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Experimental Validation of Model-Based Control
Methods for Shape Regulation in Soft Robots

Ghanishtha Bhatti

Abstract—Soft robots are characterized by compliant elements
that introduce heightened kinematic complexity compared to
their rigid counterparts. Such systems, with infinite degrees of
freedom, are inherently underactuated, making precise real-time
shape regulation a challenging task. Model-based controllers, uti-
lizing tractable reduced-order modeling methods, have emerged
as promising solutions. However, practical implementations of
these methods often rely on fully-actuated approximations, over-
looking the underactuated nature of these continuum structures.
In this study, we aim to experimentally validate model-based
controllers that explicitly account for underactuation, surpassing
the theoretical feasibility demonstrated in simulation. These
controllers incorporate gravity cancellation and compliance com-
pensation using the dynamic model of the robot to achieve
superior real-time shape regulation compared to conventional
PD/PID controllers. To facilitate this experimental validation,
we have built a multi-segment soft robot research platform that
includes a passively actuated segment, allowing for the utilization
of both actuated and unactuated degrees of freedom in the
control feedback loop. Through rigorous experimentation, we
provide comprehensive evidence of the efficacy of this class of
model-based controllers in controlling unconventionally actuated
systems. Consequently, our work bridges the gap between theory
and practice, resulting in a practical real-time shape regulation
framework that is adaptable to a vast variety of soft robotic
systems.

Index Terms—Soft Robotics, Model-Based Control, Experi-
mental Validation, Shape Regulation.

I. INTRODUCTION

Over the past decade, there has been a surge of interest
in human-machine interaction, which has fueled significant
advancements in the field of soft robotics. This specialized
category of robotic systems intentionally incorporates com-
pliant elements into their mechanical structure, leveraging
unique properties for enhanced functionality [1]. Inspired by
biological organisms, soft robots represent a paradigm shift
in the way machines interact with their surroundings. Unlike
traditional rigid robots, soft robots excel in tasks requiring
gentle interactions and adaptability. Their deformable nature
provides them with the unique ability to navigate through
complex and constrained environments, making them invalu-
able in applications such as universal grippers [2], underwater
navigation [3] and medical surgery [4].

Despite numerous proposed designs for soft robots, achiev-
ing precise and manageable regulation of the robot’s configu-
ration remains an open control challenge [5]. Soft robots, in
contrast to their more conventional rigid counterparts, are cat-
egorized as having infinite degrees of freedom, rendering them
inherently underactuated systems. Underactuation provides
soft robots with a larger reachable configuration space at the

same actuator cost and energy consumption compared to fully-
actuated systems [6]. However, this property also complicates
the modelling of these structures, often leading to scenarios
where the system’s control actions and outputs are not well-
matched, which makes applying well-known robotic control
concepts difficult to directly use [7]. This unique quality
indicates that the time evolution of such continuum structures
is governed by nonlinear partial differential equations and
analytically integrating these is a formidable task [8].

While data-driven controllers have successfully tackled this
control challenge by circumventing the necessity for intricate
models [9], acquiring the extensive data required for a compre-
hensive control policy often proves impractical. Furthermore,
these data-dependent mechanisms risk obsolescence when
confronted with alterations in the robot’s material properties,
operational context, or environment. Consequently, attention
shifts towards model-based control strategies, offering the
potential to significantly enhance control performance in reg-
ulation tasks by leveraging our understanding of the system’s
dynamics. However, deploying these control policies necessi-
tates a delicate balance between model accuracy and compu-
tational feasibility for real-time control [10]. The introduction
of innovative reduced-order modelling techniques has played
a pivotal role in bridging this gap, yielding a range of robust
control strategies with proven stability [11].

Despite successful validation, most works focusing on
model-based control of soft robots predominantly rely on

Fig. 1. Multi-segment soft robot testbench developed as part of this study.



fully-actuated approximations. These approximations simplify
the control problem by assuming that each part of the robot can
be independently controlled, neglecting the intrinsic underac-
tuation characteristic of continuum structures. While effective
in specific scenarios, such an approach might lead to sub-
optimal performance and overlook the unique characteristics
that underactuation introduces. A notable instance where this
aspect plays a significant role is in passively-actuated soft
robots. These unconventional robotic systems, often devoid
of traditional motor-driven actuators, rely on inherent material
properties and external stimuli for motion. The absence of
active actuation introduces novel challenges in control and
regulation, as the robot’s response is intricately linked to its
passive dynamics [12]. Understanding and effectively harness-
ing these dynamics can unlock new frontiers for applications
in environments where traditional robots may encounter limi-
tations.

To address these challenges, a class of control laws explic-
itly using both actuated and unactuated degrees of freedom
has been proposed and validated in simulation by Pustina
et al. in [13] and [14]. However, these studies lack the
experimental validation needed to empirically ascertain the
robustness of the control architecture. Consequently, this work
aims to explore the experimental facet of soft robot control
by implementing a real-time model-based control strategy
using the piecewise constant curvature assumption on the
multi-segment soft robotic platform shown in Fig. 1, with
a focus on the task of shape regulation. Our objective is to
demonstrate on hardware setups that model-based control can
significantly enhance shape regulation control performance
compared to conventional model-free alternatives. Further-
more, we uniquely contribute by providing empirical proof
of robustness for controllers that account for both actuated
and unactuated degrees of freedom through experimentation
on a (semi-)passively actuated soft robot setup. By addressing
the distinct challenges posed by these systems, our goal is to
contribute to the broader understanding of soft robotic control
strategies and their applicability across a spectrum of robotic
platforms.

The organization of the paper is detailed as follows. Fol-
lowing the introduction, the subsequent chapters delve into
the core components of our research. A description of the
mechanical, actuation, and sensory frameworks present in
the soft robot platform is explained in Section II. Section
III presents the mathematical modelling foundations, empha-
sizing the kinematic and dynamic formulations crucial to
our control strategies. In Section IV, we detail model-based
control systems, discussing their components and operational
principles. Moving to Section V, we transition from theory
to practice, outlining the methodologies and setups used for
our real-world validations. Section VI unveils the outcomes
of our experimental endeavours, offering insights into the
performance of our control strategies. Finally, Section VII
encapsulates the key takeaways and discusses the implications
of our work.

TABLE I
ABBREVIATIONS USED IN THE TEXT

Abbreviation Expansion
PCC Piecewise Constant Curvature
PID Proportional-Integral-Derivative
PLA Polylactic Acid
CAD Computer-Aided Design
SDK Software Development Kit
IMU Inertial Measurement Unit
PC Personal Computer
S1 First Soft Segment
S2 Second Soft Segment

SV1 Single Segment Robot
SV2 Two Segment Robot
M1 Single Segment Simulation
M2 Two Segment Simulation

II. DEVELOPED SOFT ROBOT PLATFORM

The robot’s body consists of lower and upper soft silicon
segments, called S1 and S2 respectively, interfaced with sev-
eral metal and PLA assemblies. The robot was manufactured
using a combination of casting, moulding, and 3D printing
techniques. Part of the robot’s design was proposed and
implemented by B. Deutschmann et. al in [15]. The various
aspects of the robot’s mechanical and electronic design are
detailed below and illustrated in Fig. 2.

Fig. 2. Mechanical and electronic components of the soft robotic platform.
The mount between S1 and S2 can be unfixed to convert between the SV1
and SV2 variants.

2



TABLE II
MATERIAL PARAMETERS FOR SOFT ROBOT SEGMENTS

Parameter Units S1 S2
Mass∗ kg 0.543 0.639

Rest Length∗ m 0.095 0.3
Radius∗ m 0.0325 0.0325

Young’s Modulusid Pa 3.67× 105 2.01× 105

Poisson’s Ratiom – 0.3 0.3
Damping Coefficientid Ns/m 0.854 0.191

(∗) measured, (id) identified, (m) manufacturer specification

A. Soft Segments

The soft bodies are produced using a mould-casting proce-
dure, with CAD-designed moulds 3D printed in PLA. Sub-
sequently, the bodies are cast in silicon, specifically Dragon
Skin 30A and 10A for S1 and S2, respectively. Mechanical
properties crucial for the dynamic model are outlined in the
accompanying Table II. These parameters have been acquired
through manual measurements, manufacturer specifications,
and identification procedures using data from the robot.

Two rigid platforms manufactured are present at the base
of the robot and between the two segments. These platforms
provide attachment points in four quadrants for the tendons
driving the robot. For less stiff soft elements the assembly
could instead be 3D printed, but the current implementation
requires a platform that can sustain the application of a large
force without deformation or deterioration hence it has been
manufactured in aluminium.

S2 is attached to the metal platform through a 3D-printed
mount. This mount can easily be detached, thus making the
setup modular and allowing tests to be carried out with either
a single or two soft segments. For the remainder of this
article, we will refer to the setup variation with a single
directly actuated soft segment as SV1 and the two-segment
setup variant including the passively actuated soft body as
SV2. A small conical component has also been 3D-printed to
serve as a discernable visual guide during the camera-recorded
experiments.

B. Actuation

The actuation is provided through a four-tendon system
that exerts a force at the central metal platform interfacing
the two soft bodies. Each tendon can be tensioned using
a dedicated Dynamixel® XH430-W350 coreless servo motor
[16]. The motors are connected in a daisy-chained fashion
with a U2D2 power hub that provides a central interface for
serial communication. Custom software wrappers built around
the Dynamixel® SDK provide a channel to issue current
commands synchronously to the four motors based on the
control action computed by the controller.

As a result of this actuation design, S1 experiences direct
actuation, whereas S2 is only passively actuated. Such actu-
ation that functions by virtue of the tilt of the platform, the
body’s own weight, and the elasticity of the segment is quite
unconventional in robots. Passively actuated components can
be deliberately added to soft robot designs to have systems that

require less energy to navigate than conventional robots while
morphing their shape based on the environment making them
adaptable and safer to interact with. In our experimental setup,
the passive segment serves as an exploration into whether
model-based techniques can deliver precise control by taking
into account the unactuated dynamics of the system.

C. Sensors

The robot is equipped with two Adafruit® BNO055 IMU
sensors [17], one attached at the tip of each of the soft
segments. The IMU outputs the orientation of the sensor in the
quaternion format (ζw, ζx, ζy , and ζz). While other formats
such as Euler angle notation can also be used, the quaternion
method does not suffer from gimbal lock, indicating that there
are no singularities when describing the orientation in this
format. The orientation can be represented as a rotation matrix

R =

[
ζ2
w + ζ2

x − ζ2
y − ζ2

z 2(ζxζy − ζwζz) 2(ζxζz + ζwζy)

2(ζxζy + ζwζz) ζ2
w − ζ2

x + ζ2
y − ζ2

z 2(ζyζz − ζwζx)

2(ζxζz − ζwζy) 2(ζyζz + ζwζx) ζ2
w − ζ2

x − ζ2
y + ζ2

z

]
.

(1)
When this matrix is equated with the kinematic model

discussed in the following section, we can uniquely derive the
curvature in both the x and y axes for a particular segment.
As there are no absolute position sensors on the robot, we
choose to rely on the tendon length measurements using
the motor’s position encoder as a more accurate method to
evaluate the elongation or compression of the soft bodies.
This method has been chosen rather than deriving this value
from the acceleration estimates of the IMU due to the latter’s
tendency to be sensitive to noise. It also follows from this
that we can only compute the change in length for S1 as
we have no tendons attached to the tip of S2. However,
considering the material properties used for the segment the
elongation or compression is known to be significantly smaller
than the curvature. Therefore, we have assumed that the
elongation and compression of S2 is negligible for our robot.
A complete overview highlighting the hardware interfaces and
their interconnection is shown in Fig. 3.

Fig. 3. Overview of the hardware and interfaces that make up the system
architecture.

III. SYSTEM MODELLING

In this section, we explore the fundamental principles
that serve as the backbone for the kinematic and dynamic
modelling techniques applied in our investigation. A compre-
hensive grasp of these reduced-order modelling principles is
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pivotal for devising efficient control strategies. It is important
to acknowledge that several principles and mathematical nota-
tions in this section have been summarized as reporting them
comprehensively is not within the scope of this article.

A. Kinematic Model

To characterize the kinematics of our soft robot, we employ
the basic principles of the Cosserat rod theory, as outlined
in [18] and [19]. According to this theory, the configuration
space of any rod-like continuum body with a rest length L0

is defined by the curve gc(·) : s → gc(s) ∈ SE(3), where
s ∈ [0 L0] ⊂ R represents the material abscissa. To describe
the local motion and deformation, we use the strain vector
ξ = (g−1

c
∂gc
∂s )

∨ ∈ R6. Here, the (·)∨ operator maps an element
from the Lie algebra to its corresponding vector space. This
strain field comprises both linear and angular components.

An exact geometric description of the continuum body’s
configuration requires computing each strain component by
solving a partial differential equation with respect to s. Un-
fortunately, this is computationally demanding, particularly for
real-time control. To overcome this, we adopt the piecewise
constant curvature (PCC) assumption, commonly used in soft
robotics, making our kinematic formulation computationally
tractable. This assumption views the continuum body as com-
posed of a finite number of sequential arcs, each with constant
curvature. Mathematically, this implies that the components
of the curvature k(s) ∈ R2 within a single PCC segment are
independent of s at every instant of time.

While the PCC assumption significantly simplifies the com-
putational complexity of the model, it necessitates certain
conditions to be met. The robot’s structure must resemble a
slender rod, with its length much larger than its other dimen-
sions, ensuring that bending and elongation are the dominant
modes of deformation. Additionally, each PCC segment must
have linearly uniform material properties.

In the case of our soft robot testbench, we can observe that
the conditions for the PCC assumption hold when considering
S1 and S2 each as individual PCC segments. This division
ensures that each segment resembles a homogeneous slender
rod, and their deformations stay within limits that do not
deviate significantly from the constant curvature hypothesis.
Therefore, this modelling approach proves pragmatic and
effective for our soft robot platform, balancing computational
efficiency with an acceptable level of accuracy for real-time
control.

A common set of generalized coordinates used to depict the
configuration of a continuum body as a PCC segment is

qα = (θ, ϕ, δL) ∈ R3. (2)

This parameterisation is sometimes referred to as the α-
parameterisation and is illustrated in Fig. 4 . Here, θ is the
angle of curvature, ϕ is the angle made by the plane in which
the bending occurs, and δL is the change in length of the
constant curvature segment with respect to L0. These coor-
dinates, while widely used, suffer from some shortcomings
including the infinite ways to depict a straight configuration

Fig. 4. Kinematic model showing a single segment with configuration
characterised by the α parameterisation.

as the value of ϕ is no longer meaningful. Interested readers
can refer to [20] for a more elaborate discussion on these
limitations. An improved parameterisation that circumvents the
issues observed in the α-parameterisation is given by

q∆ = (∆x,∆y, δL). (3)

This is aptly called the ∆-parameterisation, and evaluates the
configuration uniquely using two curvature coordinates ∆x
and ∆y which are related to ϕ and θ by

ϕ(q) = arccos

(
∆x

∆

)
= arcsin

(
∆y

∆

)
, θ(q) = ∆, (4)

where
∆ =

√
∆x2 +∆y2. (5)

In the remainder of the paper, q always refers to q∆
unless otherwise specified. It follows that the velocity and
acceleration can be defined with the same notation as q̇ =
(∆̇x, ∆̇y, ˙δL) and q̈ = (∆̈x, ∆̈y, δ̈L). Each PCC segment
has two frames, one at the tip {Si} and one at the base
{Si−1}. The base frame is mapped onto the tip frame by
means of a homogenous transformation matrix T i

i−1 consisting
of rotation Ri

i−1 ∈ SO(3) and translation trii−1 ∈ R3 parts.
This transformation matrix is formulated as

T i
i−1 =

[
Ri

i−1 trii−1

03 1

]
, (6)

where

R
i
i−1=


1+

∆2
x

∆2

(
cos

(
∆s
L0

)
−1

) ∆x∆y

∆2

(
cos

(
∆s
L0

)
−1

) ∆x
∆ sin

(
∆s
L0

)
∆x∆y

∆2

(
cos

(
∆s
L0

)
−1

)
1+

∆2
y

∆2

(
cos

(
∆s
L0

)
−1

) ∆y
∆ sin

(
∆s
L0

)
−∆x

∆ sin
(
∆s
L0

)
−∆y

∆ sin
(
∆s
L0

)
cos

(
∆s
L0

)
,

tr
i
i−1 =

(L0 + δL)

∆2

∆x(1 − cos(∆s
L0 ))

∆y(1 − cos(∆s
L0 ))

∆(sin(∆s
L0 ))

 .

B. Dynamic Model
We use the Euler-Lagrange approach to compute the quan-

tities necessary to build the equation of motion of the system
[21]. The Lagrangian L(q, q̇) of the system is computed as
follows using the kinetic T (q, q̇) and potential V(q) energies
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L(q, q̇) := T (q, q̇)− V(q), (7)

where

T (q, q̇) =
∫ l

0

[
1

2
ρAvT v +

1

2
ωT ρJω

]
ds,

V(q) =
∫ l

0

[
1

2
(u− u∗)TKbt(u− u∗)

+
1

2
(w − w∗)TKse(w − w∗)

+ ρAgT p

]
ds.

In the above equations ρ is the material density, A is the
cross-sectional area, g ∈ R3 is the gravitational vector, and
l is the total rest length of the body. The translation and
angular velocities are given in the local frame by v and ω
respectively. The curvature vector in the local frame is given
by u := (RTRs)

∨ where Rs is the partial derivative of the
rotation matrix in terms of the arclength parameter and here the
(.)∨ operator specifically maps so(3) onto R3. u∗ is its value
at initialisation. Analogously, the rate of change of position
with respect to arc length is given by w = RT trs where trs
is the partial derivative of the kinematic translation vector with
respect to the arclength parameter and w∗ is its value at when
the system is devoid of stress. J ∈ R3×3 is the rotational
inertial matrix

J =

Ixx 0 0
0 Iyy 0
0 0 Izz

 , (8)

where
Ixx = Iyy =

πr4

4
,

Izz = Ixx + Iyy.

Here, r represents the cross-sectional radius of the rod. The
stiffness matrices are given by

Kse =

G 0 0
0 G 0
0 0 E

A, Kbt =

E 0 0
0 E 0
0 0 G

 J, (9)

where Kse and Kbt ∈ R3×3 are the shear/extension and
bending/torsion respectively. Here, the shear modulus G is

G =
E

2(1 + vp)
.

We have assumed that the soft bodies being modelled satisfy
the condition for a diagonal stiffness matrix: a symmetric
rod with linear isotropic material properties. Here, vp is the
Poisson’s ratio and E is the Young’s modulus of the material
[22].

From the Lagrangian, we can obtain the dynamics of the
system through the Euler-Lagrange equation

∂

∂t

(
∂L
∂q̇

)T

−
(
∂L
∂q

)T

= Qnc, (10)

where Qnc denotes the generalised non-conservative forces on
the body. This allows us to also derive the resultant dynamic
equation of motion in the form

M(q)q̈ + C(q, q̇)q̇ +D(q)q̇ +N(q) = τ(q), (11)

where M(q) is the mass matrix computed using the La-
grangian by

M(q) =
∂2L
∂q̇2

. (12)

C(q, q̇) is the matrix consisting of the Coriolis and centrifugal
terms. We have used the Christoffel symbols approach to
compute this term.

C(q, q̇) = [cij ], (13)

where

cij =

n∑
k=1

Γijkq̇
k,

and

Γijk =
1

2

(
∂2L

∂qi∂qj
∂qk

∂t
+

∂2L
∂qi∂qk

∂qj

∂t
− ∂2L

∂qj∂qk
∂qi

∂t

)
.

N(q) consists of the potential energy vector governing
the system. It constitutes both the contributions from the
gravitational force as well as the stiffness force.

N(q) =

(
∂V
∂q

)T

= G(q) +Kq. (14)

D(q) denotes the damping matrix of the system that is
derived from the Kelvin-Voigt type viscous damping as elabo-
rated in [23]. The term τ represents the generalised actuation
force exerted on the system. We have assumed that there are
no other external forces acting on the body apart from those
discussed above. Based on this assumption we can formulate
the steady-state equilibrium equation

τ = N(q) = G(q) +Kq. (15)

C. Modelling Underactuated Dynamics

The dynamic model detailed in the previous section uses
generalised coordinates q ∈ Rn which makes the formulation
universally applicable to several types of robotic systems. In
the specific case of soft robot dynamics which are charac-
terised by inherent underactuation, q consists of both actuated
qa ∈ Rna and unactuated components qu ∈ Rn−na , therefore
q = (qa, qu). In order to bypass the need to incorporate
the unactuated component into the system dynamics, previous
work often relies on the fully-actuated approximation q ≈ qa.
However, this is a coarse approximation that does not allow
us to effectively utilize the unactuated nature of the soft robot
which makes for a less accurate model and consequently
controllers that cannot account for the motion initiated by the
passive dynamics of the system.

In [13] it has been shown that we can incorporate both
actuated and unactuated components of q into (11) to derive
the equation of motion

5



[
Maa Mau

Mua Muu

] [
q̈a
q̈u

]
+

[
Caa Cau

Cua Cuu

] [
q̇a
q̇u

]
+

[
Ga

Gu

]
+

[
Kaa 0
0 Kuu

] [
qa
qu

]
+

[
Daa Dau

Dua Duu

] [
q̇a
q̇u

]
=

[
τ
0

]
.

(16)

In the above equation, the components of the dynamic
model have been further subdivided into elements correspond-
ing exclusively to the actuated or unactuated variables as well
as the contribution that arises from their coupling. Using this
representation of the system we can deduce how the passive
degrees of freedom affect the body’s motion and as a result
control laws that encapsulate this behaviour can be designed.

IV. CONTROL STRATEGY

The control strategy has been formulated to fulfil the task of
shape regulation. This involves providing a reference configu-
ration qd ∈ R3 for the soft segments to converge through the
computed control action. To further this goal, we have utilised
variants of model-based feedback regulators which are detailed
in the following subsections.

A. Shape Regulation

Shape regulation involves converging an object’s spatial
configuration to a reference value. In shape regulation, we are
not so interested in a specific time-parametrized transition of
geometry as we are in accurately achieving a single desired
shape over some period of time, which differentiates it from
trajectory tracking. We can define this objective more formally
through its error criteria as follows [5]:

lim
t→∞

q(t)− qd = 0. (17)

The error is computed purely based on the given spatial
reference which remains independent with respect to time.
Shape regulation finds primary importance in manipulation
tasks involving soft end-effectors (or soft manipulators) for
grasping objects with curvature or non-planar contours [24].
This is because we are usually more interested in the accuracy
and repeatability of grasping rather than achieving it at a
particular time slice. Another area where such control can
be suitable is in insertion or navigation tasks where narrow
crevices are involved [25]. In case we need to explore a pipe
or probing vessels in the human body, deforming precisely to
a given configuration is key and speed is a secondary criterion
for success.

B. PD+ Controllers

In the realm of shape regulation, a comprehensive model
significantly enhances the performance of PID-style regula-
tors. Within this context, our controllers integrate two crucial
model-based components: gravity cancellation and elasticity
compensation.

Gravity cancellation leverages the body’s current configu-
ration to provide a counteractive control action to the grav-
itational force. This allows the remaining elements of the

controller to operate as if the system is unaffected by gravity.
Simultaneously, elasticity compensation is employed to partly
counteract the effects of the elastic restoring force exerted
by the soft bodies. Notably, unlike complete cancellation
strategies, this compensation scheme employs the desired
configuration rather than the current state of the soft body. This
aims to harness the benefits of the body’s elasticity for system
stabilization without completely nullifying its effects, ensuring
that the presence of compliance is not entirely cancelled. Using
these methods we can formulate the control law for a model-
based PD controller, referred to as the PD+ controller for the
remainder of the paper, as

τPD+ = KP (qd − qa)−KD q̇a +Ga(q) +Kaaqd. (18)

By assimilating these model-based aspects, our controllers
exhibit an interesting feature—they require smaller control
gains to fulfil the control objective, resulting in less aggressive
control actions and fewer oscillations during settling.

While this may provide ideal performance when testing
in simulation, application on hardware implies that we are
bound to experience mismatches between the physical body
and its model. This discrepancy appears due to a number
of factors, however, chief among them is the difficulty of
accurately measuring parameters such as stiffness and damping
from the system. The usual way to achieve good estimates of
these parameters is through parameter identification using data
collected from the testbench. As the data can never be fully
comprehensive enough to account for all operational cases
of the robot, model-body mismatches always persist to some
extent. To account for this divergence from the model, we can
include a compensatory integral term in our controller which
can result in higher precision in reference tracking.

Fig. 5. Layout of PID+ control scheme. Removing the integral component
converts it to the PD+ controller.
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The resulting control law, called the PID+ controller hence-
forth, is

τPID+ = KP (qd − qa)−KD q̇a

+KI

∫ t

0

[qd − q(ρ)] dρ

+Ga(q) +Kaaqd.

(19)

The overall control scheme using PID+ control is presented
in Fig 5.

C. P-SatI-D Controllers

Incorporating an integral term demands careful considera-
tion due to potential instabilities arising from couplings with
soft robot dynamics. It has been shown that including a sat-
uration function to the integral term results in control actions
providing proven globally asymptotic stability to the system.
It is also guaranteed that, regardless of initial conditions, the
growth rate of the control torque will not become unbounded.
These controllers also make the closed-loop robust to matched
constant disturbances.

Interested readers can refer to [14] to see the conditions
a function must meet to be utilized as a saturation function
for this class of controllers. For the purposes of experimental
verification, two saturation functions s(y) are chosen: (st(y) =
tanh y) and (sp(y) = y

(1+|y|p)
1
p

) where p ∈ Z+. The control

law for the P-SatI-D controllers is

τPIDs+ = KP (qd − qa)−KD q̇a

+KI

∫ t

0

s(qd − q(ρ))dρ

+Ga(q).

(20)

D. Implemented Control Scheme

An overview of the developed control scheme is shown
in Fig. 6. The IMU sensors collect information about the
current orientation in quaternion format. The information from
the sensors is converted into the desired coordinate system
to represent the configuration of the body. The four motors
provide information about the current position of the servo
from which we can deduce the tendon length changes given
that we are aware of their initial value. Using the dynamic
model and the desired target state provided by the user, the
control action is computed using the previously mentioned
strategies.

This gives us the overall generalised force τ that needs
to be exerted at the platform. However, this information is
incompatible in its present form with the four-motor actuation
system which takes commands in the form of individual motor
currents. Therefore, we need to follow a conversion procedure
to transform τ into a form that is actionable by the actuators.

The first step to evaluating this is to compute the tension
that needs to be applied by each of the four tendons to achieve
the resultant τ . These quantities are related by the equation

τ∆x

τ∆y

τδL

 =

d d −d −d
d −d d −d
1 1 1 1



F1

F2

F3

F4

 . (21)

Here, d refers to the distance between the centre of the
platform and the point where the force is being applied. To
solve this we formulate it as an optimization problem. We
enforce that Fm = {F1, F2, F3, F4} ∈ R+ as a constraint to
the problem, as all negative values for tendon force have an
equivalent physical meaning to a tendon force of 0. The cost
function is constructed to prioritize the force combinations
with the lowest magnitudes. A single solution to the problem
is identified by finding the minimal value of the cost function.

Fig. 6. Overview of implemented model-based control framework using
feedback from the soft robot setup.

Following the computation of tendon forces, they can be
converted to motor currents (Cm) by using the equations

τm = Fmdts, (22)

Cm =
τmPct

Cunit
. (23)

The term dts refers to the radius of the gear on the
motor’s shaft, Pct is the current torque conversion factor
obtained in the region of interest from the manufacturer-
provided performance data. One possible drawback of the
current arrangement could be that the tendon winds over itself
when the motor rotates to tension it, effectively altering the
value of dts. It should be noted that we have assumed that
the tendon-motor actuation structures are identical for the
four actuators. Furthermore, as there is no additional feedback
control implemented on the force applied by the motor, we
have assumed that the current-torque profiling provided by the
manufacturer is accurate within the robot’s operational range
and that the motor achieves a commanded current in negligible
time after its issue.

The implemented controllers feature a deadband in the
vicinity of the setpoint, serving to mitigate the impact of small
disturbances and noise around the desired state, preventing
unnecessary and frequent minor adjustments. This deadband
introduces a level of tolerance to enhance system stability
and reduce wear on mechanical components. Additionally,
controllers with integral action incorporate an integral reset
mechanism at zero-crossing, addressing the issue of integral
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windup. This reset occurs when the error changes sign,
preventing the integral term from accumulating excessively
during sustained disturbances. The integral reset at zero-
crossing ensures improved responsiveness and stability in the
presence of dynamic changes, contributing to enhanced overall
controller performance.

Algorithm 1 Tuning
1: Initialize KP , KI , KD

2: while no sustained oscillations do
3: Increase KP

4: end while
5: Record the critical proportional gain: Ku = KP

6: Set KP = 0.6×Ku

7: while system is not critically damped do
8: Increase KD

9: if system becomes overdamped then
10: Set KD ← 0.8×KD

11: end if
12: end while
13: while steady-state error is not zero/minimal do
14: Increase KI

15: if overshoot observed then
16: Set KI ← 0.8×KI

17: end if
18: end while

In the process of algorithm development for tuning the
controllers, our primary focus lies on optimizing steady-state
error, given its significant impact on achieving precise control
outcomes. Following closely is the emphasis on minimizing
settling time, aiming for a swift response to input changes.
Recognizing the system’s slower recovery from overshoot,
our algorithm places a deliberate effort to prevent excessive
overshooting, prioritizing fast settling over rapid responses.
This consideration also stems from the observed tendency of
velocity-induced oscillations, especially in the passive seg-
ment, which lacks sufficient damping. Prioritizing gradual
smooth settling seeks to mitigate these oscillations in the sys-
tem during operation. With these objectives in mind a general
framework, based loosely on the Ziegler-Nichols algorithm
was developed as shown in Algorithm 1.

V. SIMULATIONS AND EXPERIMENTS

A. Software Simulation

Using the model parameters detailed in Table II, we have
simulated the behaviour of the robot in both SV1 and SV2
variants. The simulation model for the two setup variants
will henceforth be referred to as M1 and M2. Each body is
modelled as a single PCC segment and validated for a number
of shape regulation tasks. For the M1 variant, all the degrees
of freedom considered by the PCC kinematic formulation are
actuated q = qa, where qa is given by

qa = (∆xS1,∆yS1, δLS1). (24)

In the case of the M2 variant, we have also the kinematics of
S2 which are unactuated or passively actuated based on the
design of the robot. This implies that q = (qa, qu), which can
be written in expanded form

qu = (∆xS2,∆yS2, δLS2), (25)

q = (∆xS1,∆yS1, δLS1,∆xS2,∆yS2, δLS2). (26)

It is evident that by structuring the system’s kinematics in
this way, we can simulate the contribution of the unactuated
degrees of freedom on the motion of the bodies and also use
the generated passive dynamics in the controllers described in
Section V.

The simulation uses the ode15s solver in the MATLAB
Simulink environment and shows tractable performance when
processed on a standard PC. While we follow the same
general framework for tuning the controllers as described in
Algorithm 1, the absence of detrimental real-world effects
associated with high gains, such as sluggish recovery from
overshoot, affords us greater flexibility in tuning.

The gains determined through the software simulation tun-
ing process serve as valuable initialization parameters for
the hardware setup. Additionally, the simulations offer a
compelling visualization through 3D rendering, depicting the
current configuration of the centerline. This visualization aids
in a more nuanced understanding of the robot’s performance
characteristics in various configurations.

B. Experimental Setup

In order to utilise our model-based controllers on the
physical setup, it is necessary to use a mix of measured and
identified data to build a realistic profile of the robot. The
measured and manufacturer-specified parameters have been
highlighted previously in Table II. In addition to this, we
have used the experimental rig to obtain data to identify the
coefficients of the stiffness matrix and the damping coef-
ficients. Though the stiffness matrix can be obtained from
Young’s modulus and Poisson’s ratio of the material which
are specified by the manufacturer, these values are most likely
to contribute to model errors due to material degradation over
time and individual stiffness variance based on the shape used
for casting.

To identify these parameters we have used least-squares
data fitting technique, which iteratively updates the parameter
values until the squared error between the model’s behaviour
and the measured behaviour of the robot is minimal. In the first
stage of this process, we have used the equilibrium equation
from the dynamics of the robot to identify the coefficients of
the stiffness matrix. Following this, the damping parameters
are identified from the usual equation of motion mentioned in
Section III-B. The controller framework runs at a frequency
of 100Hz to allow sufficient time to read and write data over
the serial channel of the sensors and motors. The kinematic
formulation used to compute the model and the model-based
components of the controller is consistent with the notation in
(24) to (26).
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TABLE III
EXPERIMENT LOG

Experiment ID Setup Variant Used Controllers Used No. of Experiments per Controller
PD PID PD+ PID+ P-SatI-D sp P-SatI-D st

SI M1 ✓ ✓ ✓ ✓ ✓ ✓ 1
M2 ✓ ✓ ✓ ✓ ✓ ✓ 1
SV1 ✓ ✓ ✓ ✓ ✓ ✓ 1
SV2 ✓ ✓ ✓ ✓ ✓ ✓ 1

M2D M1 – ✓ – ✓ – ✓ 1
M2 – ✓ – ✓ – ✓ 1
SV1 – ✓ – ✓ – ✓ 1
SV2 – ✓ – ✓ – ✓ 1

M3D M1 – ✓ – ✓ – ✓ 1
M2 – ✓ – ✓ – ✓ 1
SV1 – ✓ – ✓ – ✓ 1
SV2 – ✓ – ✓ – ✓ 1

MG SV1 ✓ ✓ ✓ ✓ ✓ ✓ 5
SV2 ✓ ✓ ✓ ✓ ✓ ✓ 7

VP SV1 ✓ ✓ ✓ ✓ ✓ ✓ 9
SV2 ✓ ✓ ✓ ✓ ✓ ✓ 9

VI SV1 – ✓ – ✓ ✓ ✓ 9
SV2 – ✓ – ✓ ✓ ✓ 9

Vp SV1 – – – – ✓ – 6

C. Experiment Design

The main objective of this article is experimental validation
of the model-based controllers for shape regulation. In order
to obtain a comprehensive evaluation of how the controller
performs it is necessary to subject the system to a diverse
array of experimental tests.

In addition to obtaining the performance for tracking a
single configuration objective, we have experimented with
tracking multiple shapes sequentially both planar and three-
dimensional with respect to the tip of the robot. Furthermore,
the versatility of the controllers after tuning is tested by
varying the reference without re-tuning as well as tests where
the proportional and integral gains are iteratively varied from
the tuned state. These tests are carried out for both SV1 and
SV2 variants of the robot. The complete list of experiments
carried out is shown in Table III.

A description of the experiments corresponding to each
experiment ID given in the table is as follows:

• SI: This experiment involves tracking a single config-
uration reference. For this experiment, we measure the
indicative performance parameters commonly used to
validate controllers. Specifically, we document the set-
tling time, peak time, steady state error percentage, and
overshoot percentage for each of the six controllers.

• M2D: For controllers to be deemed suitable for practical
use, they must demonstrate the capability to sequentially
track multiple shape regulation objectives in all areas of
their workspace. This set of experiments specifically eval-
uates the tracking precision of controllers when presented
with multiple planar objectives sequentially. To ensure
clarity and efficiency in documentation, these experiments

are exclusively presented for the PID, PID+, and P-SatI-D
st controllers: a representative subset of controllers used
in this article.

• M3D: This experiment has the same objective as
M2D but with configuration references that are three-
dimensional relative to one another covering a larger
section of the robot’s workspace. In the camera-recorded
experiments for M2D and M3D, position tracking of
the spherical guide at the robot’s tip is achieved us-
ing the normalized cross-correlation coefficient method
(TM CCOEFF NORMED) in OpenCV.

• MG: This experiment aims to assess the controller’s
robustness to variations in shape regulation goals without
retuning. This objective is particularly demanding, as it
tests the controller’s ability to adapt to changes in the op-
erating point, considering model mismatches. This makes
it a valuable validation experiment. In the SV1 variant,
controllers were initially tuned to track the configuration
q = (0.2, 0, 0). For the S2 variant, the tuning objective
was set as qu = (0.3, 0, 0). Additional shape regulation
goals were chosen to maximize coverage of the robot’s
workspace without causing damage to the hardware.

• VP: In this experiment, the assessment of the controller’s
performance involves the variation of the proportional
gain from the tuned state, ranging between -20% and 20%
of the tuned Kp, with the baseline state defined as 0%.

• VI: In this experiment, the evaluation of the controller’s
performance involves varying the integral gain from the
tuned state within a range of -20% to 20% of the tuned
Ki, with the baseline state considered at 0%. As pre-
viously highlighted, the careful addition and adjustment
of an integral component to the controller are essential
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Fig. 7. Results for tracking a single reference configuration in simulation for both M1 and M2 variants. (A) and (B) show the overshoot and steady-state
error observed with the different controllers in the M1 and M2 variants respectively. (C) and (D) present the settling and peak times for the same experiments.
Overall, the graph provides a side-by-side comparison of the controllers’ performance in simulation.

due to the potential to adversely affect the controller’s
performance. Consequently, this experiment serves as a
valuable indicator of the controllers’ robustness.

• Vp: In the investigation of the impact of the p parameter
on P-SatI-D sp controllers, an additional tuning con-
sideration becomes apparent. A well-tuned p parameter
provides the ability to precisely adjust the controllers’
behavior, contributing to improved overall performance.
This experiment specifically examines how altering the
p value influences both the controller’s behavior and the
saturation function. The p value, being an integer, has
been systematically explored across a range of values,
including small values at the minimum end of the spec-
trum as well as values an order of magnitude larger.

VI. RESULTS AND DISCUSSION

In this section, we will validate the developed controllers
for a set of different shape regulation objectives as per the
constructed experiment design. Beyond the controllers de-
tailed in Section IV, we extend our investigation to include
a model-free PD and PID controller, serving as a baseline
for comparison. This additional exploration helps elucidate
whether the introduction of model-based components results
in observable performance enhancements. Furthermore, we
will discuss the key insights obtained from these results.
The section is organised based on experiment categories and
followed by the current limitations and future scope.

A. SI: Single Shape Regulation

The simulation results from the simulation (M1 and M2)
are shown in Fig. 7 and in Appendix A and B. The simulation
results reveal perfect setpoint tracking for all controllers except
the PD which has a very small error as expected from
testing on an ideal model with no uncertainty. The PD and
PD+ require significantly higher proportional gains to achieve
their best possible performance, likely due to the lack of
a compensating integral term and the prioritisation of fast
settling. Comparing segment performances in the M2 variant,
S2 consistently exhibits slower settling than S1, with an
average difference of 0.3595 seconds attributed to the inertia
of the passively actuated S2.

The experimental results from SV1 and SV2 are given in
Figure 8 and in Appendix C, D, F, and G. Analyzing both
simulation and hardware results, the average settling time
in M1 is 61.6% less than that in SV1. This discrepancy
is ascribed to the model’s omission of velocity constraints
inherent in the motor, where the motor’s maximum velocity of
32 rpm sets a theoretical limit on the time it takes to achieve
specific configurations.

In the evaluation of controllers on the SV1 variant, the
PID+ controller incurs the least steady-state error at 0.208%,
albeit with the slowest settling time. Conversely, the PD+
controller settles approximately 1.066 seconds faster but with
a relatively higher steady-state error of 3.49%. A comparison
between model-based PD+ and baseline PD controllers reveals
that due to high gains used by the PD controller, aggressive
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Fig. 8. Results for tracking a single reference configuration on the soft robot platform for both SV1 and SV2 variants. (A) and (B) show the overshoot and
steady-state error observed with the different controllers in the SV1 and SV2 variants respectively. (C) and (D) present the settling and peak times for the
same experiments. Overall, the graph provides a side-by-side comparison of the controllers’ performance on the two robot variants.

control actions often lead to overshoots, increasing settling
time by 35.8%. The PID controller partially mitigates this
issue, showing improvements in settling time and steady-
state error due to the compensating integral term. However,
without model-based components, tracking performance is
significantly poorer compared to the PID+ controller.

Comparing SV1 and SV2 results, a noticeable 28.21%
increase in settling time in the latter is observed. This increase
is attributed to reduced damping in S2, causing significant
oscillations under sudden acceleration or deceleration and
subsequently increasing settling time. While the introduction
of passive dynamics is expected to decrease tracking accuracy,
it is noteworthy that model-based controllers maintain a steady
error below 10%, validating their performance. Further im-
provements in controlling the passive segment are anticipated
with a more comprehensive and better-identified model. Intro-
ducing a control scheme with unactuated coordinates yields
interesting instances where the accuracy of S1’s regulation
performance may not proportionally match the tracking preci-
sion of S2. In SV2, for instance, the PD controller exhibits a
steady-state error approximately 30 times larger than the PID+
controller for tracking the reference for S1, while the reverse is
observed for the tracking performance of S2, where the error
is close to 4 times larger for the PID+ controller than the PD
controller.

B. M2D and M3D: Planar and 3D Shape Tracking

The tracking behaviour can be seen qualitatively in Fig-
ures 9, 10, 11, 12 for M1, M2, SV1, and SV2 respectively.

Across all hardware setup variations involving the addition of
multiple targets, there is a substantial increase in steady state
error. This phenomenon is likely attributed to the additional
torque required to counteract the friction of the remaining
tendons.

Comparing the baseline PID controller with its model-
based counterparts reveals that the latter exhibits more graceful
convergence. This behaviour is attributed to the incorporation
of gravity-cancellation and elasticity compensation, reducing
the need for high gains that typically induce aggressive control
actions. Due to overshoots observed in the baseline PID con-
troller, the system takes significantly longer to settle, resulting
in a steady state error percentage that is one order of magnitude
larger than the best-performing model-based controller. The
disparities in settling behaviour become more pronounced in
the 3D case, where the model-free controller settles below
the target, either after an overshoot or when gains are kept
conservative.

These experiments further validate the versatility of the
developed model-based controllers, showcasing their ability
to accurately track targets in various areas of the robot’s
workspace. Sufficiently accurate regulation is observed even in
the presence of an unconventional passively actuated segment
and discrepancies between the model and the physical robot.

C. MG: Shape Regulation Goal Variation

The experimental results can be observed in the third
column of Appendix H for SV1 and in Appendix I for SV2.
Analyzing the baseline PD and PID controllers reveals that
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Fig. 9. Results for tracking multiple three-dimensional and planar references
sequentially in the M1 simulation. Each row depicts the results for a single
type of controller.

changes in reference have a significant impact on tracking ac-
curacy. This effect is pronounced in the PID controller, where
tracking higher reference goals leads to a drastic increase in
settling time due to overshoots, and the steady state accuracy
exceeds the 10% error limits.

The PD+ controller exhibits relatively better performance
than the model-free controllers; however, at the extremes of
the test set, overshooting results in slow settling and high
error percentages. Similarly, the PID+ controller follows a
comparable trend, but notably, the tracking performance never
exceeds a 10% error.

Both variations of the P-SatI-D controller demonstrate ro-
bustness to changes in shape regulation goals. Even at the
extreme ends of the spectrum, the configuration tracking error
remains below 8% in all cases, maintaining reasonable settling
times. These results underscore the adaptability and stability
of the P-SatI-D controller across varying shape regulation
objectives, making it a promising choice for scenarios with
dynamic changes in operating points.

D. VP: Proportional Gain Variation

The experimental results can be observed in the first column
of Appendix H for SV1 and in Appendix I for SV2. Among

Fig. 10. Results for tracking multiple three-dimensional and planar references
sequentially in the M2 simulation. Each row depicts the results for a single
type of controller.

the controllers under examination, the PD+ controller demon-
strates notable robustness to variations in proportional gain,
being the only one to maintain steady state errors consistently
within the 10% threshold. However, it can be noted that the
variation in proportional gain negatively impacts the settling
time in the PD+ controller.

Conversely, both the PID+ and P-SatI-D sp controllers
exhibit consistently low settling times throughout the exper-
iment. Nonetheless, at the extreme ends of the proportional
gain variation, there is a noticeable departure from the 10%
threshold for steady state error.

As expected, the PD controller performs less favorably
in this experiment, likely attributed to its high reliance on
proportional gain and the absence of model-based components
capable of adapting to varying gains. The inferior performance
of the PD controller further emphasizes the importance of
incorporating model-based elements to enhance adaptability
within a larger spectrum of gain values.

E. VI: Integral Gain Variation

The experimental results can be observed in the second
column of Appendix H for SV1 and in Appendix I for SV2.
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Fig. 11. Experimental results for the SV1 variant of the platform highlighting
steady-state accuracy of various controllers in reaching desired planar and
three-dimensional configurations.

Fig. 12. Experimental results for the SV2 variant of the platform highlighting
steady-state accuracy of various controllers in reaching desired planar and
three-dimensional configurations.

The P-SatI-D controllers exhibit notable advantages in terms of
speed and accuracy compared to the PID and PID+ controllers.
Quantitatively, there is a considerable improvement, with a
59.62% reduction in the average settling time observed across
all levels of the integral gain for the P-SatI-D st controller
when compared to the PID+ controller. In assessing accuracy,

it is evident that even under the highest levels of variation, the
worst steady state error for the P-SatI-D sp controller remains
at 9.14%. In stark contrast, both the PID and PID+ controllers
surpass the 10% error limit when subjected to a 20% variation
in the integral gain.

These findings underscore the enhanced performance and
robustness of the P-SatI-D controllers, particularly in main-
taining lower settling times and minimizing steady-state errors
compared to their unsaturated integral counterparts in the face
of integral gain variations.

F. Vp: Saturation Function Parameter Variation
The results of the experiment can be seen in Appendix E

with the tracking performance in the first row and the variation
of the saturation functions in the second row. The findings
indicate that lower p values result in a more gradual settling
response akin to critical damping, aligning with the smoother
characteristics inherent in lower p polynomial saturation func-
tions. Conversely, as p values increase, saturation functions
exhibit increased jaggedness, with the distinctions between
functions becoming less pronounced when p > 10. Notably,
optimal performance is observed at a p value of 2, emphasizing
the significant influence of the parameter on the controllers’
behaviour.

G. Current Limitations and Avenues for Future Research
An assumption inherent in our work is the absence of any

mismatch between the motor’s performance and the current-
torque relation as provided by the manufacturer. Introducing
an embedded sensor capable of measuring the applied force
would address this limitation, offering a more refined and
accurate execution of control actions. This improvement be-
comes particularly crucial for scenarios where precise force
applications are imperative for the soft robot’s intended func-
tionality.

The servo motors employed in our study feature a discrete
task space for control commands, with the finest increments of
2.69 mA. Consequently, the control action is mapped onto a
coarsely resolved command space, imposing limitations on the
minimum achievable steady-state error. Exploring advanced
motor control techniques or transitioning to motors with finer
resolution could mitigate this limitation and enhance the
system’s overall precision.

This work focuses on a single soft robot platform, therefore
validation has only been done for soft bodies of a specific
stiffness profile. Future work could include validation of these
model-based controllers on soft robots with different levels of
compliance where the passive dynamics may be much more
or less prominent.

In the current configuration, real-time robot positioning
relies on IMU-derived orientation. However, these sensors may
exhibit drift over prolonged usage periods and provide only
relative orientation characteristics. To address this, incorpo-
rating absolute sensor mechanisms, such as motion capture
technology, could offer a more accurate estimation of the
robot’s configuration, allowing for precise monitoring of the
elongation or compression of the soft robotic body.
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VII. CONCLUSION

In conclusion, this study provides compelling evidence for
the efficacy and adaptability of model-based controllers in
the shape regulation of soft robots. We have contributed
with a specially designed soft robot research platform that
allows the utilisation and validation of controllers using both
actuated and unactuated degrees of freedom, accounting for
the underactuated nature of the robot. Furthermore, through
a series of meticulously designed experiments, we have not
only validated the theoretical foundations of model-based
control but have also demonstrated its practical applicability
in real-world scenarios. The superior performance observed
in achieving precise and controlled deformations showcases
the potential of these controllers to advance the field of soft
robotics for various applications demanding dexterity.

A distinctive aspect of our experimental validation is the
successful application of model-based controllers to passively
actuated soft segments—an unconventional and challenging
class of soft robots. This extension of our research under-
scores the versatility of the proposed control techniques that
account for underactuation, as they prove effective in man-
aging complex and less intuitive robotic configurations. The
ability to navigate the unique challenges posed by passively
actuated structures speaks to the robustness of our approach
and expands the scope of model-based shape regulation into
unconventional domains.

Additionally, the strategic use of reduced order modelling
methods in our control strategy deserves particular emphasis.
Opting for reduced order models over full order models en-
sures computational efficiency facilitating a real-time control
implementation. This choice strikes a delicate balance between
computational speed and accuracy, addressing the critical need
for responsiveness and adaptability in practical applications.
When coupled with sophisticated control techniques, such as
nonlinear integral action, we are able to obtain frameworks
with high precision that are general enough to be applied
across a diverse range of soft robotic platforms with multiple
segments, marking a significant step forward in the evolution
of soft robotic control systems.
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APPENDIX

A. M1 Controller Results

TABLE IV
CONTROLLER RESULTS M1

Controller KP KD KI p Steady State Error (%) Settling Time (s) Overshoot (%) Peak Time (s)
PD 32 3 0 - 0.0563 0.73 0 0.73
PID 16 2 11 - 0 1.085 0.323 1.08
PD+ 21 1 0 - 0 0.569 0 0.569
PID+ 15 0.5 10 - 0 1.33 0 1.33
P-SatI-D st 15 1 11 - 0 1.195 0.156 0.846
P-SatI-D sp 15 1 11 2 0 1.07 0.148 0.977

B. M2 Controller Results

TABLE V
CONTROLLER RESULTS M2

Controller KP KD KI p Steady State Error (%) Settling Time (s) Overshoot (%) Peak Time (s)
S1 S2 S1 S2 S1 S2 S1 S2

PD 52 3 0 - 0.0534 0.0601 0.474 0.89 0 11.4 0.474 0.52
PID 15 1 7 - 0 0 0.635 1.019 1.02 15.3 0.576 0.587
PD+ 47 2 0 - 0 0 0.538 1.011 0 13.11 0.538 0.4905
PID+ 10 1 5 - 0 0 0.826 1.13 0 7.5 0.826 0.689
P-SatI-D st 15 1 6 - 0 0 0.935 1.271 0 0 0.935 1.271
P-SatI-D sp 15 1 6 2 0 0 0.897 1.141 0 0 0.897 1.141

C. SV1 Controller Results

TABLE VI
CONTROLLER RESULTS SV1

Controllers KP KD KI p Steady State Error (%) Settling Time (s) Overshoot (%) Peak Time (s)
PD 9.5 0.6 0 - -3.83 2.94 4.68 1.74
PID 4.8 0.3 0.9 - -2.05 2.73 0 1.98
PD+ 1.5 0.6 0 - -3.50 2.16 0 2.16
PID+ 0.56 0.4 0.2 - 0.21 2.87 0.22 2.96
P-SatI-D st 0.75 0.4 0.2 - 1.27 2.67 1.27 2.67
P-SatI-D sp 0.75 0.4 0.3 2 1.24 2.56 0.24 2.56

D. SV2 Controller Results

TABLE VII
CONTROLLER RESULTS M2

Controllers Kp Kd Ki p Steady State Error (%) Settling Time (s) Overshoot (%) Peak Time (s)
S1 S2 S1 S2 S1 S2 S1 S2

PD 2.4 0.5 0 - -3.31 -1.08 2.52 3.95 0 0 2.52 3.95
PID 2.15 0.5 0.2 - -1.74 -4.85 2.09 3.17 0 0 2.09 2.4
PD+ 0.57 0.1 0 - 0.47 4.71 2.19 3.09 0.47 7.01 2.19 2.07
PID+ 0.7 0.2 0.2 - 0.11 3.99 2.84 2.98 0.11 3.99 2.84 2.98
P-SatI-D st 1.1 0.3 0.5 - 1.27 4.55 2.66 3.65 1.27 4.55 2.66 3.65
P-SatI-D sp 0.55 0.2 0.5 2 1.62 6.73 3.34 3.08 1.62 6.88 3.34 2.91
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E. Variation of p parameter in P-SatI-D sp controller

Fig. 13. Effect of variation of p parameter in P-SatI-D sp controller on step response (first row). The saturation functions corresponding to these p values
are also shown for reference (second row).

F. SV1: Tracking single and multiple references

Fig. 14. Experimental results for the single segment robot for tracking single (first row) and multiple (second row) references.

G. SV2: Tracking single and multiple references

Fig. 15. Experimental results for the two segment robot for tracking single (first row) and multiple (second row) planar references.
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H. MG, VP, and VI Experiments for SV1 Setup

Fig. 16. Effect of variation of KP , KI , and the goal qd for a tuned controller on the SV1 Setup
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I. MG, VP, and VI Experiments for SV2 Setup

Fig. 17. Effect of variation of KP , KI , and the goal qd for a tuned controller on the SV2 Setup
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