if exists), and that the
scheduled offered supply matches the scheduled demand. Given the
notation introduced so far, we can mathematically express the balance
between supply and demand as

∑

𝑖∈𝐵

[

∑

𝑙∈𝐿𝑠
𝑖

∑

𝑘∈𝐾𝑖,𝑙

𝑞𝑟,𝑥𝑖,𝑙,𝑘 +
∑

𝑙∈𝐿𝑐
𝑖

∑

𝑦≤𝑥
𝑞𝑟,𝑦𝑖,𝑙

]

−
∑

𝑗∈𝑆

[

∑

𝑙∈𝐿𝑠
𝑗

∑

𝑘∈𝐾𝑗,𝑙

𝑞𝑟,𝑥𝑗,𝑙,𝑘 +
∑

𝑙∈𝐿𝑐
𝑗

∑

𝑦≤𝑥
𝑞𝑟,𝑦𝑗,𝑙

]

= 0, ∀𝑟 ∈ 𝑇𝑟,∀𝑥 ∈ 𝑇𝑥

(5)

Therefore, the utility of buyers and the cost of sellers can also be
formulated accordingly. Let 𝜆𝑟,𝑥𝑖,𝑙 and 𝜆𝑟,𝑥𝑖,𝑙,𝑘, respectively, be the price (in
ce/kWh) for every block of energy of continuous and single product
𝑙 of a market player 𝑖, where 𝑘 in the single product refers to the
block. Given the decision variables, let 𝑈 𝑟,𝑥

𝑖 (𝑄𝑟,𝑥
𝑖 ) and 𝐶𝑟,𝑥

𝑗 (𝑄𝑟,𝑥
𝑗 ) be,

respectively, the utility and cost of buyer 𝑖 and seller 𝑗 that are incurred
at clearing period 𝑟 for an upcoming delivery period 𝑥. This can be
expressed as

𝑈 𝑟,𝑥
𝑖 (𝑄𝑟,𝑥

𝑖 ) =
∑

𝑙∈𝐿𝑠
𝑖

∑

𝑘∈𝐾𝑟
𝑖,𝑢

𝑞𝑟,𝑥𝑖,𝑙,𝑘𝜆
𝑟,𝑥
𝑖,𝑙,𝑘 +

∑

𝑙∈𝐿𝑐
𝑖

𝑞𝑟,𝑥𝑖,𝑙 𝜆
𝑟,𝑥
𝑖,𝑙 (6)

and

𝐶𝑟,𝑥
𝑗 (𝑄𝑟,𝑥

𝑗 ) =
∑

𝑙∈𝐿𝑠
𝑗

∑

𝑘∈𝐾𝑟
𝑖,𝑙

𝑞𝑟,𝑥𝑗,𝑙,𝑘𝜆
𝑟,𝑥
𝑗,𝑙,𝑘 +

∑

𝑙∈𝐿𝑐
𝑗

𝑞𝑟,𝑥𝑗,𝑙 𝜆
𝑟,𝑥
𝑗,𝑙 (7)

Using these elements, we can formulate the optimum market solution
to be the one that maximizes the overall social welfare, which we
formulated as a mixed-integer linear programming (MILP)

𝑂𝑃𝑇 = max
𝑉

( −1
∑

𝑟=−𝑁

𝑀
∑

𝑥=0

[

∑

𝑖∈𝐵
𝑈 𝑟,𝑥
𝑖 (𝑄𝑟,𝑥

𝑖 ) −
∑

𝑗∈𝑆
𝐶𝑟,𝑥
𝑗 (𝑄𝑟,𝑥

𝑗 )

])

(8)

Every clearing stage is a parallel auction that clears prices of all
delivery periods all at once. Since the DeMarket is following a uniform
pricing-based mechanism, the optimization results of Eq. (8), yield a
set of 𝑀 marginal prices, one for each delivery period. These marginal
prices represent the intersection between the supply and demand in
every period. Denote 𝑝𝑥 for any 𝑥 ∈ 𝑇𝑥 the clearing price a seller will
receive in the delivery period. Given that the market uses a uniform
pricing, a seller pays −𝑝𝑥 for buying one unit of energy in the same
delivery period. With this notation, the total revenue/cost of a given
market player 𝑖 ∈ 𝑀 , denoted by 𝛥𝑟,𝑥

𝑖,𝑙,𝑘, is given by

𝛥𝑟,𝑥
𝑖,𝑙,𝑘 = 𝑞𝑟,𝑥𝑖,𝑙,𝑘𝑝

𝑥, ∀𝑖 ∈ 𝑀,∀𝑙 ∈ 𝐿𝑠
𝑖 ,∀𝑘 ∈ 𝐾𝑙 ,∀𝑥 ∈ 𝑇𝑥 (9)

Indeed, it is interesting to also compute the revenue of market players.
We use Eq. (9) for this purpose in our case study to shed some lights
on this matter.

4.4. Decentralized Ant-Colony Optimization algorithm (DACO)

The key challenge in decentralized P2P markets clearing methods
is the trade-off between market efficiency and information privacy. On
one hand, maximizing social welfare requires full market products and
bids visibility. On the other hand, prosumers do not want to expose
their full capacity to protect their identities. Exposing full capacity
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Fig. 4. Flowchart for DACO.
increases the chance of uniquely identifying prosumers, for example if
one prosumer can identify the bidders, he/she can use this information
to play strategically and manipulate the market [3].

With that in mind, here we propose and implement a novel de-
centralized market clearing method that balances between the market
efficiency and information privacy. The commonly used alternative,
ADMM (See Section 1.1.1), becomes very complex, when dealing with
inequality constraints and binary variables such as those formulated in
the previous section. In addition, ADMM is a sequential optimization
process, which makes it time expensive. For these reasons we develop
another method to resolve these issues.

The developed method here is a Decentralized variation of the
Ant-Colony Optimization method, called ‘DACO’, that relies on the
cooperative behavior of the market players to clear the DeMarket. The
ant-colony optimization ‘ACO’ method [59] is inspired by the cooper-
ative behavior of ant colonies in nature, as they deposit pheromones
in their food exploration trips. Such pheromones measure the ants’
satisfaction level for a given path and guide successive ants to choose
the paths with highest pheromones levels, i.e. shortest paths to the
food source. The ACO method is a highly efficient algorithm with
the ability to achieve optimal solutions given suitable parameters and
design schemes [60–62]. In the DACO method, each agent is running a
local ACO process but with a different set of information. Every local
ACO is composed of a number of iterations. At the end of every stage,
every agent shares their market optimization outcome, which can either
yield a feasible or a non-feasible solution.

The DACO adequately balances between maximizing the efficiency
of the market while protecting the information privacy of the pro-
sumers. This is achieved by adopting a unique design for the informa-
tion exchange process. Indeed, agents often shade their bid quantities
below the actual full capacity in every clearing stage, and then share
the new shaded bids with the rest of the agents. This quantity shading
protects prosumers from being uniquely associated or identified from
their full capacity bids. Additionally, agents, or prosumers, that choose
to misreport their bidding quantities and fail to deliver their (faulty)
cleared amounts, will not receive their respective costs, as enforced by
the smart contract (see Section 5.2). By leveraging the versatility and
8

the unique design of the DACO, an efficient market solution can be
achieved with a limited number of clearing stages within the clearing
horizon that provides close-to-optimal market solution.

Finally, another unique nature of the DACO is its parallel structure
which minimizes the computational time. Furthermore, it does not
impose any complexities in dealing with inequality constraints and
binary variables, thus allowing a diverse range of market products to
be modeled. In the following, the steps of the DACO algorithm are
explained.

4.4.1. DACO steps
Fig. 4 depicts all processes taking place in the DACO, which are

explained in the following.
∙ DACO start: In the first stage and before the agents’ iterations begin,
all agents send an initial set of information, which serves as their guess
for their allocation in the market solution. Here, we refer to this set
of information as a solution packet. The solution packet is composed of
different energy quantities (to buy or sell), previously formulated in
Eq. (3), and their corresponding costs for a given delivery period. The
initial solution packet is composed of random quantities but within the
capacities of the actual bids. In the next iterations, the agents update
the quantities shared in the solution packets in every stage according
to the pheromone levels (see description of pheromone updating and
Eqs. (11) and (12)). However, the prices remain constant across all
stages.
∙ Ants touring: In the first iteration, every agent solves the objective
function (8) with respect to its own feasible space and the solution
packets they received from all other agents. The ants movement in the
feasibility space follows the general probabilistic movement equation of
ACO [59], described in Eq. (10). The equation describes the probability
𝑃 𝑎,𝑖𝑡,𝑎𝑔,𝑟
𝑛,𝑚 of ant 𝑎 ∈ 𝑁𝑎𝑛𝑡𝑠 of agent 𝑎𝑔, to move from edge 𝑛 to 𝑚,

in iteration 𝑖𝑡 during clearing stage 𝑟. The pheromones level, denoted
𝜏 𝑖𝑡,𝑎𝑔,𝑟𝑛,𝑚 , represents the amount of pheromones assigned by every ant to
every edge. The edge visibility 𝜁 𝑖𝑡,𝑎𝑔,𝑟𝑛,𝑚 represents the bidding quantities’
costs in the solution packets. The control parameters 𝛼 and 𝛽 are set to
balance between the influence of pheromones and cost values on the

ants’ movement from one edge to another. Fig. 5 shows an example
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Fig. 5. Agent’s 1 perspective in the first stage and first iteration: Ants are moving
between agent’s 1 space and the solution packets received from agents 2 and 3.

of a system with 3 agents. In the first iteration, agents 2 and 3 send
their solution packets to agent 1. Then, agent’s 1 ants explore different
possible market solutions between its own search space and the solution
packets received. Since all the agents are trying to solve the same
function (8), their efforts are not duplicated since they have different
sets of information.

𝑃 𝑎,𝑖𝑡,𝑎𝑔,𝑟
𝑛,𝑚 =

(𝜏 𝑖𝑡,𝑎𝑔,𝑟𝑛,𝑚 )𝛼(𝜁 𝑖𝑡,𝑎𝑔,𝑟𝑛,𝑚 )𝛽
∑

𝑘∈𝑁𝑎
𝑖
(𝜏𝑖𝑡,𝑎𝑔,𝑟𝑛,𝑘 )𝛼(𝜁 𝑖𝑡,𝑎𝑔,𝑟𝑛,𝑚 )𝛽

,∀𝑎 ∈ 𝑁𝑎𝑛𝑡𝑠 (10)

∙ Local fitness evaluation: Every ant’s tour represents a possible
solution to the market problem. After all ants complete their initial
tours, the fitness of every tour is evaluated. The fitness is evaluated
based on two criteria: the social welfare and the net balance of the
trading across the delivery horizon. The values of the weighted average
of the fitness criteria are used to select the best tour. This metric
identifies the solution with the maximum social welfare and minimum
absolute net balance. Furthermore, a rejection criterion is included,
which eliminates market solutions with net energy balance that surpass
a permissible marginal error of ±5%.
∙ Pheromone updating: The DACO uniquely introduces two levels of
pheromones updating. First level is a local pheromone updating based
on the satisfaction levels of the ants to their tours. Every ant traces back
its steps and deposit pheromones on the edges it visited. The goal is to
allow the ants to explore new edges with low amount of pheromones
concentration. The updating rule for the new local pheromones 𝜏𝑖𝑡+1,𝑎𝑔,𝑟𝑖,𝑗
in iteration 𝑖𝑡 + 1 is given in Eq. (11), where 𝛥𝜏 𝑖𝑡,𝑎𝑔,𝑟𝑛,𝑚 is ant’s 𝑎 fitness
evaluation for its tour. The evaporation rate, denoted 𝜌𝑎𝑔 , is adjusted
to prevent ants from always selecting edges with high amounts of
pheromones concentration, thus allowing further exploration of new
paths.

𝜏𝑖𝑡+1,𝑎𝑔,𝑟𝑛,𝑚 = (1 − 𝜌𝑎𝑔)𝜏𝑖𝑡,𝑎𝑔,𝑟𝑛,𝑚 + 𝜌𝑎𝑔𝛥𝜏 𝑖𝑡,𝑎𝑔,𝑟𝑛,𝑚 (11)

The second level of pheromone updating takes place after all agents fin-
ish their own local ACO process. The agents identify the best tour their
ants achieved in the initial stage. This information is shared among all
agents, which helps in assessing the quality of their initial guess in the
solution packet. Accordingly, every agent updates the pheromones of
their solution space to increase the probability of sending improved
and new values in future stages. The global pheromones updating rule
follows Eq. (12), where 𝑇 𝑎𝑔,𝑟+1

𝑛,𝑚 is the new pheromones assigned to every
agent in their own feasibility space for the clearing stage 𝑟 + 1. The
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initial amount of pheromone assigned by the agents in the first clearing
stage is denoted 𝜏𝑎𝑔0 . The new pheromones to be deposited in the search
space is denoted 𝛥𝑇 𝑎𝑔,𝑟

𝑛,𝑚 , which represents the agents’ satisfaction with
the best tours achieved. Finally, 𝜇𝑎𝑔 is the global evaporation rate [63],
where 0 ≤ 𝜇𝑎𝑔 ≤ 1. This value balances between exploring new areas
and sticking with areas with high pheromones concentration.

𝑇 𝑎𝑔,𝑟+1
𝑛,𝑚 = (1 − 𝜇𝑎𝑔)𝜏𝑎𝑔0 + 𝛥𝑇 𝑎𝑔,𝑟

𝑛,𝑚 (12)

∙ Convergence check: The DACO converges if the global pheromones
of the agents reach an unchanged value compared to the previous stage.
Otherwise, all agents submit their final best solution at the end of the
clearing horizon at step −1, summing up to an 𝑅 number of stages. After
the DACO terminates, all agents may reach nearly similar solutions with
small margins of error between them. Finally, all agents submit their
own solutions to the smart contract. Based on the smart contract logic
(see Section 5.2), the agents will adhere to a single optimal solution in
the delivery horizon.

4.4.2. Complexities and trade-offs
Similar to all optimization algorithms, there exist certain trade-

offs and complexities. Most importantly, there are trade-offs when
balancing between the quality of the market solution, the privacy of
the traders, and the computational time of the algorithm. Better market
solutions might mean larger computational complexity. In particular,
increasing the number of ants leads to better market solutions, though
at the cost of higher computational complexity. Similarly, the traders’
privacy and market solution quality are closely related. Exposing more
private information about available quantity leads to larger social wel-
fare and better market solutions, though at the cost of raising privacy
concerns.

We evaluate the economic efficiency of the DACO method with
respect to the optimal market solution. Suppose that the social welfare
of the sub-optimal market solution found by the DACO is 𝑆𝑂, and the
optimal market solution 𝑂𝑃𝑇 is as formulated in Eq. (8). We define the
market solution error 𝛼 to be the relative error between 𝑆𝑂 and 𝑂𝑃𝑇 :

𝛼 ∶=
|

|

|

|

|

𝑆𝑂 − 𝑂𝑃𝑇
𝑂𝑃𝑇

|

|

|

|

|

(13)

There is also a pre-defined acceptable target solution error 𝛼∗ which
sets an upper bound on how large the solution error can be; i.e., 𝛼 ≤ 𝛼∗.
We use this constraint (also in Section 6) to measure whether or not the
DACO solution error is within the acceptable range with respect to the
social welfare maximum solution.

5. DeTrade: Blockchain layer

In this section, we elaborate on the role of blockchain layer for
the market layer to ensure efficient and secure real-time settlements.
In the context of DeTrade, blockchain technology offers three distinct
advantages compared to traditional solutions using a trusted third
party. First, blockchain technology offers a semi-decentralized database
where households themselves can securely write to and manage the
database, even in the context of mutual distrust and Byzantine behav-
ior. This model is more robust against manipulation of stored data,
since it usually requires adversarial behavior of a majority of users to
manipulate the database. In comparison, when using a centralized data
store, users have to trust the storage operator to not manipulate the
recorded data in their advantage. Second, all included transactions on
a blockchain are public and verifiable by other participants. This allows
participants to monitor each other’s behavior and punish misbehaving
users accordingly. Third, the expressive power of blockchain-based
scripting language enables a wide range of algorithms that can run on
a blockchain, e.g., automated money transfers.

In DeTrade, the blockchain layer leverages the desired properties
of blockchain technology through three functionalities. First, we use
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the tamper-proof properties of the blockchain data structure for state
storage, specifically to securely store the market clearing results com-
puted in the market layer (see Section 4.4). Second, we represent
monetary value in the form of digital tokens on the blockchain. This
process is called tokenization and has seen an increasing adoption over
the past few years [64]. Third, we leverage blockchain technology
to automatically and securely transfer digital tokens when the energy
traded is actually delivered or consumed.

5.1. Permissionless vs. permissioned blockchain

Two types of blockchains are introduced in the literature: permis-
sionless and permissioned. In a permissionless blockchain, users can
freely join the network and participate in the consensus algorithm
that maintains and secures the distributed ledger. On the other hand,
participation in a permissioned blockchain is managed by an access
control mechanism. For example, participants have to be manually
approved by a central trusted party before they can submit transac-
tions to the blockchain. We identify two main advantages of permis-
sioned blockchains over permissionless blockchains. First, permissioned
blockchains have a well-defined network membership which renders
various targeted threats to system integrity, e.g., uncontrolled iden-
tity creation, impossible. Second, network upgrades in a permissioned
setting compared to a permissionless setting thanks to their clearly
defined authority and governance model. This makes it easier to change
the rules and constraints of the network in a permissioned setting in
comparison with permissionless blockchain, in which modifying the
rules is often a complicated and long-term process.

Given these differences, we adopt a permissioned blockchain within
DeTrade where the network is managed by the agents assigned to every
prosumer. Furthermore, we assume that the smart meters are trusted
devices and their reports are truthful. We argue this is a reasonable
assumption since manufacturers take active measure to prevent tam-
pering of smart meters. The participation of every agent is approved
by a trusted third party, such as an energy supplier. Note that this does
not violate our requirement for full decentralization, since this party is
not directly responsible for managing or controlling the market. Only
authorized AI agents have write access to the blockchain.

5.2. Smart contract functionality

The key component in the blockchain layer is the smart contract,
which efficiently manages the settlement process, see Fig. 1. Popular-
ized by the Ethereum platform [65], a smart contract is application
logic running on the blockchain and has its correct execution enforced
by the adopted consensus mechanism [66]. Smart contracts are often
used to securely manage digital tokens residing on the blockchain. In
our setting, every AI agent owns and operates an account, and is able
to invoke the smart contract by sending a unique transaction to the
blockchain layer. In most blockchain systems, an account consists of
two cryptographic keys: (1) The public key, which is an identifier for
the operated account, and (2) the private key, which is used to digitally
sign all transactions sent to the smart contract.

The smart contract carries out two main functionalities: it stores the
market solution results submitted by the agents and manages the bal-
ances of digital tokens used for buying and selling energy. We represent
(real-world) monetary value through a special token, called EuroTokens.
One of the major concerns of blockchain-based digital tokens is their
price volatility, as digital assets’ trading price can fluctuate based on
their community interest. In our case, if agents are capable of self-
issuing EuroTokens without any constraints or monitoring, owning and
exchanging of EuroTokens becomes worthless. To overcome this issue,
we have the smart contract representing digital tokens that are backed
by real-world currencies. These real-world currencies are managed by
a trusted third party (TTP), whose role can be fulfilled by a notary or
financial institution such as a bank. Only the TTP is allowed to create
10
new EuroTokens since its public key is authorized in the smart contract.
The TTP’s responsibilities is two-fold: it mints (creates) EuroTokens for
new agents joining the market and converts tokens to monetary value
if agents wish to leave the market.

Recall that agents in DeTrade do not directly trade energy and Eu-
roTokens with other agents. Instead, during each period in the delivery
horizon, the energy traded is either injected/consumed in/from the
grid, and the EuroTokens of the buying agents are transferred from their
accounts to a special account managed by the smart contract, called the
pool account. After all energy has been delivered, the pool account ag-
gregates all paid tokens during each delivery period and re-distributes
tokens in the pool account according to the market clearing results. The
participating agents interact with the smart contract according to the
following steps:
∙ Market enrollment and token minting: The TTP creates a new
account in the smart contract for new prosumers participating in the
market and authorizes the prosumers’ AI agents to interact with the
smart contract. The prosumers buy an amount of EuroTokens from the
TTP with a real-world currency, which is then minted and transferred
to their new account. The prosumer is now able to participate in the
DeMarket.
∙ Role specification: Every participant indicates at the start of the
clearing horizon whether they are participating as a buyer or a seller.
This information is used by the smart contract to correctly re-distribute
EuroTokens from the pool account to energy sellers.
∙ Storing market clearing results: At the end of clearing horizon, all
agents embed the market solution that they acquired in a transaction
and submit it to the smart contract. Thereafter, the smart contract
automatically verifies these results.
∙ Verification of market clearing results: We add validation logic
to the smart contract that verifies the consistency of all submitted
market solutions by the agents. This is to prevent individual agents
from actively manipulating the clearing results to their advantage.
Specifically, this step validates that the submitted clearing results are
well-formatted and sufficiently similar. This is done by computing the
percentage difference between all the submitted values of the market
results (pair-wise). Any result that surpass a permissible difference of
5% is excluded. This assumption is reasonable since all near-optimal
market results should be within a close and similar range of accuracy.
The outcome of this validation step is reflected in the smart contract
state. The participating agents can query if the results have been vali-
dated. In the situation where one or more submitted results are deemed
invalid by the validation logic, the erroneous result can be traced back
to a specific agent and optionally be excluded from the market. The
smart contract gives the final market solution that all agents should
adhere to. Similar to the fitness evaluation process in Section 4.4, the
choice of the final market solution is based on computing the weighted
average of the two fitness criteria, the social welfare and absolute net
balance. Thus, this method identifies the market solution that has the
maximum social welfare and minimum absolute net balance.
∙ Energy trading: During the delivery horizon, all buyers and sellers
exchange the traded energy according to the final market clearing
results provided by the smart contract. Here, the role of the smart
meter is key to verify that the traded energy is actually injected or
received. Subsequently, the agents initiate a EuroToken transfer to the
pool account.

5.3. Smart contract implementation

The smart contract in DeTrade is implemented in the Solidity pro-
gramming language [67]. Solidity compiles smart contracts to bytecode
and execute them within the Ethereum Virtual Machine. Although
Solidity is popularized by Ethereum, there are several blockchains that
adopt such programming model, e.g., EOS9 and Hyperledger Burrow.10

9 https://eos.io
10 https://www.hyperledger.org/projects/hyperledger-burrow/

https://eos.io
https://www.hyperledger.org/projects/hyperledger-burrow/
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Table 1
The name, scope, and allowed callers of methods in the DeTrade smart contract. A
method with a private scope cannot be invoked directly by a transaction.

Name Method scope Allowed callers

registerHousehold public TTP
isRegisteredHousehold private –
mintEuroToken public TTP
balanceOf public smart agents + TTP
initializeRoles public smart agents
storeClearingResults public smart agents
resetClearingResults private –
validateAllClearingResults private –
selectBestClearingResult private –
getTotalPrice public smart agents
receivedEnergy public smart agents
redistributePoolFunds private smart agents

The smart contract implementation follows the interactions described
in Section 5.2. In Table 1, we list the smart contract methods, along
with their corresponding scope and allowed callers (e.g., some methods
can only be invoked by the TTP). The individual accounts EuroToken
balances are stored in a mapping, and their initial balances are set to
zero. The TTP is the only entity allowed to publish new EuroTokens by
issuing a special transaction to invoke the mintEuroToken method.
Here, the smart contract is updated on discrete-event basis, every time
a new transaction takes place.

Finally, we identify two security threats in DeTrade. First, all agents
are prohibited from tampering or updating with their EuroToken bal-
ance mapping, since they hold real-monetary value. This is addressed
by limiting token minting only to the TTP. Second, even though we
assume a weak trust model, the smart contract can detect invalid
market clearing results. They can originate from active fraud attempts
to manipulate the energy prices or caused by malfunctioning agents.
The validateAllClearingResults method verifies that the mar-
ket clearing results reported by smart meters. To further increase the
security of our smart contract, we have devised 27 unit tests that
thoroughly verify correct behavior of implemented methods.

6. Simulation & results

In order to showcase how the developed DeTrade operates, we use
in our simulation real-life distribution feeder network data located in
the Midwest U.S. [68]. The feeder configuration is shown in Fig. 6.
The feeder connects 17 primary nodes with customers equipped with
smart meters measuring hourly energy consumption (kWh). Low volt-
age customers are connected to these primary nodes via secondary
distribution transformers (120/240 V). Here, for privacy concerns, only
the aggregated hourly consumption at every node is available for a
single year. For the sake of simplicity and without loss of generality,
it is assumed that every node represents a single prosumer (market
player), thus the trading can be carried out between different nodes
in the feeder.

6.1. DeTrade setup

In the given feeder, we consider the number of market players
participating in the DeMarket is 𝑀 = 6, with 3 buyers and 3 sellers; 𝑖 ∈

= {1, 2, 3} and 𝑗 ∈ 𝑆 = {4, 5, 6}. Based on the available consumption
ata, we choose a random day and hour during the day to carry out our
imulation. Furthermore, we simulate the DeTrade to operate on a one-
our-ahead basis, with four 15-minute delivery periods, 𝑇𝑥 = {1,… , 4}.

All prosumers in our setting are assumed to be grid connected, thus
they will not experience power outage if the supply and demand (traded
through the DeTrade) do not match in real-time due to uncertainties or
forecast errors (see Section 7.1). To induce more participation from the
prosumers, the market products’ prices as well as the market cleared
prices must be competitive compared to the regular grid prices. This
11
means that the cleared selling and buying prices must be, respectively,
more than the FIT, and less than the regular retail buying prices. In
this simulation, we use the Netherlands’ tariff values. The FIT for solar
rooftop PV panels range from 2.2 ce/kWh to 3.8 ce/kWh [69], and
the retail tariffs for household consumption range from 9.21 ce/kWh to
18 ce/kWh depending on the peak hour.11 Here, for the sake of simplic-
ity, we assume a fixed FIT (3.8 ce/kWh) and retail price (18 ce/kWh).
In the DeMarket, prosumers can trade single and continuous products
with respect to the 4 energy delivery periods. Table 2 provides details
regarding the agents and the household devices involved in the market.
Table 3 shows the market products of the participating agents, which
consist of the energy in kWh and prices in ce/kWh. Note that the prices
used here are arbitrary, since there are no regulations that determine
how these products should be priced.

6.2. Market layer simulation results

In order to assess the efficiency of the DACO’s sub-optimal solution
𝑆𝑂, we also compute and compare the optimal solution 𝑂𝑃𝑇 , as
formulated in Eq. (8), by using a central MILP solver. Note that both
optimal and sub-optimal solutions have the same coupling constraint
of maintaining the total energy net balance across all periods in the
delivery horizon at zero (see Eq. (5)). While the DACO’s 𝑆𝑂 may yield
a non-zero net balance, its value must be kept as close as possible to
zero. Thus, it is also important to make sure that the 𝑆𝑂 solution has an
acceptably small net balance. We take the target values for acceptable
social welfare error to be 𝛼∗ = 5% and net balance violation to be
5%. We also assume that the computation time of DACO, denoted 𝑡,
must not be larger than the one-hour ahead time frame of the clearing
horizon. Also note that it is unrealistic to compare the computation
time of the DACO with that of the MILP solver, since the latter clearly
outperforms any decentralized method. Both approaches, DACO and
MILP, were modeled and simulated in MATLAB, and executed on a CPU
with AMD PRO A6-8570 R5 @ 3.50 GHz.

6.2.1. DACO convergence analysis
The key variables with a direct effect on the DACO’s performance

and solution quality (see Section 4.4.2) are the number of ants and
number of stages. By fixing the number of local ACO iterations, (here,
500 iterations), we run different simulations with different combina-
tions of the number of ants and the number of stages. Table 4 gives
insight on the convergence speed and accuracy of the final solution as a
function of number of ants and number of stages. It can be noticed that
at a low number of ants and high number of stages, for example 200
and 70, respectively, the DACO’s has solution error of 7.30% with net
balance error of 5.3%. Even though this combination is time efficient,
the error margin is indeed high. As the number of ants increases and
the number of stages decreases, the DACO is able to enter the feasibility
region, while being compliant with the clearing horizon time frame.
Specifically, the combinations of 400 and 600, and 850 and 50, for
the number of ants and number of stages respectively, yield near-
optimal solutions within a solution and net balance margin error of 5%,
and with computation time 𝑡 below the one-hour limit of the clearing
horizon. With higher number of ants and lower number of clearing
stages, starting from 1000 ants and 30 stages, the DACO still manages
to be within the acceptable error margins. However, the computation
time becomes very expensive, which makes them inefficient.

According to the simulations presented in Table 4, we choose the
best combination among them to be at 850 ants and 50 stages that
yields a solution error margin of 2.10%, net balance error of 4.5%,
and with computation time 𝑡 = 58 minutes. This is an acceptable con-
vergence time within the clearing horizon window of one hour ahead,

11 https://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_
price_statistics

https://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics
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Fig. 6. Distribution feeder [68].
Table 2
Description of seller and buyer agents.
Agents Agent role Market product Device example Notes

agent 1
Seller

Single Local generator Offering different single products at every delivery period
agent 2 Single Battery system Offering full discharge power at every delivery period
agent 3 Continuous Battery system Offering full discharge power during the first 2 delivery periods only

agent 4

Buyer

Single Household loads, e.g. air conditioning,
heaters or refrigerators

Loads that can be switched on, or their thermal characteristics can be
adjusted

agent 5 Single Battery system Offering charging capacity at every delivery period
agent 6 Continuous EVs Offering charging capacity during the last 2 delivery periods
Table 3
Agents offering single products.

Agents

Delivery periods

1 2 3 4

𝑞𝑟,𝑥𝑖,𝑙,𝑘 𝜆𝑟,𝑥𝑖,𝑙,𝑘 𝑞𝑟,𝑥𝑖,𝑙,𝑘 𝜆𝑟,𝑥𝑖,𝑙,𝑘 𝑞𝑟,𝑥𝑖,𝑙,𝑘 𝜆𝑟,𝑥𝑖,𝑙,𝑘 𝑞𝑟,𝑥𝑖,𝑙,𝑘 𝜆𝑟,𝑥𝑖,𝑙,𝑘
kWh ce/kWh kWh ce/kWh kWh ce/kWh kWh ce/kWh

agent 1
1.5 10.1 2 4.2 1 7.9 0.5 5.8
– – 1.5 6.3 1.5 8.5 0.5 6.8
– – – – 1 9.3 – –

agent 2 1.25 12 1.25 12 1.25 12 1.25 12

agent 4
1 7.7 1 8.7 1.25 9.9 2 7.2
3 6.4 0.5 7.7 – – 0.5 6.3
– – 1.5 5.3 – – – –

agent 5 1.63 13.5 1.63 13.5 1.63 13.5 1.63 13.5

𝑞𝑟,𝑥𝑖,𝑙 𝜆𝑟,𝑥𝑖,𝑙 𝑞𝑟,𝑥𝑖,𝑙 𝜆𝑟,𝑥𝑖,𝑙
kWh ce/kWh kWh ce/kWh

agent 3 2 9 – –
agent 6 – – 6 5.98

especially with the limited computation power available. In real life, it
is expected that the computation power of the smart AI agents to be
superior thus allowing for faster convergence in much adequate time.
Also, since the developed DeTrade is an on-grid system, the trading
balance within the range of ±5% boundary is considered permissible.
Fig. 7 illustrates the DACO’s performance in such a combination, in
terms of the social welfare and the net balance, and compares them
with optimal solution from the central solver. The left plot in Fig. 7
shows the evolution of the DACO method towards the ±5% boundary
of the optimal solution. It can be noticed that at clearing stage number
40, the DACO enters the permissible ±5% boundary, and reaches an
unchanging value of welfare of 43.57 cestarting from stage 47 and
12
up to stage 50. In the right plot of Fig. 7, the comparison between
the total energy net balance of both methods is shown. Optimally, the
net balance should be maintained at zero across the 4 periods of the
trading horizon. However, given the decentralized and heuristic nature
of the DACO, it reaches a total net balance of 0.045 kW at stage 47
and maintains the value up to stage 50. One can conclude that given
this example, the market setup should have at least 40 clearing stages
to ensure sufficiently good social welfare and small net balances, if we
are bounded by only 850 ants.

At the end of clearing horizon, all agents store their final market
solution on the smart contract in the blockchain layer. Then, the smart
contract validates these market solutions and outcomes the solution
that all agents will adhere to during the delivery horizon (see Sec-
tion 5). The resulting market solution of the smart contract is shown
in Table 5. The results show the quantity allocated from every market
participant, and the actual cost and revenue that the buyers and seller
pay and receive respectively. These costs and revenues depend on the
marginal prices of the cleared horizon, as explained by Eq. (9). With
respect to the continuous products offered by agents 3 and 6, only the
product of agent 3 was found feasible to be allocated. Thus, the total
offered energy is activated in full in the first two periods of the market
as per the constraints of the product. One can conclude that extending
the temporal dimension of the DeMarket can give the prosumers more
freedom to design their market products to be compliant with their own
preferences and local devices constraints.

6.3. Blockchain layer simulation results

In the blockchain layer, we evaluate our smart contract by deploy-
ing it on a nation-wide university cluster (more specifications can be
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Fig. 7. DeMarket results (DACO vs. Central). Left plot: Social welfare, Right plot: Net balance.
Table 4
DACO’s convergence speed and accuracy of solution as a function of number of ants and number of stages.
Ants Stages DACO 𝑡 (min.) Net balance error (%) Solution error 𝛼 (%)

200 70 35 5.3 7.30
400 60 48 4.9 4.93
850 50 58 4.5 2.10

1000 30 125 3.1 4.26
1200 20 167 3.4 1.87
Table 5
DeMarket final results.
Sellers

agent 1 agent 2 agent 3

𝑞𝑟,𝑥𝑖,𝑙,𝑘 𝛥𝑟,𝑥
𝑖,𝑙,𝑘 𝑞𝑟,𝑥𝑖,𝑙,𝑘 𝛥𝑟,𝑥

𝑖,𝑙,𝑘 𝑞𝑟,𝑥𝑖,𝑙 𝛥𝑟,𝑥
𝑖,𝑙

𝑇𝑥 kWh ce/kWh kWh ce/kWh kWh ce/kWh

1 3.49 22.16 0 0 1 6.35
2 1.622 14.6 0 0 1 9
3 1.49 19 0.124 1.581 0 0
4 1 12.75 0.625 7.969 0 0

Buyers

agent 4 agent 5 agent 6

𝑞𝑟,𝑥𝑖,𝑙,𝑘 𝛥𝑟,𝑥
𝑖,𝑙,𝑘 𝑞𝑟,𝑥𝑖,𝑙,𝑘 𝛥𝑟,𝑥

𝑖,𝑙,𝑘 𝑞𝑟,𝑥𝑖,𝑙 𝛥𝑟,𝑥
𝑖,𝑙

𝑇𝑥 kWh ce/kWh kWh ce/kWh kWh ce/kWh

1 2.855 18.33 1.63 10.32 0 0
2 1 9 1.63 14.62 0 0
3 0 0 1.63 20.72 0 0
4 0 0 1.63 20.72 0 0

found online12). We establish a cluster consisting of seven instances
(representing one TTP and 6 agents) that run Hyperledger Burrow on
distinct compute nodes [70]. Burrow is a light-weight, permissioned
blockchain that is able to execute smart contracts written in Solidity.
Burrow runs the Tendermint BFT consensus algorithm, which provides
transaction finalization within seconds and can tolerate up to 1

3 of the
network being adversarial [71]. We argue that this trust assumption is
realistic since it is not likely for households to collude on a large-scale
in order to subvert the network. Each participating household runs a
validator in the Burrow network.

For the experiment, we specify a list of actions (scenarios) that
should be performed by nodes at a given time. The full experiment
setup and scripts is open source and can be found in a GitHub reposi-
tory.13 The experiment starts with the TTP deploying the smart contract

12 https://www.cs.vu.nl/das5/clusters.shtml
13 https://github.com/devos50/gumby/tree/blockspeed/experiments/

burrow
13
on the blockchain. The TTP first registers all 6 agents in the contract,
and mints sufficient EuroTokens to each one. In the beginning of the
delivery horizon, after storing all the clearing results are stored, the
buying agents invoke the receivedEnergy method in the smart
contract to signal the observation of incoming energy from the grid.
This is repeated for the 4 delivery periods.

In Table 6 we outline the average confirmation time and gas usage
of the methods invoked by the agents. Gas is a unit that indicates
the computation effort to execute a specific transaction and can be
considered as the fuel for the network. Each type of operation re-
quires a fixed amount of gas. Note that on average transactions are
confirmed and finalized on the blockchain within two seconds (the
Tendermint consensus algorithm produces a block with transactions
every second). Given the duration of the clearing and delivery horizon,
this is an acceptable time for settlement. This experiment proves that
Hyperledger Burrow in combination with DeTrade enables fast and
secure settlement. The gas usage indicates how much computation
each transaction requires the smart contract to conduct. The most
computationally intensive method is storeClearingResults, re-
quiring on average 1,249,320 gas. The high gas cost is attributed to
the validation of the clearing results, which is part of the transaction
that invokes the storeclearingResults method. On the public
Ethereum blockchain, executing the 24 transactions outlined in Ta-
ble 6 would cost $6.52, excluding transaction fees and with a price
of 5.2 Gwei/gas. However, in our permissioned blockchain there no
transaction fees.

7. Discussion

As shown in Section 6, the developed trading platform accom-
plished the required objectives. First, it enabled prosumers to trade
energy amongst each other in a flexible arrangement that allows market
bids to take inter-temporal forms. Secondly, the novel DACO method
reached a near-optimal market solution to maximize the social welfare
of the prosumers within the time frame of the trading horizon. Thirdly,
blockchain was implemented in a practical way that offers security to
the stored market results, and by leveraging the automation of smart
contract, fast real-time settlements were delivered to the prosumers.

https://www.cs.vu.nl/das5/clusters.shtml
https://github.com/devos50/gumby/tree/blockspeed/experiments/burrow
https://github.com/devos50/gumby/tree/blockspeed/experiments/burrow
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Table 6
The count, average confirmation times and average gas usage of transactions made by smart agents during a clearing and
delivery horizon.
Invoked method Count Average confirmation time (s.) Average gas usage

initializeRole 6 1.39 61’649
storeClearingResults 6 1.78 1’249’320
receivedEnergy 12 1.13 144’836
Table 7
Nomenclature.

Notation Indices

𝑟, 𝑥 Index of stage in the clearing horizon and period in the delivery horizon respectively
𝑖, 𝑗 Index of buyer in set 𝐵 and seller in set 𝑆 respectively
𝑠, 𝑐 Index of single and continuous market product respectively
𝑙 Index of market product
𝑎 Index of ant
𝑎𝑔 Index of agent
𝑖𝑡 Index of iteration

Notation Sets

𝑅 Number of clearing stages in the clearing horizon
𝑋 Number of simultaneous energy delivery periods in the delivery horizon
𝑁𝑎𝑛𝑡𝑠 Number of ants
𝑀 Set of all market players
𝐵 Set of all buyers
𝑆 Set of all sellers
𝐿𝑠

𝑖 Set of all single products for buyer 𝑖
𝐿𝑐

𝑖 Set of all continuous products for buyer 𝑖
𝐿𝑠

𝑗 Set of all single products for buyer 𝑗
𝐿𝑐

𝑗 Set of all continuous products for buyer 𝑗
𝐾𝑖,𝑙 Set of all price blocks within one clearing period for buying prosumer 𝑖
𝐾𝑗,𝑙 Set of all price blocks within one clearing period for selling prosumer 𝑗
𝑉 Set of decision variables

Notation Parameters

𝑞𝑟,𝑥
𝑖,𝑙,𝑘

Minimum energy quantity for prosumer 𝑖 for a single market product 𝑙 for block 𝑘 (kW)
𝑞𝑟,𝑥𝑖,𝑙,𝑘 Maximum energy quantity for prosumer 𝑖 for a single market product 𝑙 for block 𝑘 (kW)
𝑞𝑟,𝑥
𝑗,𝑙,𝑘

Minimum energy quantity for prosumer 𝑗 for a single market product 𝑙 for block 𝑘 (kW)
𝑞𝑟,𝑥𝑗,𝑙,𝑘 Maximum energy quantity for prosumer 𝑗 for a single market product 𝑙 for block 𝑘 (kW)
𝑞𝑟,𝑥𝑖,𝑙 Maximum energy quantity for prosumer 𝑖 for a continuous market product 𝑙 (kW)
𝑞𝑟,𝑥𝑗,𝑙 Maximum energy quantity for prosumer 𝑗 for a continuous market product 𝑙 (kW)
𝜆𝑟,𝑥𝑖,𝑙,𝑘 Price for prosumer 𝑖 for a single product market product 𝑙 for block 𝑘 (ce/kWh)
𝜆𝑟,𝑥𝑖,𝑙 Price for prosumer 𝑖 for a continuous market product 𝑙 (ce/kWh)
𝜆𝑟,𝑥𝑗,𝑙,𝑘 Price for prosumer 𝑗 for a single market product 𝑙 for block 𝑘 (ce/kWh)
𝜆𝑟,𝑥𝑗,𝑙 Price for prosumer 𝑗 for a continuous market product 𝑙 (ce/kWh)
𝜌𝑎𝑔 Local pheromones evaporation rate used by agent 𝑎𝑔
𝜇𝑎𝑔 Global pheromones evaporation rate used by agent 𝑎𝑔
𝜏𝑎𝑔0 Initial pheromones amount assigned by agent 𝑎𝑔 in the first clearing stage

Notation Variables

𝑄𝑟,𝑥
𝑖 Set of all quantity bids of market player 𝑖 at trading period 𝑟 for delivery period 𝑥 (kW)

𝑄𝑟,𝑥
𝑗 Set of all quantity bids of market player 𝑗 at trading period 𝑟 for delivery period 𝑥 (kW)

𝑞𝑟,𝑥𝑖,𝑙,𝑘 Activated amount for prosumer 𝑖 for a single product market product 𝑙 for block 𝑘 (kW)
𝑞𝑟,𝑥𝑖,𝑘 Activated amount for prosumer 𝑖 for a continuous market product 𝑙 (kW)
𝑞𝑟,𝑥𝑗,𝑙,𝑘 Activated amount for prosumer 𝑗 for a single product market product 𝑙 for block 𝑘 (kW)
𝑞𝑟,𝑥𝑗,𝑘 Activated amount for prosumer 𝑗 for a continuous market product 𝑙 (kW)
𝑈 𝑟,𝑥

𝑖 (𝑄𝑟,𝑥
𝑖 ) Utility of buyer 𝑖 (ce)

𝐶𝑟,𝑥
𝑗 (𝑄𝑟,𝑥

𝑗 ) Cost of seller 𝑗 (ce)
𝑣 Binary variable indicate 1 if a given block 𝑘 for a single product is activated, and 0 otherwise
𝑢 Binary variable indicate 1 if a continuous bid is activated, and 0 otherwise
𝛥𝑟,𝑥
𝑖,𝑙,𝑘 Actual amount that buyer 𝑖 pays for a single product (ce)

𝛥𝑟,𝑥
𝑖,𝑙 Actual amount that buyer 𝑖 pays for a continuous product (ce)

𝛥𝑟,𝑥
𝑗,𝑙,𝑘 Actual amount that seller 𝑗 pays for a single product (ce)

𝛥𝑟,𝑥
𝑗,𝑙 Actual amount that seller 𝑗 pays for a continuous product (ce)

𝑝𝑥 Marginal price at delivery period 𝑥 (e/kWh)
𝑃 𝑎,𝑖𝑡,𝑎𝑔,𝑟
𝑛,𝑚 Probability of ant 𝑎 belonging to agent 𝑎𝑔 in iteration 𝑖𝑡 to move from edge 𝑛 to 𝑚 in clearing stage 𝑟

𝜏 𝑖𝑡,𝑎𝑔,𝑟𝑛,𝑚 Pheromones amounts deposited by ant 𝑎 belonging to agent 𝑎𝑔 in iteration 𝑖𝑡 on the edge from 𝑛 to 𝑚 in clearing stage 𝑟
𝜁 𝑖𝑡,𝑎𝑔,𝑟𝑛,𝑚 Bidding quantity and costs shared by agent 𝑎𝑔 in iteration 𝑖𝑡 in clearing stage 𝑟, representing the visibility of edge 𝑛 to 𝑚 in clearing stage 𝑟
𝛥𝜏 𝑖𝑡,𝑎𝑔,𝑟𝑛,𝑚 Fitness evaluation for the tour from edge 𝑛 to 𝑚 of ant 𝑎 belonging to agent 𝑎𝑔 in iteration 𝑖𝑡 in clearing stage 𝑟
𝑇 𝑎𝑔,𝑟
𝑛,𝑚 Pheromones amounts assigned by agent 𝑎𝑔 in their own feasibility space for edge 𝑛 to 𝑚 for clearing stage 𝑟

𝛥𝑇 𝑎𝑔,𝑟
𝑛,𝑚 Agent 𝑎𝑔 satisfaction for edge 𝑛 to 𝑚 in the best tour achieved in clearing stage 𝑟

𝑆𝑂 Sub-optimal objective function solution achieved by the DACO
𝑂𝑃𝑇 Optimal objective function solution if problem solved centrally
𝛼 Objective function solution error between 𝑆𝑂 and 𝑂𝑃𝑇
𝛼∗ Upper bound acceptable margin for objective function error 𝛼
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It is worth noting that while the pool-structured DeMarket have
several advantages over the CDA design, there is no ‘‘one-size-fits-all’’
structure for P2P markets that promises high efficiency while serving
all prosumers’ needs. Regulations, cultural preferences, and many other
dimensions might favour other trading platforms and market designs.
For example, neighbouring prosumers may prefer bilateral trading to
avoid risk and privacy threats posed in a pool-structured market. In
the following, we further discuss the assumptions and limitations of
the considered work, along with research lines of future work.

7.1. Limitations

One of the limitations of this work arise from not considering
the uncertainty related to the prosumer’s commitment, as well as the
intermittency of RES. Here, we assumed that all prosumers comply
and commit to the market results and activation requests. In practice
though, there could be violations in commitments due to forecasting
errors. Even though the DeMarket is simulated on one hour ahead
basis, forecasting error of the upcoming renewable energy is inevitable.
Therefore, the prosumers might deviate from their bids. Commitment
violations cannot be avoided even in the presence of the smart AI agents
controlling all the household devices, as they take more of an advisory
role and prosumers are capable of overriding their decisions. Never-
theless, in case of failure, prosumers are able buy/sell the difference
from the grid utility normally, since we assume an on-grid system (see
Section 6.2.1). Also, by introducing penalties in the smart contracts,
unfulfilled prosumers can be eligible for some financial remuneration.

Furthermore, we only consider truthful market participants and
agents in the DeMarket with no incentives to misreport their bidding
quantities or prices. The general bidding strategy of such participants
is to maximize their profits. In a more advanced and complex setting,
further investigation can be carried out into the strategic bidding be-
havior of these participants. Several approaches are found in literature
(see [72]); e.g., market clearing price estimation, game theory, and
bidding behavior estimation based on historical bidding data.

Another limitation is in the clearing algorithm where the effect of
the power flow constraints is not considered. These constraints model
the physical permissible energy limits that can be transferred at all
times in the grid network lines. This requires information regarding the
energy flows for both participating and non-participating prosumers,
which is difficult to acquire and rarely addressed literature. In addition,
the complexity of level of solving the power flow problem increases
drastically as the number of prosumers increase in a given network.

7.2. Future work

There are several potential directions for future work. To begin
with, the DeMarket was designed to enable P2P trading with the ob-
jective of maximizing social welfare. Nevertheless, P2P markets could
foster other objectives. For example, to mitigate network congestions
and defer reinforcement costs through peak shaving. In this case, within
local networks, P2P energy trading platform could unleash more energy
flexibility opportunities among prosumers and system operators.

Another line of future work is exploring the scalability of DeTrade,
especially the performance of the proposed DACO method. In general,
the scalability of peer-to-peer markets and decentralized clearing algo-
rithms are computationally challenging. The proposed DACO method
performed well in a 6-player setting, with a near-optimal market solu-
tion. While it is common practice to model and simulate P2P markets
with small number of players (see [19,22]), other literature that uses
larger numbers of players in their simulations present less complex P2P
market designs than the one presented here. Indeed, the complexity
of the single and continuous products proposed adds computational
burden especially with limited computation power. That being said, the
DACO’s versatility along with the scalable features of the blockchain
layer together promise to maintain high efficiency in larger settings,
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which is planned to be tested in the future steps of this work.
8. Conclusion

In this paper, we developed a decentralized P2P energy trading
platform, called DeTrade. The features of this platform, compared to
the state-of-the-art, introduces new opportunities that facilitates the
decentralization, decarbonization, and digitalization of energy systems.
The DeTrade consists of a market layer and a blockchain layer. The
market layer, called DeMarket, consists of a short-term multi-staged
multi-period market with a uniform pricing mechanism. This structure
can provide new opportunities in the area of P2P energy trading, yet
have been overlooked before. Similar to the design of spot markets,
prosumers in the DeMarket have wider and well-suited options to
trade their energy products, especially those that have inter-temporal
dependency. Additionally, we developed a novel decentralized market
clearing method called DACO that provides a near-optimal market
solution (in terms of maximum social welfare) within limited number of
stages. We coupled the DeMarket with a highly secured and automated
blockchain layer that ensures fast and real-time settlements. Being fully
decentralized, the intermediary transaction costs are eliminated, which
allows trading with more attractive prices for the prosumers. We im-
plemented a smart contract in the Solidity programming language and
deployed it on a permissioned blockchain using Hyperledger Burrow.
The smart contract manages the digital Eurotokens balance, stores
and verifies the market clearing results, and ensures that the digital
tokens are correctly re-distributed from buyers to sellers. This generates
trust among prosumers and eliminates any potential privacy violations.
Finally, we simulated the operation of the DeTrade by implementing a
case study using real-life data of distribution feeder. We highlighted the
performance of the DACO method against a central solver by obtaining
a near-optimal social welfare with a small margin of error.
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