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Convex Model Predictive Control for Down-regulation Strategies in Wind
Turbines

Jean Gonzalez Silva, Riccardo Ferrari and Jan-Willem van Wingerden∗

Abstract— Wind turbine (WT) controllers are often geared
towards maximum power extraction, while suitable operating
constraints should be guaranteed such that WT components are
protected from failures. Control strategies can be also devised
to reduce the generated power, for instance to track a power
reference provided by the grid operator. They are called down-
regulation strategies and allow to balance power generation and
grid loads, as well as to provide ancillary grid services, such as
frequency regulation. Although this balance is limited by the
wind availability and grid demand, the quality of wind energy
can be improved by introducing down-regulation strategies that
make use of the kinetic energy of the turbine dynamics. This
paper shows how the kinetic energy in the rotating components
of turbines can be used as an additional degree-of-freedom by
different down-regulation strategies. In particular we explore
the power tracking problem based on convex model predictive
control (MPC) at a single wind turbine. The use of MPC
allows us to introduce a further constraint that guarantees
flow stability and avoids stall conditions. Simulation results
are used to illustrate the performance of the developed down-
regulation strategies. Notably, by maximizing rotor speeds, and
thus kinetic energy, the turbine can still temporarily guarantee
tracking of a given power reference even when occasional
saturation of the available wind power occurs. In the study case
we proved that our approach can guarantee power tracking in
saturated conditions for 10 times longer than with traditional
down-regulation strategies.

I. INTRODUCTION

In the transition to renewable energy sources, several coun-
tries reached a penetration level of renewable generation of
more than 15% of their overall power-generation mix. Many
of them (e.g., Spain, Portugal, Ireland, Germany, Denmark
and the United States) have already crossed this threshold
significantly, and experienced instantaneous penetration lev-
els higher than 50% [1]. Due to such significant contribution
of renewable energy sources, including wind power, grid
operators are increasing their demand for ancillary services
to be provided by wind turbines (WTs).

In particular, grid operators can make use of so-called
Active Power Control (APC) to request turbines to provide
a given reference power output [2]. The power reference
command sent to all generators will guarantee that, at grid
level, supply and demand are balanced and grid frequency
is stabilized. As the power that a WT can generate is upper
bounded by the available power in the incoming wind flow,
WTs can only be down-regulated, that is operate in a way
to track a power reference that is lower than the theoretical
available maximum. Due to the nonlinearities present in the

∗ Delft University of Technology, Delft, 2628CD The
Netherlands {J.GonzalezSilva, R.Ferrari,
J.W.vanWingerden}@tudelft.nl

dynamics of WTs, several down-regulation methodologies
that achieve power tracking are possible [3]–[5].

Still, existing down-regulation strategies were developed
for steady state conditions only, and cannot directly take into
account available information on changing wind conditions,
such as those provided by short time weather forecasts or LI-
DAR measurements. Furthermore, they do not accommodate
directly the need to minimize structural loads on the WT,
which on the long period can lead to premature failures.

In order to address these challenges, in this paper we
propose a down-regulation approach based on convex Model
Predictive Control (MPC). We will show how all the major
down-regulation strategies present in the literature can be
implemented with the proposed MPC approach. Furthermore,
we will introduce a novel down-regulation strategy based on
the maximization of kinetic energy, and show its benefits in
guaranteeing power tracking also during occasional periods
of saturation, when the reference power from the grid is
larger than the available power in the wind flow.

MPCs approaches have already demonstrated their po-
tential in several works on wind turbine and wind farm
[6] control. An MPC formulation based on power flow
and energy was presented in [7], while [8] and [9] have
extended it by including the tower flexural model and by
considering the presence of faults, respectively. By assuming
the knowledge of future demanded power and wind varia-
tions, in [10] the authors are able to damp grid frequency
oscillations by storing and releasing the WT kinetic energy.
The use of kinetic energy as an energy reserve for grid
stabilization is also explored in [11], where power generation
can be increased by temporarily supplying kinetic energy
from the rotor. To the best of the authors’ knowledge,
anyway, no work did consider the problem of promoting
flow stability on the WT blades during down regulation.
Indeed operating in low flow stability regions can lead to
rotor speed oscillations, undesirable turbine responses and
ultimately cause stall conditions [4].

The contribution of the present paper is three fold.
• We develop a general convex MPC framework for power

tracking on wind turbines which includes the kinetic
energy as a degree of freedom;

• We extend the cost function in order to minimize
aerodynamic loads, and add a constraint that enforces
flow stability;

• We present a simulation study based on the NREL 5
MW WT [12] and compare different down-regulation
strategies under saturated conditions in OpenFAST [13].

A key ingredient for obtaining a convex MPC formulation
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in the present case is to use a linear model of the WT
dynamics, expressed in energy form. Such form allows to
remove the non-linear relationship among rotor speed, blade
pitch angles, and wind speed from the optimization problem.
The aerodynamic rotor power is then chosen as an optimi-
sation variable, which is constrained by a piecewise affine
approximation of the available wind power. This formulation
allows naturally to include the kinetic energy as a degree
of freedom and leads to a linear optimization problem.
Due to this freedom, an extra objective can be added to
the optimization problem and thus recover the different
existing down-regulation strategies. Finally, we show how to
avoid stall conditions by implementing a further linearized
constraint . As will be seen in the simulation results, the
time period during which the demanded power is tracked,
by maximizing kinetic energy, can be up to ten times longer
with respect to other down regulation strategies.

The structure of this paper is as follows. First, the wind tur-
bine model is decribed in Section II. Next, down-regulation
strategies are analyzed in terms of kinetic energy and flow
stability in Section III. Section IV introduces our proposed
convex MPC for different down-regulation methods and their
constraints. A simulation study under saturated conditions is
presented in Section V. Finally, the paper is concluded in
Section VI .

II. WIND TURBINE MODEL

The non-linear wind turbine dynamics can be modelled
using the rotor torque balance equation. By considering a
rigid shaft and neglecting losses, this leads to the following
model.

ω̇g(t) =
1
J

[
1

GB
Tr(t)−Tg(t)

]
, (1)

where J is the equivalent moment of inertia of the rotor-
generator-drive-train assembly referred to the high speed
shaft, ω̇g(t) the generator acceleration, Tr(t) the aerodynamic
torque, GB the gearbox ratio and Tg(t) the generator torque.

The non-linearity due to the aerodynamic torque relation
can be expressed as

Tr(t) =
0.5

ωr(t)
ρArv3(t)CP(λ (t),θ(t)) (2a)

=Φ(v(t),ωr(t),θ(t))v3(t)/ωr(t) (2b)

=0.5ρArRv2(t)CQ(λ (t),θ(t)), (2c)

where ρ the air density, Ar the rotor area, θ(t) the collective
blade-pitch angle, and λ (t) = Rωr(t)/v(t) is the tip-speed
ratio, being R the rotor radios and ωr(t) = ωg(t)/GB the
rotor speed. The representation in (2a) is as function of the
power coefficient CP(λ (t),θ(t)). In (2b), instead the func-
tion Φ(v(t),ωr(t),θ(t)) = 0.5ρArCP(λ (t),θ(t)) is defined.
Finally, the rotor torque in (2c) is a function of the torque
coefficient CQ(λ (t),θ(t)), where it holds CQ(λ (t),θ(t)) =
CP(λ (t),θ(t))/λ (t).

The collective blade pitch angle, generator speed and
torque are limited by their upper and lower bounds as

follows:

θmin ≤ θ(t)≤ θmax; (3a)
ωg,min ≤ ωg(t)≤ ωg,max; (3b)

0 ≤ Tg(t)≤ Tg,max. (3c)

The aerodynamic power extracted from the wind by the
rotor is given as

Pr(t) = Tr(t)ωr(t) = 0.5ρArv3(t)CP(λ (t),θ(t)), (4)

while the electrical generator power is given by

Pg(t) = ηgTg(t)ωg(t), (5)

where ηg is the generator efficiency.
The electrical generator power is constrained by

0 ≤ Pg(t)≤ Pg,rated, (6)

where Pg,rated is the rated generator power.
In terms of power flow and energy, the dynamics in (1) is

rewritten as
K̇(t) = Pr(t)−

1
ηg

Pg(t), (7)

where K(t) is the kinetic energy stored in the rotating
components and relates to the generator speed as

K(t) =
Jω2

g (t)
2

. (8)

In the proposed convex MPC formulation, Pr and Pg in (7) are
chosen to be the decision variables. The set of constraints in
(3) needs then to be rewritten as a function of Pr and Pg and
K as well, as the latter depends on the former via the system
dynamics (7). Note that the transformed constraints should
be also convex to lead to a convex problem [14]. Using (8)
and (5), the rotor speed and generator torque constraints from
(3b) and (3c) can be expressed respectively as

(J/2)ω2
g,min ≤ K(t)≤ (J/2)ω2

g,max, (9)

0 ≤ Pg(t)≤ ηg
√
(2/J)K(t)Tg,max. (10)

Since
√

(2/J)K(t) is a concave function, (10) is a convex
constraint on Pg(t) and K(t). Defining the available power
as

Pav(v,K) = max
θmin≤θ≤θmax

Φ(v,(1/GB)
√

(2/J)K,θ)v3,

the aerodynamic rotor power constraint is set as

Pr(t)≤ Pav(v(t),K(t)). (11)

This includes the constraint (3a) in the formulation.
For a range of wind speeds and blade pitch angles and

realistic Φ functions, the available power turns out to be
a concave function of K. Therefore, by fitting k piecewise
affine functions [15], the available power can be approxi-
mated as

P̂av,vi(K(t)) = min{a1K(t)+b1, ... ,akK(t)+bk}v3
i ,
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where a linear interpolation is done between different wind
speeds to obtain P̂av(v(t),K(t)).

P̂av(v(t),K(t)) = (1−Θ)P̂av,v1(K(t))+ΘP̂av,v2(K(t)), (12)

with Θ =
v(t)− v1

v2 − v1
. The linear interpolation of concave

functions results in a concave function.
The thrust force, which presents another non-linear behav-

ior, is modelled as

FT(t) = 0.5ρArv2(t)CT(λ (t),θ(t)), (13)

where CT is the thrust coefficient.
In order to develop the down-regulation strategy that

minimizes thrust force, we approximate the thrust force
through a linearization with respect to the aerodynamic rotor
power and kinetic energy by assuming the knowledge of the
wind speed at each time-step as follows.

First, the power and thrust coefficients are expressed with a
first-order Taylor series expression around the current kinetic
energy K∗ and blade pitch angle θ ∗,

CP(K(t),θ(t))≈CP(K∗,θ ∗)+
∂CP

∂K

∣∣∣∣
K∗,θ∗

(K(t)−K∗)

+
∂CP

∂θ

∣∣∣∣
K∗,θ∗

(θ(t)−θ
∗) = qP(t)θ(t)+ rP(t)K(t)+ sP(t),

(14)

CT(K(t),θ(t))≈CT(K∗,θ ∗)+
∂CT

∂K

∣∣∣∣
K∗,θ∗

(K(t)−K∗)

+
∂CT

∂θ

∣∣∣∣
K∗,θ∗

(θ(t)−θ
∗) = qT(t)θ(t)+ rT(t)K(t)+ sT(t),

(15)

where qP(t), rP(t), sP(t), qT(t), rT(t) and sT(t) are the
corresponding time-varying parameters.

Then, combining (14) with (4) and (15) with (13), and
eliminating the collective blade pitch angle, an affine rela-
tionship can be derived at each time-step as

F̂T(t) = QFT(t)Pr(t)+RFT(t)K(t)+SFT(t) (16)

with QFT(t) =

(
qT(t)

qP(t)v(t)

)
, RFT(t) =

0.5ρArv(t)2
(

rT(t)− rP(t)
qT(t)
qP(t)

)
, and SFT(t) =

0.5ρArv(t)2
(

sT(t)− sP(t)
qT(t)
qP(t)

)
.

III. DOWN-REGULATION

As discussed earlier, there are several practical benefits
in being able to down-regulate turbines to track a specific
demanded power from the grid. However, there are multiple
control solutions to down-regulate wind turbines. In Table I,
the main strategies from the literature are summarized and
qualitatively compared in terms of their capabilities to track
a power reference, reduce structural loads and guarantee flow
stability.

TABLE I
QUALITATIVE CATEGORIZATION OF DOWN-REGULATION STRATEGIES

Strategies Power tracking Structure Loads Flow stability
Maximum ωr High High Low
Minimum CT Low Low Low
Constant λ Medium Medium High
Constant ωr Depending on Depending on Low

the ωr value the ωr value

A. The degree of freedom on kinetic energy

The possibility of having multiple down-regulation strate-
gies is a consequence of the following:

Proposition 1: There exist an non-unique steady state
operating condition when a power demand is below the
maximum available power.

Proof: Lets then assume a steady state condition with
power demand and inflow wind as being Pdem,ss and vss,
respectively. Also, consider the down-regulation of a turbine
to be asymptotic stable by feedback [2], [16], meaning that
as t → ∞ the demanded power flow tends to be reached by
the generator, and the derivative of the kinetic energy from
Eq. (7) tends to zero in a steady state condition. Then, the
following equation would hold near to an equilibrium.

0 ≈ Pr(t)−
1

ηg
Pdem,ss(t), (17)

From combining (17) with (4)

1
ηg

Pdem,ss ≈ 0.5ρArv3
ssCP

(
ωr(t)R

vss
,θ(t)

)
. (18)

Therefore, as depicted by the CP contours in Fig 1, a
desired CP value lower than the maximum CP can be reached
by different combinations of λ and θ .

Fig. 1. Operation curves of down-regulation methods and stall regions of an
NREL 5MW turbine. The shades of bright and dim blue colors correspond
to ∂CQ(λ ,θ)/∂θ > 0 and ∂CQ(λ ,θ)/∂ωr > 0, respectively, characterizing
the stall regions.

Remark 1: The fact that different combinations of λ are
possible means that there is an extra degree of freedom
on choosing a desired rotational speed and, thus, a kinetic
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energy. This will indeed be leveraged to reduce aerodynamic
loads and the risk of stall conditions.

B. Flow stability

A current problem occurring when down-regulating tur-
bines is due to the risk of loss of flow stability along the
blades. This phenomenon, which can occur in low and high
tip speed ratios, can lead to undesirable oscillations [17] and
stall and is thus problematic for the design of turbine control.

Stall is characterized by the decrease of lift force on
turbine blades as function of their angle of attack [18]. When
the turbine is operating in a region where the derivatives
of the aerodynamic torque with respect to rotor speed and
pitch angle are positive, then it will eventually reach stall
conditions [19]–[21]. These regions are shown by the blue
shades in Fig. 1 when the partial derivatives of the torque
coefficient CQ are positive, thus indicating the possible onset
of stall.

In particular, each down-regulation method can be ana-
lyzed in terms of flow stability from their operation distance
with respect to stall regions. First, the constant ωr strategy
can easily reach stall regions with low or high tip speed ratios
depending on wind speed. From the same point of view, the
maximum ωr strategy operates on the boundary of the stall
pitch region. The minimum CT strategy is categorized as low
flow stability as its operation is close to stall regions at low
tip-speed ratios. Finally, the constant λ always remains far
from stall regions, being the strategy that operates under the
most stable flow conditions.

Remark 2: The flow stability analysis herein is based on
a steady state model. Dynamic flow effects and model-plant
mismatches introduce a considerable uncertainty on the stall
conditions. Conservative stall constraints should therefore be
considered to avoid such regions.

C. The use of kinetic energy

On one hand, the high kinetic energy is beneficial for
power tracking, for instance, in the case where the demanded
power exceeds the current maximum available power in the
wind. In that case, the stored kinetic energy on the rotor
speed is released so power tracking can be maintained longer.
On the other hand, high rotor speeds may lead to operation
conditions close to stall regions and to higher aerodynamic
loads as seen by the max ωr curve and the CT contours in
Fig. 1. In this regard, the different down-regulation strategies
are further explored in Section V in the convex model
predictive control framework.

IV. CONVEX MODEL PREDICTIVE CONTROL

Convex MPC is based on solving a convex optimization
problem and is a supported by a fairly complete body
of research. Convex MPC can be solved numerically very
efficiently, making it suitable to several applications.

The down-regulation in wind turbines is here formulated
as an optimization problem based on the linear dynamics
and convex constraints defined in Section II. Different from
previous works, such as [7], the turbine herein is set to track a

demanded power instead of maximizing power extraction. As
consequence of Proposition 1, a down-regulation operation
is not uniquely defined, so an extra objective is added
corresponding to the chosen down-regulation methodology.

First, we define the extra objectives - in Table II- and
corresponding additional constraints in terms of energy and
power flows. Then, further the flow stability constrain is
derived. In the end, the general optimization problem is
defined for all down-regulation strategies.

TABLE II
DOWN-REGULATION STRATEGIES AND EQUIVALENT OBJECTIVES

Down-regulation Equivalent Weights for (27)
Strategy Objective [α5, α6, α7]

Maximum ωr Maximizing K(t) [α5, 0, 0]
Minimum CT Minimizing FT(t) from (16) [0, 0, α7]
Constant λ opt Tracking Kref(t) [0, α6, 0]
Constant ωr Tracking constant Kref [0, α6, 0]

The minimum CT strategy is equivalent to minimize the
thrust force FT(t), which is also equivalent to minimize the
term RFT K from Eq. (16) while the rotor power Pr would
match its associated power reference. RFT is a time-varying
parameter, which depends on the current operation point, so
an extra variable FT,extra is instead minimized by including
the following constraints.

(RFT K)′RFTK ≤ FT,extra, (19)

FT,extra ≥ 0, (20)

where the term RFTK is therefore indirectly minimized based
on the robust linear program [14]. This is done because the
term RFT K is composed by a time-varying parameter, instead
of a constant, and a decision variable.

To obtain the constant λ opt strategy, the kinetic energy is
set to track the following reference as an objective.

Kref(t) =
J(ω ref

g (t))2

2
, (21)

where
ω

ref
g (t) =

λ optv(t)
R

GB. (22)

Now, a time-varying inequality that includes a positive
tuning parameter δ is introduced to constrain the turbine
operation out of the stall region as

∂Tr(t)
∂θ(t)

≤−δ , (23)

where, using (2c),

∂Tr(t)
∂θ(t)

= 0.5ρArRv2(t)
∂CQ(λ (t),θ(t))

∂θ(t)
. (24)

The value of ∂Tr(t)/∂θ(t) expresses how safe the current
WT operation is from stall conditions and it should be always
negative as previously discussed in Subsection III-B. The
parameter δ > 0 is recommended to be added to increase
robustness as result of Remark 2, therefore conservatively
preventing stall to happen.
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Similar with the derivation of (16), the affine time-varying
constraint that avoids stall regions can be obtained by the
linarization of the power coefficient CP(K(t),θ(t)) and the
derivative of the aerodynamic torque coefficient with respect
to the blade pitch ∂CQ(K(t),θ(t))/∂θ(t). Such that the
following constraint is obtained.

∂Tr(t)
∂θ(t)

≈ QT ′
r
(t)Pr(t)+RT ′

r
(t)K(t)+ST ′

r
(t)≤−δ , (25)

where QT ′
r
(t), RT ′

r
(t) and ST ′

r
are the corresponding time-

varying parameters. An affine function is always convex, so
also is this constraint.

Finally, the cost function is defined as the integral of
the objective function F over the time horizon T while
considering the linear dynamic model from (7) and the
defined convex constraints from (9), (10), (11) and (25) over
the receding horizon.

maxU(t)

∫ T+t

t
F(x(τ),u(τ))dτ, ∀t ≥ 0, (26)

s.t. (7), (9), (10), (11), (25),

where the objective function F is defined as

F(x(t),u(t)) =

−α1

[
Pg(t)−Pref(t)

]2
−α2Ṗ2

g (t)−α3Ṗ2
r (t)

−α4

[
max{K(t)− J

2
ω

2
g,rated, 0}

]
+α5K(t)

−α6

[
K(t)−Kref(t)

]2
−α7FT,extra(t). (27)

In the previous equations, it holds x(t) = [K(t)], u(t) =
[Pr(t),Pg(t)]⊤, and U(t) = [u⊤(t), ...,u⊤(t + T )]⊤. For each
down-regulation strategy, the corresponding weights for F
are listed in Table II, where α5, α6, α7 ∈R>0. The additional
constraint (20) for the minimum CT strategy is set only when
this strategy is chosen.

Remark 3: Stability is usually guaranteed by including
a terminal cost and terminal constraints. However, the for-
mulation in (26) does not include them. Therefore, we are
aware that this choice does not yield a closed-loop stability
guarantee.

In the proposed formulation, the optimization problem
can be solved globally using efficient algorithms [14]. At
a defined sampling time Ts, the optimal solution for U(t)
as a vector sequence along the time horizon T is obtained
whereby the first input of the sequence is used to compute
the current turbine command. Then, the prediction horizon
moves ahead to the next step time, from which the optimiza-
tion is repeated.

In particular, given the values of Pr, Pg and K obtained
from the MPC solution, we can obtain the blade pitch
command from Eq. (4) as

θ(Pr(t),K(t)) = θtable

(
Pr(t)

0.5ρArv3(t)
,

R
√
(2/J)K(t)
v(t)

)
,

(28)

and the generator torque command from Eq. (5) as

Tg(Pg(t),K(t)) =
Pg(t)

ηg
√
(2/J)K(t)

. (29)

V. SIMULATIONS

In this section, the performances of the controller with
different down-regulation strategies described in the previous
section are compared for the case where a time-varying de-
manded power exceeds the current maximum available power
in the wind. The control parameters used in the OpenFAST
simulations are in Table III. The normalized standard test
signal from [22] is used for the reference power as in [2],
where the time-varying reference power signal is herein set
to exceed the maximum available power. The maximum
available power is derived from the simulated constant and
uniform wind speed of 8 m/s, that is a representative average
annual value in a wind plant site.

TABLE III
CONTROL PARAMETERS

Parameter Value
Weights, αi [10 0.1 0.1 0.1 0.1 0.1 0.01]

Time horizon, T 20 s
Sampling time, Ts 0.2 s

Stall constraint parameter, δ 0

For each down-regulation strategies, the mean values of
kinetic energy and aerodynamic loads are computed before
the power reference increases at 300 s. The amount of time
that the turbine can track the required power after it becomes
saturated is presented in Table IV. The turbine’s power
and reference are depicted in Fig. 2. The reference power
in green is set to exceed the available power in orange.
The generated powers from each down-regulation strategy
present overshoots with respect to the available power when
saturation occurs due to the stored kinetic energy. The
strategy that maximizes kinetic energy follows longer the

300 400 500 600 700 800
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600

800

1000

1200
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tracking constant  Kref

tracking  Kref(t)
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T
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reference power

available power

Fig. 2. Active power signals (NREL 5MW).
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TABLE IV
COMPARISON OF CONTROLLER POWER OUTPUT TRACKING AND PREVIOUS AERODYNAMIC LOADING

Down-regulation Kinetic Energy (J) Mean Load (kN) Time of Power Tracking
Strategy [before 300 s] [before 300 s] after Saturation (s)

Maximizing K(t) 4.8675e+07 306 40
Minimizing F̂T(t) 0.7689e+06 259 4
Tracking Kref(t) 1.3750e+07 264 5

Tracking constant Kref 1.5086e+07 266 9

reference power, although the turbine operates under higher
aerodynamic loads.

VI. CONCLUSIONS

In this paper, we proposed a linear convex model predic-
tive control framework for implementing wind turbine down-
regulation. Down-regulating a turbine leads to an additional
degree of freedom on the value of the kinetic energy. We
leveraged this and shown how different choices of the
target kinetic energy can lead to existing down-regulation
strategies. We further introduced a novel strategy aimed at
reducing aerodynamic loads and reducing the risk of stall
conditions. We have demonstrated the results of different
down-regulation methodologies in terms of structural load-
ing, flow stability and power tracking capability. Simulation
on realistic models reveal the ability to maintain power
tracking in saturation conditions, by means of the stored
kinetic energy of the rotor.

The shifting paradigm from maximizing to tracking power
and the use of kinetic energy as a storage presents a sig-
nificant economic potential and encourages the research on
active power control of wind turbines [16], [23]. As future
work, the extension of the proposed MPC approach for the
problem of power dispatch in wind farm control, and the
effects of wakes, is of particular interest.
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