
FMCW radar based
communication for
automotive applica-
tions
Master Thesis Report

Simone Orru’
Student number: 4748212
For the achievement of the Master of Science
in Embedded Systems

FMCW radar based
communication for automotive

applications
Master Thesis Report

by

Simone Orru’

To obtain the degree of Master of Science in Embedded Systems
from the faculty of EEMCS at the Delft University of Technology.

To be defended publicly on Thursday July 16, 2020 at 10:00 AM.

Student number: 4748212
Thesis number: Q&CE-CE-MS-2020-01
Project duration: March 1, 2018 – July 16, 2020
Thesis committee: Dr. S.D. Cotofana, TU Delft, Associate Professor

Dr. ir. A. J. van Genderen, TU Delft
Dr. F. Uysal, TU Delft

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

In the field of automotive technology, the last decade has seen a rise in
projects focusing on self driving vehicles. With this renewed interest from
the industry and academic world, new solutions to improve the reliability
and safety of these vehicles are required.
In this thesis, a new method for information sharing between different ve-
hicles is discussed. This method makes use of radar devices, already in
use in the automotive sector for obstacles detection. More specifically, a
communication channel will be created between two frequency modulated
continuous wave (FMCW) radar devices, using the same waveform utilized
for radar sensing.
This work will focus on the obstacles to overcome in order to achieve cor-
rect data transmission between two radar devices. Different solutions will
be evaluated, and a working system, achieving data transmission, will be
implemented using radar evaluation boards provided by NXP semiconduc-
tors.

iii

Acknowledgements

Developing a new topic in uncharted territory is always challenging, luckily
I could count on the help provided by my thesis committee members. In
particular I would like to thank Faruk Uysal that was always looking after me
in a propositive and engaged way. I would also like to give a special thanks
to Arjan van Genderen whose feedback helped me immensely during the
development of this thesis.
However my largest thanks goes to my family. Thanks mom and dad for
giving me the chance of following my dreams, thanks for all the sacrifices
you did over the years to offer me all the possibilities you did not have.

Simone Orru’
Delft, July 2020

v

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem definition . 2
1.3 Previous research . 2
1.4 Research objective and questions 2
1.5 Thesis outline . 3

2 Theory and backgound 5
2.1 Radar . 5

2.1.1 FMCW radar . 6
2.2 BPSK modulation. 9
2.3 GPS . 10

2.3.1 Trilateration . 10
2.4 Ethernet and UDP/TCP . 12

2.4.1 Ethernet . 12
2.4.2 IP TCP/UDP . 13

2.5 Uncertainty propagation rules . 14
2.6 Radar development platform . 15

2.6.1 TEF810X . 15
2.6.2 S32R274 . 17

3 Previous work 21
3.1 PC client application . 22
3.2 Radar Board reception of message 23
3.3 Shared memory and semaphore implementation 23
3.4 Radar Board transmission of waveform 24
3.5 Radar Board reception of the waveform 26
3.6 PC server reception . 27
3.7 Matlab post processing . 27
3.8 Summary . 29

4 Test setup evolution 31
4.1 Initial test setup . 31
4.2 Test setup with GPS . 32
4.3 Additional test setups . 32

vii

viii Contents

5 Multiple symbols encoding in single chirp 33
5.1 Radar settings and setup . 34

5.1.1 Development platform upgrades 35
5.2 Timing functions. 35
5.3 Estimating the correct delay . 37
5.4 Using SPI commands . 37

5.4.1 SPI results . 38
5.5 Using the dedicated pin . 39

5.5.1 Code for pin switch . 39
5.5.2 Configuration of output pin 40
5.5.3 Pin switch results . 41
5.5.4 Data post processing . 42

6 Multiple units synchronization 47
6.1 The need for synchronization . 47
6.2 Different ways to synchronize . 50

6.2.1 Ethernet synchronization 50
6.2.2 GPS synchronization. 51
6.2.3 Synchronization method chosen 52

6.3 Synchronization implementation 52
6.3.1 Hardware . 52
6.3.2 Software. 53

6.4 Error propagation in the synchronization process 58
6.5 Synchronization results . 59

6.5.1 The radars clock slack problem 59
6.5.2 Collected data analysis . 64

7 User interface 67
7.1 Functionalities required . 67

7.1.1 Parameters not requiring a TEF810X reset 68
7.1.2 Parameters requiring a reconfiguration of the TEF810X

transceiver . 69
7.1.3 Parameters requiring reconfiguration of hardwaremod-

ule in S32R274 . 69
7.2 User interface design . 70

8 Conclusion 73
8.1 Future work . 74

Bibliography 75

1
Introduction

In this chapter an introduction to the context in which this thesis is devel-
oped as well as the main issue this work tackles are presented. In addition
a short outline of this document is proposed, to help the reader orient him-
self in the text.

1.1. Context
The history of self driving cars datesmuch further back than the last decade.
Already in the nineteen-eighties autonomous vehicles were object of scien-
tific research and some proof of concepts such as the VaMoRs self driving
van were developed [7]. Thanks to the last two decades of technologi-
cal development, the objective of commercially available self driving cars
seems now closer than ever. Multiple car manufacturers such Tesla and
Chrysler are already proposing on the market models with partial self driv-
ing capabilities.
Most of the examples of partially self driving vehicles present on themarket,
such as Tesla cars, rely heavily on cameras and computer vision, but also
integrate radars in order to identify obstacles [21]. Radar technology has
multiple advantages over cameras in this application, specifically radars
can sense obstacles even through fog, snow, or light vegetation. Radars
are furthermore not subject to ambient light variations and can detect ac-
curately radial velocities.
The combination of multiple technologies allows for a more robust sensing,
making radar technology a fundamental part of autonomous vehicles.

1

2 1. Introduction

1.2. Problem definition
For completely self driving vehicles to enter the market and being declared
road legal, safety is of key essence. The correct detection of obstacles on
the road depends on the amount of data collected by the sensors as well
as on the processing method applied to this data.
Due to the changing road environment, data collection can become a chal-
lenge and the solution until now has been the integration of multiple types
of sensors with different characteristics [21].
With this thesis we aim to give our contribution in the development of a new
data sharing system based on radar waves. With the aim of allowing mul-
tiple vehicles to share sensors readings, increasing the data sets available
to each car, all without the need for additional sensors or communication
devices.

1.3. Previous research
This thesis will be the natural continuation of the work developed by the
master student Tasneem Rahaman Khan in the course of her master the-
sis [12]. In her work, Tasneem reprogrammed a 77GHz FMCW radar to
transmit a waveform with encoded information in the form of phase shifts.
Her implementation works as a proof of concept for the possibility of em-
bedding information in a radar waveform. However no transfer of informa-
tion was achieved, and her experimental results were limited to transmitting
a radar wave and receiving the scattered result on the same radar.
Actual transmission of information involves multiple other challenges, as
will be explained in the next chapters.

1.4. Research objective and questions
The final objective of this thesis is to achieve transmission of information
between two completely independent radars, embedding information in
their respective waveforms.
In order to rendermore feasible the utilization of our system in real world ap-
plications, this thesis includes two more objectives: a substantial through-
put increase and a more manageable radar programming.
The three following research requirements have been formulated in order
to express clearly the objectives of this thesis.

1. Find an optimal method to synchronize multiple radar units enabling
transmission of information between them.

2. Find a method to allow multiple bits to be sent during a single chirp

1.5. Thesis outline 3

transmission. Increasing the system throughput.

3. Build a user interface, command line based, allowing a user to modify
the functioning of the radar module, without a firmware flash.

Satisfying these three research requirements leads to the demonstration
of a new and innovative communication system. A system that exploits an
existing technology and that with minimal overhead enables autonomous
or semi-autonomous vehicles to share sensor readings or additional infor-
mation. Increasing the information available for navigation will make self
driving cars more reliable and safer, contributing to their spreading.

1.5. Thesis outline
This thesis will be structured as follows:

• Chapter 2 will be dedicated to provide the reader an introduction on
the topic of frequency modulated continuous wave radars.
It will also include a short introduction on the platform used.

• Chapter 3 will introduce the reader to the previous work and the var-
ious improvements and modifications done before the start of this
work.

• Chapter 4 will take care of the second research requirement.

• Chapter 5 will host the discussion for the first research requirement.

• Chapter 6 will include the work developed on the third and last re-
search requirement.

• Chapter 7 will summarise the result of this thesis and propose future
improvements.

The order in which the research requirements are laid out in this document
respects the chronological order in which these problems have been tack-
led during this research. The need to follow the chronological order is due
to the evolution of the different test setups through time, with the addition of
new hardware and software components for each new research question
faced.

2
Theory and backgound

In this chapter a short introduction will be given on the physical principles
and equipment utilized during the course of the thesis. First, the function-
ing principle of a FMCW radar will be discussed, then a short description
of the BPSK modulation technique will be provided. Following GPS and
Ethernet basics concepts will be covered. Finally a short explanation on
the development platform used will be given.

2.1. Radar
Radar technology is divided in two main branches, pulsed radars and con-
tinuous wave radars.
Pulsed radars send a time finite signal, at regular intervals. In the time in-
terval between transmission they remain listening in order to capture any
refracted signal. They then compute distance estimation from a target us-
ing the elapsed time between transmission and reception.
Continuous wave (CW) Radars send instead a continuous waveform. They
continuously listen through the medium, receiving the scattered waveform
from eventual targets. CW radars can estimate the velocity of the target
comparing the received waveform to the transmitted one and exploiting the
Doppler effect that induces an apparent frequency shift in the refracted sig-
nal. In this design however range estimation is impossible without adding
any type of modulation to the transmitted waveform. To overcome this lim-
itation the transmitted signal can be modulated in amplitude or frequency,
making possible to estimate the distance from the target.

5

6 2. Theory and backgound

2.1.1. FMCW radar
FMCW radars are a particular case of CW radars. They involve the use of
frequency modulation to make possible target distance estimation[3].
FMCW radars transmit a FM sinusoidal wave. The modulation is divided
into periodic segments, named chirps. Each chirp has a similar form, start-
ing with a defined base frequency, then increasing it linearly to a defined
maximum frequency and finally sharply decreasing the frequency back to
the starting point. At the receiver end the refracted signal will be mixed
with the original signal, in order to obtain a frequency constant waveform
to facilitate signal post processing.
A collection of chirps is named radar frame, typically comprised of 256, 512
or 1024 chirps in a single frame. In this work every mention of frames will
refer to radar frames unless specifically mentioned.

Figure 2.1: Chirp frequency representation

The linear increase of the frequency is a frequency sweep over a bandwidth
B in a time T. As so it can be written as:

𝑓(𝑡) = 𝑓 + 𝑆𝑡 (2.1)

where 𝑓 is the carrier frequency and 𝑆 is the steepness of the linear in-
crease and corresponds to:

𝑆 = 𝐵
𝑇 (2.2)

Based on the sign of 𝑆 the chirp is defined as up-chirp (𝑆 > 0) or down-
chirp (𝑆 < 0). As stated previously, the transmitted waveform of a FMCW
is a cosinusoidal wave, in the form.

𝑋፭፱(𝑡) = 𝐴፭፱ cos (𝜓(𝑡)) (2.3)

2.1. Radar 7

To find the correct angle 𝜓(𝑡) to obtain the required frequency sweep,
equation 2.1 has to be integrated over time [8].

𝜓(𝑡) = 2𝜋∫
፭

ኺ
𝑓(𝑡)𝑑𝑡 (2.4)

Leading to:

𝜓(𝑡) = 2𝜋 (𝑓𝑡 +
𝑆
2𝑡
ኼ) + 𝜓ኺ (2.5)

which can be substituted in equation 2.3.

𝑋፭፱(𝑡) = 𝐴፭፱ cos(2𝜋 (𝑓𝑡 +
𝑆
2𝑡
ኼ) + 𝜓ኺ) (2.6)

In this equation 𝐴፭፱ is the signal amplitude, 𝑓 is the carrier frequency, 𝑆 is
the steepness of the curve, 𝜓ኺ is the phase at time 0.
In an FMCW radar, the waveform is scattered from the target to the re-
ceiver. The finite speed of the waveform propagation allows for estimation
of the distance 𝑅 between target and receiver. First supposing the target is
stationary, we can deduce how the time delay between transmission and
reception is:

𝜏፬፭ፚ፭።፨፧ፚ፫፲ =
2𝑅
𝑐 (2.7)

were 𝑅 is the distance between target and antenna, 𝑐 is the speed of light
and the factor 2 is needed because of the round trip delay. Now, supposing
the target is moving at constant radial velocity 𝑣 (the target is moving away
from the receiver), the additional 𝜏 is:

𝜏፦፨፯።፧፠ =
2𝑣𝑡
𝑐 (2.8)

where 𝑣𝑡 is the additional distance from the receiver that the target has
travelled after time 𝑡, considering 𝑡 = 0 as the instant where the target was
at distance 𝑅. While 𝑐 is the speed of light.
The total delay is then:

𝜏፭፨፭ፚ፥ =
2 (𝑅 + 𝑣𝑡)

𝑐 (2.9)

The received signal will be:

𝑋፫፱(𝑡 − 𝜏) = 𝐴፫፱ cos (𝜓(𝑡 − 𝜏)) (2.10)

8 2. Theory and backgound

The received signal will then be mixed with the sent signal. The equation
of a mixer with two cosinusoidal waves as input is the following:

𝑋ፈፅ =
𝐴ኻ𝐴ኼ
2 [cos (𝜓(𝑡)ኻ + 𝜓(𝑡)ኼ) + cos (𝜓(𝑡)ኻ − 𝜓(𝑡)ኼ)] (2.11)

In the case of FMCW a low-pass filter is placed on the receiver side, elim-
inating the (𝜓(𝑡)ኻ + 𝜓(𝑡)ኼ) component. After filtering, mixing the RX and
TX signals leads to:

𝑋ፈፅ =
𝐴፫፱𝐴፭፱
2 [cos (𝜓(𝑡) − 𝜓(𝑡 − 𝜏))] (2.12)

By substituting 2.5 in the above equation:

𝑋ፈፅ =
𝐴፫፱𝐴፭፱
2 [cos(2𝜋 (𝑓𝑡 +

𝑆
2𝑡
ኼ) + 𝜓ኺ − 2𝜋 (𝑓(𝑡 − 𝜏) +

𝑆
2(𝑡 − 𝜏)

ኼ) − 𝜓ኺ)]
(2.13)

𝑋ፈፅ =
𝐴፫፱𝐴፭፱
2 [cos(2𝜋 (𝑓𝑡 +

𝑆
2𝑡
ኼ − 𝑓(𝑡 − 𝜏) −

𝑆
2(𝑡 − 𝜏)

ኼ))] (2.14)

𝑋ፈፅ =
𝐴፫፱𝐴፭፱
2 [cos(2𝜋 (𝑓𝜏 −

𝑆
2𝜏

ኼ + 𝑆𝑡𝜏))] (2.15)

In this equation, the 𝜏 can be substituted with equation 2.9.

𝑋ፈፅ =
𝐴፫፱𝐴፭፱
2 [cos(2𝜋 (𝑓

2 (𝑅 + 𝑣𝑡)
𝑐 − 𝑆2 (

2 (𝑅 + 𝑣𝑡)
𝑐)

ኼ
+ 𝑆𝑡2

(𝑅 + 𝑣𝑡)
𝑐))]

(2.16)

𝑋ፈፅ =
𝐴፫፱𝐴፭፱
2 [cos(4𝜋 ((𝑓𝑣 + 𝑆𝑣𝑡 + 𝑆𝑅𝑐 + 𝑆𝑣

ኼ𝑡 − 2𝑆𝑅𝑣
𝑐ኼ) 𝑡 + 𝑓𝑅𝑐 − 𝑆𝑅

ኼ

𝑐ኼ))]
(2.17)

A series of simplifications can furthermore be applied. This is because
𝑐ኼ >> 𝑐, as well as 𝑐 >> 𝑅, 𝑐 >> 𝑣, 𝑐 >> 𝑆.

𝑋ፈፅ =
𝐴፫፱𝐴፭፱
2 [cos(4𝜋 (𝑓𝑣 + 𝑆𝑣𝑡 + 𝑆𝑅𝑐 𝑡 + 𝑓𝑅𝑐))] (2.18)

One additional consideration is that 𝑣𝑡 << 𝑅, because of the short duration
of the chirp.

𝑋ፈፅ =
𝐴፫፱𝐴፭፱
2 [cos(4𝜋 (𝑓𝑣 + 𝑆𝑅𝑐 𝑡 + 𝑓𝑅𝑐))] (2.19)

2.2. BPSK modulation 9

In the above equation two components are visible in the frequency term.
The first, ᑔ፟፯

 is caused by the Doppler effect and subsequently is named
Doppler frequency. While the second, ፒፑ

 is called the beat frequency.
Doppler frequency and beat frequency can be used to estimate the radial
velocity as well as the distance of the target.
For stationary targets and stationary radars the Doppler frequency will be-
come zero, leading to the simplified equation:

𝑋ፈፅ =
𝐴፫፱𝐴፭፱
2 [cos(4𝜋 (𝑆𝑅𝑐 𝑡 +

𝑓𝑅
𝑐))] (2.20)

Subsequently, the frequency of signal 𝑋ፈፅ will be:

𝑓ፗ።፟ =
2𝑆𝑅
𝑐 = 𝑆𝜏፬፭ፚ፭።፨፧ፚ፫፲ (2.21)

2.2. BPSK modulation
In order to transmit any type of data using electromagnetic waves a spe-
cific modulation scheme needs to be used. Different options have been
developed through the years, one of the most notorious is Phase Shifting
Keying (PSK).
In phase shifting keying the symbols to be sent are coded in the phase of
a sinusoidal signal. Supposing to have M symbols, each one gets coded
in a different phase:

𝜑፧ =
𝜋
𝑀(2𝑛 − 1) + 𝜑ኺ (2.22)

With 𝑛 = 1, ..., 𝑀 symbol number and 𝜑ኺ constant phase. The transmitted
signal is then:

𝑋፭፱(𝑡) = 𝐴፭፱ cos (2𝜋𝑓𝑡 + 𝜑፧) (2.23)
The simplest version of PSK is with 𝑀 = 2 called Binary PSK (BPSK).
In this case, the two symbols are coded with two waveforms of opposing
phase.

𝑋፭፱ኻ(𝑡) = 𝐴፭፱ cos (2𝜋𝑓𝑡 + 𝜑ኺ) (2.24)

𝑋፭፱ኼ(𝑡) = 𝐴፭፱ cos (2𝜋𝑓𝑡 + 𝜋 + 𝜑ኺ) (2.25)
= −𝐴፭፱ cos (2𝜋𝑓𝑡 + 𝜑ኺ) (2.26)

Thanks to this large phase difference between the only two symbols BPSK
modulation is more resistant to noise compared to PSK modulations with

10 2. Theory and backgound

more symbols. For example, the symbol error probability of BPSK can be
estimated as [1]:

𝑃 = √2𝑄(√𝐸፬𝑁ኺ
) (2.27)

Where 𝑄(𝑥) is defined as the tail distribution function of the standard nor-
mal distribution, defining the probability of a standard normal random vari-
able to exceed the threshold 𝑥. With 𝑥 taking the value √𝐸፬/𝑁ኺ, in which
𝐸፬ is the symbol energy and 𝑁ኺ is the noise power spectral density. While
the symbol error probability of the a QPSK modulation (𝑀 = 4) is:

𝑃 ≃ 2𝑄(√𝐸፬𝑁ኺ
) (2.28)

It’s visible how the BPSK has a lower error per symbol compared to QPSK.
Due to the time limitation our implementation does not include error cor-
rection over the radar channel, for this reason we consider the error per
symbol more important than the error per bit.
The low error per symbol as well as the ease of implementation are some
of the reasons we utilize BPSK.

2.3. GPS
The Global Positioning System, in short GPS, is a global wide service pro-
vided and owned by the USA military. It consists of space-based position-
ing, navigation and timing signals provided for free to users.
Such service is provided through a network of satellites flying in medium
earth orbit. In the beginning of 2019 the US had 31 operational satellites
and ensures to users at least 24 satellites in orbit 95% of the time. A 24
satellites mesh ensures that users have at least 4 satellites visible in any
part of the planet [10].

2.3.1. Trilateration
GPS receivers use trilateration to determine their position, speed as well as
synchronize the internal clock to the atomic clock contained in the satellites
[4].
Knowing the position of each satellite in orbit, the receiver can estimate its
distance from each one of them using its internal inaccurate clock. We can
define 𝑡፫ the time offset of the receiver compared to the satellite clock, and
𝛿፧ the real travel time of a signal from each satellite to the receiver (with

2.3. GPS 11

𝑛 = 1, .., 4). The distance is at first estimated as follows.

𝑑፧ = (𝑡፫ + 𝛿፧)𝑐 (2.29)

This brings the receiver to have 4 known points in a tridimensional space
at a known distance. A sphere with as radious the distance can be drawn
around each satellite. Figure 2.2 shows an example restricted to two di-
mensions (where only three satellites are necessary) for ease of repre-
sentation. Considering how the distance between satellites is known, the

Figure 2.2: 2D representation of a trilateration scenario

problem becomes estimating the intersection between four spheres. And
can be expressed by the following system of equations (restricted for the
2D scenario) [22].

(𝑥 − 𝑥ኻ)ኼ + (𝑦 − 𝑦ኻ)ኼ + (𝑧 − 𝑧ኻ)ኼ = 𝑑ኼኻ (2.30)
(𝑥 − 𝑥ኼ)ኼ + (𝑦 − 𝑦ኼ)ኼ + (𝑧 − 𝑧ኼ)ኼ = 𝑑ኼኼ (2.31)
(𝑥 − 𝑥ኽ)ኼ + (𝑦 − 𝑦ኽ)ኼ + (𝑧 − 𝑧ኽ)ኼ = 𝑑ኼኽ (2.32)

Where 𝑥፧, 𝑦፧, 𝑧፧ are to coordinates of each satellite.
The above system has a single solution for the vector: 𝑑 = (𝑑ኻ, 𝑑ኼ, 𝑑ኽ).
Subsequently, the time offsets 𝛿፧ can be calculated and the local clock can
be aligned withe the atomic clock on the satellites.
Following, knowing the distance from each satellite, the position of the re-
ceiver is easily estimated. Furthermore the velocity of the receiver can be
estimated using the position just calculated or exploiting the Doppler effect
on the received signals.

12 2. Theory and backgound

For the purpose of this thesis the GPS technology is evaluated only as an
effective method to obtain an accurate clock with precision inferior to the
microseconds. Different low cost modules are available for this purpose
and they claim precision within to 60ns for a pulse per second signal (99%
of the times)[23].

2.4. Ethernet and UDP/TCP
2.4.1. Ethernet
The Ethernet is composed of hardware and software elements and has
the function to connect two different computing units together, creating a
channel to transmit information [19].
Three components can be distinguished in the Ethernet structure:

• The Ethernet frame: a sequence of bits with a well defined structure
used to transmit an information.

• The Media Access Control protocol: consists on a series of rules that
arbitrate how different machines can transmit over the channel.

• The physical medium: the cables and other hardware used to physi-
cally send the frames over the network.

Figure 2.3: Typical Ethernet network configuration

The Ethernet frame
An Ethernet frame is the basic information unit sent over Ethernet, it is a
sequence of bits with a well defined structure. The standard Ethernet frame
can be divided in three parts:

2.4. Ethernet and UDP/TCP 13

• The header: a sequence of bits with a standard structure carrying in-
formation about the frame itself, the main fields are: preamble, des-
tination address, source address, length.

• The data payload: contains the bits of information to carry from source
to destination. The length of this section is defined in the header.

• Frame check sequence: contains a CRC (cyclic redundancy check)
of the data payload, is used to check if the frame received contains
errors.

The Media Access Control
The Ethernet can be used to connect multiple devices to the same physical
medium. For its intrinsic structure no master device is defined and a Media
Access Control protocol has to be implemented to avoid collisions.
The original protocol used is the CSMA/CD protocol [20]. In more modern
networks however faster speeds are reached when connecting each de-
vice directly to a network switch eliminating the need for MAC protocol.
MAC protocol can still be employed when using Ethernet with speeds of
10 or 100Mb/s but any faster connection does not support it.

The physical medium
The physical medium is composed by different elements:

• Cables, used to transmit the electrical signals.

• Transmit and receive devices on the computational units that exploit
the Ethernet for communication.

• Switches, active elements connecting different parts of the network
together. They connect to multiple links and forward packets from
one link to another (or others).

2.4.2. IP TCP/UDP
The Internet Protocol (IP) is a layer above Ethernet and while the Ethernet
protocol takes care of transmitting frames over a single Ethernet network,
the IP protocol can send packets (composed by multiple frames) over mul-
tiple Ethernet networks (or other types of networks).
The IP protocol is still a connectionless protocol, meaning that no connec-
tion is established between sender and receiver [15].
The IP protocol supports the two most used transport layer protocols UDP
and TCP.

14 2. Theory and backgound

Figure 2.4: Typical small network configuration

TCP
TCP is a transport layer protocol that is used for reliable transmission of
information between to devices. It’s a connection based protocol, meaning
that before transmitting information a connection is established between
the two devices and during transmission it’s ensured that all the sent infor-
mation will be received at the other end of the connection.
TCP ensures correct transmission of data, however this is at the expenses
of transmission speed when compared to connectionless protocols like
UDP [6].

UDP
UDP is a transport layer protocol that is used for transmission of data when
no guarantee of correct reception is needed.
In the UDP protocol the sender (named server) broadcast the information
over the medium, without giving any consideration if any receiver (named
client) is receiving the information. At any moment a client could start lis-
tening over the medium and receive any of the packets sent by the server.
It’s important to notice how, especially in large networks, no guarantee of
correct delivery is given, the packets could be lost during transmission or
be received in wrong order.
The main advantage of UDP over TCP is the faster transmission speed
given by eliminating the overhead of the connection.

2.5. Uncertainty propagation rules
In chapter 6 it will come useful to know some concepts about uncertainty
propagation theory. For this reasonwe refresh a simple formula for weighted
sums and differences between measurements [13].

If we observe the measurement 𝑧, defined as:

𝑧 = 𝑎𝑥 ± 𝑏𝑦 ± 𝑐𝑞... (2.33)

2.6. Radar development platform 15

With 𝑎, 𝑏, 𝑐... constants without uncertainty.
And 𝑥, 𝑦, 𝑞... are uncorrelated measurements with uncertainties 𝛿𝑥, 𝛿𝑦, 𝛿𝑞...
Then, the following relation on the composed measurement 𝑧 uncertainty
𝛿𝑧 is true:

𝛿𝑧 = √(𝑎𝛿𝑥)ኼ + (𝑏𝛿𝑦)ኼ + (𝑐𝛿𝑞)ኼ + ... (2.34)

A special case of this equation is if a single operation with null uncertainty
is performed on a measurement. In such case, the equation simplifies to:

𝛿𝑧 = 𝑎𝛿𝑥 (2.35)

This simplified equation assumes the scaling constant 𝑎 contains no un-
certainty, and under this assumption will be used in this thesis.

2.6. Radar development platform
The development platform used is a dual PCB small factor system provided
by NXP. It consists of two PCBs in a credit card format and the product
name is simply: ”TEF810X / S32R274 DCC development kit”.
The first PCB contains a TEF810X chipset as well as three transmission
antennas and four receiving antennas. The second one contains a power
supply circuit, a S32R274 chipset, an Ethernet module, a CANmodule and
a small selection of general purpose input/outputs.

Figure 2.5: DCC Development Kit

2.6.1. TEF810X
The TEF810X block diagram can be seen in figure 2.6. At the transmis-
sion side, using an extenal 40MHz oscillator, the Chirp Generator module

16 2. Theory and backgound

generates the waveform to be transmitted (chirp). The Timing Engine (TE)
included in the Chirp Generator module takes care of enabling the different
transmission and receive lines, as well as determining any phase shift to
be applied to each individual line.
For each transmission line, the TEF810X has available 4 different trans-
mission profiles, each profile contains chirp specific settings. The profiles
can be switched dynamically between chirps.
At the receiver side, the incoming signal is mixed with the internally gen-
erated chirp, this in order to obtain the 𝑋ፈፅ signal. Following this a high
pass filter is applied to remove low frequency noise, then the signal is am-
plified. Next a low pass filter is applied in order to remove one component
of the received waveform, as described in equation 2.11. Finally the signal
is sampled by an ADC module.
Before transmission the sampled values can be decimated based on the
chip settings. After this, the ADC samples from the different receive anten-
nas are serialized and transmitted.
In our configuration the chip is controlled through SPI and as such only
write and read from/to registers commands are available. The transceiver
outputs the sampled values through MIPI CSI-2, a serial interface com-
monly used for cameras [11].

Figure 2.6: TEF810X Block Diagram [18]

2.6. Radar development platform 17

2.6.2. S32R274
The s32r274 chip is a multi-core power architecture based MCU [17]. Ap-
positely designed to control radar modules. It contains an optimized radar
signal processing accelerator module. With a signal toolbox capable of
performing FFT and with direct memory access.
This multicore architecture is composed by four cores, two independent
Power Architecture e200z7 32-bit CPUs and two Power Architecture e200z4
32-bit CPUs one of which is used as checker core. This means that the
two e200z4 cores perform the same operations, for redundancy reasons,
and can be treated as a single core by the user.
In terms of Input Output it contains dedicated modules for Ethernet and
CAN.
A testing firmware version for this device has been provided by NXP. Such

Figure 2.7: S32R274 Block Diagram [17]

software makes use of two of the three available cores.
Core 0 is used to control the TEF810X chipsed through SPI and a ded-
icated API, called Dolphin API. Core 0 is also responsible to control the
Radar Processing Platform deciding the type of computation to be per-
formed on the raw ADC samples received from TEF810X.
Core 1 takes care of transfering the processed data through Ethernet. It
uses UDP to broadcast the values on the channel. Core 1 makes use of a
modified version of fnet embedded TCP/IP stack.

S32R274 firmware
The Dolphin API allows to control the TEF810X chipset through a series of
functions. The more important functions are:

18 2. Theory and backgound

• chip_TE_ChirpTrigMode() configure the chirp (or the chirp sequence)
transmission, to be triggered by SPI command or by a pin of TEF810X.

• chip_TE_StaticConfig() configure profile independent settings of the
timing engine, such as the number of samples per chirp and the pro-
file (or sequence of profiles) selected.

• chip_Chirp_Program() profile dependent system-level API which con-
figures a chirp profile in one call. Most of the chirp parameters can
be configured through this function.

• chip_TX_ProfileConfig() configure the transmission channels profiles.
Configures for each profile transmission channel parameters such as
transmission gain and LO trippler gain.

• chip_RX_ProfileConfig() configure the receive channels profiles. Con-
figures for each profile receive channel parameters such as receive
gain, low pass filter and high pass filter.

• chip_CC_SerializerInterfaceSet() and chip_CSI2_Config() configure
the CSI2 interface to transmit back the ADC values.

• chip_reg_Read() performs a single read through SPI from a register
block of the TEF810X chip. Each register block is 32 bits wide.

• chip_reg_Write() performs a single write through SPI to a register
block of the TEF810X chip. Each register block is 32 bits wide.

• chip_TE_ChirpStart() this API triggers one chirp sequence (frame).

Through these functions, different aspects of the transmitted waveform can
be modified. The parameters that can be modified include:

• Chirp period 𝑇፡።፫፩_።፧፭፞፫፯ፚ፥: total time of one chirp is modified through
the change of the sub-times composing the chirp;

• Dwell time 𝑇 ፰፞፥፥: time before starting the chirp;

• Settle Time 𝑇፬፞፭፭፥፞: time to wait after starting the chirp before ADC
acquisition starts;

• Sample Time 𝑇ፚ፭።፯፞: time interval in which the ADC acquisition is
performed. This time is indirectly selected by setting sampling rate
as well as number of samples each chirp;

2.6. Radar development platform 19

Figure 2.8: Chirp with different parameters [18]

• Jumpback Time 𝑇ፉ፮፦፩ፚ፤: time after ADC capture ended and before
end of linear frequency increase;

• Reset Time 𝑇፫፞፬፞፭: Time for the frequency to drop to the initial value;

• Center frequency (effective) 𝑓 ፟፟_፞፧፭፞፫;

• Chirp bandwidth (effective) 𝑓 ፟፟_፡።፫፩_ፁፖ;

• Number of ADC samples to be collected each chirp;

• Activation and deactivation of each TX and receiver line;

• Phase state of each TX channel;

• Sampling frequency of the ADC module. One of three values can be
selected: 40𝑀𝑠𝑝𝑠, 20𝑀𝑠𝑝𝑠 and 10𝑀𝑠𝑝𝑠.

Additional parameters that can be controlled through the API are: decima-
tion value, transmission and receive gain.

20 2. Theory and backgound

STM hardware timing modules
The S32R274micro-controller includes three System Timer Module (STM),
32-bit timer modules designed to support commonly required system and
application software timing functions.
Each STM includes a 32-bit up counter and four 32-bit compare channels
with a separate interrupt source for each channel. The counter is driven by
the appropriate system clock divided by an 8-bit prescale value (1 to 256).
In our implementation the clock selected to drive the timing module is the
𝑃𝐵𝑅𝐼𝐷𝐺𝐸, set at 60𝑀𝐻𝑧. This clock is obtained from the external crystal
oscillator at 40𝑀𝐻𝑧 by scaling it up by a factor 6 and then dividing it of a
factor 4 outside of the STMs [14](page 151).

3
Previous work

In this chapter, an in depth explanation of the previous work developed by
Tasneem R Khan during the course of her thesis will be presented. Under-
standing such system is necessary to the reader since the implementation
presented in the following chapters is based on it. Furthermore, because
of how unstable and covered by bugs the previous work was, a new stable
version has been developed. Some of the changes are also included in
this chapter.

The system developed by T.R. Khan in [12] can be described as a dis-
tribuited system. It runs on two different computational units, a personal
computer and the development board described in chapter 2.
It can be divided conceptually in 4 components (as visible in figure 4.1
present at the beginning of chapter 4.):

• Client application to run on PC.

• Firmware running on the S32R274 chipset. This software can be
furthermore be divided in two blocks:

– Software to run on Core 0.
– Software to run on Core 1.

• Server application to run on PC.

• Matlab script for post processing.

Following the path of a message, the implementation can be divided in the
following steps.

21

22 3. Previous work

• The user enters a message on the PC client application. The client
forwards the message through Ethernet to the Radar Board.

• The Radar Board encodes the message in the sensing waveform and
sends it.

• The Radar Board receives the scattered sensing waveform and for-
wards the ADC raw samples to the PC server through Ethernet.

• The PC server application receives the ADC samples and stores
them in a binary file.

• The binary file is opened and the ADC samples are processed through
matlab. The message is extracted from the ADC samples and re-
turned to the user.

To discuss this implementation, this chapter will follow the message path
and as so will analize each step explained above.

3.1. PC client application
This application is written in C, and is developed to be used on Linux ma-
chines. On Windows counterparts Cygwin can be installed.
The application utlizes the library sys/socket.h to create a TCP socket. It
then tries to establish a connection to the server application on the Radar
Board.
If successful, the application enters a infinite while loop. In each iteration
of the loop it performs a serie of operations.

• Prompts the user to insert a string.

• Reads from the standard input a string of maximum length 32. If the
read string is empty then the subsequent steps are not performed
and the loop starts from the beginning.

• Sends the string through TCP to the server.

• Waits until the server has replied and prints the reply to the standard
output.

The loop is repeated indefinitely. The program can be stopped by pressing
ESC and then ENTER when promped for a new string.

3.2. Radar Board reception of message 23

3.2. Radar Board reception of message
On the Radar Board, Ethernet communication is accomplished by using a
version of fnet [5] modified by NXP to transmit back radar values.
To receive the string from the PC Client, a socket is created, configured
and binded on Core 1.
A infinite while loop is then started on Core 1, inside this loop a series of
operations is performed.

• A connection from a client is accepted. If no client is requiring a
connection the while loop starts from the beginning.

• A nested infinite while loop is started. It performs the following se-
quence of actions.

– Receives the message sent from the PC client. And stores it
in a private location of memory for Core 1. If the connection is
closed by the client, then exits this loop.

– Sends back the message it just received without performing any
computation.

– Locks (reserves for current core) an inter-core shared memory
location.

– Writes the message in such location only if the received mes-
sage has length larger than 0.

– Unlocks the shared memory location.

This loop repeats indefinitely and if no message is received from the client
no operation is performed.

3.3. Shared memory and semaphore implemen-
tation

In order to regulate the access to shared memory locations between cores,
the s32R274 chipset makes available 32 shared registers between cores.
The system implemented by T. R. Khan consists in creating a new shared
memory location of 32𝐾 through the modification of the dedicated linker
files. The location of this memory section has been modified from the one
chosen by T.R. Khan since it was conflicting with other memory sections
and placed in an unused location.
The essential parts of the linker files can be seen in the below code extract.

24 3. Previous work

MEMORY {
[...]
/* Shared memory location */
/* Located at the end of the shared memory between */
/* cores. */
shmem : org = 0x40000000+ LENGTH(c0_sram)+

LENGTH(c1_sram)+ LENGTH(c2_sram)+
1K+LENGTH(all_sram)-32K, len = 32K

}

SECTIONS{
[...]
/* SHARED MEMORY SECTION */
.shared_memory (NOLOAD):
{

*(.shared_mem.o)
} > shmem
[...]
/*shared memory*/
__shmem_struct = ADDR(.shared_memory);

}

The registerSEMA42.[SEMA42_GATE0].R regulates access to this shared
memory location. If a core wants to access the shared location it first
checks the status of the SEMA42.[SEMA42_GATE0].R register. If the reg-
ister is clear then it changes its value to it’s core number plus 1 and access
the memory, otherwise it waits until the register is clear. After the access
is complete, the core clears again the register.
This method eliminates the risk of a conflict during memory access.

3.4. Radar Board transmission of waveform
At startup Core 0 initializes the TEF810X through the Dolphin API and im-
mediately starts sending chirps following the settings hard coded in the
firmware.
In T.R. Khan’s code these settings have been slightly modified. The radar
sends always using a single antenna and receives using a single antenna.

3.4. Radar Board transmission of waveform 25

The main modification from the original settings is that the radar alternates
each chirp between transmission profile 0 and transmission profile 1. At
startup both profiles are set as identical. Furthermore, the Radar Board is
configured to output always ADC signals.
The original main function executed by Core 0 takes care of initializing the
radar and periodically triggering a sequence of chirps to be sent (defined
as frame).
The function that triggers the transmission of a frame has been modified to
allow for transmission of the message. Before triggering the transmission,
the following additional operations are performed.

• Reads the shared memory location in the same way as Core 1 does
and stores the content in a local buffer.

• Reads, using chip_reg_Read() the value of the register block contain-
ing the profile 0 phase inversion value. Stores it in a local variable.

• Reads, using chip_reg_Read() the value of the register block contain-
ing the profile 1 phase inversion value. Stores it in a local variable.

• The values that have just been read are 32bit wide, however the
phase inversion is controlled by a single bit for each TX antenna.
Preforming a bitwise AND operation with a mask, only the phase shift
bits are set to 0.

• Using chip_reg_Write() profile 0 settings are saved with phase inver-
sion 0. This in order to send a single bit of header before the ac-
tual message (this passage eases the post processing and has been
added after [12]).

• Using a bitwise OR with the message saved in the local buffer, the
first bit of information to be sent is read.

• The bit containing the phase inversion in profile 1 of TX antenna 1 is
changed in order to reflect the first bit of the message.

• Using chip_reg_Write() themodified register block containing the phase
inversion value of profile 1 is saved on the TEF810x chip.

After this passage, the TEF810x is configured to send the first chirp with
no phase inversion and the second bit with phase inversion only if the first
bit of the message is 1.
The frame transmission is then started using the function chip_TE_ChirpStart().

26 3. Previous work

For the next steps is assumed that the function chip_TE_ChirpStart() re-
turns after a constant time smaller than the first chirp transmission. If this
was not the case, coding the second chirp would be impossible.
After starting the frame transmission a first while loop is entered. As guard
of such loop is the condition SPT.GBL_STATUS.B.FRM_ACQ_DONE ==
0, this condition will keep the loop running until TEF810X signals the end
of acquisition of the current frame.
Inside this loop a series of operations is performed.

• A check is performed to ensure if there are still bits to send. If not,
the loop is broken.

• Wait until the the current chirp acquisition is finished.

• Extract the next bit to send from message.

• Use the position of the current bit to decide in which profile to encode
the bit (using odd or even).

• Using chip_reg_Write() save the phase inversion setting to the TEF810X
chipset.

• Increment the number of sent bits.

This function will be repeated indefinitely as it is. As a consequence, until
a new message is sent through TCP from the PC Client, the radar will keep
transmitting the same message.

3.5. Radar Board reception of the waveform
The receive part of the waveform has not been developed by T.R. Khan,
but uses a demo code provided by NXP. The selected output data are ADC
samples.
A short explanation on the functioning of the receive path of the radar will
be given here.
Being the selected output data ADC samples, the Signal Processing Plat-
form is bypassed in our case. No operation is performed other than saving
the data in a shared memory location. The reception of the scattered signal
is performed in parallel with the transmission. For this reason the function
chip_TE_ChirpStart() called by Core 0 also triggers the acquisition of the
received data.
On Core 0 after all the chirps in one frame have been transmitted an inter-
rupt is raised to Core 1. Core 0 waits until the interrupt is cleared by Core

3.6. PC server reception 27

1.
The function c1_fnet_RADAR_output_isr is triggered on Core 1 by the in-
terrupt. This function transmits all the ADC values through the Ethernet
port in the form of UDP packets.
The UDP packets are sent to the server application on the PC side. For the
connectionless nature of UDP, some packets could be lost in this process.

3.6. PC server reception
The PC server application is written in C and meant to operate on Linux
systems. It uses the same library as the PC client application (sys/socket.h)
to create a socket and a server application.
It then requests the user for a time duration of the acquisition of data from
the radar. This time determines only the time the PC application will regis-
ter data sent from the radar, but will have no influence on the radar func-
tioning.
The application saves the received data, without any computation in a bi-
nary file and once the user set time for acquisition is over, it automatically
terminate execution.

3.7. Matlab post processing
The raw ADC values are now saved in a binary file and can be accessed
with a Matlab script in order to extract the sent message as well as com-
pute range and Doppler FFT when required.
The script has been modified in almost every part from T.R. Khan’s work.
This was necessary in order to provide a stable platform to visualize the
effects of the software developed in this thesis.
For simplicity, the Matlab script has been divided in steps, and will be dis-
cussed here.

Step 0: opening binary file
A few variables have been placed at the beginning of the script to ease
global changes. First, since the ADC samples received are from multiple
frames and a single one is needed to receive the message, the frame num-
ber to extract the message can be selected. Second, the number of bits
that compose the header can be selected.
The file is then opened and each packet content is divided into the different
parts composing it. Each packet contains:

28 3. Previous work

1. DataTypeID: Contains the type of data saved in the packet (ADC in
this case)

2. FrameNumber : Contains the frame number of the data contained in
the packet.

3. ChirpSeqNum: Contains the number of the chirp (relative to the frame)
of the data contained in the packet.

4. PacketNum: Contains the packet number relative to the chirp. In this
case each chirp is divided over 2 packets, this field will be 0 or 1.

5. TotPacketNum: Contains the number of packets for each chirp, al-
ways 2 in our case.

6. Buffer : Contains the data payload, each packet carries 732 values.

Only the buffer and FrameNumber fields will be needed and are stored
in matrix and array form. The buffer matrix contains one packet for each
column.

Step 1: cutting half frames
In this step, the first and last frames are deleted. This because the ac-
quisition starts and finishes at a random place and the first and last frame
recorded are often incomplete.
The buffer matrix and the FrameNumber array are shaped accordingly.
The buffer matrix is renamed Data.

Step 2: dividing into frames
This step reshapes the Data matrix in order to obtain a three dimensional
matrix where: each column is one packet and each third dimension con-
tains only packets from one frame.
Due to the UDP lossy protocol used to send the data packets, this pas-
sage cannot be performed using the reshape function included in matlab.
It will require some additional computation in order to exclude any frame
containing any lost packet.

Step 3: composing chirps
Each chirp is divided in two packets, now a reshape function can be used
to stitch together couple of packets obtaining a Data matrix with for each
column one Chirp.

3.8. Summary 29

Step 4: extracting data from antenna 1
In the Data matrix, each chirp contains the received data from all the an-
tennas. In our case only one RX antenna is used and for this reason only
the samples from this antenna will be needed.
This step extracts the data from antenna 1 and stores it back in Data, re-
sizing it accordingly.
Furthermore, only 256 samples are recorded by the receiver antenna, Data
will be resized to contain only the first 256 values of each column.

Step 5: plot
A plot of the selected frame for data extraction is displayed. The two di-
mensional matrix is displayed as an grayscale image.
This allows for graphical inspection of the phase inverted chirps.

Step 6: selecting a good ADC sample to extract the message
In order to extract themessage, the phase inversion has to be estimated for
each chirp. This can be done by taking a strong ADC sample and checking
the sign for each chirp.
This step takes care of selecting the highest ADC sample through all the
chirps and evaluate the sign of all the chirps for the same ADC sample.
After this step, the first bit sent as header, the value of which is known, is
used to distinguish between sent bit 1 and sent bit 0.
An array of 1s and 0s is constructed at the end of this step.

Step 7: fixing the phase shifted chirps
This step flips the chirps with phase inversion, returning a matrix containing
the ADC samples as if no transmission where ever made.
This matrix can be used to extract Doppler FFT and range FFT.

Step 8: conversion of binary sequence into string
This step converts the binary array returned after step 6 in a readable char-
acter based string. It outputs this string on the command line to be read.

3.8. Summary
By executing all the programs described above, it’s possible to demon-
strate how information can be encoded and decoded correctly from the
waveform used for sensing.
The above has been tested with a stationary radar in an room with station-
ary targets and performs reliably.

4
Test setup evolution

In this chapter, the different test setups developed will be explained.

During the course of this work, the test setup used has changed consider-
ably. This short chapter has been created to facilitate the understanding
of the different test setups used in the following sections.

4.1. Initial test setup
The initial test setup, that will be used in chapter 5 is the same as the one
used by T.R. Khan for her work.
A single radar will be pointed straight to a stationary target at a distance
of approximately two meters. The stationary target will be a strong corner
reflector, chosen in order to maximize the reflected signal for post process-
ing. This setup is visible in figure 4.1.

Figure 4.1: Diagram of T.R. Khan’s setup

31

32 4. Test setup evolution

4.2. Test setup with GPS
From chapter 6 the setup used will change. Instead of a single radar, now
two radars will be used. The two radars will face each other at a distance
of one and a half meters. Each radar will be connected to a dedicated PC
as well as a GPS module.
This new setup configuration can be seen in figure 4.2. Due to limitations
in the mounting system of the hardware devices both radars will be placed
on the same table, as so we can expect some interference caused by the
surface of the table.

Figure 4.2: Diagram of the setup used from chapter 6

4.3. Additional test setups
The system implemented in this thesis has been used with similar configu-
rations during multiple experiments conducted with doctor F. Uysal for the
Microwave Sensing, Signals and Systems department. These configura-
tions include multiple targets, moving and stationary, they are however out
of the scope of this thesis and will not be described [16] [9].

5
Multiple symbols encoding in single

chirp

In this chapter the second research requirement will be discussed. Namely
how to encode multiple bits, equivalent to multiple phase shifts, into a sin-
gle chirp.

In order to improve the throughput of the system developed by T.R. Khan
in [12] multiple bits of information can be sent during a single chirp. This
can be accomplished by inverting multiple times in a single chirp the phase
of the transmitted signal.
This method could be used to increase the throughput of a transmission
system based on this technology. As we will see in this chapter the main
limitation in the scaling factor will come from the switching behaviour of the
radar hardware architecture.
To accomplish phase inversion two approaches have been evaluated:

• Inversion through the dedicated pin on the TEF810X chip.

• Inversion through SPI commands from the S32R274 to the TEF810X.

Both methods have been evaluated and tested independently. While the
using SPI commands brought no results, it was possible to successfully
switch phase using the dedicated pin.
The process as well as the results and limitations will be discussed in this
chapter.

33

34 5. Multiple symbols encoding in single chirp

5.1. Radar settings and setup
In all scenarios the radar has been configured with the following parame-
ters:

• Effective bandwidth 1.5𝐺𝐻𝑧.

• Samples per chirp 256.

• Sample rate of ADC module 10𝑀𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠.

• Chirps per frame 512.

• 𝑇 ፰፞፥፥ = 40.05𝑢𝑠

• 𝑇፬፞፭፭፥፞ = 5𝑢𝑠

• 𝑇፣፮፦፩ፚ፤ = 0.25𝑢𝑠

• 𝑇፫፞፬፞፭ = 5𝑢𝑠

In order to facilitate post processing, only one TX antenna has been used
for transmission and only one RX antenna will be used for receiving the
scattered signal.

For simplifying the extraction of encoded bits by providing a clear scattered
signal, a stationary strong corner reflector has been placed at a distance
of 𝑅 = 2𝑚 from the radar.
The data received on the PC side are raw ADC samples with no post pro-
cessing performed on the radar board.
Figure 5.1 shows the ADC samples of the received mixed signal after be-
ing filtered and mixed in the TEF810X chip, this signal has been defined
as 𝑋ፈፅ in chapter 2.
The frequency of such signal is proportional to both distance and veloc-
ity of the targets, being the target stationary the velocity component of the
frequency can be ignored. The frequency of the signal can be estimated
using equation 2.21 to:

𝑓ፗፈፅ = (2𝑆𝑅)/𝑐 = 781𝐾𝐻𝑧 (5.1)

Where: c is the speed of light, R is the distance from the target, and S is
the steepness of the linear increase 𝑆 = 𝐵/𝑇.

5.2. Timing functions 35

Figure 5.1: ADC values of a single chirp.

5.1.1. Development platform upgrades
Somemodifications to the firmware of the radar have been performed. This
in order to facilitate post processing and analysis of the raw data with phase
shifts.
Three modes of operation are selectable in the firmware of the radar:

• No phase shift: no phase shift is applied on the signal. Can be used
for comparison.

• Constant phase shift: each chirp has the same sequence of bits en-
coded in the three phase shifts. Can be used to compare the chirps
in a frame with each others.

• Random number phase shift: a random number is created on com-
puter side (and saved locally) the radar then sends it over a frame.
Can be used to verify the effective transmission of information.

5.2. Timing functions
In order to automate the post processing of the data, independently from
the method used, is of critical importance to shift frequencies in the same
point for each chirp.
In the code running on core 0 of the S32R274 chip, a function is present
that triggers each time a chirp transmission starts. What is missing in such
code is a delay function that can set the processor idle, until a predefined

36 5. Multiple symbols encoding in single chirp

amount of time has passed.
This function has been developed, allowing us to insert a known delay in
the S32R274 code, after each chirp has started. The hardware system
timer module (STM) included in the microcontroller has been used for this
purpose, this module includes multiple hardware counters and compara-
tors.
The counters increase at the PBRIDGE clock frequency, set at 60MHz.
Furthermore, a divider can be set to make the counters increase at a frac-
tion of the clock frequency.
Three functions have been created:

• Start function: starts the timer

• Stop function: stops the timer

• Wait function: a blocking function that returns after the set amount of
clock cycles has elapsed.

The code can be seen below:

void STM_2_start(void){
// Channel enable CH0
STM_2.CHANNEL[0].CCR.R = 0x1;
// Divide system clock by 1 & enable timer
STM_2.CR.R = 0x0001;
//(Counter increments each 1/60MHz = 0.01667us)

}
void STM_2_stop(void){

// Disable timer
STM_2.CR.R = 0x0;

}
void STM_2_wait(uint32_t time){

// Set compare value CH0
STM_2.CHANNEL[0].CMP.R = time;
// Clear counter
STM_2.CNT.R = 0;
// Clear flag (w1r)
STM_2.CHANNEL[0].CIR.R = 0x1;

// Wait until compare value matches counter

5.3. Estimating the correct delay 37

while (STM_2.CHANNEL[0].CIR.R == 0x0);
// Clear flag (w1r)
STM_2.CHANNEL[0].CIR.R = 0x1;

}

Thanks to these timing functions a known delay can be placed anywhere
in the code.

5.3. Estimating the correct delay
In order to test if it is possible to change phase during a chirp with an SPI
command, we need to estimate after how much time from a chirp start we
will be in the middle of the chirp.
The parameters of the sent chirp are hard coded in the S32R274 software
and can be seen below.

• Samples per chirp 256.

• Sampling rate of ADC module 10𝑀𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠.

• 𝑇 ፰፞፥፥ = 40.05𝑢𝑠

• 𝑇፬፞፭፭፥፞ = 5𝑢𝑠

From the Samples per chirp and the Sampling rate parameters, the time
duration of the chirp slope can be estimated and subsequently a 𝛾 time
constant, representing the time from the beginning of the chirp to themiddle
of the slope can be estimated.

𝛾 = 𝑇 ፰፞፥፥ + 𝑇፬፞፭፭፥፞ +
𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑒𝑟 𝑐ℎ𝑖𝑟𝑝
2 ∗ 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 58.3𝑢𝑠 (5.2)

A delay corresponding to this value can be then inserted after the start of
the chirp using the STM modules.

5.4. Using SPI commands
The connection between the S32R274 and the TEF810X chips is estab-
lished through SPI. As explained in chapter 2 a series of functions are
available to change the TEF810X settings. However all of them use SPI to
write and/or read register blocks on the TEF810X chip.
In practice chip_reg_Read() and chip_reg_Write() are the only relevant

38 5. Multiple symbols encoding in single chirp

functions. Furthermore, the only way to modify the phase inversion bit
in the register is to write the entire block of registers containing it as done
in [12].
It was unsure if changing through SPI the value of such registers in the
middle of chirp transmission would cause a phase shift.
Using the delay functions presented in the previous sections we made a
simple addition in the code running on core 0 of the 32r274 chip, as visible
below.

//T is set approx to 70us of delay (taking a margin
//for the execution of the SPI command)
STM_2_wait(t);

//Changing phase modulation
//Imposed always at 0 in middle of chirp
chip_reg_Write(TENG_MODULE_ADDRESS,

reg_offset[(chirp-1) & 1],
reg_val[(chirp-1) & 1] |

(0 << bps_position[(chirp-1) & 1]),
NULL);

The register offset as well as the module address have been chosen based
on the registers list provided by NXP.

5.4.1. SPI results
This approach yield no result, the transmission is performed without the
occurrence of a phase shift in the middle of the chirp.
In order to exclude a wrong setting in the delay functions we gradually de-
creased the value of the delay, until the point to have close to zero delay
between the start of one chirp and the register change, we also tried to
increase the value of the delay bringing it higher of 200us. None of these
methods brought any change.
One possible explanation for this failure is related to the internal function-
ing of the TEF810X chipset.
Once one chirp acquisition is started, the phase settings are read from the
registers and saved in a different location, and for the entire duration of the
chirp, the used settings are kept constant. For this reason, changing the
registers values in the middle of a chirp transmission brings no change to

5.5. Using the dedicated pin 39

the current transmission.
This unfortunately means that no phase change in the middle of a chirp
can be accomplished through SPI communication.

5.5. Using the dedicated pin
The second option in order to achieve multiple phase shifts in a single chirp
is to use a dedicated pin present on the TEF810X transceiver.
Due to a text/figure misalignment on the data-sheet of the development
board utilized in this work, this pin was assumed for a long time to be left
disconnected.
After reviewing multiple times the data-sheets we identified how the pin is
instead connected directly to one of the GPIO pins of the S32r274 micro-
controller.
To accomplish this phase inversion, the pin on the S32r274 chip is config-
ured and controlled as output and will be triggered using the delay functions
developed previously.

5.5.1. Code for pin switch
The code needed to perform the pin switch can be divided in three parts:

• The delay function already visible in the timing functions dedicated
paragraph.

• A setup function for the GPIO pin to be correctly configured.

• A small addition in the frame sending function present in code 0 of
the S32r274 chip.

The small addition in the code of core 0 consists of the following:

//Wait for new chirp
while (SPT.GBL_STATUS.B.CHRP_ACQ_DONE == 0) { }

//t contains the required delay time
STM_2_wait(t);
//bit contains a binary value
//with 1 phase shift and 0 no phase shift
SIUL2.GPDO[NUM_PS].R = bit;

40 5. Multiple symbols encoding in single chirp

5.5.2. Configuration of output pin
In order to utilize a pin on the S32R274 as output we need to configure
some registers in the SIUL2 module, this module is the controlling module
for all general purpose IO.

Figure 5.2: The SIUL2 module [17]

Excluding the configuration registers needed for interrupt triggering, the
used configuration registers are:

• MSCRn: used to select the signal to connect to a pin as well as to
enable functionality of the pads.

• IMCRn: used to select the input pad for each module. In case of a pin
with only one input function the pin is directly directed to the module.

Figure 5.3: The Input Output muxing.

5.5. Using the dedicated pin 41

The used fields in the MSCRn register, with their assigned values, can be
seen in table 5.1. For a more detailed description of the functionality of
each register the s32R274 reference manual can be examined [14].

Field Value Description
SRC 0b11 Controls slew rate of output pin.
OBE 0b1 Enables the output buffer.
ODE 0b0 Enables the open drain at the pin.
SMC 0b1 Safe mode control.
APC 0b0 Analog pad control.
IBE 0b0 Enables the input buffer.
HYS 0b0 Enables the hysteresis reading the pin in digital mode.
PUS 0b0 Selects pull up or down.
PUE 0b0 Enables selected pull.
INV 0b0 Inverts pin value.
SSS 0b0000 Source signal, can be set using the IO multiplexing tables.

Table 5.1: Description of the fields in the MSCR register.

In order to change the state of the pin, the PDO field of the GPDOn register
can be changed writing a single byte on it.

5.5.3. Pin switch results
With this approach we were able to switch phase in the middle of the chirp.
An example with two phase inversions in each chirp can be seen in figure
5.4 on the right.

Switching overshoot
However an undesirable effect has emerged, due to hardware character-
istics a large overshoot is generated when the phase is shifted.
Such overshoot can be recognized in figure 5.4 by comparing the signal
without phase shift to the one with phase shift. As can be seen this over-
shoot has a large influence on the overall chirp duration.
The large overshoot can be seen even better in figure 5.5, where multiple
chirps, some without phase coding, and others with identical phase coding
are superimposed on a single graph.
This effect leads to a loss in precision in the radar functionality of the device
when a large number of phase shifts are applied.

42 5. Multiple symbols encoding in single chirp

Figure 5.4: No phase shift vs phase shift with only three bits coded.

We decided to send four bytes of information in each chirp, this in order
to find a compromise between information throughput and the accuracy of
the radar readings.

Figure 5.5: Superimposition of phase shifting and ordinary transmission.

5.5.4. Data post processing
In our experiment raw data is processed and sent to the PC through Eth-
ernet.
All the post processing is then performed on the PC using dedicated matab
scripts. This allows users unfamiliar with the firmware of the device to im-
plement different post processing techniques.
Two aspects of the data post processing are important:

5.5. Using the dedicated pin 43

• Extraction of radar information

• Extraction of phase coded message

The extraction of the coded message from the received signal can be per-
formed independently from the radar information processing, the two func-
tions can be parallelized by having them performed by two different micro-
controllers.

Radar information processing
To perform radar processing and extracting information such as distance
and velocity of targets the receiver signal has to be reconstructed, elimi-
nating the phase shifts that would interfere with classical radar processing
algorithms.
After reconstruction common techniques can be used to obtain Doppler
FFT and range FFT.
Reconstructing the signal means inverting back the phase shifted areas
as well as eliminating the distorted areas caused by the overshoot in the
signal.
This type of processing goes beyond the scope of this thesis, however the
interested reader can find an example of such technique in [16].
This paper utilizes the radar system developed in this thesis to propose a
smart filtering method to post process the radar data.

Phase coded message processing
In order to decode a chirp, the phase shifts need to be clearly identifiable,
to do so a simple Matlab script has been developed.
How to extract the phase shifts for a single chirp will be explained below.
The method to extract the phase shifts can be divided in 4 steps, also
identifiable in figure 5.7, such figure refers to the chirp in figure 5.6.

a) The phase angle of the received signal can be extracted in matlab
by applying the angle() function (returning the phase angle) over the
hilbert() function (returning the Hilbert transform).

b) Using the unwrap() function is then possible to correct the phase an-
gles by keeping a maximum distance of 𝜋 radians between consec-
utive values, obtaining a continuous function.

c) The second derivative of such signal is used to clearly identify the
phase changes, exploiting the disturbance created by the phase switch-
ing.

44 5. Multiple symbols encoding in single chirp

Figure 5.6: The chirp used for step by step phase inversion identification.

d) By taking the absolute value of such derivative it’s possible to set a
threshold for identification of the phase change.

This method allows us to extract the valid bits of information from the sig-
nals using a threshold based method.
Due to the switching overshoot we described previously, the threshold
method might have to be slightly adapted to avoid detecting two phase
changes in a long overshoot. However the phase changes happen always
in a predefined point, and the overshoot behaviour is very regular and simi-
lar between chirps. Simplifying the process of identifying correctly a phase
change.
The same result could be obtained performing a similar computation on the
S32R274. Two problems arises with this approach:

• The SPT (signal processing toolbox) included in the micro-controller
does not incorporate dedicated hardware to perform the Hilbert func-
tion or to extract phase angles. This would lead to high computational
load.

• The limited memory on the S32R274 is now fully utilized to store ADC
samples. Performing additional computation on the board would re-
quire space to store the results, limiting the number of ADC samples
that can be collected.

Due to these issues we think the implementation of on board post process-
ing should be delayed to a later stage of development, with more special-

5.5. Using the dedicated pin 45

Figure 5.7: Step by step process for phase inversion identification of the single chirp in
figure 5.6

ized hardware and a more defined communication protocol between the
radars.

6
Multiple units synchronization

The second research requirement we dealt with focuses on the synchro-
nization of two radar modules, in order to enable transmission of informa-
tion between them. In this chapter, firstly the need for synchronization
will be discussed, secondly a comparison between different synchroniza-
tion solutions will be made, and finally the implementation derived from the
chosen synchronization method and its results will be discussed.

6.1. The need for synchronization
The main objective in this chapter is to obtain transmission of information
between two radar devices. To obtain such a result, the main obstacle is
the synchronization between the two radar units.
In fact, using two synchronized radars, the information signal transmitted
from one of them will be seen by the receiving radar in the same way as
a scattered signal from a target. This will make possible to use the same
method developer in chapter 5 to extract the transmitted information.
In the functional block diagram of the radar transceiver utilized, present in
figure 2.6, it is visible how the received signal is subject to two filters right
after mixing.
The filtering applied is first from a high-pass filter and then from a low-pass
filter. As discussed in chapter 2.1.1 a low pass filter is required to suppress
one of the components of the 𝑋ፈፅ signal, while a high-pass filter is used to
eliminate unwanted clutter.
Due to this high and low pass filtering, an asynchronicity in the two radar
modules could lead to a filtering of the signal carrying information. In other
words, if the received signal and the generated signal of the receiver board
are not aligned, the resulting 𝑋ፈፅ could be out of the filters boundaries.

47

48 6. Multiple units synchronization

Figure 6.1: Receiver device signals for two stationary radars (ᑏ፟ᑚᑗ neglects Doppler ef-
fect).

This problem can be visualized with the aid of figure 6.1, where the signals
present in the receiving device are shown.
Two graphs are present in such figure, the top one representing the two
signals present on the receiving board before mixing, while the bottom one
represents the mixed signal that is then used for the extraction of informa-
tion.
The receiver generated signal is the signal generated on the receiver board
and is then mixed directly with the received information signal that as the
name suggests carries the information to be extracted. The received infor-
mation signal can be treated similarly to a scattered signal from a target,
allowing us to call the resulted mixed signal 𝑋ፈፅ and to use the mathemat-
ical formulations derived in chapter 2.1.1.
The main differences with a normal scattered radar signal are two, first the
distance travelled by the radar wave will be half the one in a normal scat-
tering scenario, and second 𝜏 will now incorporate a delay caused by the
synchronization error between the radars.

𝜏 = 𝜏፝።፬፭ፚ፧፞ + 𝜏፬፲፧
A good synchronization, is equivalent with assuming a small 𝜏. A small 𝜏
means:

6.1. The need for synchronization 49

• The resulting shift in frequency of the useful part of the mixed signal
will be relatively small. Meaning the value of 𝑓ፗ።፟ = 𝑆𝜏 will remain in
the margins of the low pass filter.

• The useful part of the mixed signal will cover the majority of the chirp.
In other words, the smaller 𝜏 is, the smaller the invalid region of 𝑋ፈፅ
will be.

In the case of two radar devices with bad synchronization, 𝜏 will grow and
the two conditions discussed above won’t be valid anymore.

• The resulting shift in frequency of the useful part of the mixed signal
will become large. In other words, the value of 𝑓ፗ።፟ = 𝑆𝜏 will be large
and the signal could be filtered out by the low-pass filter of the radar
transceiver.

• The invalid region of the signal 𝑋ፈፅ could become much larger, mak-
ing the useful part of 𝑋ፈፅ too small to be evaluated.

For these reasons, synchronization between the two radar devices is a pre-
requisite to obtain transmission of information.

Our radar module in the current configuration sends a chirp with a 𝑇ፚ፭።፯፞
of 25.6𝑢𝑠 and a 𝑇፬፞፭፭፥፞ of 5𝑢𝑠. The cut off frequency of the low-pass filter
is set to 30𝑀𝐻𝑧.
This values can be used as reference to estimate the maximum allowed
synchronization error.
Two limits can be considered:

• The value of 𝜏 should not be larger than 𝑇፬፞፭፭፥፞ = 5𝑢𝑠 in order to pre-
serve the integrity of the signal during the whole duration of 𝑇ፚ፭።፯፞.
This translates to 𝜏 ≤ 5𝑢𝑠.
If 𝜏 > 𝑇፬፞፭፭፥፞ then the sampling in the receiver will start before the
starting of the slope in the received chirp, meaning that the first part
of 𝑋ፈፅ will be corrupted.

• The value of the frequency 𝑓ፗ።፟ should not exceed the low-pass filter
frequency. Meaning that 𝑓ፗ።፟ ≤ 30𝑀𝐻𝑧

Both these conditions must be true in order to extract such signal correctly,
and both need to be translated to be expressed with relation to 𝜏፬፲፧.
For the first condition, we know the relation 𝜏 = 𝜏፝።፬፭ፚ፧፞ + 𝜏፬፲፧ ≤ 𝑇፬፞፭፭፥፞,
from which follows:

𝜏፬፲፧ ≤ 𝑇፬፞፭፭፥፞ − 𝑅/𝑐 ≤ 4.93𝑢𝑠 (6.1)

50 6. Multiple units synchronization

Where 𝑅 = 20𝑚 is the distance between the two radars, and 𝑐 expressed
in [𝑚/𝑠] is the speed of light.
For the second condition, using the formulation present in chapter 2.1.1,
and for two radars at a distance of 𝑅 = 20𝑚 follows that:

𝑓ፗ።፟ = 𝑆𝜏 = 𝑆(𝑅/𝑐 + 𝜏፬፲፧) ≤ 30𝑀𝐻𝑧 (6.2)

Where 𝑆 = 𝐵፞፟፟/𝑇ፚ፭።፯፞, 𝐵፞፟፟ = 1500𝑀𝐻𝑧 is the effective bandwidth of the
radar, and 𝑐 = 299792458𝑚/𝑠 is the speed of light.
Inverting this inequality we find that 𝜏፬፲፧ ≤ 445𝑛𝑠. This value was extrap-
olated using a 𝑅 = 20𝑚, a realistic value for real world applications in the
automotive industry as well as for laboratory conditions.
This will be the lower admitted synchronization limit in order to allow com-
munication in our system.

6.2. Different ways to synchronize
To achieve synchronization we evaluated two different approaches:

• Synchronizing using an Ethernet wired connection.

• Synchronizing utilizing a couple of GPS receivers.

The pros and cons of both options will be discussed below.

6.2.1. Ethernet synchronization
The simplest option for synchronization is to use the Ethernet port present
on the Radar Board to connect the two radars together.
By creating a server/client application on the two boards this would allow
to send a synchronization UDP or TCP message.
This method however presents two main problems:

• The Ethernet ports are already used to send back raw ADC samples
from the Radar Board to the PC, this creates traffic on the Ethernet
channel, causing additional delay. Furthermore, at least one switch
would be needed in this scenario, adding latency to the connection.

• Due to the wired nature of the Ethernet network, synchronization
could only be used as a proof of concept. To make the technology
proposed in this thesis useful in real world applications a wireless
synchronization method will have to be developed.

6.2. Different ways to synchronize 51

6.2.2. GPS synchronization
GPS synchronization is the second evaluated solution for synchronization.
As discussed in chapter 2.3, a cheap GPS module can provide a synchro-
nized PPS (pulse per second) signal with a precision of 60𝑛𝑠. This value is
much lower than the required limits calculated chapter 6.1, leading to the
possibility of providing synchronization through GPS.
Furthermore, GPS technology is of wireless nature, making it possible to
utilize our system in real world applications such as in the automotive sec-
tor.

PPS precision verification
In order to verify the claims of high performances provided by cheap GPS
devices present on the market, we bought two devices. Two small PCBs
with mounted a NEO-7M GNSS module from U-Blox. The NEO-7M chip
claims in 99% of time an accuracy on the pulse per second (referred in the
datasheet as time pulse signal) of 60ns.[23]
They include a small PCB SMD antenna that was found inadequate due
to the indoor environment of our laboratories. For this reason two exter-
nal antennas have been used, the two GPS specific antennas utilized are
however not from the same manufacturer.
The PPS signal is directly available on one of the pins of theGPS boards. In
order to confirm the provided specifications we used a digital oscilloscope,
powering up both radars at the same time and checking for the differences
in the PPS signal. One reading from the oscilloscope can be observed in
figure 6.2. From this tests we deducted how the two signals have the same

Figure 6.2: Oscilloscope reading of the two PPS signals (time difference ኼኽኻ.ዀ፧፬).

52 6. Multiple units synchronization

frequency but their phase difference is higher than the one specified in the
datasheet.
This phase difference oscillates between 200ns and 500ns, values that are
still in the boundaries set in chapter 6.1. As a consequence, the system
can be used to obtain synchronization.

6.2.3. Synchronization method chosen
After the evaluation of both synchronization methods our choice fell for
utilizing GPS technology. This mainly due to the wireless nature of GPS
technology. Having a wired connection between the two radars would be
unrealistic in a real world application of our system.

6.3. Synchronization implementation
After evaluating the two options for GPS synchronization we focused on
building a test setup and a software implementation capable to achieve
synchronization.
In this section we will describe the experimental setup, firstly in the hard-
ware part, secondly in the software.

6.3.1. Hardware
The experimental setup utilized from this chapter onward has been ex-
plained in chapter 4. Here we will go slightly more in depth in the hardware
description of this setup.
We can identify four main types of devices used:

• The two radar devices, referred from NXP as DCC development kit.

• The two GPS modules, with each a dedicated antenna.

• Two 3.3V power supply units, one for each GPS module

• Two PCs with the duty of collecting the data from the receiver as well
as serving as user input for the radars.

Both the GPS modules have to be powered at 3.3V in order to be compat-
ible as inputs to the radar boards. For this reason the two separate 3.3V
power supplies are needed to power the GPS devices.
The radar modules have been positioned on a table with the antennas fac-
ing each other. Each one of them is connected to one GPS module.
The distance between the radar devices can be adjusted in order to per-
form measurements with different distances.

6.3. Synchronization implementation 53

Figure 6.3: Diagram of the test setup

In figure 6.3 a diagram comprehensive of all the elements of our system is
present.
As can be seen some connections are necessary between components:

• The radar device has one of his GPIO pins connected to the GPS
device PPS pin.

• The 3.3V power supply provides current to the GPS module as well
as is sharing the ground with the Radar Device.
This is necessary because the radar device needs to read an input
from the GPS board, without sharing a common ground the radar
would have no reference to read the signal.

• The radar device has been connected to the PC through Ethernet.

In order to validate the functioning of the software, two additional GPIO
pins of the radar device have been used to connect an oscilloscope during
testing.

6.3.2. Software
In order to implement synchronization, the firmware of the radar device,
running on the S32R274 has been modified.
In this new implementation all three cores have been utilized, compared to
the two utilized in [12]. Each core covers a specific duty:

• Core 2: Takes care of detecting the input PPS signal from the GPS
device and then raises one interrupt each time a chirp should be sent.

• Core 1: Takes care of the communication with the PC.

• Core 0: Takes care of triggering a frame acquisition as well as coding
the information to be sent trough phase inversion.

54 6. Multiple units synchronization

Furthermore, the implementation developed for our purpose relies on in-
terrupt routines in order to minimize the delay between events.
To facilitate post processing, the frequency of acquisition has been in-
creased from 10𝑀𝑠𝑝𝑠 to 40𝑀𝑠𝑝𝑠 and the samples per chirp has been sub-
sequently increased to 1024 compared to the setup used in chapter 5.
The functioning of each core will be described more in depth below.

Core 2 functions
This core has two main duties:

• Reading the pin connected with the PPS port of the GPS module.

• After the rising edge of each PPS signal, rise periodically an interrupt
to core 0 to trigger the transmission of a frame. The period of this
interrupt can be defined in the firmware, with a maximum value of
one second.

Core 2 input pin configuration
The first duty will be satisfied by setting the input pin to trigger an interrupt
function. This can be accomplished by setting correctly the registers of the
SIUL2 module.
The MSCRn register will have to be configured in a slightly different way
compared to how described in chapter 5 due to the pin being used as input
and not as output. The different registers are:

Field Value Description
OBE 0b0 Enables the output buffer.
IBE 0b1 Enables the input buffer.
PUS 0b0 Selects pull up or down.
PUE 0b0 Enables selected pull.
SSS 0b0000 Source signal, can be set using the IO multiplexing tables.

Table 6.1: Configuration of MSCR register for input.

Different registers in the SIUL2 module are dedicated to configure the in-
terrupt behaviour.

• DISR0: contains the interrupts flags.

• DIRER0: interrupt enable register.

6.3. Synchronization implementation 55

• DIRSR0: selects between interrupt and DMA access.

• IREER0: rising edge event enable.

• IFEER0: falling edge event enable.

• IFER0: enables the pad glitch filter for the interrupt.

• IFMCRn: set the glitch filter period.

• IFCPR: prescale the clock for the glitch filter.

These registers have all been configured in order to trigger the interrupt.
The microcontroller is set to handle interrupts in Software vector mode. In
this mode, an area of memory is allocated to contain the pointers to the
triggered functions by each interrupt source.
One additional register has to be configured in order to trigger the interrupt
function. It is part of the Interrupt Controller module.

• PSR[x] register field PRC_SELNn: setting this field will forward the
interrupt to core n.

• PSR[x] register field PRIN: this field controls the priority of this inter-
rupt. The interrupt is masked if the priority is 0.

The x value refers to the vector number that is connected to the interrupt
source, in our case the interrupt source is the GPIO pin.
The registers to trigger an interrupt from the input pin require a configura-
tion in a certain order. The order they are listed here is the order in which
they are configured.
It is important to notice how the PSR register is set by default to enable
core 0. If core 0 does not have to be enabled, the PRC_SELN0 field has
to be set to 0 manually.
After this configuration, the pin triggers an interrupt in core 2. To assign
a function to this interrupt, the interrupt vector table of the core has to be
modified, with the addition of the wanted function in the correct vector slot.
The function triggered in our case has been named input_detected().

56 6. Multiple units synchronization

Register Field Value Description

DIRER0 - 0x00 Masks interrupts for all GPIO pins,
disabling them.

IREER0 IREE3 0b1 Enables rising edge triggered
events for a single pad.

IFEER0 IFEE3 0b0 Disables falling edge triggered
events for a single pad.

IFER0 IFE3 0b1 Enables filtering on a single pad.

IFMCR[n] MAXCNT 0b1111

Set pad filtering period as maxi-
mum for pad n, this in order to
have the best precision during the
detection of an edge.

IFCPR IFCP 0b1111
Pre-scale the filter clock as high as
possible in order to obtain better
filtering.

MSCR - - The configuration of this register
can be found in table above.

DIRSR0 DIRSR3 0b0 Selects interrupt functionality for a
specific pad.

DISR0 - 0xFFFFFFFF Resets interrupt flags.

DIRER0 EIRE3 0b1 Enable interrupt for the required
pad.

PSRx PRC_SELNn 0b1 Enable interrupt source x for core
n.

PSRx PRIN 0 to 31 Sets the priority of the x source of
interrupts.

Table 6.2: Required settings to trigger an interrupt on a GPIO pad.

Core 2 triggering of interrupt for core 0
The approach taken to trigger the frame acquisition in core 0 will be based
on the knowledge that more time between two frames is required than the
frame transmission time. This due to the overhead from the UDP transmis-
sion of raw adc samples. The UDP transmission is in the order of hundreds
of ms, a larger value compared to the time required for a single frame to
be sent.
For simplicity, we started sending only two frames in a single second. One
at rising edge of the PPS signal and one approximately 500ms after.
The function input_detected(), triggered each time a rising edge is de-

6.3. Synchronization implementation 57

tected from the PPS signal, first raises an interrupt for core 0, second takes
care of initializing one of the timer modules present in the S32R274 micro-
controller.
This timer module, once the compare value set for 500ms matches, will
subsequently raise a second interrupt for core 0.

Core 1 functions
The function of core 1 remains the same as in the corrected code from [12].
It takes care of sending the radar raw adc values through UDP packages
once a radar frame acquisition is complete.
It also takes care of receiving configuration messages as well as the infor-
mation that the user wants embedded in the transmission.

Core 0 functions
Core 0 functions remain similar to what presented in chapter 5 on the mul-
tiple phase shifts in a single chirp.
The main difference is that in this implementation each frame transmission
is triggered through interrupts.
This has been achieved with a similar configuration as the one used in core
2. The function radar_frame_scan() encapsulates a complete frame scan
and is now executed only if triggered by vector #1 in the Software mode
interrupt signal vector table.
The additions to the isr vector table can be seen in the code below.

...
extern void radar_frame_scan(void);
...

const uint32_t __attribute__ ((aligned(4096)))
__attribute__ ((section(”.isr_vector_table”)))
IntcIsrVectorTable[] = {

/* Vector # 0 Software settable flag 0*/
(uint32_t) &dummy,
/* Vector # 1 Software settable flag 1*/
(uint32_t) &radar_frame_scan,
/* Vector # 2 Software settable flag 2*/
(uint32_t) &dummy,
...

58 6. Multiple units synchronization

...
}

With this addition, core 0 will send a frame only and only if core 2 will trigger
it.

Differences between transmitter and receiver
To simplify the post processing in this first phase two different configura-
tions have been uploaded on transmitter and receiving radar.
Two main differences are visible between the two devices:

• While the transmitting device is set to code a signal in the transmitting
waveform, the receiving device will not code any information and his
transmitted waveform will be the same as a normal FMCW radar.

• The transmitting antenna gain of the receiving device will be set to a
low value 1 over a 256 interval. This to avoid the difficulty of distin-
guishing the origin of the scattered waves.

6.4. Error propagation in the synchronization pro-
cess

Different sources of error that may lead to a loss of synchronization are
present in our system.
The sources of error in a single radar setup can be visualized in figure 6.4.
In such figure the red blocks represent the larger sources of error, while
the yellow blocks introduce less error.
The possible sources of error are:

• The GPS receiver, in our case the UBLOX NEO-7N. This block incor-
porates the error introduced by the different propagation paths of the
GPS signal, as well as the uncertainty introduced by the chip itself.
The maximum difference between two modules should be of 60𝑛𝑠,
however as discussed in chapter 6.2.2 this difference rises much
higher than 200𝑛𝑠.

• The crystal oscillator, in our case the device used in the radar boards
is a single NX3225SA from NIHON DEMPA KOGYO CO., LTD..
This crystal with a nominal frequency of 40𝑀𝐻𝑧 provides a frequency
tollerance of ±15𝑝𝑝𝑚.

6.5. Synchronization results 59

Figure 6.4: Block diagram of one radar setup.

• The S32R247 micro-controller introduces two types of uncertainty.
A hardware related uncertainty, which wewill consider as neglectable,
due to the complexity of evaluating the differences in the silicon man-
ufacturing process. A software related uncertainty, which we mini-
mized by making the developed code as linear as possible, avoiding
loops and branching unless necessary.

• The TEF810X radar transceiver acts on two different sources of error.

– It buffers the clock signal from the crystal oscillator to the S32R247
micro-controller.

– It receives the frame start signal and start the transmission of the
frame. It furthermore triggers the phase inversion during each
chirp.

Both these errors are related to the silicon manufacturing processes
of the transceiver, and while is important to know of their existence
their study goes beyond the purpose of this work.

6.5. Synchronization results
6.5.1. The radars clock slack problem
From the first runs with the synchronization setup described above we ob-
tained inconsistent results. Of the two transmitted frames in a single sec-
ond, only the first one was received correctly.
We confirmed this by disabling the second frame in a single second and
the results showed consistency.
We investigated the problem and observed how the two radar modules

60 6. Multiple units synchronization

loose the synchronization precision achieved at the beginning of the sec-
ond quickly.
In other words, while the time difference between the two PPS signals ap-
pears to be sufficient to synchronize the two radars, there appears to be a
difference in the internal timing of the two devices. One of the two radars
slacks behind the other, leading to a excessive desynchronization.

Figure 6.5: Desync at beginning of PPS:
ኺ፧፬. Figure 6.6: Desync at end of PPS: ፮፬.

To better study this behaviour, we created a simple code that would run on
an isolated core of the radar devices and change the status of the two pins
right after a certain delay from the rising edge of the PPS.
We then used an oscilloscope to read such outputs, the results can be seen
in figures 6.5 and 6.6. Figure 6.5 shows the synchronization difference
shortly after the PPS edge, while 6.6 shows the same after more than 0.8𝑠
passed from the PPS edge.
There is a significant difference between the two systems synchronicity. At
the beginning of the PPS a barely acceptable delay of 550𝑛𝑠 is present,
while at the end of the PPS we found a delay of 5𝑢𝑠. Meaning that the
useful signal will be filtered out and consequently the reception of any data
will be impossible.
The increase of 10x in the misalignment of the two signals is independent
from the GPS system and indicates a problem residing in the functioning
of the radar device.
We supposed two reasons for this behaviour can be identified, namely:

• A difference based on the software running on the two S32R274 de-
vices.

6.5. Synchronization results 61

• A difference in the delay introduced by the hardware timing module
in the two devices.

The software on the radar device has been designed in order to minimize
the time uncertainties. This has been achieved by utilizing hardware in-
terrupts on the input pin as well as the hardware timing module of the
S32R247 micro-controller to obtain a constant delay.
We verified how the root of our issue does not resides in the software by
observing how the slack between the two radars is proportional to the time
elapsed since the PPS edge. Since the delay is generated by the hardware
timing module, this excludes a software issue.
We were then able to identify the source of the problem in the delay gen-
erated by the hardware timing module. This delay is generated using a
counter on the clock signal, and for this reason the main suspect for this
mismatch is a clock signal difference in the two devices. The three hard-
ware components involved in the clock path to the timing module are the
TEF810X transceiver, the S32R247 micro-controller, and the external crys-
tal oscillator used to power the board.

Error introduced by the TEF810X transceiver
The The TEF810X transceiver simply buffers the clock signal 1 to 1 from
the crystal oscillator to the S32R247. We will consider as neglectable the
uncertainty introduced by this component.

Error introduced by the S32R247
The clock utilized by the S32R247 micro-controller timing modules is a
60𝑀𝐻𝑧 clock signal. This signal has been generated by first scaling up
of a factor 6 the external clock from 40𝑀𝐻𝑧 to 240𝑀𝐻𝑧. Secondly the
240𝑀𝐻𝑧 clock has been divided by a factor 4 to obtain the wanted 60𝑀𝐻𝑧
signal.
If the external clock contains one uncertainty of 𝛿𝑋, the clock powering the
timing modules will contain the uncertainty:

𝛿𝑌 = 𝐾ፒኽኼፑኼኾ𝛿𝑋 =
6
4𝛿𝑋 (6.3)

Our analysis does not take into account the possible differences in the
multipliers and dividers of the S32R247 micro-controller, these modules
could bring additional uncertainties.

Error introduced by the Crystal
Manufacturers list their crystal oscillators with maximum values for a series
of parameters. In this specific case, the frequency tolerance is the one we

62 6. Multiple units synchronization

should pay close attention to.
The frequency tolerance is defined as: The allowable frequency deviation
plus and minus the specified crystal frequency. It is specified in parts per
million (PPM) at a specific temperature, usually +25 degrees C.[2]
In other words, the frequency tolerance indicates the maximum allowed
difference in frequency of a crystal from the nominal value. The stabil-
ity over time and temperature of the effective frequency of the crystal is
represented by other values, and is often much better than the frequency
tolerance.
As stated previously, the crystal used in the radar boards is the NX3225SA
from NIHON DEMPA KOGYO CO., LTD., this devices is rated for a fre-
quency tolerance of ±15𝑝𝑝𝑚.

Error propagation analysis
In order to understand if the crystal oscillator frequency tolerance and the
uncertainty added in the S32R247 chip are the cause of the different be-
haviour of the timing modules, an analysis on the error propagation should
be done.
The frequency tolerance of the crystal used in the radar boards is 𝛿𝑋 =
±15𝑝𝑝𝑚 meaning that in a crystal of frequency 1𝑀𝐻𝑧 the possible devia-
tion would be of 15𝐻𝑧. In the case of a 40𝑀𝐻𝑧 clock signal, the possible
deviation would be of ±15∗40 = ±600𝐻𝑧. By taking the worst possible dif-
ference between two crystals, we obtain a possible mismatch of 1200𝐻𝑧.
The maximum frequency variation can be obtained with the generic equa-
tion:

Δ𝑓፫፲፬፭ፚ፥ = 2𝑓፫፲፬፭ፚ፥𝛿𝑋 = 1200𝐻𝑧 (6.4)

Where 𝑓፫፲፬፭ፚ፥ is the frequency of the clock signal generated by the crys-
tal, 𝛿𝑋 is the frequency tolerance of the signal and the factor 2 takes into
account how we want to find the maximum distance between two crystals.

The clock signal will then travel through the TEF810X chip without any
alteration of Δ𝑓. After being buffered by the TEF810X chip, the clock will
be scaled and divided in the S32R247 chip, leading to and uncertainty of:

Δ𝑓ፒኽኼፑኼኾ = 𝐾ፒኽኼፑኼኾΔ𝑓፫፲፬፭ፚ፥ = 1800𝐻𝑧 (6.5)

The timing module will then use a counter on the clock to produce the
required delay. We can estimate how much the maximum difference be-
tween two timing modules powered by two different crystals will be using
the frequency tolerance.

6.5. Synchronization results 63

To translate a frequency mismatch to a time mismatch over a defined time
interval, we can define the two radars as onewith frequency 𝑓ኻ = 𝑓ፒኽኼፂ፥፨፤−
Δ𝑓ፒኽኼፑኼኾ and the other with frequency 𝑓ኼ = 𝑓ፒኽኼፂ፥፨፤.
In an arbitrary interval of 𝑡ኻ = 0.7𝑠, the first radar would run 𝑛 = 𝑡ኻ ∗ 𝑓ኻ
clock cycles. The same number of clock cycles would be obtained by the
second radar in a time 𝑡ኼ = 𝑛/𝑓ኼ = 𝑡ኻ ∗ 𝑓ኻ/𝑓ኼ.
The resulting skew will be:

Δ𝑡 = 𝑡ኻ − 𝑡ኼ = 𝑡ኻ − 𝑡ኻ
𝑓ኻ
𝑓ኼ
= 𝑡ኻ − 𝑡ኻ

𝑓ፒኽኼፂ፥፨፤ − Δ𝑓ፒኽኼፑኼኾ
𝑓ፒኽኼፂ፥፨፤

(6.6)

Δ𝑡 = 𝑡ኻ − 𝑡ኻ
𝑓ፒኽኼፂ፥፨፤ − 2𝑘ፒኽኼፑኼኾ𝑓፫፲፬፭ፚ፥𝛿𝑋

𝑓ፒኽኼፂ፥፨፤
(6.7)

Since 𝑓ፒኽኼፂ፥፨፤ = 𝑘ፒኽኼፑኼኾ𝑓፫፲፬፭ፚ፥ we can simplify equation 6.7 to:

Δ𝑡 = 𝑡ኻ − 𝑡ኻ
1 − 2𝛿𝑋

1 (6.8)

Δ𝑡 = 2𝑡ኻ𝛿𝑋 (6.9)

And finally substituting the values obtained in our case:

Δ𝑡 = 2 ∗ 0.7 ∗ 15 ∗ 10ዅዀ ≈ 21𝑢𝑠 (6.10)

This value represents the worst case mismatch between the two devices
after 𝑡ኻ = 0.7𝑠. In our case, the mismatch found experimentally and visible
in figure 6.6 is well between the bounds we just computed.

Possible solutions
The cause of the synchronization problem has been identified above in a
possible mismatch between the crystals that leads the timing modules of
the S32R247 chip to generate different delays.
We also obtained a general equation for our system:

Δ𝑡 = 2𝑡ኻ𝛿𝑋 (6.11)

Where 𝛿𝑋 is the frequency tolerance of the crystal, and 𝑡ኻ is the overall
time we evaluated the delay on.
From this general equation, we can understand how the Δ𝑡 can be reduced
by following two approaches:

• Reducing the time interval evaluated. This would require a more fre-
quent synchronization signal and would lead to a lower Δ𝑡.

64 6. Multiple units synchronization

• Installing a more precise oscillator. The lower value for the frequency
tolerance for commercially available devices is around±0.5𝑃𝑃𝑆. One
example is the XTCLH40M000CHJA0P0, 40MHz oscillator.

Improving these two points could lead to amuchmore reliable synchroniza-
tion and to a solution of the radar clock slack problem. Using a crystal with
frequency tolerance of 0.25𝑝𝑝𝑠 in our system would lead to a maximum
slack of 500𝑛𝑠, a close value to the boundary condition for synchronization
calculated in chapter 6.1.

6.5.2. Collected data analysis
Unfortunately in our case we could not modify the radar hardware so dras-
tically to circumvent the radar clock slack problem. We had to limit the
number of frames transmitted in a single second to one. This lead to a
large decrease in throughput and a loss of precision in radar sensing.
Despite the issues with the on board radar clock, lowering the frames fre-
quency resulted in reliable detection of each frame.
The resulting superimposition of all the received chirps in a single frame
that was received correctly can be observed in figure 6.7. The three peaks
that can be seen in such figure correspond to the overshoot of the phase
shifts in the transmitted signal.

Figure 6.7: Received signal from receiving radar.

6.5. Synchronization results 65

Decoding of transmitted message
In order to extract the information present in the received chirps, the same
post processing described in chapter 5.5.4 can be performed.
A single chirp containing 4 bits coded can be observed in figure 6.8, the
coded information bits are 0101 as can be observed by the phase changes
in between the different bites.
Figure 6.9 shows the result of the decoding process, a peak is created for
each phase change which can be extracted by a simple threshold. This un-
der the assumption that the signal-to-noise ratio (SNR) available for com-
munication is high.

Figure 6.8: Single chirp before derivative Figure 6.9: Coded values for a single chirp,
containing the sequence 0101

One important drawback of such decoding system is that while detection
of phase shifts results is quite simple, the detection of the initial phase
compared to the previous chirp phase is difficult.
This means that in each chirp, the first bit of information has to be always
set to a known value, limiting the useful transmitted bits of information to 3
each chirp.
We leave to future work the development of a detection system for the initial
phase of consecutive chirps. This would bring back the usefulness of the
first bit of information, increasing the overall throughput.

Processing of radar signal
To process the radar signal and obtain the distance and radial velocity of
targets, first the phase shifts have to be eliminated from the 𝑋።፟ signal.
As stated in chapter 5.5.4, this process goes beyond the scope of this the-
sis and the interested reader can find an example in [16].
Once the data phase shifts have been corrected, common algorithms can

66 6. Multiple units synchronization

be applied to obtain the targets information.

7
User interface

We aim to make the work developed in this thesis useful for researchers
with minimum overhead from their side. The initial implementation dis-
cussed in chapter 3 required changes in the firmware of the radar devices
for selecting parameters as duration of chirps, number of chirps and many
others. In order to overcome this problem, a small user interface has been
developed, providing users with ease of use in setting up the radars.

7.1. Functionalities required
In order to provide control over the radar functionality, the user must be
able to modify a series of parameters.
We will divide these parameters in three classes:

• Parameters of the radar requiring no reconfiguration of any hardware
module.

• Parameters requiring a reconfiguration of the TEF810X transceiver.

• Parameters requiring a reconfiguration of the TEF810X transceiver
plus a reconfiguration of multiple hardware modules in the S32R274.

As will be explained further in this chapter, of these three classes the first
is the simpler one to implement, while the last the harder.
Furthermore, during the development of this thesis, multiple changes have
been performed on the radar device, this user interface will focus on the
last iteration of our firmware.

67

68 7. User interface

7.1.1. Parameters not requiring a TEF810X reset
These parameters can theoretically be changed in between chirps without
any message to be sent to the 𝑇𝐸𝐹810𝑋 transceiver.
Only the following five parameters can be changed in this way. They have
all been created by us during the development of this thesis.

• Continuous or GPS frame transmission. This parameter allows to
select how the frame transmission should be triggered. Two modes
are available:

– GPS triggered transmission. The transmission of a frame starts
each time a PPS rising edge is detected.

– Continuous frame transmission. Frames are sent one after each
other, independently from the GPS.

• Codingmode: This parameter selects the codingmode, three options
are available.

– No phase coding. The radar will not code any data in the chirps,
it will then send the same chirps of a normal FMCW radar.

– Alternating phase coding. The radar will alternate between phases,
changing phase three times each chirp.

– Coded string or random number. The radar will code a string or
random number in each frame.
After this setting has been selected, the radar will wait for a ran-
dom number or string through TCP and only after it has been
received it will start coding.

• First phase change delay: This parameter will select the delay from
the beginning of a chirp to the first phase shift. The resolution of this
value is 1/60𝑢𝑠.

• Second phase change delay: This parameter will select the delay
from the first phase shift to the second phase shift in each chirp. The
resolution of this value is 1/60𝑢𝑠.

• Third phase change delay: This parameter will select the delay from
the second phase shift to the third phase shift in each chirp. The
resolution of this value is 1/60𝑢𝑠.

7.1. Functionalities required 69

7.1.2. Parameters requiring a reconfiguration of the TEF810X
transceiver

This class of parameters requires a reconfiguration of the 𝑇𝐸𝐹810𝑋 transceiver.
However, it does not require any hardware module of the 𝑆32𝑅274 micro-
controller to be reconfigured.
In other words, the firmware changes required for these parameters do not
require us to modify the client or server programs running on the user side,
and do not require complex reconfiguration procedures to be performed on
the micro-controller.
These parameters are:

• ADC module sampling rate.

• Chirp centre frequency.

• Effective Bandwidth of chirp.

• 𝑇 ፰፞፥፥, 𝑇፬፞፭፭፥፞, 𝑇፣፮፦፩ፚ፤, 𝑇፫፞፬፞፭ as defined in chapter 2.

• Low pass filter cut-off frequency.

• High pass filter cut-off frequency.

• Transmission antenna gain.

• Receiver antenna gain.

For information on the supported values of these parameters we refer the
reader to the reference manual of the 𝑇𝐸𝐹810𝑋 transceiver.

7.1.3. Parameters requiring reconfiguration of hardware
module in S32R274

The third and last class of parameters requires a much more complex pro-
cedure to provide run time changes.
Apart from the 𝑇𝐸𝐹810𝑋 transceiver, three additional modules have to be
reconfigured, the MIPI module, the SPT module and the FNET stack.
The MIPI module provides a high speed communication channel between
the 𝑆32𝑅274 micro-controller and the 𝑇𝐸𝐹810𝑋 transceiver. This channel
is used only for the transmission of the sampled ADC values.
The SPT module is the Signal Processing Toolbox included in the radar
processing platform of the 𝑆32𝑅274 micro-controller, it takes care of per-
forming post-processing on the data collected. It also decides in which
position and fashion to store the received samples.

70 7. User interface

The FNET Stack is a TCP/IPv4 Stack, it manages the communication be-
tween radar device and PC, for both TCP and UDP packets. This Stack
has been modified by NXP to provide initial functionality.
The parameters which will require these modules to be altered are two:

• Number of samples per chirp

• Number of chirps each frame

The reason these two parameters require additional changes are related
to two aspects: memory occupation and UDP packet structure.
Two independent modules of the 𝑆32𝑅274 need to access the same data:

• The Radar Processing Platform, stores the received ADC samples
according to dimension of frame and number of samples.

• Core 1 extracts the samples from memory, estimating the location
from the number of samples and frame size. It then divides them in
appropriate sized packets to be sent.

Communication between these two modules is essential and was not sup-
ported in the firmware developed in the previous chapters.

7.2. User interface design
The user interface design started from the easier parameters, scaling up
of difficulty with the progression of the work.
We started the development by choosing a programming language. Our
choice fell on python for the ease of implementation as well as for the porta-
bility of such language.
We then implemented a simple client program to substitute the one de-
scribed in chapter 3. This client is a command line based user interface
and allows us to modify the setting of the radar with an intuitive series of
multiple choice menus.
The starting screen can be seen in figure 7.1. From the beginning three
options are available:

• Sending a string to the radar to be coded and then transmitted.

• Sending a random number to the radar to be coded and transmitted.
This random number is also saved locally in a binary format.

• Changing the settings of the radar device.

7.2. User interface design 71

Figure 7.1: Starting screen for User Interface

From this menu, the first two options allow the user to send information to
the radar to be encoded. Such functionality can be seen in figures 7.3 and
7.2.
Once the user inserts a string or selects the random number, the program
will restart, going back to the initial screen.

Figure 7.2: User procedure to send a string.

The third option allows the user to change the settings of the radar. Select-
ing this option will bring to a separate menu, where the user will be able to
insert the desired parameters.
The current list of modifiable parameters can be seen in figure 7.4.

72 7. User interface

Figure 7.3: User procedure to send a random number.

Figure 7.4: Menu for selecting the parameter to be changed.

As can be seen two parameters are missing. More specifically, the number
of samples per chirp and the number of chirps per frame.
This is caused by the difficulties encountered while resetting the FNET
stack. This stack takes care of the transmission through UDP of the sam-
pled data and has been modified from NXP in order to transmit packets
with a custom format.
The complexity of FNET makes it very difficult to create a single function
to reset its status while simultaneously changing the required parameters.

8
Conclusion

Obtaining communication between two radar devices by modulating the
sensing waveform remains a complex issue, requiring multiple stages of
development. In this work, the first steps to create a physical layer for
such communication technology have been laid down.
Two contributions to FMCW radar communication have been given:

• Real communication has been achieved between two separate radar
devices. This result was obtained using two physically separated
units composed by a FMCW radar and a GPS receiver each.

• Phase inversion during chirp transmission was achieved, increasing
the overall throughput of this communication system by a factor three.

Furthermore, a software interface has been developed allowing inexperi-
enced users to configure the developed firmware. This with the objective to
ease the accessibility to our system and future developments in this tech-
nology.

While the three main research objectives have been accomplished, large
obstacles have also been encountered.
The main limitation we faced bounds the maximum speed of communica-
tion between two stations. At its source are two hardware characteristics
of our devices:

• The difficulty to match nominal frequency between crystals installed
in different radar devices leads to a loss of synchronization between
the two devices. Limiting the data transmission to a single radar
frame each second.

73

74 8. Conclusion

• The large overshoot after a phase inversion on the transmitted wave-
form limits the amount of data that can be transmitted within a radar
frame without compromising the sensing functionality of the radar de-
vices.

Another limitation we encountered rises from the complexity in changing
certain parameters during run time in the radar system. For this reason,
two parameters could not be included in the user interface, namely the
number of samples per chirp and the number of chirps per frame.

In conclusion, the implementation proposed in this work achieves the ob-
jectives we set off to achieve in chapter 1.4, these positive results are how-
ever limited from different factors.

8.1. Future work
Solutions to the limitations described above span out of the scope of this
thesis. However, these obstacles could be overcame in future research.
Both the frequency discrepancy between radar devices and the large over-
shoot during phase inversion could be solved with a follow upmaster thesis
or phd research. The large frequency difference would require a more ac-
curate source of clock, something that can be implemented as an addition
to the transceiver and micro-controller used during this thesis, requiring
only a new PCB design. Correction of the overshoot can only be accom-
plished with a redesign of the transceiver module, requiring expertise in the
field of integrated circuits design.
Due to the hardware nature of these problems, a collaboration with a semi-
conductor company, such as NXP, would be greatly beneficial and prob-
ably essential. Such a partnership would allow the development of dedi-
cated hardware. Additionally, dedicated firmware could be developed ground
up to meet the requirements of the researchers, without the limitations im-
posed by the current transceiver.

Bibliography

[1] Nevio Benvenuto. Principles of Communications Networks and Sys-
tems. John Wiley & Sons, Incorporated, 2011.

[2] Steven Bible. Crystal Oscillator Basics and Crystal Selection for rfPIC
and PICmicro Devices. Microchip Technology Inc., 2002.

[3] Graham M. Brooker. Understanding millimiter wave fmcw radars. 1st
International Conference on Sensing Technology, pages 152–157,
2015.

[4] Kar-Ming Cheung. Accuracy/computation performance of a new tri-
lateration scheme for gps-style localization. 2018 IEEE Aerospace
Conference, 2018.

[5] FNET Community. fnet, embedded open source tcp/ip stack, 2011.

[6] Irfaan Coonjah. Experimental performance comparison between tcp
vs udp tunnel using openvpn. International Conference onComputing,
Communication and Security (ICCCS), 2015.

[7] A. Zapp E. D. Dickmanns. Autonomous high speed road vehicle guid-
ance by computer vision. IFAC Proceedings Volumes, 1987.

[8] Ahmed M. Eid. System simulation of rf front-end transceiver for fre-
quency modulated continuous wave radar. International Journal of
Computer Applications, 2013.

[9] F. Tigrek S. Orru A. Alvarado F. Willems A. Yarovoy F. Lampel,
F. Uysal. System level synchronization of phase-coded fmcw auto-
motive radars for radcom. in Proceedings 14th European Conference
on Antennas and Propagation, EuCAP 2020, March 15-20, 2020.

[10] B. Hofmann-Wellenhof. GPS Theory and Practice. Springer Wien
New York, 1992.

[11] MIPI Alliance Inc. MIPI Camera Serial Interface 2, 2017.

75

76 Bibliography

[12] TasneemR. Khan. Automotive radar: real-time implementation of joint
sensing and communication waveform on a microcontroller. Master
Thesis TU Delft, 2018.

[13] James Kirchner. Data Analysis Toolkit n5: Uncertainty Analysis and
Error Propagation. Berkeley Seismology Laboratory. University of
California., 1995.

[14] NXP. S32R274 reference manual, 2019. URL https://tinyurl.
com/ybs5r9c4.

[15] Defense Advanced Research Projects Agency Information Process-
ing Techniques Office. RFC 791 - INTERNET PROTOCOL, 1981.

[16] F. Uysal S. Orru. Phase coded fmcw automotive radar: Application
and challenges. in Proceedings IEEE International Radar Conf., May
2020.

[17] NXP Semiconductors. S32R274 datasheet, 2019. URL https://
www.nxp.com/docs/en/data-sheet/S32R274DS.pdf.

[18] NXP Semiconductors. TEF810X datasheet, 2019. URL https:
//www.nxp.com/products/rf/radar-transceivers/
tef810x-fully-integrated-77-ghz-radar-transceiver:
TEF810X.

[19] Charles E. Spurgeon. Ethernet: The Definitive Guide. O’Reilly Media,
2014.

[20] IEEE standards association. 802.3 - IEEE Standard for Ethernet,
2018.

[21] Inc. Tesla. Tesla vehicle autopilot functionality, 2020. URL https:
//www.tesla.com/autopilot.

[22] Federico Thomas. Revisiting trilateration for robot localization. IEEE
transactions on robotics, 2005.

[23] Ublox. Neo-7 datasheet, 2013. URL https://www.u-blox.
com/sites/default/files/products/documents/NEO-7_
DataSheet_%28UBX-13003830%29.pdf.

https://tinyurl.com/ybs5r9c4
https://tinyurl.com/ybs5r9c4
https://www.nxp.com/docs/en/data-sheet/S32R274DS.pdf
https://www.nxp.com/docs/en/data-sheet/S32R274DS.pdf
https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X
https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X
https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X
https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X
https://www.tesla.com/autopilot
https://www.tesla.com/autopilot
https://www.u-blox.com/sites/default/files/products/documents/NEO-7_DataSheet_%28UBX-13003830%29.pdf
https://www.u-blox.com/sites/default/files/products/documents/NEO-7_DataSheet_%28UBX-13003830%29.pdf
https://www.u-blox.com/sites/default/files/products/documents/NEO-7_DataSheet_%28UBX-13003830%29.pdf

	Introduction
	Context
	Problem definition
	Previous research
	Research objective and questions
	Thesis outline

	Theory and backgound
	Radar
	FMCW radar

	BPSK modulation
	GPS
	Trilateration

	Ethernet and UDP/TCP
	Ethernet
	IP TCP/UDP

	Uncertainty propagation rules
	Radar development platform
	TEF810X
	S32R274

	Previous work
	PC client application
	Radar Board reception of message
	Shared memory and semaphore implementation
	Radar Board transmission of waveform
	Radar Board reception of the waveform
	PC server reception
	Matlab post processing
	Summary

	Test setup evolution
	Initial test setup
	Test setup with GPS
	Additional test setups

	Multiple symbols encoding in single chirp
	Radar settings and setup
	Development platform upgrades

	Timing functions
	Estimating the correct delay
	Using SPI commands
	SPI results

	Using the dedicated pin
	Code for pin switch
	Configuration of output pin
	Pin switch results
	Data post processing

	Multiple units synchronization
	The need for synchronization
	Different ways to synchronize
	Ethernet synchronization
	GPS synchronization
	Synchronization method chosen

	Synchronization implementation
	Hardware
	Software

	Error propagation in the synchronization process
	Synchronization results
	The radars clock slack problem
	Collected data analysis

	User interface
	Functionalities required
	Parameters not requiring a TEF810X reset
	Parameters requiring a reconfiguration of the TEF810X transceiver
	Parameters requiring reconfiguration of hardware module in S32R274

	User interface design

	Conclusion
	Future work

	Bibliography

