
Evaluating the usefulness of Global Cardinality constraint propagators in Lazy
Clause Generation

Comparing propagator implementations with explanatory clauses for the Global Cardinality constraint
against decomposition in the Pumpkin Lazy Clause Generation solver

David Thomas Rockenzahn Gallegos1

Supervisor(s): Dr. E. Demirović, Dr. M.L. Flippo

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 26, 2025

Name of the student: David Thomas Rockenzahn Gallegos
Final project course: CSE3000 Research Project
Thesis committee: Dr. E. Demirović, Dr. M.L. Flippo, Dr. B.P. Ahrens

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
In Constraint Programming, combinatorial prob-
lems such as those arising in the fields of arti-
ficial intelligence, scheduling, or circuit verifica-
tion are modeled using mathematical constraints.
Algorithms for each type of constraint are imple-
mented in a solver and are known as propaga-
tors. Some constraints can be implemented us-
ing combinations of smaller existing propagators
(this is known as decomposition), which is often
used in Lazy Clause Generation (LCG) solvers,
where research has shown that decompositions can
be competitive or sometimes superior to purpose-
built propagators for certain kinds of constraints.
However, there is little research about whether a
purpose-built propagator is superior to decomposi-
tion for the global cardinality constraint when
used with an LCG solver. This paper benchmarks
both approaches using an experimental Rust-based
solver and uses existing algorithms to implement
two global cardinality propagators which are
then adapted for use in an LCG solver. The bench-
marks show that both implementations are competi-
tive or outperform decomposition in a dataset of 90
instances of Sudoku puzzles, being 3.19 and 2.28
times faster for Régin GAC and Basic Filter al-
gorithms respectively. On the Minizinc Challenge
dataset, the speedup is and 1.34 and 1.0.

1 Introduction
Constraint Programming (CP) is a technique for solving com-
binatorial problems that often arise in the fields of artificial
intelligence [11], scheduling [3], circuit verification [19], and
Puzzle Solving. These problems are modeled using combina-
tions of constraints; mathematical restrictions or rules that a
solution of the problem must adhere to. Some constraints ap-
pear in many different problems, and have thus been given
names. Because they are so common, a lot of effort has
gone into developing algorithms to implement them. Such
algorithms are called Propagators. Constraint Programming
Solvers often include many different kinds of propagators,
despite the fact that some of those constraints can be de-
composed into simpler constraints and would thus seem ”re-
dundant” at first glance. This is because it has been shown
that such redundant but highly-specialized propagators are of-
ten more efficient than their decomposition into smaller con-
straints [16] This paper focuses on the global cardinality
(gcc) constraint. It can be used to set bounds on how many
times values can be assigned to groups of variables. For ex-
ample, if one is interested in assigning students to groups with
different capacities one could use a global cardinality
constraint to ensure that every group is assigned at least two
students and that no group is assigned more students than
it has capacity for. See Figure 1 for an example. The
global cardinality constraint is also enough on its own
to solve problems such as Sudoku. One can use nine gcc

constraints so that each value one to nine appears one time on
each column, another nine constraints for each row, and nine
more for each square.

Group 2

[2,4]

Group 3

[2,2]

Group 4

[2,3]

Group 1

[2,5]

Figure 1: An example student-to-group problem corresponding
to the constraint gcc(X,V) with X = ⟨x1, ..., x18⟩ And V =
⟨(1, 2, 5), (2, 2, 4), (3, 2, 2), (4, 2, 3)⟩). Every tuple (v, l, u) ∈ V
has a value, a lower and upper bound constraining how many times
that value may be assigned.

The gcc often arises in scheduling problems. For example,
efficiently scheduling physicians during a pandemic where
use of a global cardinality constraint may improve the
algorithm’s performance [3]. Another example is the rotating
workforce scheduling problem in which workers are assigned
to shifts while ensuring enough shifts are covered each day.
Among all the constraints and models used, the ones using
a global cardinality constraint achieved the best results
overall [6].

For a time, examples like these have demonstrated the ben-
efits of highly-specialized global constraint algorithms, but in
2007 a novel technique called Lazy Clause Generation that
combines the use of propagator algorithms with a SAT solver
can achieve state-of-the-art performance [8]. LCG and con-
straint decomposition has brought into question the need for
global constraints like the gcc [17].

Later on it was discovered that using LCG with a de-
composition into smaller constraints instead of using the
cumulative constraint can achieve very competitive results
[15], defying the conventional wisdom that specialized
constraints are often more efficient. All this considered,
there is little research about implementing gcc propagators
for LCG and whether (or under which circumstances) a
specialized gcc propagator is still needed.

The goal of this paper, therefore, is to investigate whether
a global cardinality constraint propagator implementa-
tion with explanatory clauses for use in Lazy Clause Gener-
ation solvers can compete in performance against its decom-
position into smaller constraints. To answer the question two
different propagators implementations will be benchmarked
using the Minizinc Challenge problems [18] against the usual
decompositions in the literature. The algorithms will be com-
pared using their runtime, highest achieved objective value,
and statistics such as Learning Block Distance (LBD), aver-
age Learned Clause Length and average Conflict Size.

The results show that a propagator implementation using
Régin’s [13] Generalized Arc Consistent algorithm is com-
petitive against decomposition, with similar results using two
kinds of explanation algorithms, while the Basic Filter algo-
rithm does not provide a big improvement. This might chal-

lenge the new conventional wisdom in LCG that decomposi-
tion tends to beat global propagators. While the runtime and
objective value measures favor Régin GAC, the LBD statistic
is less conclusive.

Section 2 of this paper serves as an introduction to LCG,
an overview of the related work, and a formal description of
the global cardinality constraint. Lastly, an overview of
Régin’s GAC algorithm is discussed. Section 5 then focuses
on how a propagator for the gcc can be adapted for use in
a LCG solver, and on how the algorithms for the benchmark
were implemented. In the experimental setup and results, sec-
tion 6, the benchmarks are discussed. Finally, section 8 goes
over the ethical considerations and reproducibility of the re-
search before giving way to the conclusion.

2 Preliminaries
The next section focuses on a high level overview of the back-
ground of LCG. A more detailed mathematical review of the
preliminaries follows. Then a summary of the related work is
presented, and finally a mathematical definition of the prob-
lem is laid out.

2.1 Overview of LCG and explanation algorithms
Constraint Satisfaction solvers using techniques such as Fi-
nite Domain (FD) Propagation solve combinatorial problems
by modeling restrictions in the solution as constraints. FD
solvers alternate between:

• Search: Traversing the search space by checking for so-
lutions among all possible assignments to some group of
variables.

• Propagation: Ruling out parts of the search space using
propagators implemented for the problem’s constraints.
Good propagators need make a trade-off between ruling
out as many invalid assignments as possible, while also
taking little time to run. [17]

Lazy Clause Generation (LCG) is a newer technique, but
has many steps in common with FD propagation. LCG com-
bines Propagation with a SAT Solver to achieve state-of-the-
art solutions for some problems [2]. It has also uses search
and propagation like FD solvers, and in addition it does:

• Explanations: Translating a propagator’s search-space
reduction into an implication of boolean clauses which
makes interfacing with the SAT solver possible.

• SAT Solving: The explanation is fed to the SAT solver
which uses it to continue the search, rule out further as-
signments and find solutions to the problem.

Explanations are therefore needed because a SAT solver oper-
ates on boolean variables, and propagators use variables that
can be integers. Conceptually, LCG can be seen as a way to
lazily transform the domain reductions of the propagator into
a boolean representation.

Because both techniques use propagators, a propagator al-
gorithm for the gcc would also work in Lazy Clause Genera-
tion as long as an explanation is created to encode the domain
reduction the propagator does. There is a great deal of algo-
rithms in the literature for propagators such as the gcc, so the

main challenge for developing algorithms for LCG solvers
is in the explanations. Developing good explanations can be
as challenging to find as developing good propagators, and
a good propagator might not lend itself to a way of obtain-
ing good explanations, so the algorithm might have to be re-
designed. [12]

2.2 Mathematical definitions
An overview of Constraint Programming and some important
definitions. [14]

Definition 1 (Constraint Programming). A programming
paradigm to solve combinatorial problems. It involves
finding valid assignments to sequences of variables X =
⟨x1, x2, ..., xn⟩
Definition 2 (Domain). mapping from a sequence of vari-
ables X to a sequence of sets. A set D(xi) contains all values
that variable xi is allowed to take. The notation [a, b] repre-
sents the set {a, a+ 1, a+ 2, .., b}
Example. Let X = ⟨x1, x2⟩. Possible domains for these vari-
ables are: D(x1) = {0, 1}, D(x2) = [1, 4]

Definition 3 (Constraint). The sets of allowed values a se-
quence of variables can take. Formally: An n-ary relation
over the domains D(x1), D(x2), ..., D(xn) of a sequence of
variables X = x1, x2, ..., xn. An n-ary relation is a subset of
the Cartesian product of some sets. Therefore a constraint de-
scribes the solution space by a subset of the Cartesian product
over the domains C(X) ⊆ D(x1) × D(x2) × ... × D(xn).
Constraints can also be implicitly represented using most
math operators such as =,≤, ̸=,+,−, ·,∧.
Example. Using the domains from the previous example a
constraint might be C(X) = {(0, 1), (1, 2)}. This would
mean x1 can only be 0 or 1 and x2 can only be 1 or 2. An
implicit way to define this is: [x1 < x2] ∧ [x2 ≤ 2]

Definition 4 (Constraint Satisfaction Problem (CSP)).
Denoted by (C,X ,D), it is a sequence of variables
X = x1, x2, ..., xn, their respective domains D =
D(x1), D(x2), ..., D(xn) and a set of constraints C in which
each constraint C(X) ∈ C is defined over a subsequence of
variables X ∈ X .

Definition 5 (Assignment). A mapping from a sequence of
variables X = x1, x2, ..., xn to one element from each do-
main. An assignment satisfies a constraint if the assignment
is also an element of the constraint.
Example. An assignment for ⟨x1, x2⟩ that satisfies the con-
straint of the previous example is x1 = 0, x2 = 1.

Definition 6 (Solution of a CSP (C,X ,D)). An assignment
to the variables X that satisfies all constraints C
Definition 7 (Propagator). A propagator f is a monotonically
decreasing function from domains to domains, such that ∀x ∈
X : f(D1)(x) ⊆ f(D2)(x) for all domain sequences D1 and
D2 with ∀x ∈ X : D1(x) ⊆ D2(x), that also preserves the
solutions for any CSP.

• A propagator creates a new domain, or equivalently it
creates a new CSP problem f(C,X ,D) = (C,X , f(D)).

• A propagator is usually implemented for one specific
constraint (that is to say, the implementation depends on
the constraint).

Propagators are used to prune the search space. Propagators
better at pruning are more desirable. A notion of ”strength” is
used to classify how good the pruning (how small the result-
ing domain) is. The trivial propagator (that always leaves the
domain unchanged) is the weakest possible propagator. For-
mal definitions of ”strength” have been devised. For example,
the notion of Generalized Arc Consistency.
Definition 8 (Generalized Arc Consistency or Domain Con-
sistency (GAC)). A constraint C(X) is domain consistent
with respect to domain D iff:

∀xi ∈ X,∀di ∈ D(xi),∃θ ∈ D(X) : θ satisfiesC(X)

Here θ represents an assignment. It can be seen intuitively
how this definition is desirable: The domain has been re-
duced so much that any single choice of assignment of one
variable has an assignment for the other variables that satis-
fies the constraint. This is the strongest form of consistency
that can be achieved by a propagator, but finding an algorithm
that achieves it can be NP-hard for some constraints.

While methods such as Finite Domain Propagation and
Lazy Clause Generation both use propagators and work in
similar ways, one of the main differences is that Lazy Clause
Generation uses a SAT solver as an additional propagator to
exploit some of the SAT solver’s strengths. [8]. For a prop-
agator to work with LCG it needs to implement an ”explana-
tion” [12].
Definition 9 (Explanation). A propagator f that reduces the
domains of a sequence of variables X to f(X) can be ex-
plained by using a subset of original constraints C ′ ⊂ C and
choices made during search d1, d2, ..., dn such that:

C ′ ∧ d1 ∧ d2 ∧ .. ∧ dn ⇒ f(X)

The explanation E is then e = C ′ ∧ d1 ∧ d2 ∧ .. ∧ dn.
An explanation E1 is more precise than E2 iff e2 → e2. More
precise explanations are more useful because they allow the
SAT solver to more efficiently prune domains and use less
clauses to represent, taking less memory.

3 Related Work
Implementing a propagator that achieves GAC is trivial using
brute force search, but a GAC algorithm is only useful in
practice if it also has a polynomial runtime. Régin [13]
mentions that the gcc can be decomposed into multiple local
propagators using min / max constraints but shows that this
is not efficient (for FD propagation). He then gives the first
polynomial-time algorithm (O(|x|2 · |v|)) for achieving GAC
using flow theory. A new algorithm for bounds consistency
of the gcc with a runtime of O(t + |x|) was found [9]
where t is the time to sort the bounds of the domains of the
variables. Despite this propagator having a weaker form of
consistency the lower runtime can still outperform Régin’s
algorithm on some problems. The paper also introduces an
improvement to Régin’s algorithm to lower the worst-case
performance in some applications. The GAC propagator

was improved [4] and ”the first efficient algorithm that
achieves bound consistency for all variables, and not only
the assignment variables” was discovered. An algorithm was
proposed with an O(|x|1.5|v|) runtime complexity. [10] .
Various constant-factor runtime optimizations on Régin and
Quimper’s algorithms [7] are found.
So far the aforementioned papers operate on the assumption
that the gcc algorithms are superior over their decomposi-
tions (and this is true for Finite Domain propagation) but this
began to change somewhat after the discovery of Lazy Clause
Generation [8]: The reason is that decomposition with LCG
achieves very competitive performance over specialized FD
propagators. [15]
After Lazy Clause Generation and similar methods that
require explaining the propagators, explanations can be
developed for the all different, stretch and flow
constraints and the techniques are often applicable in general
for other propagators, but that finding explanations is a
challenging process because it requires a lot of domain-
specific knowledge about the workings of the propagator
[12]. Furthermore, the gcc is a specialization of the flow
constraint and as such, an explanation for the gcc would be
very similar. [12]

4 Problem definition
4.1 Formal definition of the global cardinality

constraint
Recall the example problem from Figure 1. In order to solve
it using a Constraint Satisfaction Toolkit it needs to be mod-
eled as a Constraint Satisfaction Problem. In the example
there are 18 students. Every student can be represented us-
ing a natural number i representing their position such that
i ∈ [1, 18]. Which group each student i has been assigned to
can be represented as the variable xi. Any student xi can be
assigned to one of the four groups or to no group. Therefore
the domain of xi is: ∀i ∈ [1, 18] : D(xi) = {0, 1, 2, 3, 4}.
Furthermore, every group has a certain capacity. The capacity
of group one is the set {2, 3, 4, 5} or simply [2, 5] because ev-
ery group needs to be assigned at least two people and group
one can fit at most 5. The capacities of all 4 groups are then:
c1 = [2, 5], c2 = [2, 4], c3 = [2, 2], c4 = [2, 3]. If one is in-
terested in finding all valid assignments of students to groups
one can use a global cardinality constraint to model and
solve the problem.

Definition 10 (Global Cardinality Constraint). Given
a list of variables X = x1, x2, ..xn with do-
mains D1, D2, ..Dn and a list of tuples V =
(v1,min1,max1), (v2,min2,max2), ..., (vm,minm,maxm)
of a value vi ∈ Z and an upper and lower bound for that
value mini,maxi, the global cardinality(⟨X⟩, ⟨V ⟩)
constraint enforces that each value vi is assigned to the
variables in X at least mini times and at most maxi times.

For example, the global cardinality(X,V) constraint
with X = ⟨xi, x2, .., x18⟩ where ∀i ∈ [1, 18] : D(xi) =
[1, 4] and V = ⟨(1, 2, 5), (2, 2, 4), (3, 2, 2), (4, 2, 3)⟩ models
the constraints of the problem in Figure ??. A CSP solver will

then output the assignment in the Figure, which is the same
as X = ⟨1, 2, 1, 1, 2, 2, 0, 1, 0, 0, 0, 4, 3, 0, 4, 3, 0, 0⟩ and all
other valid assignments. Notice that some students are as-
signed to no group, because the gcc does not require that this
is the case.

Note that in a real-world problem multiple constraints are
usually combined in ways that make finding the solutions on-
trivial. For example, one might also require that every student
must be in a group, or ask the student for preferences and
require that each student end up in one of their top 3 groups
by preference. In this case the gcc and its propagator are just
one of the building blocks to find a solution.

4.2 An arc consistent algorithm for the gcc
This section will discuss Régin’s [13] GAC propagator for
the gcc that was mentioned earlier in Section 2, because the
implementation and benchmarks in Sections 5 and 6 make use
of this algorithm. It is a high level overview. The proofs of
correctness and other details can be found in the paper itself.

The propagator for an instance of the gcc like the one in
Figure 1 works as follows:

• A graph is constructed like in Figure 2.

– The source node connects to the value nodes, us-
ing the value’s upper and lower counts as upper and
lower bounds for the flow, respectively.

– A value node connects a value node to a variable
node if the variable has that value in its domain.
[0, 1] is used as the lower and upper capacities.

– All variable nodes are connected to the sink, with
lower and upper capacities of [0, 1].

– The sink connects to the source with capacities
[0,∞]

• The augmenting path method is used to find a feasible
flow in the graph (a flow that satisfies all lower bound
capacities).

• Using a feasible flow, a maximum flow is found using
a slightly modified Ford-Fulkerson algorithm. This is a
flow that is maximum (but less than the sum of the upper
bound capacities) and also satisfies the lower bound ca-
pacities. The FF algorithm also returns a residual graph
that is used to prune the domains of the variables.

• Tarjan’s algorithm is used to find Strongly Connected
Components (SCCs) in the residual graph of the maxi-
mum flow.

• If an edge connecting a variable node x and a value node
v are not in the same SCC, then that edge is not used in
any maximum flow in the graph, thus the value v is not
part of the domain of x in any possible solution. This
means that v can be removed from the domain of x.

5 Main contributions: The implementation of
the propagators for the gcc

The research question is to investigate the feasibility of a gcc
implementation in LCG when compared against decomposi-
tions. As has been mentioned in the previous section, Lazy

A

B

Group 1

[1,2]

Group 2

[1,2]
Group 3

[1,1]

Group 4

[0,2]

Group 5

[0,2]

[0,1]

[1,2]

[0,1]

[1,2] [1,1] [0,2]

[0,2]

[0,∞]

Figure 2: An example of the graph con-
structed for Régin s GAC algorithm for
gcc(⟨x1, ..., x18⟩, ⟨(1, 1, 2), (2, 1, 2), (3, 1, 1), (4, 0, 2), (5, 0, 2)⟩)

Clause Generation requires that propagators be modified to
explain their decision to remove a value from the domain of
one of the variables. The main challenge lies in how to adapt
existing algorithms for the gcc propagator for use in LCG and
in developing explanations for them. Therefore, this section
focuses on the following three points:

• Implement and adapt the existing algorithms for the gcc
to make them work in an LCG solver.

• Develop explanation algorithms for the chosen propaga-
tor algorithms.

• Investigate which steps can be performed to improve the
propagator’s performance to make them as competitive
as possible against already optimized decompositions.

In this section, two different propagation algorithms are
treated: An algorithm following the Arc consistent GCC
propagator proposed by Régin [13], and a simpler but faster
filtering algorithm of no particular consistency.

5.1 The naive explanation algorithm
The following explanation can be used for any propagator.
Note that H(x) returns the holes in the domain of x.

Enaive(X) =
∧

∀x∈X

Ñ
[x ≥ lb(x)] ∧ [x ≤ ub(x)]

∧
h∈H(x)

[x ̸= h]

é
(1)

The explanation for failure is then Enaive(X) ⇒ ⊥, and
the explanation for a removal of value v from the domain of
variable x is Enaive(X) ⇒ [x ̸= v]

This explanation is a conjunction using the upper and lower
bounds of variables x ∈ X as well as the negation of any
holes in its domain (values that have been removed between
the upper and lower bound). This explanation describes the
domain of all variables X at the current position in the search
space. As such, it is the most general explanation possible
because it works to explain any propagation step or failure.
However it ends up using many literals and because it is only

logically true in the current position on the search space, it
will not allow the SAT solver to use ”nogoods” to short circuit
search at any other point.

Since the SAT solver already uses clauses to constrain the
domain of the variables to their initial domain, an equivalent
explanation is:Ñ ∧

∀x∈X

Ñ ∧
∀v∈D0(x)

[x ̸= h] if h /∈ D(x)

éé
⇒ [x ̸= v]

(2)
Where D0(x) is the initial domain, and D(x) the current

domain of x. This explanation is the conjunction of all the
values that have been removed during the search (they are in
the initial domain, but not in the current domain). This is log-
ically the same as describing the domain of every variable and
when automatically minimizing clauses it offers no benefit in
terms of the clause length, but can be more concise and easier
to reason about.

5.2 The simple filtering propagator
This kind of propagator uses simple rules to prune domains
and detect inconsistencies. As such, the general ideas are not
a novel method, and similar algorithms are implemented in
some existing solvers because these filtering algorithms can
be simple, propagate quickly, and are easy to reason about but
their pruning strength tends to be low.

A propagator for the simple filtering algorithm
Let gcc(X,V) where V = ⟨v, lower(v), upper(v)⟩ are the
values, with upper count and lower count that variables x can
take. Let max count(v) be defined as the number of variables
of the gcc that have been fixed to value v during the search (v
is the only value currently in their domain). Let min count(v)
be the number of variables containing v in their domain, and
let E(X) be the (left side of) any valid explanation algorithm,
for example the general explanation from equation (2). Then
the basic filter algorithm for the gcc(X,V) is:

Algorithm 1 Basic Filter

1: for v ∈ V do
2: if min count(v) > lower(v) ∨ max count(v) <

upper(v) then
3: return E(X) ⇒ ⊥ ▷ Inconsistency
4: end if
5: for x ∈ X|v ∈ D(x) do
6: if min count(v) + 1 > upper(v) then
7: E(X) ⇒ [x ̸= v] ▷ x can’t have value v
8: end if
9: if max count(v)− 1 > lower(v) then

10: E(X) ⇒ [x = v] ▷ x must have value v
11: end if
12: end for
13: end for

Line 2 essentially checks whether the gcc is satisfied. If
not, it explains why the failure happened. Lines 6 and 9
use two simple rules to prune values from the domain of

the variables: If assigning value v to variable x causes the
min count(v) to be greater than the upper bound this would
make the problem inconsistent. Therefore we must remove
v from D(x). If not assigning variable x to this value v
would make the max count(v) lower than the lower bound,
the problem becomes inconsistent. Therefore D(x) = v.

Explaining the simple filtering algorithm
As is mentioned in the previous subsection, the general ex-
planation can be used to explain failures or prunings done by
the Basic Filter algorithm. The performance of the algorithm
can be improved by using a more specific explanation.

An alternative explanation algorithm for Basic Filter
An explanation that can be used for the Basic Filter algorithm
1 is:

Efilt1(X, v) =

(∧
x∈X

[x = v] if x = v

)
(3)

Efilt2(X, v) =

(∧
x∈X

[x ̸= v] if v /∈ D(x)

)
(4)

The problem is inconsistent when min count > lower(v),
in which case the explanation for failure is Efilt1(X, v) ⇒ ⊥.
Intuitively, the inconsistency happened because of all vari-
ables x that are assigned value v. The problem can never be
consistent as long as all those variables are assigned to v, and
might become consistent again if v is removed from at least
one of the variables such that the count is less than or equal
to lower(v). Similarly, for the inconsistency max count <
upper(v), the explanation for failure is Efilt2(X, v) ⇒ ⊥.

The same explanations can be used to justify domain prun-
ing (because the underlying condition is the same for detect-
ing inconsistencies and removals in this algorithm). If x can’t
have value v then the explanation is Efilt1(X, v) ⇒ [x ̸= v],
and if x must have value v it is Efilt2(X, v) ⇒ [x = v].

5.3 The arc consistent propagator
The arc consistent propagator uses the algorithm explained in
Section 2, with a small modification and an algorithm added
to explain removals and failures during the search to make it
work with Pumpkin, the LCG solver.

A propagator for the arc consistent algorithm
The arc consistent propagator uses the Régin GAC propaga-
tor algorithm from Section 2, with a modification to how a
feasible flow is found: Régin [13] computes a feasible flow
using augmenting paths starting from an infeasible flow and
then uses Ford-Fulkerson (with a modification to take into
account lower bounds) to find a maximum flow. However, is
also possible to use Ford-Fulkerson for finding both the fea-
sible flow as well as the maximum flow. For this the weight
of the edges connecting the sink to the values defined in the
gcc are set to the lower bounds before running an unmodified
Ford-Fulkerson. The resulting maximum flow will be a fea-
sible flow if the total flow is the same as the sum of the lower
bounds (if all lower bounds are satisfied, the flow is feasi-
ble). Now that there is a feasible flow, the edges connecting
the sink to the values are set back to the upper bounds, and a

modified Ford-Fulkerson is used as described in the original
paper.

Developing a new explanation for Régin GAC
The idea behind this explanation hinges on the fact that
Régin’s algorithm uses strongly connected components
(SCC) to remove values from the domains: If a variable x and
one of its values v are in different strongly connected compo-
nents of the residual graph after running the algorithm, then
that value v is removed from the domain of x. Intuitively, if
the variable and the value nodes were in the same SCC and
now are not, the cause must have been one removal from the
domain of some variable (since that is the only change that
can happen during search). The minimal explanation then
consists of all the removed variable-value edges that cause a
variable x and its potential value v to be in two SCCs. The
explanation of Rochart [12] for all different and of Kat-
sirelos [5] to develop so called g-nogoods can be adapted to
create an explanation for the gcc for domain pruning.

ERégin(x, v,X, V,G0, G) =∧
(v′,x′)∈G0

[x′ ̸= v′] if (v′, x′) /∈ G ∧ J(x′, v′, R(G), x, v)

(5)

Note that (v′, x′) ∈ G0 refers all value-to-variable edges in
the original graph at the start of search. J(v′, x′, R(G), x, v)
returns True iff there is a path in the current residual graph
R(G) starting at x and ending at v when adding the edge
(v′, x′) to R(G).

Intuitively, if there is a value-variable edge (v′, x′) that is
in the original graph, but not in the current one, then it must
have been removed during search. There exists a path from
v to x in R(G) because it contains the edge (v, x) (since the
edge is being selected for removal by the Régin algorithm).
If adding back the removed edge (v′, x′) creates a path from
x to v in R(G), it must be that x and v are in a cycle, since
there is a path from v to x and from x to v. This means x
and v are in the same SCC when (v′, x′) is added, and in a
different SCC when it is absent. Therefore [x′ ̸= v′] must be
part of the explanation.

6 Experimental Setup and Results
The following experiments are performed to benchmark the
performance of a gcc propagator in LCG against decomposi-
tions:

• Compare the performance of the two propagator algo-
rithms on a problem where it is easy to generate in-
stances of different sizes.

• Compare the performance of the two propagator algo-
rithms with their explanation algorithms against the de-
composition on multiple problems that resemble those
encountered in the real world.

• Compare the performance improvements of the new ex-
planation algorithms and optimizations.

While the gcc propagators can be bench marked on simple
example problems or puzzles such as Sudoku, this alone is not
likely to provide a realistic estimate of the performance one
would get in a real world problem. To address this, the bench-
marks also make use of the Minizinc Challenge [18] prob-
lems. These problems are designed to compare the perfor-
mance of different Constraint Programming solvers against
each other in a competition. Since a big part of the per-
formance of a CSP solver are its propagators, the problems
are also well suited to compare propagator implementations
against each other. Problems from the challenge make use
of a balanced number of the common global constraints, and
some problems have a larger or smaller number of them. Ad-
ditionally, the whole corpus of problems is public and speci-
fied in the Minizinc constraint programming language, a com-
mon standard that many solvers accept, which is a benefit in
terms of reproducibility. The experiments use all problems
that include the global cardinality low up constraint.

All algorithms have been implemented and benchmarked
in the source available Rust based Pumpkin CSP solver1. A
separate Python test bench has been created to run the prob-
lems on Pumpkin, collect the results and generate plots. The
problems from the Minizinc Challenge which are written in
the Minizinc language are run via Pumpkin’s compatibility
layer for Minizinc. The decomposition of the gcc used for
benchmarking is performed automatically by the Minizinc
language and decomposed into smaller constraints that Pump-
kin supports. These smaller constraints are assumed to be
highly optimized.

All experiments were run on a 5.5 GHz AMD Ryzen 5
7600X with 6 physical and 12 logical cores. Experiments
were run in parallel but up to 5 at a time, in random order, to
reduce the effect of OS thread scheduling with all instances
in a random order.

6.1 Comparing the gcc against decompositions in
Sudoku

The gcc is the only type of constraint needed to solve Su-
doku puzzles. This makes it good to benchmark the perfor-
mance of these propagators without the interference of having
to use other constraints to model the problem. Furthermore,
instances of the puzzle are easy to generate and problems can
be made arbitrarily large using any number (n, n) of grids
instead of the usual (9, 9).

A dataset 2 of 90 Sudoku puzzles was used to compare the
runtime of the Régin GAC algorithm and the Basic Filter al-
gorithm against the Minizinc decomposition (see Figure 3).
Both Régin GAC and Basic filter use the naive explanation
algorithms. The missing bars are of problems where the cor-
responding algorithm did not terminate within the time limit
of 10 minutes. The results show that the geometric mean
of the speedup ratio across all problems is (3.42, 1.52) for
Régin GAC and Basic Filter with decomposition as baseline.
In other words, Régin GAC is, on average, 3.42 times faster

1Pumpkin solver: https://github.com/consol-lab/pumpkin
2Sudoku problems: https://web.archive.org/web/

20200121075758/http://hakank.org/minizinc/sudoku/problems2/
index.html

https://github.com/consol-lab/pumpkin
https://web.archive.org/web/20200121075758/http://hakank.org/minizinc/sudoku/problems2/index.html
https://web.archive.org/web/20200121075758/http://hakank.org/minizinc/sudoku/problems2/index.html
https://web.archive.org/web/20200121075758/http://hakank.org/minizinc/sudoku/problems2/index.html

than decomposition.

Figure 3: Runtime benchmark of the Régin GAC and basic filter
propagators against decomposition. Run-times are normalized so
that decomposition acts as the baseline of one.

6.2 Comparing the gcc against decompositions on
the Minizinc Challenge problems

Figure 4 shows the normalized runtime of Régin’s GAC prop-
agator and the Basic Filter implementations, both using the
naive explanation algorithms. The runtime of the decomposi-
tion is normalized by setting it to one. Some problems have
no bar in the plot because no solution was found within the
time limit (20 minutes, which is the standard time used to
grade the Minizinc challenge winners). Some of these prob-
lems are optimization problems, where they are not expected
to be solvable within the time limit, and instead an objective
measure is used to indicate the better algorithm. The objec-
tive is plotted in Figure 4 as well, when applicable.

The geometric mean of the speedup ratios of the runtime
are (1.34, 0.91) for Régin GAC and Basic Filter respectively.

Régin GAC tends to be the best algorithm on ”evmopt” (a
compilation problem), physician scheduling and especially
on rotating workforce scheduling while decomposition is
marginally superior on community detection and vaccine.

The drawbacks of using Runtime is that it is a metric
subject to changes in the OS thread scheduler, it does not
provide information when the algorithm does not terminate,
and it does not indicate if performance gains come from the
low runtime of the propagator, it’s pruning strength, or the
strength of the explanations it produces. To address some
of these weaknesses, a number of other statistics have been
gathered.

Learned Block Distance (LBD) [1] is a standard heuristic
to evaluate the quality of learned clauses in SAT solvers. The
explanations provided by the gcc propagator are used by the
SAT solver to learn clauses and improve the search. There-
fore LBD provides a good way to measure the usefulness of
a propagator’s explanations. The lower the LBD, the more
useful the explanation. Learned clause length measures the
length of boolean clauses that the SAT solver develops from
the propagator’s explanations and conflict size measures the
size of conflicts the SAT solver constructs from the prop-
agator’s filtering and conflict explanations. Generally, the
smaller these two the better, as the SAT solver can then keep
track of more of them. Figure 5 shows Régin GAC over-

Figure 4: Benchmark of the runtime and objective value of the the
two propagators with decomposition as baseline

all has a lower LBD, Learned Clause Length and Conflict
Size. Basic Filter has a higher LBD: The geometric mean
among all problems of the computed statistics is: LBD =
(0.90, 1.05), LCL = (0.91, 0.95), CS = (0.92, 0.95) for
Régin GAC and Basic Filter in physician scheduling, Régin
GAC and Basic filter achieved a significantly higher LBD
which allowed them to find a solution with some objective
value, where decomposition did not find any solution at all.
Régin GAC tended to have a lower LBD in vaccine and ro-
tating workforce scheduling. Surprisingly, it tended to out-
perform decomposition in the latter problem, despite having
a lower LBD.

6.3 Measuring the effect of improvements on
propagation or explanation algorithms

Figure 6 shows a run of Régin GAC and Basic filter compared
to decomposition, but this time using the specialized expla-
nation algorithms. The geometric mean speedup rates are
(3.19, 2.28) compared to (3.42, 1.52) when using the general
explanations. From this it follows that Basic Filter greatly
improves in performance with the new explanations. There
is now only a single problem in which it is slower or equal
to decomposition. On the other hand the Régin explanation
and optimization saw a decrease in runtime performance, but
it is still far superior than decomposition, on every single in-
stance.

On the Minizinc challenge, the Régin GAC and Basic
Filter with the specialized explanations achieve a geomet-
ric mean speedup rate of (1.36, 1.00) with a success rate of
(37.5, 37.5) compared to 33 percent for decomposition. As
with Sudoku, the new explanation algorithm benefited Basic
Filter, with an increase in speedup from 0.91 to 1.00 making

Figure 5: Benchmark of LBD, learned clause length and average
conflict size

Figure 6: Sudoku normalized runtime benchmark using the spezial-
ized explanation algorithms

it now on par with decomposition. Régin GAC saw a statisti-
cally negligible improvement of 1.36 compared to 1.34 from
before.

The statistics are LBD = (0.85, 1.0), LCL =
(0.91, 1.03), CS = (0.93, 0.84) compared to LBD =
(0.90, 1.05), LCL = (0.91, 0.95), CS = (0.92, 0.95) from
before. Both Régin and Basic Filter saw a decrease in rela-
tive LBD of 5%.

Overall the new explanation has benefited Basic Filter
greatly. On the other hand, it has not helped Régin GAC
much when it comes to runtime. A possible reason could
be that increase in explanatory strength (seen in the reduction
of the LBD) is offset by a the high runtime cost of comput-
ing the explanation. Alternatively, it could be the artificial 20
minute limit on the runtime of the problems: The new expla-
nations reduced the runtime in the worst cases from before,
but did barely not terminate on some problems. If the run-

Figure 7: Minizinc challenge runtimes of Régin GAC and Basic Fil-
ter using the specialized explanations (normalized to decomposition
= 1)

time is around this limit, on some runs a problems might or
might not arbitrarily terminate on time, skewing the statis-
tics. This arbitrary time restriction is, however, a part of the
Minizinc challenge but the performance improvement might
be more reliably estimated by using a criterion that combines
the objective value with the runtime.

7 Conclusions and Future Work
This paper poses the question of whether an implementation
of a propagator for the global cardinality constraint in
a LCG solver can be competitive against the status quo: the
decomposition method. To answer the question, two prop-
agators were implemented in the Rust-based Pumpkin LCG
solver. The two algorithms (Régin GAC and basic filter) orig-
inally for a Finite Domain solver, were adapted to be used in
a LCG solver by adding an algorithm algorithm to explain
domain pruning or inconsistencies.

The benchmarks show that both implementations outper-
form decomposition in a dataset of 90 instances of Sudoku
puzzles (3.19, 2.28) times faster for Régin GAC and Basic
Filter respectively and (1.34, 1.0) times faster on the Miniz-
inc Challenge dataset. This might challenge the new conven-
tional wisdom in LCG that decomposition tends to beat global
propagators. While the runtime and objective value measures
favor Régin GAC, the LBD statistic is less conclusive.

A possible improvement to better compare the algorithms
against decomposition would be to improve the explanation
algorithm as mentioned in Section 5. The current implemen-
tations have a significant runtime cost which might negatively
affect the performance of the SAT solver’s learning and mem-
ory requirements.

8 Responsible Research
All the source code used is openly accessible at: https:
//github.com/spaghetti-stack/Pumpkin/tree/develop. This in-
cludes the code for the LCG solver and the algorithms im-
plemented, as well as the code and configuration files to gen-
erate the benchmarks and create the plots. The files of the
problems used for the benchmark are not in the repository,
but the URLs where they are taken from are written in the
experimental setup section. The Minizinc Challenge prob-
lems are properly cited the way they recommend. Meanwhile
the Sudoku problems do not have a proper reference in their
website, so a URL using the Wayback Machine is provided
to reduce the chance of the problems becoming unavailable if
the server goes down. This should make all the experiments
in the paper reproducible.

References
[1] Gilles Audemard and Laurent Simon. Predicting learnt

clauses quality in modern sat solvers. In IJCAI Interna-
tional Joint Conference on Artificial Intelligence, 2009.

[2] Thibaut Feydy and Peter J. Stuckey. Lazy clause gener-
ation reengineered. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), volume
5732 LNCS, 2009.

[3] Tobias Geibinger, Lucas Kletzander, Matthias Krainz,
Florian Mischek, Nysret Musliu, and Felix Winter.
Physician scheduling during a pandemic. In Lecture
Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), volume 12735 LNCS, 2021.

[4] Irit Katriel and Sven Thiel. Complete bound consistency
for the global cardinality constraint. Constraints, 10,
2005.

[5] George Katsirelos. Nogood processing in csps, 2008.
[6] Nysret Musliu, Andreas Schutt, and Peter J. Stuckey.

Solver independent rotating workforce scheduling. In
Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), volume 10848 LNCS,
2018.

[7] Peter Nightingale. The extended global cardinality con-
straint: An empirical survey. Artificial Intelligence, 175,
2011.

[8] Olga Ohrimenko, Peter J. Stuckey, and Michael Codish.
Propagation = lazy clause generation. In Lecture Notes
in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), volume 4741 LNCS, 2007.

[9] Claude Guy Quimper, Peter Van Beek, Alejandro
López-Ortiz, Alexander Golynski, and Sayyed Bashir
Sadjad. An efficient bounds consistency algorithm for
the global cardinality constraint. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformat-
ics), 2833, 2003.

[10] Claude Guy Quimper, Alejandro López-Ortiz, Pe-
ter Van Beek, and Alexander Golynski. Improved al-
gorithms for the global cardinality constraint. Lecture
Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 3258, 2004.

[11] Luc De Raedt, Tias Guns, and Siegfried Nijssen. Con-
straint programming for data mining and machine learn-
ing. In Proceedings of the 24th AAAI Conference on
Artificial Intelligence, AAAI 2010, 2010.

[12] Guillaume Rochart, Narendra Jussien, and François
Laburthe. Challenging explanations for global con-
straints, 2003.

[13] Jean Charles Régin. Generalized arc consistency for
global cardinality constraint. In Proceedings of the Na-
tional Conference on Artificial Intelligence, volume 1,
1996.

[14] Andreas Schutt. Improving scheduling by learning,
2011.

[15] Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and
Mark G. Wallace. Why cumulative decomposition is
not as bad as it sounds. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol-
ume 5732 LNCS, 2009.

[16] Kostas Stergiou and Toby Walsh. The difference all-
difference makes, 2002.

[17] Peter J. Stuckey. Lazy clause generation: Combining
the power of sat and cp (and mip?) solving. In Lecture
Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), volume 6140 LNCS, 2010.

[18] Peter J. Stuckey, Thibaut Feydy, Andreas Schutt, Guido
Tack, and Julien Fischer. The minizinc challenge 2008-
2013, 2014.

[19] Mark Wallace. Practical applications of constraint pro-
gramming. Constraints, 1, 1996.

https://github.com/spaghetti-stack/Pumpkin/tree/develop
https://github.com/spaghetti-stack/Pumpkin/tree/develop

	Introduction
	Preliminaries
	Overview of LCG and explanation algorithms
	Mathematical definitions

	Related Work
	Problem definition
	Formal definition of the global cardinality constraint
	An arc consistent algorithm for the gcc

	Main contributions: The implementation of the propagators for the gcc
	The naive explanation algorithm
	The simple filtering propagator
	A propagator for the simple filtering algorithm
	Explaining the simple filtering algorithm
	An alternative explanation algorithm for Basic Filter

	The arc consistent propagator
	A propagator for the arc consistent algorithm
	Developing a new explanation for Régin GAC

	Experimental Setup and Results
	Comparing the gcc against decompositions in Sudoku
	Comparing the gcc against decompositions on the Minizinc Challenge problems
	Measuring the effect of improvements on propagation or explanation algorithms

	Conclusions and Future Work
	Responsible Research

