

Delft University of Technology

Delft Students on Software Architecture: DESOSA 2019

van Deursen, Arie; Aniche, Maurício; Zaidman, Andy

Publication date
2019
Document Version
Final published version
Citation (APA)
van Deursen, A., Aniche, M., & Zaidman, A. (Eds.) (2019). Delft Students on Software Architecture:
DESOSA 2019. Delft University of Technology. https://se.ewi.tudelft.nl/desosa2019/

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://se.ewi.tudelft.nl/desosa2019/

Delft Students on Software Architecture

DESOSA 2019

Arie van Deursen Maurício Aniche Andy Zaidman

December 2019, version 1.0

ii

Contents

1 Delft Students on Software Architecture: DESOSA 2019 1
1.1 Recurring Themes . 1
1.2 First-Hand Experience . 2
1.3 Feedback . 2
1.4 Acknowledgments . 2
1.5 Previous DESOSA editions . 3
1.6 Further Reading . 3
1.7 Copyright, License and Availability . 3

2 The Arduino IDE 5
2.1 Table of Contents . 5
2.2 Introduction . 6
2.3 Stakeholder Analysis . 6
2.4 Context View . 8
2.5 Development View . 10
2.6 Deployment View . 17
2.7 Technical Debt . 19
2.8 Suggestions . 22
2.9 Conclusion . 22
2.10 References . 22
2.11 Appendix . 23

3 Cataclysm: Dark Days Ahead (CDDA) 27
3.1 Table of contents . 27
3.2 Introduction . 27
3.3 Stakeholders . 28
3.4 Context Viewpoint . 29
3.5 Development Viewpoint . 32
3.6 Functional Viewpoint . 36
3.7 Technical Debt . 39
3.8 Conclusion . 43
3.9 Annex A - PR Analysis . 44
3.10 References . 47

4 Eclipse Che 49

iii

iv CONTENTS

4.1 Introduction . 49
4.2 Context View . 55
4.3 Technical Debt . 56
4.4 Development view . 61
4.5 Functional View . 67
4.6 Conclusions . 68
4.7 References . 69

5 Cockpit 71
5.1 Table of Contents . 71
5.2 Introduction . 71
5.3 Stakeholders . 72
5.4 Context View . 75
5.5 Development view . 79
5.6 Deployment View . 82
5.7 Technical Debt . 85
5.8 Conclusion . 91
5.9 References . 92
5.10 Appendix A . 92
5.11 Appendix B . 96

6 Django 99
6.1 Table of Contents . 99
6.2 Introduction . 100
6.3 Stakeholders . 100
6.4 Decision-making process of pull requests . 106
6.5 Context view . 106
6.6 Development view . 108
6.7 Technical debt . 115
6.8 Evolution Perspective . 117
6.9 Conclusion . 120

7 Flair 121
7.1 Table of contents . 121
7.2 Introduction . 122
7.3 Stakeholders . 122
7.4 Context View . 128
7.5 Development View . 129
7.6 Technical Debt . 137
7.7 Functional View . 145
7.8 Performance and scalability perspective . 147
7.9 Conclusion . 149
7.10 Appendix . 149
7.11 References . 160

8 Flutter 161
8.1 Table of contents . 161
8.2 Introduction . 162

CONTENTS v

8.3 Stakeholders . 162
8.4 Power versus Interest . 165
8.5 Context View . 166
8.6 Development View . 168
8.7 Technical debt . 172
8.8 Operational View . 174
8.9 Conclusion . 175
8.10 References . 175

9 Gutenberg 177
9.1 Table of Contents . 177
9.2 Introduction . 177
9.3 Stakeholders . 179
9.4 Context View . 183
9.5 Development View . 184
9.6 Technical Debt . 189
9.7 Accessibility Perspective . 193
9.8 Conclusion . 196

10 Home Assistant 199
10.1 Table of Contents . 199
10.2 Introduction . 199
10.3 Stakeholders . 200
10.4 Contact persons . 203
10.5 Context View . 204
10.6 Technical Debt . 207
10.7 Development view . 214
10.8 Functional View . 220
10.9 Conclusion . 225
10.10References . 225
10.11Appendix . 225

11 IPFS 231
11.1 Contents . 231
11.2 Introduction . 231
11.3 Structure of IPFS Project . 232
11.4 Stakeholders . 232
11.5 Context View . 238
11.6 Technical Debt . 240
11.7 Development View . 244
11.8 CLI Architecture . 246
11.9 Dependency Management . 247
11.10Testing . 248
11.11Deployment View . 248
11.12Conclusion . 249

12 Keras: Fast Neural Network Experimentation 251
12.1 Contents . 251

vi CONTENTS

12.2 Introduction . 251
12.3 Stakeholders . 252
12.4 Context View . 256
12.5 Development View . 258
12.6 Technical Debt . 263
12.7 Deployment view . 270
12.8 Conclusions . 274
12.9 References . 274
12.10Appendix . 275

13 Kotlin 277
13.1 Table of Contents . 277
13.2 Introduction . 278
13.3 Stakeholders . 279
13.4 Context View . 283
13.5 System Scope . 283
13.6 Pull Request Analysis . 286
13.7 Technical Debt . 287
13.8 Development View . 292
13.9 Contributors Perspective . 296
13.10Conclusion . 299
13.11Appendix . 300

14 Lila (lichess.org) 303
14.1 Introduction . 303
14.2 Stakeholder Analysis . 303
14.3 Context View . 306
14.4 Development View . 307
14.5 Technical Debt . 311
14.6 Conclusion . 319
14.7 Appendix . 319
14.8 References / Footnotes . 320

15 MAPS.ME 321
15.1 Table of Contents . 321
15.2 Introduction . 322
15.3 Stakeholders . 323
15.4 Pull Request Analysis . 326
15.5 Integrators . 326
15.6 Context View . 327
15.7 Development view . 329
15.8 Information View . 334
15.9 Technical Debt . 335
15.10Conclusions . 340
15.11References . 341
15.12Appendices . 343

16 pandas | Python Data Analysis Library 349

CONTENTS vii

16.1 Table of Contents . 349
16.2 Introduction . 350
16.3 Stakeholders . 350
16.4 Context View . 355
16.5 Development View . 358
16.6 Performance Perspective . 363
16.7 Technical Debt . 366
16.8 Conclusion . 371
16.9 Appendix A: Core Team . 371
16.10Appendix B: Suppliers . 371
16.11Appendix C: Decision making analysis . 372
16.12Appendix D: Code Coverage . 395
16.13References . 396

17 Poco 397
17.1 Table of Contents . 397
17.2 Introduction . 398
17.3 Context View . 401
17.4 Pull Request Analysis . 404
17.5 Development View . 404
17.6 Functional View . 411
17.7 Technical Debt . 412
17.8 Conclusion . 417
17.9 Appendices . 418

18 Polymer 421
18.1 Table of Contents . 421
18.2 Introduction . 421
18.3 Stakeholder Analysis . 422
18.4 Context View . 425
18.5 Development view . 428
18.6 Technical debt . 434
18.7 Variability . 437
18.8 Conclusion . 440
18.9 Appendix A - Analyses of pull requests . 440

19 PowerShell 445
19.1 Table of Contents . 445
19.2 Introduction . 445
19.3 Stakeholder Analysis . 447
19.4 Context View . 452
19.5 Development View . 454
19.6 Technical Debt . 458
19.7 Functional Debt . 461
19.8 Conclusion . 464
19.9 References . 465

20 PyTorch 467

viii CONTENTS

20.1 Abstract . 468
20.2 Table of Contents . 468
20.3 Introduction . 468
20.4 Stakeholder Analysis . 468
20.5 Context view . 474
20.6 Development View . 475
20.7 Technical Debt . 482
20.8 Deployment View . 491
20.9 Conclusion . 493
20.10References . 494
20.11Appendix . 494

21 React Native 501
21.1 Table of Contents . 503
21.2 Introduction . 503
21.3 Stakeholder Analysis . 503
21.4 Context View . 507
21.5 Development View . 510
21.6 Pull Request Analysis . 513
21.7 Technical Debt . 516
21.8 Architecture of Apps Written in React Native . 523
21.9 Testing and Software Quality . 526
21.10Conclusion . 526
21.11Appendices . 526

22 SciPy 531
22.1 Abstract . 531
22.2 Table of Content . 531
22.3 Introduction . 532
22.4 Stakeholder’s Analysis . 532
22.5 Power - Interest Analysis . 535
22.6 Integrators . 536
22.7 Context View . 536
22.8 Development view . 539
22.9 Deployment View . 544
22.10Technical Debt Analysis . 547
22.11Conclusion . 556
22.12References . 556
22.13Appendix B: Codification analysis . 571
22.14Appendix C: Technical Debt Glossary . 571
22.15Appendix D . 572

23 Servo 573
23.1 The Parallel Browser Engine Project . 573
23.2 Table of Contents . 573
23.3 Pull Requests . 575
23.4 Stakeholders . 576
23.5 Context View . 579

CONTENTS ix

23.6 Development View . 580
23.7 Concurrency View . 584
23.8 Technical Debt . 586
23.9 Conclusion . 590
23.10Appendices . 590

24 Spring Boot - production-grade Spring-based Applications that you can “just run” 593
24.1 Abstract . 595
24.2 Table of Contents . 595
24.3 Introduction . 596
24.4 Stakeholders . 596
24.5 Other stakeholders . 597
24.6 Integrators and Decision-making process . 598
24.7 Power-interest grid . 598
24.8 People to contact . 599
24.9 Context view . 599
24.10Functional View . 601
24.11Development View . 604
24.12Testing and Release Models . 608
24.13Technical debt . 609
24.14Testing Debt . 611
24.15Evolution of technical debt . 611
24.16Discussions about technical debt . 614
24.17Possible Improvements . 614
24.18Conclusions . 615
24.19Bibliography . 615
24.20Appendix A . 615
24.21Appendix B . 620

25 Terraform 623
25.1 Table of Contents . 624
25.2 Abstract . 624
25.3 Stakeholders . 625
25.4 Context View . 631
25.5 Development view . 633
25.6 Technical Debt . 636
25.7 Usability Perspective . 640
25.8 Conclusion . 642
25.9 References . 643

26 Vim 645
26.1 Table of content . 645
26.2 1. Stakeholder analysis . 646
26.3 2. Context view . 650
26.4 3. Merge decision strategy . 653
26.5 4. Development view . 654
26.6 5. Technical debt . 658
26.7 6. Evolution perspective . 660

x CONTENTS

26.8 7. Conclusion . 662
26.9 References . 662
26.10Appendix A: Analysis of pull requests . 663

27 Zephyr 667
27.1 Table of contents . 667
27.2 1. Introduction . 668
27.3 2. Stakeholder Analysis . 669
27.4 3. Context view . 671
27.5 4. Decision Making Process . 672
27.6 5. Development View . 674
27.7 6. Technical Debt . 679
27.8 7. Security Perspective . 686
27.9 8. Conclusion . 689
27.109. References . 689
27.1110. Appendix . 689

28 Zulip 695
28.1 Abstract . 695
28.2 Table of contents . 695
28.3 1. Introduction . 696
28.4 2. Stakeholder View . 697
28.5 3. Context View . 702
28.6 4. Development View . 705
28.7 5. Deployment View . 709
28.8 6. Technical Debt . 711
28.9 7. Conclusion . 716
28.10References . 716

Chapter 1

Delft Students on Software
Architecture: DESOSA 2019

Arie van Deursen, Maurício Aniche, and Andy Zaidman Delft University of Technology, The Nether-
lands, December 20, 2019

We are proud to present the fifth edition of Delft Students on Software Architecture, a collection of 25
architectural descriptions of open source software systems written by students from Delft University of
Technology during a master-level course that took place in the spring of 2019.

In this course, teams of approximately 4 students could adopt an open source project of choice on GitHub.
The projects selected had to be sufficiently complex and actively maintained (one or more pull requests
merged per day).

During an 8-week period, the students spent one third of their time on this course, and engaged with these
systems in order to understand and describe their software architecture.

Inspired by Amy Brown and Greg Wilson’s Architecture of Open Source Applications, we decided to
organize each description as a chapter, resulting in the present online book.

1.1 Recurring Themes

The chapters share several common themes, which are based on smaller assignments the students conducted
as part of the course. These themes cover different architectural ‘theories’ as available on the web or in
textbooks. The course used Rozanski and Woods’ Software Systems Architecture, and therefore several of
their architectural viewpoints and perspectives recur.

The first theme is outward looking, focusing on the use of the system. Thus, many of the chapters contain an
explicit stakeholder analysis, as well as a description of the context in which the systems operate. These were
based on available online documentation, as well as on an analysis of open and recently closed (GitHub)
issues for these systems.

1

http://avandeursen.com
http://www.mauricioaniche.com
http://www.st.ewi.tudelft.nl/~zaidman/
https://se.ewi.tudelft.nl/delftswa2019/
http://aosabook.org/
http://www.viewpoints-and-perspectives.info/
http://www.viewpoints-and-perspectives.info/home/viewpoints/
http://www.viewpoints-and-perspectives.info/home/perspectives/
http://www.mindtools.com/pages/article/newPPM_07.htm
http://www.viewpoints-and-perspectives.info/home/viewpoints/context/

2 CHAPTER 1. DELFT STUDENTS ON SOFTWARE ARCHITECTURE: DESOSA 2019

A second theme involves the development viewpoint, covering modules, layers, components, and their
inter-dependencies. Furthermore, it addresses integration and testing processes used for the system under
analysis.

A third recurring theme is technical debt. Large and long existing projects are commonly vulnerable to debt.
The students assessed the current debt in the systems and provided proposals on resolving this debt where
possible.

Besides these common themes, students were encouraged to include an analysis of additional viewpoints
and perspectives, addressing, e.g., security, privacy, regulatory, evolution, or product configuration aspects
of the system they studied.

1.2 First-Hand Experience

Last but not least, all students made a substantial effort to try to contribute to the actual projects. With these
contributions the students had the ability to interact with the community; they often discussed with other
developers and architects of the systems. This provided them insights in the architectural trade-offs made in
these systems.

Student contributions included documentation changes, bug fixes, refactorings, as well as small new features.

1.3 Feedback

While we worked hard on the chapters to the best of our abilities, there might always be omissions and
inaccuracies. We value your feedback on any of the material in the book. For your feedback, you can:

• Open an issue on our GitHub repository for this book.
• Offer an improvement to a chapter by posting a pull request on our GitHub repository.
• Contact @delftswa on Twitter.
• Send an email to Arie.vanDeursen at tudelft.nl.

1.4 Acknowledgments

We would like to thank:

• Anand Kanav, Arjan Langerak, and Bernd Kreynen, who did an amazing job as teaching assistants to
the course

• Casper Boone and Stavrangelos Gamvrinos, who helped integrating the chapters into the DESOSA
book

• Our 2019 guest speakers Mike Ciavarella, Bert Wolter, Ayushi Rastogi, Xavier Devroey, Erci Greuter,
Marco di Biase, and Matthias Noback.

• Alex Nederlof and Michael de Jong who were instrumental in the earlier editions of this course.
• All open source developers who helpfully responded to the student’s questions and contributions.

https://www.viewpoints-and-perspectives.info/home/viewpoints/development/
https://speakerdeck.com/avandeursen/lehman-versus-lehman-dealing-with-debt?slide=2
http://www.viewpoints-and-perspectives.info/home/viewpoints/
http://www.viewpoints-and-perspectives.info/home/perspectives/
https://github.com/serg-delft/desosa2019
https://github.com/serg-delft/desosa2019
https://twitter.com/delftswa

1.5. PREVIOUS DESOSA EDITIONS 3

1.5 Previous DESOSA editions

1. Arie van Deursen, Maurício Aniche, Andy Zaidman, Liam Clark, Gijs Weterings and Romi Kharis-
nawan (editors). Delft Students on Software Architecture: DESOSA 2018, 2018.

2. Arie van Deursen, Maurício Aniche, Andy Zaidman, Valentine Mairet, Sander van den Oever (editors).
Delft Students on Software Architecture: DESOSA 2017, 2017.

3. Arie van Deursen, Maurício Aniche, Joop Aué (editors). Delft Students on Software Architecture:
DESOSA 2016, 2016.

4. Arie van Deursen and Rogier Slag (editors). Delft Students on Software Architecture: DESOSA 2015.
DESOSA 2015, 2015.

1.6 Further Reading

1. Arie van Deursen, Maurício Aniche, Joop Aué, Rogier Slag, Michael de Jong, Alex Nederlof,
Eric Bouwers. A Collaborative Approach to Teach Software Architecture. 48th ACM Technical
Symposium on Computer Science Education (SIGCSE), 2017.

2. Arie van Deursen, Alex Nederlof, and Eric Bouwers. Teaching Software Architecture: with GitHub!
avandeursen.com, December 2013.

3. Amy Brown and Greg Wilson (editors). The Architecture of Open Source Applications. Volumes 1-2,
2012.

4. Nick Rozanski and Eoin Woods. Software Systems Architecture: Working with Stakeholders Using
Viewpoints and Perspectives. Addison-Wesley, 2012, 2nd edition.

1.7 Copyright, License and Availability

This book is available in html (easy on line reading, chapter by chapter), pdf (self contained, 726 pages) and
epub (for e-reader convenience) formats.

The copyright of the chapters is with the authors of the chapters. All chapters are licensed under the Creative
Commons Attribution 4.0 International License. Reuse of the material is permitted, provided adequate
attribution (such as a link to chapter on the DESOSA book site) is included.

Cover image: Église Saint-Pierre de Firminy, Le Corbusier. Wikimedia

https://delftswa.gitbooks.io/desosa2018/
https://delftswa.gitbooks.io/desosa-2017/content/
https://delftswa.gitbooks.io/desosa2016/content/
https://delftswa.github.io/
https://pure.tudelft.nl/portal/en/publications/a-collaborative-approach-to-teaching-software-architecture(0c7f2aeb-f2d6-4c56-9ab7-5f47f73d133f).html
http://avandeursen.com/2013/12/30/teaching-software-architecture-with-github/
http://aosabook.org/
http://www.viewpoints-and-perspectives.info/
http://www.viewpoints-and-perspectives.info/
https://se.ewi.tudelft.nl/desosa2019/index.html
output/desosa2019.epub
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://se.ewi.tudelft.nl/desosa2019/index.html
https://en.wikipedia.org/wiki/File:EgliseSaintPierreLeCorbusierFirminy.jpg
http://creativecommons.org/licenses/by/4.0/

4 CHAPTER 1. DELFT STUDENTS ON SOFTWARE ARCHITECTURE: DESOSA 2019

Chapter 2

The Arduino IDE

Authors: Pieter Kools, Ivo Wilms, Diwakar Babu, Arkajit Bhattacharya

2.1 Table of Contents

1. Introduction
2. Stakeholder Analysis
3. Context View
4. Development View
5. Deployment View
6. Technical Debt
7. Conclusion
8. References
9. Appendix

5

https://github.com/Pieter12345
https://github.com/iwilms
https://github.com/DBabu
https://github.com/arkajitb

6 CHAPTER 2. THE ARDUINO IDE

2.2 Introduction

Arduino is an open source electronics platform which uses simple I/O boards and a development environment
to interact with the board. Arduino boards are capable of performing multiple functionalities based on the
set of instructions sent to the microcontroller. The open-source Arduino software (Arduino IDE) is used
to write code (C and C++) and upload it to the board. This is an analysis of the Arduino IDE architecture
performed by exploring the full project on GitHub. We have aimed at providing insight into the system from
different viewpoints. These viewpoints are defined and explained by Rozanski and Woods in their book
Software Systems Architecture, Working with Stakeholders using Viewpoints and Perspectives[5]. First, a
context view along with stakeholder analysis is performed, followed by development view, deployment view
and finally technical debt.

2.3 Stakeholder Analysis

In this section, we identify the stakeholders involved in Arduino. The following table identifies the eleven
types of stakeholders as explained by Rozanski and Woods[5.1].

Type Stakeholder Small Description

Acquirers BCMI & Arduino
AG Company

Massimo Banzi, CEO of the company BCMI (which
acquired 100% of the Arduino AG that owns all of
the Arduino trademarks), decides the future of the
Arduino code[6] (of course with his board members’
approvals).

Assessors Core Developers The Arduino company handles the legal regulations
of any project that involves Arduino or using the
name “Arduino” [14].

Communicators Arduino,
community

The Arduino has its own education portal
(maintained by the Arduino organization) [7]
providing kits (via the Arduino website) with the
software (free to download from Github) and tips
and knowledge on building and creating projects.
People discuss Arduino projects and related code on
Forums and StackExchange. YouTube is found to be
a medium frequently used by many users to discuss
and teach Arduino to beginners.

Developers Core developers,
integrators,
community

The core developers of the Arduino software are
Massimo Banzi along with Tom Igoe. The frequent
and active contributors and Arduino users also play
an important role in developing the Arduino code,
but they do not have the permission to directly push
or merge their code.

System Administrators Community,
Arduino users

Users play the role of system administrator.

Suppliers Arduino, Github The software packages can be directly downloaded
from the official website and also from Github

https://github.com/arduino/Arduino
https://forum.arduino.cc/
https://arduino.stackexchange.com/
https://www.youtube.com/results?search_query=arduino
https://github.com/mbanzi
https://github.com/tigoe
https://github.com/arduino/Arduino

2.3. STAKEHOLDER ANALYSIS 7

Type Stakeholder Small Description

Maintainers Core Developers,
active contributors

The Arduino IDE keeps evolving and it is maintained
by the developers and contributors by creating bug
fix tasks/issues and creating/handling pull requests.

Production Engineers Core developers The developers of Arduino handle the production
releases and run tests on new builds.

Support staff Developers,
community,
Arduino
organization
Support team

The Arduino company has a team of support staff
and communicators provide support for
Arduino-based applications on various forums (for
example Arduino Forums) and StackExchange.

Testers Core Developers
and community

Developers and contributors are responsible for
running JUnit tests to test the code before a PR is
made, merged and officially released.

Users Hobbyists,
organizations,
Arduino research
community groups

152 user groups with each group consisting of more
than 100 members are recorded throughout the globe
[8]. The applications vary from IOT to wireless
applications to Robotics.

2.3.1 Beyond the classification of stakeholders by Rozanski and Woods:

The following stakeholders identified are additional stakeholders who do not match the groups in Rozanski
and Woods.

• Apart from the Arduino website, local Arduino authorized hardware suppliers to supply the Arduino
hardware.

• End-Users are users who use this software to work with the hardware (creating Arduino projects)
which indirectly influences the Arduino’s development.

• Another stakeholder that can be considered is the people who work at Arduino company and maintain
the website which provides a space where users can share their project, based on which new features
are built and added.

• Arduino blog writers is a space where unambiguous and reliable sources of information from users
who use and help new developers to use Arduino can be found. Therefore, we can consider the
bloggers as an indirect stakeholder.

• Translators contribute to translations for Arduino’s documentation for the software on their website,
who are active contributors for Arduino software.

2.3.2 Analyzing the stakeholder’s involvement: Power vs Interest Grid

Mendelow’s power-interest grid [13] is used to classify the groups of stakeholders that should be managed
closely. Figure 1 shows that the core developers, active contributors on Github and Arduino community are
stakeholders who have both high interest and power. These are the people that actively contribute to and
maintain the project and need to be managed closely. Users like teachers, bloggers that use Arduino software

https://www.arduino.cc/
https://blog.arduino.cc/
https://www.arduino.cc/en/main/documentation

8 CHAPTER 2. THE ARDUINO IDE

without many active contributions show high interest, but have very low power and must be informed well.
The dependencies have high interest and minimum power. The reason being, users usually buy Arduino
shields which comes with libraries and the user can easily use them without much effort. Other users like
TU Delft and GSMA show very high interest in the Arduino development, but provide fewer contributions
and therefore are not categorized as active contributors.

Figure 1: Power Interest Grid of the Arduino IDE where the interest of the stakeholder is shown on the
horizontal axis and the power of the stakeholder is shown on the vertical axis.

2.4 Context View

The context view describes the scope and responsibilities of Arduino, i.e. its boundaries in terms of what it
does or does not do. To be more precise, it defines the relationships, dependencies and interactions between
the Arduino IDE and other external/internal systems, organizations, and people across these boundaries.

2.4.1 Scopes and Responsibilities

The Arduino IDE has a well-defined scope for their system. During the design process, core developers
discuss what should be part of the scope for the new version. Some of the scopes for the Arduino’s current
versions are:

• Provide apps for MacOS, Windows and Linux.
• Arduino IDE 1.5 library format is used in tandem with its original Library Manager.

https://github.com/arduino/Arduino/blob/master/build/build.xml

2.4. CONTEXT VIEW 9

• The board manager of the Arduino IDE can be used to automatically install support for 3rd party
hardware.

• New improvements are released periodically.
• Easy installation of customized libraries and command line tools.
• Sacrifice elegance of implementation over ease-of-use.
• Emphasize real use case over theoretical possibilities.
• Recognize that documentation is just as important as the code. Documentation here means the

Javadocs, comments on the code that explains the particular snippets of codes.

2.4.2 Context Diagram and the External entities and Interfaces

Figure 2: Context View of the Arduino IDE describing the relationships with its environment

A short explanation of some of the components in the context view model is as follows:

-Developers: Massimo Banzi is the main developer and co-founder of Arduino along with Tom Igoe.
Additionally, active Github users/developers (for example Christian Maglie, Martino Facchin, David A.
Mellis, etc.) have been a part in developing new features and maintaining the code.

-Build Requirements: Java Development Kit 8, Apache Ant, avr-gcc, avr-g++, git, unzip and OS-specific
software such as Cygwin for Windows, Homebrew for MacOS and make and OpenJFX for Linux.[2].

-Testing Framework: The Arduino IDE makes use of JUnit4 to perform unit- and system tests. These tests
can be executed from an IDE or by executing ant test.

-Target Platforms: The Arduino IDE was built to develop programs/apps for Arduino microprocessors on
Windows, MacOS and Linux platforms.

https://github.com/mbanzi
https://github.com/tigoe
https://github.com/cmaglie
https://github.com/facchinm
https://github.com/damellis
https://github.com/damellis

10 CHAPTER 2. THE ARDUINO IDE

-Communicators: Arduino users (teachers, bloggers and developers) communicate mostly on the dedicated
Arduino forums and on Stack Exchange.

-Dependencies: The Arduino IDE has a lot of dependencies as seen here and here (.jar files).

-Language: The Arduino IDE is written in Java and is designed for C/C++ development for Arduino
microprocessors.

2.5 Development View

Figure 3: High-level architecture of the Arduino IDE.

Figure 3 shows the high-level architecture of the Arduino IDE, consisting of main modules arduino-core,
app and build. The functionality of these modules will be explained in the Module organization section,
followed by a look into the Common Design Model. The Codeline model then takes a deeper look into the
project structure and last, the Stakeholders concerned with Development View are identified.

https://forum.arduino.cc/
https://arduino.stackexchange.com/
https://github.com/arduino/Arduino/tree/master/arduino-core/lib
https://github.com/arduino/Arduino/tree/master/app/lib

2.5. DEVELOPMENT VIEW 11

2.5.1 Module Organization

Figure 4: Module Organization of the Arduino IDE.

Figure 4 shows the various modules of the Arduino IDE and how they relate to each other.

Modules - arduino-core (Java)
This module contains the code required for the core IDE features. It does not contain a GUI and can be
executed from the command line. The most important features are providing a serial connection to a through
USB connected Arduino microprocessor, merging C code sketches with used libraries, combining compiled
sketches with the right bootloader for the used Arduino microprocessor type and providing a translation
framework for any feedback shown to the end user.

• app (Java)
This module is built on top of the arduino-core module and provides the GUI that we know as the
Arduino IDE. The most important components of this GUI are the code editor, the serial monitor, the
serial plotter and the library manager.

• build (binaries/images/text)
This module contains the additional non-Java files that are used in combination with arduino-core
and app to build the distributable zip of the Arduino IDE as it can be downloaded by end users. The
most important files are:

– The Apache Ant build file: This file contains the build configuration of the entire project.
– Example sketch references: This is a list of example sketch repositories for programming

Arduino microprocessors and sha hashes to validate that these automatically cloned repositories
indeed contain the expected content (version).

– OS-specific drivers: The OS-specific drivers that allow connecting to Arduino microprocessors
through USB.

– Native libraries: Libraries that are required by either arduino-core or app, such as the GCC C
compiler and .dll files on Windows for getting certain default directories.

– Art: Images used by app.

12 CHAPTER 2. THE ARDUINO IDE

Dependencies
The project is written in Java and has the following build dependencies: - Apache Ant: Used for building
the project. - Java Development Kit (JDK): Used for compiling Java sources. - Arduino C libraries: These
are libraries that can be used by end users to write code for Arduino microprocessors. These are: Ethernet,
GMN, Stepper, TFT, WiFi, arduino, Bridge, Robot_Control, Robot_Motor, RobotIRremote, SpacebrewYun,
Temboo, Esplora, Mouse, Keyboard, SD, Servo, LiquidCrystal and Adafruit_CircuitPlayground. In essence,
all libraries except the arduino library can be omitted. The arduino library contains functions that allow the
user to access Arduino microcontroller functionality without having to perform direct register manipulation.
- GCC compiler: Users program Arduino microcontrollers in C. The GCC compiler is used to compile that
C code to machine code that runs on different Arduino microprocessor architectures. - launch4j: Used to
wrap the Java project into a Windows executable. - Open source Java libraries: Several more generic open
source Java libraries are used. The jars with their licenses can be viewed in the repository at app/lib and
arduino-core/lib.

External dependencies
The arduino-core and app modules both contain a processing.app package containing partially mod-
ified classes from the Processing Development Environment (PDE). Every now and then when the PDE
project updates, those updates are also manually merged into the copied classes. In an attempt to keep
this merging process as simple as possible, Arduino IDE developers attempt to keep the signature of these
classes as similar to the original as possible. Modifications to these classes are made to fulfill the need of
Arduino IDE specific features.

2.5.2 Common Design Model

Every version of Arduino is found to be similar due to the commonality factor, which is provided by the
constraints of the development of the Arduino IDE. The main reason for this is to reduce risk and duplication
of effort, in combination with increasing the system’s overall coherence.

Common Processing
The modules arduino-core and app consist of unique packages, including adapted packages from the
Processing Development Environment (PDE), which were modified to fit the Arduino IDE’s needs. No
processes are shared.

Internationalization
The Arduino community has members from different parts of the world. The i18n translator is used to make
the Arduino software more accessible to people who speak different languages.

Standardization of design
The Development policy [15] is well documented in each area of open-source project development such
as issue creation, making pull requests and code optimization. This helps developers and contributors to
maintain the design standards throughout the projects life. Some design standards of Arduino are as follows:

• Issues: Issues are used for reporting bugs and proposing/discussing new features. The issue tracker is
used to keep track of these bugs/features and allow everyone to view the discussion and code progress.
When the issues are relatively easy, it normally takes 3 - 5 days to be resolved by developers. However,
many issues stay open for a very long time. Issue 134 is the oldest open issue. It has been open 6.5
years. Any bugs found in the forums are also found by the developers and contributors and added to
issue tracker and linked to the respective forum page.

https://github.com/processing/processing
https://github.com/processing/processing
https://github.com/arduino/Arduino/tree/master/arduino-core/src/cc/arduino/i18n
https://github.com/arduino/Arduino/issues
https://github.com/arduino/Arduino/issues/134
https://forum.arduino.cc/

2.5. DEVELOPMENT VIEW 13

• Submitting Patches: Optimizations and bug fixes are maintained separately (sometimes they are
considered a low priority). Since fixing some bugs can break the flow and functionality, Arduino
expects the changes to be tested on processors/boards before adding to the code. In the Arduino,
issues related to code optimization are found to be resolved sooner than the bug report issues.

Customisation of libraries: Certain important libraries are maintained by the developers’ team since they
are an essential part of the code. These libraries are contributed by the community and can be seen in the
list. Any customized libraries can be sent to the Arduino developer forum for any suggestions or possible
inclusion as a new entry.

• Pull requests: Pull requests facilitate the contribution of additional features, modification of existing
features and fixing of bugs in the Arduino IDE. The points that influence the pull request decision-
making process in the Arduino IDE are as follows:

1. Desirability - When added features would not seem to improve the Arduino software, questions about
this were asked and the PR authors (and other people) were given the opportunity to explain why the
PR is an improvement for the Arduino software. Even though some features in the analyzed PRs were
questioned, none of these PRs were rejected for this reason.

2. Code quality - Developers often discussed the implementation of features. This was often about
design choices such as: add or do not add an abstraction layer, where to add new API functionality,
implement differently to provide more useful errors to end users and add some feature/bugfix in the
targeted module or rather fix it in a dependency of that module.

3. Test Results - The PR authors nearly always update their PRs or supply additional information when
a failed user/build test is reported. Though not directly discussed, it is likely that PRs with known
errors are less likely to be merged. Exceptions to this hypothesis were OS/setup-specific errors that
were not severe for the end user (minor graphical bugs, the installer not generating a desktop shortcut
on Linux, etc).

2.5.3 Codeline model

The codeline models in terms of the source code structure, release process, configuration management, build
and testing processes are discussed below.

http://playground.arduino.cc/Main/LibraryList
https://groups.google.com/a/arduino.cc/forum/#!forum/developers

14 CHAPTER 2. THE ARDUINO IDE

2.5. DEVELOPMENT VIEW 15

Figure 5: Source code structure of the app and arduino-core module source directories.

16 CHAPTER 2. THE ARDUINO IDE

Figure 6: Source code

2.6. DEPLOYMENT VIEW 17

structure of the app module test source directory.

The source code structure in figures 5 and 6 show the main packages and top-level classes used to build and
test the Arduino IDE.

Building and Testing
The Arduino IDE is built using Apache Ant in combination with a Java Development Kit (JDK) and
OS-specific tools for generating the executable. Building happens through executing ant dist (build and
generate distribution zip), ant run (build and start) or ant build (build only) from the command line in the
build directory. This effectively executes the Apache Ant build task as defined in build/build.xml. This
build task also takes care of dependency management tasks such as downloading dependencies, unpacking
dependencies, cloning git repositories and checking SHA hashes of downloaded dependencies (the .sha files
are supplied in the repository). The Jenkins Continuous Integration is used to generate hourly builds and
beta builds.

The arduino-core module does not contain any tests and the app module contains JUnit4 tests. The ant
test command runs these tests. The tests are not very robust: while we tested it the results ranged from 4
to 17 test failures depending on the operating system and whether were spaces in the path. Oddly enough,
these tests are not automatically executed when building locally or through the Jenkins CI.

Release Process
Production engineers are majorly responsible for monitoring the releases and also control them on Github.
The software release process is not much different from any other projects on Github. 1. Changes are made
on separate branches in a fork of the repository. 2. Merge request is created by a contributor and eventually
checked by the production engineers. 3. Version number is used to keep track of releases. 4. Draft release is
created with release notes. 5. Rebase the branch onto master and merge the pull request. When the pull
request needs rebasing and the developer who performs the merge does not have write access to the pull
request, it is closed and then rebased onto master on another branch and merged from there.

After these steps, the production engineer ensures that the release notes are updated properly. The release
takes place after a set of pull requests has been merged.

The Arduino IDE is managed by a small set of developers and contributed to by a larger group of users
and developers. Version control is used to document additional features and non-backward compatible
changes. Pull requests for such changes are postponed until all changes combined are worth a version bump.
Since pull requests are always built and often user-tested before merging to the master branch, the technical
integrity of the master branch is maintained (it is nearly always stable). While developers do often discuss
features, they less often discuss how they should be implemented. This could be because contributors are
doing a good job, but it could also mean that developers mainly care about the final result. The Arduino
IDE project does not have any static analysis tools and does not come with a code style template. While
most of the code is consistent, there are still quite some inconsistencies (mostly whitespace usage) and the
documentation (Javadoc) is poor.

2.6 Deployment View

This section summarizes the system requirements and dependencies to successfully run the Arduino IDE.
Figure 7 illustrates the deployment view of the Arduino IDE.

18 CHAPTER 2. THE ARDUINO IDE

Figure 7: Deployment View of the Arduino IDE

• Run-time Software Requirements: Java run-time environment is an important requirement for the
installation and run-time of the Arduino IDE. The Arduino IDE uses avr-gcc to compile the sketches
written in the IDE. The Arduino IDE also requires the USB drivers to be installed to connect with the
Arduino board for uploading the code from the sketch. All of these dependencies are included within
the official download on the Arduino website and when building the system, which means that users
don’t have to install anything other than the Arduino IDE.

• Operating System: the Arduino IDE is built on Processing modules and Java, both of which are
cross-platform. There are no official sources about the minimum version requirements for the Arduino
IDE. A lower bound can be derived however by looking at the minimum system requirements for Java
8.0, the main dependency for the Arduino IDE. The following information is based on the minimum
requirements for Java 8.0, which can be found on the Java website [16]. Java is supported on Windows
Vista SP2 and above. For Windows 10, Java version 8u51 is required to run. For Macs, it requires OS
X version 10.8.3 or above. The Arduino website states that any Linux flavor should work and that only
the architecture (Intel 32 bit, Intel 64 bit, ARM) matters [17]. This is correct for recent installations of
Linux, but not all older versions can run the IDE. The following list is a list of officially supported
Linux distributions that are officialy supported by Java:

– Oracle Linux 5.5+
– Oracle Linux 6.x (32-bit), 6.x (64-bit)
– Oracle Linux 7.x (64-bit) (8u20 and above)
– Red Hat Enterprise Linux 5.5+, 6.x (32-bit), 6.x (64-bit)
– Red Hat Enterprise Linux 7.x (64-bit) (8u20 and above)
– Suse Linux Enterprise Server 10 SP2+, 11.x

http://arduino.cc
http://arduino.cc

2.7. TECHNICAL DEBT 19

– Suse Linux Enterprise Server 12.x (64-bit) (8u31 and above)
– Ubuntu Linux 12.04 LTS, 13.x
– Ubuntu Linux 14.x (8u25 and above)
– Ubuntu Linux 15.04 (8u45 and above)
– Ubuntu Linux 15.10 (8u65 and above)

• Hardware Requirements: For the Arduino IDE to install and run, the system is required to have 256
MB RAM on top of the requirements for the operating system, CPU with Pentium 4 or above.

• Network Requirements: the Arduino IDE requires a network connection to check and download
updates for both the IDE and libraries. The updates are downloaded from the Arduino website,
specifically http://www.arduino.cc/latest.txt. The IDE adds parameters to the URL with specifics
about the OS when getting the latest version number. The libraries specify their own URL for where
to check for updates.

2.7 Technical Debt

Technical debt is a concept that represents the difference between the actual solution and the ideal solution.
Choosing an easy, non-ideal solution that is often faster to implement can seem like a good solution, but it
can mean that even more work has to be done in the future when working with this non-ideal solution. In
computer science, this includes things such as not writing proper documentation, leaving unused or outdated
files/code in the project, not creating proper abstraction layers for components that are subject to change
and not writing automated tests for new code. There are several forms of technical debt, some of which are
discussed below.

2.7.1 Design Debt

Design debt is created by developers making poor design choices for the system. To analyze a part of the
design debt, we have used the static analysis tool PMD to identify code smells.

2.7.1.1 Code Analysis

PMD helps in identifying five types of code violations : Blocker, Critical, Urgent and Warning violations.
As per PMD, there are more than 3500 violations, which made it impossible to analyse all of them. Thus,
we reduced the scope to Blocker and Crititical violations, which reduced the number of violations to
approximately 200.

2.7.1.1.1 Blocker and Critical Issues We have observed the below mentioned blocker violations :

• Formal Parameter Naming Convention: The parameter names provided do not follow the naming
convention provided by Java Code Style guidelines.

• Avoid throwing raw exception type: Runtime exception is used rather than using Exception subclasses
(e.g. ArithmeticException and ArrayTypeException).

• Variable naming convention: The variable names provided do not follow the naming convention
provided by Java Code Style guidelines.

http://www.arduino.cc/latest.txt
https://pmd.github.io/latest/pmd_rules_java_performance.html

20 CHAPTER 2. THE ARDUINO IDE

• Avoid file stream: FileInputStream has been instantiated which can lead to long garbage collection
pauses.

• Constructor calls overridable method: Calling overridable methods during construction might result
in invoking methods on an incompletely constructed object, which can make the debugging process
difficult.

Most of the blocker issues were related to parameter and function naming conventions. In addition to the
above mentioned issues, we found many critical violations like reassigning values to incoming parameters.
That said, it has to be mentioned that PMD inspects and compares the code with some often used Java Code
style guidelines. A tool such as PMD cannot truly determine how bad code is, it is instead used to ensure
that code (and later edits to it) follows certain rules consistently, leading to a consistent code base over
time. Another issue which is observed a lot in Arduino code is the lack of documentation and inconsistent
code style which makes it difficult to understand all the functionalities. To summarize the above mentioned
observations, it can be concluded that the code smell is quite high for the Arduino IDE project.

2.7.1.2 Issue Analysis

There are multiple issues related to the Arduino IDE. For instance, #6951 proposed that ‘Ctrl+F’ in mac
opens the find and replace window and it takes roughly half a second for the cursur to move to the new
window. This issue was raised because of a couple of commits(0d50f0b and 65103aa) related to another
issue#6603. The issue mentioned was reported as a bug and it is difficult to implement the change in Java.
This shows lack of end-to-end testing to find the impact of a change in other functionalities of the IDE which
doesn’t really reduce the count of issues as it might lead to another issue. In total, there are 110 open issues
related to the Arduino IDE which still needs to be taken care of.

2.7.1.3 Historical Analysis

We have compared the code for the previous releases of the Arduino IDE(ide-1.0.x and ide-1.5.0.x) using
PMD to understand the evolution of the design debt over time. It has been observed that a lot of files were
removed and added during the process. As per PMD, the number of violations increased with the newer
version (1.5.x). Although this comparison do not mean that there will be more problems in future assuming
that both the versions didn’t take code practices in account, it is important for any open source project to
follow a coding style which leads to a consistent code base. A static analysis tool could have had an impact
on this project as the code quality would have stayed roughly the same which is important for a project like
the Arduino IDE with more than 100 contributors.

2.7.2 Documentation Debt

Documentation is of great importance in any project for both developers and users. It is very important
for a project like the Arduino IDE since it allows developers to more easily find the code they want to
edit and understand how the current code works. With proper documentation, one would have to read less
code to understand what’s happening. Proper documentation also makes it easier to compare what some
method/function does with what it should do. It is equally important for users as well to understand the
installation procedure and navigation of the software which can be made easy only by proper documentation.
We have checked issues related to documentation raised in the past and we have observed that the type of

https://github.com/arduino/Arduino/issues/6951
https://github.com/arduino/Arduino/commit/0d50f0bb6c6baf8bf750cd268451418c8cd81e21
https://github.com/arduino/Arduino/commit/0d50f0bb6c6baf8bf750cd268451418c8cd81e21
https://github.com/arduino/Arduino/pull/6603

2.7. TECHNICAL DEBT 21

issues, i.e. typos and inconsistency in documentation, still remains the same. This follows from our analysis
of the issues. Some examples are mentioned below.

2.7.2.1 Issue Analysis

This section looks into issues related to the documentation about Arduino IDE. There are 105 open issues
related to documentation.Thus, the documentation debt seems to be really high. For instance, issue 1055
is about the improper documentation of pins_arduino.h, which is important to meet the needs of custom-
designed boards. Another issue in Arduino documentation is the inconsistency of data. There were issues
raised regarding the inconsistency in data in the website and the documentation. For example, in Issue
#8086, the FPGA chip number was wrongly mentioned in the documentation.

2.7.3 Test Debt

The Arduino IDE consists of two projects: ‘app’ and ‘arduino-core’. The ‘app’ project contains JUnit tests
and the ‘arduino-core’ project contains no tests at all. However, since the ‘arduino-core’ project is used by
the ‘app’ project, it is indirectly tested. In total, there are 65 tests and some of them may fail based on the
Operating system(macOS,Linux or Windows) and its version. The results of running a test with instruction
coverage are shown below:

Figure 8: Test Coverage

From the above table, it can be observed that the test coverage for arduino-core is only 15.1% and for app it
is only 5.9%. From the observations above, we can conclude that the testing debt for Arduino is very high.

https://github.com/arduino/Arduino/issues/1055
https://github.com/arduino/Arduino/issues/8086

22 CHAPTER 2. THE ARDUINO IDE

2.7.4 Project Debt

The project debt is quite high for the Arduino IDE as there are 920 open issues and 160 pull requests still to
be taken care of. Since the core developers are responsible for testing the pull requests, it becomes nearly
impossible to keep track of all the pull requests on time and perform a thorough check before merging them.

2.8 Suggestions

To avoid documentation debt, we suggest the contributors to properly document their changes in relevant
places. Moreover, core developers should refuse to merge the code if proper documentation is not present.
In addition to the above mentioned points, there should not be any inconsistencies in different documents
regarding a common topic. The backlog of issues can be a symptom of technical debt which should be
considered. Similar to ‘CONTRIBUTING.md’ file which serves as a checklist before contributing to the
repository, a file should be added to the repository regarding the code style guidelines which have to be
followed for any contribution.

2.9 Conclusion

In this chapter the architecture of the Arduino IDE was analyzed using the viewpoints described by Rozanski
and Woods in their book Software Systems Architecture, Working with Stakeholders using Viewpoints and
Perspectives[5]. The stakeholder view identified the stakeholders involved in the project. The stakeholders
were analysed using a Power vs Interest grid which led to the conclusion that stakeholders with highest
interest and power include the core developers, active contributors on Github and the Arduino community.
In the context view we identified the scope and responsibilities of the Arduino IDE and visualized it in a
context diagram which shows the relationships, dependencies and interactions between the Arduino IDE
and other external/internal systems, organizations, and people across these boundaries. The context view
showed that Arduino has a well-defined scope for their system. The development view discussed the module
organisation, common design model and codeline model in detail. The deployment view summarized the
system requirements and dependencies to successfully run the Arduino IDE. Finally, the analysis performed
in technical debt helped us to understand that there are lots of possible improvements to the project when it
comes to code smells, documentation and test coverage.

In conclusion, Arduino is a very interesting project maintained by highly skilled engineers, but it would
benefit from more active efforts to reduce the technical debt.

2.10 References

1. https://en.wikipedia.org/wiki/Arduino_IDE

2. https://github.com/arduino/Arduino/wiki/Building-Arduino

3. Comparing prototype platforms

4. Arduino Documentation

https://www.electronicproducts.com/Board_Level_Products/Single_Board_Computer/Comparing_prototype_platforms_Arduino_Raspberry_Pi_BeagleBone_and_LaunchPad.aspx
https://www.arduino.cc/en/main/documentation

2.11. APPENDIX 23

5. Software Systems Architecture, Working with Stakeholders using Viewpoints and Perspectives by Nick
Rozanski and Eoin Woods

5.1. Stakeholders

6. A new era for Arduino begins today

7. Teaching, Inspiring and Empowering!

8. Arduino user groups

9. Story and History of Development of Arduino

10. Arduino authorized distributors

11. Development Policy

12. AUniter and Jenkins

13. Olander, S., & Landin, A. (2005). Evaluation of stakeholder influence in the implementation of
construction projects. International journal of project management, 23(4), 321-328.

14. Arduino Policy

15. Development Policy

16. The minimum system requirements for Java 8.0

17. Guide for installating the Arduino IDE on Linux

18. https://github.com/arduino/Arduino

19. Understanding Technical Debt

20. Java Code style guidelines

2.11 Appendix

To identify the decision-making process for which PRs get merged and which PRs get accepted, we analyzed
some PRs. This appendix describes the key points for that analysis. First a description of what happens for
most PRs is given. After that, we will take a closer look at the kind of tradeoffs that need to be decided. We
will finish with the reasons a PR can be rejected.

PRs can be divided into two categories: a bugfix fixes a bug, while a feature PR adds a new feature or
changes an existing feature. Bugfix PRs are basically always considered, as a bugfix is never undesired. For
the feature PRs, the core developers first consider whether they want the feature. They do this by weighing
the usefulness of the feature versus how much more the feature would complicate the IDE for new users.
There are few PRs that get rejected because of this tradeoff. This is presumably because contributors make
an issue (or read existing issues) where they will be told that the feature is not desired before they implement
the feature and make a PR for it. Nevertheless, an example of a PR that was rejected because it introduced
an unwanted feature is PR #2073.

https://www.viewpoints-and-perspectives.info/
https://www.viewpoints-and-perspectives.info/
https://www.viewpoints-and-perspectives.info/home/stakeholders/
https://blog.arduino.cc/2017/07/28/a-new-era-for-arduino-begins-today/
https://www.arduino.cc/en/Main/Education
https://www.arduino.cc/en/aug/
http://www.circuitstoday.com/story-and-history-of-development-of-arduino
https://store.arduino.cc/distributors
https://github.com/arduino/Arduino/wiki/Development-Policy
https://github.com/bxparks/AUniter
https://www.arduino.cc/en/main/policy
https://github.com/arduino/Arduino/wiki/Development-Policy
https://www.java.com/en/download/help/sysreq.xml
https://www.arduino.cc/en/guide/linux
http://www.michaelportwood.com/Quick-Tips/Understanding-Technical-Debt.htm
http://www.cs.cornell.edu/courses/JavaAndDS/JavaStyle.html#CamelCase
https://github.com/arduino/Arduino/pull/2073

24 CHAPTER 2. THE ARDUINO IDE

If the PR isn’t rejected outright, it is iterated upon until the PR is either accepted or rejected. During that
iteration, the code is reviewed and tested by the community and the core developers. Based on those reviews
and tests, the following steps all happen simultaneously:

• If bugs are reported, they will often be resolved by the original author.
• Code quality issues (e.g. duplicate code) will also be reported and fixed.
• Finally, tradeoffs will be discussed with the core developers and the community.

If the PR hasn’t been rejected before this point, it will be merged.

Most of these tradeoffs happen on some level for all PRs, but the choice is so clear that it doesn’t really
count as a tradeoff. But once every so often, there is a genuine tradeoff and the core developers need to
provide guidance to the community in which way they want the project to go. The tradeoffs that we found
in our analysis are:

• Amount, severity and likelihood of being fixed of known bugs vs desirability and urgency of the PR
Sometimes, a known bug in a PR can’t easily be fixed, or the PR has a certain urgency to it. In cases
like these, the core developers must decide whether to accept these known bugs in order to merge now
or to defer merging until the bug is fixed.
In most cases, there is no urgent need for the PR to be merged, and the developers will just defer
merging until all known issues are fixed, for example in PR #4519. However, sometimes it will take
too long for the PR to be fixed. If the PR is desirable enough, the core developers may choose to merge
the PR with the bug still unsolved. While this may seem unwise, improving software is inherently an
iterative process. Waiting for each PR to be perfect would ensure that PRs never actually get merged.
So, imperfect PRs get merged with the assumption that if the problems are bad enough, they will get
fixed in a later PR, and if they don’t get fixed then they apparently weren’t that important.
An example of a PR getting merged with existing bugs was PR #4515. It works around some
suboptimal design, but it introduced a new bug on a specific board. In this case, the core developers
decided that the new bug was specific enough that only a few users would be affected by it (the
original author couldn’t reproduce the bug), while fix in the PR affected significantly more users. For
this reason, they merged the PR with the new bug still unfixed.

• Overhead vs functionality
On the Arduino itself, resources are limited. This means that adding new functionality can add signifi-
cant overhead. For example, PR #1803 proposed to add a functionality related to USB descriptors.
But the implementation would add a constant overhead of over 800 bytes, more than 20% of the flash
memory that was used without the PR. This overhead existed even when the code would not be used.
Such high overhead was unacceptable to the core developers, so they required the overhead to be
reduced before merging.

• Proper code design that requires a refactor vs a workaround that works now
While in theory it is better to not incur design debt by allowing badly designed code, there is always a
tradeoff between the cost of doing a refactor to make something work and the cost of doing it quickly
now but a possibility for higher cost in the future. An example of a decision on such a tradeoff can
be found in PR #2681 and PR #1803. In #2681, the core developers chose to accept technical debt
and merge code that added another rule to an already complicated set of rules instead of solving it
properly. In #1803, there was a simple and powerful solution that exposed internals of the IDE. While
the community was in favor of it, the core developers were against it as that would mean people would
start depending on those internals, which would make it almost impossible to change them. For this
reason, the PR did not get merged and eventually became outdated.

• Ease of implementation vs usability

https://github.com/arduino/Arduino/pull/4519
https://github.com/arduino/Arduino/pull/4515
https://github.com/arduino/Arduino/pull/1803
https://github.com/arduino/Arduino/pull/2681
https://github.com/arduino/Arduino/pull/1803

2.11. APPENDIX 25

In general, making something easier for the user requires more effort on the part of the programmer
and increases the complexity of the code. Deciding here requires a good understanding of what can
be expected of the user. Because the Arduino IDE is supposed to be simple to use for inexperienced
users, the core developers will almost always take the option that is simpler for the user, even if it
adds complexity and development time. Examples of this can be seen in PR #1803 and PRs #3549
and #4457.

Finally, we will look at some of the reasons why a PR can get rejected.

• If the original author stops responding, the PR has a high chance of being rejected. If the code is good,
someone else can copy it to their own fork and open a new PR, as was the case for PR #3549, which
was continued in PR #4457.

• A PR may also be rejected if the code got merged some other way, like the previous point where
someone else opened a new PR, or like PR #7029, where the code had already been merged in a
rebase at some point.

• A PR is rejected when a it becomes outdated, i.e. the underlying code has been changed so much that
it isn’t worth the effort of making the PR up-to-date again. Alternatively, it may even not be possible
in the way it was originally implemented, and implementing the feature is better done from scratch.
An example of this are PR #3549 and PR #4457, which were superseded by PR #4517. The latter
made a better approach available and therefor made #3549 and #4457 outdated. Another example is
PR #1250, which was closed because it was outdated. @cmaglie opened a new one: PR #1726.

• PRs are rejected when a better approach becomes / is available and has been implemented. Approaches
are seldomly clearly better. Instead, there will be tradeoffs: one approach is better in one area, the
other approach is better in another area. Which of the two is “better” is determined by discussing the
tradeoffs, often in both PRs. Then, one of the core developers decides which PR to take. An example
is PR #3549 and PR #4457 mentioned above, which were superseded by PR #4517, which made a
better approach available and therefor made #3549 and #4457 outdated.

https://github.com/arduino/Arduino/pull/1803
https://github.com/arduino/Arduino/pull/3549
https://github.com/arduino/Arduino/pull/
https://github.com/arduino/Arduino/pull/3549
https://github.com/arduino/Arduino/pull/4457
https://github.com/arduino/Arduino/pull/7029
https://github.com/arduino/Arduino/pull/3549
https://github.com/arduino/Arduino/pull/4457
https://github.com/arduino/Arduino/pull/4517
https://github.com/arduino/Arduino/pull/1250
https://github.com/arduino/Arduino/pull/1726
https://github.com/arduino/Arduino/pull/3549
https://github.com/arduino/Arduino/pull/4457
https://github.com/arduino/Arduino/pull/4517

26 CHAPTER 2. THE ARDUINO IDE

Chapter 3

Cataclysm: Dark Days Ahead (CDDA)

Aniket Samant, Gerardo Moyers, Joan Marce Igual, Naveen Chakravarthy

3.1 Table of contents

• Introduction
• Stakeholders
• Context Viewpoint
• Development Viewpoint
• Functional Viewpoint
• Technical Debt
• Conclusion
• References
• Annex A - PR Analysis

3.2 Introduction

Cataclysm: Dark Days Ahead is a turn-based survival horror game that takes place in an post-apocalyptic
world, in which there is no specific goal, and the basic aim is to survive as long as you can. The game
was originally developed by Whales as open-source game under the name Cataclysm. In the days which
followed, Whales brought its development to an end. The gaming community later forked the game and
renamed it to Cataclysm: Dark Days Ahead (CDDA). The game is available in two graphical versions: text
and graphical tile based.

It is now the property of an organization called CleverRaven. Most of the information of C:DDA can be
obtained from two important sources: - The project page - The GitHub page which includes: - Issues -
Project evolution during time

27

https://github.com/asamant
https://github.com/gerardomoyers
https://github.com/jmigual
https://github.com/naveenspace7
https://github.com/CleverRaven
https://cataclysmdda.org/
https://github.com/CleverRaven/Cataclysm-DDA

28 CHAPTER 3. CATACLYSM: DARK DAYS AHEAD (CDDA)

3.3 Stakeholders

By looking at the github contributions the most active stakeholders in CDDA project are BevapDin,
Kevingranade, Mugling, Rivet-The-Zombie, Coolthulhu and KA101. Using the definitions of Rozanski and
Woods, the stakeholders can be classified into:

Acquirers: Oversee the procurement of the system or product

The members of CleverRaven have the rights of the game. They are responsible for the budget of the project
and the systems acquisitions.

Assessors: Oversee the system’s conformance to standards and legal regulations

Creative Commons Attribution-ShareAlike is in charge of the regulations and licensing of C:DDA.

Communicators: Explains the system to other stakeholders via its documentation and training materials

VlasovVitaly is in charge of uploading the different languages, and most of his contributions are based on
this topic.

Developers: Construct and deploy the system from specifications (or lead the teams that do this)

Rivet-The-Zombie and outside contributors are the project’s developers.

Maintainers: Manage the evolution of the system once it is operational

Most of the outside contributors make small changes to the code to maintain it. Mugling and BevapDin
make changes to the code to keep the game operational in the best way possible.

Suppliers: Build and/or supply the hardware, software or infrastructure on which the system will run

C:DDA runs with different fonts like SQUARE and GNU unifont, Catch being the suppliers.

Support staff: Provide support to users for the product or system when it is running

I2amroy and Illi-kun support the game together with outside contributors.

System administrators: Run the system once it has been deployed

Kevingranade is the most active system administrator. He analyzes the changes to be approved or rejected,
and is considered the most important stakeholder of the project.

Testers: Test the system to ensure that it is suitable for use

These are the gamers and CleverRaven members. They detect bugs in the game.

Users: Define the system’s functionality and ultimately make use of it

System administrators are the users since they run the game.

The definitions given by Rozanski are really accurate, and there are also other types of stakeholders such as
customers who treat the software as a product that passes through their systems. In this case they would be
the gamers that identify a bug in the game and inform about it in GitHub. Other possible stakeholders are
the competitors - C:DDA is a game where new worlds can be created like in Minecraft; however there is a
huge quality gap between them, probably due to the latter being much more popular. Nevertheless, there are
more type of stakeholders which are not contained in this project. For instance, C:DDA doesn’t have any
sponsors.

https://github.com/CleverRaven/Cataclysm-DDA/graphs/contributors
https://github.com/BevapDin
https://github.com/Kevingranade
https://github.com/Mugling
https://github.com/Rivet-The-Zombie
https://github.com/Coolthulhu
https://github.com/KA101
https://github.com/VlasovVitaly
https://github.com/Rivet-The-Zombie
https://github.com/Mugling
https://github.com/BevapDin
http://strlen.com/square/
http://unifoundry.com/unifont/index.html
https://github.com/catchorg/Catch2
https://github.com/I2amroy
https://github.com/Illi-kun
https://github.com/Kevingranade
https://minecraft.uptodown.com/windows

3.4. CONTEXT VIEWPOINT 29

Stakeholders are an important part of any architecture - when a change needs to be made, a stakeholder
analysis helps address that change to the people that can actually help. This analysis saves a lot of time in
the future when an update is needed.

3.3.1 Integrators

Three stakeholders manage the changes made in the project. These are BevapDin, Kevingranade and
Mugling. They are supposed to maintain the coding style. Also, making really small changes is not accepted
but fixing spelling mistakes is. Bug fixes are extensively verified before they are accepted.

Solving an issue is not a trivial task. Even thought the issue is solved in terms of programming, there are
some factors that have to be taken into account like the writing style and not adding more bugs instead.

3.3.2 Relevant people to contact

After analyzing the project’s stakeholders, four contributors have been found to have the biggest understand-
ing of the project code and its goal. These are:

1. Kevingranade
2. Rivet-The-Zombie
3. BevapDin
4. Mugling

3.4 Context Viewpoint

Apart from the stakeholders described in the previous section, the project relies heavily on some external
entities as well for successful development and release, and those are dealt with in the subsections that
follow.

3.4.1 System Scope and Responsibilities

C:DDA is a video game designed to run on a laptop or a desktop computer. C:DDA gives the users an
uncompromising survival scenario, and it also helps gamers in developing problem-solving abilities. This
game only has the responsibility of entertainment for users, with the highest quality achievable.

3.4.2 Distributions

The game is available in the form of: - Stable Releases (Windows and Linux platforms) - Experimental
Builds (Windows, Linux, and OSX platforms)

Moreover, the Experimental has two different types: - Console (referred as Terminal): the game is run like a
console application, with graphics being represented using ASCII characters, and - Graphical (referred as
Tiles): the game is run with additional graphical elements.

https://github.com/BevapDin
https://github.com/Kevingranade
https://github.com/Mugling
https://github.com/kevingranade
https://github.com/Rivet-the-Zombie
https://github.com/BevapDin
https://github.com/mugling

30 CHAPTER 3. CATACLYSM: DARK DAYS AHEAD (CDDA)

Figure 3.1: Context schema

3.4. CONTEXT VIEWPOINT 31

Android builds are also available, and are available on the game’s Releases page.

3.4.3 Development and Contributions

3.4.3.1 Development

The game is mainly written in C++, and most of the data (mods, items, NPCs, etc.) is present in the form of
JSON files. Additional scripts (lua, Python) are also used in the build process. i18n support is also added to
support multiple languages. SDL and ncurses are also used.

3.4.3.2 Compilers

The game can be compiled using the following: - GCC - Clang - MXE

3.4.3.3 Version Control

The project is hosted on GitHub and the Code, Issues, Wiki, and Projects pages are used for their respective
purposes. Any new contribution has to raise an issue or post a pull request.

3.4.3.4 Build Processes

CMake is used for development purposes although it can build the project unofficially. For official builds,
the Makefile in the project’s root directory is used.

The project uses Jenkins CI for its daily builds, and also uses AppVeyor and Travis CI for continuous
integration of pushed code.

3.4.4 Testing

The Catch unit test framework, based on Boost libraries, is used for performing unit tests on the code.

3.4.5 Community Support

The project has a dedicated website, a dedicated discussion forum, a series of web tools hosted through
another GitHub project, and is also supported through an IRC channel. There is also a wiki page for all the
game related information.

3.4.6 Documentation

Doxygen is used to document the entire codebase, in addition to having documentation files in the GitHub
repository for contribution guidelines, compiling, etc.

https://cataclysmdda.org/releases/
https://github.com/CleverRaven/Cataclysm-DDA/blob/master/doc/JSON_INFO.md
https://www.libsdl.org/
https://www.gnu.org/software/ncurses/ncurses.html
https://cmake.org/
https://github.com/CleverRaven/Cataclysm-DDA/blob/master/Makefile
https://jenkins.io/
https://www.appveyor.com/
https://travis-ci.org/
https://github.com/catchorg/Catch2
https://cataclysmdda.org/
https://discourse.cataclysmdda.org/
http://tools.cataclysmdda.com/
https://github.com/drbig/cddatools
https://webchat.freenode.net/?channels=#CataclysmDDA
http://cddawiki.chezzo.com/cdda_wiki/index.php?title=Main_Page
http://dev.narc.ro/cataclysm/doxygen/index.html

32 CHAPTER 3. CATACLYSM: DARK DAYS AHEAD (CDDA)

3.4.7 Licensing

The project is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.

3.5 Development Viewpoint

3.5.1 Introduction

CDDA is a vast project with approximately 251k lines of code (as reported by SonarQube). The structure of
the files is not considered to be the best given the way everything is structured (more depth analysis done in
the later sections). All the source files are contained at a single level making the code management very
difficult. To get a clear understanding for the development view, efforts were put to segregate the monolithic
module into components to enable clear visualization of the underlying functionality.

3.5.2 Module Organization

Most of the information is taken from the documentation 1. Each component defined in the following
diagram is presented in the code in the form of classes. These components are categorized into layers with
respect to their functionality and level of operation.

core: This layer is mainly responsible for setting up the environment of the game, initializing all the
components that are required, and orchestrating the complete game. Every single layer given in this diagram
either directly or indirectly communicates with the core layer. The core layer also in turn communicates
with another layer called common layer which is mainly responsible for other supplementary functionalities.

common: Contains all the modules that are going to be processed by all other modules present in other
different layers. All components in this layer are modified as part of their feedback to an action that took
place as part of interaction in the game.

Vehicle Specifics: This layer contains the components that support vehicle functionalities and interface to the
modules present in the core level.

vehicles: This layer contains the components whose instance are created from JSON files to make the
maintenance easy. Each of these components is mainly responsible for ease of mobility of the player.

creatures: Each of the components under this layer is the living being that is either harmful or harmless.
NPCs (Non-Playable Characters) could include doctor, pets, etc., while monsters include zombies, vampires,
etc.

possession: Contains all the components that are modeled as behavioral attributes for the player and the
NPCs. This layer contains all the components that consist of various kinds of attributes the player possesses
which are represented in the form of classes to allow flexibility in interactions.

item: This layer contains all the components that are instantiated dynamically during gameplay. Each of the
components defined in this layer is supplied in the form of JSON files to enable maintainability.

1Module documentation, http://dev.narc.ro/cataclysm/doxygen/pages.html

https://creativecommons.org/licenses/by-sa/3.0/

3.5. DEVELOPMENT VIEWPOINT 33

Figure 3.2: Module Structure

34 CHAPTER 3. CATACLYSM: DARK DAYS AHEAD (CDDA)

3.5.3 Common design models

As a way of reusing code, Cataclysm-DDA uses a library in order to render the game’s graphics, and the
library is chosen at compilation time: - ncurses if the game has to be rendered in a terminal - SDL if the
game is directly rendered in its own window with sprites

3.5.3.1 Standardized design

Cataclysm-DDA accepts all types of contributors. However, they have to respect some rules when contribut-
ing in order to be accepted.

There is a CONTRIBUTING.md file 2 that states the rules that have to be followed. When contributing there
is a commit template that is specified in the .gitmessage file 3 and that all the developers must follow.
Moreover, when creating a pull request the first line of the description needs to be a summary line with a
specific format that will be later used to create the release changelog.

Also, to ensure that all the code has the same style there are some styling rules for C++ defined in the
CODE_STYLE.md document 4.

In the JSON_INFO.md document 5 the contents for all the JSON files are described and the syntax that
should be used in the files, there’s a total of 96 JSON files specified. The files are classified into general files
describing some game messages and basic items, item files adding objects to the game, requirement files
that set the required items for crafting some objects and vehicle files that describe different types of vehicles
and how they are used.

3.5.4 Codeline Organization

In this section it is explained how the code is managed, tested and built.

The source code is structured in a “flat” form, in that there are no subdirectories within the source directory,
and it is difficult to understand purely by looking at the code structure (file names) what the various
responsibilities of the files are (for instance, fungal_effects.cpp or melee.cpp provide no idea what the
meaning could be).

3.5.4.1 Testing

The testing system is mostly automated. Even thought testing is an important part of software Cataclysm
only covers almost one third of the code with tests.

3.5.4.1.1 Testing framework The project uses Catch as the testing framework. All the tests are located
in the tests/ directory and every test file tests a different file from src/. Not all the code is covered by the
tests since the total coverage is around 29%, this measurement is done through Coveralls.

2Cataclysm-DDA rules for contributors, https://github.com/CleverRaven/Cataclysm-DDA/blob/master/.github/CONTRIBUTING.md
3Cataclysm-DDA git commit message template, https://github.com/CleverRaven/Cataclysm-DDA/blob/master/.gitmessage
4Cataclysm-DDA code style rules, https://github.com/CleverRaven/Cataclysm-DDA/blob/master/doc/CODE_STYLE.md
5Cataclysm-DDA JSON file contents, https://github.com/CleverRaven/Cataclysm-DDA/blob/master/doc/JSON_INFO.md

https://github.com/CleverRaven/Cataclysm-DDA/blob/master/.github/CONTRIBUTING.md
https://github.com/CleverRaven/Cataclysm-DDA/blob/master/.gitmessage
https://github.com/CleverRaven/Cataclysm-DDA/blob/master/doc/CODE_STYLE.md
https://github.com/CleverRaven/Cataclysm-DDA/blob/master/doc/JSON_INFO.md
https://github.com/CleverRaven/Cataclysm-DDA/tree/master/src
https://github.com/catchorg/Catch2
https://github.com/CleverRaven/Cataclysm-DDA/tree/master/tests
https://github.com/CleverRaven/Cataclysm-DDA/tree/master/src
https://coveralls.io/github/CleverRaven/Cataclysm-DDA?branch=master

3.5. DEVELOPMENT VIEWPOINT 35

3.5.4.1.2 Continuous integration Continuos integration is a development technique used when many
developers work together changing parts of the code. It is usually used every time that there’s a pull request
or a release in order to check the new changes and look for errors as soon as possible. C:DDA uses Travis
CI to check Linux and MacOS builds and AppVeyor to check Windows builds.

Through the CI, they make sure that the code compiles properly and then they execute the tests to check that
the new changes do not break any existing code. There’s also an additional test that builds the code and
deploys a new build if it is merged, it also checks for a properly formed pull request message. They use
Jenkins in this last check.

Figure 3.3: Continuous integration

3.5.4.2 Building

Cataclysm has major versions (0.C and 0.D) but the release daily builds. This means that every day when a
pull request is accepted this is uploaded into the releases page.

The building process is done through GNU make. The makefile defined has different options to create
a release or a debug build that can be defined when calling make. The makefile also supports different
platforms so from one platform it can be build for other ones. In general from Linux it can be compiled to
Windows, Mac OS or Android as a cross-compilation option.

3.5.4.3 Release

The releases of the game are automatically created and uploaded into the release website 6 every time that a
pull request is merged by using a Jenkins script.

3.5.4.4 Instrumentation

Another way that the developers use to know how the game is behaving is through instrumentation. This
is done through debug builds that print messages to the console that later can be used to understand how
the code was behaving when an error ocurred. This is the default build method of Cataclysm-DDA and to
disable it the flag RELEASE=1 has to be added when calling make.

6Cataclysm-DDA Linux Tiles releases, http://dev.narc.ro/cataclysm/jenkins-latest/Linux_x64/Tiles/

https://travis-ci.org/CleverRaven/Cataclysm-DDA
https://travis-ci.org/CleverRaven/Cataclysm-DDA
https://ci.appveyor.com/project/kevingranade/cataclysm-dda
https://ci.narc.ro/
http://dev.narc.ro/cataclysm/jenkins-latest/Linux_x64/Tiles/

36 CHAPTER 3. CATACLYSM: DARK DAYS AHEAD (CDDA)

Figure 3.4: Releases

3.6 Functional Viewpoint

As part of a new perspective, we chose to add this viewpoint as it is more relevant in terms of the game
structure. The game is turn-based in which the player makes a move (turn), the NPCs subsequently make
their own moves, and then the control is returned to the player ad infinitum. This sequence goes on till the
user decides to quit the game (or is killed).

Based on this idea, the game is run in the form of a single while loop which calls several functions related
to each character’s turn and their interactions related to other components. From a high-level perspective,
the functioning of the game can be represented graphically as seen below

3.6.1 Modules

Since the game is supported on multiple platforms (Android, Windows, OSX, and Linux) with multiple
builds (Tiles and Curses), some of the platform-specific functional elements are compiled accordingly (using
#ifdef). Moreover, there are mods available which are loaded at run-time depending on installations.

3.6.2 Game Elements and Interactions

This section is based on manual code inspection to understand what the various elements do and how
components interact.

https://en.wikipedia.org/wiki/Turn-based_strategy
http://cddawiki.chezzo.com/cdda_wiki/index.php?title=Mod_manager

3.6. FUNCTIONAL VIEWPOINT 37

Figure 3.5: Context schema

38 CHAPTER 3. CATACLYSM: DARK DAYS AHEAD (CDDA)

3.6.2.1 Main flow

• A game instance is instantiated during the start of the game with a unique_pointer, to make sure there
can only be one instance of the game running.

• As stated previously, the game runs in the form of a while loop whose exit is handled if the player
quits the game.

• The class game consists of all functions required to run the game and display the UI.

Below are some important modules that are crucial during the run of the game.

3.6.2.2 game

The game module’s do_turn() function is called in every while loop iteration in the main program. This
function internally performs a lot of actions in the form of calling functions defined in the game class itself.
A high-level summary of what goes on in the loop is as follows (and also the associated interactions, if any):
- Checking if the game is over - Checking if the NPCs have changed their states - Event-based updates (like
weather changes, healing process, etc.) - Auto-saving the game - Adding new NPCs randomly - Interaction
with the user object to process user’s input actions and other miscellaneous activities (dealing with sleep,
healing injuries, etc.) - Handle vehicle actions if applicable - (Re-) drawing the visible map - Processing
sounds

3.6.2.3 player and NPC

The player of the game is modelled as a user object with which interactions occur. Player actions are
accumulated in a data structure and then the game objects processes the actions one at a time. The user can
quit the game at any point, or can be killed - each of which causes the game loop to be broken and the game
to end. The game polls for player’s input in the while loop under the function do_turn().

The NPCs are modelled similar to the user object and their interactions are with the game object. Sounds
and actions are processed in every do_turn() iteration.

3.6.2.4 Event_manager

Each components during the their initialization, register their events that should occur periodically. Few
such events could be changing the daylight in the game every thirty minutes, healing wounds of the character
(player or NPC) by a certain amount every one hour, changing the season in the game every three months.
During every iteration of do_turn(), the registered events are checks for triggering them individually to
change their state and later update their effect on other components.

3.6.3 Summary of functional viewpoint

Since this is a single-threaded game in which everything (game actions, sounds, graphics) gets processed in
one loop, the interactions between the various elements are simple and can be understood by going through
the code step by step (there’s no scope for race conditions). The inter-element interactions are mainly the

3.7. TECHNICAL DEBT 39

ones between the character objects and the main game object instance, and the rest of the interactions are
miscellaneous functions related to game startup, load/save, etc.

3.7 Technical Debt

3.7.1 Introduction

This section deals with the technical debt seen in the project. Generally speaking from a high-level
perspective, since this is an open-source game project with no major consequences of bad code quality on the
end users (the gaming community), it is clearly seen that the code is not maintained up to a good standard.
It could well serve as an example of how a software project could end up in a mess if not maintained from
the very beginning, as will be detailed in the forthcoming subsections.

3.7.2 Metrics

The game is written mostly using C++ 11 with JSON files for data fetching, and hence a starting point for
analysis is to calculate code metrics particular to C++. Two main approaches were followed to evaluate the
technical debt of the project: - Static code analysis tools (Sonar-cxx plugin for SonarQube, CppDepend, and
CppCheck) for code metrics - Manual inspection of the code to get an understanding of the development
style and patterns

Though the project’s repository provides a direct Visual Studio solution consisting of all the source code, its
analysis using VS proves to be cumbersome. The Visual Studio 2019 blog provides an insight into what can
be expected from VS 2019, and more specifically a good C++ code metrics analysis experience. VS 2017
does not provide intuitive tools for it, and hence wasn’t be used for analyzing the source code.

SonarQube was attempted to be used to analyze the project for metrics, but using the standard SonarScanner
installation (through SonarCloud) for C++ failed to work, and hence an open source SonarQube plugin,
Sonar-cxx was used instead. The following analysis is provided:

Figure 3.6: SonarQube analysis

CppCheck provides more insights about the code, as seen below.

We see that there are very few errors in the code, and most of the reported problems pertain to styling issues
and warnings (which must not be overlooked, ideally).

https://www.sonarqube.org/
https://www.cppdepend.com/
http://cppcheck.sourceforge.net/
https://devblogs.microsoft.com/cppblog/in-editor-code-analysis-in-visual-studio-2019-preview-2/
https://github.com/SonarOpenCommunity/sonar-cxx
http://cppcheck.net/manual.html#idm100

40 CHAPTER 3. CATACLYSM: DARK DAYS AHEAD (CDDA)

Figure 3.7: Types of problems

Figure 3.8: Code smells

3.7. TECHNICAL DEBT 41

In order to understand the issues related to code smells, performing an in-depth analysis yields the following
data:

A pattern is observed in the 251k lines of code calculated using the tools - some code smells stand out more
than others, and the following set of code smells shows up prominently: - A lot of lines of code start with a
string constant - error prone in terms of assigning string values while writing code - Not using the explicit
keyword in constructors with a single parameter - Shadowing of outer variables by inner variables in many
cases - Lack of use of the C++ STL which would otherwise be more efficient than raw loops - There is a
duplication of nearly 1.5 % in the source code - it translates to a lot of duplicated lines in absolute numbers
and could be error-prone

3.7.3 Code debt

As previously stated, the source code is structured in a “flat” form, in that there are no subdirectories within
the source directory, and it is difficult to understand purely by looking at the code structure what the various
responsibilities of the files are. If the code had been structured in a logical directory format, it would have
been much easier to understand and maintain. Moreover, the cyclomatic complexity of several functions and
methods is very high given the number of switch case and else if blocks present. These are very clear
signs to show that the code is very difficult to maintain.

The bus factor of this project is very high (most of the code is gated by Kevin Granade) and hence there is
no guarantee of it being stable in the long run, unless the core development team is distributed across more
developers. This is the most worrisome factor for the project, and definitely needs to be handled to allow the
project to continue being developed from a long-term perspective.

In terms of SOLID violations, the following can be said: - SRP is the most repeatedly violated principle in
this project and it can be spotted easily. There exist several classes that have multiple responsibilities, and
they could easily have been split into smaller ones. - The rest of the principles can be commented on from a
high level (for instance, the LSP is most likely not violated since the class structure is flat, similar to the
directory structure; the ISP is expected to be violated given the number of virtual keywords present in
classes; the DIP is probably not applicable given there aren’t interdependent modules loaded by the code)
but their violations don’t stand out in comparison to the SRP’s.

3.7.4 Testing debt

Any commit made to the source directory is through Travis CI and AppVeyor, and hence unit tests are
performed on the changed code before being allowed to be merged into the master branch. However, the test
coverage for the project is quite poor, at 29%, and hence there isn’t a good guarantee that the tests written
would prevent issues from arising during runtime, even if the code compiles successfully and passes all
ASAT tests.

The testing debt can be reduced by writing new unit tests and ensuring that any new commit that is made
has associated unit tests with it. However, it puts the burden of ensuring test cases to be written on the
contributing developer and does not seem to be good practice. An overhaul of tests is much needed for the
project. Moreover, the presence of “mega-classes” (for instance, the file game.cpp) in the source code makes
writing good tests virtually impossible.

https://github.com/CleverRaven/Cataclysm-DDA/tree/master/src
https://github.com/CleverRaven/Cataclysm-DDA/blob/master/src/game.cpp

42 CHAPTER 3. CATACLYSM: DARK DAYS AHEAD (CDDA)

3.7.5 Documentation debt

Doxygen is used to document the source code so as to help new developers come up to speed with regards
to understanding the responsibilities of the various classes and methods. However, on going through the
codebase, it can be seen that there is quite a lot of code that is not covered in the documentation, and
moreover there is a lot of inconsistency in terms of style and volume of documenting (some code snippets
are under-documented and some have unnecessary documentation). Though it is a good practice to follow
a standard style of documentation and the developers of C:DDA have even provided guidelines for it it is
clearly seen that good documentation practices aren’t enforced in the project. In fact, they also recommend
that new developers may require to document the internals of implementations since “many classes in
Cataclysm are intertwined.” This shows that they are aware of the technical debt present in the project
already.

Such documentation debt is only expected to grow over time unless code reviewers enforce good documen-
tation practices by rejecting pull requests for poorly documented code.

3.7.6 Defect debt

There exist lots of code snippets wherein comments pertaining to “TODO:”s and “hacks” are present, so we
can clearly see that defect debts are quite common in this project. Implementing the corresponding code in
the form of marking issues and through new contributions would reduce the defect debt greatly.

3.7.7 Evolution of technical debt

On going through the commit history of the source code, it can be seen that right from the very beginning
the files have been organized in a flat structure, and hence the technical debt in this regard has simply grown
over time - it seems unlikely that the structure would change, and a good understanding of the codebase
would only be with the original developers.

Defect debt has also risen over the years, as can be seen below. These numbers are from commits made at
some points in the years mentioned.

Given that the game runs on ideas for new features like weapons, food, abilities, etc. (for instance, see PR
#29366), defect debt is expected to increase with the increasing popularity of the game.

Based on the current trend of not enforcing the writing of covering code tests, testing debt is likely to grow
in size unless testing rules are enforced for all future commits.

Documentation follows a similar trend as testing, as quite a few discussions take place in the form of
comments between contributors on GitHub, but a follow-up of documentation in the code not enforced.

3.7.8 Managing technical debt

Though the project suffers from a lot of issues related to technical debt, it can certainly be managed. The
following points can be taken into consideration: - Adding more developers to the core team: As of now,
only a handful of core developers know the game’s core functionality properly. The core team will have to
be expanded to keep the project active in the long run - Adding missing documentation: The current code

http://dev.narc.ro/cataclysm/doxygen/index.html
https://github.com/CleverRaven/Cataclysm-DDA/blob/master/.github/CONTRIBUTING.md#guidelines-for-adding-documentation
https://github.com/CleverRaven/Cataclysm-DDA/pull/29366
https://github.com/CleverRaven/Cataclysm-DDA/pull/29366

3.8. CONCLUSION 43

Figure 3.9: Evolution of defect

is not documented adequately. Enforcing good documentation practices should be a must for all future
submissions and the reviewers need to be strict about it. The developer team is aware of this issue, as is
seen in the form of a dedicated GitHub project. - Refactoring major parts of the code: Ambitious as it may
sound, most of the code can be refactored by forking into a dedicated project and having a set of developers
working to split the existing mega-classes into smaller chunks, and creating a logical directory structure (the
existing files can be moved to subdirectories like game, item, player, NPCs, map, etc.)

A project like Cataclysm:DDA runs on ideas provided by developers and non-developers alike for new
features (weapons, food, etc.), and it is only expected that a good volume of defect debt will persist. Those
features may require a lot of rework to be backward compatible, and adding them with the “TODO”s would
probably be the fastest way to roll them out. This is a structural issue that cannot really have a solution in a
project of such a dynamic nature, and it can only be managed, not eliminated.

3.8 Conclusion

This chapter was a result of analysis of the project Cataclysm:DDA. The game could be appreciated for its
complexiety, which is obvious based on the fact that it doesn’t use any external game engines. The game
is fully written in C++11. Unlike other open source projects where sometimes there are big companies
supporting them, as this game is mainly for entertainment, the stakeholders are mostly players that play the
game and also take multiple roles at developing it.

To understand the vast architecture, UML diagrams of the whole class structure and their interactions were
analyzed. One major downside of the project was that it has no proper documentation of the architecture
and functionality. There were a lot of efforts put to manually analyze the code through instrumentation and
debug builds. On the technology front, the project has been using tools (like CI and testing) to make the
development process smoother and maintainability easier.

Analyzing the project’s PRs showed the denial of new features by the maintainer. However, any kind of
anomoly in the functionality is taken care by a few lead contributors. This, being a modular game, opens up

https://github.com/CleverRaven/Cataclysm-DDA/projects/22

44 CHAPTER 3. CATACLYSM: DARK DAYS AHEAD (CDDA)

space for other gamers to add MODS they wish, leaving the core of the game untouched.

With roughly 200 components in a flat structure in the game, it is onerous for one to understand the
architecture and fix issues. To exacerbate the code organization, a few of the classes are humongous in
length. In short, the project violates many SOLID design principles.

Upon analyzing, we suggest that it is high time that the architecture be split into modules before the
maintainability goes off hand.

3.9 Annex A - PR Analysis

3.9.1 Merged pull requests

3.9.1.1 1. Vehicle propulsion overhaul - #19275 - (November 2016)

This pull request changed the propulsion component and added engine gears. Previously the users were
creating too powerful vehicles that went at non-realistic speeds. Some contributors did not like it since
some countries usually drive automatic cars and that would confuse players. Finally, after some bug fixing,
the pull request was merged. However, the changes were reverted by the owner because it broke other
components.

3.9.1.2 2. Better handling of item templates - #19583 - (December 2016)

Related to bug #19566 introduced in PR #19058 and was created one month after introducing the bug.
This PR fixed a pointer issue introduced in the previous one and also improved performance. Most of the
discussion went around whether to use or not the assert macro in release builds. Finally it was decided not
to use the macro and the PR was merged.

3.9.1.3 3. [READY] Light attenuation based system for FoV and dynamic lighting - #12290 - (May
2015)

Addressed many issues related in how the light and the vision worked in the game which were part of the
legacy code. The discussion first was about what should the player see during the night and then it continued
with bug fixing and finally it was merged.

3.9.1.4 4. More Survival Tools Series 6 - #12405 - (May 2015)

Added more objects to the game and balanced some already existing ones in order to make the game more
realistic. The discussion was focused in small bug fixes, changes that may nerf too much the game balance
and how some developers play it differently.

https://github.com/CleverRaven/Cataclysm-DDA/pull/19275
https://github.com/CleverRaven/Cataclysm-DDA/pull/19583
https://github.com/CleverRaven/Cataclysm-DDA/issues/19566
https://github.com/CleverRaven/Cataclysm-DDA/pull/19058
https://github.com/CleverRaven/Cataclysm-DDA/pull/12290
https://github.com/CleverRaven/Cataclysm-DDA/pull/12405

3.9. ANNEX A - PR ANALYSIS 45

3.9.1.5 5. Rebalance aiming and skill training - #18020 - (September 2016)

Balanced how the aiming and shooting skill training worked. It was mainly focused in changing the amount
of dispersion that a bullet could have. Some developers found the new shooting range to be too short. After
agreeing on a new range and some bug fixing it was merged.

3.9.1.6 6. [DONE] [CR] Field dressing corpses aka Butchery overhaul - #24480 - (August 2018)

Changed the mechanics for butchering a prey, it was related to the discussed issue #24145 that asked for
development in food preserving methods. Some developers did not like the new idea but others argued that
it made the game more realistic. After reviewing the code it was merged.

3.9.1.7 7. Skill training overhaul - #11695 - (March 2015)

It redesigned how the skill leveling worked from linear to exponential and removed a level cap. Everyone
seem to agree with it but some developers wanted a level cap back as this topic had been previously discussed.
After adding the level cap again and some bug fixing it was accepted.

3.9.1.8 8. [CR] CMake: update rules; add Linux install targets; add support for dev-builds - #11970
- (May 2015)

Updated the cmake build rules which had not been updated because cmake was not the official build system.
The PR author did not have a windows machine so most of the discussion was with other contributors that
could test the configuration on Windows. After making sure that it worked in every platform it was merged.

3.9.1.9 9. Zombie burner - #23729 - (June 2018)

Introduced a new zombie creature with a flame thrower. Some developers liked the idea while others thought
that fire was to difficult to handle for the player and thus this creature was overpowered. After removing
some of the zombie’s abilities the PR was merged.

3.9.1.10 10. Use %zu for printf-style formatting of size_t values. - #19339 - (November 2016)

Updated a printf flag to the C++11 style. Some bugs were fixed and it was merged. However, they later
found out that some compilers were not properly supporting the new flag and the changes were reverted
while they were updating the compilers. Finally it was re-introduced again in #19488.

3.9.2 Rejected Pull Requests

3.9.2.1 1. Sidebar info3 - #27809 - (January 2019)

Suggested reordering and alignment of the sidebar element which included many changes to the C++ source
code that dealt with the sidebar. Contributors raised concerns that aesthetics should be given least preference.

https://github.com/CleverRaven/Cataclysm-DDA/pull/18020
https://github.com/CleverRaven/Cataclysm-DDA/pull/24480
https://github.com/CleverRaven/Cataclysm-DDA/issues/24145
https://github.com/CleverRaven/Cataclysm-DDA/pull/11695
https://github.com/CleverRaven/Cataclysm-DDA/pull/11970
https://github.com/CleverRaven/Cataclysm-DDA/pull/23729
https://github.com/CleverRaven/Cataclysm-DDA/pull/19339
https://github.com/CleverRaven/Cataclysm-DDA/pull/19488
https://github.com/CleverRaven/Cataclysm-DDA/pull/27809

46 CHAPTER 3. CATACLYSM: DARK DAYS AHEAD (CDDA)

While the author argued the changes might help beginners, contributors pointed out that it could be more
obvious to anyone as time progressed. This PR was superseded by another PR created around the same time
leading to closure.

3.9.2.2 2. Sidebar to panels - #27439 - (January 2019)

Proposed a UI overhaul, in which the sidebar would be fragmented and involved modifying many JSON
files and other source files concerned with the sidebar. Contributors raised their concern of having different
text field widths for various languages. Others pointed to the unused space in the sidebar region with this
PR. This PR was closed as a result of dissatisfaction among the community and the owner.

3.9.2.3 3. Reduced HP regen to 70% current value - #25628 - (September 2018)

Dealt with the regeneration of health calling the current too high. Proposal was to be reduce it to 70%. Issue
related. Involved changes to the JSON files that handled the regeneration rate. The author wanted injuries to
be more punishing than simply being healed quickly. The author asked for more suggestions and corrections
to his comments. The author failed to give a convincing justification and resulted in closure of the PR.

3.9.2.4 4. Foundation for implementing medieval mod shields - #14711 - (January 2016)

Proposed to use off-the-hand shield which consisted of various modification to both source and JSON
files. The discussion dealt with core C++ code with which the author was not confident enough. After
investigating, it was realized there needs a lot of work to be done. Hence, the author split the PR into
multiple PRs and closed the existing PR unmerged to favor more focused development on others.

3.9.2.5 5. Enable frostbite, remove cold damage - #18401 - (September 2016)

Proposed ways to bring frostbite into the game and changes included only JSON files relevant to armour
component. Contributors brought some challenging use-cases to the author and suggested making the
frostbite a gradient level. By the end of the discussion, contributors suggested that doing this would re-
enable the dead-code. Hence, to merge, the dead-code was needed to be analyzed. To which the author felt
he was not competent and led the author to close the PR himself.

3.9.2.6 6. Mining Mod - #18459 - (September 2016)

Author proposed to make the occurrences of metal ores more frequent and contained changes to a few
JSON files. A contributor gave suggestions and offered some help in rewriting parts implementation he
suggested. The owner suggested a backwards sketching and due to the lack of this, the PR got closed. This
was addressed two years later by another contributor.

https://github.com/CleverRaven/Cataclysm-DDA/pull/27439
https://github.com/CleverRaven/Cataclysm-DDA/pull/25628
https://github.com/CleverRaven/Cataclysm-DDA/issues/25547
https://github.com/CleverRaven/Cataclysm-DDA/pull/14711
https://github.com/CleverRaven/Cataclysm-DDA/pull/18401
https://github.com/CleverRaven/Cataclysm-DDA/pull/18459

3.10. REFERENCES 47

3.9.2.7 7. Improbable weapons mod - #18332 - (September 2016)

Proposed to eliminate some improbable weapons and had changes to only JSON files related to weapons
modules. Contributors pointed that the fun in the game was usage of improbable weapons and bringing
them down would only bring dissatisfaction among the players. For the amount of changes needed, after
realizing the efforts were not worth and might break something else more functional, leading the author
himself to close.

3.9.2.8 8. Reload using magazines - #14949 - (January 2016)

Focused on bringing more tools to the rifle magazines. This PR seemed to be very important at the very first
sight and also more obvious and contained significant changes across JSON files and source files that dealt
with ammo. Owner suggested that this be added as a mod first. While initially merged there were a few
functional flaws with the display of ammo and lead to reversion.

3.9.2.9 9. Use SDL_gpu library for faster SDL rendering - #19412 - (November 2016)

Was meant for fixing an issue where the game was slow. It proposed on using GPU. and involved changes to
the build system and source files relevant to the graphics. The author pointed a caveat to his implementation.
In the midst of the discussion, the owner commented that it could be a deal-breaker. The owner affirmed that
unless this change got tested on a software-rendered build, this PR would be left unmerged.

3.9.2.10 10. Increases blocking ability of smaller shields - #21503 - (July 2017)

Wanted to increase the blocking capability of smaller shields and included changes to JSON files related to
the shield component. The author found the idea of increasing blocking ability for smaller shields not right
in its essence. As the owner was ignoring the changes the author himself closed the PR.

3.10 References

https://github.com/CleverRaven/Cataclysm-DDA/pull/18332
https://github.com/CleverRaven/Cataclysm-DDA/pull/14949
https://github.com/CleverRaven/Cataclysm-DDA/pull/19412
https://github.com/CleverRaven/Cataclysm-DDA/issues/19071
https://github.com/CleverRaven/Cataclysm-DDA/pull/21503

48 CHAPTER 3. CATACLYSM: DARK DAYS AHEAD (CDDA)

Chapter 4

Eclipse Che

Gerben Oolbekkink (gjwoolbekkink), Ana Šemrov (asemrov), Yorick de Vries (yorickdevries), Rukai
Yin (ryin)

4.1 Introduction

Eclipse Che is an open-source workspace server and an integrated cloud-based browser IDE, with the aim to
offer a flexible, extensible, distributable and zero-install software development environment.

Figure 4.1: Eclipse Che logo

49

50 CHAPTER 4. ECLIPSE CHE

To put the project in a historical context, the eXo Platform first started with the idea of a cloud-based
IDE in 2009 1. After three years of development and a substantial increase in popularity of the software,
an investment was obtained to build a highly customizable commercial cloud development product and
Codenvy was founded as a standalone business 2.

In 2014 Codenvy donated the intellectual rights to the Che kernel to Eclipse Foundation 3 and Eclipse Che
(named after Cherkasy, Ukraine, where most of the development takes place) was announced as one of the
top-level projects of Eclipse Cloud Development 4. Codenvy then became a strategic member of the Eclipse
Foundation, taking a board seat5. Nowadays Codenvy still bases its flagship product on Eclipse Che and
was acquired by Red Hat in 20176, making Red Hat the biggest contributor to the project.

The Eclipse Che team believes in the future of cloud development. “Cloud development has the potential to
turn organizations into lean, continuous operations and enable teams to release more frequently and ship
faster”, said Tyler Jewell, the Che project leader and former CEO of Codenvy7. The project thus aims to
provide a cloud development solution with all the technologies, platforms, and protocols necessary in order
to ease the path to global adoption of cloud development.

Developing in the cloud relies on development environments that can be built and set up easily, with
one-click, greatly simplifying team onboarding and collaboration. Indeed, the vision the Che team has held
for years is to allow anyone to contribute to a software project without the need of installing additional
software8. Compatible with multiple container orchestration systems, Che supports both single-user as
well as multi-user development, which makes it more adaptable and supportive for teams. Furthermore,
integrated within Red Hat’s OpenShift.io platform, Che enables developers to run it as SaaS.

In addition, Eclipse Che is designed to be a platform where developers can also build and integrate their
own development tools. By writing and adopting extensions, it is up to the vision and creativity of Che’s
users to create new solutions. This way, Che offers a similar to its desktop Eclipse counterpart - developers
are given an extensible development environment, but accessible through the cloud9.

In this report we analyze and provide a high-level understanding of the architecture of the Eclipse Che
project. We first identify the key stakeholders of the project and describe the context of Che. We then
analyze the technical debt and offer more insights from two viewpoints: a development view and a functional
view. Since the Eclipse Che team just released both 6.19.3 and 7.0.0-beta-3.0 versions10, we consider both
Che 6 and 7 and discuss what the new Che 7 brings to the developers.

4.1.1 Stakeholders

We have identified stakeholders of Che by analyzing the Che repository11, Github’s Insights and the official
Eclipse Che website. We will formulate this list mainly following the scheme defined by Rozanski and

1Benjamin Mestrallet. From eXo Cloud IDE to Codenvy Raising 9 Million Dollars: A Brief History, 2013. exoplatform.com
2Benjamin Mestrallet. From eXo Cloud IDE to Codenvy Raising 9 Million Dollars: A Brief History, 2013. exoplatform.com
3https://www.eclipse.org/org/foundation/]
4https://www.eclipse.org/ecd/
5Tyler Jewell, Introducing Eclipse Che and Eclipse Cloud Development, 2014. codenvy.com
6Tyler Jewell, Red Hat To Acquire Codenvy, 2017. codenvy.com
7Tyler Jewell, Introducing Eclipse Che and Eclipse Cloud Development, 2014. codenvy.com
8Tyler Jewell, OpenShift.io and Eclipse Che, 2017. eclipse.org
9Tyler Jewell, Introducing Eclipse Che and Eclipse Cloud Development, 2014. codenvy.com

10Eclipse Che: Release}, 2019. https://github.com/eclipse/che/releases
11Che Wiki: Development Process, 2019. https://github.com/eclipse/che/wiki/Development-Process

https://github.com/eclipse/che/pulse
https://www.eclipse.org/che/
https://www.exoplatform.com/blog/2013/02/26/from-exo-cloud-ide-to-codenvy-raising-9-million-dollars-a-brief-history/
https://www.exoplatform.com/blog/2013/02/26/from-exo-cloud-ide-to-codenvy-raising-9-million-dollars-a-brief-history/
https://blog.codenvy.com/introducing-eclipse-che-and-eclipse-cloud-development-3751ad699d07
https://blog.codenvy.com/redhat-acquires-codenvy-c84e1202a042
https://blog.codenvy.com/introducing-eclipse-che-and-eclipse-cloud-development-3751ad699d07
https://che.eclipse.org/openshift-io-and-eclipse-che-97a89e045f28
https://blog.codenvy.com/introducing-eclipse-che-and-eclipse-cloud-development-3751ad699d07

4.1. INTRODUCTION 51

Woods in the book Software Systems and Architecture12,13.

4.1.1.1 Acquirers

Codenvy donated the Che kernel to Eclipse Foundation and has since been acquired by Red Hat, all while
still continuing to build its commercial product on top of Eclipse Che. We thus consider Eclipse Foundation
and especially Red Hat as the acquirers of Che.

4.1.1.2 Assessors

The project has two Eclipse Foundation assigned mentors - Mik Kersten and Marcel Bruch, who is also
a member of the Eclipse Foundation Architecture council. They are the assessors of Che, as their main
concerns are Che’s continued technological success and innovation, widespread adoption, and future growth
14.

4.1.2 Communicators

Everyone with a role in Che’s Development Process15 - including contributors, committers, reviewers,
triagers, maintainers and project leaders - is expected to be a communicator of Che, since they understand
the details of the architecture and can explain them, for example, to technical authors responsible for the
documentation.

4.1.3 Developers

All the contributors and committers to the project on GitHub are developers of Che. Most of the contributions
come from Codenvy / Red Hat employees since Codenvy built the kernel of Che and the two organisations
remain the major stakeholders of the project.

We list the top-five contributors by the number of commits (as of April 2019):

• riuvshin
• sleshchenko
• garagatyi
• benoitf
• mshaposhnik

12Nick Rozanski and Eoin Woods. Software systems architecture: working with stakeholders using viewpoints and perspectives.
Addison-Wesley, 2011.

13Software Systems Architecture, 2019, https://www.viewpoints-and-perspectives.info
14Che Wiki: Development Process, 2019. https://github.com/eclipse/che/wiki/Development-Process
15Che Wiki: Development Process, 2019. https://github.com/eclipse/che/wiki/Development-Process

https://twitter.com/mik_kersten
https://twitter.com/marcelbruch
https://github.com/riuvshin
https://github.com/sleshchenko
https://github.com/garagatyi
https://github.com/benoitf
https://github.com/mshaposhnik

52 CHAPTER 4. ECLIPSE CHE

4.1.4 Maintainers

The Che development team lists all the project maintainers16, assigning them to different product areas
including IDE, language servers, platform, dashboard, QA automation, and others.

The maintainers are responsible for managing the issue backlog, ensuring code quality and guiding technical
decisions17. Maintainers also periodically review pull requests (PRs) related to their respective product
area - this is to make sure the PR reviewer lists are correct as well as to oversee the quality of the reviews
themselves.

4.1.5 Integrators

The integrator tasks are mostly done by the maintainers and codeowners. PR merges require the approval
of at least one of the maintainers1819. PRs that include documentation and release notes updates must also
include a project manager (PM) reviewer. In addition, Tyler Jewell, one of the project leaders, can authorize
the merging for any PR. The integrators take care that the reviewers focus on code style, readability of the
code and usability for other developers.

Contributors with commit rights will merge their own PRs after all reviews are done, while those without
commit rights will have the maintainer merge the PR instead. In addition, maintainers are responsible for
periodically reviewing the open PRs20.

4.1.6 Suppliers

Che is implemented mostly by Java and runs on top of Apache Tomcat by default. Part of the project is
developed using TypeScript. It is built upon Docker 1.8+ and Maven 3.3.1+. The IDE used inside the
browser used to be written using GWT until Che 6 and has been using Theia since Che 7.

The Che project uses GitHub for code version control, issue tracking and releases, and Jenkins CI server
hosted by Codenvy for continuous integration.

4.1.7 Support Staff

Anyone can ask for support and request features using GitHub issues. Weekly community meetings21, a
public Mattermost channel and a developer mailing list are all open for everyone to join and ask for help.
Dave Neary, a Red Hat open source community manager, also acts as a community manager for Eclipse
Che.

16Che Wiki: Development Process, 2019. https://github.com/eclipse/che/wiki/Development-Process
17Che Wiki: Development Process, 2019. https://github.com/eclipse/che/wiki/Development-Process
18Che Wiki: Development Process, 2019. https://github.com/eclipse/che/wiki/Development-Process
19Che Wiki: Development Workflow}, 2019, https://github.com/eclipse/che/wiki/Development-Workflow
20Che Wiki: Development Process, 2019. https://github.com/eclipse/che/wiki/Development-Process
21Che Wiki: Community Meetings, 2019, https://github.com/eclipse/che/wiki/Che-Dev-Meetings

https://www.typescriptlang.org
http://www.gwtproject.org
https://github.com/theia-ide/theia
https://github.com/eclipse/che
https://jenkins.io
https://github.com/eclipse/che/issues
https://mattermost.eclipse.org/eclipse/channels/eclipse-che

4.1. INTRODUCTION 53

4.1.8 System Administrators

In a company or organization, Che may be deployed by IT specialists in which case the IT department takes
on the system administrator role. System administrators are concerned with Che’s deployment, updates,
plugin installations, and should be the first point of contact for users if anything goes wrong with Che.

Individual users who download, deploy and develop projects with Che are considered system administrators
themselves. When Che is used as SaaS hosted at che.openshift.io, OpenShift assumes the role of system
administrator instead.

4.1.9 Testers

All contributors are supposed to be testers and are responsible for the code they submit. The Che development
team requires all contributors to follow the Development Workflow22 for the purpose of submitting high-
quality code.

4.1.10 Users

We identified three classes of Che users.

Application developers are the primary users of Che. They can use it either with via the embedded browser
IDE or instead with a different desktop IDE by mounting the Che workspace filesystem via SSH.

Product owners use Che by managing settings on the workspace server to provide on-demand workspaces
for developer teams.

Extension providers make use of the Che SDK to extend and provide new customizations for Che.

4.1.11 Competitors

There are several competitors to Che on the market, some of them open sourced and some not. Here we
mention three main competitors:

• Cloud9 IDE is another online integrated development environment and supports multiple programming
languages developed by Amazon. It is written almost entirely in Javascript and published as open
source from version 2.0.

• Azure DevOps, formerly called VisualStudio Online before it was rebranded as Visual Studio Team
Services (VSTS), is an online platform that supports Team Foundation Server and rolling release
models.

• Codeanywhere is another cross-platform cloud IDE created by Codeanywhere, Inc. It is written
entirely in Javascript.

22Che Wiki: Development Workflow}, 2019, https://github.com/eclipse/che/wiki/Development-Workflow

https://aws.amazon.com/cloud9/
https://azure.microsoft.com/en-us/services/devops/
https://visualstudio.microsoft.com/tfs/
https://codeanywhere.com

54 CHAPTER 4. ECLIPSE CHE

4.1.12 People to Contact

We sent an email to the mailing list and showed our interest in talking with some developers. Dave Neary,
the community manager, replied and invited us to attend the Che weekly meeting on April 1st, 2019 in
which three developers Thomas Maeder, Stevan LeMeur and Sun Tan shared their opinions with us about
why they thought Che is amazing and unique and challenges they’ve found, which we recorded in a video.

4.1.13 Power-Interest

In the figure below we classify stakeholders of the Che project using the power-interest grid23. It indicates
different levels of interest and power of stakeholders on the project. We then categorize the stakeholders into
four groups in terms of how closely they need to be managed: key stakeholders which are to be managed
closely, stakeholders to keep satisfied, ones that require minimal effort, and ones to keep informed.

Figure: Power vs. interest grid for the Eclipse Che project.

23Aburey Mendelow, Stakeholder mapping. Proceedings of the 2nd international conference on information systems, Cambridge,
MA, 1991.

https://www.youtube.com/watch?v=ZS4FDH-MsZc

4.2. CONTEXT VIEW 55

4.2 Context View

In this section we give a further overview of the scope of Eclipse Che and describe how it is positioned
within its context.

4.2.1 System Scope

Eclipse Che in its current form offers24:

• containerised development workspaces with an integrated browser IDE and runtimes configurable to
include all project runtime dependencies the developers need

• a workspace server that orchestrates the workspace containers and deals with user management
• plugins which add support for various development services, including IDE support for specific

programming languages, frameworks, and developer tools like debuggers
• an SDK for creating new plugins and shipping them by building new Che assemblies

4.2.2 Context Model

We expand on the details already discussed in previous chapters by looking at the entities the Eclipse Che
project interacts with and categorising them, presenting them in a diagram, and briefly describing each of
the newly introduced ones.

4.2.2.1 Organisation

With Codenvy having been an important driving force of the project since the very beginning, the list of the
current project leaders is not surprising - Tyler Jewell is the Codenvy founder and former CEO, Gennady
Azarenkov was the Codenvy CTO and now works at Red Hat, and Brad Micklea moved from Codenvy to
RedHat as a product manager. Furthermore, the project has two Eclipse Foundation assigned mentors.

4.2.2.2 Development

Eclipse Che is a Java project which uses Maven with several testing plugins as the project builder and
package manager. New releases of Che get built by a Jenkins CI server, while Sonarcloud is used for
continuous code quality checking and Swagger.io for building and documenting APIs.

4.2.2.2.1 Connected services Che runs on top of an application server and is deployed with Tomcat and
PostgreSQL out of the box. To build its IDE, Che relies either on Eclipse Orion (Che 6) or Eclipse Theia
(Che 7).

Container orchestration is essential to install, run and manage Che, and the orchestrators currently supported
are Docker, Kubernetes and OpenShift. For multi-user Che, Keycloak is used to handle user authentication
and access management.

24https://github.com/eclipse/che-docs]

https://github.com/TylerJewell
https://github.com/gazarenkov
https://github.com/gazarenkov
https://github.com/bmicklea

56 CHAPTER 4. ECLIPSE CHE

Figure 4.2: context model diagram

4.2.2.2.2 Project management Most of the project management happens on GitHub, including issue
tracking and version control. The project also maintains a GitHub Wiki that details the project management
and development processes.

4.2.2.2.3 Licensed under / Follows Eclipse Che is licensed under the Eclipse Public License 2.0 and
its maintainers follow and enforce the Contributor Covenant Code of Conduct.

4.2.2.3 Community and support

The Eclipse Che community is active on multiple communication platforms. The project has an active mailing
list, a Mattermost channel, maintains a blog presence on Medium, and organises biweekly videoconference
Dev Meetings via BlueJeans. The project also organises an annual virtual user conference CheConf.

4.3 Technical Debt

4.3.1 Technical debt in Eclipse Che

The project is split up in several modules. This helps in keeping coupling low, because different modules
can only interact if there is an explicit dependency defined in maven. Most classes are very small, which
helps in keeping cohesion high.

4.3. TECHNICAL DEBT 57

Running Sonarcloud on the source code of Che some interesting outliers are found. One of these is
ClientTestingMessage in the testing plugin. This class violates SOLID by keeping a reference to all
classes that inherit this class. This can also cause further problems.

Another class which grabs the attention is JGitConnection, which is by far the largest class in the project.
This class is a very large adapter class for jgit, it implements everything needed for git interaction in a single
class.

The CronExpression class has the largest amount of technical debt according to Sonarcloud. This class is
very large, where it probably should not be. There are methods with very high complexity, there is duplicated
code and possible null pointers. Given that this class implements something very specific that has nothing to
do with this project, it should probably be moved to a dependency.

The MenuLockLayer and TextBox classes have a D and E rating respectively. Both these classes extend a
class from GWT. The main issue with these classes according to Sonarcloud is that the inheritance tree is
too deep (larger than 5). It wouldn’t be viable to fix these issues, because the root of the issue lies in the
dependency. For the next version of Che, these classes are deprecated because a new IDE is introduced.

Figure 4.3: Sonar maintainability rating

error prone is used to report warnings about common errors.

4.3.2 Test debt in Eclipse Che

Eclipse Che is tested with JUnit (4900 Unit tests for individual modules) and Selenium (640 Integration tests
between modules). The Selenium end-to-end tests test Che in a browser with an automated user. Building

https://sonarcloud.io/%5D
https://www.eclipse.org/jgit/%5D
http://www.gwtproject.org/
https://errorprone.info/%5D

58 CHAPTER 4. ECLIPSE CHE

and running the tests takes about three hours. The end-to-end tests take about 2 hours to complete. These
tests are only executed in pull requests when it is needed. There are also nightly builds which allows QA to
test changes rapidly. During development the contributor SkorikSergey focusses on proper testing and gives
advice on this for other contributors in Pull Requests.

The test reports are run in a Jenkins Continuous Integration (CI) environment. In addition, a SonarCloud
environment is available, but hasn’t been used since November 2018. Code coverage isn’t taken directly
into account into the Jenkins CI or SonarCloud environment.

We performed an analysis on the tested modules and the reports generated by a recent SonarCloud analysis
by our team. In the testing degree Figure below, the lines of code are plotted against the number of tests
written for that module. The size of the bubble indicates the relative number of code smells reported by
SonarCloud.

In general, for the tested modules it is found that modules with more lines of code are tested with more tests
as well. Modules which are tested with relatively more tests tend to show a lesser degree of code smells
(docker-client, infrastructure-kubernetes) than modules with a lower number of tests (che-core-api-core,
che-core-commons-gwt).

Figure 4.4: Overview of the tested classes, the size of the bubble represents average Code Smells per line of
code.

In addition, it is observed that there exist quite some tests for the modules responsible for permissions. This
makes sense as assurance of the access security is very important to gain trust from users. Bugs which lead

https://ci.codenvycorp.com
https://sonarcloud.io/dashboard?id=org.eclipse.che%3Ache-parent%3Amaster%5D
https://sonarcloud.io/code?id=qurben_che%5D

4.3. TECHNICAL DEBT 59

to unauthorized access often lead to higher damage than functional bugs. On the other side, plugin modules
are barely or not tested at all. The choice for less testing might lie in the more trivial code involved.

Our Sonarcloud analysis showed that in some modules there exists some code duplication. For example, in
the che-core-api-dto module 21.1% duplication is observed. However, additional analysis indicated that this
module is generating java code and deduplication in this module will likely lead to less maintainable code.
Lastly, it is found that for the Selenium tests, additional tests exist which test whether the Selenium tests
behave accordingly. These additional tests test whether mocked classes have the right intended behaviour
for example.

In general, testing is performed well in the project. Actions which can improve the testing approach is
to enable automatic coverage tools. This provides an indication of what is and isn’t tested in the project.
Furthermore, it can be smart to make more use of the SonarCloud environment.

4.3.3 Discussions about technical debt

There are sprint issues in the repository which are created for every two weeks. These issues have a specific
section on Technical Debt. In this section, there is a list of issues which are considered technical debt and
that should be fixed in that sprint. Issues themselves are not marked as containing technical debt.

There are about 150 TODO comments in the source code. Most of these were added in 2017 and there
are two authors who have contributed 90% of the TODO comments. It seems that most of these TODO
comments don’t require some implementation as they have already been in the code for almost two years.
Several comments are in the GWT IDE, which is no longer under active development and is a candidate for
being moved to another repository.

4.3.4 Evolution of technical debt

The Eclipse Che team has made a recent move from GWT to Theia as IDE with the release of Che 7. Theia
is maintained in a separate repository and can also be used outside of Che. This movement makes a coupling
with Che very low and better maintainable. The team has moved to the VSCode plugin protocol as well.
This enables better modularisation for plugins. Both movements help in lower technical dept.

Not much historical data is easily available as SonarCloud isn’t run very often and older CI builds aren’t
preserved long. It is found that tests are continuously developed during development. Additionally, it is
found that during development the number of code smells is also highly reduced.

To get some more insight into the evolution of the project, we ran several major releases in our sonarcloud
environment 4.0.0, 5.0.0, 6.0.0, 7.0.0-beta-1.0.

It was observed that the number of code smells highly dropped from Che version 5 onwards. Between
version 6 and 7, a major drop in code smells can be attributed to the removal of forked code from Eclipse
JDT in version 6.13.0. In addition, other dependencies are removed as well due to the move from GWT to
Theia.

https://che.eclipse.org/eclipse-che-7-is-coming-and-its-really-hot-1-4-64d79b75ca02
https://github.com/eclipse/che-theia/
https://github.com/eclipse/che-plugin-broker%5D
https://sonarcloud.io/project/activity?custom_metrics=tests&graph=custom&id=org.eclipse.che%3Ache-parent%3Amaster%5D
https://sonarcloud.io/project/activity?from=2018-10-03T10%3A00%3A00%2B0000&id=org.eclipse.che%3Ache-parent%3Amaster&selected_date=2018-10-04T15%3A08%3A37%2B0000&to=2018-10-20T10%3A00%3A00%2B0000%5D
https://sonarcloud.io/code?id=che-history

60 CHAPTER 4. ECLIPSE CHE

Figure 4.5: Evolution of number of code smells in Eclipse Che

4.4. DEVELOPMENT VIEW 61

4.4 Development view

4.4.1 Module structure

Eclipse Che source code is modularised and uses Maven to manage the dependencies between the modules.
On a high level, we analyse the module dependencies by looking at the way the Che assembly binaries of
the main system components are built. The components we considered are thus: the Che workspace master
(that is, the Che server), workspace loader, workspace agents (that run and manage a workspace instance),
IDE, and User Dashboard.

From a top level (in the Figure below), both the workspace server and the agents make use of the Che Core
module which contains shared APIs and libraries, while the Dashboard is a self-contained Web-based module.
The workspace agents make extensive use of Plugin modules which support IDE and other workspace
services. We follow the dependencies of both the workspace server and the agents further in Figures below.

Figure 4.6: Top level module relationships

Figure 4.7: Workspace server module relationships

62 CHAPTER 4. ECLIPSE CHE

Figure 4.8: Workspace agent module relationships}

4.4.2 Common design model

4.4.2.1 Core APIs

The Core APIs used in Eclipse Che are in the core/che-core-api-core module, including definitions of
JSON-RPC and REST operations, event subscription, unsubscription and notification, web socket, proxy
authenticators and password encryptors, and standard API exception formats.

4.4.2.2 Database interaction

Database interactions are defined in the core/che-core-db module — for example, database initialization
and termination, SQL script creation and migration, common database error codes as well as data source
tracing methods.

4.4.2.3 Shared libraries

Most of the shared libraries for the server, agents and plugins are in the core/commons module. Some ex-
amples of these libraries include ones that handle Single Sign-On (SSO) token extraction and authentication
exceptions, JSON parsing and writing, and e-mail services.

4.4.2.4 Logging and instrumentation

Che uses SLF4J and Logback for logging within the browser IDE and on server-side, respectively. Che also
exposes metrics in a format that can be consumed by a Prometheus server and visualised in Grafana - this

https://prometheus.io
https://grafana.com/

4.4. DEVELOPMENT VIEW 63

includes metrics from the JVM, the class loader, and the Tomcat server. Che also supports the collection of
end-to-end trace data by deploying a Jaeger server.

4.4.2.5 Third-party libraries

Eclipse Che relies on a set of third-party libraries each of which serves independently, such as Google Web
Toolkit and Tomcat, SLF4J for message logging, Swagger for API design, and Javax for email services and
web socket applications.

4.4.2.6 Design pattern: “Sidecar container”

In this cloud development design pattern, the sidecar containers are attached to the parent application
container and are used to provide supporting features to the main application. Sidecar containers can follow
their own development and runtime lifecycle, allowing for easy upgrades and modifications.

This design pattern became prominent with the new Che 7. Previously, all the dependencies required for
active development within a workspace had to be injected into the main workspace container image. This
meant that the development container image used in the workspace was not identical to the production image
anymore. To address this and avoid having to modify the production image clone, the sidecar container
pattern was employed in order to organise the workspace containerisation.

The various services that used to be parts of a workspace have thus been split into separate containers (as
seen in the Figure below), providing further isolation and encapsulation. The main workspace container
does not need to have extra plugins installed anymore, as any additional workspace services and plugins will
run in separate sidecars.

4.4.2.6.1 Plugin brokers Plugin brokers are special services that will, given a specific plugin metadata
description, gather all the information about definitions already available on the Che server to and prepare
the workspace for the plugin installation. This includes, for example, downloading and unpacking required
files, returning a set of endpoints, containers (and even editors) for the plugin. The main goal of using
a plugin broker is to decouple the Che plugin setup from the Che server itself, allowing Che to support
different kinds of plugins without having to modify the Che server code for every new kind of plugin added.

4.4.3 Codeline model

4.4.3.1 Source code structure

We describe the overall, high-level structure of the source code repositories used by the project. The main
codebase of course resides in the main Che GitHub repository; however, some of the source code the project
depends on is contained in other repositories in order to allow for it to be managed separately.

4.4.3.1.1 Main Repo The main Che source repository on GitHub has the following high-level structure25,
which generally follows the way Che is split into submodules.

25Che Wiki: Development Workflow}, 2019, https://github.com/eclipse/che/wiki/Development-Workflow

https://www.jaegertracing.io/%5D

64 CHAPTER 4. ECLIPSE CHE

Figure 4.9: Sidecar containers

Directory Description

/ Root directory
/agents Workspace software (web terminal, language servers, ssh server)
/assembly Generates binary assemblies of Che
/core Shared libraries for server, agents, and plugins
/dashboard JavaScript app user management
/dockerfiles Docker images to run Che, CLI, & utilities
/ide Browser IDE
/plugins IDE & workspace agent plugins
/samples Code templates for fresh workspaces

4.4.3.1.2 Other Repos Some of the Che dependencies are managed in other repositories owned either
by the Eclipse Foundation or Codenvy. This is done for multiple reasons26 — these dependencies are either
forks of other relevant projects, contain libraries that follow a different tagging lifecycle than Che, or they
contain very large files.

Repository Description

eclipse/che-dev Dev resources - code style, license headers
eclipse/che-dockerfiles All project’s Dockerfiles
eclipse/che-docs Official Che docs
eclipse/che-lib Dependencies forked from elsewhere (antlr, Orion, Tomcat,

Logback, Swagger. . .)
eclipse/che-parent Maven root parent POM, manages dependencies
eclipse/che-theia New Che 7 IDE
codenvy/che-installer Windows and JAR installers
codenvy/che-tutorials SDK examples and tutorials
che-incubator/chectl Command line interface for Che
redhat-developer/rh-che Eclipse Che on OpenShift
redhat-developer/devfile Che 7 devfile specification

The source code for the official Eclipse Che website is tracked on the Eclipse Foundation git repository:

http://git.eclipse.org/c/www.eclipse.org/che.git

4.4.3.2 Build - Integrate - Test - Release Cycle

Once it’s clear where and how the project’s source code is stored, a pipeline has to be designed which takes
the source code, builds it and tests it in order to finally bring it to release-ready shape. In this section we
discuss how Che tackles this by describing how the project is built, changes integrated and tested stages, but
also how the new versions get released.

26Che Wiki: Development Workflow}, 2019, https://github.com/eclipse/che/wiki/Development-Workflow

https://github.com/eclipse/che-dev
https://github.com/eclipse/che-dockerfiles
https://github.com/eclipse/che-docs
https://github.com/eclipse/che-lib
https://github.com/eclipse/che-parent
https://github.com/eclipse/che-theia
https://github.com/codenvy/che-installer
https://github.com/codenvy/che-tutorials
https://github.com/che-incubator/chectl
https://github.com/redhat-developer/rh-che
https://github.com/redhat-developer/devfile
https://www.eclipse.org/che/%5D

4.4. DEVELOPMENT VIEW 65

4.4.3.2.1 Building Che Che manages dependencies and builds the project with Apache Maven. Docker
is used to provide container images that contain Che and all its dependencies. In addition, the Web-based user
dashboard also makes use of [yarn](https://yarnpkg.com/en/], webpack and gulp.js for package management
and building, respectively.

4.4.3.2.2 Continuous integration Continuous integration of committed code changes is executed on a
Jenkins server hosted by Codeenvy. The Eclipse Che project runs several Jenkins CI jobs which are either
“plain” builds (CI builds on git push to master, PR builds triggered via PR comments, nightly builds) or
specialised quality assurance builds with further testing (ran nightly, for a release candidate, or for the final
release version).

4.4.3.2.3 Testing Below we give an overview of the kinds of automated testing done when working on
Che.

Test / analysis type Used by Che

Unit testing JUnit, TestNG at build time
Integration testing JUnit, TestNG at build time
Functional testing Selenium
Static analysis FindBugs, Error Prone at build time
Code style Maven formatter plugin
Continuous code quality Sonarcloud

Unit and integration tests are run at build time using the Surefire plugin for Maven. Static analysis is also
integrated into the build phase with both FindBugs and Error Prone checking for compile-time detectable
Java bugs. Code style is checked using a Maven plugin that checks for compliance with Google Java style
formatting.

Further quality assurance is done via functional and end-to-end testing using Selenium.

Sonarcloud has been used for continuous static analysis of Che releases between versions 6.2 and 6.14 (the
last check was done in November 2018). It is unclear why continuous code quality checks do not seem to be
run on a regular basis anymore.

4.4.3.3 Release process

Successfully built and tested new versions of Eclipse Che are released at the end of each 2-3 week
development cycle (“sprint”). The release process itself is automated and integrated into the standard CI
pipeline. Che binaries are tagged and compiled from release version source code using Maven, whereas
Docker is used to build and tag container images. If blocker bugs are found during the final quality assurance
phase, the release can be blocked and postponed until the end of the next sprint.

https://maven.apache.org/%5D
https://webpack.js.org/
https://gulpjs.com/
https://ci.codenvycorp.com

66 CHAPTER 4. ECLIPSE CHE

4.4.3.4 Configuration management

Software configuration management prescribes how changes are tracked and managed in order to ensure
that repeatability and traceability are possible when collaborating on a software project. Here we detail the
tooling and configuration structures employed by the Che team to support the development lifecycle.

4.4.3.4.1 Tooling We first specify the configuration management tooling used by the Che team. We
categorise them following Berczuk’s list of tools needed for configuration management.

Tool type Used by the Che team

Version control Git
Build Tool Maven
CI Server Jenkins
Artefact Repo Nexus
Doc System GitHub Wiki

4.4.3.4.2 GitHub Configuration Structures The Che team uses GitHub to track and control the devel-
opment of lifecycle. We identify the type of codelines used and their respective GitHub branches.

There are three types of codelines used:

• Mainline: The master branch containing the latest code which is well-tested and stable (as reported
by the CI system),

• Active development lines: Multiple branches where new features or bug fixes are worked on (are “in
progress” and are allowed to be failing)

• Release line: One branch at a time which contains the source code of the latest Che release.

The active development lines can live either in the main repository if the authors have contributor access or
in project forks. The latter is discouraged, however, when collaborating on long-lived feature branches - it is
easier to track changes if all the development happens on main repo branches. In addition, feature branches
have to be named after the matching GitHub issue number and must be removed after they are merged to
mainline.

When preparing to release a new version of the software, a release branch is created from the master branch
on the release candidate commit. Any potential bugs found after the release are fixed on this release branch
and the branch itself is reused if a bugfix release is necessary. Once a new release is in progress, the previous
release branch gets removed.

The Che team does not make extensive use of tagging. The only tags used are release version numbers
labelling the respective commits where the past and the current release lines branched off.

https://dzone.com/refcardz/software-configuration
https://ci.codenvycorp.com
https://oss.sonatype.org/content/repositories/snapshots/org/eclipse/che/%5D

4.5. FUNCTIONAL VIEW 67

4.5 Functional View

Eclipse Che consists of several components which together form the development environment27. The
functions of these components in the architecture, together with their interactions are depicted in the
functional view. Projects are contained in workspaces which are hosted in a workspace server. These
workspaces can subsequently be accessed by browser-based IDEs. In addition, plugins can be implemented
for which a Software Development Kit (SDK) is available.

Figure 4.10: Functional architecture

4.5.1 Workspace server

The workspace server of Eclipse Che is installed on a Server infrastructure (for example Apache TomCat)
and is the central access point for the workspaces it maintains. Single or multiple users can access workspace
via a Restful API connection. The different workspaces are isolated from each other and cannot interact.

27https://github.com/eclipse/che-docs]

68 CHAPTER 4. ECLIPSE CHE

4.5.1.1 Workspaces

Workspaces are used by one or multiple users to develop projects. A workspace can have any number of
projects which can be connected to version control repositories (like git, mercurial or subversion) as well.
Every workspace can be accessed through an IDE specific for that workspace via the browser. An API is
used for interaction between the browser IDE and the workspace. In addition, access via desktop IDEs is
possible as well. Language services enable development support for different languages of choice. Every
workspace has one or multiple runtimes, using a host environment. These runtimes are used to build, run,
and debug projects like one would do locally with for example maven. Workspaces can be exported to move
them from one Che server to another. In addition, it is possible to save and restore snapshots via a snapshot
registry.

4.5.2 Server infrastructure

Server infrastructures are used to make environments for the Che Server as well as environments for the
workspace runtimes to run their code in. The server environments make use of either Docker or OpenShift
to work. Users can either set up these on their local PC or on a central server. Local installations can be
used by single users for small projects. Such an installation is easier to start with as no login is required28.
Server installations can be used by multiple users in development teams in organizations. In addition, it is
also possible to use a server from Redhat in the form of Software as a Service (SaaS).

4.5.3 SDK

Eclipse Che is made so it can be extended easily. Plugins can be made by plugin providers for either the Che
server, a workspace (also called an agent) or the browser IDE. For the development, a Software Development
Kit (SDK) is available which enables the packaging plugins into assemblies for use in production. Several
plugins are already available for elements like ones for languages, frameworks and tools.

4.6 Conclusions

We have analyzed the architecture of Eclipse Che, an open-source cloud IDE. It offers containerized
development workspaces and plugins to support various development services. Codenvy, Red Hat and
Eclipse Foundation are considered the most important stakeholders. We have identified integrators and pull
request merge strategies by pull request analysis. Each pull request needs to pass the tests and code reviews
before a maintainer approves its merge. The technical debt analysis shows that the team is working hard to
remove components from project which have a large amount of technical debt. We also observed that tests
help properly in reducing code smells.

The development view provided us with more insights into the project. We have analyzed the module
structure, the codeline model and the common design model. Here the sidecar is one of the most interesting
design patterns used. The functional view depicts the components of Eclipse Che and their interactions.

28Single and Multi-User Che, 2019. https://www.eclipse.org/che/docs/che-6/single-multi-user.html

4.7. REFERENCES 69

4.7 References

70 CHAPTER 4. ECLIPSE CHE

Chapter 5

Cockpit

5.1 Table of Contents

• Introduction
• Stakeholders
• Context View
• Development view
• Deployment View
• Technical Debt
• Conclusion

5.2 Introduction

The Cockpit-project is an open-source project owned by Red Hat, that provides an easy-to-use, integrated,
glanceable, and open web-based interface for interacting with the underlying servers. More specifically, it
allows users to monitor their system and adjust server configuration on GNU/Linux-based server operating
systems such as RHEL, Debian, Fedora and many others. Apart from monitoring and interacting with a
local server, Cockpit can also be used to access multiple remote servers/clusters and interact with them from
the same user interface.

Although Cockpit is an open-source project, it consists of a small community of active contributors, mainly
Red Hat employees. The primary reason for this is the complexity of the project and due to the fact that the
core team is not that open to external contributors.

The following sections include an in-depth analysis of Cockpit’s architecture. More specifically, we first
analyze the stakeholders and the merging pipeline based on existing pull requests. After that, we examine
Cockpit’s architecture from three different perspectives, namely the Context View, the Deployment View and
the Development View. In the sections that follow, we attempt to analyze the project’s Technical and Testing
debt and try to identify the evolution of the project throughout its release-history. Lastly, we summarize our
findings and present our conclusions regarding the project’s architecture.

71

https://cockpit-project.org/

72 CHAPTER 5. COCKPIT

5.3 Stakeholders

5.3.1 Acquirers

Red Hat (which was recently acquired by IBM) is undoubtedly behind the funding of the Cockpit-project.
They employ the core team which is responsible for the evolution of the project and oversee the progress of
the project’s development.

5.3.2 Assessors

There is no clear identification of assessors that specifically focus on the system’s conformance. It is most
likely that the core team ensures the conformance to the standards and legal regulations. The Cockpit-project
uses the LGPL v2.1+[1] license which means that everyone is allowed to copy, distribute and modify the
project as long as the modifications are described and licensed for free under LGPL. However, although not
mentioned directly, there must be some form of legal counselling for cases where violations are observed.

5.3.3 Communicators

In the Cockpit-project this category consists of the core team itself.

Other types of stakeholders can learn more about the project via the team’s irc channel, mailing list, or
via the project’s blog. The authors of the blog and their published posts are listed here. It should be
noted though, that different members have different roles as communicators. For instance, Stef Wal-
ter([@stefwalter](https://github.com/stefwalter)) has presented the project in conferences such as the De-
vconf, whereas others are responsible for updating the blog with new releases or creating usage and
contribution manuals for the system.

5.3.4 Developers

The developers of the project are practically every individual willing to spend time and effort in understand-
ing the project’s architecture and standards. This category includes anyone that actively participates in the
discussions and contributes to the project’s progress. The top 3 contributors were found to be Stef Walter
([@stefwalter](https://github.com/stefwalter)), Marius Vollmer ([@mvollmer](https://github.com/mvollmer))
and Martin Pitt ([@martinpitt](https://github.com/martinpitt)) with 4.164, 1.769 and 1.435 commits respec-
tively.

5.3.5 Maintainers

The project is maintained by the community, adhering to a set of guidelines. These can either be found in
the project’s website (code style, commit workflow, and interface design) or in the github repository. In
general, changes can be proposed by pull requests.

The documentation is also hosted on the Cockpit website.

On the Cockpit wiki the maintenance is listed explicitly. Both Stef and Martin are named as responsible.

https://www.redhat.com/en
https://www.ibm.com/nl-nl/?ar=1
https://lists.fedorahosted.org/admin/lists/cockpit-devel.lists.fedorahosted.org/
https://cockpit-project.org/blog/
https://cockpit-project.org/blog/authors#mvo
https://devconf.info/
https://devconf.info/
https://github.com/cockpit-project/cockpit-project.github.io/tree/master/external/wiki
https://cockpit-project.org/external/wiki/Cockpit-Coding-Guidelines
https://cockpit-project.org/external/wiki/Workflow
https://github.com/cockpit-project/cockpit/wiki/Design
https://github.com/cockpit-project/cockpit-project.github.io/tree/master/external/wiki
https://cockpit-project.org/guide/latest/
https://github.com/cockpit-project/cockpit/wiki/Maintenance

5.3. STAKEHOLDERS 73

5.3.6 Suppliers

The end users are responsible for setting up the hardware and infrastructure of their running system and
as a result can be considered as suppliers. Moreover, the system is designed to work on a variety of
different browsers (e.g. Chrome, Mozilla) and Linux distributions (e.g. RHEL, Fedora, Ubuntu) each of
them requiring different versions. The exact specifics can be found at the installation guide. Since these
dependencies impose limitations they can definitely be categorized as suppliers.

5.3.7 Support Staff

The core Red Hat team along with the contributors that have sufficient knowledge of the system are the ones
who are able to support the users of the system. This can either be done via the irc channel of the project or
by joining the mailing list. Although there is no contact page, there is documentation on both the project’s
and Red Hat’s website.

5.3.8 System Administrators

Every end-user of the project is responsible for handling the system’s administration from their end.

5.3.9 Testers

There is not a particular individual or team (e.g. QA testers), that mainly takes on the task of conducting
tests. Every contributor is responsible for writing tests about the part that was implemented and when a pull
request is issued, experienced core team members review and test the implemented functionality. However,
testing is just another task for them while reviewing and by no means they can be called pure testers. Finally,
a side project (Cockpituous) is also utilized for the CI/CD pipeline of the main project. This is how the
automated unit and integration tests are being run.

5.3.10 Users

The Cockpit-project is useful for every developer that is interested in monitoring the underlying web server(s)
of their system via a web interface. However, the project is mostly suitable for system administrators (devops)
as it offers an easy way to monitor and interact with the servers without purely relying on a command line
interface for the related operations.

5.3.11 Other stakeholders

Although there are not many other stakeholders that can be found on the GitHub page and official website,
we can still identify a few:

https://cockpit-project.org/running.html
https://cockpit-project.org/guide/latest/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/getting_started_with_cockpit/index
https://github.com/cockpit-project/cockpituous

74 CHAPTER 5. COCKPIT

5.3.11.1 Integrated platforms

Cockpit is integrated in the repositories of a few Linux distributions by default. These distributions are: *
Fedora * RedHat Enterprise Linux * Project Atomic * CentOS * Debian * Ubuntu * Clear Linux

These distributions can also be considered stakeholders, since they benefit from Cockpit being available to
their users via their default repositories, making installation on their platforms easy.

5.3.11.2 Competitors

Cockpit has three main competitors: Ajenti, Webmin and Nagios, which are all competing server manage-
ment software packages. All of these competitors are also open source projects, with Nagios having both a
free, open source Core version as well as a closed source paid variant.

5.3.12 Pull request analysis

The selection of the pull requests for our analysis was done by directly using GitHub’s interface. More
specifically, we selected the 10 most discussed accepted pull requests. Apart from the number of comments,
we also considered selecting pull requests that were submitted by contributors that are not Red Hat employees
in order to get a better overall view of the integration procedure.

A more detailed analysis can be found in the Appendix A.

5.3.12.1 Integrators

By analyzing[2] the most discussed pull requests we were able to identify the integrators of the Cockpit-
project. These are mainly:

• Martin Pitt ([@martinpitt](https://github.com/martinpitt))
• Stef Walter ([@stefwalter](https://github.com/stefwalter))
• Dominik Perpeet ([@dperpeet](https://github.com/dperpeet))

5.3.12.2 Most discussed accepted pull requests

Every pull request undergoes a reviewing phase in which a lot of back and forth communication between
the assignee and the reviewers regularly occurs. Particularly, there are different reviewers for pull requests
affecting the functionality and different for those that update the interface of the system. To our understanding,
the reviewers focus mainly on the style and quality of the code and examine whether or not it corresponds to
the desired functionality. However, due to the CI pipeline, the implementation is automatically tested in
different stages. Furthermore, it goes without saying that every pull request should comply to the project’s
design principles.

It also interesting to note that in contrast to a typical pull request, where the assignee usually provides the
entire implementation, in Cockpit there are parts of the desired functionality that are decided on the fly
during the discussion that takes place between the participants.

http://ajenti.org/
http://www.webmin.com/
https://www.nagios.org/

5.4. CONTEXT VIEW 75

Another thing that we observed is that it might take a long time until a pull request is merged. Most often,
the reasons behind this are either because of dependencies to other issues/pull requests or because of the
recurring reviews and fixes between the participants.

5.3.12.3 Most discussed rejected pull requests

Unfortunately, we were not able to identify any rejected pull requests in the project’s repository. We suspect,
that the reason behind this is mainly because the majority of the contributors are all Red Hat employees.
That means that the issues to be resolved are usually pre-discussed among the members of the team, thus
always leading to a partial or complete merge of the pull request’s implementation. This sounds reasonable
since in comparison with more generic-nature projects, the highly specialized context of this project is not
attracting many external developers.

5.3.13 Power-interest diagram

As project acquirers, RedHat, and therefore IBM have the power to be of great influence if they want to, but
this will most likely not happen as they have relatively little interest in this project, since Cockpit is only a
small, optional component of RHEL.

The core RedHat team is highly involved in development and they also make decisions on which direction
the project goes. As their team leader, Stef Walter stands slightly above them in both power and interest.
The contributors that do not belong to the RedHat team still have the possibility to influence the project by
making pull requests, but the decision on whether or not to accept those PRs is ultimately that of the core
team.

Linux distribution developers may have a slight interest in the project, since many distributions ship Cockpit
in their default repositories. This also gives them a small bit of power, since they could threaten with removal
from the default repositories if they really don’t like a certain change. Browser developers generally do not
use Cockpit or care about it, but browser compatibility is important for Cockpit’s UI, so they should still be
monitored.

Users hold quite a bit of interest, since they are the ones who actually rely on Cockpit on a daily basis.
They also have a bit of influence since they can request features, and if enough users request a feature, the
developers will tend to listen to that. Competitors are also interested in Cockpit since they have to compete
with it. They generally don’t have any influence, except maybe when they add a feature that is so important
that the Cockpit team will be highly motivated to add that feature as well to keep up with them.

5.4 Context View

5.4.1 System scope and responsibilities

Cockpit is defined on their website as:

The easy-to-use, integrated, glanceable, and open web-based interface for your servers

https://cockpit-project.org/

76 CHAPTER 5. COCKPIT

Interest

P
o
w
e
r

Browsers

Linux distributions

Competitors

Core Team

Contributors

Users

Stef Walter

[Not supported by viewer][Not supported by viewer]

[Not supported by viewer][Not supported by viewer]

Figure 5.1: PI Diagram

5.4. CONTEXT VIEW 77

It is a clickable interface for a variety of Linux distributions. Administration tasks that normally would have
to be executed via the command line are now presented as a html page readable by your web browser. The
GitHub repository of Cockpit gives a more detailed explanation:

Cockpit is an interactive server admin interface. It is easy to use and very lightweight. Cockpit
interacts directly with the operating system from a real Linux session in a browser.

System responsibilities:

• Enables managing of multiple servers in one Cockpit session
• Offers a web-based shell in a terminal window
• Supports efficient management of system user accounts
• Containers can be manged via Docker
• Provides a system overview for the health of the servers
• Diagnoses network issues
• Spot and react to misbehaving virtual machines
• Users can inspect SELinux logs and fix common violations in a click
• Supports Kubernetes or OpenShift v3 clusters
• Allows modification of networks settings
• Possible monitoring via the phone’s browser

5.4.2 Diagram

The diagram below shows the context in which the Cockpit project exists.

5.4.3 External entities

From the diagram, we can observe a few external entities:

• Cockpit is mainly coded in JavaScript and C, with Python mainly being used for testing and automation
scripts.

• Cockpit is published under the LGPL v2.1 license.
• Cockpit can be used to manage server hardware and VMs, but also supports Kubernetes, Docker and

OpenShift containerized instances.
• The Cockpit UI is rendered inside browsers, with Chrome, FireFox, Edge, Safari and Opera being

officially supported.
• The Cockpit backend can run on a multitude of OSes, with RHEL, Fedora, Ubuntu, CentOS, Project

Atomic and Debian being listed as fully supported.
• The Cockpit test suite relies on Semaphore for CI, as well as Selenium and Avocado for integration

tests.
• The code of the Cockpit project is hosted on GitHub, which is also used for version control and issue

tracking.
• Freenode is used for communication via IRC
• Cockpit’s main competitors are Ajenti, Webmin and Nagios.

https://github.com/cockpit-project/cockpit

78 CHAPTER 5. COCKPIT

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]
[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer][Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer][Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer][Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

COCKPIT

Figure 5.2: Context View

5.5. DEVELOPMENT VIEW 79

5.5 Development view

The architecture that is specific to the development process is described in this section.

5.5.1 Module Organization

The main components described by the manual pages on the Cockpit website are:

cockpit.conf -- Cockpit configuration file
cockpit-ws -- Cockpit web service
cockpit-desktop -- Cockpit Desktop integration
remotectl -- Remote Access Configuration
cockpit-bridge -- Cockpit Host Bridge

These components don’t naturally map to the source code in the GitHub repository, because they are targeted
towards users, not developers. A total of 12 directories are listed on the GitHub repository. The source code
is written in two main languages: C and javascript. These two languages respond to the directories src
and pkg, respectively. The ‘Contribute’ page explains:

Most of Cockpit is written in JavaScript. Almost all of this code is found in the packages in the
pkg/ subdirectory of the Cockpit git checkout.

There is also a directory for tests called test and a directory for bot functionality called bots.

As can be seen in the picture above, retrieved from the Cockpit docs[3], the user interacts via the Cockpit
websocket. The websocket is coupled with the API via the Cockpit bridge. The API is what is interesting
for a developer and provides most of the functionality of the application. A summary of the API follows,
mostly deduced from the Cockpit docs.

80 CHAPTER 5. COCKPIT

• systemd provides configuration and monitoring capabilities with the system (OS)
• NetworkManager provides interaction with the systems network configuration
• Journal provides indexed log data
• Docker provides Docker container management functionality
• OStree provides versioning updates of Linux-based operating systems.
• storaged provides disk storage and mounting and other such functionalities

5.5.2 Common Design Model

Cockpit consists of packages that contain components which are HTML documents. The Cockpit documen-
tation is quite extensive on the subject of packages and URLs. Packages are standardized to integrate easily
into the already existing code base. Special URLs are used to refer to internal components.

5.5.2.1 Design Standards

For software projects with different contributors, it is necessary to establish some design standards that
all developers must adhere to, in order to keep the code clean and comprehensible for all developers. To
achieve this, the Cockpit core team has established the Cockpit Coding Guidelines, which can be found
on the GitHub wiki. In these guidelines, standards are listed for general coding style, such as spacing and
indentation, with language-specific guidelines for C, JavaScript, CSS/HTML and Python.

Furthermore, there is also a section on design guidelines for the GUI style based on PatternFly, which can
be found on the PatternFly website. These standards are used to ensure the GUI style is consistent across the
entire program, and also saves developers the hassle of worrying about GUI-related design.

5.5.2.2 Common Processing

Throughout the codebase, data is usually transported from one location to the other using the DBus interface,
which is implemented in JavaScript. DBus is, as the name suggests, a software bus to allow for inter-process
communication. It was developed by RedHat, which explains its presence in the RedHat-dominated code
of Cockpit. The Cockpit developers mostly use it to make the Cockpit web app GUI communicate with
the backend. It can be used by calling the cockpit.dbus() function. Developers can specify which DBus
service they wish to connect to via the function argument, and the function returns a service variable. This
service can be interacted with using its .proxy() function, which can be used to send or receive data.

5.5.2.3 Package Layout

A package must consist of one or more files and include a manifest.json which provides metadata and
has a number of required fields. The name of the package is equivalent to the name of the directory it is
located in. Naming conventions are employed for all files. Referring to other packages (linking) is done
relatively. The cockpit-bridge is used to interact with the front-end of the application.

https://github.com/cockpit-project/cockpit/wiki/Cockpit-Coding-Guidelines
https://www.patternfly.org/pattern-library/

5.5. DEVELOPMENT VIEW 81

5.5.2.4 URL Specification

URL addresses are always relative, even if they are used to refer to resource in other packages. All URLs
are in the /cockpit namespace and thus start with this prefix. Following the namespace identifier is either
a host or checksum, actually telling where to find the package. Next is the package name, the component
name and a hash, which allows to navigate within a single component. The URLs are not visible to the end
user by default. URLs are wrapped to provide bookmarking capabilities and other standard browser features.
If the path of a URL does not exist, users are redirected to the default page or dashboard.

5.5.3 Codeline Models

The root directory of the Cockpit project contains 12 directories. The most important directories will be
discussed here. The release process, and continuous integration are also analyzed.

5.5.3.1 Resource Structure

The packages that are the main part of Cockpit can be found in the pkg directory. The src contains mostly
inward facing functionality, which needs to be fast and is therefore written in C. The bots directory is related
to automated testing and consists of OS images, virtual machines, overrides, and tasks. Tests are located in
the directory test and make use of the resources in th bots directory. Before running the integration tests,
the image-prepare script in the bots directory needs to be executed. Documentation such as markdown,
images and xml is located in the doc directory. The po directory contains translations for multiple languages
in .po format.

5.5.3.2 Release Process

Cockpit has had 189 releases since its creation. The major releases are sequential, but sometimes patches
for previous releases are submitted. For every major release, a blog post is made on the Cockpit website
discussing the newly added features. The posts are often illustrated with pictures to make improvements
more tangible.

Almost every two weeks a new release is made. Releasing within short intervals reduces the amount of
introduced changes. Moreover, it shrinks the management overhead and support duration. The short release
cycle maps to the AGILE SCRUM process, clearly indicating milestones of the project. Contributors can
see their code being used in production quite fast. The quick feedback of bugs or other faults helps to keep
the code base healthy.

5.5.3.3 Continuous Integration

Integration testing is done via a few scripts residing in the test and bots directories.

The first step is to verify that the build is in the expected location and built correctly. This can be done using
the ./bots/image-prepare Bash script. After that, the automated test suite can be activated using the
./test/verify/run-tests Bash script.

82 CHAPTER 5. COCKPIT

These tests are used to check integration of the core program with multiple OSes. The test settings can be
changed using environment variables. * TEST_OS sets the operating system(s) to be tested, with multiple
architectures of CentOS, Debian, Fedora, RHEL and Ubuntu being currently available. * TEST_DATA is used
to set the OS VM image storage location * TEST_JOBS is an integer setting to change the amount of tests to
be ran concurrently. * TEST_CDP_PORT can be used to automatically attach to a browser that supports the
Chrome Debug Protocol. This setting sets the port used for CDP.

The UI integration is tested using Avocado (./test/avocado/run-tests) and Selenium (/test/avocado/selenium-base.py).
Selenium supports Chrome, Firefox and Edge browsers. The testing browser is selected by setting the
BROWSER environment variable.

The aforementioned test scripts are written in Python3, and requires both selenium and avocado-framework
packages to be installed.

The README.MD of the repository shows the Semaphore build status. When clicked, it redirects to a page
where the project’s build status can be monitored in real-time.

5.5.3.4 Folder structure

Text

common

base1

branding

bridge

pam-ssh-add

retest

ssh

<div>websocket</div>

ws

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

dashboard

docker

kdump

kubernetes

lib

machines

networkmanager

ovirt

<div>packagekit</div>

realmd

selinux

shell

sosreport

ssh

storaged

subscriptions

systemd

tuned

apps

pcp

playground

users

Figure 5.3: Folder structure

5.6 Deployment View

The Deployment view describes the view of the system after it is built and tested and is ready to be deployed
to production. In this section, we examine some particular aspects of the Deployment view in Cockpit.

https://semaphoreci.com/cockpit-project/cockpit

5.6. DEPLOYMENT VIEW 83

Cockpit is implemented for standalone usage, meaning that it does not follow a client-server architecture.
On the contary, cockpit is deployed on top of the particular operating system that the user is currently using
and runs directly in the client’s browser. Furthermore, each action at the interface is translated to a linux
command, hence there is no need for a database since no intermediate information is stored. On the other
hand, even as a standalone application cockpit can connect and interact with remote nodes/containers or
even with entire OpenShift and Kubernetes clusters. This is done the same way as with an SSH session,
and the users can troubleshoot, configure and interact with the remote system using the web UI of cockpit
deployed on their local machine. For that to happen, each of the remote Linux instances needs to have
Cockpit installed. The following image shows an overview of this procedure:

As can be seen in the image above taken from the project’s documentation, Cockpit connects to the various
system APIs using the cockpit-bridge module. This bridge allows the sending of messages and commands
from the Web front-end to the server. The cockpit-ws (Websocket) program enables the communication
between the web browser and various APIs and components such as cockpit-bridge. In this diagram, through
cockpit-ws, a connection is established over SSH with two remote server instances.

84 CHAPTER 5. COCKPIT

Web Browsers: Cockpit can be accessed by most popular web browsers. The minimum required versions
are the following:

• Mozilla Firefox 52
• Microsoft EDGE 16
• Google Chrome 57
• Apple Safari 10.3
• Opera 44

Operating systems: Cockpit is included in the major Linux distributions. In detail, cockpit supports the
following operating systems:

• Fedora : Cockpit is installed on the Fedora server. No version limitations are specified.
• Red Hat Enterprise Linux: Red Hat Linux Extras Repositories (versions 7.1+) include Cockpit.
• Project Atomic: Cockpit can connect to to an Atomic host via the user interface. No version

limitations are specified.
• CentOS: Cockpit is supported in CentOS 7.X.
• Debian: Cockpit is included in Debian unstable and in Debian 8, 9 backports
• Ubuntu: Cockpit is supported in Ubuntu 17.04 and later. It is also available as an official backport

for 16.04 LTS and later.
• Clear Linux : Cockpit is included in Clear Linux. No version limitations are specified.
• Arch Linux: Cockpit can be found as a package in the Arch Linux repository. No version limitations

are specified.

Hardware Requirements: No hardware minimum requirements are specified to deploy Cockpit. This
is quite unexpected since from our experience Cockpit was quite slow when we deployed it on our local
VMs. On the other hand, Cockpit claims to be zero footprint meaning that when the system is not used, no
resources are being allocated.

5.7. TECHNICAL DEBT 85

Nevertheless, even if the exact requirements are not mentioned, we can make an estimation of the required
resources by looking at the specifications of the VM that the team uses to run the integration tests. Our
investigation showed that this is a x86_64 system with 4 cores and 2GB of memory. To that end we can
assume that any system with similar or better hardware components will be capable of running cockpit. We
also tested it on a system with 2 cores, it showed no slow down and performed similarly.

5.7 Technical Debt

In this section we describe our findings in regards to Technical debt. Specifically, we attempted to identify
Technical debt both manually and through the use of static analysis tools.

5.7.1 Static Analysis

To perform static analysis on Cockpit, we used SonarQube with support from FlawFinder and CPPCheck
for a more in-depth analysis of Cockpit’s central source code.

SonarQube: SonarQube analyzed a total of 187.000 lines of code, most of which were composed of
JavaScript (87.000) and C (75.000). Of the 251 bugs detected, almost all were generated by deprecated
HTML elements and improper tag usage. All exceptions to this rule were attributed to JavaScript testing
files.

Vulnerabilities in Cockpit mainly originate in the pkg/shell and pkg/kubernetes. The majority of them
have to do with JavaScript code not checking that a sent message is successfully received. Analysis of code
smells revealed that most came from core source files in src/bridge (2d, 4h). Test files were the largest
offender, and were mostly generated because of useless assignments.

According to SonarQube, the estimated time required to address the technical debt from code smells is 6d
4h. The maintainability figure below visualizes the impact by file:

https://www.sonarqube.org/
https://dwheeler.com/flawfinder/
http://cppcheck.sourceforge.net

86 CHAPTER 5. COCKPIT

Finally, SonarQube assigns Cockpit a cyclomatic complexity score of 16.916. Notable offenders from the
src directory were base1/cockpit.js, with a score of 1222, which is close to half of the entire score of
src (2623). The worse though came from the pkg directory, with a score of 14.249.

FlawFinder: The FlawFinder tool searches for security vulnerabilities (e.g buffer overflow risks, race
conditions etc.) and produces a report with all findings categorized by risk level.

We deployed FlawFinder on the src directory of Cockpit, with the produced results summarized as follows:

Vulnerability Category Count

Race 9
Buffer 287
Shell 18
Format 4
Crypto 2
Random 6
Integer 2
Access 2
Misc 57

Of the 102.755 lines analyzed, there were five vulnerabilities with level 5 (the maximum level). When
examining the details of the report concerning the maximum level vulnerabilities, we found that 4/5 are
from test files and are related to race conditions.

CPPCheck: CPPCheck is a tool which primarily searches for bugs and dangerous coding constructs in

5.7. TECHNICAL DEBT 87

C/C++ code. Like with FlawFinder, we deployed it on the src directory of the Cockpit project and collected
the following statistics:

Category Count

Unused Function 309
Variable Scope 268
Redundant Assignment 138
Invalid Scanf 1
Variadic Function NULL UB 85
Null Ptr Redundant Check 12
Literal Char Ptr Compare 38

Some of the less obvious bad practices would be passing NULL as the last argument to a variadic function in
C, and using sscanf without field width limits. Others are more or less harmless, such as a variable having
a larger scope than it needs. It is important to mention that a decent portion of the flaws detected by both
CPPCheck and FlawFinder originate in the test files that litter the source code directories. This means that
some of the vulnerabilities mentioned by FlawFinder would not be a threat in production.

5.7.2 Bus Factor

The main contributions to the Cockpit project come from a small party of 3-4 individuals. In fact, GitHub’s
metrics indicate that the leading contributor ([@stefwalter](https://github.com/stefwalter)) is the largest
contributor by a wide margin. Although we were expecting that most contributions would be concentrated in
a smaller subset of developers, the fact that Cockpit deploys a substantial amount of sophisticated low-level
infrastructural code suggests that the bus factor for the project may not be entirely insignificant. Even being
open source and well commented, the use of intricate channeling infrastructure provides a high barrier to
entry, requiring a developer to have an in-depth understanding of not only Cockpit’s plumbing, but the
operating system functions it works with.

88 CHAPTER 5. COCKPIT

5.7.3 Design Debt

The infrastructure driving Cockpit is primarily written in C. This is presumably done because of the
language’s excellent interoperability with Linux and its familiarity to the core developers. The project also
makes use of an abundance of specialized low level infrastructure. JSON parsers, websockets, authentication,
pipes, and daemons hooked to systemd are all written from the ground up for use specifically with Cockpit.
This infrastructure allows different components of Cockpit to communicate efficiently and helps abstract the
details of passing information around from the rest of the code. Although it provides the developers with a
high level of control, it also imposes a considerable design debt in terms of maintenance. Extending the
source now requires intimate knowledge of its plumbing. This burden now becomes the responsibility of the
developers.

5.7. TECHNICAL DEBT 89

5.7.4 Testing procedure and observations

Cockpit uses Semaphore as their CI platform, accompanied by automatic testing frameworks/tools such as
Avocado and Selenium. These along with the cockpituous module which is described as “A fleet of robots
that run the test suites for each pull request” provide a quite thorough testing procedure. It is worth to note
that this procedure includes the building of 26 distinct VM images on which the tests are being run.

In order to identify the code coverage of the existing tests we tried executing the tests manually and looking
at their Semaphore CI page. Unfortunately, although the former outputs the number of tests that are being
run, neither showed an exact percentage of the code covered. Albeit the team probably has some internal
tools that show this metric, we consider this to be extremely inconvenient for new contributors.

There are 2 types of tests in Cockpit: unit tests and integrations tests.

The first category consists of 2914 tests that focus on testing the functionality of the code. Furthermore,
since Cockpit is a project that relies on Linux OSes and supports a big variety of browsers, it is important
to guarantee that code updates do not break the existing functionality. That said, integrations tests are
essential for this project since they ensure cross-browser compatibility and that new additions are platform
independent.

5.7.4.1 Improvements

We propose two major additions that we believe would contribute to the project’s stable future and encourage
more developers to contribute. Firstly, we observed that Cockpit is quite slow. To that end, we propose the

https://semaphoreci.com/cockpit-project/cockpit
https://avocado-framework.github.io/
https://www.seleniumhq.org/
https://github.com/cockpit-project/cockpituous
https://semaphoreci.com/cockpit-project/cockpit
https://github.com/cockpit-project/cockpit/wiki/Performance

90 CHAPTER 5. COCKPIT

addition of performance tests which would help identify the bottlenecks of the project and prevent future
additions that would further decrease the performance. Moreover, the percentage of code coverage should
be available to the entire community and not just the core RedHat team. Finally, it’s quite hard for a new
contributor to understand their testing procedure at a glance. That is because the instructions cannot be
found in a single concrete document but are separated in different files/web-pages.

5.7.5 Technical debt evolution & awareness

On top of the aforementioned analysis, technical debt awareness of the developers is examined in this
section.

We did this by looking into the following two aspects:

• The discussion between the developers for particular issues
• Specific codetags (TODOs, FIXMEs, HACKs, XXXs) which are generally used as reminders of parts

of code that need closer inspection or review.

Regarding the first aspect, we observed that for complex issues, the involved developers discuss how the
implementation should be so that it will affect the maintainability of the project. Moreover when it comes
to code reviews, the reviewers tend to suggest changes that will optimize the code, regardless if it already
works. In regards to the second analysis, our codetags lookup on the latest release (189), showed some
interesting insights. In particular, multiple codetags were found as shown in the table below. A more detailed
analysis can be found in the Appendix B.

Codetags Count Files

TODO 100 66
FIXME 11 10
HACK 198 112
XXX 10 5

These results indicate that the developers are aware of the technical debt in their project since they annotate
their code with tags that imply the need for further investigation. Moreover, in order to identify whether the
developers address the issues described by the tags or they just ignore them, we compared the latest release
with 2-year old past ones.

5.8. CONCLUSION 91

As can be seen, there is a undoubtedly a increase in the number of codetags that need to be addressed. This
leads us to the conclusion that although the team seems to be aware of the technical debt of their project,
minor efforts are being done in order to decrease it.

5.8 Conclusion

Throughout these sections we examined various aspects of Cockpit’s architecture. In particular, we made an
extensive stakeholder analysis in order to identify the main stakeholders of the project, we examined various
viewpoints of the system and analyzed its evolution and technical/testing debt. Our analysis lead to some
interesting insights in regards to the underlying architecture of Cockpit and open-source projects in general.

Early on during our stakeholders analysis we identified that the majority of the stakeholders are Red Hat
employees. This was quite surprising considering the size of the project but was later justified by observing
that there is only a small number of active contributors. Furthermore, by analyzing the different viewpoints
we learnt how Cockpit is deployed and developed and what are its dependencies. The results of that analysis
indicate that Cockpit’s codebase and testing procedures are quite complex and that partially explains the
reasons behind the small number of non-RedHat contributors. Lastly, our technical and testing debt analysis
showed that although minor, there is technical and testing debt in the project. Judging by the significant
number of code tags that were found in the source code, we argue that the developers-team seems to be

92 CHAPTER 5. COCKPIT

aware of that. However, by comparing the latest release with previous ones we were able to find that not
much effort is spent on addressing these issues.

In summary, our findings allow us to argue that Cockpit is a promising and undoubtedly useful for Linux
system administrators. However, we believe that there is still room for improvement in order for the project
to evolve at a faster pace.

5.9 References

[1] https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

[2] Gousios, G., Zaidman, A., Storey, M. A., & Van Deursen, A. (2015, May). Work practices and challenges
in pull-based development: the integrator’s perspective. In Proceedings of the 37th International Conference
on Software Engineering-Volume 1 (pp. 358-368). IEEE Press.

[3] https://github.com/cockpit-project/cockpit/tree/master/doc

5.10 Appendix A

5.10.1 Most discussed accepted pull requests

Name Context Merged by Issued,Merged Key points

machines: Add
create vm dialog
#7820

Refers to the
creation of virtual
machines through
the interface

Martin Pitt Issued:
05/10/2017;
Merged:
02/02/2018

- Was reviewed by
many individuals
including
designers and
senior developers;
Request for fixes:
Back and forth
communication
between the
assignee and the
reviewers; Merge
delayed due to
multiple rounds
of reviews and
fixes; 4 months
passed until the
final merge

https://github.com/cockpit-project/cockpit/pull/7820
https://github.com/cockpit-project/cockpit/pull/7820
https://github.com/cockpit-project/cockpit/pull/7820

5.10. APPENDIX A 93

Name Context Merged by Issued,Merged Key points

test: Stop
reloading sshd
when Debian
networking
changes #6158

Disable broken
behaviour caused
by sshd reload

Martin Pitt Issued:
20/03/2017;
Merged:
22/03/2017

- The pull request
was prioritized
since it was
blocking other
components; Due
to the
prioritization,
only 2 days were
needed for it to be
merged

cockpit:machines:
Display VM
graphics console
#5932

Graphics console
retrieval for a VM

Martin Pitt Issued:
23/02/2017 ;
Merged:
08/06/2017

- Discussion about
whether to use
VNC or SPICE to
address the issue;
Consulted
individuals that
have used SPICE
in their own
projects; Merge
was delayed due
to the discussion
regarding the
available choices
and due to the
extra
implementation
that was needed

vms: VM
management -
initial commit
#4434

VM management
and monitoring

Dominik Perpeet Issued:
18/05/2016 ;
Merged:
29/09/2016

- Was
blocked/delayed
due to
dependencies to
other issues;
Many rounds of
reviews and fixes;
Many rebases on
top of the existing
implementation

https://github.com/cockpit-project/cockpit/pull/6158
https://github.com/cockpit-project/cockpit/pull/6158
https://github.com/cockpit-project/cockpit/pull/6158
https://github.com/cockpit-project/cockpit/pull/6158
https://github.com/cockpit-project/cockpit/pull/6158
https://github.com/cockpit-project/cockpit/pull/5932
https://github.com/cockpit-project/cockpit/pull/5932
https://github.com/cockpit-project/cockpit/pull/5932
https://github.com/cockpit-project/cockpit/pull/5932
https://github.com/cockpit-project/cockpit/pull/4434
https://github.com/cockpit-project/cockpit/pull/4434
https://github.com/cockpit-project/cockpit/pull/4434
https://github.com/cockpit-project/cockpit/pull/4434

94 CHAPTER 5. COCKPIT

Name Context Merged by Issued,Merged Key points

Navigation
updates (CSS for
desktop and the
start of mobile)
#7482

Visual navigation
updates for the
desktop and
mobile interfaces

Martin Pitt Issued:
10/08/2017;
Merged:
13/11/2017

- Included an
extensive design
related discussion;
Required multiple
tests to ensure
consistency
among the
different
browsers; Again
submitted partial
implementation
and added more
after discussions

Adjust RHEL 7
images for the 7.5
release #8984

Prepared tests for
the new RHEL
release

Marius Vollmer Issued
12/04/2018;
Merged
13/04/2018

- The contributor
of this PR was
team member of
the project; An
adjustment in the
RHEL 7 images
was needed to
support the new
release; Two
different commits
were referenced
as guidelines and
after it passed the
tests it got merged
in the master

https://github.com/cockpit-project/cockpit/pull/7482
https://github.com/cockpit-project/cockpit/pull/7482
https://github.com/cockpit-project/cockpit/pull/7482
https://github.com/cockpit-project/cockpit/pull/7482
https://github.com/cockpit-project/cockpit/pull/7482
https://github.com/cockpit-project/cockpit/pull/8984
https://github.com/cockpit-project/cockpit/pull/8984
https://github.com/cockpit-project/cockpit/pull/8984

5.10. APPENDIX A 95

Name Context Merged by Issued,Merged Key points

docker:
implement new
design #4952

New design for
docker page

Lars Karlitski Issued
01/09/2016;
Merged
19/10/2016

- An
implementation
for a new design
of docker was
needed; The PR
had some
unrelated test
failures in
different modules,
including rhel
failure and
testRestart in
fedora 25; In the
end some fixes
where required
and the
implementation
was force pushed
to another branch

Add CentOS CI
image store #9321

Update CentOS
image store
pertaining to
ubuntu and REHL

Martin Pitt Issued
06/06/2018;
Merged
11/06/2018

- The initial
update failed the
tests so the
contributor had to
fix bugs that were
causing the
failures; The PR
finally merged,
even though they
were some
unrelated test
failures; The
Cockpituous bot
is employed to
automatically
update the images

https://github.com/cockpit-project/cockpit/pull/4952
https://github.com/cockpit-project/cockpit/pull/4952
https://github.com/cockpit-project/cockpit/pull/4952
https://github.com/cockpit-project/cockpit/pull/9321
https://github.com/cockpit-project/cockpit/pull/9321

96 CHAPTER 5. COCKPIT

Name Context Merged by Issued,Merged Key points

systemd create
timer option
#4645

Functionality to
execute shell
commands at a
specified time

Harish Anand Issued
28/06/2016;
Merged
14/08/2016

- A PR made by a
CS graduate - The
PR is reviewed by
a member of the
core team for
code style and
design; The
changes are
accepted and it is
stated that it will
be part of Cockpit
0.118.

cockpit:machines:
Display VM
graphics console
#5932

Desktop-like
server interaction
within browser
iframe

Marek Libra Issued
23/02/2017;
Merged
08/06/2017

- Cockpit already
supports
non-graphics
console; The
original post of
the PR explains
the new feature
and the number of
different
implementations
possible. It also
shows a video of
the new feature;
Developers of the
graphics consoles
join the
discussion;
Multiple
implementations
are required, both
in-browser and
not in-browser to
best suit the needs
of all users

5.11 Appendix B

A detailed analysis regarding the codetags per package can be seen below. Note that trivial packages such as
/examples and /doc have not been included.

TODO FIXME HACK XXX

/bots 0 1 37 0

https://github.com/cockpit-project/cockpit/pull/4645
https://github.com/cockpit-project/cockpit/pull/4645
https://github.com/cockpit-project/cockpit/pull/4645
https://github.com/cockpit-project/cockpit/pull/5932
https://github.com/cockpit-project/cockpit/pull/5932
https://github.com/cockpit-project/cockpit/pull/5932
https://github.com/cockpit-project/cockpit/pull/5932
https://youtu.be/_zVi44KQ8KU

5.11. APPENDIX B 97

TODO FIXME HACK XXX

/containers 1 0 7 0
/pkg 75 2 50 6
/src 15 0 34 0
/tools 1 1 1 0
/test 8 5 67 4

As can be seen in the table, a significant number of the codetags can be found in the /pkg and /src packages.
This, is reasonable considering that these 2 packages contain the interface and core logic respectively. What
is worrying though is that there is a big number of HACK tags in the /test package which indicates that
some tests are not complete. On the other hand, each of these tags corresponds to an existing issue which is
tracked in Redhat’s bugzilla issue tracker. An example of such an issue is the following:

On Atomic no locales other than en_US are supported on the host itself
HACK: https://bugzilla.redhat.com/show_bug.cgi?id=1186757

98 CHAPTER 5. COCKPIT

Chapter 6

Django

By Alexandru Balan, Andra Ionescu, Phil Misteli, David Vojtek

6.1 Table of Contents

• Introduction
• Stakeholders

– Django Software Foundation
– Core Members
– Technical Board
– Other stakeholders
– Power-interest Grid

• Decision-making process of pull requests
• Context view

– System Scope and Responsibilities
– Context view diagram
– Conclusion

99

https://github.com/alexanderblnf
https://github.com/AndraIonescu
https://github.com/pmisteliac
https://github.com/sejd0n

100 CHAPTER 6. DJANGO

• Development view
– Module structure
– Common patterns
– Common processing
– Standard design
– Standard software components
– Build approach
– Release process

• Technical debt
– Code quality tool analysis
– Testing Debt
– Conclusion

• Evolution Perspective
– History
– Aspects of evolution
– Evolution conclusion

• Conclusion

6.2 Introduction

According to the description on Django’s website:

Django is a high-level Python Web framework that encourages rapid development and clean,
pragmatic design.

In other words, Django is an open source web framework that enables the user to write complete applications
from scratch by offering support for building a back-end infrastructure, as well as creating the front-end
interfaces and interactions through its templating engine. Its support for various databases and the ease of
integrating it with various front-end frameworks make it extremely versatile for various use cases, such as
content management systems, computing platforms or social networks.

This chapter aims to describe the high-level architecture starting with an analysis of the stakeholders,
followed by the context and development view, technical debt and finally, the evolution of the project.

6.3 Stakeholders

According to Rozanski and Woods [1], a stakehold is a person, a group or an entity that has interest and
concerns about the realization of the architecture. According to their classification based on the roles
and concerns, 10 types of stakeholders are identified: acquirers, assessors, communicators, developers,
maintainers, suppliers, support staff, system administrators, testers and users. In Django, the non-profit
organization Django Software Foundation (DSF), the Core Members and the Technical Board have
a major impact in the administration of the project. Thus, special attention is required in order to fully
understand their responsibilities and how they integrate with the RW categorization.

https://www.djangoproject.com/

6.3. STAKEHOLDERS 101

6.3.1 Django Software Foundation

Based on the Django organization, the Django Software Foundation handles the financial and legal aspects
of the project. The goal of the foundation is to promote, support and advance the project. Therefore, they
support the development by organising meetups and community events, by promoting the use of Django in
the online development community, protecting the intellectual property and advancing the state of the art
in Web development. The foundation is composed of corporate members, individual members and the
board of directors.

The corporate members offer the financial support in the form of one year subscription based packages. The
packages are formed based on the number of people from the organization and the payment amount, ranging
from organizations with up to 10 people and a dues of 2000$ (Bronze package) to organizations with more
than 500 people and dues of 100,000$ (Platinum package).

The individual members are people appointed by DSF that deserve the recognition for their services in the
community.

The board of directors is formed of Frank Wiles - President, Anna Makarudze - Vice President, James
Bennett - Secretary, Jessica Deaton - Treasurer, Katie McLaughlin and Ola Tarkowska. Most of the members
of the board of directors are public speakers, who help with Django events and conferences organization or
are very experienced developers.

6.3.2 Core Members

The core team members are a group of volunteers that have shown dedication over time and became
trustworthy to manage the Django Project. Some of the attributions of the core members are:

• triaging tickets;
• writing, reviewing and merging patches;
• managing the continuous integration infrastructure and the servers;
• participating in design decisions;
• handling the security issues;
• packing the release.

They also have authority over the Django Project infrastructure, the webite, the Github repository, bug
tracker, mailing list and IRC channel. Based on the area of expertise, the core members are divided as
follows:

• Ops Team - who maintains the infrastructure
• Releasers - who manages and handles the releases
• Security team - who is specialised in security matters and handles all the security issues reported
• Technical advisory team - veterans who are less involved in the day to day matters
• Technical board
• Technical team - Veterans contributors who are active in the day to day development

https://docs.djangoproject.com/en/2.1/internals/organization/
https://www.djangoproject.com/foundation/
https://www.djangoproject.com/foundation/corporate-members/
https://www.djangoproject.com/foundation/individual-members/
http://blog.djangogirls.org/post/146535801439/your-django-story-meet-anna-makarudze
https://www.linkedin.com/in/jessica-deaton/
https://www.linkedin.com/in/glasnt/
https://docs.djangoproject.com/en/2.1/internals/organization/#core-team
https://www.djangoproject.com/foundation/teams

102 CHAPTER 6. DJANGO

6.3.3 Technical Board

The Technical Board is a special category of core members. Their role is to steer the technical choices and
to mantain the quality and stabilty of Django. The members are chosen on every release and the current
board of the 2.2 release is: Adam Johnson, Andrew Godwin, Aymeric Augustin, Carl Meyer, James Bennett.
The main attributes of the technical board is to grant or remove commit access and make decisions when no
consensus is found.

Based on the three major categories idetified and their roles in the organization, the RW stakeholder
categorization of Django is as follows:

Type &
Description Stakeholder Observations

Aquirers
Oversee the
procurement of
the system or
product

Django Software Foundation The DSF oversees the whole financial and
legal aspects, but the funding, in

particular, comes from the Corporate
Members: Platinum (JetBrains,

Instagram), Silver (Sentry, Cadre,
Education Ecosystem and more), Bronze

(Boomerang, Divio, Django Stars,
TeamUp and many more)

Assessors
Oversee the
system’s
conformance
to standards
and legal
regulation

Technical Board / Django Software
Foundation

Technical Board maintains the quality and
stability, while the DSF handles the legal

regulations

Communicators
Explain the
system to other
stakeholders
via its
documentation
and training
materials

Django Software Foundation / Core Team DSF represents the communicators
through the board of directors who are
involved in organising conferences and

events, while the core team helps
explaining the system from a technical

point of view

Developers
Construct and
deploy the
system from
specifications
(or lead the
teams that do
this)

Django People / Core Team Since one of the responsibilities of the
core team is to develop, review and merge

patches, they also represent the
developers among the rest of the

community

https://people.djangoproject.com/

6.3. STAKEHOLDERS 103

Type &
Description Stakeholder Observations

Maintainers
Manage the
evolution of
the system
once it is
operational

Technical Board / Ops Team The technical board goal is to maintain
the project, while the Ops Team maintains

the infrastructure

Suppliers
Build and/or
supply the
hardware,
software, or
infrastructure
on which the
system will run

Operating Systems / Python / Javascript Django runs on MacOS, Linux and
Windows. Besides a host, Django also

needs Python and Javascript to run, giving
the fact that is a Python web framework.

Support Staff
Provide
support to
users for the
product or
system when it
is running

Core Members / Django People The Core Members have the authority
over the IRC channel, Issue tracker,
mailing list, where other community

members may contribute too. Moreover,
all the people that are engaged into

conversations on StackOverflow are part
of the support staff

System
administrators
Run the system
once it has
been deployed

Ops Team / Releasers The releasers are concerned with
releasing the project to the public, while

the ops team maintains the servers

Testers Test
the system to
ensure that it
is suitable for
use

Developers Django follows the Test Driven
Development methodology, therefore the

developers are also responsible for
writing test cases and running the tests

Users Define
the system’s
functionality
and ultimately
make use of it

Community Members / End Users /
Content Creators

The members of the community are part
of the users, because they use Django and

also create Trac issues to help improve
the project or create new functionality.
The end users represent the developers

from companies such as Instagram,
Spotify, Mozilla FireFox, Bitbucket and

Disqus, who are using Django to develop
their products. The content creators are
the people who are using Django to help

other users by publishing blog posts,
tutorials and videos.

irc://irc.freenode.net/django
https://code.djangoproject.com/query
https://stackoverflow.com/questions/tagged/django

104 CHAPTER 6. DJANGO

6.3.4 Other stakeholders

Besides the clasification introduced by Rozanski and Woods, we have identified other types of stakeholders
that influence the development of the project from other perspectives.

Competitors The competitors are one of the stakeholders that influence the project from a different point of
view: competition. Based on what other frameworks can or can not do, the project might adjust its own
capabilities. Therefore, the main competitors identified are either other major Python web frameworks,
such as Flask or Pyramid, which are more lightweight but lack some functionalities, or fully-fledged web
frameworks, such as PHP’s CodeIgniter.

Translators Translators are the people who help with the project internationalization. The framework has a
very well defined methodology to help translators, described in developement view chapter.

Founders The Django founders are Adrian Holovaty (web-developer, journalist and antreprenor) and Simon
Willison (programmmer, director of architecture Eventbrite).

Donators Django accepts donations that are used to support, promote and advance the framework. The
donors might be individual persons or companies, who can be found at the end of the fundraising page.
Their help further support programs such as Django Girls, the fellowship program or events and conferences
in general. The donators can contribute using one of the several methods for donations such as: + Django’s
own donation page where one can choose the type of donation (monthly, quarterly, yearly or one-time) +
mailing checks to the foundation address + payroll deduction via Benevity Workplace Giving Program +
through Amazon Smile.

6.3.5 Power-interest Grid

Django has a very interesting stakeholder structure, the majority of functions being occupied by the people
belonging to the Django Software Foundation together with the Core Members and Technical Board.
Therefore, the trio has the highest interest and the highest power. Secondly in terms of power are the
Corporate members, which have a lower interest than the previous, but high enough, because they care about
the future of the project. Next in power are the suppliers, which have no interest, but the project has a high
dependency on them and each change in the suppliers affects imediately the project. The donators have the
same power, because they care enough to donate for the project, having the power to support many aspects
such as conferences, events and programs.

Furthermore, there are the entities who do not have a high power, but have a high interest in the project.
These are the users, the active developers and the founders who still care about the project, but are not as
involved anymore. Next, with a very high interest are the competitors, which have a limited influence over
the project.

Finally the less active community and the Stackoverflow community have little power in the project
development, but their impact is very high for developers and users that struggle with the framework and
seek guidance.

http://flask.pocoo.org/
https://trypyramid.com/
https://codeigniter.com/
http://www.holovaty.com/
https://simonwillison.net/
https://simonwillison.net/
https://www.djangoproject.com/fundraising/
https://www.djangoproject.com/fundraising/#django-girls
https://www.djangoproject.com/fundraising/#fellowship-program
https://www.djangoproject.com/fundraising/
https://smile.amazon.com/about

6.3. STAKEHOLDERS 105

Figure 6.1: Power-interest grid

106 CHAPTER 6. DJANGO

6.4 Decision-making process of pull requests

After careful analysis of 20 pull request, 10 accepted and 10 rejected ones, we were able to gain a thorough
insight into decision-making process in the Django project organization.

All pull requests must relate to a ticket, which describes a bug or a new feature, from the change management
tool Trac which is publicly accessible on the Django project website. The ticket has to be assigned to the the
author of the pull request on GitHub. This process does not apply to security bugs which are handled by
members of the Django project team themselves.

After a pull request is submitted, it is usually first discussed amongst and tested by other contributors. The
author usually makes some changes based upon that feedback and if he thinks the quality of the pull request
is sufficient, he tags a team member of the Django project team to review it.

The integrators from core Django team are very strict about software quality and all pull request are carefully
analyzed. Apart from pure functionality, this also includes aspects like code formatting & style, proper
documentation and test coverage. Regression tests are run against each pull request which even include
performance tests. They often demand changes and make suggestions on how to implement them. From
that point on the team member stays actively involved by repeatedly assessing the patch until either all the
quality standards are met and the patch is merged or the author fails to meet the demands of the integrator
and the patch is rejected.

All integrators seem to work independently and can alone decide if a pull request should be merged or
rejected. More complex or controversial changes are sometimes discussed by multiple members of the
integration team or over the users email-list.

In conclusion, Django has very well established and regulated decision process that is strictly followed and
is designed to keep the quality of the project on its high level.

6.5 Context view

In order to truly understand the architecture behind Django, one needs to first understand the context
surrounding the project, its scope, responsibilities and dependencies.

6.5.1 System Scope and Responsibilities

Since Django is a web framework, the scope of the project is restricted to building web applications only
and since it is a full stack framework, it is suitable for various use cases, such as social networks, internet
banking applications etc. Therefore, we have divided the main responsibility of allowing the building of a
web application in multiple sub-responsibilities:

• Allow users to render data on the screen or fetch data (for example, through inputs).
• Allow users to create re-usable page templates.
• Allow users to build a server infrastructure that can receive requests and return appropriate responses.
• Allow users to build encapsulated modules that can function separately from others, communicate

and maintain their own state.
• Provide means and specialized components to connect and read/write from/to persistent storage.

6.5. CONTEXT VIEW 107

• Provide pre-defined modules and functionality that solve common Web-development problems.
• Provide specialized modules that ensure the security of the web application.
• Provide the flexibility of interfacing to other libraries of frameworks.

6.5.2 Context view diagram

Figure 6.2: Context view

The figure above shows a context model implementation for the Django project. By analyzing it, we were
able to uncover several relevant findings:

• Django runs on all major desktop-grade operating systems (Windows, MacOS, Linux, Unix)
• Django is used by important players in the tech industry, such as Instagram, Spotify or Bitbucket.
• The team uses a variety of development tools inside the project: GitHub for hosting and collaborating

on the code, Trac for issue tracking and Jenkins for continuous integration. Moreover, in order to
fully run the entire project, both Python (>= 2.7) and npm are required. New functionalities are
documented in .txt files and generated using Sphinx

• The project is tested using Python’s built-in unittest framework and QUnit for Javascript code. Other
testing frameworks can be used, as Django provides an API and tools for this type of integration.

• Django can be integrated with various other frameworks:
– Front-end web frameworks, such as Angular or ReactJS
– Various types of databases, such as GraphQL or MongoDB
– Virtualization solutions, such as Docker

https://code.djangoproject.com/query
https://djangoci.com/
https://www.npmjs.com/
http://www.sphinx-doc.org/en/master/
https://docs.python.org/2/library/unittest.html
https://qunitjs.com/
https://docs.djangoproject.com/en/2.1/topics/testing/advanced/#other-testing-frameworks
https://angular.io/
https://reactjs.org/
https://graphql.org/
https://www.mongodb.com/
https://www.docker.com/

108 CHAPTER 6. DJANGO

• You can discover extensive discussions about the framework on StackOverflow and you can stay
updated regarding the latest developments either through the IRC Channel or the RSS feed. More
details about getting in contact with the Django community can be found here

6.5.3 Conclusion

To sum up, by modelling the context view, we have discovered that Django has various responsibilities when
it comes to functionality. Moreover, we have found there are many dependencies surrounding the projects.

6.6 Development view

6.6.1 Module structure

Django is organized in multiple modules that encapsulate different functionalities of the project and serve
different purposes. We have identified 3 high-level modules, which are then organized into multiple packages.
An interesting remark here is that we have noticed a similar structure in DESOSA 2016 for Ruby on Rails
(although less complex and with less modules). When investigating the release page of Ruby on Rails, we
have discovered many references to Django, which shows that the architecture of the 2 is very similar.

6.6.1.1 Main Django module

The main Django module, which is encapsulated in the /django folder, contains the actual functionality
of the project. It is composed by various packages, that contain mostly Python scripts, but also Javascript,
CSS and HTML. However, in order to better understand how various functionalities are grouped inside this
module, we have also evaluated the grouping of the sub-modules. We have identified 8 groupings that reflect
different functionalities that the project offers.

Core functionality & configuration This grouping handles the application configuration and low-level
functionality and contains 2 packages:

• The conf package contains the default global configuration settings of the application, such as
environment variables, locale formats etc.

• The core package, contains the core low-level functionalities that the application needs, such as
caching, exceptions, serializers, file operations.

The functionality in these packages is used in various places in the application, especially in the lower levels.

Communication Django has a built in signal dispatcher, which helps allow decoupled applications to
receive notifications when a specific action occurs. The dispatch package contains the implementation of
this functionality, which is used by various other levels for event signaling.

Persistent storage functions As most application nowadays require some form of persistent storage, Django
incorporates a db package, which acts as an ORM for a variety of databases.

State change handlers As Django is a web framework, it uses HTTP request and response objects to pass
state through the system. There are 2 packages that encapsulate this functionality:

https://www.djangoproject.com/community/
https://pure.tudelft.nl/portal/files/8039977/desosa2016.pdf
https://weblog.rubyonrails.org/releases/
https://docs.djangoproject.com/en/2.1/topics/settings/
https://docs.djangoproject.com/en/2.1/topics/signals/
https://docs.djangoproject.com/en/2.1/ref/request-response/

6.6. DEVELOPMENT VIEW 109

Figure 6.3: Django modules

110 CHAPTER 6. DJANGO

• The http package implements the Response and Request objects and all the needed functionality
(encoding, scheming, headers, cookie parsers etc.).

• The url package handles parsing and processing of URLs in order to do matching with various
components, such as a view.

Request / Response processing The middleware package is the intermediary between the front-end
architecture and the server. It handles tasks such as communicating with the cache, processing requests and
responses, enforcing security policies etc. This package is mostly used by the client interaction packages.

Client interaction This grouping encapsulates the whole front-end architecture and can be described by 4
packages:

• The views package contains the implementation of the most important component of Django’s
frontend architecture: a view. Every Python function that receives a web request and returns a
response (e.g. web page, document, JSON etc.) is considered a view.

• The forms package contains various functions that help implement and operate forms (render forms,
fetch inputs etc.).

• The template package contains the implementation of Django’s template system, which enables the
developer to re-use various web page components or custom elements. The tags and filters that are
used by the template system are defined in the templatetags package.

Helpers & Tools The framework has 3 packages that encapsulate various helper functions and utilities that
can be used throughout the different levels of the architecture:

• The contrib package contains various optional tools that solve common Web development problems,
such as a search functionality with query autocompletes, an admin page, sitemaps etc.

• The test package contains utilities for building tests quicker and easier
• The utils package contains various helpers for aiding development in different parts of the applica-

tion. It is one of the most used packages throughout the rest of the framework.

Test fixtures The Django team uses test-driven development as a programming paradigm. This means every
new functionality or bug fix needs a corresponding set of tests. The tests cand be found in 2 packages,
depending on the programming language the tests are made for. Therefore, the Python tests are stored in the
/tests folder, while the Javascripts tests are stored in /js_tests.

Documentation module Since Django is a full stack framework, that means the documentation can also
be stored in the project and served on the main project website. The documentation module, which can
be found in the /docs folder of the framework, contains the whole documentation, written in .txt files. It
contains pages such as basic tutorials (intro), the API Reference (ref), in-depth how-to guides (howto) or
releases (releases).

6.6.2 Common patterns

In Django, there are multiple patterns used, each being applied to a certain piece such as the models that
follow the “Active record” design pattern or the templates that are designed to follow the principle of
“template inheritance”, therefore avoiding duplicate code. Moreover, Django is object oriented and the
development follows the test-driven development process.

Django design philosophies As the official documentation of Django explains, they have included several
principles or patterns during the project’s life. Overall, they aim for: * loose coupling and tight cohesion,

https://docs.djangoproject.com/en/2.1/topics/http/middleware/
https://docs.djangoproject.com/en/2.1/ref/contrib/
https://docs.djangoproject.com/en/2.1/misc/design-philosophies/

6.6. DEVELOPMENT VIEW 111

where the layers of the project should not depend one on another unless is necessary; * less code - which
aims for using as much as possible the Pyhton’s capabilities, such as introspection. The downside is
the high dependency of Django on Python, which requires careful maintanance in order to comply with
Python’s changes. * quick development - which is the most wanted feature of a framework from the user’s
point of view. * adhering to the “Don’t Repeat Yourself” Principle - therefore, each component of the
application should be in one and single place, which increases the normalization and reduces the redundancy.
* consistency - by leveraging Python * explicit behaviour - which means that the code should not assume
certain aspects, such as properties or data types of the models.

6.6.3 Common processing

Message logging In Django, message logging is being done using Python’s built in logging module.

The message is forwarded from the logger to the handler, which decides the destination of a message. Filters
can be configured to have additional control over which records are passed from the logger to the handler.

Testing The testing process can be observed in the figure below and is split by programming language and
level of detail.

Documentation Documentation has an important role in the project and the members aim to improve it when-
ever is necessary. The documentation uses Sphinx system which is based on docutils, which transforms plain
text into pdf or other prefered output format. The language is reStructuredText, which is a plain markdown
language used in both Docutils and Sphinx. Besides the Sphinx markup, Django introduced an additional
set of tags such as: setting, templatetag, templatefilter, fieldlookup, django_admin, django_admin_option
and ticket. To compress documentation images, the project uses OptiPNG and AdvanceCOMP. Moreover,
the spell check is done using additional tools such as pyenchant and sphinxcontrib-spelling.

6.6.4 Standard design

Coding style Django Project contains besides the Python code, Javascript code to develop the front-end
modules admin and gis. Therefore, the project follows two different coding style conventions for each
programming language.

The Python style follows the PEP-8 Python style guide. Moreover, Django sets additional rules such as: the
line length, identation, alignment, usage of single or double quotes. They also standardised the variable
name notations and imports style, which uses isort library to sort the imports according to predefined rules.
Another helper used in the project is flake8, a style checker that identifies mistakes.

The Javascript style follows the general Javascript conventions. The main difference between the two
programming languages is the naming notation which is camelCase in Javascript and underscore_case
in Python. The project uses JSHint code linter to analyse the code for mistake in style and other bugs.
Moreover, to compress the Javascript code, the project uses closure compiler developed by Google.

To ensure the developers use the same identation style, the project contains the .editorconfig file for both
Python and Javascript.

Internationalization and localization Django supports internationalization and localization for text trans-
lation, time zones and formatting dates, times and numbers.

http://wiki.c2.com/?DontRepeatYourself
https://docs.python.org/3/library/logging.html#module-logging
http://www.sphinx-doc.org/en/master/
http://docutils.sourceforge.net/
http://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html#rst-index
http://optipng.sourceforge.net/
https://github.com/amadvance/advancecomp
https://pypi.org/project/pyenchant/
https://pypi.org/project/sphinxcontrib-spelling/
https://www.python.org/dev/peps/pep-0008/
https://github.com/timothycrosley/isort
https://pypi.org/project/flake8/
https://jshint.com/
https://developers.google.com/closure/compiler/

112 CHAPTER 6. DJANGO

Figure 6.4: The testing process

6.6. DEVELOPMENT VIEW 113

To perform translation, Django uses “translation strings” which represents strings that need translation. Then,
the language dependent corresponding string is transformed using GNU gettext toolset, which retrieves the
text from .po files. Moreover, Django supports plural words, by extending gettext. The Javascript translation
raised a few challenges, because it could not access gettext by default. Therefore, Django made its own
implementation to address translation in Javascript, called JavaScriptCatalog view.

Moreover, to monitor the translation activity, Django uses Transifex for both the code and documentation.

6.6.5 Standard software components

Javascript libraries The additional libraries for Javascript used are related to code inspection and project
building, which are all included in the package.json file.

Python modules Django uses additional Python modules only for running the test suite. The external
modules installation represents a requirement for test running, which can be found in the requirements folder
under tests.

6.6.6 Build approach

Every developer is requested to submit a pull request (PR) which is reviewed by core developers. For
each PR, 19 checkes are performed using Jenkins. These checkes perform several builds using different
environments to properly test the framework. The builds test the documentation for spelling mistakes, the
code style, the imports, runs the Javascript tests, runs the project on Windows, on Ubuntu, on Selenium, on
Oracle and use different databases to check the compatibility.

6.6.7 Release process

The Django team schedules a major feature release every 8 months. Throughout the period, 3 major phases
can be identified: feature proposal, development and bugfixes. The timeline, along with the characteristics
of each phase, can be observed in the figure below. The final steps of the lengthy process are detailed in the
pre-release and release checklists in the figures below. The pre-release process starts approximately one
week before the actual release.

The release timeline

https://www.transifex.com/django/django-docs/
https://github.com/django/django/blob/master/package.json
https://github.com/django/django/tree/master/tests/requirements
https://djangoci.com/

114 CHAPTER 6. DJANGO

Figure 6.5: The release checklist

6.7. TECHNICAL DEBT 115

6.7 Technical debt

Technical debt represents the costs of choosing a “quick and ugly” solution now, instead of using a proper
approach that is harder and slower. We present the results of our code and test analysis in this section to
assess Django’s debt.

6.7.1 Code quality tool analysis

We used SonarQube to gather various code metrics in order to find technical debt in Django. This tool
provides information about application health, code quality, bugs and many more. We chose this tool,
because it analyzes code written in python, JavaScript and HTML, which are all used in Django. We
analyzed the current version, as well as 2 previous versions, to see how the technical debt changes over time.

6.7.1.1 Scan results

Version Bugs Vulnerabilities Code smells Duplicity Lines of Code

2.2 73 189 1193 1 % 263 393
2.1 73 185 1165 1 % 255 251
2.0 66 185 1152 1 % 251 107

6.7.1.2 Bugs

The current version has 73 bugs. Considering Django’s 263 000 LOC, 1 bug per 3600 LOC does not
represent a major issue.

Taking a closer look at the bugs, we observed that most of them are several years old. Therefore, it is
unlikely that nobody noticed them for such long time, if they can be easily detected with automatic tool. It
is more likely that these bugs are not important enough to fix them or they do not want to edit components
that have been closed for several years, for minor bugs that are not causing any significant problems.

Bugs are mainly consisting of wrong or missing HTML tags in the documentation section, potentially
undefined variables and too many relational operators in if statement. They are also present in the older
versions.

6.7.1.3 Vulnerabilities

SonarQube reports 173 vulnerabilities. They are composed almost entirely of statically set IP addresses
in the test suite, which does not represent a major problem because all the tests are for the internal use of
Django. These vulnerabilities are present in all tested versions.

https://www.sonarqube.org/

116 CHAPTER 6. DJANGO

6.7.1.4 Code Smell

Code smell refers to any symptom in the source code that may indicate a deeper problem, although they
are not technically incorrect and do not currently prevent the program from functioning. They indicate
weaknesses in design that may slow down development or increase the risk of bugs in the future.

Code smell type Occurences

Incorrect name of variables 553
Functions with high cyclomatic complexity 380
Non-standard format of comments 135
Code leftovers for legacy support 119
Potential if merges 59

In Django there are less than 1200 code smells. When we compare different version of Django, the number
of code smells stays practically the same. That is an indication of improvement of quality control in the last
years, because most of the issues are the same across the versions. A closer analysis of code smells can be
seen in the table above. SonarQube estimates that solving all the code smells will require approximately 528
hours of work.

6.7.1.5 Duplicity

Duplicity of code in Django is about 1%, but 87% of duplicated lines are in tests, which is understandable.
Moreover, the number of duplicities is decreasing with newer versions.

6.7.1.6 Ticket System

Django project uses the Trac ticket system for bugs and optimizations, of which there are currently 872
open tickets. The Django team should consider to open tickets to get rid of the technical debt presented here,
since this needs to be handled proactively.

6.7.2 Testing Debt

Testing is an important tool to asses and control the quality of a piece of software. Therefore a weak test
suite or low test code coverage are part of a systems technical debt. Especially for a complex project like
Django, which offers a significant amount of functionality and has a big user base, maintaining an extensive
test suite is of paramount importance.

6.7.2.1 Testing practices

The test suite contains both testcases for the Python and the Javascript code. They are implemented using
the unittest python module and QUnit respectively. The central piece to executing the tests is the runtests.py
script. This is usually run through the tox build tool. The tool can be executed using different python

https://docs.python.org/3/library/unittest.html#module-unittest
https://qunitjs.com/
https://tox.readthedocs.io/en/latest/

6.8. EVOLUTION PERSPECTIVE 117

versions, which assures backwards capability of the test suite. This prevents technical debt since it decouples
the runtime from the tests themselves.

Since Django is a full stack web framework, the execution of the test suites depends on the database
management system that is used in the stack. Django supports Oracle, PostgreSQL, MySQL and SQLite by
default. Upon invoking tox, a setting file can be passed as an argument, that specifies which DBMS to use
and how it should be set up. The test suite comes with a setting file for SQLite as the default system, since it
is usually part of the Python installation. This also prevents technical debt since it makes the data layer of
the stack completely interchangeable.

6.7.2.2 Test coverage

The Django development team has done an admirable job and the test suite reaches a 79% line coverage and
an 77% branch coverage when run with the standard settings. This is achieved mainly through the strict
guidelines, that all pull request have to adhere to which enforce the extension or adaption of the test suite,
for any change that is made to the code.

When looking at the roughly 20% of the code that is not covered by the tests, they can quickly be identified
as modules that work with another database management system, for example PostgreSQL. If the test suite
is run using the PostgreSQL settings, it reaches 81 % line coverage and 79% branch coverage. Again the
uncovered modules are the ones depending on a different DBMS.

When calculating the test coverage over all possible database backends, the test suite reaches a 97% line
coverage and a 95 % branch coverage.

A detailed inspection shows that the few lines and branches that are not covered by the tests fall into three
categories: throw exception statements, default return value statements (such as empty string) and error log
statements. What these all have in common is that they do not test the happy path of program execution.
Extending the testing guidelines to enforce the coverage of error branches in the program execution would
help to get rid of the little technical test debt the project still has.

6.7.3 Conclusion

Based on our analysis we can state that Django has very little technical debt. Given the size and complexity
of the framework, this is very impressive. If the code quality standards keep being enforced so rigorously,
the development of Django should not run into any future problems because of technical debt.

6.8 Evolution Perspective

This section analyses the evolution and history of Django. The evolution perspective focuses on how the
software evolved throughout the years and how it dealt with changes and problems. According to Rozanski
and Woods, a software system should be flexible enough to deal with all possible types of changes, that it
faces during its lifetime. We identify and discuss major changes to the Django project over the years and
analyze their causes and consequences.

118 CHAPTER 6. DJANGO

6.8.1 History

The Django project was started in the autumn of 2003 by Adrian Holovaty and Simon Willis. They both
worked for the Lawrence Journal-World newspaper and initially tried to build a content management system
in Python to publish news articles. They discovered how easy and fast it was to create web applications with
python and therefore expanded their vision for the project to build a full stack web framework. They worked
on it in private for 2 full years and as there is now public record of that time, it is impossible to discuss the
evolution of the project in that stage.

They released the first public version of Django (0.9) on 16 November 2005 under the BSD license. Even
though the developers clearly stated that it was still a work in progress and discouraged its use in commercial
systems, the project already had an astounding level of technical maturity. It had a test suite with moderate
coverage, comprehensive documentation including tutorials and multiple communication channels for the
community to follow and contribute to the project. Furthermore it came with its own lightweight webserver
and supported multiple popular database management systems. That Django never had to go through a
major rewrite throughout its live time can be partially attributed to the fact that its evolution started from a
very solid base.

The project quickly attracted a lot of interest from web developers who were tired of the complex and heavy
weight LAMP stack that was prevalent at the time and a very active community started to grow around the
project. This community has been one of the driving forces behind the evolution of Django and helped to
improve and expand the framework with every release.

6.8.2 Aspects of evolution

6.8.2.1 Release cycle

At the start of the project, releases were not planned based on regular time frames. While they did
communicate release dates to the community, these were often postponed and they followed more of a “it’s
done when it’s done” philosophy. They also had a bus factor of 1 at this point, as only one core member
was responsible for publishing the releases. As the team gathered experience over the years, the delays
became fewer although the time between major releases was usually between 6 and 12 months. In 2015
they conducted a survey amongst contributors and release a roadmap based upon its results, where they
vowed to release a major version every 8 months and a long-term support version every 2 years. Their minor
releases however do not follow any policy or roadmap. Minor releases have always been rolled out when
needed, usually to fix a number of serious enough bugs or to patch security vulnerabilities. This has been an
important tool to deal with sudden changes through the evolution of Django.

6.8.2.2 Security issues

Since projects built with Django usually get exposed on the internet, security issues have been the most
serious threats to Django’s evolution. The way of patching these vulnerabilities is strictly handled internally,
even though Django leans heavily on its open source community for normal bugfixes. Security has always
been treated as a first-class feature by the Django team and they reliably fix any issue in a short amount of
time and roll out a minor release as fast as possible. Thanks to this policy, Django never had to deal with a
major security scandal in its evolution.

6.8. EVOLUTION PERSPECTIVE 119

Figure 6.6: Django timeline

120 CHAPTER 6. DJANGO

6.8.2.3 Refactoring

The database API of the initial release (0.9) was criticized by the community for begin hard to understand
and containing to much ‘magic’ code. This prompted the first refactoring of a module in Django’s evolution.
Having an easy to understand codebase has been part of Django’s design philosophy from the start and
throughout its lifetime various modules have been subject to refactoring as part of major releases.

6.8.2.4 Deprecation management

Backwards-compatibility is of major concern to the Django developers and their policy since the first stable
release 1.0 has been to avoid introducing any changes that would make a migration of project to a newer
Django version difficult. A notable exception to this are changes needed to patch security vulnerabilities.
However as the project evolved and matured, the need for certain features and mechanics to change and
modernize arose. The developers therefore came up with a two phase deprecation process: features can
become deprecated in a major release and will be removed in the following major release. Minor releases do
not have any impact on this process. This gives the community enough time to change parts of their project
that uses deprecated features and assures that the Django code base doesn’t get cluttered with functionality
nobody uses anymore.

6.8.2.5 Dependencies

The Django team is very aware of changes in its ecosystem and tries to keep up with them by incorporating
updates in their major releases. A showcase for this is its strongest dependency on Python, the programming
language it is implemented in. In the release 1.2, they updated the required Python version for the first time
from 2.3 to 2.4. They have kept up with Python’s development, as well as other dependencies such as the
various database management system Django supports, throughout the framework’s evolution, as the current
2.2 release requires at least python 3.5.

6.8.3 Evolution conclusion

To summarize, the evolution of Django has been a well-managed process, guided by smart decision of the
core developer team and supported by its active community.

6.9 Conclusion

Django is a highly maintained project, with a big community that helps the project growing by suggesting
possible features, reporting bugs and also contributing to the code. Thus, the repository has daily commits,
code reviews and merged pull requests.

Since the project started in 2003, we have found the architecture to be very mature. Given the size of the
codebase, we have found very few bugs and code smells, showing that the code maintenance is performed
thoroughly. Moreover, we have found that the high quality of the code is a consequence of an established set
of code reviewing guidelines, which is always respected by the core developers.

Chapter 7

Flair

7.1 Table of contents

• Introduction
• Stakeholders
• Context View
• Development View
• Technical Debt
• Functional View
• Performance and scalability perspective

121

122 CHAPTER 7. FLAIR

• Conclusion
• Appendix
• References

7.2 Introduction

Flair is a state-of-the-art open source natural language processing framework developed by Zalando Research.
Zalando Research is part of the fashion platform Zalando that aims to scale technology in fashion with the
power of experimentation in theory and in practice. Flair released in July 2018 and is a novel approach
where natural language modeling is leveraged to learn powerful, contextualized representations of human
language from large corpora. Such representations possess a multitude of semantic and syntactic information
that can be used to directly improve downstream NLP tasks.

The standout features of this powerful NLP library lies in the usage of Named Entity Recognition (NER),
part-of-speech (PoS) tagging classification and sense disambiguation. It boasts support for a variety of
languages and continues to grow with the help of many contributors. It consists of taggers that are ‘one
model, many languages’, that is, a single model can predict the PoS or NER tags for given input text in
various languages. Flair also provides a text embedding library with simple interfaces that allow for usage
and combination of different word and document embeddings including the proposed Flair embeddings,
BERT and ELMo embeddings. It is built directly on PyTorch which allows for ease of use in training and
experimenting with models.

7.3 Stakeholders

Stakeholders in a software system refers to the individual, team or organisation that have interest in said
system being realized. Each of these stakeholders have their vested interests and needs from the system. A
myriad of stakeholders are involved in activites such as building, testing, debugging, etc. It is imperative to
identify individuals or groups that are likely to affect or be affected by a proposed action and sorting them
according to their interactions. Stakeholder analysis is done so as to identify and prioritize the role of the
stakeholders.

We use the description of stakeholders obtained from Rozanski and Woods 1 to classify stakeholders. These
stakeholders will be mentioned as Main Stakeholders. Stakeholders not part of the Rozanski and Woods
classification, are described as Other Stakeholders.

7.3.1 Main stakeholders

1Rozanski, N. & Woods, E. (2011). Software Systems Architecture: Working with Stakeholders Using Viewpoints and Perspectives.
Addison-Wesley.

https://github.com/zalandoresearch/flair/
https://research.zalando.com/
https://zalando.com

7.3. STAKEHOLDERS 123

Type Description

Acquirers In Flair, control is orchestrated by
Zalando which works on several
real world problems. The
researchers work on problems
with the academic community,
synergising with company
objectives. Achievements of Flair
will allow Zalando to properly
utilize their resources.

Assessors The conformance of Flair to
research standards is regulated by
Zalando. The quality assurance is
divided within contributors at the
GitHub repository. Alan Akbik,
who wrote Contextal String
Embeddings for Sequence
Labeling with Duncan Blythe and
Roland Vollgraf, mainly oversees
the commits along with Dr. Kashif
Rasul and Tanja Bergmann.

Communicators Communicators act as conveyers
of system specifications. To
follow updates of Flair, watching
the repository on GitHub is one
way, followed by updates on their
website. Akbik, Bergmann and
Rasul are the communicators,
which allows them to understand
insights provided by other
contributors.

Developers Initial attribution goes to the
research team for their work on
the paper. The other contributions
come from developers and
researchers. This allows the
original developers to gauge the
performance of the framework and
identify areas of potential growth.
Akbik has the most commits with
445, followed by Bergmann with
276, and Rasul with 31. GitHub
users such as Stefan Schweter are
active during development. There
are 36 contributors.

https://github.com/alankabik
http://alanakbik.github.io/papers/coling2018.pdf
http://alanakbik.github.io/papers/coling2018.pdf
http://alanakbik.github.io/papers/coling2018.pdf
https://github.com/kashif
https://github.com/kashif
https://github.com/tabergma
https://github.com/stefan-it

124 CHAPTER 7. FLAIR

Type Description

Maintainers Bug fixes and maintenance are
handled by both the developers
and GitHub contributors. The
maintainers are Akbik and
Bergmann. They maintain the
development of the library and
check for functionality and
version control.

Production Engineers Potential Production Engineers,
would want to manage releases
and run tests on builds. At the
moment, the task is relegated to
staff developers. The focus should
also be on ensuring that the library
performs efficiently. The
deployment of Flair is the
responsibility of users.

Suppliers The infrastructure used is that
from the user’s side and therefore
the users in a way are also
suppliers of hardware in addition
to Zalando. GitHub is also a
supplier as it provides a common
platform for contributors to
develop. Google Colab provides
alternatives for hardware
constraints.

Support Staff The Zalando Research team acts
as support staff. Per Ploug acts as
an intermediary between the
external contributors and Flair
developers. This also includes
Henning Jacobs, the Head of
Developer Productivity at Zalando
SE. Her team uses various tools to
measure productivity of the
developers.

https://github.com/perploug
https://github.com/hjacobs

7.3. STAKEHOLDERS 125

Type Description

System Administrators Since the library is used by users,
they become system
administrators themselves. This is
also overseen by the Zalando
team. System administrators are
given the role of identifying issues
with data associated with labeling
and embeddings, performance
problems and deviations from the
desired non-functional
performance requirements.

Testers Testers in Flair are the core
developers and other members of
the research team. This includes
Akbik, Rasul, Bergmann, Nikolay
Jetchev and external testers
include GitHub users such as
Schweter, David Batista, and
Nilabhra Chowdhury.

Users The functionality of the system is
used by students, researchers and
companies. The scope of the
project is understood mainly by
people already well versed in NLP.
Flair is already part of several
in-production systems at Zalando,
as machine learning has become a
natural part of their engineering
toolbox.

Table 2.1: Main stakeholders of Flair

7.3.2 Other stakeholders

Researchers and Scientists: They use the system to research and present findings. The use of embeddings
and labelling in tagging are of vital interest.

Competitors: The most widely known library is NLTK which supports tasks like classification, tokenization,
stemming and semantic reasoning. It is difficult to use and considerably slow. Gensim is a Python library
that specializes in identifying semantic similarities between two documents through vector space modeling.

Translators: At the moment, the NLP tasks can be performed on languages such as English, Dutch, Spanish,
German, Polish and a few others. Other languages are not supported yet and Flair invites developers to
contribute to the corpora and the embeddings list in order to support more languages

https://github.com/nikjetchev
https://github.com/nikjetchev
https://github.com/davidsbatista
https://github.com/Nilabhra
https://www.nltk.org/
https://github.com/RaRe-Technologies/gensim

126 CHAPTER 7. FLAIR

Figure 7.1: Flair’s Stakeholders

Enthusiasts: There are several students and developers who are interested in performing NLP tasks and
would therefore find contributing to Flair an exciting way to broaden their horizons.

Bloggers/Social Media: They are unambigous and provide reliable sources of information for new devel-
opers to start contributing. They also help bring the project into limelight. This article is an example of a
website providing a tutorial and this article is an example of a blogger sharing their insights.

Sponsors: Even though the library is an open source, it originated from the Research Team at Zalando.
Setting up of architecture and funding for research is provided by Zalando. The results of the research are
essential for Zalando to further its business operations.

Integrators: Integrators are the architects and core developers of Flair who are responsible for maintaining
code standard and consistency of Flair. Developers like Akbik and Bergmann are the main integrators here.
To keep the framework stable, they merge Pull Requests (PR) which they successfully align with their
versions of sources and languages. When a new module is added, they check if the change is needed and
also verify documentation changes. This procedure helps maintain the quality of the framework, keeping
it open source as well. To discuss the challenges of the integrators, one important aspect noticed is that
sometimes, a major part of the PR works on test set whereas a small part does not give expected test result.
In these cases, the PR is not directly closed. It is kept as open, the integrators comment on the errors they
face, and suggest what changes can be created to overcome that. Sometimes, the same contributor makes the
required changes or other contributors have a chance to solve the issue as well. After reviewing the code and
checking for errors, the PR that meet their requirements are merged.

https://jaxenter.com/zalando-flair-nlp-154250.html
https://www.i-programmer.info/news/105-artificial-intelligence/12441-zalando-flair-nlp-library-updated.html

7.3. STAKEHOLDERS 127

7.3.3 Stakeholder analysis: Power vs Interest Grid

Based on Mendelow’s Power vs Interest Grid 2, the groups of stakeholders necessary to be managed closely
are classified.

Figure 7.2: Power-Interest grid

The Power Interest Grid for Flair is used to classify the groups of stakeholders necessary to be managed.
Most of the stakeholders mentioned earlier are included in the Grid. While users have a high interest in Flair,
suppliers do not. Suppliers have more power and should they decide to stop supplying, then Zalando will
have to adapt their products accordingly. The contributors, maintainers and developers need to be managed

2Mendelow, A. L. (1981, December). Environmental Scanning-The Impact of the Stakeholder Concept. In ICIS (p. 20).

128 CHAPTER 7. FLAIR

closely because of their inherent interest in the product and the power they hold in influencing design and
development.

7.3.4 Relevant people to contact

By analyzing the online community around Flair we found that the following people are the most involved
in the project. The relevant people and persons of interests were identified and can be found in Appendix B.

7.4 Context View

Context view describes a software’s dependencies, integrations, scope, responsibilities and interface with
external entities. In Flair’s context, we will show a context view diagram, discuss the system scope and
analyze the interfaces with all its external entities.

Figure 7.3: Context View diagram

https://gitlab.ewi.tudelft.nl/in4315/2018-2019/TI3125TU-swa-12-flair/swa-12-flair/blob/master/report.md#b-contact-persons

7.5. DEVELOPMENT VIEW 129

7.4.1 System scope

Flair is a research project of Zalando Research, in the area of NLP. Flair is a cutting edge NLP framework,
advancing over all the other existing methodologies. The scope of Flair is well defined and its current
version includes the following capabilities 3.

• Built upon Pytorch 0.4+ which is compatible on all operating systems: Windows, MacOS and other
Unix-based OSs, and that helps in training your own models.

• Can be easily installed using a pip command.
• It is used to read, understand and learn the contextualized representation of the human language.
• It helps in understanding and classifying the email responses, website comments or customer re-

sponses.
• Flair can be trained to recognize fashion concepts such as season, brand, and color.
• Supports state-of-the-art Natural Language Processing models such as name entity recognition (NER),

part-of-speech tagging (PoS), sense of disambiguation and classification.
• Supports 36 word embeddings for 31 different languages, character embeddings, Byte Pair embeddings

(275 languages supported) and stacked embeddings.
• There were 7 different releases till now and the current version is Version 0.4.1.

7.4.2 External entities and interfaces

• Flair is licensed under the following MIT License (MIT) Copyright 2018 Zalando SE.
• It is written in Python 3.6, which provides the framework and programming language.
• It is developed by core committers, developers, community contributors and product managers.
• Users are developers and the organizations that use Flair. Flair is used by Poteha Labs in their research

work, by student researchers, and at several in production systems at Zalando.
• Communication channel is used for communciation between developers and users. Flair uses GitHub

mainly as its communication channel for interaction with the team. It’s also being used for version
control. Github is also used for logging issues in the system and for keeping track of them.

• Flair uses Travis CI as a build tool for building its code and thereafter integrating the build. It also
uses Travis CI as a testing platform.

• It has interfaces that allows to combine different word and document embeddings, including BERT
embeddings, Flair embeddings and ELMo embeddings.

• Flair hosts their bug bounty program privately on HackerOne.

7.5 Development View

Through the theory of development view, we address several aspects of the system development process.
Due to the associated complexity of the framework being built, the expertise of the core developers and
technologies used are discussed. In the following sections Module Organization, Common Design models
and Codeline models are discussed.

The diagram describes a general language model used by Flair. The structure varies based on the kind of
embeddings. We start from the bottom, where a sentence is put in as a character sequence into a pre-trained

3Flair. (2019, February). zalandoresearch/flair: A very simple framework for state-of-the-art Natural Language Processing (NLP).

https://github.com/zalandoresearch/flair#requirements-and-installation
https://tech.zalando.com
https://potehalabs.com/en/
https://github.com/zalandoresearch/flair/blob/master/SECURITY.md
https://www.hackerone.com/
https://github.com/zalandoresearch/flair

130 CHAPTER 7. FLAIR

Figure 7.4: Architecture of language model esed in Flair

7.5. DEVELOPMENT VIEW 131

bidirectional Character Language Model (CLM). From this CLM, they retrieve for each word a contextual
embedding by extracting the first and last character cell states. This word embedding is then passed into a
sequence labeler, such as a vanilla BiLSTM-CRF, achieving robust state-of-the-art results on downstream
tasks.

7.5.1 Module structure and organization

In this section, we detail Flair’s module organization, as well as important dependencies between modules,
in order to obtain a good understanding of Flair’s code structure, based on 4. The inter dependency of the
modules are shown in Figure 4.2.

The projects is run directly on a single repository. It is seen that there is high cohesion and low coupling.
The high cohesion stems from the model and test module and the low coupling can be seen from the
division of several modules for only certain associated functionalities.

• The Initialize package is used to check for compatibility and versions of OS, Pytorch, Cuda and
others. The Data Setup package is used to setup up data fetchers, model initializers and logging
tools.

• The Preprocessing module handles text, word and document embeddings-based preprocessing ,
including tagging, and labeling.

• The Cache module deals with utility history for training purposes. It helps encode embeddings into
available embeddings list.

• These embeddings can be selected along with the associated Language Model in order to determine
the classification algorithm.

• Parameter Optimization helps select parameters such as document length, batch size, or weights.
The results are tested by visualizing plots and training curves.

7.5.2 Common design model

This section covers Flair’s Common Design Model. Commonality across different versions of Flair is done
by defining a set of strict design constraints.

7.5.2.1 Common processing

In Flair there is common processing among different elements in order to simplify the integration of code
units and scripts. We discuss the common processing elements here.

• Initialization of Flair follows the usage of a particular task such as embedding. Here, NER task is
shown. Every embeddings, labeling and language model task has predefined ways of initialization
and implementation as given in the tutorials.

from flair.data import Sentence
from flair.models import SequenceTagger

4Rozanski, N. & Woods, E. (2011). Software Systems Architecture: Working with Stakeholders Using Viewpoints and Perspectives.
Addison-Wesley.

https://github.com/zalandoresearch/flair/tree/master/resources/docs

132 CHAPTER 7. FLAIR

Figure 7.5: Module Organization of Flair

7.5. DEVELOPMENT VIEW 133

make a sentence
sentence = Sentence('I love Berlin .')
load the NER tagger
tagger = SequenceTagger.load('ner')
run NER over sentence
tagger.predict(sentence)

• Use of third party libraries exists in the framework of Flair. Flair makes use of third party libraries
whenever possible, which we consider to be a standard design approach. We see that in the embeddings,
pytorch-pretrained BERT embeddings are used, and certain modules from scikit-learn, gensim and
NLTK are also included.

• Through Instrumentation, we can measure the performance of a particular metric. The console log
and statistics are sent to the developer when tests are run on the integration build using Travis CI.

• Owing to the large processing load that Flair tasks can put the user system in, it is also recommended
for the contributors to make use of Google Colab.

• Flair has a clear standardized design methodology and testing procedure when it comes to contributions
and changes.

• Security issues are acknowledged by Zalando and they try to be responsible by patching quickly.
They host a bug bounty program on HackerOne. Vulnerabilities are also posted using this form.

• Database Interaction is streamlined by ensuring that newly added corpus are first tested. Once they
pass the tests, the datasets are added to the available corpora and the resultant embeddings trained are
added.

7.5.2.2 Standardization of design

The Flair repository has the Contributor Covenant Code of Conduct and Contribution guidelines. There is
provision of tutorials that provides guidelines for setting up the libraries and embeddings, using pre-trained
models, adding your own corpus to train your own models and to train embeddings.

• The tutorials provide details on using libraries and embeddings while creating new embeddings and
models. Any steps taken towards issue creation, contributing to issues, making use of pull requests
and merging them must be done in concordance with the Code of Conduct and these contributions
should fulfill the Contribution and Commit Guidelines.

• Having a global reach allows developers to train and test the language models on different languages
other than those already supported by Flair. To maintain a supportive, active community the conduct of
conduct states: > In the interest of fostering an open and welcoming environment, we as contributors
and maintainers pledge to making participation in our project and our community a harassment-
free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and
expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and
orientation.

• The coding style employed in Flair requires the developers to follow the Style Guide for Python
to maintain conformity. Since the library is still under development, it is necessary to request the
developers to set or ask developers to employ any other aspects of coding styles they want to.

https://colab.research.google.com/notebooks/welcome.ipynb
https://github.com/zalandoresearch/flair/blob/master/CONTRIBUTING.md
https://hackerone.com/zalando_be
https://corporate.zalando.com/en/services-and-contact#security-form
https://www.contributor-covenant.org/
https://github.com/zalandoresearch/flair/blob/master/resources/docs/TUTORIAL_1_BASICS.md
https://github.com/zalandoresearch/flair/blob/master/resources/docs/TUTORIAL_3_WORD_EMBEDDING.md
https://github.com/zalandoresearch/flair/blob/master/resources/docs/TUTORIAL_2_TAGGING.md
https://github.com/zalandoresearch/flair/blob/master/resources/docs/TUTORIAL_2_TAGGING.md
https://github.com/zalandoresearch/flair/blob/master/resources/docs/TUTORIAL_6_CORPUS.md
https://github.com/zalandoresearch/flair/blob/master/resources/docs/TUTORIAL_7_TRAINING_A_MODEL.md
https://github.com/zalandoresearch/flair/blob/master/resources/docs/TUTORIAL_9_TRAINING_LM_EMBEDDINGS.md
https://github.com/zalandoresearch/flair/blob/master/CODE_OF_CONDUCT.md
https://github.com/zalandoresearch/flair/blob/master/CONTRIBUTING.md
https://github.com/zalandoresearch/flair/blob/master/CODE_OF_CONDUCT.md
https://github.com/zalandoresearch/flair/blob/master/CODE_OF_CONDUCT.md
https://www.python.org/dev/peps/pep-0008/

134 CHAPTER 7. FLAIR

• Flair is built using Python 3.6+ as per the requirements. It is mentioned that the expectation from
developers is to follow the standards of coding style as defined for each module and library used. The
regex guide give tips on regular expressions. The Gensim guide provides tips for using Gensim.

• Logging is essential for developers during development to ensure that the system worked as intended
and can be understood by another developer.

• Design Patterns is used sparingly. The aim of Flair is to focus on performance. As a result, Flair
avoids design patterns which in turn acts as an obstacle towards the readability of the code. Different
pieces of code working on the same or similar task can look different and would mainly require
explanations or comments from the contributors rather than what is mandated by the developers. It
makes it more difficult for someone to contribute to the project because the developers might want to
see particular code patterns, but these patterns are not communicated to contributors.

7.5.2.3 Standardization of Testing

The standards of testing in Flair are mainly dependent upon integration checks and verification of pull
requests that developers make. In this section, the tools used for testing purposes are discussed.

• There are tests specified for a variety of NLP tasks that need to be accounted for. The design pattern
followed for testing involves individual task based tests and then integration and build tests. The
task based test specifications detail the tests that the partiuclar tasks must pass. Furthermore, the
integration to complete the pull requests are tested with Travis CI and Zappr.

• For autoamted testing, Flair uses Travis CI (continuous integration) and it is ran on all pull requests
and all commits to a branch to verify that it builds and it passes testing. Regardless of which type of
CI run for testing, all CI jobs must pass before the pull request is merged by Flair maintainers.

• The process starts at the .travis.yml file in the root of Flair repository. It specifies all the steps for
building a test environment. The build lifecycle is made up of two steps, one is install which installs
any dependencies required and the other one is script which runs the actual tests. In script, multiple
script commands are specified. If one of the build commands returns a non-zero exit code, the Travis
CI build runs the subsequent commands as well, and accumulates the build result.

• Using Zappr developers check for patterns in pull requests. At least two approvals from other people
including collaborators are necessary conditions. The .zappr.yaml file contains other details on how to
determine which pull requests are valid based on conditions set.

7.5.2.4 Standard software components

• The dependencies on which Flair depends are standard components required for the funcitoning of
the Flair Model. This can be seen in the requirements page. These include gensim, pytorch and other
dependent software. All developers aiming to contribute must have these rquired base and dependency
software installed in compatible environments.

• Zappr is a GitHub integration built to enhance your project workflow. Built by open-source enthusiasts,
it’s aimed at helping developers to increase productivity and improve open-source project quality. It
does this primarily by removing bottlenecks around pull request approval and helping project owners
to halt “rogue” pull requests before they’re merged into the master branch.

https://github.com/zalandoresearch/flair/blob/master/requirements.txt
https://www.rexegg.com/regex-style.html
https://radimrehurek.com/gensim/apiref.html
https://github.com/zalandoresearch/flair/tree/master/tests
https://github.com/zalandoresearch/flair/blob/master/requirements.txt
https://github.com/zalando/zappr

7.5. DEVELOPMENT VIEW 135

7.5.3 Codeline models

• Source code structure: The complete directory organization of Flair can be seen in Figure 4.4.

• Build approach: Flair uses Pull Request Workflow. The straightforward approach makes it easily
understandable for contributors and provide them with naming conventions, files etc. Following a Pull
Request Workflow helps the developers make contributions via GitHub and allows other contributors
to read code changes and make remarks when there are errors or issues in the requested PR. Some
PRs have discussion threads, giving more insights about how testing is done and what parameters are
checked before a successful merge. The merge is complete only after a final check is carried out in
Zappr.

• Release process: The release process does not contain any fixed timing, unlike a weekly or monthly
release. As of now, no such fixed release process has been mandated by the core developers. However,
the last few versions have been released once a month. In fact, Flair now has had a total of 7 releases.
The developers are working towards a stable release and therefore are working on the master branch.
Bug fixes made and potential speed improvements achieved are highlighted.

• Configuration management: Flair is managed directly on GitHub and new versions on Flair are
released through GitHub releases. The reliability on GitHub is due to its provision of a competent
version control system to maintain the source code. This supports repetition via commits and
branches. The configuration structures used are repositories, branches, tags, commits, pull requests,
issue trackers and milestones.

• Contact with the developers: The initial point of contact starts from Issues. The developer or
contributor can discuss and deal with build-specific issues like bugs, errors, crashes and compilation
errors. Most of the issues are closed within a week but there are certain issues that take more time.

• Pull requests: Pull Requests, allow for contribution and addition of new features, fixes and bug
corrections, and optimization of current features. First time contributors are encouraged to look into
issues already posted by others in need of help. The official guidelines mention details for contributing
with pull requests, checking for issues and explain the Git Commit process. Every pull request is
reviewed by Akbik, Schweter and Bergmann.

• Travis CI : Flair uses Travis CI to manage continuous integrations to build and test Flair on the
fly. When new commits are pushed to the repository, the specifications and commands in the
.travis.yml file will be run and then project is built. The results of the tests are sent to the
developers and maintainers including job logs for specified pull request.

• Zappr: Flair makes use of Zappr , a GitHub integraiton developed by Zalando. Zappr makes it easier
to manage project workfows. Flair makes use of Zappr to restore and improve code review. Using
Zappr, the developers are able to enable/disable pull request approval checks per repository, with
the simple flip of a toggle, configure what counts an approval and what doesn’t and can provide
a configurations file that overrides Github’s default settings and endows users with PR approval
authorization.

https://gist.github.com/Chaser324/ce0505fbed06b947d962
https://libraries.io/pypi/flair
https://github.com/zalandoresearch/flair/issues
https://github.com/zalandoresearch/flair/issues
https://github.com/zalandoresearch/flair/pulls
https://github.com/zalandoresearch/flair/labels/help%20wanted
https://github.com/zalandoresearch/flair/blob/master/CONTRIBUTING.md
https://github.com/alanakbik
https://github.com/stefan-it
https://github.com/tabergma
https://github.com/zalandoresearch/flair/blob/master/.travis.yml
https://github.com/zalando/zappr

136 CHAPTER 7. FLAIR

Figure 7.6: Directory organization of Flair and simplified version of the directory strcuture with added
explanation

7.6. TECHNICAL DEBT 137

7.6 Technical Debt

Technical debt is a metaphor that describes the immature artifact in the process of software development,
that causes an additional rework because of choosing an easy solution over a better approach that would
take a longer time to implement. Main reasons for technical debt are leaving the tasks undone, copying and
pasting a piece of code, negligence to lessen the code complexity, incomplete unit testing, and lack of proper
documentation. In this section, we will discuss the technical debt and its handling by the community. For
this purpose, we used two tools, Pylint and SonarQube to analyze the code quality of Flair.

7.6.1 Pylint

Pylint is a bug and quality checker for Python which follows the style recommended by Python style guide
PEP 8. Pylint gave the package an overall rating of 7.08 and detected 1168 violations. Although, we note
that some of the violations are not major. For example, 418 violations due to lines that are too long, i.e. they
have more than 100 characters and 124 violations are caused by invalid variable or argument names that do
not conform to the recommended naming style.

As shown in Figure 5.1, we see the second most common violation is missing docstrings. It is necessary
to put docstrings on functions, methods, modules, and classes in order to preserve maintainability of the
software, as docstrings would allow other contributors to better understand what the specific part of the code
does.

Pylint also found one important violation, in that the module embeddings.py contain 1939 lines, which
is almost double the recommended 1000 lines. This also affects maintainability of the code as a very big
module is harder to maintain and might end up causing unnecessary dependencies when extended.

Figure 7.7: Top 15 violations detected by pylint

https://www.pylint.org/

138 CHAPTER 7. FLAIR

7.6.2 SonarQube

SonarQube is a framework that detect bugs, code smells, duplicate code, and security vulnerabilities of a
program in many languages, including Python.

Figure 7.8: Technical debt of each module

7.6.2.1 Bugs

SonarQube detected 18 bugs in Flair codebase. All the 18 bugs are major issues, and hence the code
quality has been graded as C. All the bugs are related to the useless assignment to variables. They have
no such impact on program functioning but useless variables consume the CPU memory which reduces
the performance while training heavy data in Flair. These can be fixed by either removing the redundant
variable or by assigning it some different value that was intended for the assignment instead.

Figure 7.9: Detected bugs

https://www.sonarqube.org/

7.6. TECHNICAL DEBT 139

7.6.2.2 Vulnerabilities

Vulnerability detected by SonarQube is 0%, that means code quality is very good from security point of
view. The code quality has been graded as A.

Figure 7.10: Code quality

7.6.2.3 Code smells

Code smells are one of the major contributors to technical debts, and indicates the weakness of the code,
and may cause the increased risk of failures or bugs. They are not actually bugs and do not cause any
hindrance in program functioning. Total 61 Code Smells detected by SonarQube, most of them are related
to Cognitive complexity, that asks for changing the logic of the program because of inclusion of nested
loops or conditional statements. As Flair is an NLP library and needs to train large amount of data. So it
takes a lot of time to train. These code smells therefore makes the program slower as well as increases the
chance of failure or bugs in future. So, fixing these will bolster the performance of Flair.

7.6.2.4 Duplications

One of the worst coding practices is duplication. Duplicating a block of code not only replicates the potential
issues but also breaches the coding standards. SonarQube has detected 668 duplicated lines in 5 duplicated
files. An overall of 7.2% duplication is detected in Flair codebase. The duplications are due to similar

140 CHAPTER 7. FLAIR

Figure 7.11: Code smells

functions performed for counting the embedding length of different embedding classes. This could be
removed by implementing a base function in the abstract base class that could be used by the different child
classes.

Figure 7.12: Line duplications

7.6.3 Dependencies on developers

It is noticeable that the product development is highly dependent on two of the core developers, Akbik and
Bergmann. A huge difference between the contributions of these two and the other developers of the product
can be seen in the graph below. This has created a high risk of project collapse in case one or both core
developers leave the team. Ideally, there must not be too much dependency on a single developer, instead
majority of the developer community must be equally contributing.

7.6.4 TODO and FIXME comments

TODO or FIXME are the special type of comments that can be added inside the line or block comments for
any future references of possible changes, areas of improvements, and optimizations. It is a good indication
of technical debt.

We found 2 TODO comments in 2 files in Flair’s codebase. This is a very low number for TODO comments.
This can be seen in different ways. Firslty, they might be fixing TODO tasks on time and not piling them up
in code, which actually is an ideal coding practice. Secondly, they might have removed the comments and
have logged an issue instead in GitHub, which actually is a better practice rather than keeping it inside code
and creating techincal debt.

The small number of TODO comments is actually an indication of good coding practice, but still these
remaining ones needs to be fixed.

7.6. TECHNICAL DEBT 141

Figure 7.13: Main developers

7.6.5 Testing debt

A part of technical debt is to measure how thoroughly the software is tested. This is also called the testing
debt of the system. Even though a program may be tested regularly after a change is made in the code, it is
important that all modules of the program are covered by the tests. In other words, we need to ensure that
the code coverage is high.

7.6.5.1 Testing procedure

Flair uses Travis CI to test their product. Each commit to the git repository will trigger a build on Travis CI
where a virtual environment on Travis CI’s server will be set up. All the required packages will then be
installed in this virtual environment, then the test modules under the tests/ directory will be run in this
virtual environment. The code must pass all the tests. There are 12 tests in total.

7.6.5.2 Code coverage

Pytest is a framework that can be used to both test and report the code coverage of a Python program. We
used this tool to find Flair’s code coverage, then we sent the results to coveralls where the well-tested and
less-tested modules are shown in detail.

The result tells us that only 1912 of 4295 relevant lines (44.52%) have been hit at least once by one of the
test cases. In Figure 5.8, we see that visual is the most well-tested module while trainers is the least
well-tested one.

Although the code coverage seems rather low in most of the files and modules, a closer look into the lines
missed revealed that many of them are contained within an if block. This means that the if conditions are
not satisfied during the tests. Considering that Flair is a language processing framework that needs to have

https://travis-ci.org/zalandoresearch/flair
http://pytest.org
http://coveralls.io

142 CHAPTER 7. FLAIR

different processes for different languages and the fact that the tests only use resources in English, it makes
total sense that the code coverage would be rather low.

Figure 7.14: Code coverage of each module

7.6.5.3 Actions to improve testing

As discussed earlier that many conditions are not hit due to the separated conditions for each language, the
testing could then be improved by augmenting the test resources. Although, we also note that this could
drastically improve the testing time.

7.6.6 Discussions about technical debt

There are no discussions about the technical debt between the developers, which is quite shocking. It seems
like they are not using any code quality tools. Regardless, the code quality is of the highest level, which
actually is a good thing. However, its highly recommended to use one so as to avoid having any future
technical debts.

7.6.7 Payment of technical debt

We tried to pay the technical debt by improving the code quality from Grade C to Grade A. This is done by
fixing all the 18 major bugs that are detected in SonarQube, to now have 0 bugs in the system. Same source
code style is used as in project and its ensured that no new bugs are introduced because of this fix. A pull
request (#616) has been created in the master branch of the project Flair, which is still pending and needs to
be approved by the owner and then merged. Also, the code build was verified and passed in Travis CI.

https://github.com/zalandoresearch/flair/pull/616

7.6. TECHNICAL DEBT 143

Figure 7.15: Detected bugs after change

Figure 7.16: Pull request

144 CHAPTER 7. FLAIR

7.6.8 Evolution perspective

Development of Flair was started in the summers of 2018 by Zalando Research and is licensed under MIT 5.
It was made an open source Python project by Zalando SE in June, 2018 6. Its based on the research done
by Akbik et al. Akbik is the main developer since the start of the project and still is the head developer.

The first draft of the project Version 0.1.0 was released on Jul 13, 2018 7. Since then, 998 commits have
been done to the master and 7 different versions have been released, with Version 0.4.1 being the latest
8. Technical debt is paid in every release by timely fixing bugs. Also, code is being reorganized if needed,
which helps in reducing technical debt like duplications. Documentation is done for every new feature add
or for any updation. Different new features were added and improvements were done over the period of
time in different releases. Some of the key features of different releases are shown in Figure 5.12.

There are 93 issues still open, and 294 are closed 9. Most of the open issues are of question label, but
the bug count must be kept zero. Also, there are 6 pending pull requests, which must also be taken into
consideration.

Figure 7.17: Code frequency

5Flair. (2019, February). zalandoresearch/flair: A very simple framework for state-of-the-art Natural Language Processing (NLP).
6Flair. (2019, February). zalandoresearch/flair: A very simple framework for state-of-the-art Natural Language Processing (NLP).
7Flair. (2019, February). zalandoresearch/flair: A very simple framework for state-of-the-art Natural Language Processing (NLP).
8Flair. (2019, February). zalandoresearch/flair: A very simple framework for state-of-the-art Natural Language Processing (NLP).
9Flair. (2019, February). zalandoresearch/flair: A very simple framework for state-of-the-art Natural Language Processing (NLP).

https://github.com/zalandoresearch/flair
https://github.com/zalandoresearch/flair
https://github.com/zalandoresearch/flair
https://github.com/zalandoresearch/flair
https://github.com/zalandoresearch/flair

7.7. FUNCTIONAL VIEW 145

Figure 7.18: Flair’s releases

7.7 Functional View

Functional view mainly describes systems architectural elements. It explains about primary interactions
between the functional elements, their exposed interfaces and their responsibilities 10.

7.7.1 Functional capabilities

Functional capabilities define what the system is required to do and what it is not required to do 11. Flair has
many capabilities and some of the most vital ones are listed in the table below.

Modules Description

embeddings.BytePairEmbeddings Supports 275 languages. Very
useful for training small models.
This can also be used in
sequence tagging.

10Rozanski, N. & Woods, E. (2011). Software Systems Architecture: Working with Stakeholders Using Viewpoints and Perspectives.
Addison-Wesley.

11Rozanski, N. & Woods, E. (2011). Software Systems Architecture: Working with Stakeholders Using Viewpoints and Perspectives.
Addison-Wesley.

146 CHAPTER 7. FLAIR

Modules Description

embeddings.TransformerXLEmbeddings As proposed by Dai et al. [?], this
embeddings address the
limitation of fixed-length
contexts, as a notion of
recurrence is introduced by
reusing the representations from
the history.

embeddings.ELMoTransformerEmbeddings Uses a bidirectional recurrent
neural network to predict the
next word in a text.

embeddings.DocumentRNNEmbeddings This class allows to choose
which type of RNN to use.

embeddings.FlairEmbeddings Trained without any explicit
notion of words and model words
as sequences of characters. Same
word will have different
embeddings depending on its
contextual use.

embeddings.WordEmbeddings Supports pre-trained FastText
Embeddings for 30 languages:
English, German, Dutch, Italian,
French, Spanish, Swedish,
Danish, Norwegian, Czech,
Polish, Finnish, Bulgarian,
Portuguese, Slovenian,
Slovakian, Romanian, Serbian,
Croatian, Catalan, Russian,
Hindi, Arabic, Chinese, Japanese,
Korean, Hebrew, Turkish,
Persian, Indonesian.

data_fetcher.NLPTaskDataFetcher This can be used to load different
datasets using the
load_corpus() function.

trainers.ModelTrainer This is used to train a user’s own
language model embeddings. It
supports multi-dataset training
using a MultiCorpus object.

models.LanguageModel Container module that has an
encoder, a recurrent module, and
a decoder.

7.8. PERFORMANCE AND SCALABILITY PERSPECTIVE 147

Modules Description

models.TextClassifier The module takes word
embeddings, puts them into an
RNN to obtain a text
representation, and puts the text
representation in the end into a
linear layer to get the actual class
label.

models.SequenceTagger Contains several pre-trained
English and Multilingual models,
which include Named Entity
Recognition (NER) and
Part-of-Speech Tagging (POS).
The function load() can be
called with the appropriate string
to load a model.

Table 6.1: Some of Flair’s most vital modules

7.7.2 Functional structure model

Flair has three major functional elements: embeddings, model trainer, and train and file utitilies. Flair
uses its train and file utilities to read corpus objects with which a model can be trained. There are several
different embedding classes that Flair provides, but all of these embeddings can be classified into three types:
BERT, ELMo, and Flair embedding classes. The user can choose to perform a named entity recognition,
part-of-speech tagging, and sequence tagging using one of these embeddings.

7.8 Performance and scalability perspective

7.8.1 Performance

Task LanguageDataset Flair Previous best

Named Entity Recognition EnglishConll-03 93.18 92.22 (Peters et
al., 2018)

Named Entity Recognition EnglishOntonotes 89.3 86.28 (Chiu et
al., 2016)

Emerging Entity Detection EnglishWNUT-17 49.49 45.55 (Aguilar
et al., 2018)

Part-of-Speech tagging EnglishWSJ 97.85 97.64 (Choi,
2016)

Chunking EnglishConll-2000 96.72 96.36 (Peters et
al., 2017)

https://arxiv.org/pdf/1802.05365.pdf
https://arxiv.org/pdf/1802.05365.pdf
https://arxiv.org/pdf/1511.08308.pdf
https://arxiv.org/pdf/1511.08308.pdf
http://aclweb.org/anthology/N18-1127.pdf
http://aclweb.org/anthology/N18-1127.pdf
https://www.aclweb.org/anthology/N16-1031
https://www.aclweb.org/anthology/N16-1031
https://arxiv.org/pdf/1705.00108.pdf
https://arxiv.org/pdf/1705.00108.pdf

148 CHAPTER 7. FLAIR

Task LanguageDataset Flair Previous best

Named Entity Recognition GermanConll-03 88.27 78.76 (Lample
et al., 2016)

Named Entity Recognition GermanGermeval 84.65 79.08 (Hänig et
al, 2014)

Named Entity Recognition DutchConll-03 90.44 81.74 (Lample
et al., 2016)

Named Entity Recognition PolishPolEval-2018 86.6 (Borchmann et
al., 2018)

85.1
(PolDeepNer)

Table 7.1: Comparison with state-of-the art

As shown in Table 7.1, Flair outperforms the previous best in different range of NLP tasks like Chunking,
Named Entity Recognition, Part-of-Speech tagging. It supports best embedding configurations for each
task. The performance is measured over evaluation datasets, and the F1 score for each dataset is calculated
by averaging over five runs 12. In the latest release Version 0.4.1, there is a huge improvement in the
training speed compared to the previous versions of Flair (2x training speed for language models)13.

Flair achieved optimal results in text classification outperforming Facebook's FastText in accuracy &
Google’s AutoML Natural Language in training speed on Kaggle’s SMS Spam Detection Dataset
14. Flair model achieved an f1-score of 0.973 after 10 epochs while FastText achieved f1-score of 0.883 15.
It beats AutoML in terms of training speed and achieved slightly better accuracy than it 16.

7.8.2 Scalability

Scalabiity with regards to Flair involves handling larger corpus of text in a quick manner with appropriately
scaled usage of hardware. It is difficult to gauge the growth of Flair considering the increase in data set size.
Although, until now it has been able to handle vast sizes of corpora. The model has had many scalability
improvements over throughout its releases.

Scalability Issue Details

Language model optimizations Lowers default dropout rate and only send
mini-batches to GPU for better GPU memory
usage.

Data loading Implemented Pytorch capability to load in parallel
Dataset and DataLoader classes which cuts
training time in half.

Hardware requirements Usage of a centralizeed hardware resource is
proposed similar to Google Colab.

12https://gitlab.ewi.tudelft.nl/in4315/2018-2019/TI3125TU-swa-12-flair/swa-12-flair/blob/master/report.md#ref3
13https://gitlab.ewi.tudelft.nl/in4315/2018-2019/TI3125TU-swa-12-flair/swa-12-flair/blob/master/report.md#ref3
14Magajna, T. (2018). Text Classification with State of the Art NLP Library — Flair.
15Magajna, T. (2018). Text Classification with State of the Art NLP Library — Flair.
16Magajna, T. (2019). How to Beat Google’s AutoML - Hyperparameter Optimisation with Flair.

https://arxiv.org/abs/1603.01360
https://arxiv.org/abs/1603.01360
http://asv.informatik.uni-leipzig.de/publication/file/300/GermEval2014_ExB.pdf
http://asv.informatik.uni-leipzig.de/publication/file/300/GermEval2014_ExB.pdf
https://arxiv.org/abs/1603.01360
https://arxiv.org/abs/1603.01360
https://github.com/applicaai/poleval-2018
https://github.com/applicaai/poleval-2018
https://github.com/CLARIN-PL/PolDeepNer/
https://towardsdatascience.com/text-classification-with-state-of-the-art-nlp-library-flair-b541d7add21f
https://towardsdatascience.com/text-classification-with-state-of-the-art-nlp-library-flair-b541d7add21f
https://towardsdatascience.com/how-to-beat-automl-hyperparameter-optimisation-with-flair-3b2f5092d9f5

7.9. CONCLUSION 149

Scalability Issue Details

Implementation changes Faster inferencing by presorting sequences and
embeddings are cleared after processing each
batch, thereby saving a lot of RAM.

Optimizations Changes made to the hyper parameters and other
memory tweaks.

External dependencies Since the framework depends on CUDA for
training, changes made to their implementation
must be reflected in Flair. This included memory
and parameter tweaks.

Table 7.2: Scalability changes

From a technical standpoint, the data must no longer be loaded in big batches onto RAM directly, instead, it
must be asynchronously loaded to the disk. Other tasks such as regression must also be supported by the
framework and addition of such features is made easy. Multiple-tasks learning can be included along with
multi-GPU support with the changes to the new CUDA semantics. These features while make scaling of
Flair easier.

7.9 Conclusion

Flair provides an innovative framework for natural language processing. Within a short period of time,
Flair has grown fast and challenges existing NLP frameworks. This growth has been possible through
their specific code of conduct for code writing and analysis, constant code quality, and well structured
documentation. We have analyzed Flair through various perspectives and viewpoints to have an insight on
its internal workings. Its well-built architecture, integration between different modules though maintained
common processing, standardization of design and testing has helped Flair to provide a good performance.

7.10 Appendix

7.10.1 A. Pull requests analysis

The pull requests made through github are analysed using standard code of conduct. The code of conduct
includes naming conventions, way of codes, standard of code and versions of sources used. This strict follow
up of the conduct makes the original code and merged codes quite readable and easily understandable also.
Whenever new modules are added, emphasis is given in order to update the documentation as well. As
mentioned earlier, integrators check for code standard and versions of PR before the merge. On the other
hand, the opened issues that are solved by other contributors in separate PR are closed. This does lead to
less confusion about PRs. The closed PRs are sometimes those who are considered to be not at all matching
their base mark and also totally unstructured. Also, naming conventions sometimes become a major reason
for closed PRs.

150 CHAPTER 7. FLAIR

Figure 7.19: Flair’s functional structure model diagram

ID Pull Request Status Details

#399 Add new
ELMoTransformerEmbeddings class

merged In this pull request, the
contributor adds new
class named ‘ELMo-
TransformerEmbeddings’
for Parts of speech
tagging. In NLP, PoS
tagging is an important
step towards processing.
The new class gets
embeddings from a
transformer-based ELMo
model from another
contributor @brendan-ai2
which one uses for
training. The allennlp
library is used for PoS
tagging. Though the
version of allennlp used
was not yet updated in the
flair main system, so
testing was separately
done and this successful
testing outside the main
system with latest version
of allennlp suggested a
good merge. So, it is
merged but as
experimental.

https://github.com/zalandoresearch/flair/pull/399
https://github.com/brendan-ai2

7.10. APPENDIX 151

ID Pull Request Status Details

#523 GH-522: Transformer-XL
embeddings

merged This PR adds a new
embedding class for
Transformer-XL model.
Initially the tokens from a
sentence were returned
with tokens tag only bur
this also included
enumerated token tags.
Also, the F-score of the
tests increases a lot with
the new embedding and
the PR was accepted.

#473 GH-438: added byte pair embeddings merged It embeds BPEmb library
for for sequential tagging.
It adds the
BPEmbSerializable
(BPEmb) class which
embeds sequential
tagging using torch
library in tensors. It was
accepted because the
sequential tagging can
also be deserialized when
required like updating the
cache_dir variable. The
changes are merged after
the development of the
software and launch.

#164 Added class-based metrics merged This basically improves
the metric
class through updating the
TextClassifierTrainer
function and removing
calculate_class_metrics
and the
calculate_micro_avg_metric.
The changes are merged
after the development of
the software and launch.

https://github.com/zalandoresearch/flair/pull/523
https://github.com/zalandoresearch/flair/pull/473
https://github.com/zalandoresearch/flair/pull/164

152 CHAPTER 7. FLAIR

ID Pull Request Status Details

#538 Adds Attentional BiLSTM in the Text
Classification architecture

merged Flair used standard
BiLSTM model for text
classification whereas
this PR introduces
Attentional BiLSTM
model for this. The basic
introduction faces error
especially for training.
So, the new PR generated
with code updates were
accepted with Attentional
BiLSTM model. The PR
was merged after launch
of initial version.

#557 Fix permission error in Windows merged This fixes issue #548. It
was unable to delete the
file which was previously
opened (thus, marked
locked). More precisely,
mkstemp() opens the file,
which then creates a lock
on the file, therefore
prohibiting Windows
from deleting it.The
updated function
mktemp() does not do
this. SInce it does not
create the lock, files can
be deleted when
necessary.

#551 GH-550: Fix bert model check merged This PR fixes an #550
which occurred due to a
code fix mistake from the
#523. The issue raised
becaused the code did not
include bert_model in
BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys().
The inclusion of the
model was tested
successfully and merged.

https://github.com/zalandoresearch/flair/pull/538
https://github.com/zalandoresearch/flair/pull/557
https://github.com/zalandoresearch/flair/pull/548
https://github.com/zalandoresearch/flair/pull/551
https://github.com/zalandoresearch/flair/pull/523

7.10. APPENDIX 153

ID Pull Request Status Details

#555 Remove
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
check to support Custom models

merged This issue was due to
version change of
pytorch-pretrained-bert.
This issue was also raised
at #554. the
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
was removed from the
model as solution.

#71 GH-38: Add label class for sentences
to hold label name and confidence
value

merged It introduces a new class
lebel which creates new
label for the sentence.
Each label has name and
confidence value
(between 0 and 1). It is
used to predict return
label/tag plus confidence
value. It was merged after
the development and
launch of the system.

#519 Added PubMed embeddings
computed by @jessepeng

merged A character LM over
PubMed abstracts was
calculated by
@jessepeng. This PR
embeds the PubMed to the
system with
FlairEmbeddings
model. Additionally, it
needed a few details like
batch size, layers, hidden
size, train size etc for the
documentation which
was added by this PR. It
was merged after the
development and launch
of the system.

https://github.com/zalandoresearch/flair/pull/555
https://github.com/zalandoresearch/flair/pull/554
https://github.com/zalandoresearch/flair/pull/71
https://github.com/zalandoresearch/flair/pull/519
https://github.com/jessepeng

154 CHAPTER 7. FLAIR

ID Pull Request Status Details

#88 embeddings.py 213 214 a warning closed GitHub user
@wuwingzhou828
proposed a change to
certain lines of code in
the section where the
standard static word
embeddings are defined
including GloVe or
FastText. It pertained to
an if statement, where in
case a certain
precomputed word
embedding already
existed that particular
embedding is fetched
using the token.test
parameter. Initially the
change is accepted by
Alan Akbik but merging
is held on until all test
were completed.
However, the user made
some errors in the
correction as well and
therefore the request was
closed by Tanja
Bergmann.

https://github.com/zalandoresearch/flair/pull/88
https://github.com/wuwingzhou828

7.10. APPENDIX 155

ID Pull Request Status Details

#490 GH-68 Bert update closed Pull request was made to
clear issue #68 regarding
the implementation of a
pipeline by a transformer
based model
implemented by OpenAI.
The issues pertaining to
addition of transformer
models are discussed.
They added Bert
embeddings to the library.
As a result the pull
request refers to changes
in the files setup.py and
pytorch, thereby updating
the BERT version.
However, a newer version
updated by user stefan-it
was released with the
updates made in Flair
version 0.6.1.

#22 GH-226: add safeguard for
non-tokenized input

closed User @jfilter opened a
request to address the
issue of a ValueError if
the input is not
whitespace tokenized and
no tokenizer is used and
therefore causes an
infinite loop. However,
the issue was already
fixed in GH-232: multi
dataset training #236

https://github.com/zalandoresearch/flair/pull/490
https://github.com/zalandoresearch/flair/pull/68
https://github.com/zalandoresearch/flair/pull/22
https://github.com/jfliter
https://github.com/zalandoresearch/flair/pull/236

156 CHAPTER 7. FLAIR

ID Pull Request Status Details

#494 calculate macro-f-score as average of
class f scores

closed There was probably an
error in calculation of
macro F1. Flair is taking
average of class
precisions and recalls and
then calculates F1. As far
as is known, it should be
F1 calculated over classes
and then averaged. This
issue is fixed in #521.
Hence the pull request is
closed by Alan Akbik.
This pertains to the initial
fix not working in
updated version which
was then fixed in a later
pull request. Therefore
this pull request is
deprecated by the fixes
made in the newer pull
request.

#246 GH-243: dataset downloader closed This refers to the dataset
downloader and updates
made to the dependencies
and corpora. The
DataFetcher would now
download corpora by
checking its availability.
However, the updated
library did not pass one
of two tests to check for
validity and the request
was closed.

https://github.com/zalandoresearch/flair/pull/494
https://github.com/zalandoresearch/flair/pull/521
https://github.com/zalandoresearch/flair/pull/246

7.10. APPENDIX 157

ID Pull Request Status Details

#13 GH-12: naming conventions closed Request made by Alan
Akbik to update the
naming conventions
associated with module
imports, training classes
and embedding classes.
Changes were deprecated
with new pull request that
was merged - GH-12
naming conventions #14.
This allowed for better
class and file matchings
and easier imports of
embeddings.

#455 master closed Pull request to make
several commits made in
personal branch to the
Flair master branch. It
was a mistake on the part
of the user gccome and
requests were made to the
maintainers to delete the
particular PR. Good
example of the role of
maintainers and support
staff.

https://github.com/zalandoresearch/flair/pull/13
https://github.com/zalandoresearch/flair/pull/14
https://github.com/zalandoresearch/flair/pull/455

158 CHAPTER 7. FLAIR

ID Pull Request Status Details

#443 GH-387: long text embeddings closed References to an issue
reported by several users
that when training on
GPU with very long
sequence of words, there
is an out-of-memory
error. This is due to the
batch being padded with
the length of the longest
sequence which is then
put into the LSTM.
Solved this by breaking
the long string in chunks
that are fed sequentially
into the Language Model.
This therefore results in
the removal of the long
text embeddings branch
due to deprecation and
failure to comply with
tests.

#131 GH-61: Visualizations closed Initially opened to
address visualization
requests such as
visualization of weight
traces during training and
states in character LM.
Pull request deprecated
by changes made in
GH-61: Visualizations
#132. Being able to
visualize the training
patterns allows the users
to better understand the
process of training the
embeddings.

https://github.com/zalandoresearch/flair/pull/443
https://github.com/zalandoresearch/flair/pull/131
https://github.com/zalandoresearch/flair/pull/132

7.10. APPENDIX 159

ID Pull Request Status Details

#21 GH-19: simplify sequence tagger closed Initially made to add
learning rate scheduler to
SequenceTaggerTrainer
for easing the use of
Sequence Tagging. Also
provided auto-spawn into
GPU for the models
removing the
move-to-GPU commands
that would otherwise be
required that are quite
cumbersome and
redundant.

Table A.1: 10 merged and 10 closed pull requests in Flair

7.10.2 B. Contact persons

Name GitHub Role Twitter

Alan Akbik @alanakbik Zalando,
Developer and
Maintainer

@alan_akbik

Duncan Blythe @blythed Zalando,
Developer

-

Henning Jacobs @hjacobs Zalando, Head of
Developer
Productivity

@try_except_

Tanja Bergmann @tabergma Zalando,
Developer and
Maintainer

-

Per Ploug @perploug Zalando, Open
Source Manager

@pploug

Kashiv Rasul @kashif Zalando,
Developer

@krasul

Stefan Schweter @stefan-it Munich
Digitization
Centre at the
Bavarian State
Library,
Developer

-

Table B.1: People most involved in Flair’s development

https://github.com/zalandoresearch/flair/pull/21
https://github.com/alanakbik
https://twitter.com/alan_akbik
https://github.com/blythed
https://github.com/hjacobs
https://twitter.com/try_except_
https://github.com/tabergma
https://github.com/perploug
https://twitter.com/pploug
https://github.com/kashif
https://twitter.com/krasul
https://github.com/stefan-it

160 CHAPTER 7. FLAIR

7.11 References

Chapter 8

Flutter

Yanni Chiodi, Mathieu Post, Emiel Rietdijk, and Eva Verboom

8.1 Table of contents

1. Introduction
2. Stakeholders
3. Power versus Interest
4. Context View
5. Development View
6. Technical Debt
7. Operational View

161

162 CHAPTER 8. FLUTTER

8. Conclusion

8.2 Introduction

Flutter is a Google initiative to help developers build native apps on iOS and Android from a single codebase
fast and simple. Recently they also released Fuchsia and added it as a compatible operating system. While
the project initially set out to develop a UI framework, they switched to constructing an application SDK
as users desired a complete implementation. The SDK contains mainly widgets that can be used to build
the application UI. A widget is a rigid description of the user interface. All graphics including animations,
shapes and text are created with the use of widgets and more complex ones can be created by combining
simpler widgets.

The basis of the open source community that is working on Flutter consists of a team of engineers working
for Google, though there are some non-Google contributors that also have added a fair share of codelines to
the project. Flutter is a very active and fast growing project, maintained and guided by the core team. In
December 2018, the first stable version of Flutter, v1.0, was officially released. Afterwards, the team grew
tremendously and they keep growing to be able to maintain and update the toolkit.

This chapter aims to describe the architecture of Flutter based on different views, characterize the stakehold-
ers and provide details of the evolution Flutter went through. In doing so, this chapter will not only cover the
technical aspects of the architecture, but also provide a broader view of the project. Then we have a section
on technical debt, which shows where improvement is still required and discusses how this is handled by
the developers of Flutter. The final section will discuss the aspects of Flutter regarding operations and
implementation. Apart from doing research based on the GitHub repository [4], Flutter documentation [2],
the wiki [12] and other online sources, we also contacted the Tech Lead of Flutter, Ian Hickson (@hixie on
GitHub), to answer some of our questions.

We have also contributed to the project by fixing an open issue. At the time of writing this is not yet merged
or closed.

8.3 Stakeholders

The stakeholders of a project can be defined as the people, organizations, groups and/or companies that have
interest in the realization of the project. Stakeholders can affect (or be affected by) the actions, objectives
and policies concerning the project.

8.3.1 Rozanski and Woods classification

Rozanski and Woods describe eleven stakeholder classes in their book “Software Systems Architecture:
Working With Stakeholders Using Viewpoints and Perspectives” [1]. In this section the types of stakeholders
that apply to Flutter are discussed.

https://github.com/flutter/flutter/pull/30503

8.3. STAKEHOLDERS 163

8.3.1.1 Acquirers

The acquirer of Flutter is Google Inc. They employ the core team working on Flutter which built the base
of the framework and maintains it.

8.3.1.2 Assessors

There are no obvious assessors of this project. Flutter is only licensed under the BSD License [5]. Therefore,
Flutter can be changed and shared among others as long as the contributors are given appropriate credit and
all changes are indicated properly. Though Flutter works with a lot of software components that have their
own licenses [6]. As every pull request is checked by at least two members of the core team, they are also
responsible for checking the conformance of the code to standards and legal regulation.

8.3.1.3 Communicators

The system is explained to stakeholders through the corresponding website [7] by members of the core
team. On the website you can find videos, showcases, tutorials and basic documentation explaining
the development and the possibilities of contributing to the application. Furthermore, contributors and
committers are communicators by default, as documentation and justification is a requirement for every
contribution. Contributors communicate with each other over numerous channels, like Gitter, Slack or
Google Groups). Google also organizes events where developers working on the Flutter project can meet.

8.3.1.4 Developers/Maintainers

There are a total of 34 contributors to the Flutter project, which are listed in the AUTHORS file on GitHub.
Here Google Inc. is listed as one of the contributors. This is the core team that is working for Google and is
involved in the Flutter project. They also do the maintenance, together with the other trusted contributors.
Some of the most frequent contributors are non-Google engineers.

8.3.1.5 Suppliers

Flutter is written in Dart [3] for iOS, Android and Fuchsia operating systems and can be used by anyone to
build their own mobile applications for free. GitHub hosts the repository containing the code of the project.

8.3.1.6 Support Staff

Most support is handled by Google itself, though contributors also help each other out. Apart from the clear
examples, documentation and tutorials on the website, Google also encourages people to join the discussion
on one of their communication channels and everyone is free to ask questions on Stack Overflow or send
them an email at flutter-dev@googlegroups.com if there are any additional question.

https://flutter.io/docs/resources/videos
https://gitter.im/flutter/contributors
https://flutterstudygroup.slack.com/
https://groups.google.com/forum/#!forum/flutter-dev
https://www.meetup.com/find/?allMeetups=false&keywords=flutter&radius=Infinity
https://github.com/flutter/flutter/blob/master/AUTHORS
https://stackoverflow.com/tags/flutter

164 CHAPTER 8. FLUTTER

8.3.1.7 Testers

Flutter uses both native Dart tests and special Flutter tests which are updated with every bug fix and run on
every commit. Afterwards, a test coverage report of the project is created and can be reviewed at coveralls.
These tests are mostly written together with new or changed code by the developer that is contributing the
change.

8.3.1.8 Users

The users of Flutter are the commercial and private developers that use the system to create their own mobile
applications. They are also invited to contribute to the project in order to realize their needs within the
project.

8.3.2 Other Stakeholders

Besides the classes of stakeholders defined by Rozanski and Woods, there are four other classes that can be
identified within the Flutter project.

8.3.2.1 Media

There are several websites that posted about the Flutter project like One More Thing [8], The Verge [9]
and Maxdoro [10]. The website It’s All Widgets [11] even allows developers to submit their Flutter build
applications to showcase them to others as examples and inspiration.

8.3.2.2 Competitors

Currently there are many different systems that can be used to develop mobile application, such as Apache
Cordova, Adobe PhoneGap, Iconic and Facebook’s React Native.

8.3.2.3 End Users

The end users of Flutter are the customers that will eventually download and use the apps of the companies
that use Flutter to build their own mobile applications.

8.3.2.4 Partners

Some of the companies that are using Flutter, reach out to the core team for a partnership. For example
when they believe that they need additional features and they are willing to invest in that, they can build that
together with the core team and other members of the community. When there is a close relation between
Flutter and the customer, they try to give a higher priority to issues related to such a partnership.

https://coveralls.io/github/flutter/flutter?branch=master
https://cordova.apache.org/
https://cordova.apache.org/
https://phonegap.com/
https://ionicframework.com/
https://facebook.github.io/react-native/

8.4. POWER VERSUS INTEREST 165

8.4 Power versus Interest

A graphical representation of the involvement of all stakeholders is shown in the figure below. The core
team has the most power and interest in Flutter. Though, according to Ian (Tech Lead) the other contributors
are as much a part of Flutter, thus they are close to each other in the grid. Google does have a lot of power,
but as Flutter is not one of their main products, their interest is lower and they are not directly one of the key
stakeholder. Furthermore, there are some developers that use Flutter for application development, but do
not contribute. They have high interest and should be kept informed. Their power lies in giving feedback
on usability and proposing new features. Lastly, Dart and the operating systems the SDK is built for are
minimal effort stakeholders.

Figure 8.1: Power vs. Interest Grid of the Flutter Project

8.4.1 Integrators

The integrators are responsible for project quality and longevity. They communicate requirements to
contributors, perform code reviews, lead discussions for new features and trade-offs and solicit new
contributors. Ultimately, it is the integrator’s role to decide whether contributions are accepted or rejected.

The integrators for the Flutter project are the core team members, mostly developers that work at Google.
Their decision to merge is based primarily on the quality of the code, but they also tend to focus on whether
the contributor follows the Flutter style. A very common challenge for them is that the quality of the
contributor’s code/style/documentation is not up to par with the Flutter standards. As a consequence, the

166 CHAPTER 8. FLUTTER

integrators have to spend a lot of effort reviewing and giving feedback. Even ‘trivial’ things like spelling
mistakes in documentation have to be corrected.

8.4.2 Decision Making

To gain more insight on the way decisions are made within Flutter, the most discussed merge requests of the
project were analyzed. When handling new contributions to the platform, there are a few key things that are
discussed before accepting/rejecting issues:

• The conformation of the code and documentation formatting with the Style guide
• Questions raised by the developer of the issue and by reviewers on the implementation
• Trade-offs and/or compromises about how to implement the fix
• Readability and as few code and as few dependencies as possible are recurring issues in discussions.

8.5 Context View

This section describes the context view of the Flutter project. The context view includes the relationships,
dependencies and interactions of Flutter with the environment.

8.5.1 System Scope

The description of Flutter on their repository on GitHub is as follows: “Flutter is Google’s mobile app SDK
for crafting high-quality native interfaces on iOS and Android in record time. Flutter works with existing
code, is used by developers and organizations around the world, and is free and open source.”

Flutters main objective is to help other developers to build high quality mobile applications easily, using
their widget based SDK. The SDK, which is written in Dart, can be used to build applications that run on
iOS, Android and Fuchsia. The core team is responsible for maintenance and quality control of the source
code and support for the developers that work with Flutter.

8.5.2 Context Model

The figure shows a simple block-box context model implementation of the Flutter project. Here all
stakeholders in the right half of the figure are part of Google Inc. Here we can see that Flutter is developed
on GitHub, built in Dart and runs on three different operating systems. The three contributors that are listed
are part of the core team employed by Google and have the most contributions, though there are many other
contributors. All of these developers communicate via Gitter, Slack and Google Groups. The upper box
shows some of the companies that use Flutter to build their own applications. Of course, there are many
others working with Flutter and this set of stakeholders is just an example. Finally, in the bottom left corner
the main competitors of the application are shown.

https://github.com/flutter/flutter/wiki/Style-guide-for-Flutter-repo

8.5. CONTEXT VIEW 167

8.5.3 External Entities

Flutter is an SDK and is therefore dependent on other entities and services. These entities and services are
described in the following list:

• Flutter is written in Dart.
• GitHub is used as the version control system and issue tracker.
• Flutter runs on iOS, Fuchsia and Android.
• Flutter depends on and is developed for application developers.
• Applications written in Flutter depend on the project itself.
• The developers communicate through different channels.

168 CHAPTER 8. FLUTTER

8.6 Development View

8.6.1 Module Structure Organization

In large code bases it is very important to organize source code well, to make maintenance and testing easier
as well as making the architecture comprehensible for all developers working on the project. Flutter has a
layered module structure, where every layer only builds on the layers underneath and on modules in its own
layer. A graphical model of the module structure is depicted below. All source code of the Flutter project is
divided over thirteen modules, which belong in one of the following five layers:

• The core layer, which consists of the foundation module, which is the base of the Flutter framework.
• The modeling layer, containing all modules that are responsible for movement and painting of elements

within an application.
• The rendering module holds the rendering layer, which is an abstraction of the modeling layer and

keeps track of which widgets belong where on the screen.
• The component layer consists of the widgets module, widgets are ready-to-use UI components that

developers can use when building their own application.
• The design layer contains pre-defined widgets implementing the Material Design and the iOS style

for the material and cupertino modules respectively.

In the graph all dependencies between the modules are drawn. The dependencies are drawn in such a
way that it is easy to see which layer depends on which other layers. All the layers only depend on layers
underneath (i.e., they build on each other).

8.6. DEVELOPMENT VIEW 169

8.6.2 Common Design Models

Common design models are needed to reduce duplicate effort and to increase technical coherence. In this
section Flutter’s standardization approaches are discussed.

8.6.2.1 Common Processing

• Widgets: Flutter’s slogan is: “Everything is a widget”. The UI is built using widgets, composed
of even smaller widgets, which in turn are built using even more basic widgets. A widget can be a
structural element (e.g. menu), as well as a stylistic element (e.g. padding). Widgets form a hierarchy
(widget tree data structure), which is based on composition. The root node is the application itself and
the leaves are the smallest widget components.

170 CHAPTER 8. FLUTTER

• Rendering: the widget building recursion tree bottoms out in RenderObjectWidgets, which are
widgets that create nodes in the underlying render tree. The render tree is a data structure that stores
the geometry of the user interface, which is computed during layout.

• State Management: Flutter is declarative. This means that Flutter builds its user interface to reflect
the current state of your app. When the state of your app changes (e.g., a button is clicked), then the
UI rebuilds from scratch.

• Debugging: Flutter provides the flutter analyze tool for static analysis. Furthermore, they
provide a versatile debugger to print logs, which can be used for debugging the various application
layers (widgets, rendering, scheduling, etc.).

• Plugins: developers can use external Dart plugins such that they do not have to build everything from
scratch. The developer simply has to add the dependency to the pubspec.yaml file, run flutter
packages get and finally add a corresponding import statement in their Dart code.

• Internationalization: if an app is deployed to users who speak another language, values like text and
layouts need to be ‘localized’. This can be done using the flutter_localizations package.

8.6.2.2 Standardization of Design

The Flutter developers try to adhere to the Flutter style of coding. Some of the most important design
patterns and programming paradigms are:

• Composition: the most important design pattern is composition, the use of small objects (see Widgets
in the previous section) with simple functionality to compose larger complex objects.

• Declarative programming: the developer specifies What should happen (and not How it should
happen). For example: with HTML you use to tell a browser to display
an image and not how to load the image file or how to render the pixels.

• Functional programming: a prime example of functional programming is the StatelessWidget.
These widgets do not require state and are basically just functions that map arguments to layout
elements. (e.g., the Icon widget maps color, icon, and size to UI elements).

• Generic programming: generic typing can help developers to know how certain classes and inter-
faces should be implemented. Therefore, errors can be spotted early on.

https://flutter.dev/docs/testing/debugging
https://pub.dartlang.org/
https://flutter.dev/docs/development/accessibility-and-localization/internationalization
https://flutter.dev/docs/resources/faq#what-programming-paradigm-does-flutters-framework-use
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html

8.6. DEVELOPMENT VIEW 171

8.6.2.3 Standardization of Testing

Contributors are urged to write tests accompanying their newly implemented feature. If no tests are provided
by the original developer, the feature will likely regress. If they want their code to remain in the codebase,
then they should include tests according to the Tests Guide. Additionally, Flutter uses Continuous Integration
tools Cirrus and Chromium to automatically build and test changes submitted through pull requests.

Dart tests are written using the flutter_test package’s API and should be included in the test subdirec-
tory of the package under test. Different types of tests are supported:

• Unit tests: can be run using flutter test.
• Golden file tests: comparing pixels with a provided image, a so called ‘golden file’.
• System tests: using the flutter_driver library and devicelab for testing on real Android and iOS

devices.

8.6.3 Codeline models

Before contributing to Flutter, developers are invited to start by reading the general Contributing Guidelines.
The Tree Hygiene document explains how to land PR’s and how to request/perform code reviews. The Issue
Hygiene covers how issue tracking with GitHub is done: it explains the issue labels, how prioritization/issue
voting is done and how issues are assigned. Next, the very extensive Style Guide describes the guidelines
concerning the actual code writing: patterns, documentation, variable naming, formatting and packages are
discussed here. When making a pull requests automated build checks and test checks by Cirrus CI and the
Flutter Build Bot are performed to make sure everything still works correctly.

8.6.4 Codeline organization

The structure of the system’s source code is divided in multiple parts:

• bin The bin contains the internal engine of Flutter.

• dev This directory contains tools and resources that the Flutter team uses during development of the
framework.

• examples This directory contains several examples of using Flutter.

• packages

This directory contains most of the core functionality of Flutter, which is divided in flutter, drivers,
tests, tools, localization, goldens and goldens client.

Within the flutter package all main functionalities are located and categorized by the following cat-
egories: animation, cupertino, foundation, gestures, material, painting, physics, rendering,
scheduler, semantics, services, and widgets. The build process of Flutter is all automated through
Codemagic. Codemagic verifies all builds made and creates different workflows for different application
configurations for development, testing and releases. As mentioned in Standardization of Testing, Flutter
uses multiple tools for continuous integration.

https://github.com/flutter/flutter/wiki/Running-and-writing-tests
https://cirrus-ci.com/github/flutter/flutter/master
https://ci.chromium.org/p/flutter/
https://master-docs-flutter-io.firebaseapp.com/flutter/flutter_driver/flutter_driver-library.html
https://github.com/flutter/flutter/blob/master/dev/devicelab/README.md
https://github.com/flutter/flutter/blob/master/CONTRIBUTING.md
https://github.com/flutter/flutter/blob/master/CONTRIBUTING.md
https://github.com/flutter/flutter/wiki/Issue-hygiene
https://github.com/flutter/flutter/wiki/Issue-hygiene
https://github.com/flutter/flutter/wiki/Style-guide-for-Flutter-repo

172 CHAPTER 8. FLUTTER

8.6.5 Instrumentation

Instrumentation refers to the ability to monitor or measure the level of a product’s performance, to diagnose
errors and to write trace information.

Flutter has several tools to help developers. One of them is the Flutter Inspector. This tool makes it easy to
inspect the widget trees of an application and can be used to visualize the layout structure and diagnose
layout issues. Widgets can be clicked in a running app on a device and then in the inspector, the clicked
widget is selected and its field values and nearby widgets can be inspected. Also, debug paint can be added
to the running application to visualize the layout constrains of all widgets.

The SDK also has the ability to test widgets. Tests can be written using a WidgetTester, which creates
a test environment where it can build and interact with widgets and can verify that they show the correct
information.

To diagnose errors, third-party crash reporting solutions can be used (e.g., Sentry or Crashlytics). These
solutions provide error tracking for released apps. Since normally it is hard to track bugs that happen in
apps on the devices of users, these solutions report these errors with a stack trace in a convenient dashboard
where developers can see what went wrong and which devices are affected. In addition, Flutter uses the
standard log system of dart by extending it into several different log components, which can all be turned on
and off when needed.

8.7 Technical debt

8.7.1 Identification

Since Flutter is written in the Dart programming language we can use tools written for Dart to analyze the
Flutter framework. There is a static analysis tool for code style, comments and tests embedded in the Dart
SDK: the Dart Analyzer. The Flutter analyzer tool from the Flutter SDK embeds all this functionality from
the Dart SDK and users of the tool should use flutter analyze rather than the Dart analyzer tool for their
projects using Flutter. We have put focus mainly on the flutter package, since that is the package that will
be used by other applications using Flutter.

The core team has an attitude of not working around problems but actually go and fix them. In general
technical debt should always be fixed before merging new code. There are some exceptions when some
(temporary) technical debt is acquired, e.g., because of a problem with an upstream dependency, dispropor-
tionate effort or because someone is already working on the solution. Technical debt in Flutter is expressed
in US dollars, which is based on an average software engineer salary and the expected time it will take to
solve these issues. According to Ian Hickson, at the time of writing, the ‘framework has $933,000 of debt
today, which isn’t actually all that bad in the great scheme of things, but definitely isn’t great’.

8.7.2 Code Style and Structure

As mentioned before, to check a project against errors and warnings that are specified in the Dart Lan-
guage Specification flutter analyze can be run. For running it on the whole Flutter project, the flag
--flutter-repo has to be added to test all the packages in the repository. This did not return any errors or

https://flutter.github.io/devtools/inspector
https://pub.dartlang.org/packages/analyzer
https://www.dartlang.org/docs/spec/
https://www.dartlang.org/docs/spec/

8.7. TECHNICAL DEBT 173

warnings. This is no surprise, since one of the requirements for landing a pull request is that the analyzer
does not return any errors or warnings.

By quick inspection of the flutter package it seems that the code is structured well and that the SOLID
principles are followed consistently. Although in a lot of widgets the performLayout or the build method
are quite long (sometimes more than hundred lines). This is in some cases probably a violation of the Single
Responsibility Principle. The performLayout method could be split into new functions which describe
their single purpose.

We already mentioned that one of the primary programming paradigms used heavily in Flutter is composition.
Most widgets are built this way, they are built using small objects with a small responsibility. Using them
together results in more complicated widgets, e.g., the FlatButton widget creates a RawMaterialButton
which consists of the given child in a Center in a Container in an IconTheme in a Material in a
ConstrainedBox in an _InputPadding in a Semantics. All these widgets have a narrow scope of
behavior, which favors the Single Responsibility Principle for these single classes. But, because of this, the
indentation-based complexity becomes pretty high in some cases, especially in the sometimes very long
performLayout and build methods in some widgets.

8.7.3 Testing Debt

To run all the tests and get the coverage information in a package flutter test --coverage can be used.
Running this on the Flutter repository returns All tests passed! as expected. The coverage is more
interesting to look at. The total line coverage of the flutter package is 84% at the time of writing. The
core of Flutter is well-tested, subpackages like animations, gestures and physics have a high coverage.
One problem with the current tests is that the ‘golden image’ tests only work on Linux. So, when someone
working on the Flutter SDK runs the tests on macOS or Windows, these tests are skipped. This is also the
cause of the majority of the acquired technical debt.

If we look at which lines do not have coverage, most of them are assertions in constructors, which are
only executed in debug mode and thus have no influence on the final product. Also, the material and
cupertino subpackages have some icon definitions which are not tested, but it would not make sense to test
these since that would practically be the same as testing image files or other binary files. After inspecting
some less tested Dart files, it seems that almost everything is actually pretty well tested. Most of the untested
lines are some cases in switch statements and if or else branches. For improving the test coverage on
these sections, more edge cases should be considered when writing tests. The edge case that seems to be
untested most of the time is a device in landscape mode or if a dark theme is used instead of a light theme.
Unfortunately, there are no tools for Flutter to get branch coverage.

Next to untested lines, whole functions that are untested seem to mostly be toString, hashCode and
copyWith functions in Widgets and Themes. These should not be functions that may break someones code.
toString functions rely on string interpolation (e.g., 'Hi $name'), which is a built-in functionality of
Dart, so it can be argued that these functions are so trivial that these don’t need tests. This argument can also
be applied to hashCode and copyWith. hashCode uses the hashValues function from an external package
called sky_engine which is part of the Flutter engine. So, assuming that the sky_engine package is tested
well, the hashCode function does not need tests. copyWith accepts the same parameters as the constructor
of the class it belongs to, and then calls the constructor with these parameters, which default to the values of
the current instance of the class copyWith is called on.

https://blog.jetbrains.com/upsource/2015/08/31/what-to-look-for-in-a-code-review-solid-principles-2/
https://blog.jetbrains.com/upsource/2015/08/31/what-to-look-for-in-a-code-review-solid-principles-2/

174 CHAPTER 8. FLUTTER

Overall, it seems that the flutter package is tested pretty well. The test coverage is high on most classes,
and where it is not that high, it is in most cases because of trivial functions. The project could improve a bit
on test coverage by creating tests for edge cases and some locally untested functions. Mostly the technical
debt can be decreased by fixing the golden tests for macOS and Windows.

8.7.4 Evolution

To see how the Flutter project has evolved over time in terms of technical debt, we will look at previous
versions of Flutter. At the time of writing the latest version of Flutter on Github is v1.4.1. Since the Flutter
project is relatively young, with a first release on Github not even two years ago, we have investigated and
compared the current state of technical debt with the moment of Flutters first stable release (v1.0.0, Nov
2018) and the first beta release (v0.1.0, Feb 2018).

In terms of architecture, nothing much has changed since the first beta. The codebase has grown almost by
50% in terms of codelines since the first beta, but all this added code did not result in design or architectural
changes. The total testing coverage has decreased a bit over time. The coverage went from 86.8% to 84.9%
to 83.9% for v0.1.0, v1.0.0 and v1.4.1 respectively. However, this seems to be mostly because of added icon
and constant definitions and not because of relatively less tested code.

8.8 Operational View

This section will describe how the system will be operated, administered and supported while it is running
in its production environment. Flutter had been operational for about a year at the time of writing.

8.8.1 Support

Flutters support model is fully based on its open source community. This is only possible because their end
users are developers and therefore also often contributors to the project. Developers are able to support each
other through the different communication channels Flutter offers, giving advice to each other and having
discussions on possible improvements or new features they are working on. The members of the Flutter core
team participate within the community in the same way. If the platform fails completely or a severe issue
occurs, the core team can be notified by creating an issue on GitHub and a high priority will be assigned to
it. All members of the community are allowed to work on all issues, though the core team is responsible
for the operational status of the project. As Flutter is an SDK, there is no hardware that needs any support.
Therefore, only online communication suffices for customer support.

8.8.2 Operational Monitoring and Control

Operational monitoring and control is for Flutter something not to worry about, since Flutter is an SDK and
there is no such thing as system down time and therefore there is no instrumentation to be found for this part.
Flutter is reliable on the uptime of some third parties such as GitHub and Pub Dart, where the codebase and
the Dart packages are stored respectively. However, every developer that is using Flutter can keep track of
the performance of their own application with the Flutter performance profiling functionality. Within this

8.9. CONCLUSION 175

profiling four different parts of the application, so called ‘threads’, can be monitored: Platform, UI, GPU
and I/O. Furthermore, for monitoring any downtime the logs can be used, which have been explained in the
Instrumentation section.

8.8.3 Other Aspects of Operation

Due to the Open Source character of the Flutter project, it is fully developed on GitHub from the start.
Changing from the development-only phase to the operation and development state therefore has no
implications on the way Flutter is being maintained and no data transfer is needed to other environments.
Everything remains fully accessible for both the developers as for the users of the SDK and nothing has to
change in the way contributors develop and maintain the source code.

Another property of the Flutter project is that it is only software that is used to build other applications and
it is therefore not directly coupled to any hardware installation. As a consequence, there is no need for
physical installation or upgrades, configuration management (other than within the software components) or
functional migration. This eases the operational phase and causes the development phase and operational
phase to be highly similar.

8.9 Conclusion

This chapter analyzed Flutter, a cross platform mobile app SDK. The first section shed light on the
stakeholders involved in the project. The most important ones are: the acquirer (Google), the developers
(Google engineers and other members of the open source community) and the users (e.g., companies like
Alibaba and other app developers). Next, from the context model, it can be seen that the most important
dependencies are Dart, Fuchsia, iOS, and Android. Furthermore, some important competitors were found:
React Native, Ionic, and Apache Cordova.

The next section showed an overview of the code module structure and the dependencies between these
modules. The modules are structured neatly according to their respective functionalities. Next, the common
design models were analyzed. It was found that there is common processing for rendering, debugging,
plugins and internationalization. Furthermore, the Flutter team uses several design patterns across the code
like composition by the extensive use of widgets. Flutter has an estimated technical debt of 933K USD, as
indicated in an interview by Ian Hickson, one of the core team members. This was calculated by multiplying
an engineer’s salary with the estimated work hours left. The bulk of the debt comes from the fact that the
golden file tests only run on Linux. Nonetheless, it can be concluded that the testing coverage is quite high
(85% line coverage) and that the architecture and code structure are clear and strong.

In conclusion: the Flutter team, although the project is young, has very mature workflows. The code quality
is impeccable, in part due to strictly enforced coding guidelines and because of the dedication of experienced
engineers. Flutter is on top of its game, has clear vision and goals and will keep on competing with industry
giants like Facebook’s React Native.

8.10 References

1. Rozanski, N., & Woods, E. (2012). Software Systems Architecture (2nd ed.). Pearson Education.

https://github.com/Hixie

176 CHAPTER 8. FLUTTER

2. Flutter documentation - https://flutter.dev/docs
3. Dart programming language - https://www.dartlang.org/
4. Flutter repository - https://github.com/flutter/flutter/
5. BSD. The 3-Clause BSD License - https://opensource.org/licenses/BSD-3-Clause
6. Flutter “Other Licenses” - https://raw.githubusercontent.com/flutter/engine/master/sky/packages/sky_

engine/LICENSE
7. Flutter website - https://flutter.io/
8. One More Thing (2018-12-08). Google Flutter maakt app ontwikkeling eenvoudiger - https://www.

onemorething.nl/2018/12/google-flutter-maakt-app-ontwikkeling-eenvoudiger/
9. Dieter Bohn (2019-12-04). Can Google make cross-platform mobile app development suck less?

- https://www.theverge.com/2018/12/4/18125053/google-flutter-1-0-skia-mobile-app-cross-platform-
developers

10. Maxdoro - https://www.maxdoro.nl/flutter/
11. It’s all Widgets! - https://itsallwidgets.com/
12. Flutter Wiki - https://github.com/flutter/flutter/wiki

https://flutter.dev/docs
https://www.dartlang.org/
https://github.com/flutter/flutter/
https://opensource.org/licenses/BSD-3-Clause
https://raw.githubusercontent.com/flutter/engine/master/sky/packages/sky_engine/LICENSE
https://raw.githubusercontent.com/flutter/engine/master/sky/packages/sky_engine/LICENSE
https://flutter.io/
https://www.onemorething.nl/2018/12/google-flutter-maakt-app-ontwikkeling-eenvoudiger/
https://www.onemorething.nl/2018/12/google-flutter-maakt-app-ontwikkeling-eenvoudiger/
https://www.theverge.com/2018/12/4/18125053/google-flutter-1-0-skia-mobile-app-cross-platform-developers
https://www.theverge.com/2018/12/4/18125053/google-flutter-1-0-skia-mobile-app-cross-platform-developers
https://www.maxdoro.nl/flutter/
https://itsallwidgets.com/
https://github.com/flutter/flutter/wiki

Chapter 9

Gutenberg

By Timo van Asten, Sven van Hal, Niek van der Laan en Daphne van Tetering.

9.1 Table of Contents

• Introduction
• Stakeholders
• Context View
• Development View
• Technical Debt
• Accessibility Perspective
• Conclusion

9.2 Introduction

WordPress is a Content Management System that services approximately one third of the web 1. Mid 2016,
the decision was made to start developing a new page editor experience: Gutenberg. The then-used editor –
a single rich-text field – had not been updated in a decade and WordPress’ competitors were rapidly catching
up. Gutenberg is a visual page builder instead: all content elements are blocks and these can be arranged in
any desired order. Gutenberg is shipped with WordPress since December 2018.

In this chapter, we review multiple aspects of the software architecture of Gutenberg. We first look at
the bigger picture by analyzing their stakeholders and project context. Then, we dive into the inner code
structure and look at the module structure, common software design, testing methods and how the codeline
is organized. We continue to analyze and critique the technical and testing debt of the project, and conclude
with an analysis of the often-overlooked accessibility implications of the new editor.

This chapter is part of the Delft Students on Software Architecture Book 2019.

1Usage statistics and market share of wordpress for websites, (2019). https://w3techs.com/technologies/details/cm-wordpress/all/all.

177

https://github.com/timovanasten/
https://github.com/svenvanhal/
https://github.com/niekvanderlaan
https://github.com/dvantetering
https://w3techs.com/technologies/details/cm-wordpress/all/all

178 CHAPTER 9. GUTENBERG

Figure 9.1: Gutenberg Logo

9.3. STAKEHOLDERS 179

9.3 Stakeholders

9.3.1 Identifying stakeholders

We identified stakeholders according to the Rozanski & Woods 2 classification, as well as additional types
of stakeholders that followed from our research.

9.3.1.1 Acquirers

Gutenberg is part of WordPress, which was originally founded by Matt Mullenweg. He later transferred its
intellectual property to the WordPress Foundation. Mullenweg also founded Automattic, a company whose
goal is to commercialize WordPress by providing a blogging platform and building custom extensions for
WordPress. Mullenweg is still ultimately responsible for new WordPress releases, as well as the allocation
of funds from the WordPress Foundation.

9.3.1.2 Developers and Maintainers

Since Gutenberg is an open source project, everyone is encouraged to participate in its development. At the
time of writing, Gutenberg has nearly 400 contributors to the master branch. Interestingly the top seven
contributors are all affiliated with Automattic.

The Gutenberg project has multiple code owners. Each of them has responsibility over certain types of
files in the project, as indicated in the CODEOWNERS file. Three developers stand out by being code owner of
(almost) the whole project:

• @youknowriad (Riad Benguella) is an employee of Automattic and works on WordPress. As of this
writing he also is the top contributor of the project.

• @aduth (Andrew Duthie) is code owner of the whole project with exception of the documentation,
Blocks and Widgets. He is the second largest contributor and works as JavaScript Engineer at
Automattic.

• The last major code owner is @gziolo (Grzegorz Ziółkowski). Similar to the previous code owners he
is an employee of Automattic and a major contributor to the project.

There are 13 other code owners that are responsible for parts of the project (e.g. only the documentation).
These are @chrisvanpatten, @nerrad, @Soean, @noisysocks, @talldan, @coderkevin, @jayman-
pandya, @notnownikki, @nosolosw, @mkaz, @jorgefilipecosta, @ajitbohra and @mmtr. We will
elaborate on the role of some of them in other sections.

9.3.1.3 Assessors

Everyone working on the Gutenberg project is able to review pull requests on Github, which in essence
makes everyone who does so an assessor. To ensure a consistency in code quality and style, several tools are
in place of which some will be discussed in the Development View and Technical Debt sections.

2N. Rozanski, E. Woods, Software systems architecture: Working with stakeholders using viewpoints and perspectives, Addison-
Wesley, 2011.

180 CHAPTER 9. GUTENBERG

The code owners have a special role as assessors, since they make the final decision to merge a PR or not.

9.3.1.4 Communicators

The developers of Gutenberg hold weekly meetings on the #core-editor Slack channel. These meetings are
chaired by @youknowriad and are accessible to everyone.

The Gutenberg Handbook is the main documentation for other stakeholders in this project. It is open for
everyone to contribute to via Github. The quality of this documentation is assured by @youknowriad, @gzi-
olo @chrisvanpatten, @nosolosw, @notnownikki and @mkaz, making them the key communicators of
Gutenberg.

Other major contributors to the documentation are @aduth, @dd32, @wpscholar, @adamsilverstein and
@johnwatkins0.

9.3.1.5 Production engineers

The Gutenberg project contains tools like package managers, linters and tools for testing which need
to be configured. @youknowriad, @gziolo, @aduth, @ntwb, @nerrad, @ajitbohra, @nosolosw and
@mkaz are responsible for this part of the project.

9.3.1.6 Suppliers

The following parties are suppliers for the Gutenberg project:

• Git facilitates version control.
• GitHub hosts the project and facilitates communication between the developers.
• Facebook supplies the main framework on which Gutenberg is built: React.
• Travis facilitates continuous integration.
• WordPress supplies the software on which Gutenberg runs.

9.3.1.7 Support staff

The best place to get help as a user is via the WordPress.org support forums3, or via the Slack #help channel.

9.3.1.8 Testers

Testing your code is part of the PR checklist. In every PR, developers have to explain how their code was
tested, which can then be verified by the other developers. Travis is used to run all tests in the project, all
tests have to pass before a PR can be merged. Top contributors to the testing folder of the project include
@gziolo, @ellatrix, @youknowriad, @aduth and @dmsnell.

To help the developers with testing, the Gutenberg Handbook has a special section on testing, which is
updated once new testing procedures are in place.

3WordPress.org, WordPress.org. (n.d.). https://wordpress.org/support/plugin/gutenberg/.

https://wordpress.org/gutenberg/handbook/
https://wordpress.org/support/plugin/gutenberg/

9.3. STAKEHOLDERS 181

9.3.1.9 Users

Anyone who uses WordPress is a potential user of Gutenberg. These users vary from individuals to some of
the world’s largest companies, listed here. Users may individually choose to use an alternative editor, like
the classical editor, instead.

9.3.1.10 Other stakeholders

9.3.1.11 Competitors

Before the rise of Gutenberg, other page-builders were built to replace the old editor. Some of these
page-builders, such as Elementor, Beaver Builder and the Page Builder by Site Origin, have more than a
million downloads, making them competitors of Gutenberg. Another competitor of Gutenberg is the old
editor, since users can still decide to opt-out of Gutenberg and use it instead.

9.3.1.12 Power vs. interest grid

Using Mendelow’s power vs. interest grid, stakeholders can be divided into four categories. These categories
are: satisfy, key stakeholders, minimal effort and inform and are shown in the figure below.

9.3.2 Integrators

According to the blog post by Georgios Gousios, integrators are responsible for ‘enforcing an online
discussion etiquette and for ensuring the project’s longevity by on-boarding new contributors’. Within
Gutenberg, most of the code owners also function as an integrator. Examples of this are @nosolosw and
@youknowriad: when we posted a message in the #core-editor Slack channel about contributing, they replied
with useful documents, like the Gutenberg Handbook. Other examples are @jasmussen and @karmatosed
who are responsible for starting discussions about design and @afercia who mostly opens discussions on
accessibility.

9.3.3 PR analysis

To get a clear view of the decision making strategy, we analyzed the 10 most discussed accepted and rejected
PRs. From this it becomes clear that most decisions are made by having a thorough discussion on advantages
and disadvantages of a certain approach. The final decision is made taking into account the scope of the
pull request and the long term vision of Gutenberg. This decision is often made by one of the integrators
responsible for the area that the pull request focuses on.

Within the rejected pull requests, the most occurring reason for rejection was due to the length of the
discussion, during which the project itself was already developed further causing the functionality to be
redundant or outdated, which required a new PR for the same functionality using a different implementation.
Some pull requests were rejected because of a change in vision.

Besides analyzing PRs, we asked about the decision making process in the #core-editor Slack channel.
@youknowriad responded that Gutenberg follows the WordPress decision making process, which is discussed

https://wordpress.com/notable-users/
https://nl.wordpress.org/plugins/elementor/
https://nl.wordpress.org/plugins/beaver-builder-lite-version/
https://nl.wordpress.org/plugins/siteorigin-panels/
http://www.gousios.gr/blog/How-do-project-owners-use-pull-requests-on-Github.html

182 CHAPTER 9. GUTENBERG

Figure 9.2: Power vs. Interest Grid

9.4. CONTEXT VIEW 183

in this WordPress blog. Decisions at WordPress are made keeping the end-users in mind, who are mostly
non-technically minded. WordPress states that it is the developer’s duty to make smart design decisions
and to avoid placing the responsibility of technical choices on end users. For example, from a developer
perspective, more options on how to configure your system would always be better, because this allows for a
tailored user experience. From an end-user perspective, more options result in more decisions to make on
topics that most end users don’t care about.

9.4 Context View

This section describes the context of the WordPress/Gutenberg project. A context view “describes the
relationships, dependencies, and interactions between the system and its environment.” 4

The scope of Gutenberg is limited to the page editing experience within WordPress, enabling users to create
complex posts and pages. Gutenberg is responsible for the interactive editing screen, converting content
blocks to a suitable HTML representation and for communicating with WordPress to store posts and pages.

9.4.1 Context model

Figure 9.3: Gutenberg context model

WordPress is used by a wide variety of users and so is, by extension, Gutenberg.

4N. Rozanski, E. Woods, Software systems architecture: Working with stakeholders using viewpoints and perspectives, Addison-
Wesley, 2011.

https://wordpress.org/about/philosophy/

184 CHAPTER 9. GUTENBERG

Gutenberg is written in JavaScript and built with the React framework. Additional development tooling runs
on NodeJS. A small part of the codebase, the interface with WordPress, is written in PHP.

Gutenberg is developed on GitHub, where a small group of people is responsible for most of the contributions
to the project. Fourteen people are code owner, of which three people (@youknowriad, @aduth and @gziolo)
have final decision power about all parts of the project. Bug reports are collected at GitHub, and lingering
bug reports at the WordPress issue tracker are moved to GitHub. Security issues can be reported via the
WordPress HackerOne channel.

Gutenberg comprises multiple independent packages for different parts of the editor, which are managed
through Lerna and published to the npm repository. A number of other development dependencies are also
retrieved using npm.

The quality of the project is constantly monitored and a substantial part of the codebase is covered with
tests. JavaScript tests are run with Jest and PHP tests with PHPUnit. The code coverage level is watched at
GitHub using Codecov. Furthermore, all code is linted with either ESLint (JavaScript) or PHP_CodeSniffer
(PHP) to enforce and/or fix a consistent coding style and license incompatibilities. This process is entirely
automated with Travis CI.

The Gutenberg community can be divided into users and developers. Developers use Slack as their primary
communication channel or ask questions at StackExchange, while users are encouraged to ask for support at
the WordPress support forum. Documentation is available at a dedicated Gutenberg docs website.

Gutenberg features a faster release cycle than WordPress. Intermediate versions are published to the
WordPress plug-in repository, and the most suited version is selected for a WordPress (CMS) release.

Gutenberg is licensed, as is WordPress, under the GPLv2+ license. All contributions by users also have to
be under this license.

9.5 Development View

The development viewpoint is used to describe the architecture that supports the process of software
development. In this section, we look at Gutenberg’s architecture using the definition from Rozanski &
Woods 5.

9.5.1 Module Organization

The Gutenberg repository consists mainly of packages developed for the Gutenberg editor, and uses Lerna
to manage these Gutenberg modules and publish them as packages to npm.

Although the packages folder has a flat structure, we identified the responsibility of each package with
respect to the logic flow of the editor. The image below, found on the Gutenberg repository, illustrates this
flow.

5N. Rozanski, E. Woods, Software systems architecture: Working with stakeholders using viewpoints and perspectives, Addison-
Wesley, 2011.

9.5. DEVELOPMENT VIEW 185

Figure 9.4: Editor Logic Flow

The editor has several responsibilities: parsing, visual representation, editing and serialization. Other
packages are responsible for tooling, utilities, data management, the user interface and retrieving reusable
blocks. We briefly highlight most important packages and their contributions.

9.5.1.1 Editor

The blocks module is responsible for converting blocks between JavaScript data objects and HTML, and is
supported by the block-serialization-spec-parser and the Block-serialization-default-parser
modules. The block-editor module is mainly responsible for the editing logic, whereas editor is
responsible for editing non-block posts. This separation of concerns is newly introduced in Phase 2, as
described in #14122.

9.5.1.2 User Interface

All blocks must be registered before they can be used in the editor. The element module is used to describe
the structure of a block’s markup. Each block can be edited by calling their edit function defined in blocks.

9.5.1.3 Utils & Tooling

Most packages serve as utility for the implementation of blocks, to support the editor,or simply provide
reusable functionalities that can be used by developers when creating new blocks. Several tooling packages
concern several responsibilities including config, plugins and testing.

The figure below displays the relations between these packages.

9.5.2 Codeline Model

The codeline model describes the organization of the system’s source code: how is the code controlled,
maintained and which (automated) tools are used in the build and release process, and what folder structure

https://make.wordpress.org/core/2018/12/08/gutenberg-phase-2/
https://github.com/WordPress/gutenberg/pull/14112

186 CHAPTER 9. GUTENBERG

Figure 9.5: Package structure of Gutenberg

is used.

9.5.2.1 Code Management

Gutenberg uses the Feature Branch Workflow 6. Contributors need to fork the project, make changes on a
separate branch and create a pull request to the upstream master branch. Code owners of the project review
the code, optionally request changes and merge the branch when the work is satisfactory 7.

9.5.2.2 Source Code Structure

The directory structure of Gutenberg is shown in the table below Every directory has a single responsibility
and different types of source code based are grouped based on their purpose. The project consists of multiple
modules (in the packages folder), which also take up the majority of the project size.

Tests are present at multiple different locations in the source code: PHP tests in the phpunit folder,
integration tests in the test directory and for each package separately (optionally) a number of unit tests, as
well as end-to-end tests in the packages/e2e-test folder.

6Atlassian, Git feature branch workflow | atlassian git tutorial, Git Feature Branch Workflow. (n.d.). https://nl.atlassian.com/git/
tutorials/comparing-workflows/feature-branch-workflow.

7Gutenberg contributor handbook, (2019). https://wordpress.org/gutenberg/handbook/contributors/.

https://nl.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://nl.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://wordpress.org/gutenberg/handbook/contributors/

9.5. DEVELOPMENT VIEW 187

Figure 9.6: Directory Structure

9.5.2.3 Release Process

A new build of Gutenberg is released every two weeks, after having matured as a release candidate first 8.
Continuous integration is in place to automatically test and lint any code that is to be merged into the master
branch and by extension a release.

Gutenberg lives primarily in the WordPress plug-in repository, but is also bundled with WordPress. The
most suitable Gutenberg release is cherry-picked for each WordPress release by the WordPress maintainers.

9.5.3 Common Processing

The Gutenberg project contains many packages that handle common processing for the project. These can
be divided in a few different categories:

• Configuration: These packages include configurations that are common throughout the project
(@wordpress/browserslist-config) or provide a default configuration (@wordpress/babel-preset-
default).

• DOM, HTML and browser related processing: Packages for manipulating or retrieving informa-
tion about HTML, the DOM and the browser (@wordpress/element, @wordpress/html-entities).

• Other small common processing: Packages for small tasks like parsing date strings (@word-
press/date), manipulating URLs and working with keycodes.

8Gutenberg release process, (2019). https://wordpress.org/gutenberg/handbook/contributors/develop/release/.

https://nl.wordpress.org/plugins/gutenberg/
https://wordpress.org/gutenberg/handbook/contributors/develop/release/

188 CHAPTER 9. GUTENBERG

• Other major common processing: This includes tasks like making API-requests (@wordpress/api-
fetch), internationalization (@wordpress/wp-i18n) and accessibility (@wordpress/a11y).

9.5.3.1 Instrumentation

For logging information about the system the native JavaScript methods console.log, console.error
and console.warn are used. To prevent temporary log statements making it into production code there is
an ESLint rule in place that does not allow these log statements, except if they are explicitly allowed by
disabling this rule.

9.5.4 Standardization of Design

Within Gutenberg, all content has the same internal structure called a block. Blocks are hierarchical units,
meaning that each block can be a parent or child to another block. Within Gutenberg, it is possible to create
custom blocks. To ensure the compatibility of these blocks with the parser and serializer, each block needs to
have the same software design. Below, we briefly discuss the most important parts of this design, a complete
overview of the internal block structure is shown in the figure below.

1. plugin.php: this file contains the plugin information needed to retrieve a block and list it as an
available plugin in the plugin library of Gutenberg.

2. init.php this file is use to enqueue all JavaScript and CSS files. To achieve this, Gutenberg has
two hooks: enqueue_block_assets on the frontend and enqueue_block_editor_assets on the
backend.

3. src/blocks.js contains the JavaScript defining the behavior and functionality of the newly created
block.

The new block is connected with Gutenberg using the registerBlockType-function from the Block API,
which is called in src/block.js. This function takes two arguments: the block name, which has to
be unique and is used to identify a block, and a block configuration object. The block configuration
object contains properties such as a display title and category, these properties have to be defined to allow
registration of a block.

To aid developers, several tutorials and guidelines exist, which can be found in the Gutenberg handbook.
Gutenberg documents its block API and a list of block grammar containing code snippets for creating blocks.
Coding guidelines are also provided to inform each developer about coding guidelines specific to Gutenberg.

9.5.5 Standardization of Testing

Tests for each package are included in the /src/test-folder of each package and also in /test/-folder
in the Gutenberg project. End-to-end tests are included separately in e2e-tests and e2e-test-utils
folders. To ensure code is tested sufficiently and that building succeeds, a testing overview is included in the
Gutenberg repository. When testing, Gutenberg asks to take the following into account:

• The behavior(s) being tested
• The errors that will probably occur when running the new piece of code
• The correctness of the test and the risk of false positives/negatives

https://wordpress.org/gutenberg/handbook/designers-developers/developers/block-api/
https://wordpress.org/gutenberg/handbook/designers-developers/developers/block-api/
https://github.com/WordPress/gutenberg/blob/master/docs/grammar.md
https://github.com/WordPress/gutenberg/blob/master/docs/contributors/coding-guidelines.md
https://github.com/WordPress/gutenberg/tree/master/test
https://github.com/WordPress/gutenberg/blob/master/docs/contributors/testing-overview.md

9.6. TECHNICAL DEBT 189

Figure 9.7: New block file structure

• The readability of the test

The following frameworks are used:

• Jest for JavaScript testing and ESLint to enforce JavaScript code style. Using npm test will execute
the unit tests and code linting.

• Enzyme for React testing, included when running npm test
• Snapshot to test UI behavior, also included in npm test
• Google Puppeteer for end-to-end testing, run using npm run test-e2e
• PHPUnit for PHP testing, run using npm run test-php

9.6 Technical Debt

Technical debt is a metaphor that reflects overdue or additional programming work caused by choosing an
easy, short-term solution instead of a better solution that would take more time. This section analyzes the
technical debt of Gutenberg.

9.6.1 Presence of Technical Debt

We used SonarQube to detect code smells and potential bugs. Only the lib/ and packages/ directories
have been considered, to prevent analyzing test code and tooling.

https://phpunit.de/
https://eslint.org/
https://github.com/airbnb/enzyme
https://jestjs.io/docs/en/snapshot-testing.html
https://developers.google.com/web/tools/puppeteer/
https://phpunit.de
https://www.sonarqube.org/

190 CHAPTER 9. GUTENBERG

When using SonarQube’s default quality profile, a technical debt of 10 man-days (80 hours) is reported,
representing only 5% of the total project size. Manual inspection of the detected code smells reveals that
the most frequently violated rules are violated because of common practice and design choices and do not
present actual technical debt. An example of this is shown in the figure below.

Figure 9.8: Example of violated rules due to design decisions

Since the default quality profile is very strict and it penalizes very common practices, we decided to exclude
the rules in the figure from the profile. This result in a technical debt of only 7 man-days.

Other clear examples of technical debt are empty if-statements (accompanied by a TODO-statement),
functioning as a scaffold to be filled in later, dead code after a wrong refactoring or duplicate CSS rules.
Efforts have been made to reduce the latter in #14520 and #14546.

9.6.1.1 Copy-paste code

While writing this document, the Gutenberg team transitioned to Phase 2, which is centered around expanding
Gutenberg from the editor the Customizer, the part of WordPress that allows users to create their own content.
Resulting from this is a large refactor, moving components from the editor package to a package called
block-editor, an example of this is seen in PR #14420. A lot of duplicate code results from this, increasing
the risk for the Shotgun Surgery code smell. Running JSInspect yields the following result: 21 matches
found across 874 files, mostly related to the earlier mentioned refactor. These problems will likely be
resolved in the near future.

9.6.1.2 Comment inspection

One indicator of technical debt are TODO comments. At the time of writing, the Gutenberg project has a
total of 47 TODOs in the code base. These TODOs can be categorized in the following categories:

Type Occurrences Example from the code base

Needed improvements 21 // TODO: Search input should
be focused immediately. It
shouldn’t be necessary to have
‘waitForFunction’.

Suggested improvements 8 // TODO: Future enhancement
to add an upload indicator.

Removal reminders 6 // TODO: The following is for
back-compat with WP 4.9, not
needed in WP 5.0. Remove it
after the release.

https://github.com/WordPress/gutenberg/pull/14520
https://github.com/WordPress/gutenberg/pull/14546
https://make.wordpress.org/core/2018/12/08/gutenberg-phase-2/
https://github.com/WordPress/gutenberg/pull/14420
https://refactoring.guru/smells/shotgun-surgery

9.6. TECHNICAL DEBT 191

Type Occurrences Example from the code base

Research reminders 5 // TODO: Figure out a way to
generate docs for dynamic
actions/selectors.

Thoughts and questions 4 // TODO: Should we
differentiate BACKSPACE and
DELETE?

Refactor reminders 3 // TODO: Refactor click
detection to use blur to stop
propagation.

Many of these TODOs also give some indication on why the TODO was introduced, some of which are not
valid anymore. An example of this is shown in the figure below.

Figure 9.9: Example of an invalid TODO comment

When looking at this issue, we see that the issue itself was closed in October 2018, but the TODO is still
present in the code base, which indicates that these TODOs can linger for quite a while. This is shown in the
figure below.

Figure 9.10: Example of a lingering TODO

192 CHAPTER 9. GUTENBERG

9.6.2 Testing debt

To identify testing debt, issues labeled Needs Tests were reviewed. Even though this label is only used on
4/1630 open issues, they have been open for quite a while. The --coverage option in Jest was used to
generate a coverage report for each folder, file and line. This shows that the code coverage of Gutenberg is
about 50%. A snapshot of this webpage is shown in the figure below.

Figure 9.11: Snapshot of the HTML-page generated by Jest

Issue #13812 shows that the developers are aware of the need for tests. Since this issue was opened recently,
it also shows that the developers are trying to improve coverage. However, PR #14420 shows one of the
reasons why the test coverage of Gutenberg is fairly low: two code owners, @aduth and @youknowriad
decide to merge a PR with failing end-to-end test. This is visible in the figure below.

Figure 9.12: Example of a decision causing testing debt

https://github.com/WordPress/gutenberg/labels/Needs%20Tests
https://github.com/WordPress/gutenberg/issues/13812
https://github.com/WordPress/gutenberg/pull/14420

9.7. ACCESSIBILITY PERSPECTIVE 193

9.6.3 Technical debt mitigation

To mitigate technical debt, Gutenberg employs a consistent workflow starting from the creation of an issue
of GitHub. When this issue is picked by a developer he or she is guided by the extensive contributing guide
including documentation on testing, workflow and package management 9.

During development, technical debt is kept at a minimum by running several linters before allowing a
developer to commit. Examples of these linters are JavaScript, JSON and PHP linters.

After resolving an issue or when in need of help, a pull request (PR) is opened. Each PR has to include the
checklist shown below:

• My code is tested.
• My code follows the WordPress code style.
• My code follows the accessibility standards.
• My code has proper inline documentation.
• I’ve included developer documentation if appropriate.

In addition to automated tests, each pull request is reviewed manually by at least one of the code owners.
Additionally, PRs can only be merged with approval of at least one code owner.

Finally, PRs can only be merged with approval of at least one code owner. A code owner always checks
whether these requirements are met before merging the PR.

9.6.4 Impact and evolution of Technical Debt

In general, the impact of the technical debt of Gutenberg is very limited, which is remarkable for a project
that grows and evolves so quickly. When using SonarQube to analyze the five previous releases, it becomes
clear that with newer releases the amount of technical debt only increase slightly, even though the project
grows significantly. It is also visible that the number of code smells and the number of bugs that are
introduced with every release is relatively minimal.

However, the rather large testing debt of Gutenberg is one of their major issues, which reduces maintainability
and can cause undetected broken functionality with each code change. Furthermore, the various TODO
comments in the code and empty if statements make for a dirty code base, possibly discouraging contributors
to provide clean code themselves. Additionally, the large amount of duplicate code resulting from the
editor refactor and the duplicate CSS rules hinder the maintainability of the project, as required changes
are cascaded to many parts of the system. The amount of todo’s and abandoned tests as a result of rushed
pull requests are ramping up, putting Gutenberg at risk of this debt getting out of control.

9.7 Accessibility Perspective

Software accessibility refers to the ability of users – regardless of any disability or impairment – to (fully)
use the software. In order to create and maintain a WordPress website, people suffering from disabilities –
ranging from e.g. motor impairments to (color) blindness – are dependent on an accessible editor. Because

9Gutenberg contributor handbook, (2019). https://wordpress.org/gutenberg/handbook/contributors/.

https://github.com/WordPress/gutenberg/blob/master/docs/contributors/coding-guidelines.md
https://github.com/WordPress/gutenberg/blob/master/docs/designers-developers/developers/accessibility.md
https://github.com/WordPress/gutenberg/blob/master/docs/contributors/document.md
https://wordpress.org/gutenberg/handbook/contributors/

194 CHAPTER 9. GUTENBERG

they may be unable to operate certain hardware like a mouse or use assistive technologies like screen readers,
software has to adapt to this.

Although accessibility is required by just a small percentage of users, the impact of inaccessibity is significant.
Shipping an inaccessible editor might cost someone’s job, if that job depends on using WordPress with
Gutenberg. Accessibility is also a legal requirement when software receives government funding 10.

The Web Content Accessibility Guidelines (WCAG) is the most important collection of (web) accessibility
standards. WCAG has a number of levels, of which “Level AA”, and is commonly enforced by governments
11. WordPress has also committed to using WCAG Level 2.0, stating that:

All new or updated code released in WordPress must conform with the WCAG 2.0 guidelines
at level AA. 12

In the remainder of this chapter, we show that these guidelines are violated by Gutenberg regardless. We
discuss why this happened, how this could have been prevented and what can be done in order to improve
software accessibility.

9.7.1 Interview with Rian Rietveld

Rian Rietveld is the former WordPress Accessibility team lead. She resigned due to codebase and political
issues with Gutenberg. We contacted her for an interview to understand how this happened.

She cited three main issues that caused Gutenberg’s poor accessability:

• The accessibility team had communication issues due to a knowledge gap. On the one hand you
had the developers who did not know enough about accessibility to make the software accessible,
and on the other hand the accessiblity team were not knowledgable enough in React to implement
improvements themselves. Rian thinks this problem is partially caused by universities not putting
enough focus on accessibiliy in their education programs.

• Accessiblity was an afterthought in the project:

“We were kept at a distance by the developers until a big part of the project was already
done. What was then presented turned out to have big accessibility issues. Making a
project like this fully accessable in a late stage of development is almost undoable”

• The leadership of WordPress did not care enough about accessiblity, causing Automattic devel-
opers to leave accessibilty issues to be fixed by volunteers, who cannot keep up with the pace of
paid developers. Furthermore, Matt Mullenweg unexpectedly set a hard deadline for Gutenberg to be
shipped as the main editor, while the software was not nearly accessible enough at that point.

According to Rian the new Gutenberg editor is a big step back compared to the old classic editor: > “If you
replace Gutenberg with the old editor, WordPress is the most accessable CMS right now.”

10Designing software that is accessible to individuals with disabilities, (2019). https://www.washington.edu/doit/designing-software-
accessible-individuals-disabilities.

11Making your service accessible: An introduction, GOV.UK. (n.d.). https://www.gov.uk/service-manual/helping-people-to-use-
your-service/making-your-service-accessible-an-introduction.

12WordPress coding standards, (2019). https://make.wordpress.org/core/handbook/best-practices/coding-standards/accessibility-
coding-standards/.

https://www.washington.edu/doit/designing-software-accessible-individuals-disabilities
https://www.washington.edu/doit/designing-software-accessible-individuals-disabilities
https://www.gov.uk/service-manual/helping-people-to-use-your-service/making-your-service-accessible-an-introduction
https://www.gov.uk/service-manual/helping-people-to-use-your-service/making-your-service-accessible-an-introduction
https://make.wordpress.org/core/handbook/best-practices/coding-standards/accessibility-coding-standards/
https://make.wordpress.org/core/handbook/best-practices/coding-standards/accessibility-coding-standards/

9.7. ACCESSIBILITY PERSPECTIVE 195

As one of the biggest issues she mentioned the fact that the sidebar, containing all options of the editor, is
completely unusable using just a keyboard, because blocks are deselected when navigating to the sidebar.
By conducting the Gutenberg acccessibility test ourselves, we verified that this issue is still not resolved
months after her resignation. This test also revealed two other accessibility issues which we reported on
GitHub: #14753 and #14754.

9.7.2 Current Situation

9.7.2.1 Workflow

Since the Gutenberg development team is rather small, the core-WordPress accessibility team is responsible
for accessibility testing and reviewing for Gutenberg. To ask the WordPress-core team for a review or advice,
the Gutenberg repository contains labels Needs Accessibility Feedback and Accessibility used for
issues and pull-requests. The core-team discusses these issues and PRs during their weekly bug-scrub and/or
team meeting on Slack, where they have their own #accessibility-channel. The discussions are often led by
@afercia, who is committed to keep WordPress accessible and often reviews the Gutenberg PRs and issues.
For each milestone, the team conducts a ticket triage to keep track of important issues.

9.7.2.2 Testing

Currently, the WordPress accessibility team is working on automated tests in the wp-theme-auditor repository,
which contains the Deque Labs’ axe accessibility testing framework. They also have opened a call for
testing, asking the WordPress community for feedback to make the tool as useful as possible.

To gather user test data specifically to Gutenberg, the accessibility team has created a step-by-step testing
plan, in which they ask users to perform a number of tasks and report their findings.

9.7.2.3 Support

To support developers and users, the core Accessibility team has its own webpage containing information,
where all resources regarding accessibility can be found, examples of this are the Accessibility Coding
Standards, Accessibility Handbook and the Accessibility Forum can be found.

9.7.2.4 Assistive Technologies

A lot of work is being put into improving Gutenberg’s accessibility 13. Currently, the following assistive
technologies are present:

1. Keyboard navigation: Gutenberg includes mechanisms for navigating through the editor, traversing
blocks and other important actions while only using the keyboard.

2. Screen navigation: Gutenberg includes several drop down menus which enable the user to navigate
through blocks without using the keyboard.

13Regarding accessibility in gutenberg, (2018). https://make.wordpress.org/core/2018/10/18/regarding-accessibility-in-gutenberg/.

https://make.wordpress.org/accessibility/gutenberg-testing/
https://github.com/WordPress/gutenberg/issues/14753
https://github.com/WordPress/gutenberg/issues/14754
https://docs.google.com/spreadsheets/d/1c7Xbb71waSl6AuzSZDDUmHR9EzinzuNShutviomxCA8/edit#gid=1818038617
https://github.com/wpaccessibility/wp-theme-auditor
https://www.deque.com/axe/
https://make.wordpress.org/accessibility/2019/03/26/call-for-testing-wp-theme-auditor/
https://make.wordpress.org/accessibility/2019/03/26/call-for-testing-wp-theme-auditor/
https://make.wordpress.org/accessibility/gutenberg-testing/
https://make.wordpress.org/accessibility/gutenberg-testing/
https://make.wordpress.org/accessibility/
https://make.wordpress.org/core/handbook/best-practices/coding-standards/accessibility-coding-standards/
https://make.wordpress.org/core/handbook/best-practices/coding-standards/accessibility-coding-standards/
https://make.wordpress.org/accessibility/handbook/
https://wordpress.org/support/forum/accessibility/
https://make.wordpress.org/core/2018/10/18/regarding-accessibility-in-gutenberg/

196 CHAPTER 9. GUTENBERG

3. Audible messages: the WordPress accessibility package contains a speak function which announces
edits for users with visual impairments. To improve the readability of the Gutenberg code by a screen
reader, ARIA landmarks are used. These and other used landmarks can be found here.

4. High-contrast mode: the high-contrast modes helps users with vision issues by only using high-contrast
colors and a black background.

5. User accessible content: an essential part of the Gutenberg editor is the ability for users to create their
own content. To ensure the accessibility of the content, the guidelines from the handbook are included
in the editor, whenever a user (unintentionally) violates these rules a warning is shown to alert the
user.

To ensure a consistency in these technologies throughout the whole WordPress platform, each JavaScript
component with built-in accessibility mechanisms is published in NPM to encourage and allow the reuse of
these components. Besides this, WordPress also released a plugin to help with the most common accessibility
issues.

9.7.3 Pressing Issues

Two topics are repeatedly addressed during accessibility meetings: 1) updating the User Hand-
book and 2) automated accessibility testing. There had passed weeks without any update on the
user handbook regarding documentation on accessibility for developers working on the Gutenberg
Project. However, in a recent meeting, it was announced a draft would be submitted within a week
(https://make.wordpress.org/accessibility/2019/03/29/accessibility-team-meeting-notes-for-3-29-2019/).
Automated accessibility testing is currently being addressed with regards to WordPress themes 14, but is still
not addressed for Gutenberg specifically.

All issues regarding accessibility are categorized by priority in the ticket triage, ranging from ‘normal’ to
‘high’ to ‘omgbbq’. From this, we can see that keyboard navigation related issues are currently prioritized.
As also stated in the accessibility meeting on 15 March, the issue #13663 related to improving keyboard
navigation between the block inspector and the block content, is one of the keystone items they want
addressed 15. Prioritization around focus management specifically regards focus management around the
block toolbar (#6165, #6336, #11774).

Conclusively, they are anticipating that the WP Campus accessibility audit of Gutenberg will be delivered
soon, and may contain important information for them to absorb 16.

9.8 Conclusion

Over the course of this chapter, we analyzed various aspects of WordPress’ core editor Gutenberg. Having
been rapidly developed and shipped to power over one third of the web only last December, Gutenberg has
already established itself as a solid page building platform.

14Call for testing: Wp-theme-auditor, (2019). https://make.wordpress.org/accessibility/2019/03/26/call-for-testing-wp-theme-
auditor/.

15Accessibility team meeting notes: 3/15/2019, (2019). https://make.wordpress.org/accessibility/2019/03/21/accessibility-team-
meeting-notes-3-15-2019/.

16Accessibility team meeting notes: 3/15/2019, (2019). https://make.wordpress.org/accessibility/2019/03/26/accessibility-team-
meeting-notes-3-22-2019/.

https://make.wordpress.org/accessibility/handbook/markup/
https://make.wordpress.org/accessibility/handbook/markup/
https://docs.google.com/spreadsheets/d/1c7Xbb71waSl6AuzSZDDUmHR9EzinzuNShutviomxCA8/edit#gid=1818038617
https://github.com/WordPress/gutenberg/issues/13663
https://github.com/WordPress/gutenberg/issues/6165
https://github.com/WordPress/gutenberg/issues/6336
https://github.com/WordPress/gutenberg/issues/11774
https://make.wordpress.org/accessibility/2019/03/26/call-for-testing-wp-theme-auditor/
https://make.wordpress.org/accessibility/2019/03/26/call-for-testing-wp-theme-auditor/
https://make.wordpress.org/accessibility/2019/03/21/accessibility-team-meeting-notes-3-15-2019/
https://make.wordpress.org/accessibility/2019/03/21/accessibility-team-meeting-notes-3-15-2019/
https://make.wordpress.org/accessibility/2019/03/26/accessibility-team-meeting-notes-3-22-2019/
https://make.wordpress.org/accessibility/2019/03/26/accessibility-team-meeting-notes-3-22-2019/

9.8. CONCLUSION 197

The most important stakeholders are the WordPress Foundation and Automattic. Matt Mullenweg, the
founder of WordPress, is a key figure behind these organizations. The project exists in a rich ecosystem of
open source tooling and devoted contributors.

Gutenberg consists of many different, independent packages which have distinct responsibilities. This
reduces code duplication and promotes re-use of existing packages, but managing these packages can be
challenging.

Taking into consideration the rapid development of the project, Gutenberg has a relatively low amount of
technical debt. However, some debt is significant or has been lingering for a long time, which needs more
focus from the core team.

Lastly, the accessibility of Gutenberg was analyzed. We interviewed Rian Rietveld, former WordPress
Accessibility Team lead, and found that accessibility was often overlooked during development and only
fixed as an afterthought. Because accessibility is essential to so many of us, we feel that not only Gutenberg
has to focus more strongly on this, but software developers in general.

198 CHAPTER 9. GUTENBERG

Chapter 10

Home Assistant

By Obinna Agba, Gijs Reichert, Mark Schrauwen, Zhiyue Zhang

10.1 Table of Contents

1. Introduction
2. Stakeholders
3. Context View
4. Technical Debt
5. Development View
6. Functional View
7. Conclusion

10.2 Introduction

More and more devices are being created with internet—aware capabilities. These devices, collectively
called Internet of Things (IoT), allow for remote monitoring and control. However, there is currently no
agreed upon standard for connecting these devices and controlling them from a unified interface. This is the
problem that Home Assistant (HA) seeks to solve. HA aims to be a controller hub where users can monitor
and control all the IoT devices in their houses. It also allows for integration of external data services to
augment the capabilities of the connected devices and improve the overall user experience. What began as a
simple script by founder Paulus Schoutsen to control a few smart devices in his house has over the last five
years grown into one of the most popular IoT hub solutions today and continues to grow. The rich open
source community involved in this project and the pervasive nature of IoT devices make HA an interesting
choice for this analysis.

199

https://github.com/teliov
https://github.com/GGeezes
https://github.com/yoflippo

200 CHAPTER 10. HOME ASSISTANT

10.3 Stakeholders

An in depth analysis of the stakeholders (including Pull Requests) can be found in the appendix.

This section provides an overview of the various stakeholders that are involved with the HA project. The
roles, power and interest of different stakeholders have been analyzed and summarized in the section below.

A stakeholder in the architecture of a system is an individual, team, organization, or classes
thereof, having an interest in the realization of the system. [1]

10.3.1 Rozanski and Woods classification

Using the book “Software Systems Architecture” of Rozanski and Woods [1] the HA project was analyzed
to determine the stakeholders that apply to this project.

Table 1: stakeholder overview

Stakeholders Description

Acquirers Acquirers are stakeholders that oversee the
procurement of the system. The company Nabu
Casa provides project funding. Also, Ubiquiti
Networks has hired Paulus Schoutsen to reach
the HA goals.

Assessors Although there is no clear assessor role for one
person or team, there is a clear structure to
ensure conformance to standards, legal
regulations and the privacy policy. Every
contributor has to sign the Contributor
License Agreement (CLA) which is based on
the Apache 2.0 license. [2] A github bot makes
sure that the tag cla-signed or cla-not-signed is
attached to each pull request to ensure the CLA
is always signed before it can be merged.
Every pull request is then checked by relevant
code owners and/or important core
contributors/maintainers.

Communicators The most important communicators are the
core team members, Discord moderators and
the documentation. Of the core team
members, founder Paulus Schouten
[@balloob](https://github.com/balloob)) is an
important communicator who spoke at a state
of the union meetup for HA which was
hosted by ING in Amsterdam.

Users The users of HA are mostly people with
technical and/or programming background
with an interest in automating their homes.

https://www.nabucasa.com/
https://www.nabucasa.com/
https://www.ui.com/
https://www.ui.com/
https://www.home-assistant.io/privacy/
https://github.com/home-assistant/home-assistant/blob/dev/CLA.md
https://github.com/home-assistant/home-assistant/blob/dev/CLA.md
https://github.com/orgs/home-assistant/people
https://www.home-assistant.io/docs/
https://www.home-assistant.io/blog/2018/11/16/state-of-the-union/
https://www.home-assistant.io/blog/2018/11/16/state-of-the-union/

10.3. STAKEHOLDERS 201

Stakeholders Description

Testers Testing is done using unit and integration tests
which are triggered to run in multiple different
configurations on the Continuous Integration
platform Travis CI. After each run of tests, the
tool Coveralls is called to check the code
coverage. The unit and integration tests are
written by various developers contributing to
HA.

Developers The developers of HA are all the people
contributing to the repositories. There is a core
team of developers and a large group of users
that contribute code.

Support staff The support staff consists of the Github
community and the Discord Server where you
can ask questions and receive support from the
community.

Suppliers Some of the most important suppliers are
Github, Python, Docker and Travis. These
suppliers make sure the project can be
developed, maintained, tested and used. There
are more suppliers that enable HA to function.

Maintainers Most components and platforms in the HA
project have an associated codeowner.
Whenever a piece of code is touched that
someone “owns”, they will be called to review
the pull request. This way the person with the
most experience with that piece of code will
always be called as a reviewer. These code
owners together with other core developers
such as founder
[@balloob](https://github.com/balloob) can be
regarded as the maintainers of HA.

Table 2: extra stakeholders

Stakeholders Description

Associated Projects Different GitHub projects are associated with
HA. Home-assistant.io which builds the
documentation for the HA project and
home-assitant-polymer which builds the fronted
for HA. Another project, hassio, builds the first
private cloud supervisor for home automation.

End-users Users of HA with only an interest in using the
HA (not developing).

https://github.com/home-assistant/home-assistant/blob/master/CODEOWNERS
https://github.com/home-assistant/home-assistant.io
https://github.com/home-assistant/home-assistant-polymer
https://github.com/home-assistant/hassio

202 CHAPTER 10. HOME ASSISTANT

Stakeholders Description

Translators This project is translated in at least 49 languages
with many translators supporting the project and
translating new strings and components.

10.3.2 Power versus Interest graph (PI Graph)

The Power/Interest (PI) graph in Figure 1 is used to visualize the PI relationship for the stakeholders as
well as other entities of the context model. It was introduced by Gardner et al. [2] to visualize the relative
importance of stakeholders.

10.3.2.0.1 Developers HA is highly influenced by the core developers. They are largely responsible for
which new features are added. Also, some members of the core team earn income (see Context View) from
their work on the project, hence the high interest and power.

10.3.2.0.2 Components HA primarily aims to be a control hub for IoT devices. As a result, its efficacy
is largely dependent on the number of devices and services which it can integrate. The protocols exposed
by these devices hence have a large influence on the architecture of HA. However, manufactures of
these devices/service do not consider the effects of their design and implementation choices on HA’s
architecture/design.

10.3.2.0.3 Competitors Competitors of HA would typically have a relative low interest in HA. Also,
and especially because of HA’s non-commercial nature — activities of its competitors do not affect the
direction of the project as a whole.

10.3.2.0.4 Funding Funders have a high interest in the project hence their decision to fund but they have
limited influence on the project’s direction. This low influence is due to the decision of the funders to allow
the core developers maintain autonomy on the project. Although the amount of influence funders have is
debatable, the true open-source nature of the project will most probably mean the project will suffer from
funding being cut at first but will eventually find a way to continue.

10.3.2.0.5 Other PI Groups The sponsors can be considered to be in between quadrants. Although the
platforms provided by the sponsors are important, they do not have that much power. Whenever they decide
to quit or influence the project the developers can decide to move to another platform. Of course, switching
is most of the time undesirable as it is time-consuming and requires changes. However, when a sponsor
would leave or demand changes there will most likely always be an alternative.

10.4. CONTACT PERSONS 203

10.4 Contact persons

The HA project is maintained by a group of core developers from which the following are potential contact
persons:

1. Paulus Schoutsen ([@balloob](https://github.com/balloob)) creator and core developer and contact
person for this project.

2. Fabian Affolter ([@fabaff](https://github.com/fabaff)) core developer.

Based on [4] and [5].

Figure 10.1: The Power-Interest Graph

Figure 1: The Power-Interest Graph

204 CHAPTER 10. HOME ASSISTANT

10.5 Context View

Rozanki and Woods in their book Software Systems Architecture define the context view as follows: > The
Context View of a system defines the relationships, dependencies and the interactions between the system
and its environment i.e the people, systems and external entities with which it interacts.

This analysis adheres closely to the definition put forward by Rozanki and Woods. The following sections
give a detailed view of the various components which comprise the context view.

10.5.1 System Scope and Responsibilities

At the core of HA are the IoT devices. In recent years, the number of IoT devices has increased but there
has not been any formal standard for the interconnection of these devices or some central control system for
all devices. HA seeks to solve this by providing the following:

• A central hub which displays device state in real time
• Options to control connected devices.
• Allow the definition of event based triggers for devices.
• Allow for automated home control while providing a manual override option.
• Running locally instead of the cloud.
• Blend in with existing IoT control workflows as opposed to replacing them.

This scope definition provides a guideline for the development of HA.

10.5.2 External Entities

HA being a control hub means requires that it interacts with many external platforms/systems. These
external systems are classified in three high-level categories:

1. Development Systems
2. Deployment Systems
3. Integration Systems

10.5.2.1 Development Systems

These refer to the systems with which HA is built.

10.5.2.1.1 Programming Language(s) HA as a whole is made up of two parts: * HA Backend * HA
Frontend

The backend is developed using Python (version 3.5 and above). The frontend is developed using Javascript,
CSS and HTML. More specifically, the frontend uses Polymer a reusable web components library.

https://www.python.org/
https://www.polymer-project.org/

10.5. CONTEXT VIEW 205

10.5.2.1.2 Testing HA uses Tox for automating and running unit tests in the backend. The frontend
utilizes Mocha which is a Javascript testing framework. Standardization of Testing provides a more detailed
description regarding testing.

10.5.2.1.3 Source Control and Issue Management HA uses Github for source control management.
It makes extensive use of Github’s issue tracking system for managing issues in the project and Github’s
pull request feature with which issue fixes and development of new features are managed.

10.5.2.1.4 Continuous Integration HA has a detailed continuous integration pipeline for automating
the build and testing process. For the backend, this pipeline involves the following:

• Hound which is used to check for violations against the project’s style guidelines.
• Travis CI which is used to run the projects test.
• Coveralls which is used to track the test coverage of the project

For the frontend, the continuous integration pipeline involves the following:

• Travis CI which is used to run the projects test.
• Netlify which is used to generate a running preview of the front end

10.5.2.2 Deployment Systems

This refers to the platform(s) where HA software can run on. HA can run on most linux distributions but the
authors of the project recommend deploying on a Raspberry PI. In addition, they provide Hass.io which is a
system based on a custom operating system HassOs. Hass.io provides an easy to use solution for setting up
and managing HA on a Raspberry Pi.

10.5.2.3 Integration Systems

These refer to all the devices, systems, interfaces which HA aims to control or track. These entities are
a major part of HA as the project’s value is dependent on the quality and quantity of the integrations it
provides. At the time of writing, there are 1310 of such entities. These entities (or components in HA lingo)
are subdivided into the following categories:

• Air Quality
• Alarm Control Panel
• Binary Sensor
• Climate
• Cover
• Fan
• Light
• Lock
• Media Player
• Remote
• Sensor
• Switch

https://tox.readthedocs.io/en/latest/
https://mochajs.org/
https://github.com/home-assistant
https://houndci.com/
https://travis-ci.org/
https://coveralls.io/
https://travis-ci.org/
https://www.netlify.com/
https://www.home-assistant.io/hassio
https://github.com/home-assistant/hassos

206 CHAPTER 10. HOME ASSISTANT

• Vacuum
• Water Heater
• Weather

While the above classification relies on functionality as a distinctive characteristic, it is also possible to
classify these integrations based on the interface to HA. Examples of grouping based on interface would
be: connection via local wireless network (e.g remote door bell), control via the cloud (e.g Amazon Echo),
communication protocols (e.g MQTT, ZWave etc).

10.5.3 Funding and Sponsors

For many open source projects funding is often a pain point. There are currently two prominent sources of
funding for the HA project:

1. Ubiquiti Networks

Ubiquiti Networks hired HA founder Paulus Schoutsen to work on HA. This allowed him to work full-time
on the project.

2. HA Cloud (Nabu Casa Inc)

Paulus Schoutsen together with Pascal Vizeli and Ben Bangert, also key contributors, started Nabu Casa Inc
to provide a subscription based cloud extension of HA. The team of Nabu Casa still contribute directly to
HA and the revenue from the subscription service helps fund their work on HA as well.

10.5.4 Sponsors

HA receives sponsorship mainly in the form of free subscriptions to services from the following platforms:

1. Github
2. TravisCI
3. CloudFlare
4. Discourse

10.5.5 Competitors

HA is not the only player in the IoT market which aims to be a central control hub for all devices. There are
two kinds of competitors with HA: Direct and Indirect competitors

10.5.5.1 Direct Competitors

These competitors perform a similar function and can be exact HA replacements. Examples of these include:

• Wink Hub
• IoBroker
• Senic

https://www.wink.com/
http://www.iobroker.net/
https://www.senic.com/en/

10.6. TECHNICAL DEBT 207

10.5.5.2 Indirect Competitors

These competitors can be used instead of HA but are not exact replacements. Also, the HA team provides
integrations to these Indirect competitors which means that they can coexisit with HA. Examples of these
include:

• Amazon Echo
• Apple Homekit
• Google Home

10.5.6 Community

HA has a vibrant community both of developers and users. The following platforms are used by the HA
Team/Community.

• Github This is used to manage the code for the various components of HA
• Discord This provides a more informal and supportive platform where users can get help with problems

with running HA
• Discourse This is a forum for have discussion around HA including its development and usage.
• Blog This is mainly used as an announcement forum for updates to HA and notable events. Also,

tutorials on specific HA use cases are sometimes shared.
• Hass Podcast The HA team also runs a podcast where HA related topics are discussed.

10.5.7 Context Model

The context view describes the scope, responsibilities, relationships, dependencies and interactions around a
project. A visual depiction of these different components of the context view is given in Figure 2 below.

Figure 2: Context Model

10.6 Technical Debt

Technical Debt (TD) can be defined as the extra time needed to implement a change when code parts are not
optimally implemented. If a project suffers from, it is more expensive to maintain.

10.6.0.1 Truck Factor

The truck factor is defined as the minimum number of project members who need to leave for it to become
inactive. To determine this, first, consistent contributors (> 20 commits per year) since the project’s inception
were counted. The results of this analysis is shown below:

https://www.apple.com/shop/accessories/all-accessories/homekit
http://github.com/home-assistant/
https://discord.gg/KJ5d6CV
https://community.home-assistant.io/
https://www.home-assistant.io/blog
https://hasspodcast.io

208 CHAPTER 10. HOME ASSISTANT

Figure 10.2: The Context Model

10.6. TECHNICAL DEBT 209

Figure 3: Number of contributors with more than 20 commits

A better indicator of the truck factor would be how many developers have consistently contributed more
than 20 times over the entire project’s duration. This is shown in the figure below:

Figure 4: Consistent contributors over time

It can be seen that only 12 contributors meet these criteria. This could be taken as the truck factor.

10.6.0.2 Documentation Debt

HA has a short release cycle with a major release every two weeks. Maintaining an up to date documentation
in such cases can be a challenge. Observing the status of the documentation can give an indication of TD

https://www.home-assistant.io/blog/2018/03/24/new-release-schedule/

210 CHAPTER 10. HOME ASSISTANT

levels. The HA’s documentation is maintained in a separate repository. To ensure up to date documentation,
new features and fixes are not merged without a supporting documentation update. This results in a
non-existent documentation debt.

10.6.0.3 Issue Resolution and Pile Up

The speed with which issues are handled (Issue Resolution) and the number of issues which have persisted
over releases (Issue Pile Up) are good TD indicators. To analyse these indicators, the following were used:

• How fast are issues closed
• What are the oldest issues still open and why have they not been closed.

10.6.0.3.1 Issue Resolution The last 2000 closed issues were analyzed and grouped according to the
time between when they were opened and closed. A histogram was created from this data and is shown
below:

Figure 5: Issue resolution speed

The first 32 (0-31) bins indicate the number of days to close an issue while the 32nd bin indicates issues
closed after more than 31 days.

More than 50% of all issues were closed within a day. This indicates timely issue resolution and a low level
of TD.

10.6.0.3.2 Issue Pile Up An issue was counted as having piled up it has been open for more than two
years. The table below gives an overview of open issues older than two years and also includes the number
of closed issues for reference:

Year Issues Open Issues Closed

2014 0 8
2015 0 282
2016 3 1428

https://github.com/home-assistant/home-assistant.io

10.6. TECHNICAL DEBT 211

Year Issues Open Issues Closed

2017 33 2462

Table 3: Open/Closed issues per year

From the table above, it is seen that the number of open issues are less than 10% of the total number of
issues per year. This generally indicates a low level of TD. However, the analysis for 2018 and 2019 (so far)
shows that there is an increase in the number of issues left open as seen below:

Year Issues Open Issues Closed

2018 440 3160
2019 486 665

Table 4: Open/Closed issues most recent years

An overview of these issues shows that many of them relate to external integrations and not the HA core.
They do not adversely affect the running of the system as a whole.

10.6.1 Testing debt

Observing how much of a projects code is covered by existing tests and what kind of testing methods is a
good measure of TD.

10.6.1.1 Testing practices

Testing in HA is done using tox. As part of the requirements for new features and fixes, all existing tests
must pass. Also, see Standardization of Testing.

10.6.1.2 Test duration

The test suite is also run for different versions of Python. As a result, a full test suite run takes more than
an hour. The development guidelines however advise that tests can be run for a single Python version to
reduce the running time. This is acceptable because the continuous integration pipeline runs the full test
suite before a pull request is reviewed.

10.6.1.3 Code Coverage

Code coverage is a measure that indicates what percentage of the code base is covered by tests. The code
coverage for the main (HA) project has a 94% coverage for over 1000 files as can be seen below:

https://tox.readthedocs.io/en/latest/
https://coveralls.io/github/home-assistant/home-assistant

212 CHAPTER 10. HOME ASSISTANT

Figure 6: A screenshot from the Coveralls.io HA page

To put this in perspective the highest rated Python code coverage project on coveralls.io is 99%. However,
this project only consist of 8 files. The next best project shows a coverage of 94% but this project consist of
only 47 files.

10.6.2 Home Assistant TD in Metrics

In addition to evaluating HA on the above mentioned factors, the repository was also analyzed using some
TD tools. This section presents the results from these tools.

10.6.2.1 Sonarqube

The HA project was analyzed using Sonarqube and the results are shown below:

Figure 7: A screenshot from the Sonarqube HA page.

In summary, HA received a passing score for bugs, vulnerabilities and code smells.

https://coveralls.io/github/getsentry/sentry
https://coveralls.io/github/jakubroztocil/httpie
https://www.sonarqube.org/

10.6. TECHNICAL DEBT 213

10.6.2.2 Codebeat

HA was also analyzed using Codebeat which is an automated code review application. After the analysis,
HA was assigned a 3.63 GPA (on a 4.0 scale). In terms of code complexity, only 2% of the files were
deemed as complex. A summary of the analysis is shown in the image below:

Figure 8: A screenshot from the Codebeat HA page. This is based on a fork of the HA project.

10.6.3 Mitigating TD

The core developers of HA have taken measures to ensure that TD is kept at a minimum. Some of these
measures are stated here:

10.6.3.1 Code Style

The developer’s documentation contains a section that states which style guidelines are to be adhered to.
Also, as part of the code review process, Hound, an automated code review application, is used to check
style violations.

10.6.3.2 Code Reviews

Every new feature or fix, in addition to conforming to the development checklist and passing all tests, is also
reviewed extensively by contributors to the project. Merging happens only after approval has been given.

10.6.3.3 Code Owners

For a large project like HA it is difficult for a single person to have an in depth view of the internals of
every component. This introduces difficulty with code reviews, i.e. who is the best reviewer for a feature/fix.
To solve this problem, HA uses the Code Owners concept which indicates contributors responsible for
each part of the project. Code owners are automatically notified when changes are proposed to their parts.
This ensures that the contributor with the best knowledge reviews a feature and reduces the possibility of
introducing further debt.

https://codebeat.co/
https://developers.home-assistant.io/docs/en/development_guidelines.html
https://houndci.com/#how-it-works
https://developers.home-assistant.io/docs/en/development_checklist.html
https://github.blog/2017-07-06-introducing-code-owners/

214 CHAPTER 10. HOME ASSISTANT

10.6.3.4 TD Awareness and Accepting Feedback

Despite the checks in place, core team members also realize that the landscape of possible TD sources
increases with HA’s growth. There is also a general readiness to accept and propose constructive feedback
on the “right” way to implement a feature to avoid debt introduction.

10.6.3.5 Evolution of TD

To properly evaluate the evolution of TD, an empirical analysis was performed. 8 past major releases were
analyzed using Sonarqube. The results are presented in figure 10.

These analyzed versions span from 2016 to 2019. From the data it can be seen that while the overall TD, as
measured by Sonarqube in days, has increased steadily this increase has been very low. Also, the number of
identified bugs in the current version is lower than that of the earliest analyzed version. It is logical that the
debt associated with the project would grow as the project grows in size but from the foregoing analysis it
can be concluded that the development practices employed in the project have kept this debt growth to a
bare minimum.

10.6.3.6 Historical Analysis of TD and Corresponding Impact

To obtain a historical analysis of the TD, an empirical study was performed. 8 past major releases spanning
from 2016 to 2019 were analyzed using Sonarqube. The results are shown in figure 9 below:

Figure 9: A table with SonarQube metrics (and derivations) with regard to different project versions.

10.6.4 TD Conclusion

From the data it can be seen that the overall TD has been relatively low has been improving. Considering
the size of the project and the number of developers this is exemplary.

10.7 Development view

This view of the HA project describes how the software is composed from a development perspective. A
condensed overview is given of the most important models, procedures and standards that enable and support

10.7. DEVELOPMENT VIEW 215

the development of HA in an efficient and structured manner.

10.7.1 Module Organization

The HA source code is organized in to several modules that encapsulate specific functionality. Below, we
present HA’s module organization diagram with their dependencies.

Figure 10: Module organization.

10.7.1.1 Home Assistant modules

216 CHAPTER 10. HOME ASSISTANT

Module Description

Util module This module contains common utility functions
that can be used by other platforms and
components throughout HA. These include:
finding the current location, calculating the
distance, getting the temperature and more.

Helper module The helper module is a collection of unrelated
methods and is always instantiated as a
singleton. In this HA project, the helper
module contains functionality for validation,
discovery and other helper functions for
various components.

Bootstrap module The bootstrap module has the following
functionalities: Set up the logging, try to
configure HA from a configuration dictionary
stored on disk and start all components. The
setup dynamically loads required components
and its dependencies. It also tries to start all
enabled components that are found in the
configuration.

Config module The config module checks if the HA
configuration file is valid and parses the
configuration if it is. This configuration
contains all the information of which
components and settings are enabled in HA.
When there is no configuration file found a
default configuration will be used.

Const module The const module is using to constants used by
HA components.

Core module The core module is the main module of the HA
system, which uses synchronous and
asynchronous methods to deal with all inputs
and outputs.

Exceptions module The exception module contains all custom
Exceptions that are used throughout HA.

Loader module The loader module is using for loading HA
components. A quote from the
developers:Components can be accessed via
hass.components.switch from your code.
If you want to retrieve a platform that is part of
a component, you should call get_component
(hass, switch.your_platform). In both cases
the config directory is checked to see if it
contains a user provided version. If not
available it will check the built-in components
and platforms.

10.7. DEVELOPMENT VIEW 217

Table 5: Home Assistant modules

10.7.2 Common Processing

Common processing approaches address aspects of the architecture of HA that require a standard approach
across the whole system. This is a key task as it contributes to the overall technical coherence of the system
and clarifies how and where processing is done.

Figure 11: Home Assistant layers overview.

10.7.2.1 Modularity

The HA project contains multiple directories like home-assistant.io, docs for documentation, tests for the
homeKit accessory-information service tests, Github for the PR template, scripts for project scripts, and
virtualization for environment setting.

10.7.2.2 Application layer

The application layer of HA is used to separate the web layer from the application layer (also known as the
platform layer). This allows you to scale and configure both layers independently.

10.7.2.3 DB layer

The database layer in HA allows you to write and read data between other layers and database. The default
database used by HA is SQLite, and the database file is stored in your configuration directory the DB layer
(SQLite) is the common processing for the HA server.

218 CHAPTER 10. HOME ASSISTANT

10.7.3 Standardization of Design

10.7.3.1 Internationalization

The HA internationalization project includes preparing platforms and the frontend for localization, as
well as the actual translation of localized strings. Platform translation strings are stored as JSON in the
home-assistant repository. Custom components cannot take advantage of Lokalise for user submitted
translations.

10.7.3.2 Maintainability

The documentation of HA are very important to record each product demand and issues. To standardize the
software design, the documentation aspect should be considered, in HA, the language, word formatting, text
style also should be objective and not gender favoring, polarizing, race related or religion inconsiderate.

10.7.3.3 Renaming Pages

Renaming is also standardized. It can happen that a component or platform is renamed, in this case the
documentation needs to be updated as well. If you rename a page, add redirect_from: to the file header and
let it point to the old location/name of the page.

10.7.3.4 Template

The HA project makes the template for formatting documentation. All examples containing Jinja2 templates
should be wrapped outside of the code markdown, and some static file are not allowed be used in template,
such as states.switch.source.state.

10.7.3.5 Technical cohesion of the system

HA uses Python as development language, and implements commonly used middleware, external API’s
(REST API, WebSocket API, Server-sent event) for extension.

10.7.4 Standardization of Testing

The HA project uses tox to standardize and automate their tests. This wrapper sets up the virtual environment
and runs all tests, including validation of code style and documentation style. The tests are written using the
Python unittest module.

The project uses Travis CI as continuous integration tool. This is set up to run on every pull request and
tests against different versions of Python 3 to ensure that the release will be stable across different versions.
When the test suite has completed all tests, the code coverage is checked by Coveralls.

https://lokalise.co/
https://tox.readthedocs.io/en/latest/
https://travis-ci.org/home-assistant/home-assistant
https://coveralls.io/github/home-assistant/home-assistant

10.7. DEVELOPMENT VIEW 219

Also, the guidelines and testing specifications stipulate that new features must include tests and where not
possible (as in the case of features depending on external devices) should be explicitly excluded from being
tested.

10.7.5 Instrumentation

The most important monitoring tools available are the logging system and the server-sent events stream. For
the logging HA makes use of the very popular Python module logging. To tune the verbosity of logging you
can change the log-level, because most of the time verbose logs are unnecessary.

The server-sent events stream is available to subscribe to as a client. This provides a way to receive
messages without Python logging to monitor HA.

10.7.6 Codeline organization

The codebase of the HA can be found on the Github platform and is fully opensource. To develop features,
fix issues or contribute code you will have to set up a development environment. In this development
environment one should use a fork of the upstream dev branch as base. By creating a Pull Request to the
home-assistant dev branch on github Travis CI is triggered the pull request to run the all the tests in the
suite. Next to this, automated code review tool HoundCI is triggered by a pull request as well to check for
code-style violations.

The HA project makes a new release every 14 days on average. These releases include the latest bug-fixes,
features and components that have been included and approved by founder @balloob. Before anything can
be included in a release it has to pass all tests in the test suite and pass the tests of pydocstyle, pylint and
flake8. These tools are used to comply with the PEP8 standard and keep the code and docstyle compliant
with the PEP8 and PEP257 standards. The releases are built using custom tools which provides the different
options to install HA. The most important builds are: HassOS Docker Hypervisor, HassIO the private cloud
supervisor and the HA program itself. HassOS and HassIO are not required to run the HA program but
make it easier for user to install and deploy HA and add-ons. HA is not built as it is a Python program.

Subject Description

Source File Organization Divided into platforms, components and a core.
Components and platforms can be enabled to run using the
configuration.

Module groups Every component is organized to be a Python module which
can be imported.

Directory structure The top-level directory consists of docs, homeassistant, tests,
script and virtualization. The homeassistant directory
contains the core and the directories for the
platforms/components.

Building the source The homeassistant program itself is not built, as this is a
Python program there are no binaries that are built and
released. Instead, the code is released and run using a
Python 3 interpreter.

https://developers.home-assistant.io/docs/en/development_guidelines.html
https://developers.home-assistant.io/docs/en/development_testing.html
https://docs.python.org/3/library/logging.html
https://developers.home-assistant.io/docs/en/external_api_server_sent_events.html
https://developers.home-assistant.io/docs/en/development_environment.html

220 CHAPTER 10. HOME ASSISTANT

Subject Description

Scope, type & running of tests Almost every part of HA is unit tested. Next to the unit
testing the code and documentation is validated using tools
which are configured to all run using tox.

Source release The HA program is released on github and continuously
tested using Travis CI. Other parts of the HA project such as
HassOS are built and then published on the website.

Source control Source control is done using Github. The HA project is
organized into multiple repositories, each with a different
purpose, such as for example the backend or the website.
Development is done by creating pull requests against the
upstream *dev* from your own forked repository.

Table 6: Codeline Model Overview

10.8 Functional View

This section describes the functionalities, capabilities, interfaces and interactions of the HA project.

10.8.1 Functional Capabilities

From a high-level overview one could say that HA has three important capabilities, these are:

1. Receive and process events, which includes messages from sensors connected to HA.
2. Control devices and send events to other devices such as notifications or status updates.
3. Provide a centralized interface and an overview of everything connected to HA with a web-accessible

user interface.

We can see how these functionalities of HA interact in figure 12 below. The Home Control part of the
architecture is the core of the architecture. The user can interact with the Home Control using one of the
interfaces provided by The HA project, more on this can be found below in the interfaces section.

Figure 12: Home Assistant high-level functionalities.

10.8.1.1 Core Functional Components

As seen in the figure above, Home Control is central to HAs functionality and is referred to as the core of
HA. This core functionality is split into four major functional categories:

• Event Bus
• State Machine
• Service Registry
• Timer

10.8. FUNCTIONAL VIEW 221

Figure 10.3: The HA landscape

222 CHAPTER 10. HOME ASSISTANT

Event Bus HA relies heavily on an event based architecture. The core part of HA provides an event bus
which facilitates communication between components, the core and other external entities. Events are
triggered i.e placed on the bus by connected devices/services for instance when some action is taken by the
device. Similarly, other connected devices can listen in on the bus for events from interesting devices and
take action based on such events.

State Machine Central to HA being able to control connected devices and provide an overview of the state
of the connected devices is its ability to manage the device state. The State Machine provides a store for the
state of each connected device. When a device state is changed, it triggers an update of the state machine.
The state machine updates its internal store and fires an event on the bus with the updated state.

Service Registry Connected devices might offer services. As an example, a connected media player would
offer a play/pause/stop service for media files. The service registry allows such devices to register the
services that they offer as well has handlers for such services. Users of the system or other connected devices
can also request for registered services using the interface provided by the Service Registry.

Timer The Timer serves a function analogous to a clock in a synchronous processor. It fires a time_changed
event every second. Connected devices can listen for this event and use it to schedule state polling or other
recurring actions.

10.8.2 Design Philosophy

According to the vision of founder Paulus Schouten (@balloob) HA should run at home and everything
you automate should work flawlessly. Therefore, the design of HA is as modular as possible, allowing to
keep the installation as small as necessary while keeping the system maintainable and extendable. The
architecture and technologies used in HA follow this vision, which results in HA scoring high on design
qualities such as separation of concerns, cohesion and coupling.

10.8.3 Home Assistant Extensions

While the Home Control part of the HA interface is responsible for controlling/managing connected devices
the HA Extensions provide the interfaces with which devices can be controlled and managed. These
extensions are called Components in the HA ecosystem. There are two broad categories of components:

• IoT Domain Components
• Task Domain Components

IoT Domain Components These components interact with connected devices. They update device state in
the state machine and expose services offered by the devices via the service registry.

Task Domain Components These components are more automation centric. They typically listen for events
and state updates from IoT domain components and based on pre-defined logic perform some action. An
example might be a play_wakeup_music component which triggers the play service of a connected media
player on sunrise.

https://www.home-assistant.io/blog/2016/01/19/perfect-home-automation/

10.8. FUNCTIONAL VIEW 223

10.8.4 Interfaces

HA provides a number of external interfaces for interaction with the system.

10.8.4.1 Lovelace

Lovelace is a web based graphical user interface with which users can manage connected devices. It allows
the user to add new devices, request for registered services, monitor device state, etc.

10.8.4.2 Hass.io Command Line Interface

HA can be setup on any operating system but Hass.io, which was designed with embedded devices like the
Raspberry PI in mind, simplifies the setup process. It provides a command line interface which allows the
user to start or stop HA, view generated logs or query the state of connected hardware.

10.8.4.3 IOS Companion App

HA supports integration with a companion IOS application. This interface exposes information about
connected devices and allows the user to manage devices and update configuration entries.

10.8.5 The bigger picture

When combined, the capabilities, core components, extensions and interfaces together give an overview of
capabilities and functionality the HA system as a whole. This can be seen in the image below.

https://www.home-assistant.io/lovelace/
https://www.home-assistant.io/hassio/
https://www.home-assistant.io/hassio/commandline/
https://www.home-assistant.io/docs/ecosystem/ios/

224 CHAPTER 10. HOME ASSISTANT

Figure 13: Home Assistant full architecture schematic.

The core is made accessible by the interface options while the separation of the core and components make
it easier to extend the core functionality. Next to this, a user can configure the system to trigger on events

10.9. CONCLUSION 225

that are sent over the event bus and display information in the frontend of HA.

10.9 Conclusion

This chapter analyzed a number of aspects of the Home Assistant project. It can be concluded that the
architecture is well-designed and HA is growing in popularity and number of active and contributing users.

The different stakeholders in the Home Assistant project were extracted and presented. Next, the Context
View revealed the interactions of the project with different entities. The TD, Development View and
Functional view then shed light on how the system is developed, maintained, tested and used.

In Conclusion, despite the rapid growth in terms of size and number of components the system remains
clearly structured and is well maintained. Next to this, the guidelines, documentation and active community
make it easy to contribute to the project which in turn supports the project’s growth.

10.10 References

• [1] Rozanski, N., & Woods, E. (2012). Software systems architecture: working with stakeholders
using viewpoints and perspectives. Addison-Wesley.

• [2] Apache License, Version 2.0, January 2004. http://www.apache.org/licenses/LICENSE-2.0.txt

• [3] Gardner, J. R., Rachlin, R., & Sweeny, A. (1986). Handbook of strategic planning. John Wiley &
Sons.

• [4] https://codescene.io/projects/4449/jobs/12494/results/social/authors

• [5] https://www.linkedin.com/in/schoutsen

10.11 Appendix

We analyzed 10 Pull Requests (PR) to identify stakeholders and decision-making process. The PRs were
selected by looking at the most commented closed PRs on github and selecting 5 rejected and 5 merged
ones. The PRs that were used in this analysis are listed below.

Approved PRs

226 CHAPTER 10. HOME ASSISTANT

Pull Request Description

Rflink gateway addition PR was opened by @aequitas with the code
still in a rough state as WIP. A bot
automatically assigns reviewers, one of which
was @balloob (Founder of Home-assistant).
Code owners are marked in the a separate file
and when working on components of a code
owner he/she will automatically be triggered to
review the PR. @balloob provided extensive
reviews and requested some changes. All of
these changes were addressed over the course
of two months. The size of the pull request
resulted in some inefficiency because
comments were missed and addressed late
because of it. Comments reveal that there is too
much documentation that contributors do not
read or are unaware of, because patterns are
introduced that they do not want (They do not
want communication over event bus)

Added new climate component from Daikin Interesting dynamic in this pull request. This
time @tinloaf provided an extensive review
and requested changes, next to that there were
quite some lint errors. It turned out the user
was new to Python and Home Assistant and got
a little impatient. For instance, the device that
was added appeared to have multiple interfaces.
And the person who opened the PR (@rofranz)
had opened another PR. The community
however, told @rofranz to first finish the
current PR. Because of the size of the commits
@tinloaf wanted someone else to do a review
as well. Which resulted in a whole lot more
suggestions and requested changes. These were
all addressed by the user and the PR got
merged. So quite a successful review structure
and collaboration as well as a good experience
for the user in the end.

Improve InfluxDB Pull Request reverting and fixing issues.
Interesting discussion on data types and
improvements for the DB. Migration script
ended up in a breaking change which in turn
got fixed.

https://github.com/home-assistant/home-assistant/pull/4547
https://github.com/home-assistant/home-assistant/pull/10983
https://github.com/home-assistant/home-assistant/pull/5238

10.11. APPENDIX 227

Pull Request Description

Add deCONZ component deCONZ is software that communicates with
Raspbee and Zigbee gateways and exposes the
connected devices. The user @Kane610
opened this PR to add functionality for the HA.
Some discussion between @balloob,
@Kane610 and @tinloaf took place about
naming conventions and on how I/O should be
addressed (never inside the events loop). Later
a big discussion was started about
implementing it ‘entities’ or ‘events’. E.g.
should a button be an entity or should it be
implemented in an event (the latter was chosen).
Finally @MartinHjelmare merged the commit.

Xiaomi vacuum as platform of new vacuum
component derived from ToggleEntity, and
services

In this PR a vacuum component is added. The
discussion mainly revolves around the way a
component has to be implemented. During
development of the PR @MartinHjelmare had
some real critical pointer to the creator of the
PR @azogue. At the end, several members of
the community applauded the work of
@azogue. Finally @pvizeli merged this PR but
the result was a flaky test as spotted by
@balloob.

Not-Approved PRs

PR Description

Add new platform AndroidTV/Android This pull request attracted some attention
because a number of people wanted the feature.
It looked promising and almost ready to merge,
but then got stuck on python-adb dependencies.
Home Assistant founder @balloob requested
changes to fix the dependencies and create a
new PyPi package and closed the pull request.
He suggests opening a new PR once the
package has been fixed meaning this PR is
closed and not merged.

https://github.com/home-assistant/home-assistant/pull/10321
https://github.com/home-assistant/home-assistant/pull/8623
https://github.com/home-assistant/home-assistant/pull/8623
https://github.com/home-assistant/home-assistant/pull/8623
https://github.com/home-assistant/home-assistant/pull/16975

228 CHAPTER 10. HOME ASSISTANT

PR Description

Add Component for PlayStation 4 consoles as
integration/config flow

New component for the Home Assistant.
Reviews resulted in a lot of requested changes
which all got addressed. At first the code was
written to support multiple PS4 devices.
However, this resulted in a few issues and to
get the component to be included this code was
omitted as they decided that not many people
have multiple PS4 devices. So they omitted
that code and merged the working code for one
device, leaving the multiple device
implementation open for now. Most important
review work was done by @MartinHjelmare,
one the active collaborators for Home
Assistant.

Improve Philips Hue color conversion The original problem description is not clear.
In a discussion between @starkillerOG and
@amelchio the problem is clarified as that the
PR tries to fix is the limited amount of colors
that can be chosen from within the HA. Finally
the PR was closed as the solution was publish
in another project (aiohue library).

Cover component for RFlink This PR was an attempt to create a new HA
component for the Somfy RTS more
specifically the RFlink. The PR was started by
@passie which has not opened a PR in the past.
Some problems are encountered with the
signing of the CLA. Then the PR is dominated
by @houndcli-bot (a bot) which reports a lot of
unused statements in the code of @passie.
Some version of the code is tested by @olskar
which is reported to work. The PR closes with
another bot statement reporting that a commit
was placed via a non-linked github account.
Finally, @passie closes the PR.

Add support for some Tuya devices. The Tuya is an IoT platform to wirelessly
connect home devices. The person who opened
the PR (@sean6541) want to design a
component for the HA. Actually, some further
research shows that the Tuya is implemented in
the HA, contrary to the final state of this PR.
The houndci-bot initially had a lot of remarks.
After some discussion and new commits
@sean6541 is showing up less frequently and
is not seen anymore. @pvizeli closed the PR
for reopening when all open comments are
addressed.

https://github.com/home-assistant/home-assistant/pull/20007
https://github.com/home-assistant/home-assistant/pull/20007
https://github.com/home-assistant/home-assistant/pull/19123
https://github.com/home-assistant/home-assistant/pull/8875
https://github.com/home-assistant/home-assistant/pull/11000
https://www.home-assistant.io/components/tuya/

10.11. APPENDIX 229

PR Description

Rfxtrx binary sensors This PR is an attempt to add a Rfxtrx sensor
ass a component to HA. This is a transceiver
for different devices in the area of domotics.
The PR started with a lot of linting comments
from @balloobbot. Some discussion about the
implementation and testing happened. Then
@balloob closed this PR because it had gone
stale by @ypollart. A few months later
@ypollart reopend another PR to add this
sensor.

https://github.com/home-assistant/home-assistant/pull/4218
http://www.rfxcom.com/epages/78165469.sf/nl_NL/?ObjectPath=/Shops/78165469/Categories/Transceivers

230 CHAPTER 10. HOME ASSISTANT

Chapter 11

IPFS

Figure 11.1: GO-ipfs

11.1 Contents

1. Introduction
2. Stakeholders
3. Context View
4. Technical Debt
5. Development View
6. Conclusion

11.2 Introduction

The Internet and The World Wide Web are considered to be some of the greatest inventions of the 20th
century. However, while the Internet is built on the principles of decentralization from the ground up, we
cannot say so about the Web itself. The majority of the websites is operated by a few hosting companies and

231

232 CHAPTER 11. IPFS

most of the static content is served by a few Content Delivery Networks (CDNs). For example, Cloudflare1

currently powers 10% of all internet requests. Since there is a central point of failure, if a provider
experiences outage, a large part of the internet goes down. Another issue with the current infrastructure is a
crisis of erased history. One cannot expect that a web address visited today will still work in several years
from now or that the content will stay the same. In fact, the average lifespan of a webpage is only 75 days2.
Last but not least, the current web is not censorship-resistant, and some governments already intentionally
restrict their citizens from having access to information3.

These were probably the main motivations why Protocol Labs was founded in May 2014 with the mission
to improve Internet technology. They started as a YCombinator company and released an initial version of
the InterPlanetary File System (IPFS) in January 2015. IPFS combines the best ideas of Git, BitTorrent
and Kademlia to provide a truly decentralized, peer-to-peer hypermedia protocol. In 2016, several modules
evolved into separate projects, namely libp2p, IPLD, and Multiformats, all of which constitute the building
blocks of IPFS.

The InterPlanetary part of the name pays a homage to Licklider’s Intergalactic Computer Network4, a
computer network concept which inspired the development of today’s Internet. In theory, IPFS could one
day be actually used on an interplanetary scale, thanks to its peer-to-peer architecture and ability to work in
disconnected networks.

11.3 Structure of IPFS Project

The IPFS project is well structured into teams to separate responsibilities. There are three project roles that
are responsible for the long term vision and coordination of teams – Benevolent Dictator for Life (BDFL),
IPFS Project Lead, and IFPS Project Coordinator. These roles are further explained in the stakeholders
section. The teams of the project are split into two types: working groups (WG) and research groups. The
working groups are developing and deploying software, while the research groups are exploring new areas.
Some former working groups (libp2p, IPLD, and Multiformats) have grown to become their own fully
separated projects.

The whole IPFS project consists of more than 200 repositories, but in our architectural description we focus
on go-ipfs, which serves as a reference implementation of the IPFS protocol. Go-ipfs being a working
group of the IPFS project has multiple relations with groups and project roles that are not part of the go-ipfs
working group. This is further explained in the power grid.

11.4 Stakeholders

In this chapter, we will identify stakeholders involved in the go-ipfs project using the categories according
to Rozanski & Woods 5, specify managing roles in the overall IPFS project and its relation to the go-ipfs
project.

1https://www.cloudflare.com/learning/what-is-cloudflare/
2http://clgiles.ist.psu.edu/papers/Computer-2001-web-references.pdf#page=5
3https://blog.ipfs.io/24-uncensorable-wikipedia/
4https://discuss.ipfs.io/t/why-the-name-ipfs/307
5Nick Rozanski and Eoin Woods. Software Systems Architecture: Working with Stakeholders Using Viewpoints and Perspectives,

2nd Edition. 2011.

https://github.com/ipfs
https://github.com/ipfs/go-ipfs
https://www.cloudflare.com/learning/what-is-cloudflare/
http://clgiles.ist.psu.edu/papers/Computer-2001-web-references.pdf#page=5
https://blog.ipfs.io/24-uncensorable-wikipedia/
https://discuss.ipfs.io/t/why-the-name-ipfs/307

11.4. STAKEHOLDERS 233

Figure 11.2: IPFS Structure

234 CHAPTER 11. IPFS

11.4.1 Roles

To properly define roles, we inspected the Protocol Labs profile on Crunchbase and various IPFS repositories
on GitHub including ipfs-mgmt, where we learned how the IPFS community operates and how it is structured.
To identify people most involved in the process of creating code in the go-ipfs project, we analyzed 20
recent (created after 1 September 2018) merged and unmerged Pull Requests with the highest number of
comments.

Pull Requests we used can be observed in the following table:

Type List of Pull Requests

Merged #5526, #5611, #5789,
#5472, #5785, #5455,
#5864, #5659, #5501,
#5649

Unmerged #5474, #5583, #5435,
#5840, #5464, #5744,
#5479,#5570, #5514,
#5849

The analysis of these Pull Requests provided us with knowledge which developers are actively taking part in
the process of code review and also that almost all Pull Request have to be finally accepted and merged by
the Captain of go-ipfs (@Stebalien).

It was also helpful to explore issues used for team discussion like a reflection issue or logs from weekly
meetings between members. From this, we noticed that the project is developed using Agile approach.
The team uses quarterly Objectives and Key Results (OKR), which helps them to communicate goals and
achievements on a quarterly basis. Developers work asynchronously and remotely, however, each week
there is a weekly call to discuss project related issues, such as the current state of their work and plans for
the future.

As contact people, it would be the most helpful to contact developers which participate most actively in Pull
Requests and also contribute a lot, as they would possibly have the most significant knowledge about the
system structure and various issues they often have to overcome. We would choose @Stebalien, @Kubuxu,
and @magik6k.

Results obtained from these various sources can be found below.

Type Stakeholders

Acquirers Acquirers are sponsors and distributors of the product. The acquirer of this project is
Protocol Labs.

Assessors These stakeholders are responsible for overseeing conformance to standards and legal
regulations. Assessors in the go-ipfs project is Protocol Labs legal department.

Communicators The interest of this stakeholder is to explain the usage of the system via
documentation and training. There are two recent and popular conferences: IPFS
Conf 2019, MIT Bitcoin Expo 2018.

Competitors ZeroNet, Storj, Burst, Genaro, MaidStafe, Dat

https://www.crunchbase.com/organization/protocol-labs#section-funding-rounds
https://github.com/ipfs/team-mgmt
https://github.com/ipfs/go-ipfs/pull/5526
https://github.com/ipfs/go-ipfs/pull/5611
https://github.com/ipfs/go-ipfs/pull/5789
https://github.com/ipfs/go-ipfs/pull/5472
https://github.com/ipfs/go-ipfs/pull/5785
https://github.com/ipfs/go-ipfs/pull/5455
https://github.com/ipfs/go-ipfs/pull/5864
https://github.com/ipfs/go-ipfs/pull/5659
https://github.com/ipfs/go-ipfs/pull/5501
https://github.com/ipfs/go-ipfs/pull/5649
https://github.com/ipfs/go-ipfs/pull/5474
https://github.com/ipfs/go-ipfs/pull/5583
https://github.com/ipfs/go-ipfs/pull/5435
https://github.com/ipfs/go-ipfs/pull/5840
https://github.com/ipfs/go-ipfs/pull/5464
https://github.com/ipfs/go-ipfs/pull/5744
https://github.com/ipfs/go-ipfs/pull/5479
https://github.com/ipfs/go-ipfs/pull/5570
https://github.com/ipfs/go-ipfs/pull/5514
https://github.com/ipfs/go-ipfs/pull/5849
https://github.com/Stebalien
https://github.com/ipfs/go-ipfs/issues/5781
https://github.com/ipfs/team-mgmt/issues/674
https://github.com/ipfs/team-mgmt/tree/master/OKR
https://github.com/Stebalien
https://github.com/Kubuxu
https://github.com/magik6k
https://zeronet.io/
https://storj.io/
https://www.burst-coin.org
https://genaro.network/
https://maidsafe.net/
https://datproject.org/

11.4. STAKEHOLDERS 235

Type Stakeholders

Developers Most of the people involved in work on IPFS are employed by Protocol Labs. People
responsible for developing new functionalities and maintaining the project are
currently: @Stebalien, @magik6k, @Kubuxu, @hsanjuan, @kevina,
@hannahhoward, @eingenito.

Investors Investors are the stakeholders providing resources to make it possible to continue the
development of the system. The main investor of the project is Protocol Labs (mostly
sponsored by Union Square Ventures, BlueYard and YCombinator), other investors
of the IPFS project are FundersClub, Digital Currency Group.

Maintainers These stakeholders are responsible for the evolution of the project. The software is in
alpha version, however, people trying to maintain the long-distance vision are
@daviddias, @Stebalien.

Suppliers Build or supply hardware and software on which system is working. In this project
software used is mostly written in Go and Bash.

Support staff IPFS has a designated community project for educating about how the IPFS and its
tools work and can be exploited. The Captain of the community project is @mikeal.

System
administrators

System administrators are people running the software once it has been deployed, and
as an idea of IPFS is to be a P2P network, users are the most obvious stakeholders of
this type. On the other hand, IPFS project has a designated team of engineers
(infra-team) in charge of deploying and maintaining core system infrastructure.

Testers These stakeholders test if the system is working and ready to be deployed. These are
developers and users using a designated TestBed.

Users This group of stakeholders uses the product and has concerns about its functionality.
Representants of this group include: web developers who want to host static files,
dapp developers, users who want to access data stored on IPFS, pinning services
(Eternum, Pinata), gateway providers (Cloudflare), and hosting providers (Neocities).

11.4.2 IPFS Roles

IPFS has some designated managing roles which are explained briefly in the table below. In the scope of this
chapter we mainly focus on the Go implementation, however, to properly understand how the management
processes works in the go-ipfs project it crucial to observe everything in the bigger picture, namely the
whole IPFS project and all of its subprojects. It is interesting to see how these projects collaborate with each
other to produce the final product.

Type Stakeholder Description

IPFS BDFL @jbenet (the original creator of the
IPFS Project)

Benevolent Dictator for Life: Lead
the IPFS Project at a long term scale.
Represent the IPFS project to a
multitude of communities. Take
responsibility for setting the direction
of the project. Set the key priorities for
the project.

https://github.com/Stebalien
https://github.com/magik6k
https://github.com/Kubuxu
https://github.com/hsanjuan
https://github.com/kevina
https://github.com/hannahhoward
https://github.com/eingenito
http://www.usv.com/blog/protocol-labs
https://medium.com/@BlueYard/protocol-labs-35ceff61b031
https://www.crunchbase.com/organization/protocol-labs#section-recent-news-activity
https://github.com/daviddias
https://github.com/Stebalien
https://github.com/ipfs/community
https://github.com/mikeal
https://github.com/protocol/infra-team
https://github.com/ipfs/iptb
https://www.eternum.io/
https://www.pinata.cloud/
https://www.cloudflare.com/
https://neocities.org
https://github.com/jbenet

236 CHAPTER 11. IPFS

Type Stakeholder Description

IPFS Project Lead @daviddias Captain of the Captains. Align teams
to build solutions for technical
challenges. The lead director of the
implementation of the protocol.

IPFS Project
Coordinator

@momack2 Ensure that teams rely on a uniform
structure with respective customizations
as needed. Create and maintain the
platform for resource allocation across
teams and projects. Ensure that there is
a steady communication flow between
teams and individual contributors.

Golang IPFS
Captain

@Stebalien The Captain takes the lead on writing or
guiding the conversation specs,
documentation, and other artifacts to
support the team. The Captain is also
the gatekeeper of the Working Group
Roadmap and accumulator of the
Working Group Knowledge, guiding
the group to make good decisions.

Golang IPFS
Technical Project
Manager (TPM)

@eingenito The Technical Project Manager
(sometimes referenced as Project
Manager, Program Manager, and cat
herder) is a team enabler. TPMs own
the Quarterly Planning process
including OKRs and Retrospectives.
They ensure that the coordination
strategy the WG selected is well
executed.

From the table above we can observe that important decisions related to IPFS are supervised by the
Benevolent Dictator for Life, the IPFS Project Lead and all Captains of all projects. The Project Captain
and Technical Project Manager are enforcing and supervising the implementation of new features or changes
in their project. Developers of go-ipfs propose changes using Pull Requests, but each of them has to be
accepted by one of the project supervisors (@Stebalien - Captain or @eingenito - TPM). Or when changes
are more significant, higher instances are involved (@daviddias - captain of captains or even @jbenet -
BDFL).

11.4.3 Power-Interest Grid

To visualize the power and interest of stakeholders, we created a power-interest grid. Stakeholders with the
most power and interest are located in the top-right quadrant. The Golang IPFS Captain and TPM are in
charge of the direct course of the project. The developers are also located in this quadrant, but have less
power.

https://github.com/daviddias
https://github.com/momack2
https://github.com/Stebalien
https://github.com/eingenito
https://github.com/Stebalien
https://github.com/eingenito
https://github.com/daviddias
https://github.com/jbenet

11.4. STAKEHOLDERS 237

Figure 11.3: Stakeholders Power Grid

238 CHAPTER 11. IPFS

In the top-left quadrant, the investors can be found. The BDFL and the Captain of Captains are somewhere
in between the top left and right quadrants. They are in charge of the overall vision and progress of the
general IPFS project. As they make top-level decisions, they have a lot of operational power, but are less
involved in the specific implementation of the go-ipfs project.

The users and projects that depend on the go-ipfs project are in the bottom right quadrant. They need to be
up to date with the project, so that any major change won’t affect them.

In the bottom left quadrant, we have suppliers. The Go language has some influence on the project. If Go
changes, the project will be affected.

11.5 Context View

The context view describes relationships, dependencies, and behaviors between IPFS and external entities.

11.5.1 System Scope

IPFS is a protocol for a distributed file system whose goal is to make content delivery truly decentralized.
Go-ipfs serves as its original and reference implementation.

It consists of a daemon and a command line interface (CLI). The daemon contains an HTTP server through
which the CLI and other apps can communicate. It is also possible to mount IPFS to /ipfs on the local
filesystem, which allows arbitrary apps to access the content stored on IPFS without communicating with
the IPFS node directly.

The Go implementation is used by end users and service providers. Web apps usually use its JavaScript
implementation as it is possible to run it in a web browser without any software installed on a client.

11.5.2 Context Model

To visualize relationships with external entities, a context model diagram has been designed.

IPFS is developed by Protocol Labs, a research and development company. Its development team is globally
distributed, just like the Internet itself. The main contributors and decision makers of the go-ipfs project
have been analyzed in the previous section.

The development including most of the decision making happens on GitHub. There are several CI tools
used for running tests and code analysis, including Jenkins, CircleCI and Travis.

IPFS depends on other projects developed by Protocol Labs, especially libp2p (a network stack for peer-to-
peer applications), IPLD (Interplanetary Linked Data), and Multiformats.

For the content to be available, it has to be present at least on a single node in the network. As end-user
nodes go offline frequently, there is still a need for servers to store a copy of data if there is a requirement for
permanent availability guarantee. Seeing this as a business opportunity, several pinning services (e.g. Pinata)
started to provide pinning of IPFS objects for a monthly fee. Another alternative would be to provide an
incentive for users to store data of other users and keep the network decentralized. Filecoin, another project
of Protocol Labs, is expected to introduce that incentive in the future.

https://github.com/ipfs/go-ipfs/blob/master/docs/fuse.md
https://github.com/ipfs/js-ipfs
https://github.com/ipfs/js-ipfs
https://protocol.ai/
https://libp2p.io/
https://ipld.io/
https://multiformats.io/
https://www.pinata.cloud/
https://filecoin.io/

11.5. CONTEXT VIEW 239

Figure 11.4: Context Model Diagram

240 CHAPTER 11. IPFS

Besides regular users, there are several parties who are interacting with IPFS. The project is interesting for
website creator tools like Neocities, which are starting to use it to host static content. Cloudflare, one of the
largest CDN providers, is running their own IPFS gateway and allows developers to connect an existing
domain using DNS to a directory stored on IPFS. Other tools that are compatible with IPFS and aim to
replace the centralized DNS are Namecoin and Ethereum Name Service.

The ultimate goal of IPFS is to replace HTTP for serving static content and make The Internet truly
decentralized. For that reason, we can see the HTTP protocol as a competitor. Freenet and ZeroNet, which
have similar goals, are direct competitors. Finally, any public distributed file system could be seen as an
indirect competitor.

The application is multiplatform and can be run on Windows, Linux, and macOS.

11.6 Technical Debt

During our research, we found that the developers are constantly paying attention to code quality and try to
maintain the quality of the software in various ways, but especially by detailed code reviews and discussions.

We analyzed the technical debt of go-ipfs in several ways. Firstly we used SonarQube, then we analyzed
code manually and in the end, we decided to check if developers discuss technical debt in Pull Requests or
in issues.

11.6.1 SonarQube Analysis

We use SonarQube 6 to analyze repository with regard to vulnerabilities, code smells and possible bugs.

Metric Bugs Vulnerabilities Debt Duplications Duplication Blocks Coverage

Value 0 0 4d 3h 1.1% 18 0.0%

As can be seen, no bugs or vulnerabilities have been discovered in the code. Also, technical debt is on a low
level as having on 4 days 3 hours. Duplications are also on the low level (1.1%). Further analysis shows that
the 324 code smells consist of:

• 69 TODO comments
• 12 not following the naming convention
• 47 defining a constant instead of duplicating literal
• 50 refactor function to reduce Cognitive Complexity
• 124 remove unused parameters

11.6.2 SOLID Violations

Generally it is not so easy to find violations of SOLID rules, however, function getOrHeadHandler in the
file go-ipfs/core/corehttp/gateway_handler.go (226 lines) is great example of violation of Single

6https://www.sonarqube.org/

https://neocities.org/distributed-web
https://blog.cloudflare.com/distributed-web-gateway/
https://namecoin.org/
https://ens.domains/
https://freenetproject.org/author/freenet-project-inc.html
https://zeronet.io

11.6. TECHNICAL DEBT 241

Responsibility Principle. Many parts of this large function could be extracted to separate functions to
improve readability and testability.

In general case, as we noticed from analysis of Pull Requests and manual analysis of the code, developers
try to follow SOLID rules and most of the function are well-written.

11.6.3 Documentation Debt

The project has two types of documentation: the folder /docs is used to explain how to use the product,
while the comments in the code are used to explain the implementation and can be used to generate
documentation using godoc. The code itself has very sparse documentation and some files do not have
any documentation at all. After analyzing the questions on the discuss.ipfs.io website, a lot of questions
concerning incomplete/missing documentation have been found. There is no visible requirement for creating
documentation in the contribution guide. The project has some substantial documentation debt that can lead
to a decrease in development speed and especially make onboarding of new contributors slower.

11.6.4 Testing Debt

To manage testing of such a complex repository, developers have some tools to perform that:

• unit tests stored in files with suffix _test.go
• ipfs-tb repository (IPFS own testbed)
• test module of the go-ipfs repository (this module contains online and offline tests of project function-

ality)

As ipfs-tb appears to be another repository which actually performs its task as testbed quite well, we
decided to focus on the analysis of test module and unit tests. Detailed description of test module is done in
development view.

By manual analysis of code we noticed two important things:

• many tests are not executed correctly (they should compare values instead of just logging)
• there is a small number of unit tests

Test module of the project and ipfs-tb repository are good examples of integration tests and environment for
manual testing.

As SonarQube is not adding both unit tests and shareness tests in its calculation, we decided to investigate
further using other tools. While investigating the CI tool codecov used by the go-ipfs team, we observed
that code coverage is on the level of 62.32%.

Some modules are tested more in depth, however, the most important module of the project, core, has only
63% of code coverage (codecov is calculating ratio between lines hit and all lines). It also is the largest
module of the project, however, by more detailed analysis of this module we observed that overall most
classes have code coverage in the range of 60-70%. We think that this number could be improved to decrease
the technical debt of the project.

https://godoc.org/github.com/ipfs/go-ipfs
discuss.ipfs.io
https://codecov.io/gh/ipfs/go-ipfs

242 CHAPTER 11. IPFS

Figure 11.5: Code Coverage

11.6. TECHNICAL DEBT 243

11.6.5 Developer Discussions

To investigate if developers discuss a lot about the possible technical debt we decided to look for a few
keywords (“technical debt”, “refactor”) in Pull Requests and issues.

In terms of discussion in issues, there are quite a few issues trying to discuss more specialized problems. As
an example, we can present the issue #4843 which discusses a technical debt in the CLI. Another example
could be the issue #5723 focusing on testing and refactoring of the block exchange protocol.

In terms of discussions in the code, we observed 78 TODO and 9 FIXME comments in the source code.

11.6.6 Technical Debt Evolution

To observe technical debt evolution, we decided to run SonarQube on the latest release version and a few
older versions from the past three years.

version technical debt issues TODOs Duplications LOC

0.4.19 (02.2019) 4d 3h 325 97 1.1%, 18 blocks 27k
0.4.17 (08.2018) 3d 7h 356 93 1.6%, 54 blocks 36k
0.4.14 (03.2018) 4d 2h 353 186 1.7%, 59 blocks 36k
0.4.10 (07.2017) 4d 374 152 1.3%, 61 blocks 37k
0.4.2 (05.2016) 8d 541 184 1.3%, 73 blocks 58k

By analyzing the basic values we can see that the technical debt is fluctuating around 4 days. It is also clear
that in the last year architects decided to extract some modules outside of the project as we could observe a
significant loss in LOC between 0.4.17 and 0.4.19 versions. The number of TODOs, issues and duplications
reduced throughout the versions, which indicates that the system is slowly getting more mature.

11.6.7 Conclusions to Technical Debt

From our research of technical debt we noticed that developers are trying their best to improve quality
of the code, they discuss a lot on almost every GitHub issue before implementing the change, but also
aim to increase code readability and understanding. In general, technical debt in terms of code quality is
not remarkable, however, documentation debt is significant. We observed that there is still quite a lot of
functions to be covered by the tests. As our remedies for the code we would consider:

• improve documentation and add the requirement to contribution guide to enforce documenting the
code

• reduce Cognitive Complexity in longest functions as one can get lost while trying to understand or
correct the code

• cover more blocks with tests
• improve tests implementation (e.g. real comparison, not only checking if it throws the exception)
• adding more constants instead of duplicating the same parameter in various places
• revisit duplicated blocks
• remove unused parameters where it is possible to improve code readability

https://github.com/ipfs/go-ipfs/issues/4843
https://github.com/ipfs/go-ipfs/issues/5723

244 CHAPTER 11. IPFS

11.7 Development View

In this section we explore the architecture of go-ipfs from the development viewpoint. We discuss mainly
the package structure organization, responsibilities of different modules, dependency management, and
testing approach.

11.7.1 Package Hierarchy

The whole project is separated into many reusable components. The following diagram gives an overview of
the main packages, shows dependencies between them, and groups packages by layers of the IPFS stack.
The go-ipfs repository then serves as the main package which wires all components together, allows to run
an IPFS node daemon, and implements the CLI.

11.7.2 Network

The network layer handles point-to-point communication between nodes in the network and is based on
NAT traversal techniques like hole punching, port mapping, and relay. It supports multiple transports as
TCP, UDP, or WebSockets. The network layer is implemented in the libp2p library.

11.7.3 Routing

The routing layer server two purposes. First, it provides peer routing to help find other nodes in the network.
An initial peer discovery is performed by connecting to a configurable bootstrap list of reliable nodes, which
are in turn used to discover other peers.

Secondly, it provides content routing to find data published on IPFS. The current implementation is based
on a Distributed Hash Table (DHT) protocol Kademlia, which is also used for example in BitTorrent.

11.7.4 Block Exchange

Data exchange in the IPFS protocol happens by exchanging data blocks using a BitTorrent-inspired protocol
BitSwap, which incentivizes block storage and exchange. Each node has a list of blocks it maintains and a
list of blocks it wants to acquire. Furthermore, each pair of nodes has a ledger maintaining number of bytes
uploaded and downloaded. As the ratio of downloaded to uploaded bytes for a node increases, it is likely
that other node will refuse to serve blocks until the debt ratio improves.

11.7.5 Merkledag

The Merkledag is the main data structure for representing files in IPFS. It is a directed acyclic graph (DAG)
whose edges are hashes and nodes represent data corresponding to those hashes. IPFS is content-addressable,
which means that each file can be accessed by knowing its hash. This allows for content deduplication, as
multiple files with the same content are physically only stored once thanks to the fact they have the same
hash. Git takes advantage of the same principles for efficient file versioning.

https://github.com/libp2p/go-libp2p
https://github.com/ipfs/go-bitswap

11.7. DEVELOPMENT VIEW 245

Figure 11.6: Package Diagram

246 CHAPTER 11. IPFS

Files are addressed by multihashes, a self-describing hash format. A multihash is composed of a hash
algorithm name, the length of the hash and the hash itself. This allows to easily upgrade to a new hashing
algorithm in future while maintaining backwards compatibility.

IPFS currently allows blocks up to 1 MiB. This means files larger than this have to be split by a chunker into
small chunks. Those chunks are used to build a DAG.

In order to add the functionalities expected from a fully-fledged filesystem, another layer of abstraction is
added with UnixFS, which specifies certain meta data to add features such as symlinks and directories.

While immutability is inherent in the file structure of IPFS, it is not always wanted. For mutability, another
abstraction layer, Mutable File System (MFS), is added. In UnixFS, files and directories are addressed by
the hash of the data contained within the files. In MFS, this is abstracted away behind human readable
names.

11.7.6 Data Store

The persistant block storage is provided by datastores. Besides the default flatfs implementation which
uses sharded directories and flat files, there are also experimental datastores using BadgerDB and LevelDB
key-value databases with better performance.

11.7.7 Naming

The content-addressable data are by their nature immutable. Whenever the content is changed, its hash and
thus the address also changes. To allow modifying shared data without need to distribute the new address
each time the content is changed, there is a naming layer called InterPlanetary Name System (IPNS).
Every node has a public-private key pair, and names in IPNS are simply hashes of public keys. A node can
assign an IPFS hash to its IPNS address and distribute the record using the IPFS routing system. The idea is
based on the Self-certifying File System (SFS) 7.

11.8 CLI Architecture

There are several interfaces that can be used to communicate with an IPFS node. First, the user can
communicate with the IPFS daemon via an HTTP API. Secondly, the user can use the CLI, which is able to
perform some commands locally, but for online commands it requires a daemon with which it communicates
over the HTTP API. Finally, application developers can include the go-ipfs package as a dependency and
use its Core API.

The architecture of the CLI is shown in the following diagram. First, CLI Parser parses the command and
its arguments and forwards it to the CLI Dispatcher. Each command is defined in a separate Command struct
implementing a Run function which makes required calls either via Core API to the IPFS node directly, or
via the HTTP API to the IPFS daemon in case the daemon is running. The command can also implement a
PreRun hook to preprocess the user input and PostRun to format the output.

7https://en.wikipedia.org/wiki/Self-certifying_File_System

https://multiformats.io/multihash/
https://github.com/ipfs/go-ipfs-chunker
https://docs.ipfs.io/guides/concepts/unixfs/
https://github.com/ipfs/go-mfs
https://github.com/ipfs/go-ds-flatfs
https://github.com/ipfs/go-ds-badger
https://github.com/ipfs/go-ds-leveldb

11.9. DEPENDENCY MANAGEMENT 247

The structure of the daemon is quite similar, apart from the input handling, to the structure of the CLI. The
HTTP-API server accept incoming calls, which are dispatched and called against the IPFS node.

Figure 11.7: CLI Architecture Diagram

11.9 Dependency Management

As opposed to a monorepo 8 strategy adopted by many companies, IPFS tries to maintain modular archi-
tecture by developing each larger package in a separate Git repository. While this promotes reusability
and enforces strict separation of concerns, it comes with more difficult development and dependency
management if multiple components need to be changed at the same time.

Until recently, Go tool did not allow to depend on specific versions of external packages. Therefore, IPFS
team came up with their own package management tool gx, which allows to publish versioned packages on
IPFS and in turn depend on the specific version of a package by specifying its hash in package.json.

Since introduction of Go 1.11 in August 2018, there is an official support for versioned modules. 9 As it
was not sustainable to maintain both systems, IPFS is now in the process of switching over to go modules
and dropping gx support. 10

8Monorepo is a development strategy where the whole codebase is stored in a single monolithic repository
9https://github.com/golang/go/wiki/Modules

10https://github.com/ipfs/go-ipfs/issues/5850

https://github.com/whyrusleeping/gx

248 CHAPTER 11. IPFS

11.10 Testing

There are two types of tests in the project. Firstly, traditional go unit tests are stored in files with _test.go
suffix just next to the source code files in their respective packages.

Integration tests located in the /test directory are bash scripts written with help of Sharness, a shell library
for testing Unix programs. It is inspired by the test suite of the Git project, and it is developed by an IPFS
developer @chriscool.

All tests are run automatically by CircleCI for every Pull Request.

11.11 Deployment View

In this section we explore IPFS from the deployment perspective, specify supported platforms, hardware
requirements and runtime dependencies.

At the base of any IPFS deployment will be the IPFS daemon. The IPFS daemon is the base node that
communicates with other nodes using p2p protocols in order to participate in the global IPFS network. The
daemon may add, aquire, and serve content for the network, or for the clients that are dependent on it.

11.11.1 Installation

Release versions of go-ipfs come in prebuilt packages for all supported platforms and can be downloaded
from the distributions page, which is hosted on IPFS itself. It can also be installed using package managers
specific for target platforms. Another way is to install using the ipfs-update tool, which also provides a
convenient way to update the software and revert to the previous version in case the newly installed version
has any issues.

11.11.2 System Requirements

IPFS can run on macOS, FreeBSD, Linux and Windows. There are prebuilt packages for i386 and amd64
CPU architectures for all systems. On Linux, arm and arm64 architecture is supported as well. The program
requires at least 1 MB RAM for stable runtime, though 2 MB RAM is recommended. 11

11.11.3 Network Requirements

The daemon uses port 4001 to communicate with other peers in the network. The gateway which is used
to access the IPFS content is running on port 8080 by default. Therefore, the firewall should be properly
configured so that those ports are open for the TCP protocol.

There is also a REST API running on the port 5001. However, that one should not be made accessible from
the public network. This would be considered a vulnerability as anyone would be able to change the node
configuration remotely.

11https://github.com/ipfs/ipfs-update

https://github.com/chriscool/sharness
https://github.com/chriscool
https://ipfs.io/ipns/dist.ipfs.io/#go-ipfs
https://github.com/ipfs/ipfs-update

11.12. CONCLUSION 249

11.11.4 FUSE

For daemon to be able to mount to /ipfs or /ipns namespaces, FUSE (Filesystem in Userspace) needs
to be installed. FUSE support varies across different operating systems. The installation on Linux is
straightforward, as fuse should be available in most package managers. On macOS, it is required to use
osxfuse >= 2.7.0, as it has been discovered that previous versions cause a kernel panic. For that reason,
the IPFS daemon checks the osxfuse version and prevents mounting on older versions. Mounting is currently
not supported on Windows. 12

11.11.5 IPFS Cluster

For large-scale IPFS deployments, IPFS cluster, a pinset orchestration tool, can be utilized. It consists of a
cluster service that should be run on the server along with go-ipfs, and a client CLI application which helps
to manage pins across a large cluster of IPFS daemons.

11.12 Conclusion

This chapter gives an overview of the IPFS project and particularly the architecture of its Go implementation.
Firstly, we identified different stakeholders interested in the project. To better understand the structure,
relationships, and dependencies, we created the Context and Development View. We also examined the
technical debt of the project in terms of code quality and testing perspective. Finally, we analyzed the
requirements for deployment environment in the Deployment View.

We noticed that the project is very modularized to make it reusable and easy to change, however, in the
beginning, this makes it a bit difficult to understand how all pieces fit together.

The team is putting great efforts to maintain a good quality of the code. There is also a great number of
discussions about possible improvements in terms of the current state of the project and team operation.
Nonetheless, we found that the lack of code documentation and low unit test coverage make it difficult to
understand the inner workings of the code for new contributors. This oversight is probably caused by the
fact that the project is still in an alpha version and evolves quickly.

Overall, we are very optimistic with the direction of the project and hope it will help to shape the future
where the Web is decentralized again, as it was supposed to be from the beginning.

12https://github.com/ipfs/go-ipfs/issues/5003

https://github.com/ipfs/ipfs-cluster

250 CHAPTER 11. IPFS

Chapter 12

Keras: Fast Neural Network
Experimentation

12.1 Contents

1. Introduction

2. Stakeholders

3. Context view

4. Development View

5. Technical Debt

5. Deployment View

12.2 Introduction

Keras is an open-source library which has the aim to enable fast neural networks experimentation [9].
Among the implementations that Keras provides, there can be mentioned neural networks layers, activation
functions and optimizers.

Initially developed as part of the research effort of project ONEIROS (Open-ended Neuro-Electronic
Intelligent Robot Operating System), its initial release took place on 27th of March 2015. Starting from
2017, Keras was acquired by Google’s TensorFlow team. The latest version (2.2.4) of Keras has been
available since 3 October 2018 [10].

251

252 CHAPTER 12. KERAS: FAST NEURAL NETWORK EXPERIMENTATION

12.3 Stakeholders

In order to determine the stakeholders of the system, we have analyzed 20 of the most commented pull
requests from the Keras GitHub page [11], both merged and unmerged. This helped us identify key roles
in the decision making process, as well as the main factors when it comes to reaching a decision. We
will further discuss the different types of stakeholders identified in this process, categorized based on
the description provided by Rozanski and Woods [1]. Moreover, we identified and presented additional
stakeholders categories, relevant for Keras.

12.3.1 Acquirers

They have the responsibility of representing the commercial interests of the product or system and oversee
its development [1]. Keras had its initial release on 27 March 2015 by Francois Chollet, a Google engineer.
In 2017 Keras received permanent support from Google’s TensorFlow team, which made Google one of the
most important acquirers. Apart from Google, the other acquire is Francois Chollet, the founder of Keras
[5].

12.3.2 Assessors

They have the responsibility to ensure that the system respects the standards and legal regulations [1]. Keras
operates under the MIT license [12]. The copyrights of the contributions made by each entity stay theirs. No
clear stakeholder with the role of assessor was identified.

12.3.3 Communicators

They have the responsibility to provide a useful description of the system for the other stakeholders [1]. Any
contributors who added a new feature are communicators, since they have to demonstrate its functionality
and document it. The main communicator for Keras is Francois Chollet [5], the one who gives the public
the latest informations about its development.

12.3.4 Developers

They are responsible for the construction of the system [1]. For Keras, the developers are the contributors
from GitHub represented by the Keras Team (Francois Chollet (@fchollet the founder of Keras), Fariz
Rahman (@farizrahman4u), Taehoon Lee (@taehoonlee), Gabriel de Marmiesse (@gabrieldemarmiesse))
and the Open Source Community.

12.3.5 Maintainers

Their role is to manage the evolution of the system after it has been deployed and is being operated
[1]. Depending on the timeline (since acquired by Google), Keras had different teams contributing to its
maintenance. The owner, Francois Chollet [5], has always been part of the maintenance cycle, but Open

12.3. STAKEHOLDERS 253

Source contributors and the Keras Team organization always support the cycle by making reviews of the
pull requests.

12.3.6 Production engineers

Their role is to provide a test environment for the newly added functionalities [1]. Furthermore, they need to
manage the infrastructure of the software and the future release versions of it. Since the latter was already
tackled in our identification of the system administrators stakeholders, we only focused on the first specified
role. We identify Francois Chollet [5] as the production engineer, as he is in charge of defining the testing
environment.

12.3.7 Suppliers

They provide the resources for the system to operate (hardware, software or infrastructure) [1]. In the case
of Keras, the suppliers are represented by:

• Google [13]: Backs the development
• Microsoft [14]: Maintains CNTK backend
• Amazon AWS [15]: Maintains Keras fork with MXNet support
• Apple [16]: Provides CoreML
• TravisCI [17]: Testing and Continuous Integration
• MkDocs [18]: Documentation generation
• GitHub [19]: Hosting

12.3.8 Support Staff

Once the system is running, the support staff have the role of offering support to the users of the system [1].
In this case, this task is done by the Open Source Community and the Keras-team through different channels
(for example Google forum, GitHub, Stackoverflow, etc.).

12.3.9 System administrators

Their role is to keep running the system after the deployment has been done [1]. Since Keras is an open
source library, the users are the system administrators.

12.3.10 Testers

The role of the testers is to assess whether the quality of the system meets the requirements for deployment
and usage [1]. The tests of the system are performed by the Keras-Team, as well as by the Open Source
Community. Every pull request needs tests packed with the code, according to the contribution regulations
[3].

254 CHAPTER 12. KERAS: FAST NEURAL NETWORK EXPERIMENTATION

12.3.11 Users

Their role is to assess whether the quality of the system meets the requirements for deployment and usage
[1]. Since Keras is part of the Open Source software, any person interested in working on a deep learning
project can use it. Additionally, users can be both industries and the research community. Some companies
using Keras are, for example, Netflix, Uber or startups [2]. Keras is also used among the research community
and research organizations, such as CERN and NASA [2].

12.3.12 Additional Stakeholders

12.3.12.1 Competitors

Their aim is to provide similar systems on the market. The main competitor for Keras is Gluon from Amazon
[20], which is also a deep learning interface that supports Apache MXNet and Microsoft Cognitive Toolkit.
Other alternatives include Deeplearning4j, Floyd, Mocha or Apache Spark. However, Keras is leading when
it comes to the number of users.

12.3.12.2 Enthusiasts

People who help other users and have knowledge about the product. They introduce or help others to use the
product and they can be identified on Q&A websites.

12.3.12.3 Media

The media is represented by articles on websites about Keras. Some examples that include Keras are “Deep
learning in KNIME analytics platform” posted on IT Portal or “What will be the Growth of Deep Learning
Software Market?” posted on Digital Journal.

12.3.12.4 Facilitators

The facilitators aim to teach users how to use Keras in different applications. They offer courses or tutorials
and benefit from the existance of Keras, thus the evolution of the library directly influences them as they
need to keep their materials up to date. On Udemy there are several courses about Keras, the highest ranked
ones being offered by Lazy Programmer Inc., Jose Portilla and Francesco Mosconi.

12.3.13 Integrators

Integrators are persons responsible for checking the pull requests and ensuring a proper evolution of the
software through the added functionalities.

In order to identify the integrators for Keras, we checked the commits to the master branch [11]. We have
identified four main integrators responsible for committing the different functionalities authored by the open
source community:

https://www.itproportal.com
http://www.digitaljournal.com
https://www.udemy.com

12.3. STAKEHOLDERS 255

• Francois Chollet: @fchollet
• Fariz Rahman: @farizrahman4u
• Taehoon Lee: @taehoonlee
• Gabriel de Marmiesse: @gabrieldemarmiesse

Although they are all responsible with testing the functionalities proposed in the pull requests and making
sure the code base is clean and the coding style is respected, Francois Chollet is the one always performing
the final merge.

12.3.14 Contacted Persons

Before starting to develop the architecture analysis of Keras, we have contacted Francois Chollet [5], the
project owner, via email. We asked whether he could provide any documentation regarding the development,
design and architecture processes of Keras. We contacted him based on the details we found on his GitHub
account [5]. Unfortunately, we did not receive any reply from him.

When further researching the Keras documentation [6] we have identified possible means for asking
questions, where the Keras team and the open source community can answer, namely the Keras Google
group [7] and the Keras Slack channel [8].

12.3.15 Pull Requests Theory

In the general sense, the decision regarding a pull request starts with the evaluation of the proposed
functionality or improvement in the context of the product. If this evaluation does not pass, the developers
simply reach the decision of not moving ahead. In case the proposed functionality makes sense, the main
factors that influence the incorporation are the compliance to the defined Contributing Guidelines specified
in the Keras documentation and passing the reviewing process. On the other hand, the development team
decides to not merge the pull request if there is an overlap with already existing functionality or the code is
not of high quality. Additionally, there are cases when the authors do not finish the change proposed in the
pull request.

For the exact list of the analyzed pull requests, refer to the Appendix.

12.3.16 Power-Interest grid

The power-interest grid is a graphical representation used for classifying the stakeholders [21]. The four
categories presented are:

Keep Informed corresponds to stakeholders that are very interested in the evolution of the project. These
people do not have much power on the product, but they are directly affected by its development. An
example of these types of stakeholders is represented by competitors. Gluon, Amazon’s library for deep
learning, needs to be informed by the functionalities of Keras because it should provide the same (or better)
quality of their system.

Keep Satisfied corresponds to stakeholders with a high amount of power on a project. These people are
usually interested in the progress of the project. In our case, as we mentioned that Microsoft and Nvidia

256 CHAPTER 12. KERAS: FAST NEURAL NETWORK EXPERIMENTATION

are supporting Keras, they are concerned of the success of the product. However, they do not need to be
informed about all the updates that are made on Keras.

Monitor corresponds to stakeholders that are not very interested in the evolution of Keras and do not have
power on the product. From these stakeholders, we can mention the media.

Manage Closely corresponds to the most important category of stakeholders. Their poor management
could easily result in the failure of the product. Acquirers, Google and Francois Chollet, are the most
representative stakeholders from this category due to their strong direct impact on the project.

12.4 Context View

The main purpose of the context view is to determine the connections between Keras and external entities
[1]. Thus it could also be possible to identify any threats or vulnerabilities of the system from components
that it is linked to.

12.4.0.1 System scope and responsibilities

Keras is defined as a high-level neural network API, written in Python and capable of running on top of
TensorFlow, Theano and CNTK [6]. Their focus is to allow fast experimentation.

The system allows:

1. Easy and fast prototyping
2. Running models on CPU and GPU devices
3. Support of convolutional and recurrent neural networks
4. A way to define complex models if necessary with the Keras Functional API
5. Flexilibilty between banckends to be used

The system does not allow:

1. Provide an end to end functionality, it is an interface
2. Provide advanced and specific operations dependent on the back end to be used

12.4.1 Diagram

In the figure below, the context diagram is shown, capturing the relationship between the system and its
environment. We have identified ten external entities, each having different connections with the system.

Keras is written in Python, originally by Francois Chollet. Currently, it is being developed by various
entities, mainly the Keras Team organization from GitHub and the Open Source Community. It can run both
on CPU and GPU and it supports Microsoft’s CNTK, Tensorflow and Theano. It is managed on GitHub and
when it comes to integration and testing, Travis CI is used.

The users cover a wide range, from research organizations to industries. The support is provided mainly
through the documentation, that is generated using MKDocs, or through several communication channels,
namely Slack, Google Groups or StackOverflow. Concerning dependencies, we have identified both

12.4. CONTEXT VIEW 257

Figure 12.1: GitHub Logo

258 CHAPTER 12. KERAS: FAST NEURAL NETWORK EXPERIMENTATION

Figure 12.2: GitHub Logo

dependent software, supported by Keras (Scikit-learn), as well as software dependencies that Keras requires
(Python, NumPy, matplotlib).

12.5 Development View

The development view of a system describes the architecture that supports the development process [1]. In
this section we will describe the various aspects composing the overall process.

12.5.1 Module Structure

The Module Structure for Keras is visualized in the figure below.

The modules visualized in the figure above have the following functionalities:

• Core: Includes the main components that implement the essential functionalities for defining Deep
Learning model architectures. These include the definition of different types of layers, the definition
of the topology of the networks and the possible backends for executing the generated models.

• Auxiliary Modules: Provide additional functionalities to complement the implementation of the
Deep Learning models. These include preprocessing components for both the data (such as image
rotations or shifts) and the models created through the Core module (such as normalizing, counting
the number of parameters or printing the summary of the architecture). Moreover, several datasets are
provided (for example, CIFAR-10 or MNIST).

12.5. DEVELOPMENT VIEW 259

Figure 12.3: GitHub Logo

• Wrapper: Provides a wrapper for scikit-learn [22].

• Compatibility: Provides support for previous versions of Keras.

• Applications: Provide implementations of well-known architectures of pretrained models, such as
VGG16 or Inception_v3.

• Interfacing: Provides an API to the Core functionalities.

12.5.2 Codeline Organization

12.5.2.1 Source Code Structure

The structure of the source code for Keras is summarized in the figure below.

We have identified a logical structure of the Keras code in four different components:

• Functionality
• Installation and deployment
• Documentation
• Testing

The Functionality component contains the code that provides the core functionality for the product. It
focuses on implementing the architectural components of a Deep Learning model, it provides wrappers for
other platforms and ensures the integration with several backends.

260 CHAPTER 12. KERAS: FAST NEURAL NETWORK EXPERIMENTATION

Figure 12.4: GitHub Logo

The Installation and Deployment component contains the necessary scripts and configurations to perform
releases and installations.

The Documenation component contains the files necessary for generating the documentation of Keras.
It is based on two directories, namely docs and examples. Docs contains the code for generating the
documentation visible on the Keras website, whereas examples includes examples of using Keras.

The Testing component includes scripts that are responsible for testing the functionality of each individual
component in the Keras directory and the configuration of the continuous integration platform for performing
the autonomous tests through TravisCI.

12.5.2.2 Build, Integration, and Test Approach

The approach Keras uses for integrating new functionalities into the product is described in the contribution
policies on their GitHub repository [11]. Any person interested in creating a pull request should write a
design document for motivating the proposed functionality. After the functionality is approved, the code can
be written and accompanied by proper docstrings. Moreover, the tests have to be defined and run locally on
all the supported backends before finalizing the pull request.

After the pull request is made, the automated tests are run in the continuous integration platform, TravisCI
[17], and checked by a person that Francois Chollet [5], the project owner, assigns. If everything runs
correctly, then the PR is merged by Team Keras and tests are run again through the continuous integration
platform.

12.5. DEVELOPMENT VIEW 261

It is important to mention that the configuration for the automated tests run through TravisCI is included in
the GitHub repository of Keras [11], more specifically in the travis.yml file.

This process can be visualized in the figure below, for the Pull Request #12500 (“Revise ‘logsumexp’ in np
backend and reduce those redundant tests”).

Figure 12.5: GitHub Logo

12.5.2.3 Release Process

Through our analysis, we identified that a first step in the release process is preparing the release, as the
procedure is not automated. The preparation includes changing the Keras version and the download URL
for accessing the latest available version.

262 CHAPTER 12. KERAS: FAST NEURAL NETWORK EXPERIMENTATION

Moreover, we identified two types of releases, depending on the size of the changes they make:

• Periodic releases: they happen approximately every month and they focus on issues such as bug fixes,
API changes, performance or documentation improvements.

• Major releases: they happen when significant, long time changes are made, that affect the overall
functionality and structure of the projects. These include, for example, adding completely new
functionalities, major changes to existing functionalities or version changes.

The releases are performed and documented [23] by the owner of the project, Francois Chollet [5].

12.5.3 Common Processing Elements

• Initialization: each package of Keras contains an __init__. py file in which there are imported
all the packages needed by that specific module. This is done in order to avoid importing the same
package in multiple files [3].

• Logging: the logging is done inside the Utils module by using print_function from __future__
module. It makes use of the print function to display messages on the console [3].

• Internationalization: this element is not that obvious in Keras. All user and administrator visible
strings are hard-coded in the source code. Moreover, they provide translated documentation in three
major Asian languages: Japanese, Chinese and Korean [3].

• Third party libraries: Keras relies mostly on its own libraries. However, they also use some core
libraries, such as numpy and they defined a wrapper for Scikit-Learn [3].

• Configuration parameters: at startup, the configuration is done locally by assigning values for some
global variables. E.g. _FLOATX = 'float32', which specifies the type of float to use throughout the
session. Furthermore, Keras uses the file savings.py for saving and loading the configuration of the
models [3].

12.5.4 Instrumentation Analysis

Instrumentation is the act of inserting code for logging information about the current state of the system and
the usage of resources [1]. It is used to monitor while debugging.

Keras does not have clear instrumentation. They make use of the print_function and warning module in
order to display messages via the console. A powerful tool for including instrumentation is Lantz [24], a
toolkit for automation and instrumentation in Python.

12.5.5 Standardization of Design

Keras provides for potential contributors a set of guidelines to follow [1]. These guidelines are specified in
CONTRIBUTING.md. Moreover, they provide templates for standardized writing of issues and pull requests
in PULL_REQUEST_TEMPLATE.md and ISSUE_TEMPLATE.md.

12.6. TECHNICAL DEBT 263

12.5.6 Code Conventions

There are two subcategories of PRs: improvements & bug-fixes and adding experimental features. The
former category goes to the Keras core master branch, while the later goes to keras-contrib, unless the
feature was requested [3].

In order to submit the changed code, the developer must fork the repository and make the changes on a
feature branch.

Guidelines:

• Respect the Google docstring style and there should be sections for Arguments, Returns and Raises;
• Provide unit tests;
• Run the test suite of Keras;
• Respect PEP8 (add link) syntax conventions;
• Update the documentation if adding new functionality.

12.5.7 Standardization of Testing

Keras team developed a set of tests for all the files inside the modules. All the testing files reside inside the
tests directory and have the following name conventions: either test_filename.py or filename_test.py.

Apart from the regular test set, Keras also provides an integration test set, which verifies how well different
modules interact with each other.

The command py.test tests/ is used to run the test suite locally and py.test --pep8 -m pep8 is used
for checking the syntax conventions [3].

Some of the PEP8 errors can be automatically fixed by running autopep8 -i --select <errors>
<FILENAME>.

12.6 Technical Debt

12.6.1 Identifying Technical Debt

We chose to analyze the engine module due to its increased complexity and given that all the major
functionalities of Keras are relying on it.

We used SonarQube [25] in order to determine the quality of the code on the Keras repository. The results
can be visualized in the image below.

• Bugs analysis:

This issue refers to programming errors that can lead to business disruption [26]. From SonarQube we
can observe that Keras has 8 bugs. On closer analysis of the code, 2 bugs are not influencing the quality
of the code. They have been reported as unnecessary operations. The other 6 bugs are focused on the
documentation.

• Vulnerability analysis:

264 CHAPTER 12. KERAS: FAST NEURAL NETWORK EXPERIMENTATION

Figure 12.6: GitHub Logo

12.6. TECHNICAL DEBT 265

This issue refers to flaws in the programs that can lead to the usage of the application in a different way that
it has been designed for [26]. No vulnerability was detected in the Keras code.

• Code smells analysis:

This analysis focuses on the maintainability issues, which is directly correlated to the ability, the cost and
the time to make changes over time in the code base [26].

We can observe that the debt is 13 days. Considering the complexity and size of the Keras project, we
consider this to be a good result. This is also observed from the A maintainability rating associated to it,
which means that the technical debt ratio is less than 5%.

When it comes to the code smells, 492 are identified. These are grouped in three severity levels: critical
(22.15%), major (47.15%) and minor (30.7%). Regarding the critical code smells, all of them propose
refactoring certain functionalities for reducing the cognitive complexity. These refer to modules that are
not directly involved in the core functionality of Keras, such as docs, legacy and examples, as well as
more central modules, namely backend, engine , layers and utils. Concerning the major code smells,
they mostly refer to merging if statements with the enclosing ones, removing code that is commented out,
pointing out functions with too many parameters or renaming functions. They refer to all the module in the
Keras repository. Finally, the minor code smells are present in most of the modules as well and they are
concerned with renaming classes or parameters or removing unused variables.

• Duplication analysis:

The overall percentage of duplication of Keras is 3.3%. However, most of the duplications can be found in
the tests and examples modules. On closer analysis of the example modules, most of the duplicated lines are
preprocessing techniques or parameters initializations, which are required operations. When it comes to
the test module, most of the duplicated lines have the purpose of building a neural network, which is a
necessary operation.

12.6.1.1 SOLID Violations

12.6.1.1.1 The Single Responsibility Principle (SRP): We believe that this principle is mostly violated
in keras/keras/engine/network.py by the class Network. This class models a neural network as a
directed acyclic graph of layers for which the following functionalities were identified [27]:

• Retrieval the updates and the losses of the model;
• Calling the model on new inputs;
• Computing output tensors for new inputs;
• Saving layers/weights to files;
• Deserializing layers/weights from files.

The class consists of 1100 lines, 33 methods and many of them have a cognitive complexity above 30. Its
extended functionality has the consequence of higher coupling. Decoupling such a large class may be a
solution, but, given the complexity of neural networks architecture, this may lead to dependency issues.

12.6.1.1.2 The Open-Closed Principle (OCP): A clear example of a violation for this principle is in
keras/keras/engine/saving.py. The file reunites all the utilities for saving a model and is not even
organized as a class. Hence, for the scenario of adding a feature for saving on a new file format, the
developer must modify the source code, while not having a possibility of extending it. As a solution, we

266 CHAPTER 12. KERAS: FAST NEURAL NETWORK EXPERIMENTATION

considered refactoring the file as an interface. In this way, adding a new file format for saving would only
imply creating a new child class. Thus, classes like Network, which uses saving functionalities, remain
closed for modification and the interface stays open for extension [27]. Our proposed improvement is
shown in the image below.

Figure 12.7: GitHub Logo

12.6.1.1.3 Liskov Substitution Principle (LSP): Since the engine module of Keras is composed of a
few classes, there are not many chances of violation for LSP. The inheritance tree is:

Each child class comes as an addition to the parent class and they mostly override methods for showing
the configuration of the system. There were no casts found in the code, hence we believe that LSP is not
violated.

12.6. TECHNICAL DEBT 267

Figure 12.8: GitHub Logo

268 CHAPTER 12. KERAS: FAST NEURAL NETWORK EXPERIMENTATION

12.6.1.1.4 The Interface Segregation Principle (ISP): Keras uses a legacy interface which contains
converters for Keras 1 support in Keras 2. The interface is composed of 15 functions and expands on over
600 lines of code. This interface is used almost in every class from engine module, hence a change in it
would require changes in the other classes. We believe that this violates ISP.

12.6.1.1.5 The Dependency Inversion Principle (DIP): As can be observed from the inheritance tree,
DIP is violated because the inheritance is done directly from the parent class and not through an interface
for that respective class.

12.6.1.2 Discussions about Technical Debt

The developers of Keras communicate not only through git issues, but also through code comments
(i.e. TODO). In order to better observe all these comments we used the command git grep 'TODO' --
'*.py' [28]. There are 21 TODOs. Some contain the developer assigned to solve them or the issue that
they are addressing. Some examples include:

Figure 12.9: GitHub Logo

Most of them either are about removing certain pieces of code or pointing to issues.

12.6.2 Identifying Testing Debt

12.6.2.1 Discussion of code coverage

The overall coverage of the keras module in the repository is 56%. The coverage per component is
visualized in the figure below.

As we can observe, there is no coverage for: applications, datasets, legacy and preprocessing.
Given the focus of Keras, we consider it reasonable that the applications, preprocessing and datasets
modules do not have test coverage, as the first two reside in a different repository and the latter only
facilitates access to data. However, when it comes to legacy we think that tests should be performed, since
it ensures backwards compatibility.

Additionally, we observe very little test coverage when it comes to the backend component, which is
a sensible decision since each backend is provided by third party entities, responsible of testing their
functionalities.

Regarding the remaining components, the test coverage is higher, more specifically above 79%.

Overall, in our opinion the project is well-covered when it comes to testing, except for legacy , which we
think should be tested.

12.6. TECHNICAL DEBT 269

Figure 12.10: GitHub Logo

12.6.2.2 Discussion of testing procedure

Through additional analysis we have observed that Keras is tested using two procedures:

• Unit tests
• Integration tests

The coverage regarding the unit tests was already presented above. Concerning integration tests, these
cover some of the modules omitted during the unit testing, more specifically applications, datasets and
preprocessing. These are not included in the coverage analysis, since these modules are part of external
projects and libraries.

Additionally, we have a remark. We have identified that each functionality of Keras depends on the backends.
This fact results in partial testing, as, depending on the backend, some of the tests are skipped. This might
affect the maintainability of the testing procedure. A code snippet with such an example can be seen below.

Figure 12.11: GitHub Logo

270 CHAPTER 12. KERAS: FAST NEURAL NETWORK EXPERIMENTATION

12.7 Deployment view

The main goal of this view is to define the physical environment in which the system is intended to run [1].
The case of Keras brings a broad set of possibilities because it is a front-end that facilitates the construction
of Deep Learning models. Thus, we will look at two standard deployment architectures.

12.7.1 Dependencies

In order to install the latest version of Keras the following requirements need to be satisfied [6]:

• Python version should be 2.7-3.6
• Numpy Python library (>=1.9.1)
• Scipy Python library (>=0.14)
• Six Python library (>=1.9.0)
• Pyyaml
• H5py
• keras_application (==1.0.4)
• keras_preprocessing (1.0.2)

Keras installation can be realized by using the package installer available in Python (pip). The command for
installing Keras is: pip install Keras This command automatically installs the required packages listed
above.

12.7.2 Technology Compatibility

Before installing Keras, one of the three supported backends needs to be installed: Tensorflow, Theano,
CNTK. However, team Keras recommends installing Tensorflow [6].

Depending on the application that needs to be developed, there are some additional optional requirements:

• cuDNN - this is recommended if the applications require running Keras on GPU
• HDF5 - this is recommended if the application requires running Keras models to disk
• graphviz and pydot - this is recommended for visualization purposes

Additionally, each of the backends has its own technical functional requirements [12], [13], [14], which we
will summarize in the table below:

Resource

TensorFlow

Theano

CNTK

Operating Systems

Ubuntu 16.04 or later

Windows 7 or latermacOS 10.12.6 (Sierra) or later

12.7. DEPLOYMENT VIEW 271

Raspbian 9.0 or later

Linux (e.g. Ubuntu, CentOS6)

Windows

macOS

Windows (8.1 Pro, 10, Server2012 R2 Standard and later)

Linux (Ubuntu 16.04 LTS)

Compilers

GCC 4.8

g++ >=4.2

Visual Studio Enterprise 2017

12.7.3 Hardware Requirements

Any Keras deployment relies on the following requirements of hardware:

Resource

Specification

Processing

As part of the configurations needed, there can be the following types of processing:

CPU

4th, 5th, 6th, 7th, and 8th generation Intel(R) Core(TM) processor

Intel Xeon processor E5 v4 and v3 family

Intel Xeon Phi processor x205 product family (formerly Knights Mill)

Intel Atom(R) processor with Intel SSE4.1 support

GPU:

NVIDIA (CUDA or cuDNN)
OpenCL-enabled GPUs

Google TPUs: This applies only for the TensorFlow backend

</td>

</tr>
<tr>

<th>Memory and disk</th>
<td>Depends entirely on the Neural Network to be trained</td>

272 CHAPTER 12. KERAS: FAST NEURAL NETWORK EXPERIMENTATION

</tr>
<tr>

<th>Optional</th>
<td>Apache Spark clusters and Apache MLLib in the case that distributed training is necessary</td>

</tr>

12.7.3.1 Frontend platform models

Figure 12.12: GitHub Logo

12.7.3.1.1 Multi-GPU supported by TensorFlow backend: In this case, Keras replicates a model and
is executed on a dedicated GPU. The concatenation of the results is done on CPU into one big batch,
returning a model fully trained at the end.

12.7.3.1.2 Distributed: Elephas implements a class of data-parallel algorithms on top of Keras, using
Spark’s RDDs and data frames. Keras Models are initialized on the driver, then serialized and shipped
to workers (this is because Apache Spark is built on Scala), alongside with data and broadcasted model
parameters. Spark workers deserialize the model, train their piece of data and send their gradients back to
the driver.

12.7. DEPLOYMENT VIEW 273

Figure 12.13: GitHub Logo

12.7.4 Historical Analysis

We created a summary of the historical evolution of Keras, presented in the table below, by analyzing the
release notes for each new version release on the GitHub page [23]. We did not include each single version
release, but we aggregated them in larger version releases (i.e. we aggregated versions 2.2.0, 2.2.1, 2.2.2,
2.2.3, 2.2.4 in version 2.2).

Keras
Version Changes Release Period

0.1 Preparations for Pypi release and Pypi release June 2015 - August
2015

0.2 New Pypi release October 2015
0.3 Modular Backends Introduction, New Pypi release December 2015 - March

2016
1.0 Bug fixes and improvements on functionalities, New Pypi

release
April 2016 - August
2016

1.1 New Pypi release October 2016 -
November 2016

1.2 New Pypi release December 2016 -
February 2017

274 CHAPTER 12. KERAS: FAST NEURAL NETWORK EXPERIMENTATION

Keras
Version Changes Release Period

2.0 API changes; Deprecated layers removal (both convolutional
layers and recurrent layers); New layers compatibilities;
Variable name changes; Bug fixes and functionality
improvements; Documentation improvements; CNTK
backend addition; TensorBoard improvements; Coding style
improvement; New features addition; Test coverage
improvements; Incompatibilities solutions; Performances
improvements; New Pypi release

May 2017- November
2017

2.1 | New APIs; Improvements to unit tests/CI.API; Performance and usability improvements; New models
added in the ‘applications’ module; Improvements to example scripts; Documentation improvements; Bug
fixes | November 2017 - April 2018

2.2 | Large refactors improving code structure and test time; Improvements to the documentation; API
changes and improvements regarding usability; Performance improvements; Bug fixes | June 2018 - October
2018

12.8 Conclusions

In conclusion, Keras is very well structured and maintained software. We identified the most important
stakeholder, Francois Chollet, which is in charge of establishing a clear plan of the project’s development.
Each pull request is closely analysed and tested in order to ensure good functionality. Furthermore,
considering the modular nature of Keras, an extension can be easily performed.

In addition, from a code organization point of view, Keras’ architecture is composed of various modules,
each of them performing a different functionality. All of them are centred over a core module, the engine
module, which is practically controlling the workflow. We consider that the fact that the modules’ task does
not overlap gives us an insight into the high performance of the software.

However, from the technical debt analysis, we observed that Keras also has some SOLID validation. As
observed, these do not affect the project’s functionality, but they might affect further expansion. Furthermore,
we also believe that the legacy module should be provided with test coverage as it contains the main deep
learning components.

12.9 References

1. Rozanski, N., & Woods, E. (2012). Software systems architecture: working with stakeholders using
viewpoints and perspectives. Addison-Wesley.

2. Why use Keras: https://keras.io/why-use-keras/
3. Contribution guidelines of Keras: https://keras.io/contributing/
4. Robert C. Martin (2008). Clean Code.
5. Francois Chollet GitHub Profile: https://github.com/fchollet]

12.10. APPENDIX 275

6. Keras Documentation: http://keras.io
7. Keras Google Group: https://groups.google.com/forum/#!forum/keras-users
8. Keras Slack Channel: https://kerasteam.slack.com/
9. Keras Website: https://keras.io/

10. Keras Wikipedia: https://en.wikipedia.org/wiki/Keras
11. Keras Github page: https://github.com/keras-team/keras
12. MIT License Keras: https://github.com/keras-team/keras/blob/master/LICENSE
13. Google Tensorflow: https://www.tensorflow.org/

14. Microsoft CNTK: https://docs.microsoft.com/en-us/cognitive-toolkit/
15. MXNet Support Amazon: https://aws.amazon.com/mxnet/
16. Apple CoreML: https://developer.apple.com/documentation/coreml
17. TravisCI: https://travis-ci.org/
18. MkDocs: https://www.mkdocs.org/
19. Github: https://github.com/
20. Amazon Gluon: https://aws.amazon.com/blogs/aws/introducing-gluon-a-new-library-for-machine-

learning-from-aws-and-microsoft/
21. Power Interest grid: https://www.mindtools.com/pages/article/newPPM_07.htm
22. Scikit-learn: https://scikit-learn.org/stable/
23. Keras Releases: https://github.com/keras-team/keras/releases
24. Lantz:https://github.com/LabPy/lantz
25. SonarQube: https://www.sonarqube.org/
26. SonarSource: https://www.sonarsource.com/why-us/code-quality/
27. Robert C. Martin (2008). Clean Code.
28. Linux Command: https://www.cyberciti.biz/faq/howto-use-grep-command-in-linux-unix/

12.10 Appendix

The pull requests that we analyzed are the following:

Pull Request Number Pull Request Title Status

#244 Introduce time-masking to recurrent layers Merged
#1623 Convolutional layers for 3D Merged
#10047 MobileNetV2 keras implementation for imagenet weights for

Tensorflow backend
Merged

#2152 Keras 1.0 preview Merged
#9253 Add support for stateful metrics. Merged
#6891 Fix the ordering bugs when using pickle_safe=True Merged
#2523 Faster LSTM Merged
#893 Lambda Layer Merged
#2413 Support for masking in merged layers Merged
#7980 Recurrent Attention API: Support constants in RNN Merged
#6928 Input Tensors: High Performance Large Datasets via TFRecords Unmerged
#9965 Change BN layer to use moving mean/var if frozen Unmerged
#928 Siamese layer Unmerged

https://keras.io/
https://en.wikipedia.org/wiki/Keras
https://github.com/keras-team/keras
https://github.com/keras-team/keras/blob/master/LICENSE
https://aws.amazon.com/blogs/aws/introducing-gluon-a-new-library-for-machine-learning-from-aws-and-microsoft/
https://aws.amazon.com/blogs/aws/introducing-gluon-a-new-library-for-machine-learning-from-aws-and-microsoft/
https://www.mindtools.com/pages/article/newPPM_07.htm
https://github.com/LabPy/lantz

276 CHAPTER 12. KERAS: FAST NEURAL NETWORK EXPERIMENTATION

Pull Request Number Pull Request Title Status

#442 Caffe models support Unmerged
#4621 Linear Chain CRF layer and a text chunking example Unmerged
#3170 Potential New Feature: Hierarchical Softmax Unmerged
#2183 LSTM with Batch Normalization Unmerged
#1282 Bidirectional RNN Unmerged
#368 Caffe support by pranv Unmerged
#718 3D CNN layers with an example Unmerged

Chapter 13

Kotlin

By: Jan Gerling, Aurél Bánsági, Kilian Callebaut, Dereck Bridie

Delft University of Technology

Kotlin Banner 1

13.1 Table of Contents

• Introduction
• Stakeholders
• Context View
• Pull Request Analysis
• Technical Debt
• Development View

1Kotlin Lang, Kotlin homepage, (2019). https://kotlinlang.org/.

277

https://kotlinlang.org/

278 CHAPTER 13. KOTLIN

• Contributors Perspective
• Conclusion

13.2 Introduction

Kotlin is a relatively young language, developed by JetBrains, which quickly gained popularity. Announced
in 2011 2, it is a first-class language for Android 3. Kotlin is used in approximately 5% of the apps available,
but in roughly 25% of the “top apps”, such as Twitter or TikTok 4.

Kotlin operates primarily in the JVM, is fully interopable with Java, and currently supports Java versions 6
to 9. However, it does target many weaknesses of Java and improves on these. Examples of this are a clear
distinction between nullable and non-nullable types and having stronger type inference. These changes lead
to developers prefering Kotlin over Java.

Since 2017, Kotlin can also be compiled to JavaScript. This feature was to added to make the language more
suitable for all tiers of development 5. Finally, Kotlin can also be compiled to native code on many different
platforms. This is to allow it to run without a virtual machine, which allows Kotlin code to be self-contained.
These changes were made to allow the use of Kotlin in as many places as possible, which makes it more
appealing to companies.

Since Kotlin is open source, it is possible to contribute to it. Anyone is able to claim issues on YouTrack, the
issue tracker developed by JetBrains. The merge process is transparent and visible for anyone. Reviews are
done by JetBrains employees, who often requests changed before merging the contribution, if it was deemed
suitable. Kotlin is licensed under the Apache 2 license, this means it is not required to sign a Contributor
License Agreement to contribute. There is also a contributing.md file in the Kotlin repository, which
explains the process and which offers a checklist that needs to be completed before submitting a pull rqeuest.

There are different components in the Kotlin project. Of course there is a compiler and parser, which handle
the code itself. However, there are also multiple extensions for IntelliJ IDEA, which handles autocompletions
or inspections. Most of the easy issues on YouTrack focus on the latter. Kotlin is also tested, having over
50,000 thoroughly developed tests. When contributing, one of the requirements is to create some tests for
your contribution.

In this chapter, Kotlin will be researched in more detail by first giving an overview of the different
stakeholders, before expanding this to a broader context view. This is to properly define the different actors
and environment interacting with Kotlin. Then, a more detailed description of the development view is
given. This section will contain aspects like standardization and instrumentation. Having looked at the
development view, it is then possible to analyze the technical debt of Kotlin. This is important to know
since it gives an idea of the current health of the Kotlin project. Finally, a new and unique view will be
given. This will focus on how developers experience contributing to Kotlin. Over the course of the project,
contributions were made to Kotlin. The experiences that occured while making these contributions will be
used to enhance this section.

2Paul Krill, JetBrains readies jvm-based language, (2011). https://www.infoworld.com/article/2622405/jetbrains-readies-jvm-
based-language.html.

3Maxim Shafirov, Kotlin on android. Now official, (2017). https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-
official/.

4AppBrain, Kotlin - android sdk statistics, (2019). https://www.appbrain.com/stats/libraries/details/kotlin/kotlin.
5Dmitry Jemerov, Kotlin 1.2 released: Sharing code between platforms, (2017). https://blog.jetbrains.com/kotlin/2017/11/kotlin-1-

2-released/.

https://www.infoworld.com/article/2622405/jetbrains-readies-jvm-based-language.html
https://www.infoworld.com/article/2622405/jetbrains-readies-jvm-based-language.html
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://www.appbrain.com/stats/libraries/details/kotlin/kotlin
https://blog.jetbrains.com/kotlin/2017/11/kotlin-1-2-released/
https://blog.jetbrains.com/kotlin/2017/11/kotlin-1-2-released/

13.3. STAKEHOLDERS 279

13.3 Stakeholders

Stakeholders are important to any software architecture, as these people can influence the direction a project
moves towards. Therefore, their opinions should be taken into account when evaluating a project as a whole.

The following section gives an overview and analysis of the stakeholders of Kotlin. The stakeholders are
categorized based on the stakeholder categories defined by Rozanski and Woods 6.

13.3.1 JetBrains s.r.o.

JetBrains is a software vendor, which develops tools for software developers and project managers. Their
motivation to create Kotlin was that they needed a language on the JVM meeting the needs of their company
7. JetBrains expects that the success of Kotlin will increase sales of IntelliJ IDEA, JetBrains’ IDE.

JetBrains role in Kotlin partly comes from manpower: 50+ engineers are working on the project 8, but more
roles are fulfilled by JetBrains:

• Acquirer
• Communicator
• Developer
• Maintainer
• Support staff
• Supplier
• Tester
• User

13.3.2 Kotlin Foundation

The non-profit Kotlin Foundation was created by JetBrains and Google in 2017. The Language Committee
adheres to guidelines 9, which describe the decision making process, regarding incompatible changes to
Kotlin.

The mission of the Kotlin Foundation is “to protect, promote and advance the development of the Kotlin
programming language. The Foundation secures Kotlin’s development and distribution as Free Software
[. . .]” 10. Furthermore, the Foundation holds the Kotlin trademark and associated names and logos.

This stakeholder plays a large role as an Assessor, overseeing language evolution.

6N. Rozanski, E. Woods, Software systems architecture: Working with stakeholders using viewpoints and perspectives, Addison-
Wesley, 2011.

7Dmitry Jemerov, Why jetbrains needs kotlin, (2011). https://blog.jetbrains.com/kotlin/2011/08/why-jetbrains-needs-kotlin/.
8JetBrains, Why jetbrains needs kotlin, (2018). https://resources.jetbrains.com/storage/products/kotlinconf2018/slides/

KC2018keynote_final.pdf.
9Kotlin Foundation, Language committee guidelines, (2019). https://kotlinlang.org/foundation/language-committee-guidelines.

html.
10Kotlin Foundation, Kotlin foundation, (2019). https://kotlinlang.org/foundation/kotlin-foundation.html#lead-designer.

https://blog.jetbrains.com/kotlin/2011/08/why-jetbrains-needs-kotlin/
https://resources.jetbrains.com/storage/products/kotlinconf2018/slides/KC2018keynote_final.pdf
https://resources.jetbrains.com/storage/products/kotlinconf2018/slides/KC2018keynote_final.pdf
https://kotlinlang.org/foundation/language-committee-guidelines.html
https://kotlinlang.org/foundation/language-committee-guidelines.html
https://kotlinlang.org/foundation/kotlin-foundation.html#lead-designer

280 CHAPTER 13. KOTLIN

13.3.3 Lead Language Designer - Andrey Breslav

Andrey Breslav is the President of the Kotlin Foundation, and is a member of both the Board of Directors
and the Language Committee. He is also employed by JetBrains as the Lead Language Designer in Kotlin 11.
Andrey is an important stakeholder within Kotlin, being an Assessor, Developer, Maintainer, and Tester
with high authority.

13.3.4 Google Inc.

Google is the main distributor for Android applications, which can be written in Kotlin. Google has an
interest in Kotlin, because the language could empower developers writing applications for their platform to
work more efficiently. Google is an Acquirer of Kotlin.

13.3.5 Contributors

Contributors are volunteers who are external to JetBrains who contribute to Kotlin as open source developers.

These Contributors can be found in the Kotlin Slack 12, a channel of communication between external
developers and Kotlin core members.

These contributors are a part of the Developer, Maintainer, and Tester classes.

13.3.6 Users

Developers writing code in Kotlin directly benefit from improvements to the language. Often, they represent
themselves or their development team via public channels such as Twitter or Slack.

Furthermore, people using products written in Kotlin have to be considered, because they have important
interests such as application performance, security, and stability.

13.3.7 Suppliers

• Gradle: Gradle is a build system that is capable of building Kotlin projects. Their interest in the
Kotlin project is twofold: first, their build system should support Kotlin projects, and second, Gradle
is also partially written in Kotlin 13.

13.3.8 Communication/Support

Kotlin has various channels to communicate with their community 14.

11Kotlin Foundation, Kotlin foundation, (2019). https://kotlinlang.org/foundation/kotlin-foundation.html#lead-designer.
12JetBrains s.r.o., Kotlinlang slack, (2019). https://kotlinlang.slack.com.
13GitHub, Inc., Search .Kt, (2019). https://github.com/gradle/gradle/search?l=Kotlin&q=.kt.
14JetBrains s.r.o., Community, (2019). https://kotlinlang.org/community/.

https://kotlinlang.org/foundation/kotlin-foundation.html#lead-designer
https://kotlinlang.slack.com
https://github.com/gradle/gradle/search?l=Kotlin&q=.kt
https://kotlinlang.org/community/

13.3. STAKEHOLDERS 281

• Discussion and announcements: Kotlin Slack, Reddit, Twitter
• Support: StackOverflow
• Gatherings: User Groups, KotlinConf, Google I/O

13.3.9 Competitors

Kotlin has a multitude of competitors such as Groovy, Scala 15, and Java. All these programming languages
are object oriented and focus on a similar group of developers, usually with prior Java experience and offer
a comparable feature set.

13.3.10 Enhancers

An important stakeholder type are Enhancers, library developers creating new functionalities for Kotlin
language users. Therefore, these stakeholders add value to Kotlin by creating their own solutions within the
scope of Kotlin.

13.3.11 Tools

An additional class of stakeholders create tools for Kotlin developers, to increase their productivity and ease
software development. Their interests are to generate income, add value to Kotlin and further spread Kotlin.

• detekt: Static code analysis 16

• dokka: Documentation engine for Kotlin 17

• IntelliJ IDEA

13.3.12 Power/Interest grid

A power/interest grid shows the power of a stakeholder to influence a project and their interest in the project
18.

13.3.13 Influence on Stakeholders

An onion diagram shows the interaction of stakeholders with a project and effect of the project on the
stakeholders 19 20. The diagram consists of five layers:

• Core - the project goal
• Layer 1 - closely involved stakeholders

15Eugen Paraschiv, The state of java in 2018, (2018). https://www.baeldung.com/java-in-2018.
16Artur Bosch, Detekt, (2019). https://arturbosch.github.io/detekt/.
17Ilya Ryzhenkov, et. al., Documentation engine for kotlin, (2019). https://github.com/Kotlin/dokka.
18G. Johnson, K. Scholes, Exploring corporate strategy, prentice hall, Europe. (1999).
19Business Analyst Learnings, Stakeholder onion diagram: A practical guide, (2019). https://businessanalystlearnings.com/ba-

techniques/2013/1/22/how-to-draw-a-stakeholder-onion-diagram.
20BAwiki, Stakeholder onion diagram, (2019). http://bawiki.com/wiki/techniques/stakeholder-onion-diagram/.

https://www.baeldung.com/java-in-2018
https://arturbosch.github.io/detekt/
https://github.com/Kotlin/dokka
https://businessanalystlearnings.com/ba-techniques/2013/1/22/how-to-draw-a-stakeholder-onion-diagram
https://businessanalystlearnings.com/ba-techniques/2013/1/22/how-to-draw-a-stakeholder-onion-diagram
http://bawiki.com/wiki/techniques/stakeholder-onion-diagram/

282 CHAPTER 13. KOTLIN

Figure 13.1: Power/Interest grid with the stakeholders of the Kotlin project.

13.4. CONTEXT VIEW 283

• Layer 2 - highly affected stakeholders
• Layer 3 - Beneficiaries
• Layer 4 - wider environment

13.4 Context View

The context view describes the relationships, dependencies and interactions between the system and its
environment. This is visualized in the diagram. Each element of the diagram will be described in more
detail in this section, along with an overview of the scope of the system.

13.5 System Scope

Kotlin is a object-oriented programming language aiming to “provide a more concise, more productive, safer
alternative to Java that’s suitable in all contexts where Java is used today” 21. Kotlin tries to eliminate some
of Java’s biggest issues like nullity and excessive coding 22. In this regard, Kotlin’s scope is to provide an
gradual upgrade from Java, by integrating Kotlin code into their existing Java Project. In order to enable
developers to quickly adopt Kotlin, workflow and feature set are very similar.

13.5.1 Context Model

At the heart of the context model is the language itself. Kotlin is written in Java and Kotlin, and runs on the
JVM by default. It can also be compiled to JavaScript 23 and to native code 24. Kotlin natively makes use
Java or JavaScript functions, when the correct compiler configuration is selected

13.5.1.1 Developers

Kotlin is an open source project to which anyone can contribute on GitHub. These contributions are reviewed
by JetBrains employees and merged into the project. Together with Google, JetBrains sponsors Kotlin. They
are both represented in the Kotlin Foundation. The Language Committee is a part of the Kotlin Foundation
and reviews breaking changes. Andrey Breslav is the lead Language Designer of the language. These people
make all decisions regarding the development of the project and evolution of the language 25, as well as
overviewing the community contributions.

13.5.1.2 Related Processes

GitHub is used for contributing and project management of Kotlin. JetBrains uses their own software
YouTrack for discussing and tracking issues, features, and bugs. TeamCity is used for continuous integration

21D. Jemerov, S. Isakova, Kotlin in action, Manning Publications Company, 2017.
22Android Developers, Develop android apps with kotlin, (2019). https://developer.android.com/kotlin#safer-code.
23Kotlin Foundation, Kotlin javascript overview, (2019). https://kotlinlang.org/docs/reference/js-overview.html.
24Kotlin Foundation, Kotlin/native for native, (2019). https://kotlinlang.org/docs/reference/native-overview.html.
25Kotlin Foundation, Kotlin foundation, (2019). https://kotlinlang.org/foundation/kotlin-foundation.html#lead-designer.

https://developer.android.com/kotlin#safer-code
https://kotlinlang.org/docs/reference/js-overview.html
https://kotlinlang.org/docs/reference/native-overview.html
https://kotlinlang.org/foundation/kotlin-foundation.html#lead-designer

284 CHAPTER 13. KOTLIN

Figure 13.2: Onion diagram of the key stakeholders of the Kotlin project and stakeholder types

13.5. SYSTEM SCOPE 285

Figure 13.3: Context View of Kotlin

286 CHAPTER 13. KOTLIN

and deployment. Finally, other related processes are: JUnit for testing (with Kotlin extensions), Apache 2
License 26 and Gradle for building.

13.5.1.3 Community

The Kotlin community has multiple channels to communicate their feedback for Kotlin. Conferences like
Kotlin Conf serve to present updates from the Kotlin development team, as well as user’s talks about the
state and usage of the language. The official Twitter 27 and the Kotlin subreddit 28 provide channels to
post news updates, pose questions and discuss issues with the language where the JetBrains’ Kotlin team
frequently responds. There are also more direct channels used to support developers like StackOverflow and
Slack.

13.5.1.4 Supported by

The Kotlin language is supported by many IDEs, such as JetBrains’ own IDE IntelliJ IDEA, Google’s
Android Studio, and third party IDEs like NetBeans and Eclipse.

13.5.1.5 Used by

A big advantage of using Kotlin is the support from Google for its Android platform. Another major use
cases is in server side code. Examples of popular applications that have been developed using Kotlin are
Uber 29, Netflix, Slack, and Twitter 30. For Kotlin development there are enhancing frameworks available.

13.6 Pull Request Analysis

In this section we analyze the top ten most commented pull requests for Kotlin on GitHub 31, that were
merged and rejected. We want to identify project integrators, main reasons why pull requests are rejected
and which changes could lead to successful merge requests. Our strategy to identify these patterns, was to
find the core of the discussion in PRs and discover reoccurring issues.

13.6.1 Most commented merged PRs

Most PRs in this list seem to have a high comment number not due to controversy, but because of people
misunderstanding or needing a more thorough explanation what the reviewer requested to change. This
leads to a longer conversation in which the reviewer looks at the changes multiple times. A particularity of
the Kotlin repository is that most of the pull requests are merged manually.

26JetBrains s.r.o., License, (2019). https://github.com/JetBrains/kotlin/tree/master/license.
27Kotlin Twitter, Kotlin twitter, (2019). https://kotlinlang.org/foundation/kotlin-foundation.html#lead-designer.
28Community, Kotlin reddit, (2019). www.reddit.com/r/kotlin.
29Kotlin Lang, Kotlin homepage, (2019). https://kotlinlang.org/.
30Android Developers, Develop android apps with kotlin, (2019). https://developer.android.com/kotlin#safer-code.
31JetBrains s.r.o., The kotlin programming language, (2019). https://github.com/JetBrains/kotlin.

https://github.com/JetBrains/kotlin/tree/master/license
https://kotlinlang.org/foundation/kotlin-foundation.html#lead-designer
https://www.reddit.com/r/kotlin
https://kotlinlang.org/
https://developer.android.com/kotlin#safer-code
https://github.com/JetBrains/kotlin

13.7. TECHNICAL DEBT 287

13.6.2 Most commented unmerged PRs

Unmerged and closed PRs usually seem to be declined due to inactivity or because the changes are not
what is deemed relevant for Kotlin at the times. At times, a senior developer for Kotlin at JetBrains,
Mikhail Glukhikh, uses the PR system to perform extensive code reviews, which leads to a large amount of
comments.

13.6.3 Integrators

Kotlin uses a pull-based development model for doing reviews. Developers review the code and usually
review the code within a few days. The reviews appear to be quite thorough, but most pull requests are
merged either without changes required, or after one round of review. Most of these pull requests tag an
open issue for Kotlin, which makes them easy to accept. However, as stated before, the changes are often
manually merged. Most failing pull requests are not merged due to the changes not falling in line with the
direction of where Kotlin is going.

Pull requests are integrated by senior developers at JetBrains, who review the code and request changes.
One person, Mikhail Glukhikh 32, is assigned very often to review PRs.

13.6.4 Contact with JetBrains

We tried to establish direct communication with the JetBrains Kotlin Team. Unfortunately, this did not
succeed, thus, all communication, e.g. asking question was done on the Kotlin Slack 33.

13.7 Technical Debt

In this section, technical debt in Kotlin is identified and analyzed, by dividing it into four areas: code debt,
test debt, design debt, and communication about debt.

Code debt is important since it shows how maintainable the code is. Test debt is an important factor since
lacking tests and bad test habits can have a large impact on the project and are hard to resolve in future.
Design debt describes the debt caused by the module structure of the project, and dependencies on other
code. Finally, communication about debt shows that the developers are aware of the debt.

13.7.1 Code Debt

In order to properly analyze Kotlin, automatic analyzation tools are necessary. For this section we used
detekt 34, a framework made specifically for Kotlin, and the Statistic plugin 35 for IntelliJ IDEA. Statistic
allows to check several relatively simple metrics, e.g. logical lines of code (LLoC). Line based metrics have
limited validity, but can provide basic insights.

32GitHub inc., Mikhail glukhikh, (2019). https://github.com/mglukhikh?
33JetBrains s.r.o., Kotlinlang slack, (2019). https://kotlinlang.slack.com.
34Artur Bosch, Detekt, (2019). https://arturbosch.github.io/detekt/.
35Tomas Topinka, Statistic, (2019). https://plugins.jetbrains.com/plugin/4509-statistic.

https://github.com/mglukhikh?
https://kotlinlang.slack.com
https://arturbosch.github.io/detekt/
https://plugins.jetbrains.com/plugin/4509-statistic

288 CHAPTER 13. KOTLIN

Detekt is more powerful, but only analyses Kotlin files. It provides strong metrices, such as McCabe
cyclometic complexity (MCC). Additionally, it also estimates the time to fix the code debt and points out
specific problems.

13.7.1.1 Results

It is evident that there is some serious code debt in Kotlin, negatively impacting maintenance due to a lack
of clarity and explanations for the methods 36. This creates a growing threshold for contributors in terms of
time wasted on understanding the system.

Statistic showed that roughly 12% of the content of Java and Kotlin files are comments. When accounting
for the licensing in every file, around 10% lines of Code (LoC) are comments. Inspecting large files shows
that most of the classes do not contain many comments. As this appears to be consistent across the entire
project, this is an indicator for large code debt.

Detekt shows that the MCC and code smells per 1000 LLoC are high for a project of its size. Detekt
estimates that the time it would take to fix all code debt in Kotlin at 642 days, although no reasoning is given
for this estimate. However, some of these code smells might not be issues; for instance, Detekt does not
exclude generated files.

By running Detekt on several commits, once every year, code debt evolution was analyzed. The first figure
below shows that while the overall debt has grown massively, it has decreased compared to the LLoC. The
second figure below shows that the relative number of code smells has slightly decreased over time.

36E. Allman, Managing technical debt., Commun. ACM. 55 (2012) 50–55.

13.7. TECHNICAL DEBT 289

13.7.1.2 Open TODOs

Unresolved TODOs in code are a good metric for known technical debt in the project, the analysis of the
TODOs history can be seen in the figure below.

In 2016, the amount of TODOs grew significantly from about 850 to over 3000. The developers added many
TODOs in testing, especially in idea and compiler. Likely due to Kotlin being released around this time
they did not resolve these issues right away, increasing the testing debt further.

Furthermore, the overall number of open TODOs is increasing, reaching more than 4000 in March 2019,
indicating significant technical debt in the idea and compiler components. Not all this is necessarily bad,
as long as they can be repaid 37. The increasing number of TODOs does not however bode well as this also
means the time to resolve these TODOs keeps increasing.

13.7.2 Test Debt

In this section the testing debt of Kotlin is analyzed, by looking at bugs and analyzing the test quality.

37E. Allman, Managing technical debt., Commun. ACM. 55 (2012) 50–55.

290 CHAPTER 13. KOTLIN

Figure 13.4: History of TODOs since 2012 with main components, stacked amount of TODOs

13.7. TECHNICAL DEBT 291

13.7.2.1 Bugs

On YouTrack 38, all bugs in Kotlin are tracked with priorities and affected subsystems. The analysis focused
on major and critical bugs, because these are the ones with the highest impact.

In the period from 2011 until March 2019, 2428 major and 629 critical bugs were fixed in Kotlin. However,
774 major and 5 critical bugs remain unfixed. An analysis of the issue tracker shows that critical bugs are
likely to be resolved within a few months. However, major bugs stay unfixed much longer, some even for
multiple years (see examples 1 39, 2 40, and 3 41. The main components affected by bugs are IDE, Frontend,
Tools, and Backend (see the figure below).

Figure 13.5: Top 10 affected subsystem by bugs with stacked amount of bugs and current state (March 2019)

13.7.2.2 Test Quality

The current state of testing in Kotlin is difficult to assess, because analyzing test coverage is very difficult
due to the project having more than 55.000 tests, while lacking test coverage tools.

TeamCity and IntelliJ IDEA do not support code coverage for the Kotlin language 42. Since JetBrains
likely does not track test coverage, they have a presumably high potential of test debt. Furthermore, the

38JetBrains s.r.o., Kotlin (kt) - bug and issue tracker, (2019). https://youtrack.jetbrains.com/issues/KT.
39Svetlana Isakova, KT-9070, (2015). https://youtrack.jetbrains.com/issue/KT-9070.
40Hannes D., KT-11978, (2016). https://youtrack.jetbrains.com/issue/KT-11978.
41Eugene Petrenko, KT-16213, (2017). https://youtrack.jetbrains.com/issue/KT-16213.
42Irina Megorskaya, Code coverage, (2015). https://confluence.jetbrains.com/display/TCD9/Code+Coverage.

https://youtrack.jetbrains.com/issues/KT
https://youtrack.jetbrains.com/issue/KT-9070
https://youtrack.jetbrains.com/issue/KT-11978
https://youtrack.jetbrains.com/issue/KT-16213
https://confluence.jetbrains.com/display/TCD9/Code+Coverage

292 CHAPTER 13. KOTLIN

high amount of TODOs and their slow decline suggests JetBrains is aware of their testing debt, but is not
prioritizing it.

To improve testing standards (see section Standardization of testing) JetBrains could create quality require-
ments and guidelines for open source developers. Furthermore, test reviews should be mandatory for pull
requests, because testing is not checked in pull request reviews (see section Pull Request Analysis).

13.7.3 Design Debt

Since Kotlin is a large project, the internal dependencies are difficult to evaluate (see in section Module
Organization). It is evident that the internal structure is quite complex with many intertwined modules. This
is an indicator of high coupling, and thus large code debt. Meaning it is tough to add changes to the system.

While analyzing the dependencies of Kotlin, older version of libraries were found. For instance, it appears
that JUnit 4 is still used, which has been out-of-date for over a year.

One of the major dependencies of Kotlin is Java. Java 6 was deprecated in december 2018, but is still a listed
dependency of Kotlin. This is probably due to Android still heavily depending on Java 6. Since Android is a
target platform for Kotlin, this might be why Kotlin still wants to support Java 6.

13.7.4 Communication about Debt

In this section we discuss how Kotlin developers communicate and discuss about technical debt.

Filtering issues on YouTrack on the keywords “refactoring”, “refactor”, “maintain”, “maintenance”, and
“debt”, does not return any discussions about technical debt. Furthermore, there are no labels for technical
debt of any kind. Filtering the commit messages with the same keywords results in more than 2000 commits
with refactorings, but very few discussions about maintenance or refactoring. Additionally, only 20 TODOs
(see the figure above) contain the words “refactor” or “maintain”. On their Slack 43 there are no dedicated
channels for refactorings, testing or maintenance.

All these findings indicate that Kotlin developers very rarely discuss technical debt.

13.8 Development View

To analyse the development of Kotlin, we will take a look at the architecturally significant concerns. The
approach as specified by Rozanski and Woods 44 will be used in this section.

43JetBrains s.r.o., Kotlinlang slack, (2019). https://kotlinlang.slack.com.
44N. Rozanski, E. Woods, Software systems architecture: Working with stakeholders using viewpoints and perspectives, Addison-

Wesley, 2011.

https://kotlinlang.slack.com

13.8. DEVELOPMENT VIEW 293

13.8.1 Concerns

13.8.1.1 Modules

The Kotlin project repository is organized into modules and orchestrated using Gradle. Analyzing the build
files of the project showed there are 199 modules.

A dependency graph has been created to show the links between each subproject. From this graph, it can be
seen that sub-projects tend to have many dependencies to other sub-projects. Kotlin has multiple third-party
dependencies such as, Java, JUnit, ANTLR 4, and Google Guava.

The top 10 nodes by amount of times referenced are the following:

Name
Times
Referenced Description

:kotlin-stdlib 68 Contains the Kotlin standard library [@stdlib]. Used in all
Kotlin projects.

:idea 63 Contains all editor integration between IntelliJ IDEA and
Kotlin adjacent projects.

:compiler:frontend 59 Contains classes and methods to analyze Kotlin code,
resolve types, and show diagnostic compiler messages.

:compiler:util 52 Contains various utilities ranging from constants to class
conversions.

:compiler:tests-common44 Contains all kinds of boilerplate for creating language
tests. Used in many projects.

:compiler 42 Groups all sub-modules together: contains no
functionality on its own.

:compiler:frontend.java39 Contains behavior when the Kotlin compiler interacts with
a Java source file.

:compiler:cli 32 Contains code for command line tools kotlinc,
kotlin-dce-js, etc.

:core:descriptors 27 Contains classes for naming Kotlin language elements and
types.

:idea:core 27 Contains all editor integration between IntelliJ IDEA and
Kotlin.

Table 301 - Top 10 nodes by amount of times referenced

This list of top referenced nodes also shows points of common processing: nodes that are included often
must contain some kind of functionality that is useful to share and distribute across other modules.

Furthermore, there have been 7 general layers of modules identified.

The module structure graph shows the general relationship between module layers.

294 CHAPTER 13. KOTLIN

Figure 13.6: Diagram of the module structure.

13.8.1.2 Standardization of design

There are not a lot of explicit rules or guidelines for standardizing the design of the Kotlin source code. The
contributer’s guide 45 only specifies rules in regards to creating the pull request and communicating what
this contributes to the project. The only code related check that needs to be done is that tests have to be
written, run, and passed for the contribution. Aside from that, the current workflow appears to be to first
look at similar contributions, and then attempt to be consistent with their style.

There is, however, a coding conventions document 46 for the Kotlin language. Since the Kotlin project is
mainly written in Kotlin, this means these guidelines still apply for the source code contributions. Any
pattern that can be used to make the contributed code more efficient would be mentioned in the review, but
they are not defined beforehand.

13.8.1.3 Standardization of testing

As was mentioned before, there is a requirement to create tests when submitting a pull request. Since there
is a standardised way to create tests, this is a relatively easy process. For each type of feature, there is a
package in which tests can be added. Tests can then be generated by Gradle, which can then also execute
tests.

According to the contributor’s guide for Kotlin 47 every developer has to implement, run and pass all tests
for their contributions. There are no further requirements or guidelines for testing.

45Nikolay Krasko, Contributing, (n.d.). https://github.com/JetBrains/kotlin/blob/master/docs/contributing.md.
46Kotlin Lang, Contributing, (2019). https://kotlinlang.org/docs/reference/coding-conventions.html.
47Nikolay Krasko, Contributing, (n.d.). https://github.com/JetBrains/kotlin/blob/master/docs/contributing.md.

https://github.com/JetBrains/kotlin/blob/master/docs/contributing.md
https://kotlinlang.org/docs/reference/coding-conventions.html
https://github.com/JetBrains/kotlin/blob/master/docs/contributing.md

13.8. DEVELOPMENT VIEW 295

JUnit 4 and automatically generated test collections are used to simplify test creation. For most types of
test there is a file in the tests package that automatically generates code. This code will test the files it will
find in the corresponding package in testdata. The tests are generated by running the “generate all tests”
configuration in IntelliJ IDEA. All these tests are stored in multiple test suites regarding different modules
of the system, e.g. testIDE or compiler.

13.8.1.4 Instrumentation

For a programming language, instrumentation is a key property. Kotlin supports code tracing, debugging,
profiling, and data logging.

To enable developers to debug their software, Kotlin complies 48 to the DWARF 2 debugging data format
standard 49, allowing developers to use breakpoints, stepping, and inspections of types and variables.

Currently (March 2019), both Kotlin and IntelliJ IDEA do not have a native profiler for Kotlin, but
decompiling Kotlin code to Java code allows to use JVM Profiler 50 shipped in the JVM. The compiler can
target JVM, native, and JavaScript, which means tools for those environments can be used.

Every Throwable 51 object, the base class for exceptions and errors, contains a stacktrace array 52 with
the last frames before occurrence. Like most languages, exceptions contain a message, stack trace and, if
applicable, a cause 53.

Kotlin provides some options to profile software. Compiler Instrumentation 54 can be setup and used to
profile an application during compilation. A more specific tool is the measureTime 55 function, measuring
the runtime of a certain code block.

Logging can be done in a similar way to logging in Java. Furthermore, in IntelliJ IDEA many issues are
identified and shown to the developer during code writing. This is an feature of Kotlin, giving direct feedback
to Kotlin developers.

13.8.1.5 Codeline Organisation

The codeline organisation 56 refers to the way the directory structure is managed and tested, while being
regulated via configuration management. The management of the building and tests is done using Gradle.
The testing itself is done using JUnit 3 and 4.

Furthermore, JetBrains uses TeamCity for an continuous integration and deployment process 57. TeamCity

48Kotlin Lang, Debugging, (2019). https://kotlinlang.org/docs/reference/native/debugging.html.
49Unix International, DWARF debugging information format, (1993). http://dwarfstd.org/doc/dwarf-2.0.0.pdf.
50Zlata Kalyuzhnaya, IntelliJ idea 2018.3 eap: Git submodules, jvm profiler (macOS and linux) and more, (2018). https://blog.

jetbrains.com/idea/tag/jvm-profiler/.
51Kotlin Lang, Throwable, (2019). https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-throwable/index.html.
52Kotlin Lang, StackTrace, (2019). https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/stack-trace.html.
53Alexander Udalov, Andrey Breslav„ Exceptions, (2019). https://kotlinlang.org/docs/reference/exceptions.html.
54Alexander Udalov, Andrey Breslav„ Exceptions, (2019). https://kotlinlang.org/docs/reference/exceptions.html.
55Kotlin Lang, MeasureTimeMillis, (2019). https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.system/measure-time-millis.html.
56N. Rozanski, E. Woods, Software systems architecture: Working with stakeholders using viewpoints and perspectives, Addison-

Wesley, 2011.
57Kotlin TeamCity, Kotlin teamcity, (2019). https://teamcity.jetbrains.com/viewType.html?buildTypeId=Kotlin_dev_Compiler&

branch_Kotlin_dev=%3Cdefault%3E&tab=buildTypeStatusDiv.

https://kotlinlang.org/docs/reference/native/debugging.html
http://dwarfstd.org/doc/dwarf-2.0.0.pdf
https://blog.jetbrains.com/idea/tag/jvm-profiler/
https://blog.jetbrains.com/idea/tag/jvm-profiler/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-throwable/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/stack-trace.html
https://kotlinlang.org/docs/reference/exceptions.html
https://kotlinlang.org/docs/reference/exceptions.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.system/measure-time-millis.html
https://teamcity.jetbrains.com/viewType.html?buildTypeId=Kotlin_dev_Compiler&branch_Kotlin_dev=%3Cdefault%3E&tab=buildTypeStatusDiv
https://teamcity.jetbrains.com/viewType.html?buildTypeId=Kotlin_dev_Compiler&branch_Kotlin_dev=%3Cdefault%3E&tab=buildTypeStatusDiv

296 CHAPTER 13. KOTLIN

runs a multitude of build agents on the latest master, creating new builds roughly every 3 hours, if all tests
pass.

The file structure itself is confusing for newcomers. The project has not been structured in a clear and
logical form, nor is there any documentation on how the structure for the Kotlin project should be organized.
Nevertheless, an attempt was made to comprehensibly identify all the packages of the project and their
purpose, which can be found in the appendix.

For people that are wanting to contribute, it is the easiest to start with looking at the idea folder, since this
contains plugins for IntelliJ IDEA, such as inspections. Most of the up-for-grabs issues are also centered
around this package.

The main issue with this set-up is, that there is no clear indication or grouping of any functionality. In
order to contribute to Kotlin, a developer has to analyze other commits and pull request to get a basic
understanding of the project.

In conclusion, there are issues with documentation and clarity in the Kotlin project. It would be beneficial
to add more logical structuring and documentation, which would lead to people having an easier time
contributing.

13.9 Contributors Perspective

Kotlin is a project that partially relies on open source contributions in order to evolve and has welcome
contributors since it was made open source in 2012 58. In order for these contributors to work effectively,
they should be supported throughout the process. In this section the journey of contributiors throughout
making contributions and proposing new features will be explored, before giving recommendations for
potential improvements. This journey was derived from three personas (see Appendix Personas) and the
contribution barriers (see the figure below) identified by Steinmacher et al 59.

Barriers for new

58Ann Oreshnikova, Kotlin goes open source!, (2012). https://blog.jetbrains.com/kotlin/2012/02/kotlin-goes-open-source-2/.
59I. Steinmacher, M.A.G. Silva, M.A. Gerosa, D.F. Redmiles, A systematic literature review on the barriers faced by newcomers to

open source software projects, Information and Software Technology. 59 (2015) 67–85.

https://blog.jetbrains.com/kotlin/2012/02/kotlin-goes-open-source-2/

13.9. CONTRIBUTORS PERSPECTIVE 297

open source contributors found in a literature review by Steinmacher et al. in 2015 60.

13.9.1 Orientation

In the orientation phase, the contributor sets up the development environment, picks an issue and gets
familiar to the proceedings of Kotlin.

Finding all necessary files and documents on the Kotlin repository 61 such as Readme.md and
contributing.md 62 was no problem for the contributors.

Furthermore, understanding how to propose a new feature for Kotlin via the Kotlin Evolution and Enhance-
ment Process (KEEP) 63 is easy for new developers as it is well described. All things considered, the Kotlin
KEEP process can take several month to years and requires long term effort.

Unfortunately, the issue tracker is confusing for contributors, because issues on the issue tracker that are
up-for-grabs 64 is not as simple as suggested. Many of these filtered issues are already claimed, because
contributors can claim issues by leaving a comment or already have a pull request pending, which is either
tagged as such or not 65. Thus, finding an issue to grab requires lots of manual inspection of the issue tracker
and the Kotlin repository 66.

The build instructions are clear: JDKs 1.6, 1.7, 1.8, and 9 are required, with the former two being soft
requirements 67. It is not clear for developers if they can use the OpenJDK 68 instead of the Oracle JDK 69,
as it appears to be operable as well.

To improve the start for contributors, the issue tracker could allow developers to claim an issue formally
by adding a tag, such as “Grabbed” or “Doing”. Then, applying a filter would give a clear overview of the
issue state. Furthermore, the Pull Request tag should be properly maintained such that pull requests that are
pending do not show up in the filtered list. Additionally, it should be clear whether or not the OpenJDK can
be used to contribute to Kotlin, as it is easier to get and install in certain environments.

Because KEEP is can be slow and very time consuming JetBrains should add further information on how to
request features for Kotlin without making a large commitment.

13.9.2 Development and Testing

In this section, the development and testing experience for an open source contributor for Kotlin after an
issue was chosen will be explored. This involves understanding the project organization, documentation,

60I. Steinmacher, M.A.G. Silva, M.A. Gerosa, D.F. Redmiles, A systematic literature review on the barriers faced by newcomers to
open source software projects, Information and Software Technology. 59 (2015) 67–85.

61JetBrains s.r.o., The kotlin programming language, (2019). https://github.com/JetBrains/kotlin.
62Nikolay Krasko, Contributing, (n.d.). https://github.com/JetBrains/kotlin/blob/master/docs/contributing.md.
63JetBrains s.r.o., KEEP - kotlin evolution and enhancement process, (2019). https://github.com/Kotlin/KEEP.
64JetBrains s.r.o., Tag: Up For Grabs and state: Open, (2019). https://youtrack.jetbrains.com/issues/KT?q=tag:%20%7BUp%20For%

20Grabs%7D%20and%20State:%20Open.
65Burak Eregar, Convert java to kotlin dialog ask yes/no question but shows ok/cancel buttons, (2018). https://youtrack.jetbrains.

com/issue/KT-27869.
66JetBrains s.r.o., The kotlin programming language, (2019). https://github.com/JetBrains/kotlin.
67JetBrains s.r.o., The kotlin programming language, (2019). https://github.com/JetBrains/kotlin.
68Oracle Corporation, OPEN jdk, (2019). https://openjdk.java.net/.
69Oracle Corporation, Java se downloads, (2019). https://www.oracle.com/technetwork/java/javase/downloads/index.html.

https://github.com/JetBrains/kotlin
https://github.com/JetBrains/kotlin/blob/master/docs/contributing.md
https://github.com/Kotlin/KEEP
https://youtrack.jetbrains.com/issues/KT?q=tag:%20%7BUp%20For%20Grabs%7D%20and%20State:%20Open
https://youtrack.jetbrains.com/issues/KT?q=tag:%20%7BUp%20For%20Grabs%7D%20and%20State:%20Open
https://youtrack.jetbrains.com/issue/KT-27869
https://youtrack.jetbrains.com/issue/KT-27869
https://github.com/JetBrains/kotlin
https://github.com/JetBrains/kotlin
https://openjdk.java.net/
https://www.oracle.com/technetwork/java/javase/downloads/index.html

298 CHAPTER 13. KOTLIN

requirements, and implementation of the selected issue.

Starting to contribute to Kotlin can be difficult for developers, because the project structure is unclear and
very difficult to assess (see section Module Organization). Additionally, many functions especially used for
inspections are uncommented and can be difficult to understand for a new contributor.

Since the 23th of March 2019, documentation especially for inspections and quickfixes has been added
70, teaching new contributors how to start with intentions and in which directories to look. This is a major
improvement on the user experience, as a majority of Kotlin’s easy issues are related to Inspections and
Intentions 71.

Writing tests is a challenge: the contribution guidelines 72 are unclear about the requirements for these tests,
stating that related tests must be run locally and passed, and that all inspections should have automatic tests
73, but no mention of approaches or other requirements exist. The testing habits of other developers are also
differing widely from very little testing 74 to sound tests 75. Furthermore, many of the tests contain various
test metadata, such as ‘Problem: NONE’, e.g. inapplicable1.kt 76, but they are not listed or documented.

Furthermore, there is no method to run tests with coverage: the related button in IntelliJ IDEA is broken for
this project, leading to an error instead of coverage data.

The Kotlin developer community on their Slack 77 and helping with many issues developers face.

Documentation should be added for components that a new contributor is likely to use. When working on
a new project, code documentation is an important part of understanding how components interact with
each other. An example of this is ProblemsHolder.registerProblem 78, a function all inspections should
call. However, there are three method overloads; documentation could inform a user which overload is
appropriate for which situation. This is partially done with the new documentation for inspections and
quickfixes 79.

Coverage information should be fixed for the Kotlin project so that information like statement coverage and
branch coverage can be seen. This helps contributors identify missing test cases and improves the quality of
contributor tests, positively impacting test debt (see section 4 - Testing Debt).

To help new contributors, a mentorship program could be created, where more experienced open source
developers would assist newcomers. This approach is recommended by the open source guide as well 80.

70Nikolay Krasko, Intention/quickfix/inspection quick notes, (2019). https://github.com/JetBrains/kotlin/blob/master/docs/
intentions_inspections_quickfixes.md.

71JetBrains s.r.o., Up for grabsIDE. Inspections and Intentions, (2019). https://youtrack.jetbrains.com/issues?q=%23%7BUp%
20For%20Grabs%7D%20%23%7BIDE.%20Inspections%20and%20Intentions%7D.

72Nikolay Krasko, Contributing, (n.d.). https://github.com/JetBrains/kotlin/blob/master/docs/contributing.md.
73Nikolay Krasko, Intention/quickfix/inspection quick notes, (2019). https://github.com/JetBrains/kotlin/blob/master/docs/

intentions_inspections_quickfixes.md.
74Mikhail Glukhikh, Kotlin master, (2018). https://github.com/JetBrains/kotlin/tree/master/idea/testData/inspectionsLocal/

redundantSuspend.
75Toshiaki Kameyama, Mikhail Glukhikh, Kotlin master, (2019). https://github.com/JetBrains/kotlin/tree/master/idea/testData/

inspectionsLocal/moveLambdaOutsideParentheses.
76Toshiaki Kameyama, Kotlin master - inapplicable1.kt, (2018). https://github.com/JetBrains/kotlin/blob/master/idea/testData/

inspectionsLocal/moveLambdaOutsideParentheses/inapplicable1.kt.
77JetBrains s.r.o., Kotlinlang slack, (2019). https://kotlinlang.slack.com.
78Anna Kozlova et al., Intellij-community master, (2018). https://github.com/JetBrains/intellij-community/blob/

4999f5293e4307870020f1d0d672a3d35a52f22d/platform/analysis-api/src/com/intellij/codeInspection/ProblemsHolder.java.
79Nikolay Krasko, Intention/quickfix/inspection quick notes, (2019). https://github.com/JetBrains/kotlin/blob/master/docs/

intentions_inspections_quickfixes.md.
80Sophie Shepherd et al., Best practices for maintainers - learning to say no, (2016). https://opensource.guide/best-practices/#learning-

https://github.com/JetBrains/kotlin/blob/master/docs/intentions_inspections_quickfixes.md
https://github.com/JetBrains/kotlin/blob/master/docs/intentions_inspections_quickfixes.md
https://youtrack.jetbrains.com/issues?q=%23%7BUp%20For%20Grabs%7D%20%23%7BIDE.%20Inspections%20and%20Intentions%7D
https://youtrack.jetbrains.com/issues?q=%23%7BUp%20For%20Grabs%7D%20%23%7BIDE.%20Inspections%20and%20Intentions%7D
https://github.com/JetBrains/kotlin/blob/master/docs/contributing.md
https://github.com/JetBrains/kotlin/blob/master/docs/intentions_inspections_quickfixes.md
https://github.com/JetBrains/kotlin/blob/master/docs/intentions_inspections_quickfixes.md
https://github.com/JetBrains/kotlin/tree/master/idea/testData/inspectionsLocal/redundantSuspend
https://github.com/JetBrains/kotlin/tree/master/idea/testData/inspectionsLocal/redundantSuspend
https://github.com/JetBrains/kotlin/tree/master/idea/testData/inspectionsLocal/moveLambdaOutsideParentheses
https://github.com/JetBrains/kotlin/tree/master/idea/testData/inspectionsLocal/moveLambdaOutsideParentheses
https://github.com/JetBrains/kotlin/blob/master/idea/testData/inspectionsLocal/moveLambdaOutsideParentheses/inapplicable1.kt
https://github.com/JetBrains/kotlin/blob/master/idea/testData/inspectionsLocal/moveLambdaOutsideParentheses/inapplicable1.kt
https://kotlinlang.slack.com
https://github.com/JetBrains/intellij-community/blob/4999f5293e4307870020f1d0d672a3d35a52f22d/platform/analysis-api/src/com/intellij/codeInspection/ProblemsHolder.java
https://github.com/JetBrains/intellij-community/blob/4999f5293e4307870020f1d0d672a3d35a52f22d/platform/analysis-api/src/com/intellij/codeInspection/ProblemsHolder.java
https://github.com/JetBrains/kotlin/blob/master/docs/intentions_inspections_quickfixes.md
https://github.com/JetBrains/kotlin/blob/master/docs/intentions_inspections_quickfixes.md
https://opensource.guide/best-practices/#learning-to-say-no).

13.10. CONCLUSION 299

Mentors can help newcomers to understand the technical details, coding guidelines, and rules of the project
and thus, increase their productivity and quality of contributions.

13.9.3 Submission

This section addresses the final steps for a contribution: submitting a pull request to the Kotlin repository
and the review by project maintainers.

Submitting pull requests works without problems. In our experience the time between code submission and
first review can vary between a day and three weeks. After it is accepted, the change is integrated into the
master branch and is integrated in the project, automatically picked up by TeamCity to be included in a
following release (see section 3 - Development Process).

The timespan of the PR review process should be lowered. This barrier was also identified by six of the
reviewed studies by Steinmacher et al. (see the diagram of the module structure above) and is also addressed
in the opensource guide 81. A long period of waiting can be demotivating for new contributors, because it
can make your contribution feel insignificant after a lot of effort was poured into it. A good response time
recommended in literature is below 48 hours 82.

13.10 Conclusion

In this chapter, Kotlin was analyzed. Being a fairly new, but popular, language, Kotlin has attracted a lot
of attention. Thus, it was important to first get an overview of the different stakeholders. It was found
that evolution of the language is controlled by the Kotlin Foundation, and more specifically the Language
Committee. Almost all of the people in this foundation represent one of the other two major stakeholders,
JetBrains and Google.

All stakeholders are part of a broader context view. In this context view, it was found that Android is the
largest platform for Kotlin. It also identified competitors such as Java or Swift. The tools that are used
to develop JetBrains were also found, such as YouTrack for issue tracking, and TeamCity for continuous
integration. Another important discovery is that Kotlin can be compiled to work on the JVM, JavaScript,
and to native code.

Because Kotlin is open-source, anyone can contribute to the project. This means that there are more people
able to look at and contribute to the project, leading to a potential decrease in technical debt. Looking at
merged and unmerged pull-requests, discovered was that most PRs are usually merged to master after some
time has elapsed.

Having identified the context of Kotlin, the next step was to zoom in to the development view. In this view,
the different modules were identified and a diagram was made. Furthermore, the standardization of both
design and testing was looked at. It was found that there is not really a standard for design, but there is a

to-say-no).
81Sophie Shepherd et al., Best practices for maintainers - documenting your processes, (2016). https://opensource.guide/best-

practices/#documenting-your-processes.
82C. Jensen, S. King, V. Kuechler, Joining free/open source software communities: An analysis of newbies’ first interactions on

project mailing lists, in: 2011 44th Hawaii International Conference on System Sciences, 2011: pp. 1–10. doi:10.1109/HICSS.2011.264.

https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#learning-to-say-no).
https://opensource.guide/best-practices/#documenting-your-processes
https://opensource.guide/best-practices/#documenting-your-processes
https://doi.org/10.1109/HICSS.2011.264

300 CHAPTER 13. KOTLIN

standard way to write tests, since there is a testing framework included in the project. There is also plenty of
instrumentation available, helping developers to create and debug their code.

While researching the development view, time was also spent analyzing the potential technical debt of
Kotlin, split in four different categories. It was found that Kotlin has significant debt in all categories. It
was found that it would take an approximate 650 days to fix all the code debt, containing issues such as a
lack of comments and a comparatively cyclomatic complexity. Additionally, there is a large number of open
TODOs and bugs, however, these numbers are slowly declining over the years. This fact, coupled with no
apparent analysis for test coverage, shows a sign of high test debt. Since there is also no open conversations
that are visible about technical debt

The final perspective is the viewpoint of developers contributing to Kotlin. The section identified potential
barriers for contributors based on experience and research. Three personas were created, through which
the contribution process was analyzed and recommendations were given to improve this process. The most
important recommendations were: improve documentation and test coverage, decrease the time waiting for
review, and simplify the process of claiming issues.

Summarizing the results, Kotlin is a language that is starting to mature, and the fact that is open-source is
helping with this. However, there are still a lot of issues that needs to be fixed, especially with regards of
how easy it is for a new developer to contribute.

13.11 Appendix

Directory Purpose

.idea IDE support
android-studio IDE support
annotations Compiler
ant Building
build-common Building
compiler Compiler
core Standard library
custom-dependencies Building
docs Documentation
eval4j Java Interpreter
Generators Building
gradle Building
idea Functionalities and tests
idea-runner running
include compiling
j2k Conversion Java to Kotlin
jps-plugin Compiling Java
js Compiling Javascript
Konan Compiling Native Code
Libraries Functionality
license Apache licensing
plugins Functionality

13.11. APPENDIX 301

Directory Purpose

prepare Building
resources Building
spec-docs Documentation
test-instrumenter Test compiling
third-party Compiler
ultimate IDE Support

302 CHAPTER 13. KOTLIN

Chapter 14

Lila (lichess.org)

14.1 Introduction

Lila is the open-source code behind the libre, no-ad chess website lichess.org. The name is a playful
combination of Li(chess in Sca)la, given the backend code is written in Scala. The philosophy of the
project is nicely summed up in the project’s maintainer’s github profile description: “Benevolent dictator of
lichess.org, a hippie communist chess server for drug fueled atheists.” 1. The site is a major player in the
online chess world with more than one million games played every day 2.

14.2 Stakeholder Analysis

As the lichess project is open-source with a rather small group of core contributors some of the stakeholder
types identified by Rozanski and Woods are not fully applicable 3. Specifically we don’t have aquirers since
lichess is open and free. We identified some new roles not covered in the book and changed some roles
slightly (see the stakeholder subsection).

14.2.1 Github activity

Our stakeholder and decision making analysis is based to a great extent on the github project. Specifically
we selected the most discussed pull requests, 10 that were rejected, 10 that were merged (a list can be found
in the appendix). We also looked at contributions in general over the lifetime of the project.

1“Ornicar github.” [Online]. Available: https://github.com/ornicar. [Accessed: 18-Mar-2019].
2“About lichess.” [Online]. Available: https://lichess.org/about. [Accessed: 01-Apr-2019].
3N. Rozanski and E. Woods, Software systems architecture: Working with stakeholders using viewpoints and perspectives.

Addison-Wesley, 2011.

303

304 CHAPTER 14. LILA (LICHESS.ORG)

14.2.2 Stakeholders

There are three main developers, of which the number of commits are shown above. Ornicar is by far the
most active 4. He has started Lichess and remains the main developer. Over time, several other developers
have helped him. Originally, Clarkerubber and Unihedro were his main cocontributers, but since 2015 the
only other constantly active developers were Niklasf and Isaacl 5,6.

Developer Commits total Commits 2018

Ornicar 25922 2146
Niklasf 935 309
Isaacl 478 71

There is a group of moderators including more than twenty users on the website who help moderate the
forum and enforce rules. They perform various moderating tasks such as forum management and the banning
of cheating or misbehaving players. There are only 9 people who open issues and while forum names and
github names don’t always correspond, it seems that the moderators are also the ones posting issues on
github, which means they are also testers of the system. As the forum is the main communication channel
moderators are all communicators and as it is the place for users to ask questions, they also fulfill the
support role.

Ornicar seems to be the person responsible for deployment and adminstration of the servers, thus serving as
production engineer and system administrator. He is also the main integrator and his roles as production
engineer and system administrator shine through in this role, as he often comments on performance when
merging pull requests and even rejects pull requests if the performance is lacking 7. The other integrator is
Niklasf. Most often both comment on a pull request before it is merged. While Isaacl regularly contributes
to the discussion, he has to ask Ornicar or Niklasf to merge.

Lichess has a yearly running cost of $102,792.3, which is entirely covered by donations from sponsors.
This money mostly comes from monthly donations from Patreon supporters and from a webshop. The
Patreon supporters do not have any special status within Lichess, but Lichess is very much dependent on
them. The only commercial parties that Lichess seems to have relations to are the various servers where
Lichess is hosted, making them the only suppliers. The way the hosts are talked about in the “thank you”
section on the website seems to imply that Ornicar is on good terms with the hosts and possibly enjoys
significant discounts. This means they might be a combination of sponsor and supplier.

Most of the users are from Germany, Canada, USA, Russia and the UK 8. These users don’t have to pay or
even watch ads to play on the website as it is completely free. What Lichess do get from their users are
donations and developers 9, which it heavily depends upon. Secondly, next to the casual gamers you have
people who like to improve their skills using Lichess. These people can get their games analysed and can
even get a coach via Lichess. Thus, the website is used by all sorts of users of different skill levels. The
users of all different levels are therefore crucial for the existence of Lichess. Almost all other stakeholders
are also part of this large, diverse group. For example, the sponsors are all users, the moderators are

4“Ornicar github.” [Online]. Available: https://github.com/ornicar. [Accessed: 18-Mar-2019].
5“Niklasf github.” [Online]. Available: https://github.com/niklasf. [Accessed: 18-Mar-2019].
6“Isaacl github.” [Online]. Available: https://github.com/isaacl. [Accessed: 18-Mar-2019].
7“Upgrade to reactivemongo 0.12.” [Online]. Available: https://github.com/ ornicar/lila/pull/2115. [Accessed: 18-Mar-2019].
8“Alexa site info lichess.” [Online]. Available: https://www.alexa.com/siteinfo/ lichess.org. [Accessed: 18-Mar-2019].
9“Lichess donations.” [Online]. Available: lichess.org/patreon. [Accessed: 18-Mar-2019].

14.2. STAKEHOLDER ANALYSIS 305

recruited amongst the users, experienced users support each other through the forum and they also function
as communicators.

We estimate the different degrees of power and interests different stakeholders have in the following diagram.

Figure 14.1: Power Interest Grid

14.2.3 Decision making process of merging pull requests

The Lila project does not have written guidelines for merging pull requests. Most declined pull requests
(that is, a pull request that did not get merged),were lacking in quality, completeness or generally not needed
(e.g 10,11).

Interviewing some active developers (revoof and Toadofsky) on Lila’s discord channel gives us some insight
in what developers and mainteners look for:

• “Ultimately it’s up to the maintainers to merge Pull Requests.”

10“Fix for #4538.” [Online]. Available: https://github.com/ornicar/lila/pull/ 4591. [Accessed: 18-Mar-2019].
11“Add 100 quotes (3).” [Online]. Available: https://github.com/ornicar/lila/ pull/1472. [Accessed: 18-Mar-2019].

306 CHAPTER 14. LILA (LICHESS.ORG)

• “The things I look for during reviewing or merging are: coding style, things it could potentially break
and verify that it doesn’t break these things and as far as features are concerned I ask myself the
question if the feature is worth the complexity and cost of maintenance down the line.”

When asked if the project could benefit from having a set of guidelines and a process that is well documented.
The developers react rather lukewarm:

• “Probably not, to be honest. That sounds very rigid. I feel it’s more important to review code and give
feedback in a timely manner”.

• “Lichess is probably not the best project for developers who are just starting out”

14.3 Context View

Figure 14.2: Context View

14.4. DEVELOPMENT VIEW 307

14.3.1 Responsibilities

Lichess primarily offers a platform for people to play online chess. It has extensive matchmaking and
ranking of players, as well as offering many different play modes (including learning games). This website
is not only for everyday users, also Carl Magnussen amongst other grand masters use lichess to play chess
online 12.

Lichess has mobile apps (iOS, Android) and a web version. The browsers that are supported are the desktop
versions of Mozilla Firefox and Google Chrome. On Opera, Safari and Internet Explorer or Edge you are
able to play as well, however these are unsupported and can therefore have performance issues.

14.3.2 External Entities

In order to communicate with their users and provide content Lichess uses different platforms. They
use Twitter, Facebook, Twitch, Discord, Youtube and they even have a forum on their own website. As
mentioned in the stakeholder view, Lichess gets donations and sells merchandise to keep the website running.
When the users want to report bugs are feature request, they can do this in the forum or directly on Github.
Lichess competes with other platforms such as chess.com or chess cube, which differ slighly through more
paid content.

14.4 Development View

Due to space constraints for the following analysis of the development view and technical debt we focus on
the backend code of the project, which is written in Scala 2.11.

14.4.1 Dependencies

The Play Framework 2.4 is used to provide the typical web application backend infrastructure and MongoDB
is used for persistance. Other major dependencies are:

• scalachess (game logic, also developed by ornicar)
• akka actors (concurrent message passing)
• kamon (monitoring)

14.4.2 General architecture

The backend logic is structured in 69 modules, totalling around 59k lines of code. Server-side rendering
is used to serve the web pages to the users, the Play framework has its own templating engine twirl for
this purpose. The frontend executables are developed in a separate subproject, which are copied to the
appropriate resource folders in the build process. A mix of typescript and javascript is used without a big
frontend framework. An overview of this very high-level architecture is depicted in the following figure.

12“Magnus carlsen wins the first lichess titled arena.” [Online]. Avail- able: https://lichess.org/blog/WjRTPScAAJXo7r5s/magnus-
carlsen-wins-the- first-lichess-titled-arena. [Accessed: 18-Mar-2019].

https://www.playframework.com/documentation/2.4.x/Home
https://www.mongodb.com/
https://github.com/ornicar/scalachess
https://akka.io/
https://kamon.io/

308 CHAPTER 14. LILA (LICHESS.ORG)

Figure 14.3: Project Anatomy

14.4. DEVELOPMENT VIEW 309

The Play framework provides the infrastructure for routing and handling of HTTP requests including error
responses in a typical MVC (Model-View-Controller) project layout. Lila follows the standard structure,
defining all routes in a route configuration file, controllers to handle requests and the business logic in many
separate modules. Views are server-side rendered by the use of twirl templates. Overall it seems like the
project is not tied to the Play framework alot, but the heavy use of twirl templates would make a switch hard.
A plan to migrate to another more lightweight template libary scalatags is planned, but only very few parts
have been migrated.

In the following we focus just on the Model which is the heart of any project, here all the business logic
specific to Lila resides.

14.4.3 Modularization

With 69 modules the logic is very modularized and separated roughly according to functionality. There are
59 000 lines of code in total, distributed amongst packages as seen in the following figure:

Figure 14.4: Code distribution

The first six modules break the curve with significantly more lines of code than the others. These bigger and
presumably more important modules are listed below:

• tournament (47 files, 5.4k loc)
• study (38 files, 4.4k loc)
• game (45 files, 3.9k loc)
• common (52 files, 3.3k loc)
• security (36 files, 3.3k loc)
• user (31 files, 3.1k loc)

http://www.lihaoyi.com/scalatags/

310 CHAPTER 14. LILA (LICHESS.ORG)

Mostly these correspond to the major features offered by lichess, with the common and security module
offering more general services. In the module dependency figure below we can see how there are quite a
few general purpose modules that are depended on throughout the project’s codebase. Our diagram depicts
the general direction of dependencies from the general purpose modules within lila at the top to the external
dependencies and utility modules at the bottom. The modules that have arrows going to the bottom of their
block depend on modules in the block directly below it or further down.

Figure 14.5: Module dependencies

At the core of the codebase is the game module which is depended on by much of the codebase. It offers
the logic needed for the playing of a chess game, the major functionality of the lichess website (for this it
heavily depends on the scalachess library). All troughout the codebase the utility modules such as common,
security and api are used. A critical component is found in the db module which centralizes database access
functionality using the reactive mongo library.

Higher-level functionality such as messaging, notifications and analysis per chess game are organized around
the round module. This layer facilitates working with mutliple games of chess. It includes history and
analysis modules, as well as playban, which checks whether a player is allowed to play the next round. This
could still be considered part of the core as it provides all the functionality needed that revolves around the

http://reactivemongo.org/

14.5. TECHNICAL DEBT 311

playing of a single chess game. On top of that, there are the study and tournament layers. Both depend
heavily on the layers beneath them and the ability to play, record and analyse multiple games. Overall the
project is modularized along its core features and makes for quite a natural splitting in components. This
makes development easier as functionality is directly linked to the internal codebase structure.

14.4.4 Common Patterns and Utilities

The project makes use of a few special versions of common data structures such as futures, sequences,
primitives and trees which are defined in amongst others the common module, the tree module and the
coordinate module. These are essentially wrapper classes or slightly tweaked versions of the types found
in the Scala standard library. Furthermore to facilitate concurrent messaging the akka library is used for
its event bus offering interfaces to subscribe to events and for its actor-based message passing. There are
also some lila modules that handle concurrency, such as socket, hub and memo. The i18n module offers
internationalization utilities for translating UI elements to the client’s language. In addition, security is
handled in a separate module.

14.4.5 Development and Releases

The lila project has a wiki page on how to setup a development environment and a small contribution guide.
They mostly help with having the project running locally and include tips on what kind of feature requests
are welcomed. However there is not much information on how and where to contribute to lila. The project
uses scalariform to enforce a certain code style, but not many rules are used. Mostly rules from the general
Scala Style Guide are inherited. Furthermore a few conventions, termed “Lilaisms”, are defined. These
include some helper functions and wrappers around common functional programming structures such as
options and futures, which are heavily used throughout the codebase.

In general the contribution process starts with either an issue reported on github or a feature request that is
discussed in the lila forum and then posted as an issue. Some tagging of issues helps categorize issues into
feature requests and bugs. Ui issues are also tagged separately as “no scala” issues.

It is unclear what is the exact process of releasing new versions and deploying to production in the lila project.
It is not documented and asking ornicar whether there is a continous integration pipeline he replied: “there’s
no such thing, I deploy from local machine”. We previously also assumed that no continious integration
analysis is done due to the lack of tests and no mention of this anywhere.

14.5 Technical Debt

In order to gain insight into the technical debt the project has accumulated over time we use SonarQube and
Codacy. For SonarQube we use both the default sonar plugin and the sonar-scala plugin. The multi-module
configuration required us to make a separate script to generate a sonar configuration, as it would be quite
tedious to configure all 67 modules. The separate modules are relatively small, making the codebase score
very high on maintainability. Though, the technical debt of the individual modules differ significantly. In
total, 287 code smells are found based on the sonar rules and 2287 issues are found based on the codacy
rules.

https://github.com/sbt/sbt-scalariform
https://docs.scala-lang.org/style/index.html
https://www.sonarqube.org/
https://www.codacy.org
https://github.com/mwz/sonar-scala

312 CHAPTER 14. LILA (LICHESS.ORG)

14.5.1 Issues

Based on our sonar analysis we observe a total technical debt of 6 days based on issues alone, with most
issues belonging to the code smell category. Inspecting the technical debt we find that the codebase is
littered with commented out code, unreachable code, code duplication and unused code. Specifically the
duplicate use of string literals makes the code less maintainable and violates the DRY princicple.

We observe that some sources are very difficult to read as they have a very high cognitive load, with the
WMMatching.scala file in the commons module scoring a Cognitive Complexity of 265. Another issue
potentially decreasing maintainability are very large objects containing more than 30 methods (we found 31
such objects and classes). Complexity is also an issue with the amount of method parameters which exceed
8 for a total of around 20 methods. Readability is further decreased by heavy use of unnamed tuples in
subexpressions (110 such usages were detected).

Furthermore, we notice that the project contains quite a few warnings regarding security. Notably that no
input sanitizing takes place and the usage of in-secure cookies. Most importantly, the RegExes being used to
verify URLs make an easy target for DDoS attacks (due to the usage of wildcard characters).

We also notice that some modules make poor use of Scala’s functionalities, relying on mutable fields or
solving problems in a procedural manner as opposed to a functional approach. This is not necessarily
technical debt, but it is non-idiomatic use of the language which decreases cohesion of the project as a
whole. Some modules have significantly more technical debt than other modules, something that could have
been prevented if the Lila repository made use of CI tools such as sonar. Below a table can be seen with the
modules that contain most code smells:

Module Count

quotes 48
db 40
common 13
game 12
tournament 10
study 8
insight 7

It is hard to quantify the amount of technical debt within the lila project, however the big contrast in terms
of code smells between the different modules shows the project is not in a very consistent state. A lot of
work would be required to reduce these inconsistencies by refactoring and more cohesive language usage.

We assume that one of the biggest causes of the built up technical debt is due to the absence of structured
code reviews, continious integration and other tools that may help with reducing issues with code. Therefore
we also suggest that the lila team takes setting up a CI/CD pipeline into strong consideration.

It should be noted, however, that due to the fact the code is spread accross multiple modules, most code can
be easily modified as the modules are not tightly coupled with one other. In other words: lila has a very
maintainable codebase. Which probably has helped keep the project as popular as it is today, with an ever
increasing user count.

As mentioned previously the focus of our analysis is on the Scala portion of the codebase, however the
project also contains a small amount of Java and JavaScript code containing a few issues as well. The

https://www.sonarsource.com/docs/CognitiveComplexity.pdf

14.5. TECHNICAL DEBT 313

majority of issues (>90%) stem from the Scala code though, so we can assume the majority of the technical
debt is within the backend logic.

14.5.1.1 Diving deeper into the code smell

Upon manually inspecting all 287 code smells we decided whether a code smell is a “true” code smell or a
false positive. See a table below of our results:

Count

False Positives 143
True Positives 144

Surprisingly, many code smells (~ 50%) are a false positive. Examples of this are code smells such as
code used for localization of the application (translation into different languages). Though, one must argue
whether storing language translations inside a scala file is a best practice as this also flagged UTF-8 warnings
as some other alphabets are also included in this file which was flagged as a code smell.

Most true positives we found are mis-use of Scala, such as using variables and procedural code use.
Furthermore, we think that commented out code does not belong in a production environment. Also, some
true code duplication can be found in the project where it is clear code is copy-pasted.

Interestingly, we found code duplication across modules, which Sonar did not seem to flag as code duplica-
tion. We assume that if this would be possible for Sonar to detect we might have found more “true” code
smells in the “code duplication” category.

Overall, upon manual inspection of the issues flagged by Sonar and Codacy, we think that the project is
in a healthy state given the low amount of code smells that are actually significant to the project. As to
why this is the case, without structured code reviews and automated code analysis, is probably the fact that
this project has solely been developed by one (very experienced) Scala developer since 2013, only seeing
significant contributions from other users around 2016.

14.5.1.2 Resolution

As we would like to help Lila give insight into their project, we proposed to set-up sonar analysis for the
project. After some discussion with the maintainer of the project they were happy to have Sonar in place to
help scan the project on merge requests.

However, after setting up the sonar analysis we did notice that the time required for performing the Travis
build had more than doubled. Builds that normally took 9 minutes now took over 20 minutes. Adding to
this, the maintainer, ornicar, stated the following:

• “I fail to see the value.”

• “https://sonarcloud.io/project/issues?id=lila&resolved=false&types=CODE_SMELL is all about func-
tions starting with an upper case letter. These are standard in Play projects, including lila, and I don’t
want to change that.”

314 CHAPTER 14. LILA (LICHESS.ORG)

• “https://sonarcloud.io/project/issues?id=lila&resolved=false&types=BUG is all about the .scala.html
templates, which are in the process of being entirely replaced with .scala scalatags.”

• “This PR is intrusive, mainly because it requires a new sbt plugin, and I don’t see the benefits for lila.”

Even though we did not manage to have sonar integrated into lila, we did try our best to help the project lila
gain more insight into code quality. Moreover, we did contribute to lila through other means, solving bugs
and implementing features.

14.5.1.3 Historical analysis

Due to the complex structure in which the project is set up, it is difficult to perform a quantitive analysis on
the history of the project as we would have to re-generate the sonar properties files for each of the 30,000
commits. Even choosing a set of commits and manually setting up sonar, codacy and code coverage is a
complex process of changing build tools, property files and compiler errors. Because of this we perform
qualitative analysis and inspect the timeline of the project manually.

When browsing through the GitHub repository however, we do note that the project has almost solely been
developed by one person and the multi-module structure has remained intact ever since the project started.
Therefore we assume that this project has slowly accumulated technical debt (especially tests).

14.5.2 Testing Debt

The Testing Framework Specs2 is used for writing unit tests. However, overall the project’s backend code is
tested very little, the code has a whopping 2.68% branch coverage (the scoverage sbt plugin was used to
obtain the coverage data). Only 16 out of 68 modules actually have unit tests. Only the following 7 modules
have >5% coverage:

• lila.game
• lila.base (part of common)
• lila.importer
• lila.analyse
• lila.blog
• lila.shutup
• lila.socket

Among these only the game and base package are the most central modules to the codebase. Other big
modules contributing core functionality are not tested at all.

Due to the very low amount of test coverage we estimate that the amount of time required to get to a
respectable (at least 70%) test coverage is substantially large that it probably is not feasible writing tests for
the remaining 50000 lines of code that have not been covered. Overall for the evaluation of technical debt
within the lila project that lack of tests is a major issue with the potential to cause unmaintanability along the
road. Given that it is the second largest chess website currently in use, the absence of test is quite worrying.

Ornicar, the maintainer of the project, states that he does not think functional tests are of importance to lila
after being asked why there are little tests. ## Information View

https://etorreborre.github.io/specs2/
https://github.com/scoverage/sbt-scoverage

14.5. TECHNICAL DEBT 315

The lila project is by its nature as a chess application with extensive study and analysis tools an information-
heavy project, that requires quite some bookkeeping. As mentioned before MongoDB is used as a database
for persisting information. It is a NoSQL document-store database which saves structured information in a
format similar to JSON. Advantages of this kind of storage over traditional relational databases include an
easier mapping of data structures to the supported storage format and better locality when retrieving related
components. It is also easier to evolve the data and its relations over time, which comes with a penalty of no
guaranteed schema (unlike SQL databases).

The lila project stores its different data in various collections (a collection is the document store equivalent
to a table in a relational database), such as:

• Games
• Users
• Tournaments
• Study units

In the following we will describe the most important components of lila’s data model and how and when
information is persisted. Furthermore we end with a short discussion on data ownership and privacy aspects
of the project.

14.5.3 Static Data Model

Central to the data persisted is the user, which is associated with various components such as rankings,
teams, games etc. A high-level overview of these relationships can be seen in the following diagram.

Figure 14.6: User data model

A user can have a profile (public information for others to see), can be challenged by multiple other users,
took part in games, may have trophies, may have open study sessions, does have rankings for all the game

316 CHAPTER 14. LILA (LICHESS.ORG)

modes and may be part of multiple teams. We try to depict the common situation of an active user that has
played before and teams which are not empty.

A major data-intensive feature of lichess is its shared analysis capability (called Study). A user can be part
of multiple collaborative studies, which are collections of annotated (partial) games, used to analyze and
learn specific games, openings and moves. These studies are saved in lichess database and they can be
private (only visible to collaborators) or public.

Figure 14.7: Study data model

The data structure for a single game is quite big with many members. All core chess related data is defined
in the Game class inside the scalachess library. The Game class in the game module wraps this core data
with administrative information such as the player IDs and a game ID, as well as time related metadata. A
very compact data model omitting all smaller details can be seen in the following.

Notably the moves are stored in the popular PGN (portable game notation) format, which is used by many
chess analytics programs.

14.5.4 Information Flow

The general information flow in lila is dictated by its nature as a web application. Information is generated,
processed and persisted as a result of requests by the client (user).

Lila is organized into modules, seperated by responsibilties in terms of logic and data. The diagram shows
the usual architecture for the non-utility modules (e.g game, tournament). A singleton object exposing

14.5. TECHNICAL DEBT 317

Figure 14.8: Game data model

318 CHAPTER 14. LILA (LICHESS.ORG)

Figure 14.9: Information flow

an API defines operations that are performed by the respective controllers. General configuration and
specifically references to the collections of data required within the module are collected in a singleton
environment object. The datastructures corresponding to these collections are defined including conversion
logic to BSON (the format used by MongoDb). Database access is only performed through the collection
references and their API, which are defined by the reactivemongo library.

14.5.5 Ownership, Lifecycle and Privacy

Data ownership concerns the conceptual and physical distribution and authority on information. In the case
of lila the authoritative data source is the central database which resides on servers operated by the project
maintainer. Backups are made monthly and partly openly published.

Information lifecycle concerns the period of time data is stored until it is deleted (if not stored permanently).
In the case of lila data storage is pretty much permanent, accounts can not be deleted, but only closed. This
is due to the fact that accounts are associated with the games that the user played. These games are also
permanently stored, so it does not make sense to allow account deletion if the information is to be kept in a
consistent state 13.

As mentioned above all games played on lichess are published to the public. The games are published as
monthly collections in the PGN (portable game notation) format, which is a widely used format for chess
games.

13“Lichess privacy policy.” [Online]. Available: https://lichess.org/privacy. [Accessed: 11-Apr-2019].

https://database.lichess.org/

14.6. CONCLUSION 319

14.6 Conclusion

Lila is an impressive project in its scope and structure given that it has only one (main) maintainer. The
most important stakeholders involved are the users and developers who also fulfill most of the other typical
roles identified by Rozanski et al. The development process is very informal without extensive contribution
guidelines. This is both a benefit and disadvantage, the project could attract more contributors with a clearer
contribution guide, but with the current situation contributions are still made quite easily given the ususual
fast and direct responses by the maintainer.

The project is structured very methodically according to features, but makes very little use of unit testing
and other static analysis tools. This may speed up development at the cost of quality assurance. Technical
debt is accumulating within the project, mainly in the form of code duplication or overly complex methods.
At the moment no large impact on functionality and stability can be detected.

Lila is a data-intensive project processing massive amounts of chess games, tournaments and study sessions
by more than a million users. It seems that currently there are no problems with the data persistence approach
using a central document-store database. However given the growth of the website, there may be scalability
issues in the future.

14.7 Appendix

List of merged pull requests for stakeholder analysis:

1. https://github.com/ornicar/lila/pull/1206
2. https://github.com/ornicar/lila/pull/892
3. https://github.com/ornicar/lila/pull/1900
4. https://github.com/ornicar/lila/pull/3981
5. https://github.com/ornicar/lila/pull/2701
6. https://github.com/ornicar/lila/pull/2229
7. https://github.com/ornicar/lila/pull/2169
8. https://github.com/ornicar/lila/pull/3046
9. https://github.com/ornicar/lila/pull/2742

10. https://github.com/ornicar/lila/pull/909

List of rejected pull requests:

1. https://github.com/ornicar/lila/pull/4591
2. https://github.com/ornicar/lila/pull/2115
3. https://github.com/ornicar/lila/pull/788
4. https://github.com/ornicar/lila/pull/1510
5. https://github.com/ornicar/lila/pull/1511
6. https://github.com/ornicar/lila/pull/1338
7. https://github.com/ornicar/lila/pull/879
8. https://github.com/ornicar/lila/pull/1472
9. https://github.com/ornicar/lila/pull/2338

10. https://github.com/ornicar/lila/pull/3268

320 CHAPTER 14. LILA (LICHESS.ORG)

14.8 References / Footnotes

Chapter 15

MAPS.ME

By Henk Grent, Mark Haakman, Frenk van Mil, Casper Schröder.

15.1 Table of Contents

• Introduction
• Stakeholders

– Other stakeholders
– Power interest grid

321

https://github.com/HenkGrent
https://github.com/markhaakman
https://github.com/demasterr
https://github.com/CasperSchroder
https://maps.me

322 CHAPTER 15. MAPS.ME

• Pull Request Analysis
• Integrators
• Context View

– Scope and Responsibilities
• Development view

– Module structure
– Common design
– Codeline model

• Information View
– Information storage
– Information structure
– Information quality

• Technical Debt
– Maintainability
– Testing debt
– Self-admitted technical debt
– Evolution of technical debt
– Impact

• Conclusions
• References
• Appendices

– Appendix 1: Full Analysis of Pull Requests
– Appendix 2: Possible architecture improvements

15.2 Introduction

MAPS.ME is an offline map navigation app developed for Android and iOS devices, built on top of crowd-
sourced OpenStreetMap data. In November 2014 the app was acquired by the Mail.Ru group as part of the
My.com brand. The application was originally closed source but opened to the public as of September 2015.

The purpose of this chapter is to assess the quality of MAPS.ME as an open source project on the basis of
a software architecture standpoint, by analyzing several aspects such as the integration process, context,
structure, and technical debt.

This chapter provides an overview of the MAPS.ME project. First, the chapter identifies the stakeholders
involved. Next, the chapter describes the pull request procedure of the project and the integrators involved in
this process. Furthermore, a context view, development view, and information view describe the architecture
and design. The last part contains an analysis of the technical debt identified.

https://github.com/mapsme/omim

15.3. STAKEHOLDERS 323

15.3 Stakeholders

By identifying the stakeholders related to MAPS.ME it is easier to choose priorities and identify potential
constraints. Functioning mainly as a mobile app, MAPS.ME relies strongly on the size of their user base and
the companies this userbase attracts. Descriptions of stakeholders are inspired by Rozanski and Woods [25].

15.3.0.1 Users

MAPS.ME’s main feature of interest for end-users is its offline functionality. MAPS.ME provides high-
quality, crowd-sourced maps for free. According to the MAPS.ME partners page [17], their audience
consists out of people between the ages of 18 - 35, who are recreational travelers or business travelers.

15.3.0.2 Support staff

Support to other stakeholders is offered by means of e-mail contact and an online FAQ and knowledge base
[18]. The support staff is assumed to be employed by MAPS.ME.

15.3.0.3 Suppliers

Supplier stakeholders build and/or supply the hardware, software, or infrastructure on which the system runs.
There are a large number of external software dependencies. Two major stakeholders are Qt and C++. These
dependencies are further identified in the context view. The app is deployed on both iOS and Android. As a
result, they are dependent on Android and iOS. The terms and conditions of these stores [7; 2] can strongly
influence the design choices MAPS.ME can make. Although the server focusses on offline navigation, it
still requires OpenStreetMap to update the maps every once in a while.

15.3.0.4 Developers

The original MAPS.ME design and implementation were done by four people [13]. None of these developers
appear to be contributing much, if any, code at this point [6]. Currently, there is a core team working for
My.com (the owner company), situated in their office in Moscow, Russia.

After 2015, people we identified as most important developers are bykoianko, maksimandrianov, mpimenov,
and rokuz. These developers seem to have more power than most other developers and will be further
elaborated upon in the Integrators section.

15.3.0.5 Testers

Timofey Danshin has been doing tests and automation for the Mail.Ru Group since Dec 2015. However, he
does not appear to be focused on MAPS.ME. Earlier in the project, there was no dedicated tester. Every
contributor/maintainer is expected to provide test code for added features, according to the documentation.
However, this requirement is rarely carried out in practice.

https://github.com/bykoianko
https://github.com/maksimandrianov
https://github.com/mpimenov
https://github.com/rokuz

324 CHAPTER 15. MAPS.ME

15.3.0.6 Missing roles

The other roles described in Rozanski and Woods [25], namely system administrators, acquirers, assessors,
communicators, maintainers, production engineers and could not be identified. It is likely that these roles
are either filled by someone from the Mail.ru group or are ignored completely. Another possibility is that
integrators fill these roles, however, this is not clear from their GitHub activity.

15.3.1 Other stakeholders

Other stakeholders include stakeholders that were not mentioned by Rozanski and Woods [25], but which
are still important entities that can influence MAPS.ME’s position.

15.3.1.1 Competitors

Competitors include software products produced by other companies or developers which offer similar
functionality. Software products freely providing access to world maps are common. Notable are Google
Maps and Apple Maps. Both of these competitors offer limited offline access to maps on mobile devices.

15.3.1.2 GitHub contributors

GitHub contributors add to the project by creating issues, pull request, and reviewing pull requests. These
contributors can fulfill a similar role as the developers. However, they are less informed as they cannot easily
integrate with the core development team. They are also less powerful, as they need explicit approval from
developers in the MAPS.ME core team.

15.3.1.3 Funders

Funders include any party that provides conditional or unconditional revenue to one or more contributors of
MAPS.ME. There are a number of sources of income. The mobile application displays Google Ads [8].
For some fee, end-users can pay to hide advertisements, smaller companies can promote their company,
and bigger companies can engage in partnerships [17]. Booking.com, for example, is a major partner of
MAPS.ME.

15.3.2 Power interest grid

The power and interest of the significant stakeholder within the MAPS.ME context is visualized in Figure 1.
They have been mapped from the viewpoint of the stakeholders themselves.

Overall Google’s position does not allow it to assume a position that can be strongly detrimental to
MAPS.ME. Google Ads does have power by means of providing ad revenue, however MAPS.ME has
other sources of income as well. The app stores have the power to lower the search ranking of MAPS.ME,
however, they currently do not appear to lower MAPS.ME in the search ranking as it even considered to be

https://www.booking.com

15.3. STAKEHOLDERS 325

Figure 15.1: Figure 1: The power interest grids of significant stakeholders.

326 CHAPTER 15. MAPS.ME

an ‘Editor’s Pick’. Finally, there is no connection between Google Maps and MAPS.ME, which results in it
having low power.

All in all, MAPS.ME has established a relatively independent position in its market, in which their most
significant concerns revolve around keeping their sources that generate revenue satisfied and maintaining
their user base.

15.4 Pull Request Analysis

We analyzed 20 pull requests in order to gain insight into the decision-making process of the integrators
involved in the project. We picked the 10 merged and rejected (closed) pull requests with the most comments,
as these enabled us to give insight into the communication and workflow of the project. The entire analysis
can be found in Appendix 1, but this section will provide the conclusions that were made after looking at
these pull requests.

The 20 pull requests were all very similar in terms of communication. Lots of decisions are made in some
other way than using GitHub communication. These pull requests are either merged or rejected without
any clarification, or with a message, for example “discussed on Gitlab”. Most of the discussion being done
on the pull requests revolve around code quality on file level. It is rare to see anything else, and when it
happens it is often optimization proposals.

The code quality is looked after very well, with one pull request having 800 comments discussing not much
else. The proposed changes include fixing or improving code conventions, grammar, and redundancy in the
code. Strangely, this does not include documentation of the code or corresponding comments. This gives the
impression that the contributors care lots about code quality, but not documentation. Additionally, they rarely
seem to question the choice of implementation. This might imply that decisions concerning implementation
are made using other platforms of communication. On top of the disregard for documentation, there also
seems to be a disregard for testing. Testing is often ignored in pull requests, or postponed initially and
ignored afterward.

Bykoianko is the most active in pull requests, as such he appears to be the project leader. However, the
Linkedin accounts of the MAPS.ME team reveal that Rokuz has the role of project leader and Bykoianko
the role of senior developer.

A significant group of other contributors write their reviews in Russian. In contrast, all commit messages,
comments, and language used in the code are English.

15.5 Integrators

Based on the analysis of pull requests, the main integrators of the project, and their decision-making strategies
are described below. This analysis is key for understanding the interaction of people and developers within
the project.

15.6. CONTEXT VIEW 327

Roman Kuznetsov (Rokuz) Rokuz interacts in an almost product owner way. He reviews more than he
contributes. When he opens a pull request, it is often without description and quickly merged after not more
than one approval. If he approves a pull request, no other approvals are needed. His approvals are often
given without any visible feedback on the contribution. Contact: N/A

Vladimir Byko-Ianko (Bykoianko) Bykoianko seems to be one of the most important people on the project.
He either implements a feature or reviews it in depth. Important decisions on performance and how features
get implemented are made by him. He is also one of the biggest contributors at the moment. Contact: N/A

Maxim Pimenov (Mpimenov) Mpimenov seems to be fulfilling the quality control role in the project. He
comments on pull requests with mostly proposed style changes, or hard to miss bugs, which almost always
get immediately fixed by the proposer of the change. Contact: N/A

Maksim Andrianov (Maksimandrianov) Maksimandrianov is a relatively new integrator of the project,
however, is allowed to merge. He often partakes in the review process of features made by others. Contact:
Maksimandrianov1@gmail.com

Tatiana Yan (Tatiana-yan), Vlad Mihaylenko (Vmihaylenko), and Gmoryes Tatiana-yan and Vmi-
haylenko, seem to fulfill the quality control role next to their developer role. Gmoryes is one of the new
contributors to the project, having started on it half a year ago. The review process of his pull requests tend to
be longer than others because more faults are present in his code. Contact: N/A, vxmihaylenko@gmail.com,
and N/A.

15.6 Context View

The context view describes the relationships, dependencies, and interactions between the system and the
environment [25]. The context view of MAPS.ME can be found in Figure 2. The elements in the context
view are extracted based on stakeholders, build dependencies, development dependencies, and observing the
project repository on GitHub.

MAPS.ME works differently than most popular navigation applications. Instead of using an internet
connection to retrieve and show maps in real time, the application is fully offline. This appeals to a different
user group. These users are often travelers or citizens that live in an area with a bad internet connection.
This gives the application a valid competitive position compared to other map services, most importantly
Google Maps and Apple Maps. This position is important because the app is used on Android and iOS,
which are owned by Google and Apple respectively.

To properly build apps for these platforms, Java, Swift, and some third-party applications are used. HTML5
is used for the website and C++ for feature- and main development. The Android module is built with
Gradle, the project uses GitHub for version control, and Jenkins as continuous integration service.

An important external entity is OpenStreetMap. OpenStreetMap is an external system to the project which
provides the project with crucial map data. Map data of OpenStreetMap is crowdsourced from scratch and
changes to maps can be made from within the MAPS.ME apps when an OpenStreetMap account is linked.
Besides the points of interest provided by OpenStreetMap, Booking.com adds hotels to the maps, with
functionality to directly book a room through the MAPS.ME app.

https://github.com/rokuz
https://github.com/bykoianko
https://github.com/mpimenov
https://github.com/maksimandrianov
https://github.com/tatiana-yan
https://github.com/vmihaylenko
https://github.com/vmihaylenko
https://github.com/gmoryes

328 CHAPTER 15. MAPS.ME

Figure 15.2: Figure 2: The context view of MAPS.ME

MAPS.ME is owned by My.com, which is part of the Mail.ru group. Maps.me used to be closed source
and a paid service until it got bought by Mail.ru, after which it went open source. It now uses the Apache
software license for open source projects.

15.6.1 Scope and Responsibilities

MAPS.ME is an offline navigation app. Its main responsibilities are showing map data properly without an
internet connection, providing routing functionality for its users, and showing information on local shops,
traffic, transport, and tourist information. Users can also use their GPS to see their location on the maps
whilst being offline. The app covers the entire world, as it uses OpenStreetMap data. To prevent the app
from taking an immense amount of storage on the device by storing the map files for the world, the separate
map files for areas should be handpicked and downloaded by the user beforehand.

The app has some integration with parties such as Booking.com, to add functionality for users and create
a revenue stream for my.com. The advertising focuses on travelers mostly and the app lets businesses
advertise themselves inside it. The app is free to use, but if the users want an ad-free experience they can
pay a subscription fee. It is only available for smartphones, so other more “classic” navigation devices and
computers/laptops are outside of the scope.

15.7. DEVELOPMENT VIEW 329

15.7 Development view

The purpose of the development view is to provide insight into the code structure, dependencies and code
standards [25]. This helps software engineers work with the system efficiently and in a way that does not
violate technical integrity constraints. As of 2nd of March 2018, the repository contains about 46000 files
and 5000 directories, totaling 7 GB. This is large enough to make orientation non-trivial.

15.7.1 Module structure

The 5000 directories of MAPS.ME can be structured in modules. The function of these modules and
important dependencies between them are shown in the Figure 3. The module structure reveals how
important components of MAPS.ME’s architecture work together. No official module structure has been
documented in the MAPS.ME repository.

The code is separated in different frames based on their functionality. The Maps frame includes the func-
tionality related to creating and loading the map files (.mwm files) used by MAPS.ME. The Dependencies
frame contains a broad generalization, as the so-called “3party” module contains 30 different third-party
dependencies. Qt is shown separately, as it has its own folder in the main folder. All the dependencies and
map files are used by code in the “Core” frame.

The End-user functionality provides functions like routing, searching for streets and businesses, and live
traffic information. Business logic contains (among others) ads, code to process business partners, and a
benchmark tool. The GUI contains everything needed to render and display the graphics of the app.

The core is compiled using Cmake. This creates resources from the separate functionalities in the core frame,
which are used by the Android and iPhone projects. These projects create the final product in the form of
apps. Some improvements can be made to this structure and data flow, which are discussed in Appendix 2.

15.7.2 Common design

Ideally, anyone who contributes to a software system contributes in a way that is consistent with the existing
code base. This includes aspects such as a common coding style, standardizing test requirements, and the
use of design patterns to improve cohesion. Unfortunately, the project’s idea of a common design appears to
be limited.

15.7.2.1 Common processing

The generator module is a map building tool used from a lot of other modules. According to the README
file [14] “For development, use MAPS.ME Designer app along with its generator tool: these allow for quick
rebuilding of style and symbols (. . .)”. Furthermore, no explicit design patterns or contracts that should be
adhered to are mentioned in the repository. Most of the functionality that is processed in a uniform manner
appears to be incidental or as a result of the system’s implicit constraints.

330 CHAPTER 15. MAPS.ME

[Not supported by viewer]

Compiler functionality

[Not supported by viewer]

[Not supported by viewer]

As .apk As .ipa

3party

Provides map data

[Not supported by viewer]

MapLocal_ads

[Not supported by viewer]

Maps

Stores.mwm data

Data

[Not supported by viewer]
Download data

Qt

Provides for

GeneratorStorage

Process .mwm data

Indexer

cmake

Android Iphone

End-user functionality

TrackingTraffic Transit

Shows traffic

Displays

Shows routes Uses location

Uses location
Takes into account

SearchRouting

GUI

Shaders Skin generator Drape

Implements
Implements

Implements

Software renderer

Figure 15.3: Figure 3: Module structure of MAPS.ME

15.7. DEVELOPMENT VIEW 331

15.7.2.2 Common language

Formally the MAPS.ME repository uses English for its documentation and code, whereas discussions on
GitHub are often held in Russian [19]. The latter makes it hard for non-Russian speakers to participate.

15.7.2.3 Coding style

The coding style [15] has been extensively documented in the MAPS.ME docs. For C++ Google’s coding
standard [9] is used, with a number of exceptions. For the coding style, ClangFormat [4] is used with a
specified configure file. On top of this, a piece of example code has been added.

For map files, MAPS.ME uses an adapted version of MapCSS [22]. A description of this format is not
specified. However, a MAPS.ME specific designer app has been built which allows anyone to quickly build
maps in a standardized way.

15.7.2.4 Standardization of testing

Documentation on the standardization of testing is very limited. Within the coding style document, it is
mentioned that code should be covered with unit tests. It is also mentioned that third-party libraries should
be avoided if they are not fully tested on the MAPS.ME platform. In practice, the amount of testing done is
limited and not standardized.

15.7.3 Codeline model

The codeline model describes the source code structure, release process, configuration management, and
build and testing approaches [25].

15.7.3.1 Source Code Structure

There are 49 folders in the root directory of the MAPS.ME project [29]. An overview with descriptions
of the source code structure of MAPS.me is given in Figure 4. The descriptions are extended descriptions
from CONTRIBUTIONS.md. One contribution to MAPS.ME by us was the addition of missing folder
descriptions. As this repository consists of hardly any documentation and comments, it is hard to find out
the purpose of each directory in the root folder. Therefore, not every change was accepted in our pull request
#10513. Each white description in the figure was already present in the MAPS.ME documentation. The
other colored descriptions were (trying to be) added in the pull request. Descriptions indicated in red were
not accepted by Mpimenov [21], an author of the project. An elaboration on what information was missing
was not given. Descriptions indicated in yellow were partially wrong, green descriptions are accepted
and can now be found in the MAPS.ME documentation. Note that the “Core” described in this figure is
different from the “Core” described in the Module structure. The Core in this figure was taken from the
MAPS.ME documentation while the “Core” in the Module Structure was specified by us as it contains the
core functionality.

https://github.com/mapsme/omim/blob/master/docs/CONTRIBUTING.md
https://github.com/mapsme/omim/pull/10513

332 CHAPTER 15. MAPS.ME

✔ (undocumented and incomplete) external API of the application.

<div style="text-align: left">some common coding functionality, like macros, logging, caches etc.
</div>

api

base

✔ I/O classes and data processing.

[Not supported by viewer]drape

<div style="text-align: left">scene and resource manager for the Drape library.
</div>

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

<div style="text-align: left">platform abstraction classes: file paths, http requests, and location services.
</div>

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

<div style="text-align: left">standard headers wrappers, for Boost, STL and C-rt.
</div>

[Not supported by viewer]

[Not supported by viewer]

✔ real-time traffic information.

➖ routing for public transport.

coding

drape_frontend

generator

geocoder

geometry

indexer

map

platform

routing

routing_common

search

std

storage

tracking

traffic

transit

✔ user generated content, such as reviews.
ugc

✔ folder with 29 external libraries, some of which modified.

<div style="text-align: left">Android UI. Views of the app and ads within the apps. Java code.
</div>

3party

android

✔ CMake helper files.

<div style="text-align: left">data files for the application: translations, maps, styles and country borders.
</div>

cmake

data

[Not supported by viewer]

➖ descriptions of features in different languages.

debian

descriptions

[Not supported by viewer]

<div style="text-align: left">❌ No documentation. This package does not seem to be consistent and no usage of the file could be found. It might have become obsolete.<

editor

feature_list

[Not supported by viewer]

[Not supported by viewer]

installer

iphone

✔ manipulation of Google Earth KML files.

<div style="text-align: left">❌ featured places on the map, for example shops.
</div>

kml

local_ads

✔ generate screenshots of maps, specified by coordinates and zoom level.

➖ measuring user metrics.

mapshot

metrics

<div style="text-align: left">❌ dynamic location referencing (cross referencing maps).*
</div>

✔ API for Booking.com, Facebook, and other partners.

openlr

partners_api

[Not supported by viewer]

[Not supported by viewer]

pyhelpers

qt

[Not supported by viewer]

[Not supported by viewer]

qt_tstfrm

shaders

<div style="text-align: left">a console app for building skin files with icons and symbols.
</div>

[Not supported by viewer]

skin_generator

software_renderer

[Not supported by viewer]

[Not supported by viewer]

stats

testing

[Not supported by viewer]

<div style="text-align: left">tools for various purposes e.g. building packages, testing, etc.
</div>

tizen

tools

<div style="text-align: left">❌ analyzer for the generated tracks with the track generator.
</div>

✔ Generate smooth tracks based on waypoints from KML.

track_analyzing

track_generator

[Not supported by viewer]

<div style="text-align: left">
</div>

xcode

[Not supported by viewer]

[Not supported by viewer]

Figure 15.4: Figure 4: Source code structure of MAPS.ME

15.7. DEVELOPMENT VIEW 333

15.7.3.2 Build Approach

MAPS.ME has various build procedures. CMake is used as C++ compiler tool to create releases for Android
and iOS. The build automation system Gradle is used for the Android version and the iOS version can be
built within XCode. The project is developed on MacOS, so building on Linux based systems like Ubuntu
will also easily work. However, building on Windows is not supported by the project.

15.7.3.3 Release Process

The source code is released on GitHub by merging open pull requests directly to the master branch. Since the
real release of builds happens in the Google Play Store and Apple’s App Store, failing builds on the master
branch are not as critical as is the case for some other projects. MAPS.ME only had thirteen releases in 2018
[1]. This is a slow deployment cycle compared to other actively developed apps. This could be justified by
the fact that resources, such as maps and interesting points on the maps are updated independently of the
app. Map updates, with new routes and locations, can be downloaded from within the app. A timeline of the
app releases in 2018 can be found in Figure 5. The year 2018 is chosen to give an overview of an entire year
of releases. It is noticeable on the timeline that some releases are followed quickly by another release. That
could suggest that they did ship some bugged releases, which needed to be patched quickly. The update
notes on the Google Play Store do not show that these releases contain bug fixes.

Figure 15.5: Figure 5: Timeline of MAPS.ME releases in 2018 on the Google Play Store

15.7.3.4 Code management

MAPS.ME uses a Pull-based Software Development Model [10]. Contributors other than the authors have to
fork the repository and create pull requests to merge their contributions into the project. Before someone can
contribute to the project, a Contributor License Agreement has to be signed [16]. The authors themselves
create pull requests but do not provide a description most of the time. If a description is provided, it is often
in Russian. Jira is used as issue and bug tracking system but this tool is not available to the public. On
some pull requests, the Continuous Integration system Jenkins is used. Jenkins has to be started manually
by commenting on a pull request with “JTALL” (Jenkins Test All). In that case, Jenkins tries to build the
project for Mac, Android, Linux, and iOS. The details of Jenkins build info cannot be viewed, as these are
stored on a private website.

https://maps.me/cla/

334 CHAPTER 15. MAPS.ME

15.8 Information View

In this view, we will consider the information- storage, structure and quality. One of MAPS.ME’s main
functions is to make map data insightful for end-users. Therefore, we consider the maps and map enrichment
data. The map data is used to generate the polygons and so-called ‘features’ which are present on the maps.
The map enrichment contains files like translations, style sheets and country metadata.

15.8.1 Information storage

For maps, data is retrieved from OpenStreetMap database [23] using some download utility files in the
storage module - as depicted in the module structure. This downloaded data is processed into map files
(‘.mwm’) via the ‘generate_mwm.sh’ script, which are stored as flat files on the MAPS.ME server.

The map enrichment files are all included on GitHub and shipped with the app. They are stored in the
corresponding formats. For key-values stores ‘.txt’ and ‘.json’ files are used.

15.8.2 Information structure

The information structure we will elaborate on revolves around map data, which uses ‘map enrichment’ files.
The statistics are not related to the map and enrichment data.

Figure 15.6: Figure 6: Information structure related to map files as static files and at runtime.

15.9. TECHNICAL DEBT 335

Figure 6 shows how static map- and enrichment files are used in creating the tree of map features that are
used by MAPS.ME’s core code. These trees are generated from .mwm files whose granularity depends
on the location and level of zoom. If someone zooms in on a specific country, the .mwm file related to
that country will be used. Only the ‘.mwm’ file for the world view is included on GitHub and the mobile
application by default. Specific map files can then be downloaded from within the app. This can be done by
country or specific regions within this country.

The tree contains objects called map features. Each map feature consists of a specific type. There are
numerous types, such as schools, industrial land, and pubs. These types contain geometry information, such
as polygons, which is used to render them on the map. Some of these types may include a map object, which
(generally) function as objects the user can interact with by means of the end-user functionality, as depicted
in the module structure.

The features and objects in the tree use the enrichment data in different ways. The border information is
used in many ways, most notably to determine the country features belong to and to draw borders. The fonts,
style sheets, and search icons are applied to map features on a selection basis, similar to how CSS works.
Finally, map objects use translation dictionaries to make strings location-specific.

15.8.3 Information quality

Information quality is warranted by using OpenStreetMap and having the project be accessible for contribu-
tions on GitHub. The map data used from OpenStreetMap is crowdsourced and open to adjustments. The
data can always be updated to correspond with the real world, as OpenStreetMap updates its files every
minute. This prevents users from getting annoyed by outdated data. This undermines the quality of the
information slightly. However, if need be, this can be mitigated by releasing more often.

15.9 Technical Debt

Technical debt is the term introduced to indicate to nontechnical stakeholders the need for ‘refactoring’
[11]. From the original description, technical debt is described as “not quite right code which we postpone
making it right”[5]. In this section, analysis tools are used to identify such technical debt. All analyses ran
on the most recent version of the master branch at the time of writing this section (commit 1931f0f).

15.9.1 Maintainability

First, this section focusses on the maintainability of the project. Low maintainability could lead to surprises
in cost and time when change is required [3]. One way to help identify maintainability of code is by the
use of SonarQube. SonarQube is a static analysis tool capable of analyzing projects for bad practices, code
smells, and more. Thanks to its extensiveness, it enables thorough analyses. As the MAPS.ME project is
fairly big, the maintainability analysis will be narrowed down to the Android module.

https://github.com/mapsme/omim/blob/master/data/types.txt
https://github.com/mapsme/omim/blob/master/indexer/map_object.cpp
https://github.com/mapsme/omim/commit/1931f0f66d0312fa8c7379c7008c644dd039875d
https://www.sonarqube.org/

336 CHAPTER 15. MAPS.ME

15.9.1.1 SonarQube dashboard

From the SonarQube analysis dashboard 230 suspected bugs and 63 vulnerabilities can be found. Further-
more, in Figure 7 can be seen that the number of code smells is excessive (1.6k). Upon manual inspection,
the bugs, vulnerabilities, and code smells are in many cases significant. Although there are indications that
code smells do not always directly affect maintainability [26, 28], they are good indications of bad practices.

Figure 15.7: Figure 7: Dashboard overview of SonarQube of the Android app

Figure 8 shows the maintainability scores found by SonarQube. The majority of classes fall within 500 lines
of code per class and a technical debt below 3.5 hours. The red cluster around seven hours of technical
debt mostly contains Activity classes. Most red classes are caused by having far more parent classes than
authorized (e.g. 12 parents where 5 is allowed).

The biggest outlier, with a technical debt of 1d 4h, is MwmActivity.java. By inspecting the class it
becomes clear that this is the main activity of the application with many functionalities cramped into it and
most of its code being abandoned code. This emphasizes the need for refactoring this file.

15.9.1.2 Bad practices

If we look at the complexity of methods in the whole project, some functions undoubtedly are refactoring
candidates. For example, normalize_unicode::NormalizeInPlace has an NLOC (# lines of code) of
4571 and a Cyclomatic Complexity of 4234. This was only one of the most extreme cases, beyond doubt
there are many more functions with a complexity even above a hundred. Most of these files are also identified
(see Figure 9) by CodeScene, a static analysis tool capable of identifying refactoring candidates.

The technical debt on these files can become a concern if the code is not commented. If we look at the
Android /src module, we see a comment/NLOC-ratio of 3.5% (measured with cloc). Compared to the
average ratio found by Pascarella and Bacchelli[24], 40%, this is far lower than most prominent Java
repositories. For C++ files, the comment ratio is 11.7%. Such low comment ratios make it harder to
understand the code. Open source projects without adequate documentation are inherently at a disadvantage
[12]. However, the core team does not seem to give a high priority to commenting or documentation.
Contribution to the documentation was also partly rejected and the core team would rather postpone updating

https://sonarcloud.io/dashboard?id=demasterr_omim
https://github.com/AlDanial/cloc

15.9. TECHNICAL DEBT 337

Figure 15.8: Figure 8: Maintainability graph of the Android app (from SonarQube)

338 CHAPTER 15. MAPS.ME

Figure 15.9: Figure 9: Refactoring candidates of MAPS.ME (from CodeScene)

15.9. TECHNICAL DEBT 339

the documentation (see #10513). The obvious solution to the technical debt in maintainability is to add
documentation to the code and reduce the Cyclomatic Complexity in the identified refactoring candidates.

15.9.2 Testing debt

MAPS.ME does not use a standard testing framework. There are unit tests, but these can only be executed
by their own test execution code [20]. This has some major disadvantages, which will be elaborated upon in
this subsection.

Tests do not have IDE support, so executing tests can only be done from a terminal and results can only be
viewed in a log file. This becomes a problem when a test fails, as it takes effort to find the cause. The script
which executes tests, executes the test binaries separately, so there is no conclusive result of all tests. Failing
tests are hidden between different modules in the generated log file.

The authors did not implement a way to measure code coverage into their testing module, so there is no easy
way to tell which parts of the code are tested and which are not. This makes it very hard for us to discuss
well- and less tested modules. When asking for more clarification on measuring code coverage in an issue
#10555, we did not get any response as of writing this section.

To observe current testing behavior, we analyzed the last fifty pull requests to the project, which is a little
more than a week of contributions. Of the fifty pull requests, only 12% changed test files. This indicates a
significant testing debt.

Several actions should be taken to decrease further testing debt. As all main authors are developing in Xcode,
the testing framework XCTest could be used to create and run unit tests, performance tests, and UI tests.
This enables developers to debug tests, see code performance, measure code coverage, and automate testing.

15.9.3 Self-admitted technical debt

Technical debt is often introduced knowingly by developers, often indicated with “TODO”s, “FIXME”s or
“BUG”s in the code. To find how many of these markers are present in the project, we used todo-show for
Atom. This package allows to count and filter for the indications. The code contains a total of 2384 TODOs,
552 FIXMEs, and 19 BUGs.

A considerable part of the project is the code for the Android app. When building the Android app, the
C++ compiler shows (600+) unhandled warnings. These warnings indicate potential issues. Either these
warnings should be suppressed, or the code should be adjusted accordingly.

The total amount of markers in the code and the number of compile warnings give the impression that the
code contains a hefty amount of self-admitted technical debt. As Storey et al. [27] have shown, developers
believe that TODOs and other similar markers have a significant negative effect on the maintainability of
the project. To avoid this technical debt, the developers should solve the warnings and identify the most
important indicators.

https://github.com/mapsme/omim/pull/10513
https://github.com/mapsme/omim/issues/10555
https://developer.apple.com/documentation/xctest
https://atom.io/packages/todo-show

340 CHAPTER 15. MAPS.ME

15.9.4 Evolution of technical debt

To measure the evolution of technical debt, we analyzed the interactions of the integrators. The way they
handle situations concerning technical debt can be an interesting benchmark. Often new features get merged
without the mention of tests or even the added TODOs in the code. Occasionally, the integrators add tests
for the most important functionality. In discussions around only a few pull requests, tests and comments are
emphasized.

The last time a TODO was actually implemented was almost three years ago. The way of communication
and implementation imply that the integrators ignore the technical debt of the project. They often add
code containing technical debt and rarely discuss it. This causes the technical debt to keep growing and go
unchecked.

15.9.5 Impact

With high Cyclomatic Complexity and the marginal documentation in the code, contributing to the project
gets increasingly hard. The original author may be gone and, therefore, knowledge about functionality may
be lost. Mistakes are more likely to be made, as confusion is dragged through the project. As the project
has hardly any tests and the framework used for testing is incomplete, it is likely that many defects remain
unnoticed. The defects and missing components that are noticed, e.g. with a TODO, are mostly ignored.
After years of ignoring the indicators, the absence of their implementation can possibly cause extensibility
problems or defects.

15.10 Conclusions

The conclusions reflect on the purpose of this chapter, which was to assess the quality of MAPS.ME with
respect to the different software architecture viewpoints.

With respect to the context view and the stakeholders, MAPS.ME is a project which has a strong market
position as an app. The emphasis on offline navigation allows it to separate itself from its competitors and its
target audience is big enough to attract funders. Furthermore, MAPS.ME is not dependent on stakeholders
which might have the intent to inhibit the project.

For the development view, MAPS.ME has a lot of room for improvement. The concerns of modules within
the module structure are not always clearly separated. It is not easy to figure out the responsibility of
modules, because the codeline structure is highly fragmented and there is little documentation. MAPS.ME
could improve this aspect by including documentation about the data flow and the module structure. Also,
better grouping the directories according to their functionality would improve MAPS.ME.

For the information view, MAPS.ME’s dependence on OpenStreetMap allows it to keep its map data
up-to-date. The information and related modules are well-structured. All in all, this makes MAPS.ME’s
approach for handling map data solid, yet relatively simple.

According to manual and automated analysis, we identified a significant technical debt. SonarQube revealed
a high technical debt and low maintainability. A lot of this technical debt is self-admitted and has been shown
to not reduce over time. The testing debt was not easy to measure. Having a uniform testing framework
could help MAPS.ME control their tests better. In order to improve this aspect, the core team should become

https://github.com/mapsme/omim/commit/e2c28dbc22eceb786fb21ec3300c8e47509a683f

15.11. REFERENCES 341

aware of the consequences of high technical debt and how to deal with it. Static analysis tools could help
with gaining such insight.

One particular theme among the different subsections of this chapter is the communication between the core
team and the GitHub community. The project does not contain sufficient documentation to understand the
code. The core team also does not respond hospitably when asked questions. Furthermore, the vast majority
of the contributions are done by the core team without any reviews from external developers. As a result, it
is hard to consider MAPS.ME a truly open source project.

15.11 References

[1] APKPure. 2019. MAPS.ME update version history for android - apk download. Re-
trieved March 22, 2019 from https://apkpure.com/maps-me-%E2%80%93-offline-map-and-travel-
navigation/com.mapswithme.maps.pro/versions

[2] Apple. 2018. Apple media services terms and conditions. Retrieved March 22, 2019 from
https://www.apple.com/legal/internet-services/itunes/us/terms.html

[3] T. Bakota, P. Hegedűs, G. Ladányi, P. Körtvélyesi, R. Ferenc, and T. Gyimóthy. 2012. A cost model
based on software maintainability. In 2012 28th ieee international conference on software maintenance
(icsm), 316–325. DOI:https://doi.org/10.1109/ICSM.2012.6405288

[4] Clang. Clang 9 documentation. Clang C Language Family Frontend for LLVM. Retrieved March 22,
2019 from https://clang.llvm.org/docs/ClangFormat.html

[5] Ward Cunningham. 1992. The wycash portfolio management system. SIGPLAN OOPS Mess. 4, 2
(December 1992), 29–30. DOI:https://doi.org/10.1145/157710.157715

[6] GitHub. Contributors to mapsme/omim. Retrieved March 22, 2019 from
https://github.com/mapsme/omim/graphs/contributors

[7] Google. 2018. Google play terms of service. Retrieved March 22, 2019 from
https://play.google.com/about/play-terms/index.html

[8] Google. MAPS.ME – offline map and travel navigation - apps on google play. Retrieved March 22, 2019
from https://play.google.com/store/apps/details?id=com.mapswithme.maps.pro

[9] Google. Google c style guide. Retrieved March 22, 2019 from https://google.github.io/styleguide/cppguide.html

[10] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory study of the pull-based
software development model. In Proceedings of the 36th international conference on software engineering,
345–355.

[11] P. Kruchten, R. L. Nord, and I. Ozkaya. 2012. Technical debt: From metaphor to theory and practice.
IEEE Software 29, 6 (November 2012), 18–21. DOI:https://doi.org/10.1109/MS.2012.167

[12] Michelle Levesque. 2004. Fundamental issues with open source software development. First Monday
9, 4 (2004). DOI:https://doi.org/10.5210/fm.v9i4.1137

342 CHAPTER 15. MAPS.ME

[13] MAPS.ME. 2015. Mapsme/omim contributors. Retrieved March 22, 2019 from
https://github.com/mapsme/omim/blob/master/CONTRIBUTORS

[14] MAPS.ME. 2018. Mapsme/omim readme. GitHub mapsme/omim. Retrieved March 22, 2019 from
https://github.com/mapsme/omim/blob/master/README.md

[15] MAPS.ME. 2018. Mapsme/omim coding style. Retrieved March 22, 2019 from
https://github.com/mapsme/omim/blob/master/docs/CPP_STYLE.md

[16] MAPS.ME. 2019. Mapsme/omim contributing.md. Retrieved March 22, 2019 from
https://github.com/mapsme/omim/blob/master/docs/CONTRIBUTING.md

[17] MAPS.ME. Partners. Partners. Retrieved March 22, 2019 from https://maps.me/partners/

[18] MAPS.ME. MAPS.ME – support. Retrieved March 22, 2019 from https://support.maps.me/hc/en-us

[19] MAPS.ME. Pull requests mapsme/omim. Retrieved March 22, 2019 from
https://github.com/mapsme/omim/pulls

[20] MAPS.ME. Mapsme/omim testing tree github. Retrieved March 22, 2019 from
https://github.com/mapsme/omim/tree/master/testing

[21] mpimenov. mapsme/omim Pull request #10513. 2019. Retrieved March 22, 2019 from
https://github.com/mapsme/omim/pull/10513#pullrequestreview-213079484

[22] OpenStreetMap. MapCSS. About OpenStreetMap - OpenStreetMap Wiki. Retrieved March 22, 2019
from https://wiki.openstreetmap.org/wiki/MapCSS

[23] OpenStreetMaps. API. API - OpenStreetMap Wiki. Retrieved from https://wiki.openstreetmap.org/wiki/API

[24] L. Pascarella and A. Bacchelli. 2017. Classifying code comments in java open-source software
systems. In 2017 ieee/acm 14th international conference on mining software repositories (msr), 227–237.
DOI:https://doi.org/10.1109/MSR.2017.63

[25] Nick Rozanski and Eoin Woods. 2012. Software systems architecture: Working with stakeholders
using viewpoints and perspectives. Addison-Wesley.

[26] D. I. K. Sjøberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dybå. 2013. Quantifying the effect
of code smells on maintenance effort. IEEE Transactions on Software Engineering 39, 8 (August 2013),
1144–1156. DOI:https://doi.org/10.1109/TSE.2012.89

[27] Margaret-Anne Storey, Jody Ryall, R. Ian Bull, Del Myers, and Janice Singer. 2008. TODO
or to bug: Exploring how task annotations play a role in the work practices of software developers.
In Proceedings of the 30th international conference on software engineering (ICSE ’08), 251–260.
DOI:https://doi.org/10.1145/1368088.1368123

[28] Min Zhang, Tracy Hall, and Nathan Baddoo. 2011. Code bad smells: A review of current knowledge.
Journal of Software Maintenance and Evolution: research and practice 23, 3 (2011), 179–202.

[29] MAPS.ME tree github. Retrieved March 22, 2019 from https://github.com/mapsme/omim/tree/master/

15.12. APPENDICES 343

15.12 Appendices

15.12.1 Appendix 1: Full Analysis of Pull Requests

Pull request

Title + ID: [generator] Added wikipedia descriptions generation. #9811 Lifetime: Nov 9, 2018 - Dec 3,
2018 Components: generator/generator_tool, indexer Created by: Maksimandrianov Accepted/Rejected:
Accepted Merged by: Mpimenov Addresses: Feature Issues: N/A Deprecates pull-request: N/A

This pull request adds a feature which allows the generation of descriptions for map elements on the basis
of the Wikipedia API. Tests were included in this pull request. This is a feature which users of the system
would want and the code was deemed to be of sufficient quality. A number of different people suggested
minor changes to which Maksimandrianov responded with “++”. There were also comments regarding more
structural concerns, these were also responded to and addressed by Maksimandrianov.

Pull request Title + ID: [routing] Add speed cameras to routing + tests #9405 Lifetime: Sep 5, 2018 - Sep
17, 2018 Components: routing: speed_camera, map Created by: Gmoryes Accepted/Rejected: Accepted
Merged by: Bykoianko Addresses: Feature Issues: N/A Deprecates pull-request: N/A

This feature adds a component displaying a UI icon and voice warning if a user approaches a speed camera.
Tests were included in this pull request. This is a feature which users of the system would want and the
code was deemed to be of sufficient quality. Bykoianko and Mpimenov gave the most feedback to which
Gmoryes responded with ‘done’ or replied with a longer response which resulted in some discussion. The
feedback consisted of a mix of structural feedback and some minor changes.

Pull request Title + ID: [routing] Fix crash because of transit id #10181 Lifetime: Jan 9, 2019 - Jan 10, 2019
Components: routing:corss_mwm_index_graph.hpp (Single file) Created by: Gmoryes Accepted/Rejected:
Rejected Closed by: Gmoryes Addresses: Bugfix Issues: N/A Deprecates pull-request: N/A

This PR attempts to fix one equality assignment related to segment geometry. Closed because the integration
tests fail and a fix was released in another version. Gmoryes and Bykoianko discussed the proposed fix in
detail. In this discussion Bykoianko mentioned an alternative way to fix the issue, which involved using
different methods touching different parts of the program. Bykoianko also explained why this might be
beneficial.

Pull request Title + ID: Persian translation #9558 Lifetime: Sep 29, 2018 - Oct 8, 2018 Components:
iphone/Maps/LocalizedStrings, data/strings Created by: Mnameghi Accepted/Rejected: Rejected Closed by:
Mpimenov Addresses: Translation Issues: N/A Deprecated by pull-request: #9360

This PR adds Persian translations to MAPS.ME. Closed because there were some minor issues which were
addressed in a different PR (#9630). This different PR, made by Tatiana-yan, was merged. A number of
people said it looked good and thanked Mnameghi. Mpimenov gave a lot of feedback in terms of some
characters or quotes which should be removed.

Pull request Title + ID: [generator] Region kv iso3166-1 #9349 Lifetime: Aug 23, 2018 - Sep 4, 2018
Components: generator: region files Created by: Maksimandrianov Accepted/Rejected: Closed Closed by:
Maksimandrianov Addresses: Feature Issues: N/A Deprecated by pull-request: #9393

https://github.com/mapsme/omim/pull/9811
https://github.com/mapsme/omim/pull/9405
https://github.com/mapsme/omim/pull/10181
https://github.com/mapsme/omim/pull/9558
https://github.com/mapsme/omim/pull/9349

344 CHAPTER 15. MAPS.ME

Adds regions to the generator. After not a lot of substantial suggestions, Tatiana-yan suggested a rebase after
which Maksimandrianov closed it without further explanation. A pull request addressing the same issue was
opened on 4 September 2018. This pull request was merged, however no mention to #9393 was ever given.

Pull request Title + ID: [generator] Region kv #9340 Lifetime: Aug 21, 2018 - Sep 3, 2018 Components:
Generator/regions Created by: Maksimandrianov Accepted/Rejected: Accepted Merged by: Mpimenov
Addresses: Feature Issues: N/A Deprecates pull-request: #9349

This pull request adds regions to the generator such as city, town, village, suburb, and neighborhood. The
three reviewers of this pull request are Mpimenov, Tatiana-yan, and Syershov. There is a discussion going
on if a certain third party application should be included in the codebase or not. There are also some
grammatical and format errors addressed. Furthermore, code efficiency is improved after reviewing. Also,
tests are added after the pressure of the reviewers. The pull request is accepted after a lot of conversation
(377 comments in total), where code quality is vastly improved and bugs are solved together.

Pull request Title + ID: [routing] SpeedCameras Core and ios interface #9888 Lifetime: Nov 22, 2018 -
Nov 30, 2018 Components: Implementation and interface of speed cameras on iOS Created by: Gmoryes
Accepted/Rejected: Accepted Merged by: Bykoianko Addresses: Feature Issues: N/A Deprecates pull-
request: N/A

This pull request has no description. It adds speed cameras to the interface of iOS and also adds the
implementation of speed cameras. The reviewers Vmihaylenko and Bykoianko are addressing format and
style improvements. It is finally approved after a conversation of 202 comments. Many inconsistencies,
style issues, and small refactors are addressed.

Pull request Title + ID: [DNM][traffic] Switching off temp blocking traffic jam for Russia. #10060 Lifetime:
Dec 13, 2018 - Dec 14, 2018 Components: traffic Created by: Bykoianko Accepted/Rejected: Rejected
Rejected by: Bykoianko Addresses: Bugfix Issues: N/A Deprecates pull-request: N/A Deprecated by
pull-request: #10078

This pull request is closed quickly because Burivuh wants that the code is added to master directly. The new
pull request #10078 is discussed later on.

Pull request Title + ID: [DNM] http thread refactoring #10043 Lifetime: Dec 11, 2018 - Dec 12, 2018
Components: http_thread Created by: Beloal Accepted/Rejected: Rejected Closed by: Beloal Addresses:
Refactoring Issues: N/A Deprecates pull-request: N/A

This pull request is a refactoring of HTTP thread classes. The refactoring is said to be bad by Maksimandri-
anov, Mpimenov, and Rokuz, as the refactoring introduces a lot of typecasting. The author of the pull request
does not agree with this and closes the pull request as he thinks there is no further reason to discuss this
matter. A similar solution intended by this refactor is implemented in pull request #10047 and self-merged
by Beloal, this time with changes accepted by Rokuz and Vmihaylenko.

Pull request Title + ID: Remove duplicates from strings.xml #9789 Lifetime: Nov 4, 2018 - Nov 6, 2018
Components: strings Created by: Dimqua Accepted/Rejected: Rejected Rejected by: Rokuz Addresses:
Translation Issues: N/A Deprecates pull-request: N/A Deprecated by pull-request: #9768

This is a small pull request which removes a duplicate string from the translations for the Android app. The
pull request is closed by Rokuz because this particular string is already removed in an earlier pull request
#9768.

Pull request Title + ID: Maxspeed section. #9697 Lifetime: Oct 18, 2018 - Nov 23, 2018 Components:
generator maxspeed, routing Created by: Bykoianko Accepted/Rejected: Accepted Merged by: Mpimenov

https://github.com/mapsme/omim/pull/9340
https://github.com/mapsme/omim/pull/9888
https://github.com/mapsme/omim/pull/10060
https://github.com/mapsme/omim/pull/10043
https://github.com/mapsme/omim/pull/9789
https://github.com/mapsme/omim/pull/9697

15.12. APPENDICES 345

Addresses: Feature Issues: #9697 Deprecates pull-request: N/A

The pull request adds a section to the application which holds information on speed limits of roads, saved
with a “maxspeed” tag. The purpose seems to be the addition of a major feature. This pull request is the first
pull request containing code related to this feature.

The process starts with the initiator (Bykoianko) asking for reviews of three other contributors: Vmihaylenko,
Mpimenov, and Maksimandrianov. A different contributor joins in and discusses the implementation of a
very specific method in the code, resulting in the initiator changing the code as proposed. All of the invited
contributors propose several optimization changes, which are quickly accepted and implemented by the
initiator. Mpimenov seems to adhere to a form of commenting which is as follows: s/x/y/, where the s/. . . /
implies x should be changed to y. Tens of bugs seem to be fixed by other contributors proposing changes.
After many bugfixes, the reviewers approve the pull request one by one with no further clarification except
for “LGTM” (looks good to me).

Noteworthy is that the initiator seems to use triggers for automated checks of the code. One of such triggers
is “JTA”, of which the purpose is unclear.

Pull request Title + ID: New IndexGraphStarterJoints, JointSegment, jumps between segments. #9857
Lifetime: Nov 16, 2018 - Jan 23, 2019 Components: routing Created by: Gmoryes Accepted/Rejected:
Accepted Merged by: Bykoianko Addresses: Feature Issues: #9857 Deprecates pull-request: N/A

The pull request adds a part of a new feature, namely routing based on joints in an effort to improve routing.

The review process starts off with a “JTA” comment by Bykoianko, who joins the review process. He follows
by pointing out several flaws in the implementation, and why it is not what he expected when proposing the
feature. Some optimization changes are denied by Gmoryes, the initiator of the project because the time
saved is not worth the amount of work. Both Bykoianko and Vmihaylenko post various strict comments on
the language of the code comments, which need to be switched from Russian to English. After all these
changes, and after running integration tests, Bykoianko decides it is good enough and merges the commit.

Pull request Title + ID: Added geo objects translator. #9592 Lifetime: on Oct 3, 2018 - Oct 5, 2018
Components: generator Created by: Maksimandrianov Accepted/Rejected: Accepted Merged by: Mpimenov
Addresses: feature Issues: #9592 Deprecates pull-request: N/A

The pull request is part 1 of 2 and contains a translator that collects houses and points of interest (poi) and
a collector that collects houses and poi without an address. This effort is made to increase the number of
addresses and poi the app can handle, thus increasing its functionality.

Maksimandrianov starts off by requesting a review from Tatiana-yan, Mpimenov and Syershov. Tatiana-
yan immediately asks for tests of the functionality, which seem to go ignored. Mpimenov follows up by
suggesting many bugfixes and style corrections. The other contributors follow with similar suggestions.
Tatiana-yan asks some more in-depth questions, which are either followed by a revision of the code,
or further clarification. She seems to be the main reviewer for this pull request. Short description of
interaction/discussion between users. Syershov seems to approve the pull request earlier than any other
reviewers, with no apparent reason. After some small changes and a few bugfixes, the other reviewers also
approve the pull request.

Pull request Title + ID: Add speed camera (ROUTING) #9331 Lifetime: Aug 17, 2018 - Sep 5, 2018
Components: routing Created by: Gmoryes Accepted/Rejected: Rejected Closed by: Gmoryes Addresses:
Feature Issues: N/A Deprecated by pull-request: #9330

https://github.com/mapsme/omim/pull/9857
https://github.com/mapsme/omim/pull/9592
https://github.com/mapsme/omim/pull/9331

346 CHAPTER 15. MAPS.ME

The pull request is made without any description, however, the title implies it adds a new feature, namely
speed cameras. Bykoianko, Vmihaylenko, and Tatiana-yan propose several style changes and bugfixes.
Bykoianko notes that there is something wrong with the way GitHub shows the changes. Some more
discussion is done on aspects of the new feature, e.g. the notification to the user when a speed camera is
close. The pull request is then closed, because as Gmoryes states: “GitHub does not correctly show the
changes that already exist in master”. It seems the code in this pull request is still accepted and merged in
another pull request, namely #9330.

Pull request Title + ID: CityBoundariesChecker #9346 Lifetime: Aug 23, 2018 - Aug 27, 2018 Components:
routing Created by: Bykoianko Accepted/Rejected: Rejected Closed by: Bykoianko Addresses: Feature
Issues: N/A Deprecated by pull-request: #9361

Bykoianko opens the pull request with a new feature which checks the boundaries of cities. He asks
Rokuz, Mpimenov, and Tatiana-yan to review it. Some discussion on the functionality is done, mostly by
Bykoianko and Tatiana-yan. Mpimenov proposes several bugfixes and style changes. Rokuz approves the
changes without any interaction. Eventually, Bykoianko decides the approach of the implementation is not
satisfactory, due to performance reasons. The benchmark shows the load times on android increase by 13
seconds due to this feature. Bykoianko closes the pull requests and redirects the feedback to pull request #
9361, which implements a similar feature in a different way.

Pull request Title + ID: [routing] Add speed camera section (GENERATOR) #9330 Lifetime: Aug 17,
2018 - Sep 5, 2018 Components: routing, routing/speed_camera, generator, translator Created by: Gmoryes
Accepted/Rejected: Accepted Merged by: Bykoianko Addresses: Feature Issues: N/A Deprecates pull-
request: N/A

The pull requests add the option to have speed camera indications in the routing of the MAPS.ME client.
The pull request is a big pull request as it affects 49 different files with around 2000 touched lines. The
majority of these affected files were either in the routing package or in the generator package.

Interestingly, the author did not feel the need to explain this feature in his pull request. Moreover, his single
commit affecting around 2000 lines also did not have any explanations for his changes. Of all of his changes,
a vast majority was added without any comments. Still, the new feature was merged to the master without
any complaints about the commenting or committing behavior. Therefore, it seems with this pull requests
that none of the reviewers feel the need for any comments for future developers.

Almost all the changes that were requested were mostly concerning the coding style. For example, the
order of imports. The type of remarks was similar for all three reviewers (i.e. Tatiana-yan, Bykoianko,
and Mpimenov). None of the reviewers mentioned the size of the pull request or the number of files and
components that were touched by it.

The need for the pull request becomes clear when one analyzes some of the competitors (like Google Maps
and TomTom), who provide a similar feature for speed cameras. Therefore, the feature becomes clear in the
context of a navigation system, where a driver would like to know where speed cameras are. However, the
acceptance of the pull request leaves some doubt to the overall code quality of the project, as a clear lack of
documentation leaves doubt to the design decisions made.

Pull request Title + ID: Indexed AStar routing #4672 Lifetime: Nov 7, 2016 - Nov 26, 2016 Components:
routing, routing/geometry Created by: Dobriy-eeh Accepted/Rejected: Accepted Merged by: Bykoianko
Addresses: Feature Issues: N/A Deprecates pull-request: N/A

In this pull request, the famous A* algorithm for routing is implemented with the support of indexing to
improve the performance of the algorithm. To do so, most of the routing files were affected. In the pull

https://github.com/mapsme/omim/pull/9346
https://github.com/mapsme/omim/pull/9330
https://github.com/mapsme/omim/pull/4672

15.12. APPENDICES 347

request around 2000 lines were changed of which a significant portion for the addition of new tests.

From all of the 729 comments in the full discussion of the pull request, only three discussions (with a total
of 13 comments) were questions (and answers) covering the actual working of the implementation of the
algorithm itself. All other comments concerned the code quality, code conventions, missing comments, or
missing tests.

Pull request Title + ID: [routing] Applying restrictions on index graph #4817 Lifetime: Nov 26, 2016 - Mar
6, 2017 Components: routing Created by: Bykoianko Accepted/Rejected: Rejected Rejected by: Bykoianko
Addresses: Feature Issues: N/A Deprecates pull-request: #4998

In this pull request, Bykoianko implements the imposition of restriction on the index graph. This is used
to improve the algorithm for route generation. In the pull request, Bykoianko ensures that the reviewers
understand his changes by giving examples.

Interestingly, none of the reviewers question the choices in the implementations or the working of the
algorithm. Although the implementation is an advanced implementation, the only remarks that are made
have to do with the code quality. This raises the question if the implementation is discussed outside the pull
request or that no reviewer takes the time to question the algorithm.

In the end, the pull request is suddenly closed with a message that a dynamic restriction was implemented
instead. This suggests that there was a discussion going on about the best algorithm to implement but this
discussion is nowhere to be found. The alternative pull request (i.e. #4998), that was accepted, also does not
contain a discussion nor does it contain a single review. Therefore, the review process is must have been
done somewhere else. This could be an external application or in person in Moscow, where the MAPS.ME
office is located.

Pull request Title + ID: [descriptions] Description section serializer and deserializer added. #9783 Lifetime:
Nov 2, 2018 - Nov 23, 2018 Components: descriptions Created by: Darina Accepted/Rejected: Accepted
Merged by: Mpimenov Addresses: Feature Issues: N/A Deprecates pull-request: N/A

The descriptions that can be added to elements in the MAPS.ME app can, with this new feature, be serialized
and deserialized. This feature is used for the language system that is built into the application to support
multiple languages.

As most pull requests, the vast majority of the comments are about the code quality. Interestingly, Darina
does not accept all comments right-away. The pull requests contain discussions where Darina does not
accept the review that was given and requires the reviewer to further explain his or her requests.

Also, this pull requests shows some evidence of discussions outside GitHub. Darina mentions that she
discussed some of the implementation choices with Mpimenov, while there are no indications of discussion
on GitHub of the subject.

Bykoianko discovered that the implementation lacked tests, so he asked Darina to add some. She, however,
asked to postpone it for a new pull request which was accepted. Multiple reviewers agreed with this decision,
which is arguably a bad decision. The chance that the tests will never be added is increased with the decision.
Eventually, the pull request is merged with a request for a few changes in a future, undecided, pull request.

Pull request Title + ID: [DNM][traffic] Switching off temp blocking traffic jam for Russia. #10078 Lifetime:
Dec 14, 2018 - Jan 18, 2018 Components: traffic Created by: Bykoianko Accepted/Rejected: Rejected
Rejected by: Bykoianko Addresses: Feature Issues: N/A Deprecates pull-request: #10060 Deprecated by
pull-request: #10210

https://github.com/mapsme/omim/pull/4817
https://github.com/mapsme/omim/pull/9783
https://github.com/mapsme/omim/pull/10078

348 CHAPTER 15. MAPS.ME

According to Bykoianko, a temporary switch-off is required to not show temporary traffic blocking due to
traffic jams. The feature only supports traffic jams in Russia.

The discussion for the pull request is short and abruptly stopped with the announcement that the pull request
will be closed for an alternative. The decision was made to shift the implementation, which was client-side,
to a server-side implementation. Three weeks later the alternative was merged. Again, evidence was shown
that the developers discuss their concerns outside the pull request on GitHub. Bykoianko posted an URL to a
Gitlab, which we could not access. The Gitlab is hosted by a Mail.ru server, which is the owning company of
the project. It could, therefore, mean that the Gitlab is a private platform for discussions within the company.

15.12.2 Appendix 2: Possible architecture improvements

When looking at the top level (highly abstract) architecture, some aspects can be improved. For example, the
module “3party” contains lots of third party dependencies. These could be implemented in a more structured
way by creating third party handler classes (or interfaces) for each type of third party dependency. There
could be one for GUI dependencies, one for map data dependencies, etc.

The other parts that are open for improvement are the part we call “Business logic” and the coding module.
The “Business logic” part contains a module called “map”. This “map” contains code for all sorts of
functionalities, like booking information, gps tracking , cloud storage, user markers, etc. All this code seems
to be dumped in this folder with no coherent structure whatsoever. This module could be split up for the
different functionalities, and a neat tree like structure could be made for them.

The overall data flow of the project is unclear, as all resources are compiled by cmake, after which they are
used by the subprojects for differing platforms. This could be changed, or documentation could be improved
to make this clear for new developers.

Chapter 16

pandas | Python Data Analysis Library

Shaad Alaka Max Lopes Cunha Max van Deursen Jop Vermeer

16.1 Table of Contents

1. Introduction
2. Stakeholders
3. Context View
4. Development View
5. Performance Perspective
6. Technical Debt
7. Conclusion

• Appendix A: Core Team
• Appendix B: Suppliers
• Appendix C: Pull request analysis
• Appendix D: Code Coverage

349

https://github.com/Archer6621
https://github.com/GreybeardCG
http://github.com/maxvandeursen
https://github.com/jopenmolles

350 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.2 Introduction

Pandas is an open source data analysis toolkit for Python which has enabled millions of users to perform
complex data analysis in a relatively simple way. According to its creator, Wes McKinney, the package is
meant to accelerate the data analysis workflow and reduce the need for people to deal with technical issues.
It is currently used all over the world, with 5-10 million users worldwide. This chapter contains a collection
of views and perspectives on pandas’ architecture.

The development of pandas was started by Wes McKinney around 2008, who at the time was employed
at AQR Capital Management. Wes sought to create a toolkit that could provide an intuitive and highly
performant way to manipulate data in commonly used formats. Predating pandas, data analysis required
custom libraries to merge and combine different data formats 1.

Filling this niche helped pandas jump-start the adoption of Python in the data science and data analysis
communities. Since 2012, the popularity of Python and pandas has been increasing rapidly, in part thanks
to the pandas project 2. As seen in Figure 1, the amount of contributions spiked around this time as well,
attracting a few loyal contributors over the years.

Figure 1: An overview of the history of pandas and its main contributors.

16.3 Stakeholders

To provide insight into the stakeholders of pandas, we adapt the categories defined by Rozanski and Woods
3 in a way we believe is suitable for pandas. Afterwards, we provide a power-interest grid to visualize the
relative importance and interest of different stakeholders in the project.

1Tobias Macey (Host). Pandas with Jeff Reback - Episode 98 [Audio podcast]. https://www.pythonpodcast.com/episode-98-pandas-
with-jeff-reback/. Accessed on 28 March 2019.

2Dan Kopf. Meet the man behind the most important tool in data science. https://qz.com/1126615/the-story-of-the-most-important-
tool-in-data-science/. Accessed on 28 March 2019.

3Nick Rozanski and Eóin Woods. 2012. Software Systems Architecture: Working With Stakeholders Using Viewpoints and
Perspectives. Addison-Wesley Professional.

16.3. STAKEHOLDERS 351

16.3.1 Acquirers

Rozanski and Woods describe the acquirers of a product as stakeholders which oversee the procurement of
the system 4. Although pandas is now open source, it started as an in-house application at AQR Capital
Management in 2008 5. Since 2015, NumFOCUS serves as the only fiscal sponsor of pandas 6.

16.3.2 Assessors

Assessors oversee conformance of the project to standards and legal regulations 7. Pandas complies to the
BSD license 8. The legal conformance of the library itself is overseen by the pandas core development team.

16.3.3 Contributors

Since pandas is an open source software project, it is developed and maintained by contributors from all
over the world. We observed two categories: community and enterprise contributors. Enterprise contributors
distinguish themselves by explicit affiliation with a company, often tied with financial compensation.

Every contributor should comply to the contribution guide set by pandas 9, which mentions that contributors
should provide tests and documentation when implementing new features. Contributors are free to work on
fixing relevant issues or new features.

The pandas governance also defines core team members; a group of contributors who contributed consider-
ably to pandas and together ensure the long-time well-being of the project 10. Wes McKinney fulfills the
role of chair and Benevolent Dictator for Life, giving him authority to make final decisions about pandas.
The complete team is listed in Appendix A. From the core team, we identified people which are active on
recent issues and are therefore suitable to contact: - Jeff Reback - Joris van den Bossche - Mark Garcia -
Tom Augspurger - William Ayd

We contacted Joris van den Bossche about the pandas development team, leading to the following PR. Jeff
Reback and Wes McKinney were already extensively interviewed 11 12, answering all our questions, which
made contacting them unnecessary.

4Nick Rozanski and Eóin Woods. 2012. Software Systems Architecture: Working With Stakeholders Using Viewpoints and
Perspectives. Addison-Wesley Professional.

5pandas. History of Development. https://pandas.pydata.org/community.html. Accessed On: 25 February 2019.
6pandas. Main Governance Document. https://github.com/pandas-dev/pandas-governance/blob/master/governance.md. Accessed

On: 25 February 2019.
7Nick Rozanski and Eóin Woods. 2012. Software Systems Architecture: Working With Stakeholders Using Viewpoints and

Perspectives. Addison-Wesley Professional.
8pandas. Package overview. https://pandas.pydata.org/pandas-docs/stable/getting_started/overview.html. Accessed On: 28 February

2019.
9pandas. Contributing to pandas. https://pandas-docs.github.io/pandas-docs-travis/development/contributing.html. Accessed On:

25 February 2019.
10pandas. Main Governance Document. https://github.com/pandas-dev/pandas-governance/blob/master/governance.md. Accessed

On: 25 February 2019.
11Tobias Macey (Host). Pandas with Jeff Reback - Episode 98 [Audio podcast]. https://www.pythonpodcast.com/episode-98-pandas-

with-jeff-reback/. Accessed on 28 March 2019.
12Tobias Macey (Host). Wes McKinney’s Career In Python For Data Analysis - Episode 203. https://www.pythonpodcast.com/wes-

mckinney-python-for-data-analysis-episode-203/ Accessed on 4 April 2019.

https://www.aqr.com/
https://www.aqr.com/
https://numfocus.org/
https://github.com/pandas-dev/pandas-governance/pull/9

352 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

Jeff Reback, Tom Augspurger and William Ayd can also be regarded as integrators as they are the ones
labelling most issues and reviewing/merging PRs.

Contributors can be categorized as either developer or maintainer, depending on whether they worked on
features or bug-fixes 13. Moreover, since contributions to pandas include documentation and tests as well,
each contributor is a communicator and tester as well.

16.3.4 Suppliers

Rozanski and Woods state that suppliers provide the software on which the product will run, or provide
specialized staff for development or operation 14. We distinguish between Software and Development
suppliers:

• Software Suppliers: These suppliers provide software which is used when running pandas.
• Development Suppliers: These suppliers provide a service which is used in the development of pandas.

A full list of suppliers can be found in Appendix B.

16.3.5 Support Staff

Pandas does not have staff dedicated to support users with issues. However, they can receive help from the
community in the following ways: - Post a question on StackOverflow, where other users can answer the
question. - Consult the pandas documentation. Pandas provides users with an extensive documentation,
in which all functionalities of pandas are described. - Ask the developers on Gitter. While primarily for
development questions, the developers are happy to help users with other problems.

16.3.6 System Administrators

According to Rozanski and Woods, system administrators operate systems after deployment. We deem this
category irrelevant to pandas, since it is a data analysis library. Hence, no stakeholders fall into this category.

16.3.7 Users

There are between five to ten million users of pandas world-wide 15, including major companies such as
Uber, AQR, AppNexus and Datadog 16 17, as well as many research institutes and data analysts.

13Nick Rozanski and Eóin Woods. 2012. Software Systems Architecture: Working With Stakeholders Using Viewpoints and
Perspectives. Addison-Wesley Professional.

14Nick Rozanski and Eóin Woods. 2012. Software Systems Architecture: Working With Stakeholders Using Viewpoints and
Perspectives. Addison-Wesley Professional.

15Marc Garcia. Towards pandas 1.0. https://www.youtube.com/watch?v=kUloTjPPgzU&t=2m20s. Accessed On: 25 February 2019.
16Nikhil Joshi and Isabel Geracioti (2017, October 31). Turbocharging Analytics at Uber with our Data Science Workbench.

https://eng.uber.com/dsw/. Accessed On: 25 February 2019.
17pandas. Python Data Analysis Library. https://pandas.pydata.org/. Accessed On: 28 February 2019.

https://stackoverflow.com
https://pandas.pydata.org/pandas-docs/stable/
https://gitter.im/pydata/pandas
https://www.uber.com/
https://www.aqr.com/
https://www.appnexus.com/
https://www.datadoghq.com/

16.3. STAKEHOLDERS 353

Apart from this, there are numerous libraries that integrate pandas functionality into their API. Examples of
these libraries are: Google Cloud BigQuery 18, Apache Arrow 19, and matplotlib 20.

We distinguish two groups of users: the ordinary and the dependent users. The ordinary users are the
majority: these users only install pandas and use it to analyze their data. On the other hand, the dependent
users do not only install pandas, but also rely on pandas for their own projects, income or business value.
An example of a dependent user is Dask, which internally uses pandas 21.

16.3.8 Competitors

There are several other tools available for data analysis with a similar feature set. These can be regarded as
competitors of pandas. These competitors of pandas include 22 23 24:
- MatLab - Microsoft Excel - R - SAS - Stata - SQL

16.3.9 Ecosystem

Around pandas exists a whole ecosystem of tools to store, analyze, or visualize data. These tools work
together or complement each other. Sometimes they also depend or build upon each other. This ecosystem
helps pandas to remain focused on its functionality 25. Tools that fall into this ecosystem include 26 27 28 29

30: - Apache Arrow - Apache Spark - Dask - Google BigQuery - matplotlib - Ray - seaborn - statmodels -
Vaex

16.3.10 Power-Interest Grid

To gain insight in the influence of stakeholders surrounding the pandas projects, one can look at the power-
interest diagram seen in Figure 2. Although core members hold the most power, due to their experience
and role of integrator, the pandas team is very open to suggestions from the community as well. We expect
enterprise users to have more interest than individual users, with equal power. However, companies can
project more power by hiring enterprise contributors. The project’s direction is also influenced by competing

18Google. Using BigQuery with Pandas. https://googleapis.github.io/google-cloud-python/latest/bigquery/usage/pandas.html.
Accessed On: 25 February 2019.

19Apache. Pandas Integration. https://arrow.apache.org/docs/python/pandas.html. Accessed On: 25 February 2019.
20pandas. Plotting with matplotlib. https://pandas.pydata.org/pandas-docs/version/0.13/visualization.html. Accessed On: 25

February 2019.
21Dask. Dataframe documentation. http://docs.dask.org/en/latest/dataframe.html. Accessed On: 28 February 2019.
22Microsoft. Excel. https://products.office.com/en/excel. Accessed On: 25 February 2019.
23pandas. Comparison with other tools. https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/. Accessed On: 25

February 2019.
24MathWorks. Data Analysis. https://www.mathworks.com/solutions/data-analysis.html. Accessed On: 25 February 2019.
25pandas. Pandas Ecosystem. https://pandas-docs.github.io/pandas-docs-travis/ecosystem.html. Accessed On: 25 February 2019.
26Google. Using BigQuery with Pandas. https://googleapis.github.io/google-cloud-python/latest/bigquery/usage/pandas.html.

Accessed On: 25 February 2019.
27Apache. Pandas Integration. https://arrow.apache.org/docs/python/pandas.html. Accessed On: 25 February 2019.
28pandas. Plotting with matplotlib. https://pandas.pydata.org/pandas-docs/version/0.13/visualization.html. Accessed On: 25

February 2019.
29pandas. Pandas Ecosystem. https://pandas-docs.github.io/pandas-docs-travis/ecosystem.html. Accessed On: 25 February 2019.
30Apache. PySpark Usage Guide for Pandas with Apache Arrow. https://spark.apache.org/docs/latest/sql-pyspark-pandas-with-

arrow.html. Accessed On: 25 February 2019.

https://cloud.google.com/bigquery/
https://arrow.apache.org/
https://matplotlib.org/
https://dask.org/
https://www.mathworks.com/products/matlab.html
https://products.office.com/en/excel
https://www.r-project.org/
https://www.sas.com/en_us/home.html
https://www.stata.com/
https://arrow.apache.org/
https://spark.apache.org/
http://docs.dask.org/en/latest/
https://cloud.google.com/bigquery/
https://matplotlib.org/
https://ray.readthedocs.io/en/latest/
https://seaborn.pydata.org/
https://www.statsmodels.org/stable/index.html
https://vaex.io/

354 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

tools, because pandas strives to stay relevant. Similarly, the ecosystem surrounding pandas steers the
responsibilities and focus of pandas’ development.

Figure 2: A power-interest grid according to our view of pandas.

16.3.11 Decision Making Analysis Results

We performed an extensive analysis of various information sources regarding the decision making process
of the stakeholders, based on our pull request (PR) analysis in Appendix C.

The core team is the most prominent group of stakeholders in the PRs. Most discussion is about adding
or revising tests (e.g. in PR 12, 14, 16, 19, 20), even for non-existent or not fully implemented features.
There are also comments on API-breaking changes, which are often deferred to new issues (e.g. in PR
13, 15, 16). Moreover, sometimes there is discussion on functionality that diverges from standards and/or
scientific conventions (e.g. in PR 13, 16). Rebasing can also trigger discussions, since sometimes tests
break unexpectedly after a rebase. Finally, performance is also taken into consideration (see Performance
Perspective).

16.4. CONTEXT VIEW 355

Ordinarily, a PR gets merged if it complies with the contribution guide’s requirements: whether the
appropriate tests were written, old tests pass, documentation is provided and common standards are followed.
Most of the time, the person that guards these aspects is core team member Jeff Reback, who seems to be
omnipresent among the pull requests.

For the rejected PRs, it is often the case that the PR is abandoned, because either the PR is superseded
by another one (e.g. in PR 1, 2, 7) or because the original author no longer works on it (e.g. in PR 8, 9).
Furthermore, PRs can be rejected if they break backwards compatibility; changes to core packages are
typically not tolerated.

16.4 Context View

To visualize the stakeholders, dependencies and competitors of pandas, we created the context view (see
Figure 3). It describes the relationships between pandas and its environment.

Figure 3: Context view of pandas.

Pandas is an open source project developed on GitHub written in Python, with some parts using C extensions

https://github.com/pandas-dev/pandas
https://www.python.org/

356 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

to increase performance for certain operations 31, for which Cython is used. Pandas is tested via pytest and
Hypothesis, with Travis CI and Azure Pipelines for continuous integration. Communication between the
developers is done via Gitter. Finally, pandas is released on Anaconda Cloud and PyPI.

Pandas is a data analysis tool that has several competitors with similar feature sets: R, MatLab, Microsoft
Excel, SAS, Stata and SQL 32 33 34. There are also other data analysis frameworks and tools that support or
depend on pandas, some examples being: Apache Arrow, Apache Spark, seaborn, Vaex, Dask, statmodels,
Google BigQuery, Ray and matplotlib 35 36 37 38 39. Pandas itself has 45 dependencies 40, some noteworthy
dependencies are: NumPy, Cython, Matplotlib, python-dateutil, pytz and Setuptools 41 42.

Pandas is sponsored by NumFOCUS and is part of the PyData program 43, which is an educational program
organized by NumFOCUS 44. In Figure 4, we visualized the projects in the PyData program to show related
data analysis tools.

31pandas. Contributing to pandas. https://pandas-docs.github.io/pandas-docs-travis/development/contributing.html. Accessed On:
25 February 2019.

32Microsoft. Excel. https://products.office.com/en/excel. Accessed On: 25 February 2019.
33pandas. Comparison with other tools. https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/. Accessed On: 25

February 2019.
34MathWorks. Data Analysis. https://www.mathworks.com/solutions/data-analysis.html. Accessed On: 25 February 2019.
35Google. Using BigQuery with Pandas. https://googleapis.github.io/google-cloud-python/latest/bigquery/usage/pandas.html.

Accessed On: 25 February 2019.
36Apache. Pandas Integration. https://arrow.apache.org/docs/python/pandas.html. Accessed On: 25 February 2019.
37pandas. Plotting with matplotlib. https://pandas.pydata.org/pandas-docs/version/0.13/visualization.html. Accessed On: 25

February 2019.
38pandas. Pandas Ecosystem. https://pandas-docs.github.io/pandas-docs-travis/ecosystem.html. Accessed On: 25 February 2019.
39Apache. PySpark Usage Guide for Pandas with Apache Arrow. https://spark.apache.org/docs/latest/sql-pyspark-pandas-with-

arrow.html. Accessed On: 25 February 2019.
40GitHub. Pandas Dependency Graph. https://github.com/pandas-dev/pandas/network/dependencies. Accessed On: 25 February

2019.
41pandas. Contributing to pandas. https://pandas-docs.github.io/pandas-docs-travis/development/contributing.html. Accessed On:

25 February 2019.
42pandas. Pandas Dependencies. https://pandas.pydata.org/pandas-docs/stable/install.html#dependencies. Accessed On: 25 February

2019.
43PyData. PyData Downloads. https://pydata.org/downloads/. Accessed On: 25 February 2019.
44PyData. PyData Mission. https://pydata.org/mission/. Accessed On: 25 February 2019.

https://cython.org/
https://docs.pytest.org/en/latest/
https://hypothesis.works/
https://travis-ci.org/
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://gitter.im/pydata/pandas
https://anaconda.org/
https://pypi.org/
https://www.r-project.org/
https://www.mathworks.com/products/matlab.html
https://products.office.com/en/excel
https://products.office.com/en/excel
https://www.sas.com/en_us/home.html
https://www.stata.com/
https://arrow.apache.org/
https://spark.apache.org/
https://seaborn.pydata.org/
https://vaex.io/
http://docs.dask.org/en/latest/
https://www.statsmodels.org/stable/index.html
https://cloud.google.com/bigquery/
https://ray.readthedocs.io/en/latest/
https://matplotlib.org/
http://www.numpy.org/
https://cython.org/
https://matplotlib.org/
https://dateutil.readthedocs.io/en/stable/
http://pytz.sourceforge.net/
https://setuptools.readthedocs.io/en/latest/
https://numfocus.org/
https://pydata.org/

16.4. CONTEXT VIEW 357

Figure 4: Data analytic tools in the PyData program.

Because pandas is rapidly growing in terms of popularity, its scope and responsibilities are under discussion.
Originally pandas used NumPy at its core, however due to pandas’ rapid growth, NumPy’s pace of change
was not fast enough anymore. The deciding factor was adding support for categorical data; this was not
possible using NumPy without an excessive amount of effort. There was a discussion whether pandas
should take over NumPy’s role or whether they should directly work on NumPy themselves. In the end,
pandas chose to implement the missing features and data types themselves. This means that pandas’ scope is
changing from purely an data analytics frameworks to the standard for data objects in the Python community.

358 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.5 Development View

To obtain insight into the architecture of the pandas repository, we focused on the Development Viewpoint
described by Rozanski and Woods 45. In this section, we describe the module organization, common
processing, the standardization of both design and testing, and lastly the codeline organization. Notice that
we do not cover the instrumentation concerns described by Rozanski and Woods, because pandas does not
perform logging of runtime information, mainly due to pandas being a library instead of an application.

16.5.1 Module Organization

Within the pandas project, a distinction is made between the core modules and the rest of the project.
The rest of the modules are either utilities for specific domains (IO, error messages, patterns, etc.), tests,
compatibility features for older Python versions, or extensions of pandas (plotting, time series, etc.). These
make up the outskirts of the pandas codebase. An overview of the codebase can be viewed in Figure 5.
Evident is that the io and core packages contain the largest amount of code, and that the io and _libs
packages consist mostly of C code. Notable is the relative size of the io package compared to the core
package, indicating that pandas is quite invested in IO operations. Lastly, the _libs package consists of
entirely C and Cython code. This package contains highly optimized code, used in other parts of the library.

In the core package, functionality is split up and grouped in subpackages. In Figure 5, this is evident from
the subpackages in each package, with the groupby package as an example to split the grouping functionality
from the rest of core. However, the splitting of modules is not universally enforced, evident from, for
example, the DataFrame module frame.py, which contains a lot of different functionality. Members of the
core development team have expressed an interest in trying to refactor some of these large modules, but
have also mentioned that they do not know how to split them up properly due to all of the coupling between
the features within them 46.

45Nick Rozanski and Eóin Woods. 2012. Software Systems Architecture: Working With Stakeholders Using Viewpoints and
Perspectives. Addison-Wesley Professional.

46Joris van den Bossche. Reorganizing the megamodules. https://mail.python.org/pipermail/pandas-dev/2016-January/000448.html.
Accessed On: 3 March 2019

16.5. DEVELOPMENT VIEW 359

Figure 5: Overview of the file organization. The color indicates the file type, while the area of the rectangles
represents the size of a source file.

Figure 6 shows a subset of the modules (those that are greater than 65Kb in size) along with the dependencies
between these modules. Due to the sheer amount of dependencies and modules, not all dependencies could
be visualized in readable manner. We focused on the relations in the core package. Even with this reduced
visualization, it shows that there is a lot of tight coupling among pandas’ modules, including quite a few
circular dependencies (e.g. between frame and series).

Figure 6: Dependency graph of pandas’ largest core modules. The larger a module, the darker its color is.
Only files which are greater than 65Kb in size are included to improve readability.

360 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.5.2 Common Processing

There are three areas in which common functionality is defined. First, there are the common.py modules
present in some packages, for example in core. These modules include functions which are used throughout
the code and which have generic applications, such as flattening data structures. Moreover, there is the util
package, which provides functionality which enhances the developers’ efficiency, such as decorators. Lastly,
there is the io package, which is used to import and export from various data formats, like csv and excel
files.

16.5.3 Standardization of Design

Pandas describes an extensive way of creating a consistent code base in its contribution guide 47. This guide
describes standards for its Python and C code, as well as for its documentation. Continuous Integration is
used to enforce these standards.

Pandas does not explicitly document any design choices on a system basis. However, we did identify a
recurring pattern in the code. There are multiple packages, which provide functionality to the main datatypes
of pandas: Series and DataFrame. This means that the functionality of both these datatypes is abstracted
to another package. An example of this can be found in the groupby package, which provides grouping
functionality for data in DataFrames.

16.5.4 Standardization of Testing

The testing framework used in pandas is pytest. The contribution guide encourages the use of Test Driven
Development, showing that pandas takes testing seriously. Although the guide does state that the test
modules should be placed inside of the testing subdirectory of the package under testing (e.g. the tests
for core/frame.py should be under tests/core/), there are no other explicitly stated styling standards
enforced on the tests; the guide encourages to look at other tests for inspiration. However, there is a specific
testing page on the wiki 48, which describes the methodology to accomplish certain testing objectives, such
as testing methods using files, or network connection.

Similarly to the coding standards, the tests are ran by CI as well for each contribution, failing the build
whenever a test fails. Moreover, pandas utilizes Codecov to view the difference in line coverage between the
contribution and the master branch. This statistic is used as well to determine whether more tests have to be
added to the contribution.

47pandas. Contributing to pandas. https://pandas-docs.github.io/pandas-docs-travis/development/contributing.html. Accessed On:
25 February 2019.

48pandas. Testing. https://github.com/pandas-dev/pandas/wiki/Testing. Accessed On: 07 March 2019.

http://docs.pytest.org/en/latest/
https://codecov.io/

16.5. DEVELOPMENT VIEW 361

362 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.5.5 Codeline Organization

Figure 7: Di-
rectory structure of the pandas repository. The dotted lines indicate one or more subdirectories or files

16.6. PERFORMANCE PERSPECTIVE 363

being ommitted from the image.

The pandas project includes more than just the source modules described in the module organization section.
Figure 7 shows an overview of the complete project, which include the following directories: - The doc
directory contains all assets for building the documentation. In this directory, many reStructuredText
files are present, which are used for building the documentation using Sphinx. - The asv_bench directory
provides configuration for the benchmarking software Airspeed Velocity (asv). - The ci folder includes all
configuration for both Azure Pipelines and Travis CI, to perform static analysis on the code for pull requests.
- The conda.recipe directory contains build scripts for Anaconda. - LICENSES contains all licenses of
third party software used in the development of pandas. - The scripts directory includes scripts which are
used to simplify processes that are specific to contributors, such as testing or static analysis.

There are also some miscellaneous files in the root directory of the pandas project, including files related to
Git and GitHub.

16.6 Performance Perspective

For a library that deals with very large data sets on a regular basis, performance is a crucial aspect. For
pandas, delivering good performance is therefore one of the key goals, allowing data analysts to effectively
analyze very large data sets. Most of pandas is written in Python, but certain operations are sped up using C
(mostly using Cython) 49, which allows for performance improvements that decrease the execution time up
to 200 times 50. Some other parts use Numba, which is a just-in-time compiler that translates Python and
NumPy code to native machine instructions, leading to C-like performance 51 52. Numba is best applied
to methods that apply numerical functions to NumPy arrays. Furthermore, for very large data sets, pandas
has an eval() expression evaluation method, which in certain scenarios can give an ~2 times performance
increase, since it provides out-of-core computation and can be run in parallel 53.

The main performance concern of pandas is how long certain operations take, to create acceptable per-
formance levels for large data sets. Pandas uses the Airspeed Velocity (asv) benchmark to compare the
performance of their codebase with previous versions. This benchmark contains a plot for each method
showing how the speed evolved over each iteration of pandas. The asv benchmark is ran continuously (can
be found here) and is used to determine, in a systematic way, whether the performance of pandas did not
regress and if it did, it shows what functions are affected.

The performance requirement of pandas is not well defined, but it should perform similar to other data
analysis tools and frameworks, enabling data scientists to work with large data sets. Therefore, the
performance of pandas is often compared to those similar tools and frameworks by third parties (for example
Fast-Pandas and db-benchmark). On the pandas GitHub repository, users can submit their performance
issues, which will then be labelled with the Performance label (As of 11 March 2019, 5.5% of all of pandas’
issues are labelled with the Performance label). The core development team actively takes part in discussing

49pandas. Contributing to pandas. https://pandas-docs.github.io/pandas-docs-travis/development/contributing.html. Accessed On:
25 February 2019.

50pandas. Enhancing Performance. https://pandas.pydata.org/pandas-docs/stable/user_guide/enhancingperf.html. Accessed On: 7
March 2019.

51pandas. Enhancing Performance. https://pandas.pydata.org/pandas-docs/stable/user_guide/enhancingperf.html. Accessed On: 7
March 2019.

52Numba. Numba. http://numba.pydata.org/. Accessed On: 7 March 2019.
53pandas. Contributing to pandas. https://pandas-docs.github.io/pandas-docs-travis/development/contributing.html. Accessed On:

25 February 2019.

http://www.sphinx-doc.org/en/master/
https://asv.readthedocs.io/en/stable/
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://travis-ci.org/
https://anaconda.com
https://git-scm.com/
https://github.com
https://numba.pydata.org/
https://www.numpy.org/
https://asv.readthedocs.io/en/stable/
http://pandas.pydata.org/speed/pandas/
https://github.com/mm-mansour/Fast-Pandas
https://h2oai.github.io/db-benchmark/

364 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

these issues, asking the developers, that are working on the issue, to run the asv benchmark locally and post
the results in the PR 54. If the methods in question are not yet included in the asv benchmark, they will also
ask the developers to update the benchmark to be able to automatically measure the performance/regression
of the methods in the future 55.

16.6.1 Analysis of Airspeed Velocity Benchmark

In the asv benchmark we can see that sudden extreme changes in runtime are often fixed swiftly, resulting
in peaks in the plots. One example of this can be seen in Figure 8 of the add-overflow-scalar function
under the binary_ops section. We also noticed that regression in future versions was minimal if an effort
was made to speed up a method. However, the methods that went without a speed up, often have one
large performance decrease, after which their performance remains constant. One example of this can be
seen in Figure 9, which shows the benchmark of the add_overflow_arr_mask_nan function under the
binary_ops section. Most of the time, the performance remains constant. If however, a performance change
occurs, it is rarely gradual, instead the performance will often jump drastically from one version to the next.

Figure 8: Benchmark of add-overflow-scalar under the binary_ops section. The x-axis are
commits in chronological order, the y-axis is the runtime of the function. The up to date benchmark can be
found here.

54Adam Merberg. pandas.Series.isin() is slow on large sets due to conversion of set to list. https://github.com/pandas-
dev/pandas/issues/25507. Accessed On: 11 March 2019.

55Ilya Silchenkov. Slowdown of str(record) of DataFrame.to_records() method. https://github.com/pandas-dev/pandas/issues/21880.
Accessed On: 11 March 2019.

16.6. PERFORMANCE PERSPECTIVE 365

Figure 9: Benchmark of add_overflow_arr_mask_nan under the binary_ops section. The x-axis
are commits in chronological order, the y-axis is the runtime of the function. The up to date benchmark can
be found here.

An example of how the asv benchmark is used can be seen in issue #18532. The core development team
noticed a regression in the Series constructor. In a follow-up PR this was fixed and that performance has
been maintained since then. This increase in performance can be observed in Figure 10, where we see a
sharp drop in runtime from 369ms to 155µs.

Figure 10: Benchmark of the Series constructor method. The x-axis are commits in chronological order,
the y-axis is the runtime of the function. The up to date benchmark can be found here.

http://pandas.pydata.org/speed/pandas/#binary_ops.AddOverflowArray.time_add_overflow_arr_mask_nan
https://github.com/pandas-dev/pandas/issues/18532#issuecomment-385190350
https://github.com/pandas-dev/pandas/pull/20865
http://pandas.pydata.org/speed/pandas/#series_methods.SeriesConstructor.time_constructor?p-data=None

366 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.7 Technical Debt

In this section, we analyze the technical debt of the pandas project. First we analyze the code and testing
debt of pandas. Lastly, we investigate how the developers discuss the technical debt.

16.7.1 Automatic Analysis

SonarQube was used to assess the technical debt in pandas. SonarQube is able to determine the amount of
bugs, vulnerabilities, technical debt, code smells and the amount of duplication. Unfortunately SonarQube
was not able to automatically provide the code coverage, but for this, other tools were used (see the Testing
Debt section). As can be seen in Figure 11, pandas has 70 days worth of technical debt, but still gets an A
rating. Projects will receive an A rating when the technical debt is less than 5% of the total code base. Since
pandas itself is 256k lines of code (according to SonarQube), this seems reasonable.

Figure 11: SonarQube’s dashboard for the pandas project.

SonarQube found 4.6k code smells, of which 2.4k are about deprecated HTML attributes estimated to be 25
days of effort. Upon further inspection, these HTML attribute smells are all located in the test directory,
verifying whether pandas can read from these HTML pages. This means that these are false positives.

The other most found code smells are (in decreasing order of occurrences): high cyclomatic complexity
(even as high as 97), unconventional parameter and function names (often one letter names), commented-out
code (often part of reminders of bugs or TODO’s) and functions with too many parameters. The functions
that have too many parameters are mostly in the user-facing API methods (e.g. to_csv). Most of the

https://www.sonarqube.org/

16.7. TECHNICAL DEBT 367

parameters are initialized with a default value, but can be configured by the user to fit his/her purpose more.
Thus we find these to be false positives as well.

Of the 654 bugs found by SonarQube, 499 are deprecated HTML elements and tags, in the same classes as
before in the code smells. Most of the remaining bugs are that of identical sub-expressions on both sides of
(in)equality operators (134 occurrences). These are all found in the test methods, to test the overrides of the
equality methods. Thus at least 633 of the found bugs are false positives.

16.7.2 Manual Analysis

To further quantify the state of technical debt in pandas, we analyzed to what degree pandas adheres to the
SOLID principles.

16.7.2.1 Single Responsibility Principle (SRP)

We consider responsibilities on a module basis in addition to just classes. In many modules, multiple class
definitions were found. Table 1 shows the largest 10 modules in terms of method definitions. The largest
module appears to be pytables.py, with 272 definitions among 33 classes that are abstractions of different
types of tables and utility objects. In this case, each table type does have a clear responsibility, but the
module does not. For example, generic.py contains 220 function definitions stemming from a single class,
clearly carrying many responsibilities.

Table 1: 10 largest modules of pandas in terms of function definitions. | Module name | Number of
function definitions | | :————- | :———-: | | pytables.py | 272 | | generic.py | 232 | | base.py |
216 | | blocks.py | 185 | | frame.py | 151 | | _core_.py | 144 | | offsets.py | 139 | | series.py | 131 | |
window.py | 125 | | managers.py | 125 |

16.7.2.2 Open-Closed Principle (OCP)

For the OCP we look at how extendible the code is. In general, extending in pandas is made easier by
allowing users to decorate existing packages without sub-classing them 56. This can be convenient, but
can break the open-closed principle. Pandas has several occurrences of OCP violations, for example
private variables that are not exposed for extension (e.g. core/computation/ops.py). Lastly, most of the
optimized Cython code is difficult to cleanly extend.

16.7.2.3 Liskov Substitution Principle (LSP)

In terms of LSP, it is hard to find potential violations in pandas, since it rarely occurs that subclasses in
inheritance relations override existing behavior. Especially since many super-classes in pandas only have
one child. Python is also not statically typed, hence looking for type casting is not a useful heuristic.

56pandas. Extending Pandas. https://pandas.pydata.org/pandas-docs/stable/development/extending.html. Accessed on 21 March
2019.

368 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

We observed one instance were behavior overriding did occur: the pandas.io.sql module. For each of the
overridden methods in SQLiteTablethe pre-conditions were equal and the post-conditions were at least as
strong than its super-class. This means that pandas seems to comply to the LSP for this instance.

16.7.2.4 Interface Segregation Principle (ISP)

For the interface-segregation principle we checked the amount and relevance of functions provided when
importing a package. In Python, ISP can be tricky, as it does not cleanly allow interfacing of code, so
implementations are used directly.

A violation can be found by importing pandas: import pandas as pd. Over 50 functions, fields and
casses are returned when inspecting pd. One would expect the pd object to contain purely user-side code,
but there are various functions that do not directly relate to each other and are often irrelevant to the user.

16.7.2.5 Dependency Inversion Principle (DIP)

Lastly, from the developer’s view we consider core code depending on non-core code to be a DIP violation.
From the user-side, it is a violation whenever a user can reach core code. A quick inspection using
import pandas as pd reveals that core modules are abstracted away neatly; they cannot be reached.
However, we see multiple occurrences of core modules importing and tightly coupling with non-core
modules (e.g. pytables.py importing io modules).

16.7.3 Testing Debt

As mentioned in the standardization of testing section, pandas takes testing seriously. Codecov is used
to analyze the current line coverage of Python code within the repository. The C code is not taken into
consideration for the analysis since it is generated through Cython. In Appendix D, the coverage for the
master branch is presented, showing that 91.2% of the 52.977 lines are covered. Some visualizations from
Codecov are displayed in Figure 12 below.

Figure 12: Two code coverages perspectives generated by Codecov. The left picture is a grid overview,
with rectangles being files. On the right, a view is given in the form of sub-directory layers. The size of a
rectangle represents the size of the file and the color represents the number of tested lines.

Using both Appendix D and Figure 12, we identify three packages and modules of interest: the
core/panel.py module, as well as the compat and plotting packages.

https://github.com/pandas-dev/pandas/blob/79205ea8a6aac4c82a1572276ede7510f5a38e8e/pandas/io/sql.py

16.7. TECHNICAL DEBT 369

The pandas team is currently in the process of completely removing core/panel.py, which has been
deprecated since pandas version 0.20 57. Hence, no further maintenance is being performed on the module,
explaining the low coverage.

Two other packages that are not well tested are compat (for NumPy compatibility) and plotting (for
matplotlib support), with 63.32% and 72.72% line coverage respectively. The main part of uncovered code
in the compat package is that of initialization with Python 2.7. Since pandas is dropping support for Python
2.7 in 2020 and all new feature releases will be in Python 3 only 58, this code is soon to be deprecated and
removed. In the plotting package however, code in _converter.py is largely untested. This likely stems
from dealing with the matplotlib integration, which complicates the process.

Overall, we can say that pandas tests their Python code quite well, with the main low-coverage offenders
being deprecated code.

16.7.4 Historical Analysis

We analyzed the technical debt using SonarQube for all main releases of pandas and created the plots seen
in Figure 13. In these plots, we ignored the technical debt introduced by the HTML files, as they are false
positives and correspond to more than half of the total amount of technical debt (as discussed in Automatic
Analysis). We can see that the amount of code, technical debt and code smells increases linearly over the
different releases. We can also see that the newest main release (v0.24.0) brings a decrease in the technical
debt and code smells, while still introducing more lines of code.

Figure 13: History of technical debt of the pandas project, excluding the HTML files.

16.7.5 Technical Debt Discussions

Technical debt is an important subject for discussion in the pandas team. A lot of insights in how technical
debt is discussed can be gained from the pandas mailing list and from the way the developers use constructs
such as FIXMEs and TODOs.

57pandas. pandas.Panel. https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.Panel.html. Accessed On: 18
March 2019.

58pandas. Plan for dropping Python 2.7. https://pandas.pydata.org/pandas-docs/stable/install.html#plan-for-dropping-python-2-7.
Accessed On 18 March 2019.

370 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

At the end of 2015, pandas’ fast growth was a key reason for the core team to start discussing major
refactorings via their mailing list. Wes McKinney was pushing for large internal refactorings to expose less
of the core to the end-users 59. It was mentioned that some features, required a large amount of effort due
to the architectural issues with pandas and its over-reliance on NumPy’s ndarray data format, which did
not properly support the new needs of pandas (e.g. categorical data). Later on, there was discussion about
releasing pandas 1.0, so that the focus could shift to bug-fixing. The idea was to start a new pandas 2.0
development branch for the major refactorings 60. However, Joris van den Bossche indicated that this may
hinder contributors, since new feature PRs would then not be welcome on either branches. Pandas 2.0 is still
actively discussed and pandas’ creator Wes McKinney has shifted his attention to Apache Arrow, which
is intended to be at the core of pandas 2.0 61 62 63. The mailing list also contains lots of discussions about
smaller technical debt issues, an example being a violation of the DRY principle, where both Series and
DataFrame had a subclass for sparse data 64.

The pandas developers also make use of FIXMEs and TODOs to discuss about technical debt. We analyzed
the FIXME and TODOs at the repository’s state from commit 79205ea. It became apparent that FIXMEs
and TODOs are rarely linked to GitHub issues, making it hard to determine whether they were already
taken care of. Most of the FIXME comments are in test modules, which seems to indicate that the test
modules are suffering from technical debt. TODOs are more present in non-test modules. ops.py was one
of the non-test modules that had GitHub issues and PRs associated with its FIXMEs (5284, 5035, 19448).
Noteworthy is that the linked PR is not really related to the described issue, but rather where it came up in.

16.7.6 Before-After Analysis Of Technical Debt Issue

We decided to contribute to pandas by solving an SRP violation that we identified 65. Before our refactor,
there was a single test module for all the sparse series tests. This clearly violated the SRP principle, since it
took responsibility over all the features of sparse series.

The refactor involved categorizing the individual tests of the original module, so that they could be moved to
smaller and more specific modules. These are then responsible for testing specific types of functionality,
much like how the regular series tests are split up into constructor, api, missing, indexing, and other types of
tests.

After the refactor, this module was split up into smaller modules, hence eliminating the SRP violation, since
all of the smaller modules now have a single responsibility.

59pandas mailinglist. January 2016 entry. https://mail.python.org/pipermail/pandas-dev/2016-January/thread.html. Accessed on 18
March 2019.

60pandas mailinglist. July 2016 entry. https://mail.python.org/pipermail/pandas-dev/2016-July/thread.html. Accessed on 18 March
2019.

61pandas Development Team. Pandas 2.0 Design Documents. https://pandas-dev.github.io/pandas2/. Accessed on 4 April 2019.
62Wes McKinney. Apache Arrow and the 10 Things I Hate About pandas. http://wesmckinney.com/blog/apache-arrow-pandas-

internals/. Accessed on 4 April 2019.
63Tobias Macey (Host). Wes McKinney’s Career In Python For Data Analysis - Episode 203. https://www.pythonpodcast.com/wes-

mckinney-python-for-data-analysis-episode-203/ Accessed on 4 April 2019.
64pandas mailinglist. November 2018 entry. https://mail.python.org/pipermail/pandas-dev/2018-November/thread.html. Accessed

on 18 March 2019.
65Jeff Reback. TST: split out sparse tests. https://github.com/pandas-dev/pandas/issues/18969. Accessed On: 8 April 2019

https://github.com/pandas-dev/pandas/tree/79205ea8a6aac4c82a1572276ede7510f5a38e8e/pandas/tests/io
https://github.com/pandas-dev/pandas/blob/79205ea8a6aac4c82a1572276ede7510f5a38e8e/pandas/core/ops.py
https://github.com/pandas-dev/pandas/issues/5284
https://github.com/pandas-dev/pandas/issues/5035
https://github.com/pandas-dev/pandas/pull/19448

16.10. APPENDIX B: SUPPLIERS 371

16.8 Conclusion

Pandas is an ever growing library for data analysis and is becoming the new standard in the Python
community. We have analyzed pandas from different perspectives and viewpoints and found that pandas is
awaiting large refactorings. Although pandas does not have a large amount of technical debt, its rapid growth
is becoming a problem as its dependencies can not keep up with the growth. Due to this, the responsibilities
of pandas are increasing, requiring a philosophical and architectural shift, that will ultimately benefit the
usability of the stack. Pandas’ creator Wes Mckinney has shifted his attention to Apache Arrow, which
should unify the management of in-memory data representations across different toolkits and languages,
which pandas 2.0 will also rely on. All in all, pandas is here to stay and is only becoming larger.

16.9 Appendix A: Core Team

Table 2: The complete core team as documented by the pandas governance repository 66.

Full Name GitHub Handle

Andy Hayden [@hayd](https://github.com/hayd)
Brock Mendel [@jbrockmendel](https://github.com/jbrockmendel)
Chang She [@changhiskhan](https://github.com/changhiskhan)
Chris Bartak [@chris-b1](https://github.com/chris-b1)
G. Young [@gfyoung](https://github.com/gfyoung)
Jeff Reback [@jreback](https://github.com/jreback)
Jeremy Schendel [@jschendel](https://github.com/jschendel)
Joris van den Bossche [@jorisvandenbossche](https://github.com/jorisvandenbossche)
Marc Garcia [@datapythonista](https://github.com/datapythonista)
Masaaki Horikoshi [@sinhrks](https://github.com/sinhrks)
Matthew Roeschke [@mroeschke](https://github.com/mroeschke)
Phillip Cloud [@cpcloud](https://github.com/cpcloud)
Pietro Battiston [@toobaz](https://github.com/toobaz)
Stephan Hoyer [@shoyer](https://github.com/shoyer)
Tom Augspurger [@tomaugspurger](https://github.com/tomaugspurger)
Wes McKinney [@wesm](https://github.com/wesm)
William Ayd [@willayd](https://github.com/willayd)

16.10 Appendix B: Suppliers

Table 3: Suppliers of the pandas library

66pandas. pandas People. https://github.com/pandas-dev/pandas-governance/blob/master/people.md. Accessed On: 25 February
2019.

372 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

Supplier Type Role

Python Software Language in which pandas is
written

C/Cython Software Language in which pandas is
written, and a program to bundle
this with the Python code

PyPI Software Package manager used to
retrieve dependencies

Dependencies Software Libraries from which
functionality is used by pandas

GitHub Development Hosts the repository where
pandas is developed

Gitter Development Communication platform of
pandas developers

Azure Pipelines Development Continuous Integration used to
analyze the code statically

TravisCI Development Continuous Integration used to
analyze the code statically.

16.11 Appendix C: Decision making analysis

In order to analyze the decision making process, we analyzed 10 rejected and 10 accepted pull requests,
along with consulting other sources such as mailing lists, conference slides, the contribution guide, gitter,
and other miscellaneous sources.

16.11.1 Pull Request Analysis Methodology

To analyze the pull-requests, we combined the recommended way of doing it with some automation. We
went into the pull request and collected the following contextual information: author, timespan, what the PR
touches, reason for closing (if applicable), preceding issues, reviewers and finally, interesting notes. This
mirrors what was suggested for collecting contextual information.

Then, instead of tagging the PRs manually, we automated the process using pandas itself together with
Matplotlib. To tag the data, we first looked through some PRs manually to determine good tags to categorize
the comments with. From this, we found trends that kept re-occuring and were easy to identify: git-related
discussion, naming conventions, testing, and documentation. Anything that would not fit these categories,
would be considered as feature-specific or other discussion.

Then we found some words that were frequently mentioned in one form or another for each of these
categories, e.g. for the git tag we used the following list of regex patterns:

"git" : [r"squash(ed)?",r"rebas(e)?", r"\bgit\b", "push", r"merge(conflict)?",
r"pull(request)?", "commit"]

Similar lists exist for the other categories. Upon review, the categorization yielded good results, with
relatively few false positives. To better follow conversations, we added another tweak: if the algorithm

16.11. APPENDIX C: DECISION MAKING ANALYSIS 373

could not find a new specific tag, it would use the tag of the previous comment instead of labelling it as
feature/other. This yielded much better results than before, with a slight increase in false positives. Another
addition that improved results was always re-checking the tag when entering a review comment chain. Most
of this could be done because of temporal dependency between comments: related comments often are
grouped together closely in time 67. The system could be improved even further if it would consider users
being tagged in replies (for replies to comments that are far apart from the original in terms of time).

Overall, the tagging yields a swarm plot, which visualizes the density of activity at various time periods for
each of the tags, a pie chart that shows the distribution of tags among the comments, and a sequence plot
that visualizes the ordering of comment tags in time more clearly. Aside from that, an additional pie chart
of the user activity is also made, where any user with less than 2% of the comments is grouped under the
category “other”.

16.11.2 Most Discussed Rejected Pull Requests

16.11.2.1 1. ENH: Google BigQuery IO Module #4140

16.11.2.1.1 Context

• Author: sean-schaefer
• Timespan: 2013-07 : 2013-10
• Touches: Integration of the pandas.io.gbq module for integration with Google’s BigQuery
• Reason closed: Superseded by other pull request: #5179.
• Preceding issues: N/A
• Reviewers: cpcloud (main), jreback (comments), jratner
• Notes:

– This PR required some communication between Google’s backend team and the pandas contrib-
utors.

– There was a significant discussion after closing the PR about a continuation.
– This PR required some communication between Google’s backend team and the pandas contrib-

utors because they found a bug in Google BigQuery.

67Noé Gaumont, Tiphaine Viard, Raphaël Fournier-S’Niehotta, Qinna Wang, and Matthieu Latapy. Analysis of the temporal and
structural features of threads in a mailing-list. InComplex Networks VII 2016 (pp. 107-118). Springer, Cham.

https://github.com/pandas-dev/pandas/pull/4140
https://github.com/pandas-dev/pandas/pull/5179

374 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.11.2.1.2 Summarizing Visualizations
Most of the activity on this PR seemed to be happen two days after its creation, with quite a bit of discussion
on testing and other non-feature related subjects.

16.11.2.2 2. ENH: Adding origin parameter in pd.to_datetime #11470

16.11.2.2.1 Context

• Author: sumitbinnani
• Timespan: 2015-10 : 2017-03
• Touches: to_datetime method. Concerned adding a parameter to the pandas datetime module that

allowed the user to set a time-origin
• Reason closed: Superseeded by other pull request: #15828
• Preceding issues: #11276, #11745
• Reviewers: jreback (main), shoyer, jorisvandenbossche.
• Notes:

– An important request for this feature was adding the origin of the date-time as a parameter.
– jreback spent quite some time guiding sumitbinnani in polishing his work.

https://github.com/pandas-dev/pandas/pull/11470
https://github.com/pandas-dev/pandas/pull/15828
https://github.com/pandas-dev/pandas/issues/11276
https://github.com/pandas-dev/pandas/issues/11745

16.11. APPENDIX C: DECISION MAKING ANALYSIS 375

16.11.2.2.2 Summarizing Visualizations
The main discussion here was clearly between jreback and sumitbinnani. This PR was also open for
quite a long time (nearly 1.5 years) with some bursts of discussions here and there.

16.11.2.3 3. ENH/REF: More options for interpolation and fillna #4915

16.11.2.3.1 Context

• Author: tomaugspurger
• Timespan: 2013-09 : 2013-10
• Touches: interpolation and fillna, adding more options.
• Reason closed: Pull request had to be squashed and a new pull request was made for this addition.

Only a link to the merge commit was found.
• Preceding issues: #1892, #4434
• Reviewers: jreback (main), cpcloud, jratner.
• Notes:

– The review process shows jreback guiding TomAugspurger intensively to work out his contri-
bution.

– The enhancement was appreciated, but had to be squashed and a new PR was made

https://github.com/pandas-dev/pandas/pull/4915
https://github.com/pandas-dev/pandas/commit/aff7346f3be41d1b190f311f862653b6088e2ad7
https://github.com/pandas-dev/pandas/issues/1892
https://github.com/pandas-dev/pandas/issues/4434

376 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.11.2.3.2 Summarizing Visualizations
As established, the main discussion here was between jreback and TomAugspurger. Quite a bit of
comments on documentation towards the end.

16.11.2.4 4. ENH: add downcast to pd.to_numeric #13425

16.11.2.4.1 Context

• Author: gfyoung
• Timespan: 2016-06 : 2016-07
• Touches: to_numeric method. Concerned a change to the API for reading CSV’s. Two functions had

to be moved outside of the parser.
• Reason closed: Contribution was included in another pull request.
• Preceding issues: #13352
• Reviewers: jreback (main), jorisvandenbossche
• Notes:

– The API changes generated quite some discussion.

https://github.com/pandas-dev/pandas/pull/13425
https://github.com/pandas-dev/pandas/issues/13352

16.11. APPENDIX C: DECISION MAKING ANALYSIS 377

16.11.2.4.2 Summarizing Visualizations
The main discussion here is between gfyoung and jreback. There was quite a bit of discussion about git
and CI at the beginning of the PR, which happened to be because of failing Travis builds.

16.11.2.5 5. ENH: ignoring comment lines and empty lines in CSV files #7470

16.11.2.5.1 Context

• Author: mdmueller
• Timespan: 2014-06 : 2014-09
• Touches: CSV reader. Concerned an enhancement to the CSV reader to ignore empty lines.
• Reason closed: Pull request was squashed into one commit and merged through that commit instead

of the pull request.
• Preceding issues: #4466
• Reviewer: jreback (main), jorisvandenbossche.
• Notes:

– A large chunk of discussion between jreback and mdmueller was about debugging a failing
Travis build.

– The conversation was closed after discussing some documentation.

https://github.com/pandas-dev/pandas/pull/7470
https://github.com/pandas-dev/pandas/commit/31c2558b33d727d6bd2fcb21f97e49d5a016513f
https://github.com/pandas-dev/pandas/issues/4466

378 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.11.2.5.2 Summarizing Visualizations
A confirmation of the main discussion between jreback and mdmueller. The PR seems to be dotted with
remarks on git related matters, which may be related to debugging the failing Travis build.

16.11.2.6 6. ENH: Cleanup backend for Offsets and Period #5148

16.11.2.6.1 Context

• Author: cancan101
• Timespan: 2013-10 : 2014-06
• Touches: Offsets and Period backend. Concerned a cleanup enhancement of the backend.
• Reason closed: Pull request fixed to many issues at once, requiring major rebase.
• Preceding issues: #5306, #5082, #5028, #4878, #5418.
• Reviewers: jratner (main), jreback
• Notes:

– The user nehalecky briefly commented that they hoped to see the PR merged asap and thank
cancan101 for their work.

– jreback (only) appeared to close the PR, stating that a major rebase was required before
acceptance and that they wanted separate PR’s for each issue.

– The main discussion was about finding a clean way to integrate the work made in cython and
some refactorings to make the changes neater.

https://github.com/pandas-dev/pandas/pull/5148
https://github.com/pandas-dev/pandas/issues/5306
https://github.com/pandas-dev/pandas/issues/5082
https://github.com/pandas-dev/pandas/issues/5028
https://github.com/pandas-dev/pandas/issues/4878
https://github.com/pandas-dev/pandas/issues/5418

16.11. APPENDIX C: DECISION MAKING ANALYSIS 379

16.11.2.6.2 Summarizing Visualizations
The large amount of git discussion stands out, probably due to the major rebase that was required to merge
this PR properly. Mainly jreback, cancan101 and jratner discussing this. The PR was open for quite a
bit of time, close to year, and activity seemed to happen mainly in bursts between March and May 2014,
after which the PR lay dormant for quite a while longer.

16.11.2.7 7. WIP: use eval expression parsing as replacement for Term in HDFStore #4155

16.11.2.7.1 Context

• Author: jreback
• Timespan: 2013-07 : 2013-07
• Touches: HDFStore Term. Concerned a larger commit about extending the work of user cpcloud on

eval expressions.
• Reason closed: Superseeded by another pull request: #4162.
• Preceding issues: PR#4037, #3393.
• Reviewers: cpcloud (main), meteore (comments)
• Notes:

– The user meteore was a user of pandas interested in this change for their own use-cases,
supporting the developers with additional insight and questions.

https://github.com/pandas-dev/pandas/pull/4155
https://github.com/pandas-dev/pandas/pull/4162
https://github.com/pandas-dev/pandas/pull/4037
https://github.com/pandas-dev/pandas/issues/3393

380 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.11.2.7.2 Summarizing Visualizations
A lot of comments on naming in this, but this is a false positive, as most of the naming-related comments
were about the feature itself regarding the name field in one of the classes. The git discussion towards the
end seemed to be about redirecting the efforts to a single PR on the subject to have everything in one place.

16.11.2.8 8. WIP/API/ENH: IntervalIndex #8707

16.11.2.8.1 Context

• Author: shoyer
• Timespan: 2014-11 : 2017-03
• Touches: IntervalIndex for expressing intervals. Concerned an enhancement for adding support for

expressing intervals.
• Reason closed: Pull request could not be finished by shoyer due to lack of time.
• Preceding issues: #7640, #8625.
• Reviewers: jreback (main), jorisvandenbossche
• Notes:

– BDFL wesm entered the discussion, suggesting to move the code to the new indexes package.
– Closed on Sep 10, 2016 by jreback because shoyer indicated he did not have the time to finish

the tests, documentation and Cython optimizations. jreback expressed interest in taking it over
later on and continue working on it.

– Most discussion was about the right way to express the interval, including technical performance
concerns related to materialization of the dataframes.

https://github.com/pandas-dev/pandas/pull/8707
https://github.com/pandas-dev/pandas/issues/7640
https://github.com/pandas-dev/pandas/issues/8625

16.11. APPENDIX C: DECISION MAKING ANALYSIS 381

16.11.2.8.2 Summarizing Visualizations
Main dicussion between shoyer and jreback, quite a bit of discussion on documentation, this seemed to
stem from the fact that shoyer forgot some doc strings for his newly added features which was pointed out
during code reviews.

16.11.2.9 9. ENH/API: DataFrame.stack() support for level=None, sequentially=True/False, and
NaN level values. #9023

16.11.2.9.1 Context

• Author: seth-p
• Timespan: 2014-12 : 2016-01
• Touches: stack method of DataFrame
• Reason closed: Pull request could not be finished by seth-p due to lack of time.
• Preceding issues: #8851, #9399, #9406, #9533.
• Reviewers: jreback (main), shoyer, jorisvandenbossche.
• Notes:

– Closed by jreback on Jan 20, 2016 because seth-p had no time to continue on it.
– The latter half of the discussion was about setting up the virtual environent properly.
– Most of the discussion was about the API implications. It was interesting to note that shoyer

eventualy argued that an API change was preferred over a backwards-compatible ‘hack’.

https://github.com/pandas-dev/pandas/pull/9023
https://github.com/pandas-dev/pandas/pull/9023
https://github.com/pandas-dev/pandas/issues/8851
https://github.com/pandas-dev/pandas/issues/9399
https://github.com/pandas-dev/pandas/issues/9406
https://github.com/pandas-dev/pandas/issues/9533

382 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.11.2.9.2 Summarizing Visualizations
Mainly jreback and seth-p discussing on this PR. A lot of git comments towards the end, mainly from
rebase requests.

16.11.2.10 10. WIP: add top-level eval function #4037

16.11.2.10.1 Context

• Author: cpcloud
• Timespan: 2013-06 : 2013-07
• Touches: HDFStore Term
• Reason closed: Git history did not accurately depicted the history of contributions and hence another

pull request was opened (probably this one).
• Preceding issues: #3393.
• Reviewers: jreback (main), wesm(minor), dragoljub (comment), jratner (comment)
• Notes:

– Much discussion revolved around the finer workings of parsing/interpreting the operators in the
eval function.

– Quite some discussion also revolves around the usage of git, in particular cpcloud and jreback
trying to access each other’s work.

– We can observe that some functionality that was previously in the pandas.core.expressions
package was moved to pandas.computation.expressions.

https://github.com/pandas-dev/pandas/pull/4037
https://github.com/pandas-dev/pandas/pull/4164
https://github.com/pandas-dev/pandas/issues/3393

16.11. APPENDIX C: DECISION MAKING ANALYSIS 383

16.11.2.10.2 Summarizing Visualizations
The only participants here were cpcloud and jreback. As with PR7, the git discussion towards the end
seemed to be about redirecting the efforts to a single PR on the subject to have everything in one place.

16.11.3 Most Discussed Merged Pull Requests

16.11.3.1 11. ENH: add expression evaluation functionality via eval #4164

16.11.3.1.1 Context

• Author: cpcloud
• Timespan: 2013-07 : 2013-09
• Touches: not a lot, it mostly adds new functionality. It basically allows string expressions to be

parsed with a custom backend/engine to efficiently evaluate operations on dataframes. Also a lot of
documentation added as well.

• Preceding issues: #3393, #2560
• Reviewers: jreback, TomAugspurger
• Notes:

– It seems that this PR was more of a roadmap/checklist to getting that feature done mostly,
however a bit of functionality/refactoring was added during the course of the PR which was not
covered by the checkboxes (e.g. QueryEngine).

https://github.com/pandas-dev/pandas/pull/4164
https://github.com/pandas-dev/pandas/issues/3393
https://github.com/pandas-dev/pandas/issues/2560

384 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.11.3.1.2 Summarizing Visualizations
Even though the PR was very large, the main discussion seemed to be between cpcloud and jreback,
which makes sense given the previous PRs on this same feature were mostly discussed by them as well. The
PR seemed to have a dead zone in the middle, with barely any activity, could be holiday-related.

16.11.3.2 12. CLN/ENH/BLD: Remove need for 2to3 for Python 3. #4384

16.11.3.2.1 Context

• Author: jtratner
• Timespan: 2013-07, 2013-08
• Touches: nearly the entire project, since it makes the code base compatible between python 2 and 3
• Preceding issues: #4375, #4372
• Reviewers: cpcloud, jreback
• Notes: n/a

https://github.com/pandas-dev/pandas/pull/4384
https://github.com/pandas-dev/pandas/issues/4375
https://github.com/pandas-dev/pandas/issues/4372

16.11. APPENDIX C: DECISION MAKING ANALYSIS 385

16.11.3.2.2 Summarizing Visualizations
The main discussion here is between jreback, cpcloud and jtratner. Interestingly, most of the activity
was in one month, before the holidays, and it got merged only after, hence the gap.

16.11.3.3 13. WIP: categoricals as an internal CategoricalBlock GH5313 #7217

16.11.3.3.1 Context

• Author: jreback
• Timespan: 2014-05, 2014-07
• Touches: any component in pandas that somehow manipulates or uses datatypes, such as the algorithms

class, the dataframe class, etc. Also adds a new data class.
• Preceding issues: #5313, #5314, #3943
• Reviewers: jankatins, njsmith
• Notes:

– It seems that there is quite a bit of discussion on naming, API etc, as such core team member
jorisvandenbossche intervenes with a proposal for creating some sort of design document
for pandas to get these kind of points clear.

– jankatins calls for help from the ‘statistics side’: jseabold, josef-pkt, cancan101,
kshedden, upandacross and cfarmer, which appear to have experience with R.

– This feature is quite desirable among the userbase because it brings in features from its competitor
R.

https://github.com/pandas-dev/pandas/pull/7217
https://github.com/pandas-dev/pandas/issues/5313
https://github.com/pandas-dev/pandas/issues/5314
https://github.com/pandas-dev/pandas/issues/3943

386 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.11.3.3.2 Summarizing Visualizations
This PR had quite a lot of people involved, with leading discussion by jankatins and jreback. Quite a
lot of discussion was devoted to things like git, testing, documentation. The comments on documentation
towards the end was apparently because they were broken.

16.11.3.4 14. ENH/BUG: Fix names, levels and labels handling in MultiIndex #4039

16.11.3.4.1 Context

• Author: jtratner
• Timespan: 2013-06, 2013-08
• Touches: See PR description, it has a nice summary.
• Preceeding issues: #4202, #3714, #3742
• Reviewers: cpcloud, jreback
• Notes: n/a

https://github.com/pandas-dev/pandas/pull/4039
https://github.com/pandas-dev/pandas/issues/4202
https://github.com/pandas-dev/pandas/issues/3714
https://github.com/pandas-dev/pandas/issues/3742

16.11. APPENDIX C: DECISION MAKING ANALYSIS 387

16.11.3.4.2 Summarizing Visualizations
Naturally, a lot of comments on naming, as the PR is focused on this. The main discussion is between
jreback and jtratner, with cpcloud also chiming in. The first half of the PR is very focused on naming
conventions, while the second half was more about levels/labels.

16.11.3.5 15. REF: DatetimeLikeArray #24024

16.11.3.5.1 Context

• Author: TomAugspurger
• Timespan: 2018-12, 2019-01
• Touches: anything related to dates, times and date/time differences.
• Preceding issues: #4202, #3714, #3742
• Reviewers: jreback, jbockmendel
• Notes:

– jorisvandenbossche comes in with an issue and a proposal to start a new issue for discussing
it, related to API-breaking changes.

https://github.com/pandas-dev/pandas/pull/24024
https://github.com/pandas-dev/pandas/issues/4202
https://github.com/pandas-dev/pandas/issues/3714
https://github.com/pandas-dev/pandas/issues/3742
https://github.com/pandas-dev/pandas/issues/24559

388 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.11.3.5.2 Summarizing Visualizations
Mainly TomAugspurger, jbrockmendel and jreback involved here. This PR had relatively many code
review comments, since this PR list is sorted by issue comments and it had 600 total comments.

16.11.3.6 16. New Interval / IntervalIndex behavior spec #16386

16.11.3.6.1 Context

• Author: zfrenchee
• Timespan: 2017-06, 2018-01
• Touches: mainly adds a lot of tests for the new more well-defined Interval/IntervalIndex specification.
• Preceding issues: #16316
• Reviewers: shoyer, jreback, jorisvandenbossche
• Notes:

– There seems to be a lot of mentions of “xfails”, which are tests that cannot succeed due to a bug
not being fixed, or feature not being implemented.

https://github.com/pandas-dev/pandas/pull/16386
https://github.com/pandas-dev/pandas/issues/16316

16.11. APPENDIX C: DECISION MAKING ANALYSIS 389

16.11.3.6.2 Summarizing Visualizations
A mixed discussion on the PR, between zfrenchee, jreback, shoyer and jorisvandenbossche. A lot
of the comments were about tests, this was because there were more tests that needed to be added, some
tests were at the wrong location, or some tests were not good enough. This PR also had some dips in activity
around Nov/Dec before the team got back to it.

16.11.3.7 17. ENH: add .iloc attribute to provide location-based indexing #2922

16.11.3.7.1 Context

• Author: jreback
• Timespan: 2013-03, 2014-07
• Touches: dataframes, series, etc that will use these new location-based indexing features. Also adds

test and documentation for them.
• Preceding issues: n/a
• Reviewer: stephenwlin, nehalecky, jankatins
• Notes:

– This feature seems to be desirable among the users, as there were quite a few comments praising
it.

https://github.com/pandas-dev/pandas/pull/2922

390 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.11.3.7.2 Summarizing Visualizations
Mainly jreback discussing this with stephenwlin, jankatins and nehalecky. Relatively little discus-
sion on tests, but more than usualy on documentation. Also, most of this PR happened at the beginning, it
only got merged half a year later.

16.11.3.8 18. CI: Linting with azure instead of travis #22854

16.11.3.8.1 Context

• Author: datapythonista
• Timespan: 2018-10, 2018-11
• Touches: the CI setup.
• Preceding issues: #22844
• Reviewer: TomAugspurger, vtbassmatt (CI assistance), jreback
• Notes:

– It also has some minor changes in frame.py, panel.py, which seem not directly related, this
may be an anomaly from a merge from master. Overall the git management seems inconsistent:
sometimes a rebase is performed, while sometimes a merge is performed.

https://github.com/pandas-dev/pandas/pull/22854
https://github.com/pandas-dev/pandas/issues/22844

16.11. APPENDIX C: DECISION MAKING ANALYSIS 391

16.11.3.8.2 Summarizing Visualizations
Mainly discussion between datapythonista, TomAugspurger and vtbassmatt. The large ratio of
documentation was a false positive, it came from references to the microsoft documentation for Azure. The
PR had most of its activity a few months after creation.

16.11.3.9 19. ENH: improve performance of df.to_csv GH3054 #3059

16.11.3.9.1 Context

• Author: “ghost” (deleted user)
• Timespan: 2013-03, 2013-04
• Touches: the to_csv function of dataframes, massively improving its performance.
• Preceding issues: #3054
• Reviewer: jreback
• Notes:

– This PR is by a deleted user.
– The main discussion was by the “ghost” and jreback, both (playfully) competing with each

other to find neat tricks to further improve performance.

https://github.com/pandas-dev/pandas/pull/3059
https://github.com/pandas-dev/pandas/issues/3054

392 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.11.3.9.2 Summarizing Visualizations
Almost exclusively ghost and jreback discussing this. The comment towards the end was from an
enthusiastic user.

16.11.3.10 20. ENH: Support for “52–53-week fiscal year” / “4–4–5 calendar” and LastWeekOf-
Month DateOffset #5004

16.11.3.10.1 Context

• Author: cancan101
• Timespan: 2013-09, 2013-10
• Touches: timeseries.py and frequencies.py, adding some functionality and fixes, and also adds tests

for the new functionality for irregular calendars.
• Preceding issues: #4511, #4637
• Reviewers: jreback, cpcloud, jtratner
• Notes: n/a

https://github.com/pandas-dev/pandas/pull/5004
https://github.com/pandas-dev/pandas/pull/5004
https://github.com/pandas-dev/pandas/issues/4511
https://github.com/pandas-dev/pandas/issues/4637

16.11. APPENDIX C: DECISION MAKING ANALYSIS 393

16.11.3.10.2 Summarizing Visualizations
Main discussion between cancan101, cpcloud, jratner and jreback. The heavy git discussion towards
the end was again because of rebase requests.

16.11.4 Visual Summary Retrospective

A global visualization might potentially reveal more interesting information.

16.11.4.1 Global Visual Summary

Here we can see that indeed jreback has the largest share of comments by far, which is confirmed by
his important integrator role over the course of the project. He has commented in all of the large PRs
that we have investigated. Other than that, jratner, TomAugspurger and cpcloud also show significant
involvement in the large PRs. Furthermore, the swarm plot shows that there is a gap in activity between
2018 and 2019 when it comes down to big pull requests, while 2013, 2014 (coinciding with 0.11, 0.12
and 0.13) and end-2018 (mainly from the DateTime-like array PR, number 16) show the largest amount of
activity. The sequence plot does not seem to be very useful due to the sheer amount of comments (and the
discontinuity of the comment counter), but does reveal the shape of the subject distribution.

Overall, a quarter of all the comments are on git or testing, with a relatively smaller share on documentation or
naming. Git usually gets mentioned because of rebase requests or because of (resulting) general issues with
managing git for the particular PR. Testing is often an important subject in PRs that add new functionality,
it’s often either a failing test or a missing test that is being discussed.

394 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

Figure 16.1: Summarizing Visualizations

16.11.5 Other Information/Communication Sources

16.11.5.1 Gitter

On Gitter, some new names can be found, but also some familiar ones. The latest discussion seems to
be usage related rather than dev. There was however a question before by TrigonaMinima about tests,
which was answered by jorisvandenbossche. Before that jreback also participated in some discussion
with jorisvandenbossche, about some change by jorisvandenbossche that jreback disagrees with.
Another contributor by the name scari mentions an issue with timestamps.

More interestingly, upon a question about the dual travis/azure devops setup by fuglede, jorisvandenbossche
answered that this was mainly datapythonista that made this switch to Azure, apparently with help from
the Azure team itself. The reason was apparently that Azure was faster and provides more (parallel) builds
compared to Appveyor.

16.11.5.2 Mailing Lists

Not too much new information here, aside from Vaex as a library that uses Pandas. Release posts are also
often put on the mailing list, with change logs for the new version. Interestingly, Wes Mckinney is still quite
active on the mailing lists post-2014, after his primary contributions. Mainly posts about re-organizing code
(e.g. a way to split up mega-module such as frame.py). Later discussions are a lot about future refactorings

16.12. APPENDIX D: CODE COVERAGE 395

(pandas 2.0), also initiated by Wes. There’s also mention of starting a new communication platform/hub for
all pydata open source projects (e.g. pandas, matplotlib, etc) via a service like Discourse, just to discuss

16.11.5.3 Conference Articles/Videos/Presentations

16.11.5.3.1 Pandas Summit 2019 (Feb 2019) This article is a retrospective on Pandas Summit 2019 by
dunnhumby. In the article it is explained that dunnhumby contributed financially to a conference where the
proceeds went to NumFocus, which is an organization that supports Pandas. It also appears that PRs must
be approved by two core team members, and that they may receive up to 10 PRs a day. Apparently there is
one contributor that nobody has met in person but works a lot on Pandas.

There is also a picture of a slide from Marc Garcia (datapythonista) that contains three dev members that
are labeled as core team members: Joris van den Bossche, Pietro Batison, Marc Garcia.

16.11.5.3.2 PyData London Meetup #47 (Aug 2018) Main finding here is that the founder Wes Mck-
inney seems out of touch with pandas according to Marc Garcia (datapythonista), because he went on to
create Apache Arrow, which is a unified columnar processing/storage system which is supposed to remove
the overhead of converting data formats between the data analysis libraries. This means that Apache Arrow
can actually be used by Pandas (and Pandas already has support for it regarding data transfer). We can also
find some other possible “competitors”, such as the Julia data science language and the Apache Spark
library. Future plans: pandas seems to want to support Python 3.7 properly, and especially focus on a lot
of maintenance. In fact, they want to drop Python 2 support in 2019, together with matplotlib and other
libraries that are also dropping support for it.

16.12 Appendix D: Code Coverage

Table 3: Code coverage reported by Codecov as of commit 707c7201a744c48c835f719421e47480beee2184

Files Tracked Lines Covered Lines Missed Lines Coverage

_libs 7 7 0 100.00%
api 8 8 0 100.00%
compat 649 411 238 63.32%
core 36.189 33.901 2.288 93.67%
errors 12 12 0 100%
io 10.078 9.139 939 90.68%
plotting 2.830 2.058 772 72.72%
tseries 1.657 1.598 59 96.43%
util 1.547 1.208 339 78.08%
Totals (172 files) 52.977 48.342 4.635 91.2%

https://medium.com/dunnhumby-data-science-engineering/what-i-learned-from-the-european-pandas-summit-2019-d0cd6588f64f
https://www.youtube.com/watch?v=hK6o_TDXXN8
https://github.com/pandas-dev/pandas/commit/707c7201a744c48c835f719421e47480beee2184

396 CHAPTER 16. PANDAS | PYTHON DATA ANALYSIS LIBRARY

16.13 References

By Damy Ha, Nando Kartoredjo, Teodor Nikolov, and Xingchen Liu. Delft University of Technology.

https://github.com/4367480
https://github.com/nskartoredjo
https://github.com/tinikolov
https://github.com/Xingchen94

Chapter 17

Poco

17.1 Table of Contents

1. Introduction
2. Stakeholders Analysis

1. Stakeholder Classes
1. Acquirers
2. Assessors
3. Competitors
4. Developers
5. Maintainers
6. Testers
7. Users
8. Sponsors
9. Contact Persons

10. Service Partners
11. Integrators

2. Stakeholder Involvement
3. Context View

1. System Scope
2. Context Model

4. Pull Request Analysis
1. Accepted Requests
2. Rejected Requests

5. Development View
1. Module Organisation
2. Common Design Model

1. Common Processing
2. Standardisation of Design
3. Common software

3. Codeline model

397

398 CHAPTER 17. POCO

1. Codeline Organisation
2. Standardisation of Testing
3. Release Process

6. Functional View
1. Capabilities
2. Design philosophy
3. External Interfaces
4. Internal Structure
5. Structure Model

7. Technical Debt
1. Identification
2. Historical debt
3. Testing debt
4. Impact
5. Solutions

8. Conclusion
9. Appendices

1. Appendix A - The Developer Stakeholders
2. Appendix B - The Tester Stakeholders
3. Appendix C - The Code Line Coverage
4. Appendix D - FIXME

17.2 Introduction

The Portable Components C++ Libraries (POCO) project was started by Günter Obiltschnig in 2004. During
that time C# and .Net, were very popular. As a compiled language, C++ reached its lowest point at that time.
Günter Obiltschnig believed in C++, and was committed to create a high-quality, easy to use C++ library
which is focused on providing networking libraries for the creation of different networking configurations.

The first release of POCO was in 2005, and since its release, more than 180 developers have contributed
to the source code of it. POCO is an open source, cross platform software project written in ANSI/ISO
standard C++ and based on the C++ Standard Library. Due to its portability, modularity, and efficiency,
POCO is widely used for network-centric and portable applications development. Applications written with
POCO can be easily ported to a new platform, as a result of the platform independencies of POCO. As a
non-profit open source project, POCO is completely free for both the commercial and non-commercial use.

This report investigates the software architecture of POCO and contains six sections. We start with the
Stakeholder Analysis, which lists the stakeholders of POCO and their respective stake. The next section is
the Context View, which looks into the relationships, dependencies, and interactions between POCO and
its environment. After the Context View, the Pull Request Analysis is presented, which summarises our
findings of 20 analysed pull requests. The following section is the Development View, which describes the
architecture that supports the software development process of POCO. The next section is the Functional
View, which describes the architectural elements of one of the functions provided by POCO. The last section
is the Technical Debt, which discusses the concept of Technical debt and its implications on the project. A
summary is provided in the conclusion.

Version 1.9.0 was used at the time this report was written.

https://pocoproject.org/
https://obiltschnig.com/
https://pocoproject.org/slides/000-IntroAndOverview.pdf
https://github.com/pocoproject/poco/releases/tag/poco-1.9.0-release

17.2. INTRODUCTION 399

17.2.1 Stakeholders Analysis

The POCO project recognises a variety of stakeholders, each having their own share in the project. First, we
would like to identify each stakeholder by its class, and second, we would like to illustrate the stakeholder
involvement by making use of a power/interest grid.

17.2.1.1 Stakeholder Classes

The following classes can be identified within the POCO project.

17.2.1.1.1 Acquirers The acquirers are identified as the leading developers Günter Obiltschnig and
Aleksandar Fabijanic. Both acquirers also act as the communicators of the project, interacting with pull
requests and email traffic personally.

17.2.1.1.2 Assessors The POCO project has been governed by a Technical Steering Committee (TSC),
which consists of the acquirers and a group of individuals selected by the committee which made significant
and valuable contributions to the POCO project. All pull requests must be reviewed and accepted by a
collaborator or a committee member. The collaborator is required to have sufficient expertise and is required
to take full responsibility for the change made in the approved pull request.

17.2.1.1.3 Competitors The POCO project is widely used, mostly because of the easy of use of network-
ing libraries for embedded devices, service applications, desktops, and many other applications. Therefore
POCO also has its competitors. For example, ADAPTIVE Communication Environment (ACE) provides
network programming libraries used for message routing, dynamic (re)configuration of distributed services,
concurrent execution and synchronization. Another competitor is Boost which provides portable C++ source
libraries, including libraries for networking like Boost.Asio, or Boost.Beast.

17.2.1.1.4 Developers The developer community consists of more that 180 developers which have
contributed to the POCO project. Based on the information gathered from GitHub the people with the
highest contribution are described in Appendix A.

17.2.1.1.5 Maintainers Applied Informatics Software Engineering GmbH, Applied Informatics for
short, is the original developer and current maintainer of the POCO C++ Libraries. The acquirer Günter
Obiltschnig is the founder of this company. In addition, managing the releases and maintaining the
compatibility with different platforms is done by Francis Andre.

17.2.1.2 Testers

The POCO project doesn’t have dedicated testers, instead it relies on the community to frequently test and
maintain the project. This results into overlap between testers and developers, thus both are not completely
independent. The testers with the highest contribution are described in Appendix B.

https://github.com/obiltschnig
https://github.com/aleks-f
http://www.dre.vanderbilt.edu/~schmidt/ACE-overview.html
https://www.boost.org/
https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio.html
https://www.boost.org/doc/libs/1_66_0/libs/beast/doc/html/index.html
https://macchina.io/
https://github.com/zosrothko

400 CHAPTER 17. POCO

17.2.1.3 Users

The POCO project is a widely popular project within the open source community. At the moment of writing,
at least two million code results can be found on GitHub for mentioning the POCO project within an open
source repository. It is also included in the list of open source C++ libraries as one of the useful libraries by
cppreference.com. A list of commercial users is also stated by POCO themselves, which include companies
like Cisco, Oracle, and Panasonic.

17.2.1.4 Sponsors

The POCO project relies on sponsors to pay for the upkeep of the project’s website and other platforms.
Alternatively, companies are welcome to fund the development of a specific feature. To become a sponsor,
companies are required to sign an agreement with Applied Informatics. Sponsors receive acknowledgement
by either a display of their logo on the POCO project website, or by a brief mention of their contribution to
the project. The POCO project is at the moment of writing actively supported by Schneider Electric and
Siemens, which both are also users of the POCO C++ libraries.

17.2.1.5 Contact Persons

The POCO project provides several forms of communication. For purchased commercial support, the users
are able to submit a message via the POCO website and get direct contact with the Applied Informatics
support team. Sending an email to the support team is also an option. For non commercial support and
other technical questions, POCO has a community scattered over multiple portals including Stack Overflow
and Github, from which users can receive help from the wide POCO community. The latest updates and
notifications related to the project can be also found on social media. Social media accounts are updated by
Günter Obiltschnig. Technical questions or bug related issues can be addressed in the GitHub repository
where a member of TSC could take action.

17.2.1.6 Service Partners

The POCO project provides services to other companies through their C++ libraries, which are essential for
the products these companies deliver. A few examples are: HORIBA which uses POCO in automotive test
systems, Nucor Steel which uses POCO in beam mill automation application, and Starticket which uses
POCO in a ticketing and entrance control system running on an embedded Linux platform.

17.2.1.7 Integrators

The main responsibility of the integrators is to decide whether a commit to the project should be accepted
or rejected based on the code quality, and to communicate the modifications to the source code with the
contributors. The contributors of POCO must follow the Applied Informatics coding style standard and
project requirements. The main integrators are Günter Obiltschnig and Aleksandar Fabijanic. Either one or
both of them are involved in every pull request. Furthermore, the integrators are supported by a member of
TSC. In case tests from the commited change are not passed or do not meet the requirements for coding
style, the contributors are contacted and improvements are suggested.

https://en.cppreference.com/w/cpp/links/libs
https://pocoproject.org/about.html#related
https://pocoproject.org/about.html#funding
https://pocoproject.org/support.html
https://pocoproject.org/support.html
mailto:support@appinf.com
https://pocoproject.org/about.html#community
https://stackoverflow.com/questions/tagged/poco-libraries
https://github.com/pocoproject/poco
https://www.horiba.com/en_en/
https://nucor.com/
https://www.starticket.ch/de
http://www.gousios.gr/blog/How-do-project-owners-use-pull-requests-on-Github.html
https://www.appinf.com/download/CppCodingStyleGuide.pdf
https://www.appinf.com/download/CppCodingStyleGuide.pdf

17.3. CONTEXT VIEW 401

17.2.2 Stakeholder Involvement

The figure below shows a power/interest grid which illustrates the the power a stakeholder has versus
the interest it has in the success of the project. Each part of this grid can be divided into the following
prioritisation categories:

• High power, high interest: manage closely: great effort should be made to satisfy requirements of the
stakeholder, and a close relation should be maintained and managed.

• High power, low interest: keep satisfied: some effort should be made to satisfy the stakeholder. No
more attention then needed is required, as they might lose even more interest.

• Low power, high interest: keep informed: keep the stakeholder informed as they might provide
useful contribution to the project.

• Low power, low interest: monitor keep track of their activities but don’t bother them with additional
attention.

For each of the stakeholder classes, we will visualise their involvement and possible prioritisation using the
following grid:

17.3 Context View

The context view describes the relationships, dependencies and interactions between the POCO project and
it’s environment. The context view starts off by stating the boundaries of POCO and then present the context
model.

17.3.1 System scope

POCO has the following main responsibilities:

• POCO provides C++ libraries for command line/server applications, network programming, XML
and JSON processing, database access and many more features.

• POCO can be used on many platforms including desktops, embedded and cloud applications, etc.
• POCO implements core features such as: classes for dynamic typing, cache framework, etc.
• POCO implements additional features including: compression, cryptography, database access, a file

system, logging, multithreading, networking, processes and IPC, streams, text encoding, XML and
JSON parsing.

• POCO provides unified access to different databases but doesn’t implement the interface of the
databases. Instead, it relies on third party connectors.

• POCO provides support for network-based applications but doesn’t implement the Transport Layer
Security (TLS) and Secure Sockets Layer (SSL) protocols. Instead, it relies on OpenSSL.

17.3.2 Context Model

The figure below shows the context model of POCO.

The following entities can be found:

https://pocoproject.org/about.html#features
https://github.com/pocoproject/poco/wiki/SupportedPlatforms
https://pocoproject.org/about.html#features
https://pocoproject.org/about.html#features
https://pocoproject.org/about.html#features
https://pocoproject.org/download.html#dependencies
https://pocoproject.org/about.html#features
https://pocoproject.org/download.html#dependencies
https://pocoproject.org/download.html#dependencies
https://pocoproject.org/download.html

402 CHAPTER 17. POCO

Figure 17.1: power/interest grid of POCO

17.3. CONTEXT VIEW 403

Figure 17.2: Context model of POCO

404 CHAPTER 17. POCO

• External Interfaces: ODBC, SQLite, and MySQL Client provide an interface to access databases.
Redis can be used as a database, cache, or message broker. OpenSSL is a toolkit for the TLS.
Dependencies occur when specific libraries are used.

• Users : A system implemented by the users, or users them selves, are expected to provide and receive
data and services to and from POCO.

• Platform: POCO covers a wide range of platforms. Renowned platforms are listed in the image.
• Programming Language: The programming language used to write code is C++. The libraries do

support the processing of other languages such as JSON and HTML.

17.4 Pull Request Analysis

This section describes the general procedure of processing merge requests.

17.4.1 Accepted Requests

Most merge request are inspected by a (single) member of the TCP. The requestee and the TCP member
discuss, on a high level, what the implemented feature should do and how it has been implemented. The
TCP member gives a first impression of the code. Sometimes a solution has a fundamental problem, e.g. due
to the proposed structure of the library, or due to development in other branches. If they have reached
consensus, the real review takes place. The TCP member and a member of the development team take a look
at the code and review it. Once consensus has been reached between the three parties, the code is merged.

Two events that regularly are that the TCP members almost always react on the same day and sometimes
when Travis CI or AppVeyor (continuous integration services) gives an error, the branches are still merged.
Multiple reasons could cause a continuous integration failure like a segmentation fault.

17.4.2 Rejected Requests

In general, there are four reasons why a request might be rejected. The first one is the rejection of the
change proposed in the pull request. Both the requestee, and a member of the TCP will discuss the resulting
impact, both negatively and positively. However, it is a member of the TCP which makes the final decision.
The second one is the rejection of requests which add features to a frozen development. Specifically, some
features had been rejected due to the oncoming release of version 2.0.0 of the POCO project. The third one
is the rejection of pull requests which are in such a way problematic, that the current pull request is closed,
and later in time a new one with a similar proposed change is created. The latest one is the rejection of pull
requests where the change had already been fixed by another pull request. Commonly a discussion starts
due to problems caused by the proposed change. After some discussion, a participant will point out that
these problems had already been fixed in another pull request.

17.5 Development View

This section describes the architecture that supports the software development process of POCO. It’s split
into three parts. First the module organisation is described. Second, the common design model which states

https://docs.microsoft.com/en-us/sql/odbc/reference/what-is-odbc?view=sql-server-2017
https://www.sqlite.org/index.html
https://dev.mysql.com/
https://redis.io/
https://www.openssl.org/
https://pocoproject.org/download.html#dependencies
https://github.com/pocoproject/poco/wiki/SupportedPlatforms
https://github.com/pocoproject/poco/pulls?q=is%3Apr+is%3Aopen+sort%3Acomments-desc
https://github.com/pocoproject/poco/pull/1918
https://github.com/pocoproject/poco/pull/1048
https://github.com/pocoproject/poco/pull/2205
https://github.com/pocoproject/poco/pull/2120
https://travis-ci.org/
https://www.appveyor.com/
https://github.com/pocoproject/poco/pull/2320
https://github.com/pocoproject/poco/pull/16
https://github.com/pocoproject/poco/pull/16
https://github.com/pocoproject/poco/pull/647
https://github.com/pocoproject/poco/pull/2138
https://github.com/pocoproject/poco/pull/2145
https://github.com/pocoproject/poco/pull/404

17.5. DEVELOPMENT VIEW 405

the design constraints in order to maximise commonality is described. And finally, the codeline model
which defines the organisation of the source code, the building, testing, and release process of the system is
described.

17.5.1 Module Organisation

The four core libraries of POCO are: Foundation, XML, Util, and Net. Additional libraries are also
available. The libraries are made up of smaller packages and modules. The important libraries and the
dependencies are shown below.

Figure 17.3: Library organisation of POCO

The following can be deducted from the libraries:

• The Foundation library contains the underlying platform abstraction layer and frequently used utility
classes and functions. All other modules (except CppUnit) depend on the foundation library.

• The CppUnit module is a port from JUnit, a testing framework for Java. The module allows unit
testing. All modules contain tests and thus depend on this module.

• The XML library handles the reading, processing and writing of XML.
• The Util library contains a framework to create command line/server applications. It supports

command line handling and managing configuration information.
• The Net Library is used to write network based applications.

https://pocoproject.org/pro/docs/00100-GuidedTour.html
https://pocoproject.org/about.html#features
https://junit.org/junit5/

406 CHAPTER 17. POCO

• The data libraries provide the interfaces to databases. The data libraries depend on the foundation
library to provide the support of the underlaying platform.

• All other libraries implement addtional functions such as SSL support, JSON parsing and cryptogra-
phy.

There are over 60 modules inside POCO. For this reason we’ve decided further investigate the module
structure to the most important library (Foundation). The figures below shows the dependencies of the
modules in the Foundation library.

A module is represented as a node and the number shows the dependencies within the foundation library.
Internally the Logging, Core and Filesystem modules are used more frequently. The modules can’t be
layered, because the modules are too intertwined.

The bubble graph shows the modules outside of the foundation library that depend on this module. Externally
the Core module is by far the most depended on.

17.5.2 Common Design Model

The common design model defines the design constraints in order to maximise commonality. This section is
divided into three parts namely: the common processing elements the design, the standardisation of design
elements, and the common software in the system.

17.5.2.1 Common Processing

Common processing entails the software elements in a design that benefit from standardisation. The most
important standardisation in POCO are:

• POCO expects the users to define their own logging structure. The Logger class helps the user
to achieve this. The Logger class supports 8 different types of priorities including: PRIO_TRACE,
PRIO_DEBUG and PRIO_INFORMATION. A threshold value can be set such that only high level priorities
are passed on.

• The Foundation core provide most of the functionalities that the libraries require. Using the Foundation
library keeps data structures consistent over the libraries.

• Libraries have been written to access databases/memory structures (e.g. MySQL/Redis/MongoDB).
These libraries should be used to connect to databases.

• A networking library is used to access the functionalities of OpenSSL.
• A cyrptography library is available to provide secure network engineering.

17.5.2.2 Standardisation of Design

The source code should adhere to the the CppCodingStyle guide. The libraries should have as few depen-
dencies as possible between each other with the exception that the foundation library may always be used.
The foundation library provides the underlying platform abstraction layer after all.

There is no documentation that states the design patterns that are used in the POCO library, but common
design patterns such as singletons and factories have been found in the code.

https://pocoproject.org/docs/Poco.Logger.html
https://pocoproject.org/docs/Poco.Message.html#15276
https://pocoproject.org/about.html#features
https://pocoproject.org/about.html#features
https://www.appinf.com/download/CppCodingStyleGuide.pdf
https://pocoproject.org/about.html#features
https://pocoproject.org/about.html#features
https://github.com/pocoproject/poco/blob/develop/Foundation/include/Poco/MetaObject.h
https://github.com/pocoproject/poco/blob/develop/Redis/include/Poco/Redis/PoolableConnectionFactory.h

17.5. DEVELOPMENT VIEW 407

Figure 17.4: Module organisation of Foundation

408 CHAPTER 17. POCO

Figure 17.5: Module organisation of Foundation

17.5. DEVELOPMENT VIEW 409

17.5.2.3 Common software

The important libraries that contain common software in POCO are: the foundation library on which all
other libraries are built on (e.g. message logging and instrumentation), the Net library which is use to create
network based applications, and the CppUnit library which provides the framework for unit testing and the
database libraries which provide access to databases.

17.5.3 Codeline model

The codeline model defines the organisation of the source code and the protocol to build, test and release the
system. It includes the codeline organisation, the test procedure of candidate releases and the build, test, and
release procedure.

17.5.3.1 Codeline Organisation

The develop branch of the POCO library is stored according to a structure. The branch is divided into 33
folders of which 12 folders are essential. The figure below illustrates the source code structure of POCO.

Figure 17.6: Codeline organisation of POCO

Some notable things of the file structure are:

• build: This folder contains three folders, config, rules and script. The files in this folder are
used to build POCO on different platforms.

• cmake: Most of the files here are .cmake files. Besides the cmake file, two cmake.in files and one
.cpp file are present.

• contrib: This folder contains a script to make the code suitable for Doxygen.
• CppUnit: This folder contains project files for various platforms to support the unit test framework.
• doc: This folder contains basic documentation and the tutorial of POCO.

https://pocoproject.org/pro/docs/00200-GettingStarted.html
http://www.doxygen.nl/

410 CHAPTER 17. POCO

• Foundation, JSON, Net, Util, and XML: These library folders contain make/build files, the header
and source files for both the implementation and test suite in separate folders. Each library is also
required to supply at least one example code.

17.5.3.2 Standardisation of Testing

After implementation of a feature, the code must be tested by the user. The contribution file states that
contributors are required to write tests. The tests must pass, however the coverage of the tests is not defined.

The contributor is then supposed to test the implementation on a major platform (Linux, Windows, and
Mac). The document does not define what testing means. The POCO library contains example codes
that demonstrate the library and it’s function. We assume that at minimum, testing implies the successful
execution of these example codes. If there’s no relevant example code available, an example code must be
written.

In addition to manual testing, POCO also makes use of continuous integration services (Travis CI and
AppVeyor). In general all checks must be passed.

17.5.3.3 Release Process

The POCO project, started by Günter Obiltschnig, was first released in February 2005. Aleksandar Fabijanic
later joined the team as a contributor. The releases of Poco is numbered by the semantic versioning. Since
its first release, more than 50 versions have been released. The timeline of the main release version is shown
below.

Figure 17.7: Timeline of the main releases POCO

The release process is based on the git branching model. A feature branch is branched off from the develop
branch that contains the latest changes for the next release and will be merged back into the same branch
once the new features are essential. Coordination and developments between different branches is tracked
by the TSC. When the develop branch is near the desired state, all the features for the upcoming release
are merged into the develop branch. A new release branch named by version number is branched off. This
release branch is created from said develop branch. This branch exists for a long time during which the bugs
can be resolved. The release branch finally will be merged into master branch when the release branch is
deemed stable.

https://github.com/pocoproject/poco/blob/develop/CONTRIBUTING.md
https://github.com/pocoproject/poco/pull/664
https://github.com/pocoproject/poco/pull/664
https://travis-ci.org/
https://www.appveyor.com/
https://pocoproject.org/about.html
https://nvie.com/posts/a-successful-git-branching-model/

17.6. FUNCTIONAL VIEW 411

17.6 Functional View

This section describes the functional viewpoint. The functional view describes POCO’s runtime functional
elements and their responsibilities, interfaces, and primary interactions.

POCO provides multiple functionalities. To keep the functional view coherent, we will on only focus on the
networking functionality. We will discuss the capabilities of the POCO, the external interfaces, and internal
structure in that order. At last, we will present the structure model combining all what we identified in one
figure.

17.6.1 Capabilities

Functional capabilities define what the project is required to do, and what is not required to do.

At the lowest level, the Net library contains socket objects, supporting TCP streams, server sockets, UDP
sockets, multicast sockets, Internet Control Message Protocol, and raw sockets. Based on the socket objects,
POCO provides building two TCP server frameworks, one as multi-threaded servers, and one for servers
based on the Acceptor-Reactor pattern. The multi-threaded class and its supporting framework are the
foundation for POCO’s HTTP server implementation.

From a client side of view, the Net library provides objects for talking to HTTP servers, sending and
receiving files, sending mail messages and receiving mails. The list below summarises some of the key
objects of the Net library, in order to provide the described functionalities.

• POCO_Socket provides all comparison operators
• POCO_DatagramSocket provides an interface to UDP stream
• POCO_StreamSocket provides an interface to a TCP stream
• POCO_ServerSocket create a server socket, and provides an TCP socket interface
• POCO_TCPServer provides a multi-threaded TCP server that uses a server socket to listen for incoming

connections
• POCO_TCPServerConection provides an abstract base class for TCP server connections
• POCO_UDPServerprovides asynchronously polling of data which arrival is delegated
• POCO_UDPClient provides the functions to either send or receive UDP packets
• POCO_HTTPServer a sub object of TCPServer that provides a full-featured multi-threaded HTTP

server
• POCO_SMTPClientSession provides a SMTP client for sending e-mail messages.

17.6.2 Design philosophy

The philosophy behind the creation of POCO can be captured by a quote from the main implementer of
C++, Bjarne Stroustrup:

Without a good library, most interesting tasks are hard to do in C++; but given a good library,
almost any task can be made easy.

POCO is an open source, cross platform software project written in ANSI/ISO standard C++ and based on
C++ Standard Library. As a collection of C++ class libraries, POCO tries to be conceptually similar to the
Java Class Library, the .Net Framework or Apple’s Cocoa.

https://pdfs.semanticscholar.org/3ae4/4bf845b97a175876c1b7bb5774967b23aba8.pdf
http://www.stroustrup.com/
https://pocoproject.org/slides/000-IntroAndOverview.pdf
https://pocoproject.org/slides/000-IntroAndOverview.pdf
https://docs.oracle.com/javase/8/docs/api/allclasses-frame.html
https://dotnet.microsoft.com/download/dotnet-framework/net472
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_Overview/CocoaApplicationLayer/CocoaApplicationLayer.html

412 CHAPTER 17. POCO

17.6.3 External Interfaces

External interfaces are the date, event, and control flows between the function and others. POCO provides
high and low level communication protocols. The purpose of the protocols is to establish a communication
between the “Internet” and the internal procedures of a system. The external interfaces POCO provides can
be identified as HTTP(S), SMTP, (S)FTP, TCP, and UDP. Additionally, POCO provides two more external
interfaces: ICMP, and raw sockets which is named RAW. ### Internal Structure

To meet the requirement, a project can be design in a number of different ways. We will discuss the main
element and their responsibilities at this section. Interfaces can be observed on a lower level by looking at
the programming language, however, to not confuse with the external interfaces, we wont use this term here.
Instead, those relations will be combined with the other connections between the elements.

The internal elements in POCO could be identified as Web, Mail and File transfer. The Web support two
types of connections for server and client sessions, where both can use the HTTP(s),TCP or UDP protocols.
The Mail service provides a client to communicate with mail servers using the SMTP protocol. The File
transfer service provides a client using the (s)FTP protocol. The Socket element is used to establish
the communication with all other sockets in order to set and get various socket options such as timeouts,
buffer sizes, and reuse address flags. In case the developed application needs secure communication with
the external interfaces, they could make use of OpenSSL in order to encrypt the channel.

17.6.4 Structure Model

From what we have identified, we now can represent everything in a model, displaying the external interfaces
and internal structure. There are many ways to create such a model, like by using a UML. We instead favour
a box-and-lines diagram. Such a diagram doesn’t require extensive knowledge of the UML notations, and
doesn’t restrict use to showcase information which might by hard or impossible to show in a UML.

Here all our elements, interfaces and connections can be found in one figure. Between each element, there is
a connection. We used the arrows to showcase the data flow. As can be expected for all cased this goes both
ways. The interfaces are show in orange, and the layer between the internal structure and the Internet has
been shown by the dotted orange boundary. Note that here the client and servers are encapsulated by the
protocols we recognised as interfaces. To distinguish the security part, it has been coloured grey for both the
borders of the element boxes, and the connections.

17.7 Technical Debt

This section discusses the technical debt found in POCO. First the technical debt is identified. This section is
followed by the historical view of the project, which describes the evolution of the project and the historical
debt analysis over a period of one year. Next we will analyse the testing debt by describing the code coverage.
Then we move on to a description of the impact from the identified technical debt, testing debt, and the
historical view analysis. Finally, possible solutions will be described to reduce the technical debt of POCO.

17.7. TECHNICAL DEBT 413

Figure 17.8: The functional view structure model

17.7.1 Identification

To assess the technical debt of POCO we used SonarCloud. SonarCloud is a tool that analyses the technical
debt by detecting code smells. Detected smells are displayed below as the time it will take to resolve them.

Most of the code smells in the graph require approximately one day and thirteen hours to be resolved. The
majority of the files contain few to non code smells. However, some outlier files can be noticed quite easily.

The file with the most smells turned out to be NamedTuple.h. This file implements tuples for a ranged size
of 20 elements. Each size of the tuple has its own distinct, yet similar implementations. We found that 69%
of the definitions are duplicates. The number of duplicated blocks is 7804 (14.1% of total blocks).

Another outlier contains a lot of code lines, while containing relatively few code smells. This file is the
SQLite3 source file. After looking at the commit history and the source file itself, we found out that
the source code had been integrated from the SQLite distribution. To ease the integration, this file is a
concatenation of all source files.

According to SonarCloud, POCO has a very low number of bugs and vulnerabilities. Many of the bugs are
detected in JavaScript implementations.

SonarCloud will give a project a rating based on the SQALE. With a technical debt ratio of 0.4 %, POCO
has been rated with an A.

https://sonarcloud.io/about
https://github.com/pocoproject/poco/blob/develop/Foundation/include/Poco/NamedTuple.h
https://github.com/pocoproject/poco/blob/develop/SQL/SQLite/src/sqlite3.c
https://github.com/pocoproject/poco/commits/7726d024ab98a35267dae17defca29d29e477039/Data/SQLite/src/sqlite3.h
https://www.sqlite.org/download.html
http://www.sqale.org/details

414 CHAPTER 17. POCO

Figure 17.9: Maintainability overview of POCO

Figure 17.10: Bugs overview of POCO

17.7. TECHNICAL DEBT 415

17.7.2 Historical debt

Since the beginning of the project, the main functionalities of the Net and SQL modules were included with
approximately 200 thousand additions. This trend remains almost the same for the earlier releases of the
software until version 1.4.4 was released in July 2012. For this version major changes were made in the Net
and Foundation libraries. The number of additions included in this change are more than 800 thousand,
resolving a number of issues related to IPv6 and securing sockets for data streaming. The change also
added new functionalities and improvements in the SQL module. Moreover, a release happened in 2018 with
approximately 250 thousand additions adding feature improvements for the PosgreSQL and cmake modules.

The graph below represents the evolution of the POCO project in terms of code additions and removal for
the whole life cycle of the project:

Figure 17.11: Evolution of POCO

Another method to analyse the historical debt is by checking the code for certain keywords which could
indicate a potential failure that need to be resolved, or a part that needs to be extended. The TODO keyword
is used to indicate that a part of the code is incomplete and needs to be extended, while the FIXME keyword
is used to indicate that a failure is discovered and needs to be resolved.

Between 2018 and 2019, the number of those two comments for the master branch remains almost the same.
The POCO project version 1.9.0 release contains 97 comments marked as TODO, and 17 marked as FIXME.
However, almost all FIXME comments are located in the testsuite modules. Moreover, many of those

https://github.com/pocoproject/poco/releases/tag/poco-1.9.0-release

416 CHAPTER 17. POCO

comments are identified in the SQLite core file namely sqlite3.c. An example of a FIXME comment can
be seen in Appendix D.

As a conclusion of the historical debt, the software continues to change with requests for fixes and enhance-
ments and takes increasingly more time for contributors which impact the changeability and sensibility of
the project.

17.7.3 Testing debt

The POCO project uses unit testing and Continuous Integration (CI) to maintain the project. Travic CI is
used to build the project using multiple compilers, while AppVeyor is used to run the unit tests for different
platforms. To maintain the code style and other practices applied in the project, POCO uses CII Best
Practices to determine if they meet the criteria.

Although the POCO project does make use of unit testing and CI, there are no guidelines considering writing
tests, and thus to prevent testing debt. In many cases, CI checks are bypassed by one of the assessors, and a
pull request is merged even if some CI checks don’t succeed.

The POCO project uses the CppUnit unit testing framework module to write down its tests. Although the
POCO project uses unit testing to maintain the project, it doesn’t make use of source code coverage analysis.
However, by making some alterations during the compilation of the source code, the coverage information
can be retrieved and the analysis can be performed. The source code coverage can be retrieved by using the
Gcov tool.

We used Gcov to perform our own code coverage analysis. In total, only 52% is covered by unit tests. At
Appendix C, the code coverage has been stated for each module.

The modules in the POCO project aren’t equally treated; some modules have higher code coverage than
other modules. Whether a module is well tested is debatable, however, we consider 70-80% to be the
minimum acceptable code coverage. Looking at the code coverage per module, only four of the POCO
project modules meet this criteria: Foundation, JSON, Util, and Zip. With 39973, 10243, and 10115 lines
of code respectively, the SQLite , ODBC, and Net modules are remarkably poorly tested with code coverage
of 3.26%, 37.28%, and 3.31%. Those three modules contribute 70% to the total lines of code.

17.7.4 Impact

The number of detected code smells from SonarCloud, as mentioned in the Identification section, don’t
necessarily indicate a malfunctioning build. Some code smells found by SonarCloud are related to duplicated
blocks in the core libraries of POCO. The Foundation library has a total of 1732 duplicated blocks. Most of
them are related to the tuple header file. Duplicated blocks have a negative effect on the code maintainability
and safety by allowing a possible vulnerability to continue to exist in the copied code, while the developer is
not aware of the copy.

From a historical point of view, the changes over the years have resulted in the decrease of reliability of the
POCO project. For instance, a problem had been found five months after the release of version 1.4.4, and
currently at the moment of writing, there are still open issues related to this change.

Overall, POCO was becoming more and more diverse by introducing new features to the libraries. This
resulted in the increase of the number of duplication blocks in the code, making it more complex to maintain.

https://github.com/pocoproject/poco/issues/776
https://travis-ci.org/pocoproject/poco
https://ci.appveyor.com/project/obiltschnig/poco/branch/develop
https://www.construction-institute.org/resources/knowledgebase/best-practices
https://www.construction-institute.org/resources/knowledgebase/best-practices
https://github.com/pocoproject/poco/pull/2640#partial-pull-merging
http://cppunit.sourceforge.net/doc/cvs/cppunit_cookbook.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-Intro
https://www.bullseye.com/minimum.html
https://github.com/pocoproject/poco/blob/poco-1.9.1/Foundation/include/Poco/NamedTuple.h
https://dl.acm.org/citation.cfm?id=2915653
https://github.com/pocoproject/poco/issues/6
https://github.com/pocoproject/poco/issues/2285

17.8. CONCLUSION 417

In addition, we noticed a lack of documentation after the release of version 1.7.8, which will impacts the
project negatively for future modifications.

Whether the low code coverage is an issue depends on the effect of a failure. Multiple formal standards
express the required minimal acceptable code coverage as a function of the critical level. POCO only
provides libraries to other developers, and thus, the critical level depends on the usage of the POCO project.
POCO could however increase their code coverage to lure in developers which need their features for high
critical systems.

From the identified code smells by SonarCloud, the historical debt, and the code coverage, it appears that
POCO only takes minimal effort to reduce the technical debt.

17.7.5 Solutions

The files with a lot of code lines are from external sources (e.g. prettify.js and sqlite3.c). Being
external files explains why the test code coverage is extremely low. Developers of POCO assume that the
external code is well tested. These external files are the result of concatenating multiple source files. As
newer versions are released regularly, discarding the useless code every release is not viable. With regards
to technical debt, we argue not to alter the external files. Instead, the technical debt should be explicitly
documented. These files could also be stored in special locations. Currently the files are mixed with other
source files. These strategies will not lower the technical debt, but will prevent raising false concerns.

Considering the files that contain a lot of duplicated blocks (e.g. NamedTuple.h and Tuple.h), re-evaluation
the implementation seems to be the proper way to tackle this issue. Considering each size of a tuple has
its own constructor, but share the same functions. Inheritance could be the key to reduce the number of
duplicated blocks. Refactoring the implementation of the tuple all together might also be a solution as the
current implementation can’t extend the tuple beyond 20 items without altering code.

17.8 Conclusion

This report has described several aspects as described in Rozanski and Woods, centered around the POCO
project. The aspects of POCO were divided into six sections. The first section described the stakeholders
of POCO and their respective stake in the project. The stakeholder’s interest and power were illustrated
in a power/interest grid. The second section described the context view. The context view investigated
the relationships, dependencies and interactions between POCO and it’s environment. The context view
was illustrated via a context model. This chapter also stated the important requirements and boundaries of
POCO. The third section described the results of a small pull request analysis. 10 accepted and 10 rejected
pull requests were analysed. Communication patterns that regularly occured were discussed in this chapter.
The fourth section described the development view. The development view investigated the architecture
that supports the development of POCO. It investigated the module structure of POCO and particullarly
the dependencies of the modules in the Foundation Library. This chapter also presented a common design
model which described the design constraints in order to maximise commonality and a codeline model of
POCO which described the organisation of the source code and the protocol to build, test and release the
system. The fifth section described the functional view. This chapter defined the architectural elements
that give POCO it’s functionality. Due to the large size of the library, this chapter mainly focussed on the
NET library which is used to write network based applications. The last section described the technical debt

https://github.com/pocoproject/poco/tree/develop/doc
https://www.bullseye.com/minimum.html
https://github.com/google/code-prettify
https://www.sqlite.org/amalgamation.html
https://github.com/pocoproject/poco/blob/develop/Foundation/include/Poco/NamedTuple.h
https://github.com/pocoproject/poco/blob/develop/Foundation/include/Poco/Tuple.h
https://www.viewpoints-and-perspectives.info/
https://pocoproject.org/
https://pocoproject.org/

418 CHAPTER 17. POCO

of POCO. Various methods have been used to determine the technical debt, the technical debt had been
analysed and the methodology of technical debt supression in POCO had been investigated.

17.9 Appendices

17.9.1 Appendix A - The Developer Stakeholders

Contribution based on commit requests:

Place Name Commits

1 Aleksandar Fabijanic 1257
2 Günter Obiltschnig 1125
3 Francis Andre 720
4 Franky Braem 183
5 Pascal Bach 58

Contribution based on code distribution:

Place Name Insertions Deletions

1 Aleksandar Fabijanic 2,681,625 2,768,735
2 Günter Obiltschnig 2,060,168 1,162,428
3 Francis Andre 62,394 48,386
4 Daniel Rosser 34,023 8,001
5 Eran Hammer 26,468 102

Contribution based on pull requests:

Place Name Pull Requests

1 Francis Andre 187
2 Aleksandar Fabijanic 32
3 Günter Obiltschnig 15
4 Roger Meier 11
5 Daniel Rosser 10

17.9.2 Appendix B - The Tester Stakeholders

Contribution based on code distribution to the unit test folder:

Place Name Insertions Deletions

1 Aleksandar Fabijanic 34832 19923

https://github.com/aleks-f
https://github.com/obiltschnig
https://github.com/zosrothko
https://github.com/braem
https://github.com/bachp
https://github.com/aleks-f
https://github.com/obiltschnig
https://github.com/zosrothko
https://github.com/danoli3
https://github.com/hueniverse
https://github.com/zosrothko
https://github.com/aleks-f
https://github.com/obiltschnig
https://github.com/bufferoverflow
https://github.com/danoli3
https://github.com/aleks-f

17.9. APPENDICES 419

Place Name Insertions Deletions

2 Günter Obiltschnig 19515 7965
3 Marian Osborne 2948 1011
4 Francis Andre 2169 2122
5 Eran Hammer 1034 0

17.9.3 Appendix C - The Code Line Coverage

Code line coverage found by Gcov:

Module Lines Covered Total Lines Percentage

Crypto 1912 2870 66.62%
Encodings 171 307 55.70%
Foundation 48717 63348 76.90%
JSON 2519 3218 78.28%
Net 335 10115 3.31%
NetSSL/OpenSSL 171 3556 4.81%
Redis 580 2141 27.09%
MySQL 199 3261 6.10%
ODBC 334 10243 3.26%
PostGreSQL 139 3782 3.68%
SQLite 14903 39973 37.28%
SQL 4409 6608 66.72%
Util 3867 4659 83.00%
XML 6735 10938 61.57%
Zip 1834 2180 84.13%

17.9.4 Appendix D - FIXME

An example of a FIXME comment.

if(p){
pFd->nFetchOut--;

}else{
/* FIXME: If Windows truly always prevents truncating or deleting a
** file while a mapping is held, then the following winUnmapfile() call
** is unnecessary can be omitted - potentially improving
** performance. */
winUnmapfile(pFd);

}

As can be understand from the FIXME comment, the function call to winUnmapfile depends on a third party
vendor and omitting it could increase the performance.

https://github.com/obiltschnig
https://github.com/martin-osborne
https://github.com/zosrothko
https://github.com/hueniverse

420 CHAPTER 17. POCO

Chapter 18

Polymer

Max de Krieger, David van der Leij, Sharon Grundmann, and Thomas Kolenbrander

18.1 Table of Contents

• Introduction
• Stakeholders
• Context View
• Development View
• Technical Debt
• Variability Management
• Conclusion

18.2 Introduction

Created by Google Inc. in 2015, Polymer is an open-source JavaScript library for building web applications.
Through the use of web features like web components, HTTP/2 and service workers, Polymer allows its
users to build modern web applications with minimal overhead and maximal performance. In addition to
this, the team is dedicated to advocating for emerging standards to improve web development.

In this chapter, we analyze the architecture of Polymer according to concepts presented by Nick Rozanski and
Eoin Woods 1. We begin by analyzing Polymer’s stakeholders. We identify major stakeholders associated
with the project and their influence on decision-making processes and eventual success of Polymer. From
there, we present two architectural views introduced by Rozanksi and Woods. The context view describes
relationships, dependencies, and interactions between Polymer and its environment while the development
view addresses aspects related to the system development process. Additionally, we analyze the technical
debt of Polymer and discuss how variability is managed.

1Nick Rozanski and Eoin Woods. 2011. Software systems architecture: Working with stakeholders using viewpoints and
perspectives. Addison-Wesley.

421

422 CHAPTER 18. POLYMER

18.3 Stakeholder Analysis

We present the stakeholders of the Polymer project according to the stakeholder classes defined by Rozanski
and Woods 2. In addition, we identify other stakeholder classes that are relevant to this project.

18.3.1 Acquirer

The acquirer of Polymer is Google as they oversee the project with their team.

18.3.2 Assessors

Besides being the acquirer, Google can also be seen as the assessor of the project. Legal complications of
the project are covered by a Contributor License Agreement (CLA) stating that contributors do not own any
of the code they provided. Furthermore, the Polymer team also decides what standards to support, as stated
in a blog post 3.

18.3.3 Communicators

The communicators consist of both the Polymer team and the Github contributors. External communication
like contact with other stakeholders and marketing is done by the Polymer team while internal communication
such as code reviews and documentation is done by both the Polymer team and Github contributors.

18.3.4 Developers

Polymer is developed by the Polymer team and Github contributors from the open-source community.

18.3.5 Maintainers

All developers can be considered maintainers as well. However, the Github contributors do not have any
say in the future of Polymer as decisions like releases and roadmaps are made by the Polymer team. The
members of the Google Polymer team that integrate new content (merge or close pull requests) are Steve
Orvell (lead engineer, project coordinator) 4, Kevin Schaaf (lead engineer, project coordinator) 5, and Daniel
Freedman 6.

2Nick Rozanski and Eoin Woods. 2011. Software systems architecture: Working with stakeholders using viewpoints and
perspectives. Addison-Wesley.

3Gray Norton. 2018. Roadmap update, part 1: 3.0 and beyond updates on the polymer 3.0 release and what comes next. Retrieved
February 28, 2019 from https://www.polymer- project.org/blog/2018-05-02-roadmap-update

4GitHub. Sorvell (steve orvell). Retrieved February 28, 2019 from https://github.com/sorvell
5GitHub. Kevinpschaaf (kevin schaaf). Retrieved February 28, 2019 from https://github.com/k evinpschaaf
6GitHub. Azakus (daniel freedman). Retrieved February 28, 2019 from https://github.com/aza kus

https://github.com/sorvell
https://github.com/sorvell
https://github.com/kevinpschaaf
https://github.com/azakus
https://github.com/azakus

18.3. STAKEHOLDER ANALYSIS 423

18.3.6 Suppliers

As a development and communication platform, Polymer makes use of Github. For distribution, the project
relies on the npm package manager 7. As the Polymer core team is paid and maintained by Google, Google
can be seen as a supplier of the project as well.

18.3.7 Support staff

The actual staff consists of the Polymer core team and Github contributors. Communication channels
between developers and users are available on Github, Twitter, Slack and Google Groups.

18.3.8 Testers

As all code committed should be tested, the developers (the Polymer team and Github contributors) are
testers in the classical sense: They write tests for their code. Besides the developers, the users (mentioned
below) can be seen as testers as well. They have the ability to report bugs on the Github page of Polymer.

18.3.9 Users

Polymer is used in many applications world-wide and in many of Google’s products as well. This includes
YouTube, Google Earth and Google Music. Besides Google, other notable users are: Netflix, ING, Coca-
Cola, McDonald’s and IBM 8.

18.3.10 Regulatory structures

The World Wide Web Consortium (W3C) is a regulatory stakeholder of the Polymer project. As the Polymer
project directly involves creating and using web components, it is necessary that the team adheres to the
web development standards maintained by W3C.

18.3.11 Competitors

Another group of stakeholders are competitors. Although they are not directly involved with the project and
its management, they have an interest in it and can indirectly influence the design of products and success of
the project as a whole. Some competitors of the Polymer Project include Angular 9, Vue.js 10 and React 11.

7Npm. npm. Retrieved April 14, 2019 from https://www.npmjs.com/
8Tim van der Lippe. 2018. Who’s using polymer? Retrieved February 28, 2019 from https://www.polymer-project.org/blog/2018-

05-02-roadmap-update
9Angular. Angular. Retrieved February 28, 2019 from https://angular.io/

10Evan You. Vue.js. Retrieved February 28, 2019 from https://vuejs.org/
11Facebook Inc. React – a javascript library for building user interfaces. Retrieved February 28, 2019 from https://reactjs.org/

https://netflix.com/
https://www.ing.com
https://www.coca-cola.com/
https://www.coca-cola.com/
https://www.mcdonalds.com/
https://www.ibm.com
https://angular.io/
https://vuejs.org/
https://reactjs.org/

424 CHAPTER 18. POLYMER

18.3.12 Stakeholder influence

Using a power/interest grid, we categorize the stakeholders based on their influence and interest in Polymer
as can be seen in the figure below. In the first place, Google and members of the Polymer core team have
to be managed closely because they have the greatest influence on the success of the system in terms of
funding and development. The next group with high power but low interest is the group of assessors at
Google who ensure that the system conforms to standards and legal regulations. Aside from these groups,
it is important to keep the contributors of the system including the GitHub community and other Polymer
employees and users informed. Although these groups are highly interested in Polymer, they do not have
much power. Lastly, the competitors of Polymer only have to be monitored since they have the least interest
and influence on the system.

Figure 18.1: Diagram showing power and interests of stakeholders

18.4. CONTEXT VIEW 425

18.3.13 Decision making process

Using the most commented pull requests from the Polymer project, insight might be gained regarding the
decision making process of the Polymer team. Unfortunately, there is not much discussion about the impact
of pull requests in the comments. Most of the comments are technical questions or clarifications. This could
be due to the fact that most of the pull requests are created by Google employees, who are most likely on the
same page with respect to the short and long term goals of the Polymer project. The code is extensively
reviewed by one or more Google employees and discussed with the creator of the pull request. The most
prevalent reason for the rejection of a pull request is that it is not tested well enough. Further analyses of
popular pull requests are presented in the appendix.

18.4 Context View

In the context view, we consider the system as a black box while describing its main functionalities and
relations with its external environment.

18.4.1 Key functional requirements

In order to identify the key functional requirements we first examine the feature overview 12. The main
features of Polymer identified include:

• Custom elements that function like DOM elements
• Elements consisting of ECMAScript modules with classes
• Elements have an encapsulated DOM that is populated by Polymer
• Declarative syntax to attach listeners to elements children, with gesture support
• Data binding of properties and attributes with observers and computed properties

The underlying goal of these requirements is to “help developers unlock the web’s full potential” 13.

18.4.2 External entities

We have identified the following external entities:

• Developers - The Polymer library is developed by a core team at Google and contributors from the
open source community on Github.

• Users - Polymer is used by a large number of companies including well-known companies like:
Netflix, ING, Coca-Cola, McDonald’s and IBM. Besides these companies Polymer is also used by its
main developer, Google, and can be found in various products created by Google.

• Runs in - Polymer is used to create web applications and thus requires a browser to work. Thus,
Polymer is dependent on the features that certain browsers support.

• Competitors - Competitors of Polymer include other Javascript libraries focused on web applications.
At the time of writing, popular alternatives to Polymer are Vue.js, AngularJS and React.

12The Polymer Project Authors. 2018. Polymer library - polymer project. Retrieved February 28, 2019 from https://polymer-
library.polymer-project.org/3.0/docs/devguide/feature-overview

13Polymer. Polymer project. Retrieved April 12, 2019 from https://www.polymer-project.org/

https://polymer-library.polymer-project.org/3.0/docs/devguide/feature-overview

426 CHAPTER 18. POLYMER

• Development tools - Polymer is developed in JavaScript and is distributed through the npm package
manager. Github is used to support the development of Polymer. The included testing framework
runs on Node.js and includes several JavaScript frameworks. The JavaScript frameworks included in
the testing environment are: Mocha, Chai, Async, Lodash and Sinon 14. For continuous integration
purposes Travis CI is used.

• Communication - The official communication channels for Polymer are their website, Github, Twitter,
Slack and Google Groups.

• License - The Polymer library is available under the BSD license.

18.4.3 External interfaces

Because Polymer is a development library, the external entities that use it as a development library do not
request data from it but interact with it as a tool rather than a provider. Therefore the external entities only
interface with Polymer through development tools which can be summarized as follows:

• Polymer components
• Web component tester
• Polymer CLI (command line interface)

The Polymer components let developers create web components and are therefore the main interface of the
project.

The web component tester is a tool that allows developers to test these components using scripts in an
automated way. This tool, in turn, interfaces with the previously mentioned test frameworks. Since these
frameworks are included within the testing tool, Polymer does not depend on updates of these frameworks
being compatible.

Lastly, the polymer CLI allows developers to execute a myriad of project structure tasks such as running
a local web server, creating a project with the correct structure and creating Polymer components from
templates.

For Polymer to work properly, developers need to make Polymer interface with npm to retrieve the required
packages. Next to this, the framework itself is also hosted on the npm repository. This interaction is done
via the HTTP protocol.

Although the volume of requests for this interaction is relatively small (only for package updates and setting
up the project), it can pose a problem for external entities that use Polymer if the service is down for an
extended amount of time. The service level of npm however seems to be near a 100% uptime 15.

18.4.4 Context view diagram

The context view diagram in the figure above gives an overview of the different entities involved in Polymer
and their relationships. Polymer runs in different browsers, which all have the ability to support or exclude
certain standards. The developers of Polymer have take into account these decisions. The development

14Polymer. Tools/packages/web-component-tester at master polymer/tools. Retrieved February 28, 2019 from
https://github.com/Polymer/tools/tree/master/packages/web-component-tester

15Npm http service uptime – service uptime in the past 90 days. Retrieved February 28, 2019 from http://ping.npmjs.com/

http://mochajs.org/
http://chaijs.com/
https://github.com/caolan/async
https://lodash.com/
http://sinonjs.org/
http://ping.npmjs.com/

18.4. CONTEXT VIEW 427

Figure 18.2: The context view for Polymer, showing the entities and their relationships

428 CHAPTER 18. POLYMER

process is supported by several tools/platforms such as npm and Travis CI. Developers and users of Polymer
are able to communicate with each other through several platforms including Github, Twitter and Slack.

In general, the diagram shows that Google is one of the most involved parties, as they can be found in five
different groups: Users, Developers, Web browsers (Google Chrome), Communication (Google Groups)
and even Competitors (Angular).

18.5 Development view

The development view describes the architecture that supports the software development process. In the
paragraphs below, the codeline model, source code structure, code modules, code dependencies and the
common design model are analyzed.

18.5.1 Codeline model

The codeline model is in place to guide the development process. It explains how the code is controlled,
how it should be maintained and the automated tools used to deploy the software.

18.5.1.1 Build and Test Approach

All Polymer projects make use of Polymer CLI 16, a command-line tool for the installation, testing and
building of Polymer projects and Web Components. There is no configuration required to use Polymer
CLI which makes creating a Polymer project rather easy. The tests are run using the so-called web-
component-tester (WCT) 17, which is a browser-based testing environment created by the Polymer team.
This environment also supports SauceLabs 18 which allows for multi-platform cloud-based testing.

18.5.1.2 Release Process

Releases are done via the Github releases 19 and tags 20 sections. In this section, Polymer is released for
both the 2.x and 3.x versions of the library. Every release lists the new features, meaningful changes and a
raw list of all commits in this release. The release itself contains a tar and zip archive with the source code.
To our knowledge there seems to be no documentation on what constitutes a release candidate and it seems
a release is pushed when a significant amount of commits are made since the last release and the continuous
integration does not raise an error.

16Polymer. Tools/packages/cli at master - polymer/tools. Retrieved March 21, 2019 from
https://github.com/Polymer/tools/tree/master/packages/cli

17Polymer. Tools/packages/web-component-tester at master polymer/tools. Retrieved February 28, 2019 from
https://github.com/Polymer/tools/tree/master/packages/web-component-tester

18SauceLabs. Cross browser testing. Retrieved March 21, 2019 from https://saucelabs.com/
19Polymer. Releases - polymer/polymer. Retrieved March 21, 2019 from https://github.com/Pol ymer/polymer/releases
20Polymer. Tags - polymer/polymer. Retrieved March 21, 2019 from https://github.com/Polym er/polymer/tags

https://github.com/Polymer/tools/tree/master/packages/cli
https://github.com/Polymer/tools/tree/master/packages/web-component-tester
https://github.com/Polymer/tools/tree/master/packages/web-component-tester
https://saucelabs.com/
https://github.com/Polymer/polymer/releases
https://github.com/Polymer/polymer/tags

18.5. DEVELOPMENT VIEW 429

18.5.1.3 Continuous integration

After every commit the continuous integration tool TravisCI 21 is invoked. This utility executes a build script
22 which performs the following tasks:

1. Specifies variables such as the Linux distribution and NodeJS version
2. Installs and builds the project and dependencies using Gulp
3. Runs the ES linter on the codebase
4. Runs all tests on both Google Chrome and Mozilla Firefox

18.5.1.4 Version control

As mentioned previously in this chapter, the codebase of Polymer can be found on GitHub. The project uses
Git for version control. This means that the repository has to be forked by the contributors including Polymer
developers before they can make changes. Pull requests are thoroughly reviewed by the core Polymer team
before they are accepted and merged or disregarded. These changes must comply to the standard design
approaches.

18.5.2 Source code structure

In the figure below, a hierarchical view is shown of the file structure of the polymer project. It can be seen
that the project is divided into three parts namely the actual library which is contained in lib, the testing part
which is contained in the test folder and the root of the project where most configuration files are located.
These configuration files specify dependencies or the continuous integration files for example. What is
especially interesting is the size of the testing files in comparison with the actual framework itself. We can
see that this part is about two to three times the size of the actual framework. This shows that the Polymer
has a comprehensive test suite high on the list of priorities.

18.5.2.1 Lib

As seen in the figure below the actual framework itself is divided into 4 elements. These are the elements,
utils, mixins and legacy folders. The utils folder contains utility classes such as async and array operations.
The mixins folder contains a couple of base mixins. A mixin is a function that takes a class and returns
a subclass. The legacy folder contains files that are necessary to stay compatible with older versions of
Polymer. Lastly, the elements folder contains some base elements that allow users to easily use standard
patterns and not have to redefine these patterns.

18.5.2.2 Testing

In the figure below the testing file structure is shown. It can be seen that the majority of the tests consist of
unit tests. There are a small amount of performance tests. Lastly there are some smoke tests as well which
run certain functionality in browser and check if the expected result is achieved.

21Travis CI. Travis ci - test and deploy your code with confidence. Retrieved March 21, 2019 from https://travis-ci.org/
22Polymer. Polymer/.travis.yml at master - polymer/polymer. Retrieved March 21, 2019 from

https://github.com/Polymer/polymer/blob/master/.travis.yml

https://travis-ci.org/
https://github.com/Polymer/polymer/blob/master/.travis.yml

430 CHAPTER 18. POLYMER

Figure 18.3: Source code file structure. The white circles are files. The names of the corresponding folders
is displayed

Figure 18.4: Library file structure

18.5. DEVELOPMENT VIEW 431

Figure 18.5: Testing file structure

18.5.3 Code modules and dependencies

A visualization of the source code modules can be found in the figure below. The source of the core Polymer
API is transparent in the sense that every class in the project is something that contains a functionality to the
Polymer users. This makes explaining the code modules straight forward, meaning that what you see in the
source is what you get as a user.

Next to the main functionality the Polymer project offers, there are three additional folders with source
code for different goals. The source code located in the Externs module contains only variable and function
declarations. This is necessary when using the project in combination with the Google Closure Compiler 23.
The source code in the Util folder is very minimal and meant for assisting the developers of Polymer (with
tools such as a changelog-generator, etc.) and the Test folder is, as expected, full of tests that ensure the
quality of the Polymer project.

The features polymer offers are divided in four modules: elements, mixins, utils and legacy. The source
code contained in elements could be classified as a code module that serves the purpose of providing the
Polymer user with pre-defined HTML elements. All HTML elements are based on the polymer-element.js
file in the root of the directory, the polymer-element.js is therefore a dependency. Other dependencies of this
module are mixins and utils.

Mixins is a second module that provides Polymer users with classes that offer Polymer meta-programming
features. Alternatively, mixins can be seen as interfaces that already have an implementation. This module
depends on the element and utils modules.

The third module, utils is, as the name suggests, a collection of functions that provide utilities needed for
many web component development tasks. This module is largely independent but contains a file that imports

23Google. Closure compiler | google developers. Retrieved March 20, 2019 from https://develope rs.google.com/closure/compiler

https://developers.google.com/closure/compiler

432 CHAPTER 18. POLYMER

Figure 18.6: The code modules for Polymer

18.5. DEVELOPMENT VIEW 433

functionality from the elements module.

Lastly, the legacy module provides the utilities to be compatible with older versions of Polymer. These can
be used while migrating web components to a newer version of Polymer for example. This module depends
on the other modules mixins and utils.

18.5.4 Common Design Model

The common design model describes the standardization approach used by developers to ensure commonality
across element implementations. This includes identifying the common processing required across elements,
standard design approaches and standard software components used by Polymer. In order to construct
an accurate model, we analyzed the Polymer GitHub repository and online documentation. Additionally,
we consulted an open source contributor and later intern of Polymer, Tim van der Lippe (TimvdLippe on
GitHub) about his experience working with the core team. His input together with our research results are
presented in this section.

18.5.4.1 Standard design

Polymer standardizes its elements in order to make them usable and easy to maintain. In this regard, all
elements must conform to the Polymer element style guide 24 which defines how to specify properties and
documentation.

• Coding style - The Polymer team uses the Google JavaScript Style Guide 25 and Google HTML/CSS
Style Guide 26 to structure their code. Adherence to these guidelines is mandatory and all contributions
to the projects are checked for conformance. This ensures that the coding style of the project stays
uniform and developers can easily understand and maintain the project.

• Commit style - Unlike other Google projects, Polymer’s standard guide to contributing to the project
is fairly flexible. The guide 27 states how bugs should be filed and pull requests can be made by the
GitHub community. The team also has a template for reporting issues detected in the code.

18.5.4.2 Standard elements and common processing

Polymer primarily exposes one custom element to the user that is called PolymerElement. This element is
built up from several mixins (described in the code modules section above). The pattern that can be seen in
all of the source code is that functionality is built in mixin classes (or higher-order functions) and the actual
exported elements are constructed using these mixin classes.

Next to PolymerElement, Polymer offers several other elements that the user can use such as the Ar-
raySelector element 28. These additional elements are extensions of PolymerElement with additional

24The Polymer Project Authors. Document your elements - polymer project. Retrieved March 21, 2019 from https://polymer-
library.polymer-project.org/3.0/docs/tools/documentation

25Google. Google javascript style guide. Retrieved March 21, 2019 from https://google.github.io /styleguide/jsguide.html
26Google. Google html/css style guide. Retrieved March 21, 2019 from https://google.github.io /styleguide/htmlcssguide.html
27Polymer. Polymer/contributing.md at master - polymer/polymer. Retrieved March 21, 2019 from

https://github.com/Polymer/polymer/blob/master/CONTRIBUTING.md
28GitHub. Polymer/array-selector.js at master polymer/polymer. Retrieved March 20, 2019 from

https://github.com/Polymer/polymer/blob/master/lib/elements/array-selector.js

https://github.com/TimvdLippe
https://www.polymer-project.org/3.0/docs/tools/documentation
https://google.github.io/styleguide/jsguide.html
https://google.github.io/styleguide/htmlcssguide.html
https://google.github.io/styleguide/htmlcssguide.html
https://github.com/Polymer/polymer/blob/master/CONTRIBUTING.md
https://github.com/Polymer/polymer/blob/master/lib/elements/array-selector.js
https://github.com/Polymer/polymer/blob/master/lib/elements/array-selector.js

434 CHAPTER 18. POLYMER

functionality. An example is shown below:

// The functionality is defined as a function that returns
// a class with the desired properties.
let ArraySelectorMixin = dedupingMixin(superClass => {

...
})

// The actual class to be exported is an instantiation of the PolymerElement
// with functionalities from the above defined functions.
let baseArraySelector = ArraySelectorMixin(PolymerElement);
class ArraySelector extends baseArraySelector {

...
}

export { ArraySelector }

Not all elements are defined in this way, for instance the element CustomStyle is simply defined as a class
that extends the standard HTMLElement and then calls window.customElements.define(...) to expose
this to the user.

18.6 Technical debt

In this section we discuss technical debt related to the Polymer project. Technical debt can be described as
the gap between making a change work and making a change perfectly. We assess the technical debt by
analyzing pull requests, measuring code quality and interviewing Tim van der Lippe, an ex-member of the
Polymer core team.

18.6.1 Discussion in pull requests

After analyzing the thirty most recent pull requests that had more than five comments, the conclusion must
be drawn that there is not much discussion about technical debt in the Polymer pull requests. Only in one
single case (5451 29) was there a request to refactor a line of code to make it more reusable, which can be
seen as a discussion about technical debt. One other pull request (5347 30) was on the topic of cleaning up
code after a conversion. More often (four out of thirty pull requests), a change is requested to add one or
two comments to improve readability.

18.6.2 Code quality

In order to evaluate the code quality of Polymer, we made use of two code evaluation tools: DeepScan 31

and SonarQube 32. Both of these tools are static code analysis tools where DeepScan is specifically designed

29GitHub. 2018. Retrieved March 20, 2019 from https://github.com/Polymer/polymer/pull/5451
30GitHub. 2018. Retrieved March 20, 2019 from https://github.com/Polymer/polymer/pull/5347
31deepscan.io. How to ensure javascript code quality | deepscan. Retrieved March 20, 2019 from https://deepscan.io/home/
32SonarSource S. A. Continuous inspection | sonarqube. Retrieved March 20, 2019 from https: //www.sonarqube.org/

https://github.com/Polymer/polymer/pull/5451
https://github.com/Polymer/polymer/pull/5347
https://deepscan.io/home/
https://www.sonarqube.org/

18.6. TECHNICAL DEBT 435

for Javascript. The evaluation of the codebase was performed on the 6th of March 2019, so results may have
changed in the mean time.

18.6.2.1 DeepScan

The result of running DeepScan can be seen in the figure below. According to DeepScan, the overall grade
of the project was ‘Good’ which is the highest grade available. The tool found a total of 12 issues, 9 of
which are related to code quality and marked as ‘low impact’. The remaining 3 issues are related to possible
errors in the code and considered ‘medium impact’. The issues do not seem to have a common quality and
are all rather different, so there is no pattern to be found which means that the issues are not structural and
rather incidents.

Figure 18.7: Evaluation results of DeepScan

18.6.2.2 SonarQube

SonarQube rates the code on several different aspects. The results can be found in the figure below. We
evaluate four of them:

• Reliability - The initial reliability rating for Polymer is ‘C’ (on a scale from A to E) because
SonarQube discovered 87 bugs of which 80 were classified as major. Upon further inspection it
turned out these 80 bugs were all caused because the <title> tag is missing in the test HTML
files. Because these files are just used for testing purposes, a title is not necessary and these bugs can
therefore be discarded. The other 7 minor bugs are in the test HTML files as well. These bugs can
be discarded in the same way, as they include missing “alt” attributes to images and some styling
issues which do not matter for testing purposes. Since all bugs are not applicable to the project, we
can conclude that Polymer should actually get an ‘A’ for reliability.

• Security - SonarQube was not able to find any vulnerabilities and the security is therefore graded
with an ‘A’.

436 CHAPTER 18. POLYMER

• Maintainability - The maintainability is defined by the number of code smells detected. SonarQube
was able to detect a total of 25 code smells. Over half of these smells are related to unused imports or
variables. The other half consists of various issues. The rating for maintainability is also dependent on
the size of the project, with a larger project code smells are more likely and thus to be expected. Due
to the large size of the project and the small number of code smells Polymer received an ‘A’ rating for
maintainability.

• Duplication - SonarQube does grade the duplication but just shows the results. In total, 13.1% of the
lines was duplicated. However, all the duplications are located in the test folder which is no surprise
as testing often requires repeating the same instructions with small differences. We can therefore
conclude that duplication is no problem in the Polymer project.

Figure 18.8: Evaluation results of SonarQube

Both DeepScan and SonarQube report very positive results for the Polymer project. It can therefore be
concluded that the project does not contain a lot of technical debt and is very healthy in general.

18.6.3 Evolution of technical debt

In an e-mail interview with Polymer ex-core team member Tim van der Lippe we discovered that the team
suffered from technical debt due to non-finalized standards of the W3C foundations WebComponents. He
mentioned however that as these standards were finalized, Polymer has eliminated this debt by adhering
to these standards. In the same interview Tim mentioned that “We did do regular cleanups and published
multiple versions to fix previous mistakes/usages of non-shipping standards”. The evolution of technical
debt was described as an organic process and by doing these cleanups the team was able to keep the amount
of technical debt under control. Besides the non-finalized standards there were no major factors introducing
technical debt in the project.

18.6.4 Testing debt

The web-component-tester (WCT) environment does not natively support the generation of code coverage.
In order to generate code coverage an external plugin is required. The istanbul tool 33 has been made

33Istanbul. Istanbul, a javascript test coverage tool. Retrieved March 21, 2019 from https: //istanbul.js.org/

https://istanbul.js.org/

18.7. VARIABILITY 437

available for the WCT environment but is not maintained actively. Due to this we were unfortunately not
able to generate test coverage reports.

The project in general does not rely on line coverage requirements but instead requires that all functionalities
are tested. Unfortunately we were not able to gather the actual coverage statistics of the project. The large
number of test cases show that testing is definitely taken into consideration when contributions are made.
Testing is also often discussed in the pull requests which shows that testing is an integral part of the project.
Because of the aforementioned reasons it would be obvious to assume that the testing debt is rather low.
However, due to our lack of information we can not be sure of this. When inspecting the code manually we
did manage to find some testing debt. An example of this is the “path.js” file in the utils package which has
a testing class that does not cover all its functions. This shows that there is at least some form of testing debt
present in Polymer.

18.7 Variability

Polymer is a web component library and needs to be compatible with all major browsers in order to
be adopted by web developers. Naturally, major browsers differ in implementation and this introduces
variability in Polymer. Most variability in Polymer is not concerned with providing different features to the
developer but instead, the developer should take it into account in order to deliver consistent web components
to all major browsers. Next to browser compatibility, Polymer also creates variability by introducing flags
for certain commands in the Polymer command-line interface. Polymer makes use of load-time and run-time
binding for its variability implementation, allowing for flexible development and reconfiguration. However,
these mechanisms for load-time and run-time binding incur a memory and performance overhead, since all
variations are compiled into a single binary and consistency conditions must be checked at run-time 34.

18.7.1 Examples and implementation

Below are examples of variability in Polymer and their implementation.

18.7.1.1 Polyfills

Some features used by Polymer are not supported by major browsers 35, polyfills are used to build a bridge
between them. A polyfill is a term used to describe a library that checks if a browser API supports a
certain functionality; if it does not, the polyfill will intercept any calls to that functionality and run its own
implementation 36.

Implementation

Polymer uses the polyfills from webcomponents.org 37. To load the polyfills to the browser, the Polymer user
can load either webcomponents-bundle.js or webcomponents-loader.js from the @webcomponents

34Sven Apel, Don Batory, Christian Kastner, and Gunter Saake. 2016. Feature-oriented software product lines. Springer.
35The Polymer Project Authors. Browser support overview - polymer project. Retrieved April 2, 2019 from https://polymer-

library.polymer-project.org/3.0/docs/browsers
36Axel Rauschmayer. 2014. Speaking javascript - an in-depth guide for programmers. Retrieved April 2, 2019 from

http://speakingjs.com/es5/ch30.html
37webcomponents.org. Webcomponents.org. Retrieved April 2, 2019 from https://www.webcom ponents.org/

438 CHAPTER 18. POLYMER

module 38. The first script retrieves all polyfills and loads them to the browser, resulting in extra bytes sent
over the network (even unnecessary polyfills are sent). The alternative is the latter script, which assesses
what features are supported by the browsers and then only retrieves the relevant polyfills. The latter option
results in possibly less bytes sent over the network but does require an extra round-trip. This variability is
bound at load time when the appropriate JavaScript file is used.

18.7.1.2 Command-line interface

The Polymer project offers a command-line interface (CLI) that offers useful functionality to developers
such as building the application 39. The commands polymer build and polymer serve accept flags that
provide functionality. Because the polymer build command has fourteen possible flags, certain presets
are offered that bundle common flag combinations.

Implementation

The Polymer team created a TypeScript interface named Command which all CLI commands implement.
At run-time, a user can use the configuration options provided by the Polymer CLI to configure his or
her project. This includes defining the root of the project, the build files, shell and fragments that could
be implemented. In a specific command such as build, the supported flags are described by creating an
array of ArgDescriptors, which also is a TypeScript interface. During the execution of the command, the
flags are implemented as conditionals. An example is the --js-minify flag which is implemented in the
js-transform.js file as follows 40.

if (options.minify) {
doBabel = true;
// Minify last, so push first.
presets.push(babelPresetMinify);

}

18.7.2 Partial feature model

In the figure below we can see a figure of the variability in Polymer. This model does not contain all the
features of Polymer but rather the ones where a user (developer) can introduce variability. The figure is from
the view of the developer since those are the users of Polymer. The browser choice is not explicitly given in
Polymer but it does influence whether the use of polyfills, shady CSS and shady DOM can be enabled. For
example: newer versions of Chrome do not require any of these features and if a user of Polymer decides to
only support this browser these features are not used.

38The Polymer Project Authors. Polyfills - polymer project. Retrieved April 2, 2019 from https://polymer-library.polymer-
project.org/3.0/docs/polyfills

39The Polymer Project Authors. Polymer cli commands - polymer project. Retrieved April 2, 2019 from https://polymer-
library.polymer-project.org/3.0/docs/tools/polymer-cli-commands

40Polymer. 2018. Polymer-build/js-transform.ts at master - polymer/polymer-build - github. Retrieved April 2, 2019 from
https://github.com/Polymer/polymer-build/blob/master/src/js- transf orm.ts

18.7. VARIABILITY 439

Figure 18.9: Variability feature model for Polymer

18.7.3 Variability management

How variability is managed is different for users and developers of the project. Here users are defined as
‘people using Polymer to create a website’ and developers as ‘people contributing to the Polymer project’.
The following paragraphs explain how variability is managed within the Polymer project.

18.7.3.1 Variability management for users

When building a project with Polymer, the user has to decide on hosting features and supported browsers
41. The first decision is based on whether the hosting provider supports user agent detection and the ability
to serve different files to different user agents. If that is the case then the user is able to deploy multiple
builds and depending on the browser used, the most optimized build is served. If this is not supported by
the hosting provider, the user has to generate a single build and has to decide which specific browsers to
support. For an individual build Polymer supports 17 parameters 42, allowing the user a lot of freedom in
their choices. Such an amount of parameters can be overwhelming and therefore three presets are offered in
addition which each provide a different, standard level of support for browsers.

41Polymer. Build for production - polymer project. Retrieved from https://polymer-library.poly mer-project.org/3.0/docs/apps/build-
for-production

42Polymer. Polymer.json specification - polymer project. Retrieved from https://polymer- library.polymer-
project.org/3.0/docs/tools/polymer-json

440 CHAPTER 18. POLYMER

18.7.3.2 Variability management for developers

For the support of older browsers, Polymer relies on polyfills created by the Web Components project 43.
So, developers of Polymer do not have to directly handle the support of older browsers. Since the project
is heavily reliant on these polyfills, the Polymer team has also been concerned with the development and
maintenance of these polyfills 44.

Whether Polymer is fully (natively) supported or not is mostly dependant on the choice of browsers to support
the Web Components API. Developers themselves have little to no influence in this decision unfortunately.

18.8 Conclusion

In this chapter, we have analyzed Google’s Polymer project using several architectural views. We analyzed
its stakeholders and identified Google as the most influential. Google plays a vital role in the development,
funding and decision making of the project while also being assessors and users of Polymer. In the context
view, we saw that Polymer is heavily reliant on other systems and frameworks for communication, support
and testing. The project is developed in JavaScript and distributed through the npm package manager with
its key functionalities made available through the Polymer CLI, Polymer elements and web components.
The development view presented the design and code structure of Polymer. It was interesting to note that the
testing module of Polymer is almost three times as large as the library. As expected of any Google project,
the design approach adopted by Polymer is based on Google’s style guide. With regards to technical debt,
our analysis shows that the project is very healthy. Most of the code smells detected were related to the
testing module and could be seen as trivial. Just as Tim said, the project is very well tested and technical debt
is handled efficiently. We also analyzed how variability is managed in Polymer given that it is a web-based
project. The analysis shows that most of the variability has to do with compatibility with browsers and
options made available to developers through the CLI.

Overall, analyzing Polymer was interesting. We are pleasantly surprised by the quality of code especially
with regards to tests and the low technical debt maintained by the team. One area that can be improved is
the documentation of the project. The documentation is somewhat lacking, making it difficult to assess how
certain decisions are made by the team.

18.9 Appendix A - Analyses of pull requests

The analyzed pull requests below are the most commented pull requests from the whole Polymer repository.
Labeling of the comments was done using the following codes:

• AC - Author (pull request creator) clarifies his actions in the pull request.
• AT - Author makes a technical comment regarding his pull request.
• AG - Author makes a comment regarding GitHub tasks: assigning of reviewers, asking to merge,

announced a rebase against master, etc.

43webcomponents. Webcomponents/webcomponents.js: A suite of polyfills supporting the html web components specs. Retrieved
from https://github.com/webcomponents/webcomponentsjs

44Polymer. Roadmap update, part 1: 3.0 and beyond - polymer project. Retrieved from https://www.polymer-project.org/blog/2018-
05-02-roadmap-update

https://github.com/webcomponents/webcomponentsjs

18.9. APPENDIX A - ANALYSES OF PULL REQUESTS 441

• UF - User of the library posts a comment regarding the impact of the pull request on existing features
or issues. Mostly this indicates that a user is asking whether this pull request will fix his current
problem.

• UT - User of the library asks a technical question about the changes made by the author.
• GG - Google employee makes a comment regarding GitHub tasks.
• GF - Google employee makes a comment regarding the impact of the pull request on the current state

of the project.
• GT - Google employee makes a technical comment.

18.9.1 Approved - #2642

Created - 25-10-2015, merged - 04-12-2015, first included in Polymer v1.2.4

Pull request #2642 is listed as the most commented pull request of the entire project. Contributor nazar-pc
fixed a problem concerning incorrect CSS selector specificity. Merging this pull requests fixed at least three
listed issues at the time.

The first Polymer team member to respond was azakus and stated that he would attempt to do the merge of
this large pull request. Later Polymer team member sorvell commented saying that the Polymer team was
considering solving the issue before the PR was made, but stated that they were concerned about the impact
on the performance and the Polymer team planned to handle custom CSS properties different in the long
term. azakus reviewed the code and finally merged the pull request.

Label #comments

AC 4
AT 5
AG 4
UF 4
UT 2
GG 7
GF 2
GT 0

18.9.2 Approved - #5000

Created - 19-12-2017, merged - 10-12-2018, first included in Polymer v2.4.0

Polymer contributor 43081j created pull request #5000 where he added return type annotations in function
descriptions. This pull request would fix at least two issues where correct return types in function descriptions
are necessary, as is the case in many scenarios where Polymer is combined with TypeScript.

The large amount of time merging took was partly due to the pull request only being mergable once pull
requests of other Polymer projects got merged such as polymer-analyzer#821 and a Polymer tool that
generates TypeScript declarations gen-typescript-declarations#56. TimvdLippe commented that this pull
request would get Polymer close to having correct type annotations and continued to follow the updates.
Once the pull request was mergable, azakus did so.

https://github.com/Polymer/polymer/pull/2642/
https://github.com/Polymer/polymer/pull/2642/
https://github.com/nazar-pc
https://github.com/azakus
https://github.com/sorvell
https://github.com/azakus
https://github.com/Polymer/polymer/pull/5000
https://github.com/43081j
https://github.com/Polymer/polymer/pull/5000
https://github.com/Polymer/polymer-analyzer/pull/821
https://github.com/Polymer/gen-typescript-declarations/pull/56
https://github.com/TimvdLippe
https://github.com/azakus

442 CHAPTER 18. POLYMER

Label #comments

AC 2
AT 7
AG 3
UF 0
UT 0
GG 6
GF 2
GT 8

18.9.3 Rejected - #3954

Created - 14-09-2016, closed - 16-09-2017

Google employee and Polymer contributor justinfagnani created pull request #3954 where he added decora-
tors that allow users of Polymer to define elements with TypeScript classes. This pull request does not fix
existing issues but rather introduces new features, scheduled to be included in Polymer v2.0.

The code was reviewed extensively and approved by Google employee rictic. In March 2017, a few changes
in TypeScript made a part of this pull request redundant. justinfagnani stated that the decorators added in
this pull request did not have to change, but his plan was to make this pull request a separate repository, as
they are not required to use in Polymer v2.0 and decorators are “non-standard”. In September 2017, the
separate repository polymer-decorators was introduced that includes the change from the main Polymer pull
request. This pull request came from within Google and was not rejected, rather put in a separate repository
for the interested users.

Label #comments

AC 3
AT 0
AG 0
UF 4
UT 6
GG 1
GF 1
GT 2

18.9.4 Approved - #2689

Created - 05-11-2015, merged - 04-12-2015, first included in Polymer v1.2.4

Google Employee TimvdLippe created pull request #2689 where he fixed the incorrect parsing of minimized
CSS output. It is a small change (26 lines of code have changed across three different files).

One day after the pull request was created, contributor nazar-pc made a pull request to Tim’s pull request to
improve the code quality slightly. After a small functional discussion between TimvdLippe and nazar-pc,

https://github.com/Polymer/polymer/pull/3954
https://github.com/justinfagnani
https://github.com/Polymer/polymer/pull/3954
https://github.com/rictic
https://github.com/justinfagnani
https://github.com/Polymer/polymer-decorators
https://github.com/Polymer/polymer/pull/2689
https://github.com/TimvdLippe
https://github.com/Polymer/polymer/pull/2689
https://github.com/nazar-pc
https://github.com/TimvdLippe
https://github.com/nazar-pc

18.9. APPENDIX A - ANALYSES OF PULL REQUESTS 443

the pull request got merged by Google employee azakus.

The next day the merge of the pull request got reverted because it failed some continuous integration tests.
Later a second pull request with this fix got merged (#3241).

Label #comments

AC 1
AT 2
AG 5
UF 1
UT 3
GG 6
GF 0
GT 1

https://github.com/azakus
https://github.com/Polymer/polymer/pull/3241

444 CHAPTER 18. POLYMER

Chapter 19

PowerShell

By Sytze Andringa, Youri Arkesteijn, Bram Crielaard, and Luka Miljak
Delft University of Technology, 2019

Official PowerShell Core logo (on GitHub)

19.1 Table of Contents

• Introduction
• Stakeholder Analysis
• Context View
• Development View
• Technical Debt
• Functional Debt
• Conclusion
• References

19.2 Introduction

This chapter aims to describe and evaluate the architecture of PowerShell. To quote their own description:

445

https://github.com/SytzeAndr
https://github.com/Exclaminator
https://github.com/Geweldig
https://github.com/LMiljak
https://github.com/PowerShell/PowerShell/blob/master/assets/powershell_128.svg
https://github.com/PowerShell/PowerShell

446 CHAPTER 19. POWERSHELL

PowerShell Core is a cross-platform (Windows, Linux, and macOS) automation and config-
uration tool/framework that works well with your existing tools and is optimized for dealing
with structured data (e.g. JSON, CSV, XML, etc.), REST APIs, and object models. It includes a
command-line shell, an associated scripting language and a framework for processing cmdlets.

The framework was initially released in 2006 for Windows1. A decade later, in 2016, PowerShell went
open-source and became available for Linux and macOS platforms as well. It now has the benefit of an
entire community contributing to the system. Figure 0.1 shows a simple overview of the history.

Figure 0.1 History of PowerShell2.

Figure 0.2 Google Trends of PowerShell and two of its competitors: cmd.exe and Bash.

The Google Trends figure shows that PowerShell is slightly gaining in popularity. As with any large and
popular project, investigating and also evaluating its architecture is very interesting.

The first section of this chapter showcases all the related stakeholders of PowerShell. The second section
contains the context view, which describes the scope of the project and also its relation to external entities.
The development view can be found in the third section, which dissects the system into multiple modules,
describes some common design patterns in the code and also contains a short description of the build
practices. This chapter also analyzes two types of debt in PowerShell: The technical debt in section four and
the functional debt in section five. The final section gives a short conclusion on the architecture as a whole.

1Wikipedia, “PowerShell: Versions.” [Online]. Available: https://en.wikipedia.org/wiki/PowerShell#Versions. [Accessed: 10-Apr-
2019]

2Microsoft, “Microsoft Technet Blogs.” [Online]. Available: https://blogs.technet.microsoft.com/. [Accessed: 10-Apr-2019]

https://en.wikipedia.org/wiki/PowerShell#Versions
https://blogs.technet.microsoft.com/

19.3. STAKEHOLDER ANALYSIS 447

19.3 Stakeholder Analysis

19.3.1 Stakeholder Types

Rozanski and Woods3 define numerous types of stakeholders. This section contains an analysis of the
different types mentioned and how they apply to the PowerShell project.

19.3.1.1 Acquirers

The acquires of the system oversee the creation of PowerShell. This consists of both the PowerShell
Committee and Microsoft at large. All changes go through the PowerShell Committee before they are
included in the system.

19.3.1.2 Assessors

The assessors of the system make sure the product conforms to standards and legal regulation, which in the
case of PowerShell is the Microsoft legal team.

19.3.1.3 Communicators

The communication about the system to other stakeholders is done by the PowerShell Committee and the
PowerShell Maintainers. They provide information about any updates or decisions made to community as a
whole. They also enforce that documentation is written when new functionality is added or undocumented
behavior is found.

19.3.1.4 Developers

The developers of PowerShell consist of both Microsoft employees who focus on PowerShell as well as
volunteers. Even though Microsoft employees make the final decision about the architecture of the system, a
number of external contributors are allowed to decide when and if code should be merged. These contributors
have been granted access by the committee to make these decisions.

19.3.1.5 Maintainers

The maintainers of the repository make sure the code evolves in a structured manner. In the case of
PowerShell these maintainers consist of both the PowerShell committee (who make the final decision on
whether or not design changes can occur) and the repository maintainers. The repository maintainers are
(at the time of writing this report): @daxian-dbw, @TravisEz13, @adityapatwardhan, @iSazonov, and
@anmenaga.

3N. Rozanski and E. Woods, Software Systems Architecture: Working With Stakeholders Using Viewpoints and Perspectives, 2nd
ed. Addison-Wesley Professional, 2011.

https://github.com/daxian-dbw
https://github.com/TravisEz13
https://github.com/adityapatwardhan
https://github.com/iSazonov
https://github.com/anmenaga

448 CHAPTER 19. POWERSHELL

19.3.1.6 Suppliers

PowerShells runs on different operating systems. The Get Powershell section in the README contains a
full list of supported platforms. These platforms are considered suppliers, and because of limitations these
platforms impose they should be considered as important stakeholders. Especially the Windows operating
system is of interest, as PowerShell comes pre-installed on this platform.

19.3.1.7 Support Staff

Microsoft themselves handle the support for PowerShell. It is possible for end users to purchase a support
license. Of course community support also exists by ways of Gitter, Slack, Reddit, GitHub, or fora such as
Stack Overflow.

19.3.1.8 Testers

The testers make sure that PowerShell is fit for use. There are Microsoft employees who focus specifically
on testing and continuous integration, such as @JamesWTruher. Tests need to be created or adapted with
every pull requests that introduces new functionality, and developers are encouraged to write their own tests.
There is a rigorous testing policy for contributions to PowerShell 4.

19.3.1.9 Users

There are many companies that use PowerShell in their working environment and as such they can be seen as
major stakeholders. A good example is Michael Klement (@mklement0 on GitHub), who has worked with
PowerShell in a few different external professional environments5. These users influence which functionality
needs to be added to the language, as well as possible changes which need to be introduced. However, the
PowerShell committee still has the final say over any decision made.

19.3.2 Types Not Mentioned by Rozanski and Woods.

19.3.2.1 Dependents

Dependents are users of PowerShell who do not necessarily know they are using PowerShell. The policy
upheld by the PowerShell committee is that no backwards compatibility breaking changes can be introduced.
This policy exists because dependents might use PowerShell scripts which they have not written themselves,
nor know how to update. As such, they will still encounter problems if breaking changes are introduced
during an update to PowerShell.

4Microsoft, “PowerShell testing guidelines.” 2018 [Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/
docs/testing-guidelines/testing-guidelines.md

5M. Klement, “LinkedIn profile.” 2019 [Online]. Available: https://www.linkedin.com/in/mklement0/

https://github.com/PowerShell/PowerShell#get-powershell
https://gitter.im/PowerShell/PowerShell
http://slack.poshcode.org/
https://www.reddit.com/r/PowerShell/
https://github.com/PowerShell/PowerShell/issues
https://stackoverflow.com/questions/tagged/powershell
https://github.com/JamesWTruher
https://github.com/mklement0
https://github.com/PowerShell/PowerShell/blob/master/docs/testing-guidelines/testing-guidelines.md
https://github.com/PowerShell/PowerShell/blob/master/docs/testing-guidelines/testing-guidelines.md
https://www.linkedin.com/in/mklement0/

19.3. STAKEHOLDER ANALYSIS 449

19.3.2.2 Development Tools

Tools which target PowerShell are –among others– ISESteroids6, Visual Studio Code7, and PowerShell
Studio8. These systems provide tools for easy writing and editing PowerShell scripts.

19.3.2.3 Competitors

Competitors of PowerShell include shells such as Bash, Zsh, and Fish. They need to actively monitor each
other’s evolution to see if they need to adapt their own system to stay competitive.

19.3.3 Integrators For PowerShell

To decide which pull requests get merged the PowerShell project has two sets of members. Namely the
PowerShell Committee and the Repository maintainers. If architectural changes are made to the system, or if
new parameters are introduced to existing functions, they need to be approved by the PowerShell Committee.
The committee maintains an overview of the project. They also make sure that all design changes fit the
project and stay consistent with the rest of the codebase.9

For all other pull requests, the maintainers can take the decision to merge. The maintainers make sure the
code style is consistent and the code is of high quality. This means they have to make sure details such as
variable names, design patterns, and function names are consistent when introducing new code.10

When analyzing the pull requests created for PowerShell we concluded that this is not just a guideline, but is
actually used in practice.

19.3.4 Relevant People We Would Like To Contact

We have concluded there are three people who we believe are interesting to contact. These people are
@iSazonov, @mklement0, and @SteveL-MSFT.

iSazonov is currently a maintainer of the PowerShell project on GitHub, however he is not an employee of
Microsoft. For every pull request we have read it was difficult to find one in which he had not participated.

mklement0 is extremely active in the community and has been using PowerShell in a professional setting
since 2010. Hearing from someone who has actively seen the system evolve as both a user as well as a
developer would result in an interesting insight.

SteveL-MSFT is a member of the PowerShell Committee and actively participates in discussion on most
pull requests. Hearing the input of one of the core team members would shine light on the decisions made
when designing the PowerShell architecture.

6PowerTheShell, “ISESteroids.” [Online]. Available: http://www.powertheshell.com/isesteroids/. [Accessed: 28-Mar-2019]
7Microsoft, “Visual Studio Code.” [Online]. Available: https://code.visualstudio.com/. [Accessed: 28-Mar-2019]
8Sapien Technologies, Inc., “PowerShell Studio 2019.” [Online]. Available: https://www.sapien.com/software/powershell_studio.

[Accessed: 28-Mar-2019]
9Microsoft, “PowerShell Governance.” [Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/docs/

community/governance.md#powershell-committee. [Accessed: 28-Mar-2019]
10Microsoft, “Repository Maintainers.” [Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/docs/

maintainers/README.md. [Accessed: 28-Mar-2019]

https://github.com/iSazonov
https://github.com/mklement0
https://github.com/SteveL-MSFT
http://www.powertheshell.com/isesteroids/
https://code.visualstudio.com/
https://www.sapien.com/software/powershell_studio
https://github.com/PowerShell/PowerShell/blob/master/docs/community/governance.md#powershell-committee
https://github.com/PowerShell/PowerShell/blob/master/docs/community/governance.md#powershell-committee
https://github.com/PowerShell/PowerShell/blob/master/docs/maintainers/README.md
https://github.com/PowerShell/PowerShell/blob/master/docs/maintainers/README.md

450 CHAPTER 19. POWERSHELL

19.3.5 Pull Request Analysis

We analyzed 10 open and 10 closed pull requests. From analyzing these we conclude the following:

1. The main focus is that pull request actually solve an issue (an issue should be referenced from a pull
request).11–12

2. All changes should be tested (to ensure a high coverage and minimize the amount of unexpected
behavior).13, 14, 15–16, 17–18,ˆ[4]–19

3. There should not be backwards compatibility changes, PowerShell must be backwards compatible.20,
21, 22, 23

4. Comments should be correct, or removed if not needed.24–25, 26, 27–28

5. Code should be consistent, the naming of parameters and default values of parameters give way to

11I. Sazonov, “PowerShell pull request #3690.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/3690. [Accessed:
27-Mar-2019]

12S. Barizien, “PowerShell pull request #8745.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/8745. [Ac-
cessed: 27-Mar-2019]

13I. Sazonov, “PowerShell pull request #3690.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/3690. [Accessed:
27-Mar-2019]

14C. Bergmeister, “PowerShell pull request #4612.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/4612.
[Accessed: 27-Mar-2019]

15M. Klement, “PowerShell pull request #4761.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/4761.
[Accessed: 27-Mar-2019]

16A. patwardhan, “PowerShell pull request #5760.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/5760.
[Accessed: 27-Mar-2019]

17I. Sazonov, “PowerShell pull request #7702.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/7702. [Accessed:
27-Mar-2019]

18A. Gauthier, “PowerShell pull request #8199.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/8199. [Ac-
cessed: 27-Mar-2019]

19J. Swallow, “PowerShell pull request #7509.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/7509. [Ac-
cessed: 27-Mar-2019]

20R. Holt, “PowerShell pull request #8142.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/8142. [Accessed:
27-Mar-2019]

21A. Gauthier, “PowerShell pull request #8199.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/8199. [Ac-
cessed: 27-Mar-2019]

22J. Swallow, “PowerShell pull request #7509.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/7509. [Ac-
cessed: 27-Mar-2019]

23D. Stenberg, “PowerShell pull request #1901.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/1901.
[Accessed: 27-Mar-2019]

24C. Bergmeister, “PowerShell pull request #5051.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/5051.
[Accessed: 27-Mar-2019]

25A. patwardhan, “PowerShell pull request #5760.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/5760.
[Accessed: 27-Mar-2019]

26I. Sazonov, “PowerShell pull request #7702.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/7702. [Accessed:
27-Mar-2019]

27A. Gauthier, “PowerShell pull request #8199.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/8199. [Ac-
cessed: 27-Mar-2019]

28J. Swallow, “PowerShell pull request #7509.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/7509. [Ac-
cessed: 27-Mar-2019]

https://github.com/PowerShell/PowerShell/pull/3690
https://github.com/PowerShell/PowerShell/pull/8745
https://github.com/PowerShell/PowerShell/pull/3690
https://github.com/PowerShell/PowerShell/pull/4612
https://github.com/PowerShell/PowerShell/pull/4761
https://github.com/PowerShell/PowerShell/pull/5760
https://github.com/PowerShell/PowerShell/pull/7702
https://github.com/PowerShell/PowerShell/pull/8199
https://github.com/PowerShell/PowerShell/pull/7509
https://github.com/PowerShell/PowerShell/pull/8142
https://github.com/PowerShell/PowerShell/pull/8199
https://github.com/PowerShell/PowerShell/pull/7509
https://github.com/PowerShell/PowerShell/pull/1901
https://github.com/PowerShell/PowerShell/pull/5051
https://github.com/PowerShell/PowerShell/pull/5760
https://github.com/PowerShell/PowerShell/pull/7702
https://github.com/PowerShell/PowerShell/pull/8199
https://github.com/PowerShell/PowerShell/pull/7509

19.3. STAKEHOLDER ANALYSIS 451

many discussions.29–30, 31, 32–33, 34, 35

6. If a pull request becomes too complex, it is closed and split up into multiple pull requests.36, 37, 38, 39,
40

7. Design changes and improvements can be discussed through the RFC (Request For Comments)
process, which provides the community with a way to leave feedback on documents instead of written
code.41, 42, 43

8. The PowerShell team is open to outsiders challenging their calls. Even if you have never contributed
any code, if you disagree with their decisions and can explain why, they will reconsider.44, 45, 46, 47

9. People who have opened the issue are contacted to see if an issue is actually resolved by a pull request,
and not just believed to be solved by the author.48

10. Community members are contacted by the core team for their input, not just the seniors make every
decision without talking to the rest of the community.49

29C. Bergmeister, “PowerShell pull request #5051.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/5051.
[Accessed: 27-Mar-2019]

30A. patwardhan, “PowerShell pull request #5760.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/5760.
[Accessed: 27-Mar-2019]

31I. Sazonov, “PowerShell pull request #7702.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/7702. [Accessed:
27-Mar-2019]

32A. Gauthier, “PowerShell pull request #8199.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/8199. [Ac-
cessed: 27-Mar-2019]

33R. Holt, “PowerShell pull request #3169.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/3169. [Accessed:
27-Mar-2019]

34J. Swallow, “PowerShell pull request #7509.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/7509. [Ac-
cessed: 27-Mar-2019]

35J. L. Whitlock, “PowerShell pull request #3125.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/3125.
[Accessed: 27-Mar-2019]

36M. Klement, “PowerShell pull request #4761.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/4761.
[Accessed: 27-Mar-2019]

37R. Holt, “PowerShell pull request #8142.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/8142. [Accessed:
27-Mar-2019]

38R. Holt, “PowerShell pull request #3169.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/3169. [Accessed:
27-Mar-2019]

39J. Swallow, “PowerShell pull request #7509.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/7509. [Ac-
cessed: 27-Mar-2019]

40R. Dunham, “PowerShell pull request #8886.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/8886. [Ac-
cessed: 27-Mar-2019]

41R. Holt, “PowerShell pull request #3169.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/3169. [Accessed:
27-Mar-2019]

42D. Stenberg, “PowerShell pull request #1901.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/1901.
[Accessed: 27-Mar-2019]

43J. L. Whitlock, “PowerShell pull request #3125.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/3125.
[Accessed: 27-Mar-2019]

44GitHub user @zhenggu, “PowerShell pull request #5525.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/
5525. [Accessed: 27-Mar-2019]

45A. patwardhan, “PowerShell pull request #5760.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/5760.
[Accessed: 27-Mar-2019]

46P. Braathen, “PowerShell pull request #8131.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/8131. [Ac-
cessed: 27-Mar-2019]

47A. Gauthier, “PowerShell pull request #8199.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/8199. [Ac-
cessed: 27-Mar-2019]

48I. Sazonov, “PowerShell pull request #7702.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/7702. [Accessed:
27-Mar-2019]

49P. Braathen, “PowerShell pull request #8131.” [Online]. Available: https://github.com/PowerShell/PowerShell/pull/8131. [Ac-
cessed: 27-Mar-2019]

https://github.com/PowerShell/PowerShell/pull/5051
https://github.com/PowerShell/PowerShell/pull/5760
https://github.com/PowerShell/PowerShell/pull/7702
https://github.com/PowerShell/PowerShell/pull/8199
https://github.com/PowerShell/PowerShell/pull/3169
https://github.com/PowerShell/PowerShell/pull/7509
https://github.com/PowerShell/PowerShell/pull/3125
https://github.com/PowerShell/PowerShell/pull/4761
https://github.com/PowerShell/PowerShell/pull/8142
https://github.com/PowerShell/PowerShell/pull/3169
https://github.com/PowerShell/PowerShell/pull/7509
https://github.com/PowerShell/PowerShell/pull/8886
https://github.com/PowerShell/PowerShell/pull/3169
https://github.com/PowerShell/PowerShell/pull/1901
https://github.com/PowerShell/PowerShell/pull/3125
https://github.com/PowerShell/PowerShell/pull/5525
https://github.com/PowerShell/PowerShell/pull/5525
https://github.com/PowerShell/PowerShell/pull/5760
https://github.com/PowerShell/PowerShell/pull/8131
https://github.com/PowerShell/PowerShell/pull/8199
https://github.com/PowerShell/PowerShell/pull/7702
https://github.com/PowerShell/PowerShell/pull/8131

452 CHAPTER 19. POWERSHELL

19.3.6 Power/Interest Grid

Figure 1.1 shows how the stakeholders mentioned in section 1.2 and 1.3 can be classified in terms of power
and interest.

Figure 1.1. A power/interest grid of several entities that have a relation with the system.

19.4 Context View

This section describes the Context view of the system. The view defines what PowerShell does, which is
described in section 2.1 using a scope definition. Furthermore, the view also describes the relation between

19.4. CONTEXT VIEW 453

the system and external entities. These relations can be found in Section 2.2, where are Context diagram
was used as the method of modeling these relations.

19.4.1 System Scope

The scope definition of PowerShell is described as a list of key requirements of the systems. These
requirements are as follows:

• Provide a task automation and configuration management framework.50

• Provide availability on multiple platforms (Windows, Linux, and macOS).51

• Include a command-line shell.52

• Allow users to easily extend PowerShell with their own commands and frameworks.53

• Work with structured data (as opposed to plain text, as used by other traditional Shells).54

• Include a scripting language.55

• It should be easy to learn by users even when coming from a similar tool (like Bash).56

• Updates should be backward compatible.57

19.4.2 Context Diagram

The Context diagram (Figure 2.1) showcases the most important external entities of PowerShell and indicates
what the relation between them and the system is.

50Microsoft, “PowerShell README.” [Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/README.md#-
powershell. [Accessed: 08-Apr-2019]

51Microsoft, “PowerShell README.” [Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/README.md#-
powershell. [Accessed: 08-Apr-2019]

52Microsoft, “PowerShell README.” [Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/README.md#-
powershell. [Accessed: 08-Apr-2019]

53Microsoft, “Cmdlet Example.” [Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/docs/cmdlet-example/
command-line-simple-example.md. [Accessed: 08-Apr-2019]

54Microsoft, “PowerShell README.” [Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/README.md#-
powershell. [Accessed: 08-Apr-2019]

55Microsoft, “PowerShell README.” [Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/README.md#-
powershell. [Accessed: 08-Apr-2019]

56Microsoft, “Map Book for Experienced Bash users.” [Online]. Available: https://github.com/PowerShell/PowerShell/tree/master/
docs/learning-powershell#map-book-for-experienced-bash-users. [Accessed: 08-Apr-2019]

57Microsoft, “Breaking Change Contract.” [Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/docs/dev-
process/breaking-change-contract.md. [Accessed: 08-Apr-2019]

https://github.com/PowerShell/PowerShell/blob/master/README.md#-powershell
https://github.com/PowerShell/PowerShell/blob/master/README.md#-powershell
https://github.com/PowerShell/PowerShell/blob/master/README.md#-powershell
https://github.com/PowerShell/PowerShell/blob/master/README.md#-powershell
https://github.com/PowerShell/PowerShell/blob/master/README.md#-powershell
https://github.com/PowerShell/PowerShell/blob/master/README.md#-powershell
https://github.com/PowerShell/PowerShell/blob/master/docs/cmdlet-example/command-line-simple-example.md
https://github.com/PowerShell/PowerShell/blob/master/docs/cmdlet-example/command-line-simple-example.md
https://github.com/PowerShell/PowerShell/blob/master/README.md#-powershell
https://github.com/PowerShell/PowerShell/blob/master/README.md#-powershell
https://github.com/PowerShell/PowerShell/blob/master/README.md#-powershell
https://github.com/PowerShell/PowerShell/blob/master/README.md#-powershell
https://github.com/PowerShell/PowerShell/tree/master/docs/learning-powershell#map-book-for-experienced-bash-users
https://github.com/PowerShell/PowerShell/tree/master/docs/learning-powershell#map-book-for-experienced-bash-users
https://github.com/PowerShell/PowerShell/blob/master/docs/dev-process/breaking-change-contract.md
https://github.com/PowerShell/PowerShell/blob/master/docs/dev-process/breaking-change-contract.md

454 CHAPTER 19. POWERSHELL

Figure 2.1. A Context diagram for PowerShell. It consists of mostly of the stakeholders mentioned in
chapter 1, but also the development language C#, Azure continuous integration58, and several other resources
(books, package manager, . . .) for PowerShell users59. PowerShell is licensed under the MIT license60. All
entities inside the blue area are owned by Microsoft.

19.5 Development View

This section describes the Development Viewpoint of the system. Section 3.1 dissects PowerShell into
multiple modules and shows the dependencies between them. 3.2 describes some design choices made for

58Microsoft, “Testing Guidelines.” [Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/docs/testing-
guidelines/testing-guidelines.md#ci-system. [Accessed: 08-Apr-2019]

59Janik von Rotz, “Awesome PowerShell.” [Online]. Available: https://github.com/janikvonrotz/awesome-powershell. [Accessed:
08-Apr-2019]

60Microsoft, “MIT license.” [Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/LICENSE.txt. [Accessed:
08-Apr-2019]

https://github.com/PowerShell/PowerShell/blob/master/docs/testing-guidelines/testing-guidelines.md#ci-system
https://github.com/PowerShell/PowerShell/blob/master/docs/testing-guidelines/testing-guidelines.md#ci-system
https://github.com/janikvonrotz/awesome-powershell
https://github.com/PowerShell/PowerShell/blob/master/LICENSE.txt

19.5. DEVELOPMENT VIEW 455

repeating problems. A short description of the build process is found in 3.3.

19.5.1 Module Structure

This section provides an overview of the module structure of PowerShell and what the dependencies between
these modules are.

Figure 3.1. A Module Structure representing PowerShell.

As visible in the figure, we view each namespace within PowerShell as a separate module. It makes sense to
use this C# language construct in order to organize classes. The largest namespace is Microsoft, which in
turn contains two namespaces PowerShell and WSMan (Web Services Management). WSMan provides utility
for remote management for both the host as well as the client side.

The PowerShell namespace in turn contains several other namespaces. ConsoleHost provides an access
point from the console to the PowerShell engine process, as referenced here. Eventing allows for asyn-
chronous events to be created and handled. The Commandsnamespace contains most of the built in cmdlets
of PowerShell. PowerShell distinguishes three types of commands where all three are represented using
namespaces. Diagnostics contains commands for managing data in event logs. Management provides
commands for managing Windows settings such as Move-Item, New-Service, and Rename-Computer. The
last command type is Utility, which provides commands for managing the basic features of PowerShell
such as Set-Alias, ConvertTo-Json and unexpectedly Set-Date.

There are two more modules outside of the commands namespace, namely Security and

https://PowerShell.org/2013/10/the-shell-vs-the-host/

456 CHAPTER 19. POWERSHELL

MarkdownRenderer. Security provides commands that manage the basic security features in
Windows, like execution policies and signatures. MarkdownRenderer provides commands used to transform
from Markdown to PowerShell’s internal notation. This post describes how to these features in detail.

Lastly there is System.Management.Automation namespace. Automation is the place where commands
are evaluated, errors are created, and results are produced. Every other module in the system depends on
this module, which clearly makes it the bottom layer of PowerShell.

There are some unexpected architectural design choices made. Notable is the placement of packages
containing commands outside of the command package and the number of namespaces named Management.
Also, the Automation package has very high coupling with the Microsoft.PowerShell namespace, but
is not contained inside it. Furthermore, there is an unclear namespace for eventing.

Lastly, the folder structure of the project does not correspond one-to-one with the namespaces. Within
namespaces there exist folders that contain classes that still belong to that same namespace. Unlike for
instance Java, C# permits this type of file organization. In PowerShell, folders are used to group classes so
that they can be found more easily. However, these classes still solely exist to serve the namespace. Similarly
to this, .cs files also often contain more than one class. We would argue that there are some cases where
a separate namespace is preferred over just a folder, such as the engine folder inside of the Automation
namespace, but in the end it all boils down to preferences.

This analysis of the modules within PowerShell and the dependencies between them was done using code
maps in Visual Studio Enterprise. The actual description of each individual module was done by manually
reviewing the code, as there is no larger document on the PowerShell repository mentioning the namespace
overview or the folder structure.

19.5.2 Common Design

This section identifies several commonalities in the code across different implementations. While PowerShell
only imposes some minor design constraints in their coding guidelines, looking at the code one finds that
there are some choices made that reflect some designs that the PowerShell developers prefer.

Defining cmdlets. Cmdlets in PowerShell (both internal and external) are defined by creating a class that
extends the Cmdlet class contained within the Automation namespace. These classes are then processed
using reflection in C#. Commands are the only part of the code that intensively use reflection and C#
attributes (which are similar to Java annotations). This document contains an example on how users can
define their own cmdlet. Built-in PowerShell commands use the exact same pattern of defining them.

Input validation. The input PowerShell gets comes in the form of commands. This is why the input
validation process happens in the class that defines that particular cmdlet. Developers can put constraints
on arguments given to parameters by adding C# attributes to them. For example, the ConvertTo-Json
command takes a Depth parameter. The code snippet below shows how this parameter is defined in the
ConvertToJsonCommand class contained in the Commands.Utility namespace.

Notable is the usage of the ValidateRange(1, int.MaxValue) attribute, which is used to validate that
the given depth is at least one. In the Automation namespace, the Attributes.cs file defines many of
these attributes that are commonly used for input validation. Obviously there are cases that are not that
common. For these, traditional if statements are used and exceptions thrown if the input is in an incorrect
format.

https://ephos.github.io/posts/2018-8-1-PowerShell-Markdown
https://docs.microsoft.com/en-us/visualstudio/modeling/map-dependencies-across-your-solutions?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/modeling/map-dependencies-across-your-solutions?view=vs-2017
https://github.com/PowerShell/PowerShell/blob/master/docs/dev-process/coding-guidelines.md
https://github.com/PowerShell/PowerShell/blob/master/docs/cmdlet-example/visual-studio-simple-example.md

19.5. DEVELOPMENT VIEW 457

Figure 19.1: Code snippet

Platform Dependent code. It often arises that there needs to a different flow depending on the operating
system. PowerShell chooses to use preprocessor directives to get platform-specific builds. The creates code
constructs of the following form:

#if UNIX
..... // UNIX specific code here

#else
.....

However, the code guidelines mention that runtime checks are acceptable if it greatly improves the readability
without causing performance concerns in performance-sensitive code.

Dependency Inversion. The DI principle states that classes should depend on abstractions rather than
concrete classes. PowerShell only follows this partially. From analyzing the code, it is clear that interfaces
are only used if there are two or more implementations of the interface.

Interface Extension. Sometimes interfaces need to be extended with new behavior. An example is the
ICommandRuntime interface in the Automation namespace, which defines the set of functionality that must
be implemented to directly execute an instance of Cmdlet. Later in the development process, the need arose
to add functionality to this interface to add support writing an informational record to the host or user. Rather
than adding this to the interface itself, PowerShell chooses to extends the ICommandRuntime interface with
a new interface, appropriately named ICommandRuntime2. Note that this mostly only applies to interfaces
and not classes.

19.5.3 Codeline Overview

PowerShell has build instructions for each mayor operating system61. Using Azure Pipelines, they run
nightly builds for each operating system62. As per their Testing Guidelines, contributors are expected to
write automated tests for their code, which are actively checked in Pull Requests.

61Microsoft, “Build Instructions.” [Online]. Available: https://github.com/PowerShell/PowerShell#building-the-repository. [Ac-
cessed: 10-Apr-2019]

62Microsoft, “Build Status.” [Online]. Available: https://github.com/PowerShell/PowerShell#build-status-of-nightly-builds. [Ac-
cessed: 10-Apr-2019]

https://github.com/PowerShell/PowerShell/blob/master/docs/testing-guidelines/testing-guidelines.md
https://github.com/PowerShell/PowerShell#building-the-repository
https://github.com/PowerShell/PowerShell#build-status-of-nightly-builds

458 CHAPTER 19. POWERSHELL

19.6 Technical Debt

Technical debt builds when development teams decide to implement an easy solution to their problem
without thinking about extendability, either because of time constraints or inexperience. These “easy”
solutions can take the shape of code which can not be extended without major refactors, or entire projects
which are no longer worthwhile to maintain.

19.6.1 Code Quality Debt

The repository was analyzed using CodeFactor and SonarQube63. The main issues found took the form of
overly complex methods and style errors. Both of these hinder the extensibility and readability of the code.
Ignoring auto-generated files, there are methods with a cyclomatic complexity up to 405, and classes with a
complexity up to 1743. There also are many exceptions which are ignored without explanation, making it
difficult to understand the intentional behavior.

An example of a specific file which contains multiple critical errors can be found here. Among other issues
it contains getters which do not return the expected value (either different fields or null), as well as setters
which set unrelated fields to their name. This is bug prone and should be refactored.

During a manual analysis multiple violations of the Liskov substitution principle were found. For example,
in the file ProviderBaseSecurity.cs on line 40 the method assumes that a subclass of Cmdlet implements
the ISecurityDescriptorCmdletProvider, which violates this principle. A similar violation can be found in
ProviderBase.cs on line 262.

There is also debt which has been confirmed, such is in RemoteSessionCapability.cs. As old releases
can not be changed, the debt addressed in this comment can not be resolved in later releases.

Figure 4.1. Hard-coded version numbers.

By analyzing the historic data provided by CodeFactor we can see the number of issues has decreased to
50% of its maximum, but is still not up to the defined standards. The initial spike in issues can be traced

63SonarQube, “PowerShell SonarQube report.” [Online]. Available: https://sonarcloud.io/dashboard?id=Geweldig_PowerShell.
[Accessed: 17-Mar-2019]

https://www.codefactor.io/repository/github/powershell/powershell/issues?category=Complexity&groupId=54
https://www.codefactor.io/repository/github/powershell/powershell/issues?category=Complexity&groupId=54&page=1
https://sonarcloud.io/project/issues?id=Geweldig_PowerShell&open=AWmGjwGfqQlSul0krTwZ&resolved=false&severities=CRITICAL&types=BUG
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/namespaces/ProviderBaseSecurity.cs
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/namespaces/ProviderBase.cs
https://sonarcloud.io/project/issues?fileUuids=AWmGjvRDqQlSul0krSOc&id=Geweldig_PowerShell&open=AWmGjv02qQlSul0krTIp
https://sonarcloud.io/dashboard?id=Geweldig_PowerShell

19.6. TECHNICAL DEBT 459

back to this commit, where more rules were introduced.

Figure 4.2. Code issue history.

19.6.2 Testing Debt

Because of the high complexity of the codebase it is infeasible to write exhaustive tests. For example this
file contains a method with a complexity of 405, meaning there should be 2405 (~8x10121) test cases to test
this single method exhaustively. Refactoring this method would improve testability and readability, as it has
already been informally split by using comments.

The file CodeCoverageAnalysis.md reports “hot spots of missing coverage”. It also states that “The
metrics used for selection of these hot spots were: # missing lines and likelihood of code path usage.”. This
is risky, as bugs on infrequently used paths can lead to major issues further along in the program.

The reported line coverage is 63.2%, which is much lower than one would hope. For example, when opening
this pull request breaking changes were almost introduced which were not covered by tests, and went
unnoticed by multiple reviewers before being resolved. Interestingly, the reported coverage was not updated
for over four months and has been manually updated for the release of PowerShell 6.2.0. It also does not
take into account branch coverage but only looks at line coverage.

https://github.com/PowerShell/PowerShell/commit/d67d87caf0b7e87a8fee6f03328113e332add3e9
https://www.codefactor.io/repository/github/powershell/powershell/source/master/src/System.Management.Automation/engine/Modules/ModuleCmdletBase.cs#L1452
https://www.codefactor.io/repository/github/powershell/powershell/source/master/src/System.Management.Automation/engine/Modules/ModuleCmdletBase.cs#L1452
https://github.com/PowerShell/PowerShell/blob/master/docs/testing-guidelines/CodeCoverageAnalysis.md
https://github.com/PowerShell/PowerShell/pull/9091

460 CHAPTER 19. POWERSHELL

Figure 4.3. Coverage generated by Codecov.

Furthermore, when manually running the coverage tools according to the documentation provided, we arrive
at a line coverage of 37.7% and a branch coverage of 29.7%. This shows a discrepancy in the tools used.

Figure 4.4. Coverage generated manually.

Historically the coverage jumps between 40% and 60%. There are single commits which make the line
coverage either drop or raise 20%, which shows there are issues with the way the coverage is calculated.It is
also worth nothing that this file states a subset of the test suite is run for continuous integration, meaning
functionality can break without being noticed by the CI.

https://github.com/PowerShell/PowerShell/blob/master/docs/testing-guidelines/getting-code-coverage.md

19.7. FUNCTIONAL DEBT 461

Figure 4.5. The coverage jumping 18% between commits.

19.6.3 Usage of Tools by The Community

As is best practice PowerShell makes use of automated tools which aid the developer in writing code
according to the standards defined by the development team. However, the development team does not take
these rules to heart and disagrees with the results. There are pull requests to tweak these tools and better
align them with the views of the development team. Unfortunately, these pull requests are often left open for
months as no decision can be reached.

As a result of the development team not agreeing with their tools there are many (easy to resolve) open issues,
which are not prioritized. Furthermore, the data these tools provide might even be completely incorrect. As
previously mentioned the test coverage had not been updated for four months. Because of this the metrics
do not represent the state of the codebase, meaning they are untrustworthy. These tools should lead to a
cleaner and better codebase, but are ignored and deemed inconvenient.

A major issue which arose because of the decision to ignore the metrics is that old code suffers from
technical debt which can not be resolved. For example, hard-coded version numbers can not be resolved, as
PowerShell prioritizes backwards compatibility which would be broken by resolving the issue. This means
if the analysis tools continue to be ignored, the codebase will continue to get worse over time with no way
to fix it. As such, the tools should be configured correctly and their results should be used as suggestions for
improvements, instead of being treated as annoyances.

19.6.4 Recommendations

The development team should prioritize paying their technical debt. The issues raised by CodeFactor should
either be resolved, or rules should be adapted to accurately reflect the intentions of the development team.
Files and methods should be split up to make the flow of code through the system easier to understand and
to reduce the cyclomatic complexity. Also, the test coverage should be accurately reported, as well as more
tests added, as there is uncommon intended behavior which is not covered by tests. All of these changes
would result in a more newcomer friendly project, while also making it easier to spot mistakes early on in
the process.

19.7 Functional Debt

Functional debt is not a widely used term in software development. Roman Predein mentioned that there are
only a few references to this phenomenon and that they do not match how he sees it. We therefore conclude
that, at the moment, functional debt has no “real” definition. Therefore, we explain in 5.1 what we regard as
functional debt. 5.2 explains the relation between this debt and backwards compatibility. The rest of the
subsections explain how it relates to PowerShell.

19.7.1 Defining Functional Debt

We consider functional debt to be the amount of mismatches between expected and actual functionality.

https://github.com/PowerShell/PowerShell/pull/8500
https://codecov.io/gh/PowerShell/PowerShell
https://dzone.com/articles/functional-debt-vs-technical-debt-in-software-deve

462 CHAPTER 19. POWERSHELL

By expected functionality we mean what functionality the user would expect. The actual functionality is the
functionality of the system. To explain the concept, we will distinguish three types of functional debt by the
way they are introduced into the system.

1. When the user expects to find a particular feature, but it does not exist. This is a result of improperly
documenting what the system should and should not be able to do.

2. When the developer and the user have different expectations of the behavior for a particular func-
tionality. This can be caused by the user misinterpreting the documentation due to inaccuracies or
vagueness. Inappropriate naming of functions also causes this difference.

3. When the intended functionality of a function differs from the actual functionality. This happens
through mistakes and can be tackled by having low technical debt, as it then becomes harder for bugs
to slip in.

As shown, usually functional debt can be prevented by having proper documentation and low technical debt.
However, it is impossible to protect a project from every form of functional debt. A system should therefore
acknowledge that functional debt can be introduced into the system, and should come up with a strategy to
tackle it.

19.7.2 Backwards Compatibility

Functional debt can become an even bigger issue when considering backwards compatibility. If following
backwards compatibility in the most strict sense possible, it would not be possible to fix any functional
debt introduced earlier from the second or third categories as discussed earlier, since that would change
the functionality of some already existing feature. If being less strict, it is possible to fix functional debt
by allowing some forms of breaking changes. A policy for solving technical debt can be considered an
important architectural design choice for systems where backwards compatibility plays a role.

To help us draw a relation between functional debt and backwards compatibility, we introduce a term called
the backwards compatibility cost. This cost is a measurement of the amount of damage when the contribution
is accepted in the context of backwards compatibility. In general, a contribution with high functionality
changes corresponds to a high backwards compatibility cost and vice-versa.

To any contribution, we can assign a backwards compatibility cost and an amount of functional debt it solves.
If we neglect technical debt, and if the backwards compatibility cost is lower than the amount of functional
debt it would solve, we should accept it. Else, if higher, reject.

19.7. FUNCTIONAL DEBT 463

Figure 5.1. Strong backwards compatibility commitment makes it harder to fix functional bugs

19.7.3 PowerShell’s Breaking Changes Contract

PowerShell’s breaking changes contract explains how PowerShell handles backwards compatibility. We will
view this contract from a functional debt perspective, which follows the rules defined earlier.

PowerShell has a serious commitment towards backwards compatibility. Any stable existing feature shipped
has to be introduced in any next version of PowerShell. New features which are marked as “in preview”
are still allowed to be modified. Breaking changes are classified into four “buckets”: Public Contract,
Reasonable Grey Area, Unlikely Grey Area, Clearly Non-Public.

The Public Contract and Clearly Non-Public buckets follow a set of rules to decide whether it should be
accepted. This can be interpreted as assigning either zero (when the breaking change is allowed) or infinity
(when not allowed) backwards compatibility cost to contributions within these buckets.

https://github.com/PowerShell/PowerShell/blob/master/docs/dev-process/breaking-change-contract.md

464 CHAPTER 19. POWERSHELL

For the two grey areas, the backwards compatibility cost has to be determined by judgement, and functional
debt has to be weighed against the backwards compatibility cost.

As explained earlier, when dealing with backwards compatibility we should think about how to handle bugs.
PowerShell allows this under some circumstances, by allowing the change of “any existing behavior that
results in an error message”. On the other hand, “It doesn’t matter if the existing behavior is ‘wrong’ ” and

“we must be extremely sensitive to breaking existing users and scripts”. This shows that PowerShell has
thought of this, by providing some kind of upper and lower bound of when the fix is allowed.

19.7.4 Example

Pull request #1901 is a nice example where commitment towards backwards compatibility shows how
functional debt grows over time.

@bagder thinks adding curl and wget was a “breaking change” and should therefore be removed. If we
would map @bagder’s view to ours, the expected functionality is that PowerShell should never overwrite
commonly used commands. He received a lot of support from others and thus it is reasonable to think the
contribution would reduce functional debt.

@lzybkr says that at the time of adding the alias, “the design decision was consistent”. At the time,
@lzybkr had a different interpretation of expected functionality. However, he also says that it may have
been misguided to add the aliases in the first place. Due to it being a breaking change, the pull request got
closed. However, we think that if backwards compatibility was of less importance, the discussion would be
pointed towards removing as much functional debt as possible.

This showed that commitment towards backwards compatibility can lead to functional debt, which can
be very hard or impossible to fix over time. If, at the time of implementing, one would have noticed it
would increase functional debt, the issue could have been provoked and resolved, since it would not have
introduced breaking compatibility cost.

19.7.5 Concluding Remarks

There are numerous ways to prevent functional debt being introduced. Preventing functional debt is
important when considering backwards compatibility. We think PowerShell can improve on this debt by
focusing on the following:

• Have accurate documentation about the expected functionality of the system.
• Carefully consider introducing any new feature before shipping it.
• Provide indications how to measure backwards compatibility cost and functional debt to help in the

decision making.
• Reduce technical debt so bugs are less likely to occur.

19.8 Conclusion

To quote the user @mklement0:

PowerShell has the potential to become the lingua franca of the shell world.

https://github.com/PowerShell/PowerShell/pull/1901
https://github.com/bagder
https://github.com/bagder
https://github.com/lzybkr
https://github.com/lzybkr
https://github.com/mklement0

19.9. REFERENCES 465

This means that PowerShell has the potential to become the shell that is used by developers from different
backgrounds. However, as the architecture shows, there is much to improve in order to achieve this potential.

PowerShell has:

• a good governance model and integration policy. Pull requests are thoroughly examined by those
responsible for merging them.

• a module structure that could potentially use some organization. Developers might find it difficult
to know where they will need to place their code at, or where to find the implementation of certain
functionality.

• simple and good working common design patterns in the code.
• to pay more attention to technical debt. There is unmaintainable code due to high cyclomatic

complexity, and therefore it also has low testability. This in turn reflects on the functional debt.
• an understandably strict policy on backwards compatibility. However, this causes much of the

functional debt in the system to be unpayable.

All things considered, PowerShell does a relatively good job on their architecture. We hope that the future
shows that it is possible to overcome the challenges which are currently present in the project.

19.9 References

466 CHAPTER 19. POWERSHELL

Chapter 20

PyTorch

By Ziyu Bao, Tian Tian, Yuanhao Xie, Zhao Yin from TU Delft.

467

https://github.com/ZiyuBao
https://github.com/ttup7777
https://github.com/BARBAPAPA215
https://github.com/zhaoyin666

468 CHAPTER 20. PYTORCH

20.1 Abstract

PyTorch is an open-source deep learning platform. In this report, we systematically analyzed it and obtained
a structural view of its architecture. Analysis include its stakeholders, context view, development view,
technical debt and deployment view.

20.2 Table of Contents

1. Introduction
2. Stakeholder Analysis
3. Context View
4. Development View
5. Technical Debt
6. Deployment View
7. Conclusion
8. References
9. Appendix

20.3 Introduction

PyTorch is created and developed primarily by Facebook’s artificial intelligence group as an open-source
deep learning architecture that provides a seamless path from research prototyping to production deployment.
Everyone could use it to build its own customized neural networks or perform fast matrix operations on
GPUs using the torch component. In this report, we want to systematically analyze its architecture.

20.4 Stakeholder Analysis

In this section, we will perform a PR analysis, identify the stakeholders and other kinds of stakeholders and
identify integrators of Pytorch. We also present a Power vs. Interest grid and give an analysis of the figure.

20.4.1 PR Analysis

A codification process is in the appendix.

The author of the pull request creates a new functionality and shows the usage to whom it will concern.
After the showcase, two main members of PyTorch have a lot of reviews, suggestions, technical questions
and vital decisions in the conversations of the pull request which are basically about, in the code level,
improvements, small bugs, big issues, abstract representations (e.g., one attribute should morally be included
in another class) and connections with other parts of PyTorch. This issue-solution pattern as an atom or
a routine circle is repeated many times before a final approvement is reached to ensure the whole process

20.4. STAKEHOLDER ANALYSIS 469

trackable and efficient. Experienced reviewers largely influence the enhancement and complement of the
new functionality or the code to be specific.

Looking over all the conversations during which the code base of the original pull request gets improved and
reconstructed, I notice that the members of PyTorch expect to see this new change thus the whole process
is going quite fast and active. Meanwhile, the author is able to fully understand the suggestions, follows
them strictly and comments every subtle change to make things clear, which saves quite a lot of time. With
efficient and extensive cooperative efforts of the author and reviewers, the pull request becomes good enough
and is naturally ready to merge.

After this kind of laborious analysis, we are quite sure what it is about and what is going on within this
specific pull request. Besides, whether a pull request would be accepted depends a lot on the main developers’
perspective and its external connection with the interest of the open source project.

20.4.2 Stakeholders

According to stakeholders in Chapter 9 of Rozanski and Woods 1, we classified stakeholders into 11 different
types. Table below introduces each type of stakeholders in detail, including a short summary and description.

Type Stakeholders Summary Description

Developers Core develop-
ers(@fmassa,@apaszke,
etc.) and contributors

Developers are the
largest group of all
stakeholders. Anyone
involved in the
software development
can be seen as a
developer.

@apaszke @fmassa are
core developers. They
are almost involved in
every pull request.
They are also
responsible for merging
the accpted pull
requests. Up to now,
there are 994
contributors who
developed Pytorch on
GitHub, including
aspects like system
design and code
writing.

Acquirers Organizations, research
institutes

Acquirers oversee the
procurement of the
software and give the
financial support. This
kind of stakeholders
usually is the most
important part, because
they can control the
future roadmap of the
software.

Facebook is the main
financial supporter of
PyTorch. In addition,
Facebook, the Idiap
Research Institute, New
York University (NYU)
and NEC Labs
America hold
copyrights of Pytorch.

1William Del Ra, III. 2012. Software systems architecture: second edition by Nick Rozanski and Eoin Woods. SIGSOFT Softw.
Eng. Notes 37, 2 (April 2012), 36-36. DOI: https://doi.org/10.1145/2108144.2108171

https://www.facebook.com
https://www.facebook.com
http://www.idiap.ch/en
http://www.idiap.ch/en
https://www.nyu.edu
https://www.nyu.edu
http://www.nec-labs.com
http://www.nec-labs.com

470 CHAPTER 20. PYTORCH

Type Stakeholders Summary Description

Assessors Developers, internal
assessment department
and external legal
entities

Assessors supervise
whether the
development or test of
the software meet the
legal regulations.

Developers, in addition
to developing the
system, also assess if
the system is
confronted to standards
and legal regulations.
There are also external
legal departments that
always check the
system’s legal
compliance.

Communicators Community
participants, teachers

Communicators
manage to explain the
system to other
stakeholders.

GitHub,
PyTorchDiscuss and
Slack are three official
communities for
stakeholders to ask
questions and answer
questions. In addition,
PyTorch tutorials can
be found in many
webstations.

Maintainers Some developers Maintainers guarantee
the normal operating of
the system.

Some developers are in
charge of the daily
maintenance of Pytorch
on GitHub. @ezyang is
one of the maintainers.
He has claimed a
method to enable
non-facebook
employees to get their
pull requests merged.

Production engineers @Yinghai Lu and
@Duc Ngo and other
engineers

Production engineers
are in charge of the
deployment of
hardware and software
environments in the
system.

@Yinghai Lu and
@Duc Ngo are
software engineers of
PyTorch. They take
charge of tensors and
dynamic neural
networks in python
with strong GPU
acceleration.

https://www.GitHub.com
https://discuss.pytorch.org/
https://slack.com/

20.4. STAKEHOLDER ANALYSIS 471

Type Stakeholders Summary Description

Suppliers Libraries, GitHub Suppliers provide the
hardware, software, or
infrastructure which
the system needs while
developing.

PyTorch has a rich
ecosystem of tools and
libraries to support it.
Alibaba (Arena):
Alibaba cloud’s deep
learning solution-Arena
supports the PyTorch
frameworks. fastai,
Flair, Glow, GPyTorch,
Horovod, Ignite,
ParlAi, PyroAi,
TensorLy and Translate
are all suppliers
providing services for
PyTorch. What’s more,
GitHub is the main
supplier for its
development.

Support staff Developers, Teachers,
Customer service

Support staff (including
technical support,
customer service, etc.)
support the product or
system when it runs.

Developers have the
right to give technical
support on
commnuities. Teachers
help users for running
the system. Customer
services of PyTorch
provide service for
solving the problems
from users.

System administrators Main engineers
@Yinghai Lu and
@Duc Ngo and other
engineers, core
developers

System administrators
coordinate the overall
development.

The main engineers
take charge of the
operation of PyTorch.
Core developers
control the evolution
and development of
different projects on
PyTorch.

Testers Developers
@MlWoo,etc.

Testers systematically
test the system to
determine if it is
suitable for deployment
and use.

One of the testers is
@MlWoo. He
benchmarked the
functionality of CNN
of PyTorch on different
mainstream CPU
platforms

https://docs.fast.ai/
https://github.com/zalandoresearch/flair
https://github.com/pytorch/glow
https://gpytorch.ai/
https://github.com/horovod/horovod
https://github.com/pytorch/ignite
http://parl.ai/
http://pyro.ai/
http://tensorly.org/stable/home.html
https://github.com/pytorch/translate
https://www.GitHub.com

472 CHAPTER 20. PYTORCH

Type Stakeholders Summary Description

Users All developers and
some organizations
using PyTorch

Users experience and
use Pytorch and have
the right to give
feedback. Developers
also use Pytorch.

AllenNLP is an
open-source research
library built on
PyTorch for designing
and evaluating deep
learning for NLP. ELF
is a platform for game
research that allows
developers to test and
train their algorithms in
various game
environments.
Stanford University
uses Pytorch on their
researches of new
algorithmic approaches.
Udacity uses PyTorch
to educate the next
wave of AI innovators.
Salesforce uses
PyTorch to push the
state of the art in NLP
and Multi-task
learning.

20.4.3 Going beyond Rozanski and Woods classification

Competitors: Competitors can be one of the stakeholders that concern the development of Pytorch. In this
case, TensorFlow is a competitor. It is based on Theano and developed by Google. Since Pytorch releases,
Pytorch obtains lots of attention and is considered to be a better version than Tensorflow.

Founders: Founders can be considered as the first developers of a software. In our project, PyTorch is
created by an AI research team of Facebook. The original authors include Adam Paszke, Sam Gross, Soumith
Chintala, Gregory Chanan. They used the torch framework and implemented it on Python environment.

20.4.4 Integrators/Reviewers in PyTorch

The core developers such as @apaszke @fmassa are integrators. They are architects of PyTorch. Their
challenges in developing Pytorch are checking all the pull requests and make sure only the pull requests
which pass the integration checks can be merged. In this way, the project can keep stable. The integrators
almost involve in every pull requests. They use automatic code checking to reduce the review workload.
If there are mistakes in the pull requests, they ask the contributors to explain and they discuss with other
integrators. The integrators are also responsible for providing more context to a particular issue if people
would like to implement a feature or bug-fix for an outstanding issue and need more information.

https://allennlp.org/
https://github.com/pytorch/elf
https://www.stanford.edu
https://eu.udacity.com
https://www.salesforce.com/nl/?ir=1

20.4. STAKEHOLDER ANALYSIS 473

20.4.5 Contact Persons

Pytorch has many developers who are the main members of the team. We want to contact them to better
understand Pytorch. We just went to their github pages and find their email addresses if they have provided
them. We also chose to leave a comment in the discussion they involved to contact them. Here is a list that
we contacted: Zeming Lin, Yuandong Tian and Edward Yang.

20.4.6 Power vs Interest Grid

The figure below shows the Power & Interest grid.

Figure 20.1: Power & Interest grid

High power and high interest: Core developers have the right to accept project modifications but not like

474 CHAPTER 20. PYTORCH

administrators and production engineers who have more power. Testers, maintainers, and assessors take
responsibility of testing the system, managing the evolution, and overseeing the system’s conformance to
standard, respectively. Therefore, they have a slightly lower power compared with core developers. Testers,
maintainers and assessors have the same level interest as core developers. Acquirers oversee the procurement
of the system and give the financial support. Within them, Facebook is the founder. They usually are the
most important part, as they can control the future roadmap of the software. Therefore, they have the highest
interest and power.

Low power and high interest: Users use PyTorch and cares about its development. But they do not have
high power compared with stakeholders described above. Competitors do not have power on Pytorch, but
they are highly interested in every detail of Pytorch.

Low power and low interest: Suppliers have their services used by Pytorch but they do not necessarily
care about Pytorch and they do not have power in Pytorch either.

Communicators and Support Staff: Communicators mainly focus on creating documentation and training
material to explain PyTorch. In general, they do not have other power. Support Staff help users to run
the system. They have no decision power. Therefore, both of them are mildly interested in PyTorch with
relatively low power.

20.4.7 Stakeholder Analysis conclusion

In conclusion, we make a brief analysis on a pull request. We then introduce many types of stakeholders and
specify what they concern and where they are involved in Pytorch. There are also two types of stakeholders
beyond R&W’s classification which are founders and competitors. They have different interest and power to
the project. Integrators are identified above. Their challenges and merging strategy are discussed. At last,
we prensent a Power&Interest of the stakeholders of Pytorch.

20.5 Context view

This session describes the scope and responsibilities of Pytorch and its relationships with external entities.
The interface with external entities will be described in detail in a diagram.

20.5.1 System Scope and Responsibilities

Pytorch has its trace of development of its scope and responsibilties. In the Roadmap to Pytorch 1.0, the
Pytorch team has described their thoughts on the scope of Pytorch 1.0 compared with Pytorch 0.2, 0.3
and 0.4. We can learn from their thoughts and define the scope and responsibilities of Pytorch as follows:
1. Tensor computation (like NumPy) with strong GPU acceleration 2. Deep neural networks built on a
tape-based autograd system 3. Support for wide AI uses 4. Good for research and hackability 5. Support
efficient industry production at massive scale 6. Support exporting models to Python-less environment 7.
Support debugging for exported models 8. Support user-written C++ extensions 9. Support for platforms of
Caffe2 (iOS, Android, Raspbian, Tegra, etc) and will continue to expand various platforms support

https://pytorch.org/blog/the-road-to-1_0/

20.6. DEVELOPMENT VIEW 475

20.5.2 Context Diagram

The context diagram shows interfaces of Pytorch with external entities. The external entity can be a person,
an organization or a system that “implements, offers or uses services of Pytorch, or manages, provides or
uses data of Pytorch” 2. The diagram presents the data/services transferring between external entities and
Pytorch.

20.5.3 External Entities

External entities are examined in detail as follows: * Communication: Communications are mainly done in
GitHub, PyTorchDiscuss and Slack. Communicators supply data to Pytorch in the form of conversational
materials to be studied to help Pytorch improve.

• Storage: AWS, Google and Microsoft all have provided support of their cloud platforms for data
storage of PyTorch.

• Tools: Horovod is a distributed training framework that can be used by PyTorch. Pytorch Geometry is
a library of PyTorch for geometric computer vision. TensorBoardX is a visulization tool that can log
events happening e.g. during training of a neural network. Translate extends PyTorch functionality to
train for machine translation models.

• Users: PyTorch is used from industry to acedemia. When it is used in industry, it is used as part of the
core business of companies, like Alibaba or Salesforce, to support deep learning framework. When it
is used in academia, PyTorch can support researches by providing new algorithmic approaches, like
in Stanford University. These users in turn also provide feedback and data to Pytorch to train with,
which makes them an external entity.

20.6 Development View

The development view of PyTorch describes its code structure and dependencies, build and configuration of
deliverables, system-wide design constraints and system-wide standards to ensure technical integrity 3. We
here analyze the module structure model, common design models and codeline model.

20.6.1 Module Structure Model

The main structure of PyTorch in a architectural view is shown in the figure below.

2William Del Ra, III. 2012. Software systems architecture: second edition by Nick Rozanski and Eoin Woods. SIGSOFT Softw.
Eng. Notes 37, 2 (April 2012), 36-36. DOI: https://doi.org/10.1145/2108144.2108171

3William Del Ra, III. 2012. Software systems architecture: second edition by Nick Rozanski and Eoin Woods. SIGSOFT Softw.
Eng. Notes 37, 2 (April 2012), 36-36. DOI: https://doi.org/10.1145/2108144.2108171

https://www.GitHub.com
https://discuss.pytorch.org/
https://slack.com/
https://aws.amazon.com/
https://www.google.cn/
https://www.microsoft.com/
https://github.com/uber/horovod
https://github.com/arraiy/torchgeometry
https://github.com/lanpa/tensorboardX
https://github.com/lanpa/tensorboardX
https://www.alibaba.com
https://www.salesforce.com/eu/
https://www.stanford.edu

476 CHAPTER 20. PYTORCH

Figure 20.2: Context view

20.6. DEVELOPMENT VIEW 477

Pytorch Architecture. Inspired by 4

The top-level Python library of PyTorch (please refer to the following section) exposes easy-to-understand
API for users to quickly perform operations on tersors, build and train a deep neural network. This library
provides interface but doesn’t really execute the computations. Instead, it delivers this job down to its
efficient computation engines written in C++.

These engines on the middle-level of module structure consist of autograd for computing DCG and
providing auto-differentiation, JIT (just-in-time) compiler for optimizing computation steps that are traced,
ATen as a C++ tensor library that wraps low-level C library for PyTorch (no autograd support).

The low-level C or CUDA library does almost all the intensive computations assigned by upper-level API.
These libraries provide efficient data structures, the tensors (a.k.a. multi-dimensional arrays), for CPU and
GPU (TH and THC, respectively), as well as stateless functions that implement neural network operations and
kernels (THNN and THCUNN) or wrap-optimized libraries such as NVIDIA’s CuDNN 5.

ATen wraps those low-level libraries in C++ and then exposes to the high-level Python API. Similarly, the
neural network function libraries (low-level) are automatically wrapped towards the engine and Python API
(see the two curved arrows). In other words, the low-level libraries can be utilized not only by its standard
wrapper ATen but also top-level Python APIs and mid-level engines. This kind of connection keeps the code

4Deep Learning with PyTorch by Eli Stevens Luca Antiga. MEAP Publication. https://livebook.manning.com/#!/book/deep-
learning-with-pytorch/welcome/v-7/

5Deep Learning with PyTorch by Eli Stevens Luca Antiga. MEAP Publication. https://livebook.manning.com/#!/book/deep-
learning-with-pytorch/welcome/v-7/

478 CHAPTER 20. PYTORCH

loosely coupled, decreasing the overall complexity of the system and encouraging further development 6.

20.6.2 Component Overview

PyTorch as a libary consists of the following components (also see Figure 3 for the connection with the
module structure): - torch: a Tensor library like NumPy, with strong GPU support 7. It contains data
structures for multi-dimensional tensors, and defines many mathematical operations based on these tensors.
Different from its analogue NumPy, all the data structures and tensor operations can be seamlessly performed
from CPU to GPU which would accelerate the computation by a huge amount. - torch.autograd: a
tape-based automatic differentiation library that supports all differentiable Tensor operations in torch 8.
This functionality greatly differs PyTorch from other machine learning or deep learning frameworks like
TensorFlow 9, Caffe 10 and CNTK 11 which require users to restart from scratch at beginning in order to
change some minor behaviors of the neural network once created. While in PyTorch, a technique called
reverse-mode auto-differentiation is adopted to facilitate differentiation process so that the computation
graph is computed in the fly which leaves users more time to implement their ideas. - torch.nn: a neural
networks library deeply integrated with autograd designed for maximum flexibility 12. This component
or module in PyTorch provides a high-level functionality for us to build and train a deep neural network
easily without pain. It contains many types of neural network layers like convolutional layers, recurrent
layers, padding layers and normalization layers. - torch.multiprocessing: Python multiprocessing, but with
magical memory sharing of torch Tensors across processes. Useful for data loading and Hogwild training 13.
This component wraps native Python multiprocessing module using shared memory to provide shared views
on the same data in different processes. - torch.utils: DataLoader, Trainer and other utility functions for
convenience 14. It consists of five submodules - torch.utils.bottleneck for debugging bottlenecks in
the program, torch.utils.checkpoint for checkpointing a model or part of the model and etc.

20.6.3 Common Design Model

This section uses a common design model to analyze how PyTorch tries to achieve its developmental
approach. #### Common processing

Common processing identifies tasks that benefit greatly from using a standard approach across all system
elements.

6Deep Learning with PyTorch by Eli Stevens Luca Antiga. MEAP Publication. https://livebook.manning.com/#!/book/deep-
learning-with-pytorch/welcome/v-7/

7PyTorch github website, https://github.com/pytorch/pytorch.
8PyTorch github website, https://github.com/pytorch/pytorch.
9Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing
Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from tensorflow.org

10Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv:1408.5093>arXiv:1408.5093 2014

11Seide, Frank & Agarwal, Amit. (2016). CNTK: Microsoft’s Open-Source Deep-Learning Toolkit. 2135-2135.
10.1145/2939672.2945397.

12PyTorch github website, https://github.com/pytorch/pytorch.
13PyTorch github website, https://github.com/pytorch/pytorch.
14PyTorch github website, https://github.com/pytorch/pytorch.

https://www.tensorflow.org

20.6. DEVELOPMENT VIEW 479

Use of third-party libraries. PyTorch makes use of third-party libraries for build, doc generation, high-level
operations and etc. Some of them are: - python-future: a missing compatibility layer between Python 2 and
Python 3 15. - numpy: a fundamental package needed for scientific computing with Python 16. - pyyaml: a
next generation YAML parser and emitter for Python 17. - setuptools: a fully-featured, actively-maintained,
and stable library designed to facilitate packaging Python projects 18. - six: a Python 2 and 3 compatibility
library that provides utility functions for smoothing over the differences between the Python versions with
the goal of writing Python code that is compatible on both Python versions 19. - typing: a Python library
support for type hints. - matplotlib: a Python 2D plotting library which produces publication-quality figures
in a variety of hardcopy formats and interactive environments across platforms 20.

Documentation management. Well documented code benefits code readability, practical implementation
and issue tracing. PyTorch uses Google style for formatting docstrings. Length of line inside docstrings
block must be limited to 80 characters to fit into Jupyter documentation popups. For C++ documentation it
uses Doxygen and then convert it to Sphinx via Breathe and Exhale 21.

20.6.3.1 Standard design approaches

Standard design approaches identifies how to deal with situations where implementations of a certain aspect
of an element will have a system-wide impact.

API design standardization. (resource from 22) The essential unit of PyTorch is the Tensor. As the Tensor
is used in Python for users but implemented in C, it needs API design to wrap it up so that user can interact
with it from the Python shell. PyTorch first extends the Python interpreter by CPython’s framework to define
a Tensor type that can be manipulated from Python. The formula for defining a new type is as follows:
1) create a struct that defines what the new object will contain and 2) define the type object for the type.
Then PyTorch wraps the C libraries that actually define the Tensor’s properties and methods by CPython
backend’s conventions. The Tensor.cpp file defines a “generic” Tensor and PyTorch uses it to generate
Python objects for all the permutations of types (float, integer, double and etc.). PyTorch takes the
custom YAML-formatted code and generates source code for each method by processing it through a series
of steps using a number of plugins. Finally to generate a workable application, PyTorch takes a bunch of
source/header files, libraries, and compilation directives to build an extension using Setuptools.

Contributing standardization. As PyTorch is an open source, everyone is free to contribute to the
repository. In order to keep maintainability, reliability, and technical cohesion of the system, the PyTorch
Governance (consisting of code maintainers, core developers and some other contributors) composed a
contributing tutorial to standardize the design process. The tutorial provides useful guidelines for coding,
parameter configuration, testing, writing documentation and all other tips and rules for qualified contribution.

15Python-future github website. https://github.com/PythonCharmers/python-future
16Numpy github website. https://github.com/numpy/numpy
17Pyyaml github website. https://github.com/yaml/pyyaml
18Setuptools documentation. https://setuptools.readthedocs.io/en/latest/
19Six github website. https://github.com/benjaminp/six
20Matplotlib github website. https://github.com/matplotlib/matplotlib
21PyTorch github website, https://github.com/pytorch/pytorch.
22PyTorch blog. https://pytorch.org/blog/a-tour-of-pytorch-internals-1/

480 CHAPTER 20. PYTORCH

20.6.4 Codeline Model

20.6.4.1 Source Code Structure

PyTorch has its code structure to make it easy for developers to locate the code they want to change. We
show its main directory below while the full directory could be seen on here.

https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md#codebase-structure

20.6. DEVELOPMENT VIEW 481

482 CHAPTER 20. PYTORCH

20.6.4.2 Build approach

For development build, PyTorch and its third-party frameworks are built using Python Setup tools. We need
to specify the command parameters if only part of the components are required to rebuild Pytorch. For users
build, both package managers - Anaconda and pip could be used to build the whole project.

20.6.4.3 Release process

PyTorch has released 21 versions since 2016. We divided them into three stages. At the beginning, Pytorch
was busy with developing new functions, so it released a new version every month, or even twice a month.
In the second stage, Pytorch tended to be stable, so it released nearly every two months. In the recent stage,
Pytorch focused more on fixing existing bugs than developing new functions, so it released at a frequency
lower than before.

20.7 Technical Debt

Technical debt reflects the implicit cost of choosing a simple solution instead of using a better method that
takes a longer time. In this section, we first identify different forms of technical debts which include the
keywords/tags, the complexity trend of the hotspot, code smell(temporal coupling and duplicated code), and
bugs. We also list the methods to reduce or avoid these technical debts. Then, we discuss the testing debt. In
the end, the evolution of technical debt is explained. ### Identifying Technical debt

The tools we used to identify the technical debts are listed below:

Name of tool Usage

CodeScene Identifying hotspot, complexity trends of the
hotspot, and temporal coupling

Github-grep Finding keywords like TODO, FIXME and XXX
SonarQube Identifying duplications and finding bugs

The reasons we decided to use these tools are: 1. CodeScene is an easily operated tool and has several
intuitively functions to show the code structure and point out some parts that really matter, for example,
the hotspots. We choose three functions to identify hotspot, complexity trends and temporal coupling. 2.
Github-grep is a tool of Git to search everything you want in the code. We used this tool to find all three
keywords: TODO, FIXME and XXX. 3. SonarQube is a powerful code quality management tool. It detects the
code quality in the following aspects: bugs, vulnerabilities, code smells, code coverage and duplications.
Since some of those aspects we have used codescene to analyze, we mainly analyze the duplications and
the bugs by using SonarQube.

20.7. TECHNICAL DEBT 483

20.7.0.1 Keywords/tags

Keywords/tags indicates the technical debts which the developer noticed but did not fix. As along with the
accumulation of tags, some of them may be forgotten, or become bugs 23. Furthermore, these keywords may
clutter the code and have negative effects on code comprehension 24. This large amount of technical debts
may make developers difficult to comprehend the code.

We analyzed three kinds of keywords/tags “TODO”s, “FIXME”s and “XXX”s in PyTorch. We found that
even though the tags have different names, but their contents are quite similar. We found 1098 “TODO”s.
They are almost everywhere in PyTorch. 432 “TODO”s are in caffe2. There are 118 “FIXME”s, they are
mainly in aten, caffe2, test, torch. There are 119 “XXX”s identified, 72 of them are in the main PyTorch
component-torch. Some of the tags mentions who will fix it, none of them mentions when they will be fixed.
Following are the examples:

20.7.0.2 Complexity trend of hotspots

The reason why we analyze the hotspots is that the code with the high technical debt can be found by
analyzing the ‘hotspot’ 25. Hotspots are those large, complex code which the developers have to work often
with. We usedCodescene to analyze the hotspots.

As shown in the figure below, each blue circle represents a package in the code, and the red dots are the
hotspots 26.

23Margaret-Anne Storey, Jody Ryall, R. Ian Bull, Del Myers, Janice Singer, “TODO or To Bug:Exploring How Task Annotations
Play a Role in the Work Practices of Software Developers”, InProceedings of the 30th Int’l. Conf. Software Engineering (ICSE ’08),
pp. 251-260, 2008.

24Margaret-Anne Storey, Jody Ryall, R. Ian Bull, Del Myers, Janice Singer, “TODO or To Bug:Exploring How Task Annotations
Play a Role in the Work Practices of Software Developers”, InProceedings of the 30th Int’l. Conf. Software Engineering (ICSE ’08),
pp. 251-260, 2008.

25A Crystal Ball to Prioritise Technical Debt in Monoliths or Microservices: Adam Tornhill’s Thoughts.
https://www.infoq.com/news/2017/04/tornhill-prioritise-tech-debt

26A Crystal Ball to Prioritise Technical Debt in Monoliths or Microservices: Adam Tornhill’s Thoughts.
https://www.infoq.com/news/2017/04/tornhill-prioritise-tech-debt

484 CHAPTER 20. PYTORCH

Figure 20.3: Hotspot

20.7. TECHNICAL DEBT 485

Complexity trends denote how do the hotspots get more complicated over time. The hotspot with fast-
growing complexity should be prioritized for refactoring to reduces the risk of technical debt. Otherwise, as
soon as the complexity becomes unmanageable, the code modifications become really difficult 27.

As shown in the figure below, the complexity trend of hotspot pytorch/test/test_jit.py grows rapidly
since June 2018. This accumulating complexity is a sign that the hotspot needs refactoring 28 to reduce the
risk of technical debt.

Figure 20.4: Complexity trends of pytorch/test/test_jit.py

20.7.0.3 Temporal coupling

Temporal coupling is a kind of codesmell. The large codebases with multiple developers may lead to
technical debt. Even though at the beginning of development, developers separate the modules on purpose,
the couplings may still form during development. The couplings among different modules lead to rigid
system design and the difficulty of extending the features 29. Temporal coupling indicates how two or more
modules change together over time. It can be obtained by calculating how often a module changes together
with other modules. We used Codescene to visualize the temporal coupling.

In the figure below, the lines that the modules which are modified together. The thicker lines, the stronger of
temporal coupling.

27A Crystal Ball to Prioritise Technical Debt in Monoliths or Microservices: Adam Tornhill’s Thoughts.
https://www.infoq.com/news/2017/04/tornhill-prioritise-tech-debt

28Codescene Guides-COMPLEXITY TRENDS https://codescene.io/docs/guides/technical/complexity-trends.html
29Coupling analysis https://github.com/smontanari/code-forensics/wiki/Coupling-analysis

486 CHAPTER 20. PYTORCH

Figure 20.5: Temporal coupling

The coupling degrees of the pairs shown in the table in the right of the Figure are quite strong. For example,
the coupling degrees of the third pairs are 95%. It means that 95% chance of changing one file results in a
change in another file. The temporal coupling sometimes suggests a refactoring. As you can see the coupling
degrees of the first pairs are 100%. The figure below shows the code of add_cpu.cc and mul_cpu.cc.
These two files are more like copy-paste work.

20.7.0.4 Duplications and existing bugs

To identify duplications and existing bugs, we utilized SonarQube.

Duplicates: Duplicates illustrate those recurring code. It belongs to code smell which is the
potential threat in software development. Developers should keep less duplicated code to make
the code clean. The figure below shows all the duplicates in PyTorch. There are overall 3.6%
duplicates. It should be noticed that the test files contain the most duplicates. In our analysis,
test files need to test different cell but theoretically use the same way, so the codes look like the same.

20.7. TECHNICAL DEBT 487

Figure 20.6: Code of add_cpu.cc and mul_cpu.cc

Bugs: We also used SonarQube to find bugs in Pytorch. Bugs can lead to a really bad impact on system and
developers should try their best to avoid creating bugs. In our cases, the tool detected 98 bugs in the current

488 CHAPTER 20. PYTORCH

release. It is shown in the first figure below. The bugs identifed by SonarQube indicate almost the same
problem as shown in the second figure below: Those codes contain the identical sub-expressions on both
sides of operator “or”. This kind of codes were recognized as bugs. It should be noticed that those codes
were written 2 years ago, which can be considered as a long-time debt. Those codes should be fixed for
better developing.

Figure 20.7: Bugs in documents

Figure 20.8: Specific bugs

20.7.0.5 Overview of the solutions

After the analysis, we came up with the solutions to reduce or solve the technical debts:

• To reduce the technique debt casued by accumulation of the keywords, the progress of fixing the

20.7. TECHNICAL DEBT 489

issues should be tracked. This can be done by appointing an issue tracker and ask developers to add
more details in the keywords/tags, such as the name who is responsible for the issue, deadline.

• The complexity trend of the hotspots should be tracked regularly, If the complexity trend increases
sharply, the hotspot should be appropriately redesigned and refactored.

• The code smell such as the temporal coupling and the duplicated code should be track. Extract the
common part into a module remove the duplications.

20.7.1 Identifying Testing Debt

Figure 20.9: Testing coverage

Testing debt exists due to the lack of testing or poor quality of testing. In this section, we analyze the testing
debt of PyTorch.

By using a Python IDE - PyCharm, we get a detailed test coverage showing the files coverage of the whole
project and lines coverage of every single Python file (see the figure above). Only 5% files and 32% lines
are covered which are quite low. The reasons are two folds. One is that the tests (such as GPU test and
distribution test) we run are not complete and the other one is that files in directories (e.g., aten, c10) are in
C/C++ which could not be included.

Despite these exceptions, the test coverage is still not enough for such a widely used open source project. We
can see that the torch module is coveraged due to it is the core module that currently being used frequently.
Caffe2 and some other modules are not covered since they are rather complicated or too old, developers did
not concern more on those modules. Thus, those files that not being test should be seen as test debt.

490 CHAPTER 20. PYTORCH

20.7.2 The evolution of Technical Debt

Since Pytorch was the next generation products of torch, it was developed officially since 2016. Pytorch was
mainly developed on Github to control its different releases. As shown in the figure below, the contributions
increased dramatically since 2016.

Figure 20.10: Contributions to master, excluding merge commits

According to the releases showing on the Github, Pytorch has released several versions which from v0.1.1
to v1.0.1. We summarized those versions fixing bugs into a table. We can see the evolution of technical debt
from this table. At the first six versions, Pytorch focus on developing new functions regardless of fixing
bugs, we considered this stage as developing stage. Then, when the system gradually keep in stable, the
developers begin bugs fixing. In the recent versions, since the early versions accumulated more technical
debt and gradually effect the system daily running, developers focus on fixing bugs and check errors.

Version Bug Fix Time

v0.1.1 alpha-1 version, did not mention
bugfix

Aug 24, 2016

v0.1.2 alpha-2 version, did not mention
bugfix

Sep 1, 2016

v0.1.3 alpha-3 version, did not mention
bugfix

Sep 16, 2016

v0.1.4 alpha-4 version, did not mention
bugfix

Oct 3, 2016

v0.1.5 alpha-5 version, did not mention
bugfix

Nov 8, 2016

v0.1.6 beta version, did not mention
bugfix

Jan 21, 2017

v0.1.7 A bugfix release with small
features: fixed 13 bugs

Jan 26, 2017

v0.1.8 A bugfix release with small
features: fixed 10 bugs

Feb 3, 2017

v0.1.9 fixed 7 bugs Feb 17, 2017

20.8. DEPLOYMENT VIEW 491

Version Bug Fix Time

v0.1.10 fixed 19 bugs Mar 5, 2017
v0.1.11 Bug fixed: torch: 6,

autograd,nn,optim:13, other
bugs: 2

May 1, 2017

v0.1.12 fixed 24 bugs May 3, 2017
v0.2.0 fixed 27 bugs Aug 28, 2017
v0.3.0 Bug fixed: torch: 1, tensor: 26,

sparse: 3 autograd: 7, nn: 19,
optim: 1

Dec 4, 2017

v0.3.1 Bug fixed: torch operators: 9,
data: 8, autograd: 1, nn layers:
6, CUDA: 10, CPU: 1

Feb 9, 2018

v0.4.0 Bug fixed: torch operators: 18,
core: 7, autograd: 3, nn layers:
11, CUDA: 10

May 30, 2018

v0.4.1 fix 25 bugs Jul 26, 2018
v1.0rc1 serious bugs: 5, correctness

bugs: 13, error check: 7
Oct 2, 2018

v1.0.0 serious bugs: 11, correctness
bugs: 29, error check: 13

Dec 7, 2018

v1.0.1 serious bugs: 7, correctness
bugs: 5, crashes bugs: 13

Feb 7, 2019

20.8 Deployment View

Deployment view determines the related environment to run the system. We will discuss the deployment
view in the following passages and the figure below is the overall figure of the deployment view of Pytorch.

20.8.1 Third Party Library

Pytorch uses different libraries to develop its system. Those third-party libraries have been specifically
introduced in section Development View. Those third parties including Numpy, Sphinx, pyyaml, CuDNN, MKL
etc., form third-party system requirements for running Pytorch and support the daily operating of Pytorch.

20.8.2 Runtime platforms

Pytorch does not want to give up a Python frontend but a Python frontend cannot deal with, e.g., a
multithreaded environment, so Pytorch employs a C++ frontend but it mimics a Python frontend closely.
Pytorch has several backend modules intead of one. The modules rely heavily on linear algebra libraries
like MKL for CPU and deep neural network libraries like CuDNN for GPU. Pytorch requires a 64-bit CPU. An
Intel CPU is preferred because MKL is tuned for an Intel architecture. To benefit from GPU acceleration,

492 CHAPTER 20. PYTORCH

Figure 20.11: Figure deployment view

20.9. CONCLUSION 493

Pytorch only works on NVIDIA GPUs, because it requires CUDA support. For high-demanding tasks in
research or production, it is suggested to use an HPC platform or a cloud platform, e.g. AWS.

20.8.3 Operating systems

PyTorch can be installed and used in many types of operating systems. 1. Linux: PyTorch 1.0 supports
various Linux distributions that use glibc >= v2.17: - Arch Linux, minimum version 2012-07-15 - CentOS,
minimum version 7.3-1611Debian, minimum version 8.0 - Fedora, minimum version 24 - Mint, minimum
version 14 - OpenSUSE, minimum version 42.1 - PCLinuxOS, minimum version 2014.7 - Slackware,
minimum version 14.2 - Ubuntu, minimum version 13.04 2. MacOS: PyTorch is supported on macOS 10.10
(Yosemite) or above. As MacOS does not has CUDA support building from binaries, it will not benefit from
GPU accelaration. 3. Windows: PyTorch is supported on the following Windows distributions: - Windows
7 and greater; Recommended: Windows 10 and greater. - Windows Server 2008 r2 and greater.

20.8.4 PyTorch on cloud

Cloud platforms provide powerful hardware and infrastructure for training and testing the PyTorch models.
PyTorch offers following cloud installation options:

Could Platform Details

Microsoft Azure Can choose between a GPU-based or a CPU-only
instance of the Data Science Virtual Machine

Google Cloud Platform On machine instances with access to one, four, or
eight GPUs in specific regions or on containerized
GPU-backed Jupyter notebooks

Amazon Cloud Platform AWS Deep Learning AMI with optional NVIDIA
GPU support

IBM Cloud Kubernetes cluster On Kubernetes clusters on IBM Cloud
IBM Cloud data science and data management Python environment with Jupyter and Spark

20.9 Conclusion

With two months of analysis of Pytorch, we gain more insights of the whole Pytorch architecture. We
analyze different perspectives and viewpoints of the project to understand more about the inner workings.
Even though Pytorch is a recently-developed software, it already has a well-organized architecture. And we
believe it will keep developing and develop more functions for deep learning frameworks.

494 CHAPTER 20. PYTORCH

20.10 References

20.11 Appendix

20.11.1 PR Analysis

20.11.1.1 Pull requests which are accepted

Pull request Lifetime
Components it
touches

PR content and
Related issues

Deprecate another
pull request or not

Implement
adaptive softmax
awaiting response
#5287 by
@elanmart

After v0.4.0 torch.nn(neural
networks library
which is
integrated with
autograd
designed)

This pr
implements
“Efficient softmax
approximation for
GPUs” which
discussed in
another pr #4659

No

Implement
adaptive softmax
awaiting response
#5287 by
@elanmart

After v0.4.0 torch.nn(a
neural networks
library deeply
integrated with
autograd designed
for maximum
flexibility)

This pr
implements
“Efficient softmax
approximation for
GPUs” which
discussed in
another pr #4659

No

Parallelize
elementwise
operation with
openmp #2764 by
@MlWoo

After v0.4.0 Low-level tensor
libraries for
PyTorch(TorcH)

This pr
parallelizes
elementwise
operation of
discontiguous
THTensor with
openmp

No

Implement sum
over multiple
dimensions #6152
by@t-vi

After v0.3.1 ATen C++
bindings

This pr
implements
summing over
multiple
dimensions as an
ATen native
function and fixed
#2006

No

https://github.com/pytorch/pytorch/pull/5287
https://github.com/pytorch/pytorch/pull/5287
https://github.com/pytorch/pytorch/pull/2764
https://github.com/pytorch/pytorch/pull/6152

20.11. APPENDIX 495

Pull request Lifetime
Components it
touches

PR content and
Related issues

Deprecate another
pull request or not

Fixed
non-determinate
preprocessing on
DataLoader
#4640 by
@AlexanderRadionov

After v0.3.1 torch.utils
Dat-
aLoader(Trainer
and other utility
functions for
convenience)

This pr adds
ind_worker_queue
parameter in
DataLoader to
solve the
non-deterministic
issue which
happens when
DataLoader is in
multiprocessing
mode

No

Introduce scopes
during tracing
#3016 by
@lantiga

After v0.2.0 Scope, IR
(intermediate
representation)
and Tracing

This pr introduced
the scopes for
group operations
in the tracing IR

No

20.11.1.2 Pull requests which are rejected

Pull request Lifetime
Components it
touches

PR content and
Related issues

Deprecate another
pull request or not

Fixes errors
#10765 by
@peterjc123

After v0.4.0 ATen C++
bindings

Fixes errors when
linking caffe2
statically related
to issues #10746
and
[#10902](https://github.com/pytorch/pytorch/issues/10902

No

Low rank
multivariate
normal #8635

After v0.4.0 torch.distributions,
torch.trtrs

Implements low
rank multivariate
normal
distribution where
the covariance
matrix has the
from W @ W.T +
D.

No

[caffe2]seperate
mkl, mklml, and
mkldnn #12170

After v0.4.1 Caffe2
component of
PyTorch and
Docs.

1. Remove avx2
support in
mkldnn. 2.
Seperate mkl,
mklml, and
mkldnn. 3. Fix
convfusion test
case

No

https://github.com/pytorch/pytorch/pull/4640
https://github.com/pytorch/pytorch/pull/3016
https://github.com/pytorch/pytorch/pull/10765
https://github.com/pytorch/pytorch/issues/10746
https://github.com/pytorch/pytorch/pull/8635
https://github.com/pytorch/pytorch/pull/12170

496 CHAPTER 20. PYTORCH

Pull request Lifetime
Components it
touches

PR content and
Related issues

Deprecate another
pull request or not

Checkpointing
#4594

After v0.3.0 torch.autograd,
torch.utils
and Docs.

Autograd
container for
trading compute
for memory.

Be deprecated by
pull request
#6467.

Adding katex
rendering of
equations #8848

After v0.4.0 Docs,
torch/functional
and torch.nn

This fixes issue
#8529. 1. Adds
Katex extension
to conf.py and
requirements.txt.
2. Fixes syntax
differences in
docs. 3. Should
allow
documentation
pages to render
faster

No

20.11.1.3 Codify pull-request “Introduce scopes during tracing” #3016

From Ziyu Bao:

Comments Index Code

1 Introduce scopes, not
accepted

2 Try-finally suggested
3 Change from 1 to

multiple variables
4 Choices to make

strings interned kept
5 Capture module name
6 Context manager for

scopes/try-finally
7 Args to __call__ in

module are flattened
(instead of
_first_var);
introduced a
torch.jit.scope
context manager

8 Tracing_state in try
finally for later proper
cleaning-up

9 Setstate, child name

https://github.com/pytorch/pytorch/pull/4594
https://github.com/pytorch/pytorch/pull/6467
https://github.com/pytorch/pytorch/pull/8848
https://github.com/pytorch/pytorch/pull/3016

20.11. APPENDIX 497

Comments Index Code

10 Remove if
scope.empty in
pushscope

11 Remove if the value is
not none

12 Context manager
activated only when
tracing to reduce cost

13 Module name wasn’t
gotten right, fixed

14 Printing of scope
printed only if defined

15 Fixed scopes for the
ONNX pass

16 Trying to merge
17 Cannot share common

subtries between tries
and not needed

18 Appeal to merge,
discussion on scope
stability

19 Add underscores,
others are exposed on
.torch namespace

20 Use unique_ptr safely
21 Raise an error if it

can’t pop
22 Return scope name in

scope class
23 Fix numerous small

issues
24 Define jit in the

module and attach the
module to tracing

25 Activate dynamic
attributes on
TracingStat; manage a
stack per trace

27 Build finished
28 Double check: Scope

ownership scheme
29 Merged

From Zhao Yin:

498 CHAPTER 20. PYTORCH

Comments Index Code

1 Usage showed
2 Small advice to use

try-finally.
3 Technical advice

about function usage.
4 Add name as the

attribute to the
module.

5 Add context managet
to handle the scope.

6 Integration of advice
above.

7 Cope with field
missing after adding
the name.

8 Remove passing an
empty string to the
decorator.

9 Remove redundant
condition check.

10 Remove context when
nothing is tracing.

11 Fix O(n2) to O(n) of
loading module tree.

12 Fix scopes for the
ONNX pass.

13 Wait for autograd
PR because it changes
JIT infra.

14 This PR get rebased
on the new master.

15 Make notes that
different Graph can’t
share portions of the
trie.

16 Good enough, need to
merge.

17 Two concerns:
backward tracing with
the scope not working
and a “scope” is
morally a property of
the tracer.

20.11. APPENDIX 499

Comments Index Code

18 Clarifications for the
two concerns: making
scope inexpensive and
a Graph node needs to
hold information.

19 State that the scopes
are stable if name
registered in Module
is stable.

20 Add an underscore
and leave others
exposed to torch..

21 Change pointer type
for the root, scope,
and children.

22 Raise error when can’t
pop.

23 Question (with the
answer of not using
the flat list of scope)
about reversing.

24 Put string
representation inside
scope class.

25 Many small issues
fixed.

26 Create the field in
tracing state to store
extra info.

27 Activat dynamic
attributes on
TracingState and
manage a stack per
trace.

28 Build finished.
29 Change the scope

ownership scheme.
30 Use vector as children

container in scope trie.
31 Avoid segfault in case

of memory allocation
error.

32 Changes approved.
Finally merged.

500 CHAPTER 20. PYTORCH

501

502 CHAPTER 21. REACT NATIVE

Chapter 21

React Native

21.1. TABLE OF CONTENTS 503

J.S. Abrahams, G. Andreadis, C.C. Boone, F.W. Dekker

Delft University of Technology

21.1 Table of Contents

• Introduction
• Stakeholders
• Context View
• Development View
• Pull Request Analysis
• Technical Debt
• Architecture of Apps Written in React Native
• Conclusion
• Appendices

21.2 Introduction

With the mobile form factor becoming increasingly common for consumer applications, the quality, and
coherence of user experience are more important than ever. No longer are users satisfied with services
wrapping a web application in a web view container and publishing it as a mobile application. Users
expect native, high-quality interfaces which fit well in their host’s ecosystem. React Native provides a
framework for developing such interfaces, in a cross-platform fashion. By writing JavaScript code with
React components, developers can leverage native Android and iOS components and APIs.

In this chapter, we present our view of the React Native framework. First, we take a look at the stakeholders
involved in the project and place it in its broader context. We then dive into React Native’s architecture and
implementation. Following this, we investigate the process that the React Native team employs to integrate
changes and evaluate the past and current state of technical debt in the system. Finally, we analyze how
developers use React Native and what improvements can be gathered from these patterns.

21.3 Stakeholder Analysis

We conducted a stakeholder analysis to find which parties have an interest in the development of React
Native. We categorized these into stakeholder classes as outlined in Rozanski and Woods 1, and added three
more classes relevant to this project: competitors, ecosystem enhancers, and integrators.

While Rozanski and Woods distinguish between testers, maintainers, and developers, we found that these
are the same people in the case of React Native, and thus combined these classes into the developer class.
Finally, since React Native is an open source framework, we have left out the system administrator class.

1Nick Rozanski and Eoin Woods. Software Systems Architecture: Working with Stakeholders using Viewpoints and Perspectives.
Addison-Wesley, 2012.

http://github.com/JSAbrahams
https://github.com/gandreadis
https://github.com/casperboone
https://github.com/FWDekker

504 CHAPTER 21. REACT NATIVE

21.3.1 The Role of Facebook

React Native is the outcome of an internal Facebook hackathon in 2013 2. Since 2015, it is available as an
open-source framework 3. Initially, it only had iOS support, but Android support was added after a few
months. Facebook had already built two apps using React Native at the time it was released: Facebook Ads
Manager and Facebook Groups 4. Currently, the company also uses React Native for the Facebook app 5.

React Native is thus an important project for Facebook, both as a developer and as an end user. Therefore,
Facebook invests in the development of React Native and has a development team working on it 6. Since they
are so involved in the product, Facebook appears in almost all stakeholder classes as a relevant stakeholder.

21.3.2 Stakeholder Classes

21.3.2.1 Acquirers

According to Rozanski and Woods, the group of “acquirers” typically includes senior management 7. It
is easy to conclude (from “The Role of Facebook”) that the members of the senior management team at
Facebook are the acquirers: They fund the internal development team, and they need the end product to run
their business.

21.3.2.2 Assessors

All contributors are required to sign the Contributor License Agreement (CLA) before their PRs are even
reviewed. The terms and conditions of this CLA include provisions placing the responsibility for third-party
license infringements on the contributor and ensuring the transfer of ownership for accepted contributions.

To assess whether PRs are compliant with the project’s standards and expectations, React Native makes use
of bots that perform preliminary checks (e.g., CLA compliance, code style), in addition to the automatic
testing done by CI services.

If there are no remarks from the bots and the automatic tests pass, the integrators are responsible for further
checking of compliance. Legal compliance of PRs is further checked by the core team’s PR reviews, CI
checks (both on GitHub and Facebook’s internal systems), and perhaps some internal checks behind the
scenes.

21.3.2.3 Communicators

Communication about React Native happens on various channels, ranging from Twitter to their blog. React
Native also provides more in-depth communication on their website (maintained by hramos and charpeni).

2https://news.softpedia.com/news/facebook-s-react-native-framework-gets-windows-and-tizen-support-502930.shtml
3https://medium.com/react-native-development/a-brief-history-of-react-native-aae11f4ca39
4https://code.fb.com/android/react-native-bringing-modern-web-techniques-to-mobile/
5https://facebook.github.io/react-native/showcase
6https://www.reactiflux.com/transcripts/react-native-team/
7Nick Rozanski and Eoin Woods. Software Systems Architecture: Working with Stakeholders using Viewpoints and Perspectives.

Addison-Wesley, 2012.

https://code.facebook.com/cla
https://twitter.com/ReactNativeComm
https://facebook.github.io/react-native/blog/
https://facebook.github.io/react-native/
https://github.com/hramos
https://github.com/Charpeni

21.3. STAKEHOLDER ANALYSIS 505

The community GitHub organization hosts several communication repositories such as the discussions and
proposals repository.

Within the project, we have identified hramos and cpojer as communicators by analyzing metadata files such
as CODEOWNERS and looking at commits on documents like README.md and CONTRIBUTING.md.

21.3.2.4 Competitors

Competitors are also important stakeholders, influencing the reputation of the field and the innovation and
progress within that field. If a competitor introduces a new feature, React Native may want to implement
this feature as well, to keep its user base. We list the competitors of React Native in the Power-Interest
diagram later in this section.

21.3.2.5 Developers

React Native has well over a thousand different contributors. Some of them stand out in particular: the core
team and the most active contributors. We have analyzed the 15 most active contributors in terms of the
number of commits 8. We see five members of the core team in this list, but also seven other Facebook
employees. Only 3 of the top-15 are not Facebook employees. The full analysis of top contributors can be
found in the appendix.

21.3.2.6 Ecosystem Enhancers

The ecosystem of any framework consists of its ecosystem enhancers, which may be build tools and quality
control mechanisms. As such, ecosystem enhancers provide a mutualistic relation with React Native:
They could not exist without React Native because they are built especially for the language, but without
ecosystem enhancer no-one would want to use React Native.

There are various community-supported projects that bring React Native to other platforms, such as React
Native Windows, ReactXP, and React Native macOS, but there are also dedicated toolchains such as Expo.
Other relevant ecosystem enhancers are IDEs such as JetBrains WebStorm, which facilitate writing programs
in React Native and thereby make React Native more attractive to use. As such, ecosystem enhancers are
interested in and have some power over React Native.

21.3.2.7 End-Users

Indirectly, React Native is being used by more than a billion end-users worldwide 9. These end-users
are typically not interested in the technical details that make an app work. However, they care about
non-functional properties that are a direct result of these details. If React Native allows the developers to
decrease turnaround time on issues and improve cross-platform support, this can benefit the end-users of the
apps made with React Native.

8https://github.com/facebook/react-native/graphs/contributors
9https://newsroom.fb.com/company-info/

https://github.com/react-native-community/
https://github.com/react-native-community/discussions-and-proposals
https://github.com/react-native-community/discussions-and-proposals
https://github.com/hramos
https://github.com/cpojer
https://github.com/facebook/react-native/blob/master/README.md
https://github.com/facebook/react-native/blob/master/CONTRIBUTING.md
https://github.com/Microsoft/react-native-windows
https://github.com/Microsoft/react-native-windows
https://microsoft.github.io/reactxp/
https://github.com/ptmt/react-native-macos
https://expo.io
https://www.jetbrains.com/webstorm/

506 CHAPTER 21. REACT NATIVE

21.3.2.8 Integrators

Integrators are responsible for deciding whether a PR should be merged, and thereby determine the direction
React Native evolves in. The React Native repository assigns specific users as the “code owners” of parts
of the codebase and requires that these code owners approve any PR touching this code before it can be
merged. React Native currently has five code owners with different responsibilities:

• shergin – The core
• cpojer, hramos – Markdown files and dependency management
• janicduplessis – The animation framework
• mhorowitz – The C++ bridge

21.3.2.8.1 Analysis of Integration Strategies The daily work of the integrators consists of various
(often implicit) decision strategies. Following the research of Gousios et al. 10, we now take a look at
how integrators decide when (not) to merge a PR. We start by analyzing the comments of integrators on
25 randomly-sampled accepted and rejected PRs. Since it is often not possible to accurately interpret the
strategies that were considered by an integrator in the merging process, we only report on the ones that we
could categorize without doubt.

• Code Quality: #24162, #24118, #24066,
• Functionality: #24167, #24063
• CI Conformance: #24070
• Duplication: #24054

We see a similarity between these preliminary results and the results by Gousios, as both show a heavy
emphasis on code quality in the review process. Looking at the challenges that integrators face, we identify
a lack of time as the primary challenge, likely due to the high volume of incoming PRs. Another challenge
revolves around testing, which is not always stringently applied in PRs. This presents integrators with a
trade-off between accepting under-tested functionality quickly, or rejecting it and causing delays. Finally,
we see a challenge in assessing the functional quality of submitted code. In multiple cases we see integrators
referring PRs to other integrators, due to content-related questions.

21.3.2.9 Suppliers

According to Rozanski and Woods 11, suppliers “build and/or supply the hardware, software, or infrastructure
on which the system will run.” We already mentioned Expo as an essential ecosystem enhancer. However,
since it provides the default way of building and running a React Native application during development 12,
it is also a significant supplier. In the end, applications built with React Native run on iOS and Android.
Changes to those operating systems will also influence the way React Native apps are generated.

10http://www.gousios.gr/blog/How-do-project-owners-use-pull-requests-on-Github.html
11Nick Rozanski and Eoin Woods. Software Systems Architecture: Working with Stakeholders using Viewpoints and Perspectives.

Addison-Wesley, 2012.
12https://facebook.github.io/react-native/docs/getting-started

https://github.com/facebook/react-native/blob/master/.github/CODEOWNERS
https://github.com/shergin
https://github.com/cpojer
https://github.com/hramos
https://github.com/janicduplessis
https://github.com/mhorowitz
https://expo.io/

21.4. CONTEXT VIEW 507

21.3.2.10 Support Staff

Although an open source project like this has no dedicated support staff, React Native users can search for
help over various channels. If a user has found a bug, they can open an issue on the React Native repository.
For questions, users can go to the Reactiflux Discord server, React Native Spectrum chat, StackOverflow
forum, or the Expo forums.

21.3.2.11 Users

React Native is used by many companies (to improve consistency between platforms and reduce development
time) and individual users (due to familiarity with the React JavaScript framework). Facebook is likely
the biggest user 13, though Microsoft also actively uses the framework 14. We list other users in the
Power-Interest diagram later in this section.

21.3.3 Power-Interest Diagram

We visualize the stakeholders in this section based on their power and interest in the project in the figure
below:

21.4 Context View

In this section, we place React Native in its greater context. We portray its interaction with the environment,
which includes people, systems, and external entities with which it reacts.

As React Native is a framework for cross-platform mobile development, a key requirement is that developers
can write platform-agnostic code. Another critical requirement is that the performance of applications
written in React Native is comparable to applications written in the languages of those platforms. In general,
users of React Native are developers, meaning React Native fits between those developers and the iOS and
Android systems, respectively.

Going clockwise, users are the ones that use React Native to build their (mobile) applications (see Stakeholder
Analysis). React Native is deployed using the npm package manager 15. Development tools also make it
easier to develop React Native applications. Such tools include Yoga, an open source tool which allows the
creation of flexible layouts on multiple platforms 16.

Facebook is the creator and sponsor of the project, which has an MIT license. The developers of the
project are described in the Stakeholder Analysis. These developers use several communication channels
to communicate with one another and the core team. GitHub provides the infrastructure for open-source
development, and it is also where issues are tracked. AppVeyor and CircleCI are used as the automatic
continuous integration providers for early detection of problems.

13https://facebook.github.io/react-native/showcase
14https://react-etc.net/entry/microsoft-office-rewrite-to-react-js-nears-completion
15https://facebook.github.io/react-native/docs/getting-started
16https://facebook.github.io/react-native/docs/more-resources#development-tools

https://discord.gg/0ZcbPKXt5bZjGY5n
https://spectrum.chat/react-native
https://stackoverflow.com/questions/tagged/react-native
https://stackoverflow.com/questions/tagged/react-native
https://forums.expo.io/

508 CHAPTER 21. REACT NATIVE

Figure 21.1: Power Interest

21.4. CONTEXT VIEW 509

Figure 21.2: Context View

510 CHAPTER 21. REACT NATIVE

There are many projects within the React Native ecosystem that provide extra functionality. The project also
has several competitors, see Stakeholder Analysis. React Native apps run on Android and iOS devices, and
for developers also using Expo.

21.5 Development View

For large projects, it is essential to carefully consider the code structure and identify common processes. To
achieve a maintainable codebase, it is also important to standardize issue tracking, code style, and testing, to
name a few. This section outlines the development view, which aims to provide an overview of these key
aspects of the system.

21.5.1 Module Organization

Fundamentally, React Native runs on three threads: the native thread, the shadow thread, and the JavaScript
thread 17. Users interface with the JavaScript thread to modify the state of the application. When the interface
needs to be updated, the JavaScript thread asynchronously calls the shadow thread, which maintains a virtual
platform-independent DOM called the shadow tree. The shadow thread’s reconciler occasionally calculates
what has changed since the last update and tells the native thread what should be changed, calculating
the desired positions of components using Yoga. Communication between the native and shadow thread
happens over the bridge, which (asynchronously) translates JavaScript objects to native objects and back.
Finally, the native thread is where the actual UI updates take place by directly interacting with the DOM.

Figure 21.3: Old module organization

17https://www.qed42.com/blog/react-native-fabric-why-am-i-so-excited

https://expo.io
https://github.com/facebook/yoga

21.5. DEVELOPMENT VIEW 511

Currently, React Native is in the process of migrating to a new architecture 18. The new architecture replaces
the bridge by the JavaScript Interface (JSI). With the JSI, the interaction between the shadow thread and the
native thread changes radically. Rather than translating JSON to and from native objects asynchronously, the
JSI will expose the native DOM as a JavaScript API so that the shadow thread can interact with it directly.
The benefit of this approach is that the shadow thread will no longer need to maintain a virtual DOM since it
can directly change the native DOM 19.

Figure 21.4: New module organization

21.5.2 Common Processing

Large systems, in general, benefit from isolating common processes into separate core modules. A trivial
example would be defining a single logger, which allows standardization of logging behavior across the
codebase. React Native contains only a few directories which can be classified under common processing.
One example is the ReactCommon directory, which contains the bridge and runs on the shadow thread. While
common to both platforms, it is only loosely classifiable under common processing: It does not so much
contain processes which are common to the codebase but is more a link between native and JavaScript code
on a conceptual level. Libraries contains several JavaScript libraries which interface with Android and
iOS libraries, forming a core part of the framework interface. Libraries itself is not classifiable under
common processing, but it does contain a directory Utilities, which embodies a common processing
component, as it contains often used functionality such as logError and logInfo, and a Dimension class.

21.5.3 Development Process

The contributing document outlines how developers can contribute to React Native, and includes, amongst
others, sections on code style or test plans. The code of conduct highlights what developers should adhere to
and what is and is not tolerated.

React Native uses GitHub issue tracking to keep track of feature requests, bugs, and to a certain extent
general discussions. With over a dozen new issues per day, issues are tagged automatically by bots.

18https://facebook.github.io/react-native/blog/2018/06/14/state-of-react-native-2018
19http://blog.nparashuram.com/2019/01/react-natives-new-architecture-glossary.html

https://facebook.github.io/react-native/docs/contributing
https://facebook.github.io/react-native/docs/contributing
https://facebook.github.io/react-native/docs/contributing
https://code.fb.com/codeofconduct/
https://github.com/facebook/react-native/issues

512 CHAPTER 21. REACT NATIVE

For every pull request, aside from an explanation as to why it should be merged, developers are asked to
write a test plan. It should show that the added functionality works, how errors are handled, and that existing
functionality is not tampered with. Test plans often contain screenshots of added functionality.

PRs are not directly merged into the master branch. Instead, when accepted, they are closed and integrated
into the internal repository of the React Native team. The changes are later synchronized with GitHub.

Standardization of code style helps to keep the codebase clean and easy to read. Prettier is used for formatting
of JavaScript code. Lint is used to format code in general, including Java and Objective-C code.

21.5.4 Standardization of Testing

React Native has tests for multiple platforms at several testing levels. These are run automatically for every
pushed commit. Various test environments are used because React Native is written in several programming
languages.

• For JavaScript, the project uses Jest to execute tests, and Flow as a type checker.
• Java tests are executed using JUnit 4. The integration tests run on a (potentially emulated) Android

device. The Flow type checker checks the API exposed by Java code through the JSI.
• Objective-C is tested using integration tests and end-to-end tests. The React Native team has written

their own testing tool, RNTester, which executes tests written in JavaScript. In addition to regular
integration tests, screenshot tests are used to check that applications are rendered the same as in
previous versions. The end-to-end tests additionally require Detox to emulate user input. The
Objective-C APIs are also type-checked using Flow.

• There are several end-to-end tests that use most of the environments above.
• Finally, Facebook runs a number of closed-source internal tests.

21.5.5 Codeline Organization

There is no single standard that describes the code structure because the various parts of React Native are
written in different programming languages. Instead, the repository consists of several overlapping structures.
For this section, we have attempted to extract the different codelines and describe them individually.

21.5.5.1 Android

Android-specific code resides in the ReactAndroid/ folder. This folder is structured like a standard Android
Gradle project: configuration in the root folder, production code in src/main/, unit tests in src/main/test,
and integration tests in src/main/androidTest. The jni/ (Java Native Interface) directories contain C++
code which can be invoked directly from Java code and is linked to the bridge/JSI. The java/ folder contains
the Java source code. This is divided into several packages, such as one for drawing React components and
one for creating layouts.

https://facebook.github.io/react-native/docs/contributing#test-plan
https://facebook.github.io/react-native/docs/contributing#coding-style
https://prettier.io/
https://www.npmjs.com/package/lint
https://jestjs.io/
https://flow.org
https://junit.org/junit4/
https://github.com/wix/Detox

21.6. PULL REQUEST ANALYSIS 513

21.5.5.2 Objective-C

Unlike the Java code, the Objective-C code, found in React/, has a very flat structure: The React/ folder
immediately contains the modules responsible for drawing and the layout. The integration and end-to-end
tests of Objective-C reside directly inside the RNTester/ directory and are organized by test type.

21.5.5.3 JavaScript

The JavaScript code that the user interacts with can be found in the Libraries/ folder, where each
component then has its own sub-directory. Each component also has tests, which are found in a __tests__/
sub-directory.

21.6 Pull Request Analysis

We aim to better understand the decision-making process of stakeholders, and the characteristics of how the
community operates. To this end, we analyzed 20 PRs from less than one year ago. We start by first tagging
each comment on each PR to gain a better understanding of what is happening. For tagging purposes we
used the following tags:

Tag Subcategory

Git -
Procedure -
Bot facebook-github-bot, analysis-bot, pull-bot,

react-native-bot, es-lint-bot
Discussion General, Bugs, Duplicate, Test request, Reference

other, Review request, Code style

Three members of our team proceeded to tag each comment and discussed disagreements until we reached a
consensus. For each PR, we also noted why it was or was not merged, listed in the appendix. Below we also
see a side-by-side comparison of the type of tags for each PR.

514 CHAPTER 21. REACT NATIVE

21.6. PULL REQUEST ANALYSIS 515

We observe that user hramos is heavily involved in many PRs and often refers people to other people, as
seen in PRs 18522 and 17422, thereby functioning as a bridge.

We also observed that the speed at which PRs are merged seems to rely heavily on how busy the team is.
For instance, when analyzing PR 18300, we observe that the team often had to be pinged. In 18278 we even
sensed some frustration, due to the problem being urgent and the core team being slow to reply. Furthermore,
it took the team over a month to comment on 18534. At the time of this PR, it seemed that the team heavily
focused on adding tests to master, indicating an internal agenda.

In general, we see that other developers do comment on PRs, but that the core team has the final say on
whether something gets merged or not. PRs are predominantly merged when both the core developers, and
occasionally core contributors, have given their stamp of approval.

Based on the above figures, we also made the following observations regarding the comments on PRs:

• More than half of all comments are not related to code.
• There are on average more “General” comments on unmerged PRs, perhaps because these PRs are

more controversial, which sometimes leads to them not getting merged.
• There are on average fewer comments by analysis-bots on unmerged PRs. We do not have a

comprehensive hypothesis for this.

https://github.com/hramos
https://github.com/facebook/react-native/pull/18522
https://github.com/facebook/react-native/pull/17422
https://github.com/facebook/react-native/pull/18300
https://github.com/facebook/react-native/pull/18278
https://github.com/facebook/react-native/pull/18534

516 CHAPTER 21. REACT NATIVE

21.7 Technical Debt

Every software project is touched by it in some form: technical debt. The costs you implicitly introduce
when you choose the “easy” solution; the solution that will save you time right now, but will lead to rework
being necessary in the future. In this section, we take a look at the technical debt of React Native. How
much technical debt does it currently have, and how has this evolved?

21.7.1 Current State

We tried to assess the current state of React Native’s technical debt through a combination of automated and
manual analysis.

21.7.1.1 Automated Static Analysis

To independently analyze the quality of the codebase, we ran a SonarQube analysis on the following folders:
Libraries, React, ReactAndroid, ReactCommon. We used the built-in JavaScript and Java scanners, as
well as the Backelite/sonar-swift plugin for Objective-C code. We disabled analysis of compiled code
artifacts since the codebase was not easily compilable into a central location.

Before we give the full analysis, we first investigate the distribution of code volume over language. A
breakdown of line counts over language is given in the figure below:

Figure 21.5: Static analysis report

Overall, the main folders of this codebase have more than 224k lines of code.

SonarQube assesses the technical debt in terms of time needed to eliminate code smells. In this project, it
estimates the time needed to be 61 days, corresponding to a maintainability rating of A (since the “technical
debt ratio” is less than 5%). SonarQube finds 434 bugs, 54 vulnerabilities, 3.5k code smells, and 437
duplicated blocks.

Looking at a random sample of 20 bugs, the majority of the reports seem to be false positives. Most are
falsely identified due to the use of the flow type checking framework and the invariant library (used to
formalize consumer contracts in the form of invariant statements). We also found true positives such as
cases of dead code and type errors. However, these are located in files marked as debug or development only.
The list of false negatives is significantly longer than the list of positives. The list of issues on the repository
speaks volumes on the numerous undetected corner cases that were uncovered in real-life use cases.

https://github.com/Backelite/sonar-swift
https://github.com/facebook/react-native/issues

21.7. TECHNICAL DEBT 517

The majority of the vulnerabilities is classified as minor. We found that minor cases do not immediately
impose security risks. SonarQube identifies one major issue relating to the TLS version not being specified,
but we identified this as a false positive. Another blocking vulnerability relates to PASSWORD in a name,
but this is also a false positive, since it is used in a variable denoting a type of text field.

Next to the false positive code smell reports, some applicable and useful refactoring advice was given in the
form of expressions which always return a certain value. To give an example:

let shouldStart = true;
// ... code which does not modify shouldStart ...
shouldStart = shouldStart && passesWhitelist;

Here, shouldStart could be removed from the right-hand side of the assignment expression, as its value
does not change. There are many cases similar to this one which could be refactored.

21.7.1.2 Manual Static Analysis

Static analysis can only give part of the picture. We also analyzed a sample of files, manually. While we
found general code quality to be high, we identified several design issues, ranging from single-responsibility
violations to extensibility concerns. The appendix of this chapter contains the full results of our analysis.

21.7.1.3 Test Coverage

The total test coverage for this project is hard to measure, due to the many languages involved in different
parts of the codebase. As JavaScript is the primary language of this codebase, we focus on the report
generated by the Jest testing tool here. In total, 8.7% of all branches and 11.9% of all lines are covered.
More than half of all components in the Libraries folder have no tests at all, while only roughly 20% of
all components have more than half of their statements covered.

It is difficult to establish the root cause for this high testing debt. We speculate that a substantial factor is the
lack of a coverage step in the CI pipeline; contributors are not confronted with their test coverage. The only
thing they need to submit is a “testing plan,” which is an informal description of how they tested the added
code. Often, this is a description of manual tests. Our advice to the React Native team is to add a stage to
the pipeline checking that the difference in test coverage is below a certain threshold.

21.7.1.4 Assessment

In conclusion, we observe that the code quality of this project is high, compared to similar projects. The
problem, in our assessment, lies in the testing debt of this project. The test coverage measure on its own
is only a metric, but it reveals a deeper issue: A lack of formal tests capturing the intended behavior of
components. This means that changes to the code might introduce regressions, in unexpected ways.

21.7.2 Developer Discussions on Technical Debt

As we have shown in our analysis, React Native is no exception from the prevalence of technical debt in
large projects. Perhaps more important, however, is how the team talks about technical debt.

518 CHAPTER 21. REACT NATIVE

Searching for debt (verbatim) yields few but telling results. Filtering out accidental mentions, we can see
that users are concerned about their technical debt when using the project: In #20508, a user discusses how
one would need to take on technical debt if one were to put off upgrading due to a breaking change in a new
version. In #6184, a user points out that one should not use functionality about to be deprecated, due to
the technical debt involved. Regarding the technical debt of the codebase itself, one team member refers
to technical debt in #15232 explaining the trade-off between technical debt and backward compatibility.
Finally, we also observe some awareness of the testing debt (e.g., in #23561), although it could be more
widely discussed.

Awareness of technical debt is perhaps more visible in implicit documentation within the codebase, as there
are 1,466 TODO comments and 211 FIXME comments in our revision of the project. We conclude that the
developers are aware of the technical debt implications of the changes they make. However, we believe that
making it a more prominent concern in issue discussions and prioritizing reducing the overall technical debt
would help greatly.

21.7.3 Evolution

In this section, we give a brief historical overview of two perspectives on technical debt: static analysis
violations and test coverage.

21.7.3.1 Static Analysis

We first look at static analysis. We ran SonarQube on 6 of the past 50 releases, spaced evenly (time-wise).
As pointed out in our analysis of the current state, static analysis may yield many false positives. However,
it generally gives an indication of technical debt. The plot below visualizes the evolution.

Although not consistent over all metrics, there seems to be a general increase in SonarQube violations over
the past two years. Especially the number of bugs seems to increase steadily. The root cause of this is
difficult to establish, but it remains an indication of an increasing amount of technical debt.

21.7.3.2 Test Coverage

We now turn to the evolution of test coverage. Since historical data for this was not publicly available, we
have written a script which computes the coverage of the JavaScript part of the codebase for the last 50
releases. In the figure below, the results of this analysis are plotted against their release date. Releases where
coverage could not be computed are excluded.

Because React Native follows a release model where releases are placed in a dedicated branch and snapshot
tests are generated on that branch, coverage of releases is higher than the coverage of day-to-day commits.

Overall, we see a decline in line coverage over time, starting from over 50% and dropping below 40%. Branch
coverage has stayed relatively stable. To analyze this further, we plot the covered and total lines/branches,
individually:

It becomes apparent that the increase in lines is not met as well in coverage as the increase in branches.
This likely can be traced back to long linear blocks of code, which do not significantly contribute to branch
complexity but do impact line coverage.

https://github.com/facebook/react-native/issues/20508
https://github.com/facebook/react-native/issues/6184
https://github.com/facebook/react-native/issues/15232
https://github.com/facebook/react-native/issues/23561

21.7. TECHNICAL DEBT 519

Figure 21.6: Sonar evolution

520 CHAPTER 21. REACT NATIVE

Figure 21.7: Coverage evolution

21.7. TECHNICAL DEBT 521

Figure 21.8: Line coverage evolution

522 CHAPTER 21. REACT NATIVE

Figure 21.9: Branch coverage evolution

21.8. ARCHITECTURE OF APPS WRITTEN IN REACT NATIVE 523

21.7.4 Contributions to Decrease Technical Debt

After we identified the testing debt as the most pressing issue in this project, we made contributions in the
form of tests to parts that were sparsely covered before. In the appendix, we list the PRs we opened in order
to reduce the testing debt.

To see the decrease in testing debt by adding the new unit tests, we now compare the test coverage before
and after our contributions. The appendix contains a description of the process and a detailed breakdown
per component.

All Files Before After

Branches 8.70% 2565/29485 8.90% 2625/29485
Lines 11.87% 4113/34639 12.15% 4207/34639

In hindsight, writing the tests took us quite some effort. Although the coverage increased a bit, only 12.1%
of the lines in the codebase are now covered. We conclude that there is still significant testing debt present
in the codebase. The actual cost of this debt remains elusive: Which bugs that could have been detected by
tests will go by unnoticed? There is likely no clear answer to this, but we prefer staying on the safe side by
covering more of the codebase with tests.

21.8 Architecture of Apps Written in React Native

React Native is a framework for writing apps. Each of these apps, written by different developers, has a
unique architecture. We will evaluate if React Native provides enough helpful means for developers to
architect their apps well.

21.8.1 Evaluated Apps

We looked into the following open-source apps.

21.8.1.1 QR Code Reader and Generator

QR Code Reader and Generator is an app which can be used to scan and generate QR codes. The project
was started using the Pepperoni App Starter Kit. QR Code uses version 0.49.3 of React Native, released in
2017. The reason for this does not seem to be a difficulty of upgrading, but rather inactive development.

21.8.1.2 F8

The F8 app by Facebook is the official app for Facebook’s conference. The app helps attendees schedule
their visit and navigate through the conference. Facebook has written a tutorial on how the F8 app was made.
As such, the app’s code is organized very simplistically, and its architecture is well-explained in the tutorial.

https://github.com/insiderdev/qrcode
https://github.com/futurice/pepperoni-app-kit
https://github.com/fbsamples/f8app
https://www.f8.com/
http://makeitopen.com

524 CHAPTER 21. REACT NATIVE

It does not use the latest version of React Native, but that is because the project has not been updated in a
while. It uses one of the latest versions that were available at its last update.

21.8.1.3 Mattermost

The Mattermost Mobile app is the mobile version of the Mattermost open-source application. It is an
application for team communication.

Mattermost uses version 0.58.5 of React Native. This version was released two months ago at the time of
writing. Looking at the history of version updates, we see that the React Native dependency gets updated
regularly. From this, we can conclude that it is easy to update.

21.8.2 React Native Enhancers

QR Code and Mattermost use Redux for state management within the app. By default, React and React
Native do not provide a way to manage state across an application. F8 initially used Redux, but later
transitioned to Relay, by Facebook.

QR Code, F8, and Mattermost each use many packages with small functionalities, such as react-native-sound,
react-native-open-maps, and react-native-contacts. These packages all provide very little extra behavior
which is relatively common. React Native app developers will need a lot of those packages, which can make
the development process harder for beginners and reduces developer convenience. However, including the
packages in the core of React Native would make the core less lean. Therefore, there seems to be a trade-off
between developer convenience and clean architecture.

21.8.3 App’s structure (vs. React Native)

QR Code and F8 do not have any (handwritten) native code. Therefore the codebase solely exists out of
JavaScript files.

Conversely, Mattermost does contain some Java and Objective-C, even if the majority is still written in
JavaScript. A notable example where they modify the behavior of React Native using native Java code
is by using the AsyncStorageHelper to access React Native’s asynchronous database synchronously for
Android.

React Native is not opinionated in terms of file structuring. It only has an App.js file in the root and leaves
the rest up to the developer. For developer convenience this is not optimal since it does not provide them
with a clearly defined way of working. It might be a good idea to provide a suggested “architecture” in the
docs, or even create a new (extra) template which takes a more opinionated view, which can also prove
valuable for beginners.

There exist resources with suggestions for the architecture of a React Native app. An example is the
Pepperoni App Starter Kit, which QR Code uses.

https://github.com/mattermost/mattermost-mobile
https://github.com/mattermost
https://redux.js.org/
https://facebook.github.io/relay/
https://github.com/zmxv/react-native-sound
https://github.com/brh55/react-native-open-maps
https://github.com/rt2zz/react-native-contacts
https://github.com/facebook/react-native/issues/23313
https://github.com/futurice/pepperoni-app-kit

21.8. ARCHITECTURE OF APPS WRITTEN IN REACT NATIVE 525

21.8.3.1 Pepperoni

The JavaScript files are structured using the approach suggested in the Pepperoni App Starter Kit. The code
is organized into two main directories: components and modules. components contains “dumb” React
Native JSX components that can be used by the (more involved) modules. modules is where all code that
“that modifies application state or reads it from the store” should go 20.

Modules are represented as a directory and form a part of the domain. A module contains three logical
parts: State, View(s) and Container(s). The State holds data and operations on this data. The Views are
the presentation layer and should use State, but not be stateful themselves. It may use components from
the components directory. The Containers are responsible for connecting one or more Views to the Redux
store.

As an example, the following modules are present in QR Code:

Figure 21.10: QR Code structure

20https://github.com/futurice/pepperoni-app-kit/blob/master/docs/ARCHITECTURE.md

https://github.com/futurice/pepperoni-app-kit

526 CHAPTER 21. REACT NATIVE

21.9 Testing and Software Quality

All apps have unit tests written using Jest. Both F8 and Mattermost have very few tests. While the React
Native documentation does not give any hints on how to test an application, Jest does have such a guide.
The integration between Jest and React Native seems to be good.

QR code also has relatively simple end-to-end tests, using Detox. Conversely, the end-to-end tests for
Android of React Native itself are written using Appium (which we improved in one of our contributions),
which results in complex-looking tests. Detox is written with React Native in mind, resulting in cleaner
tests.

It would be a good idea to include a section on testing a React Native app in the documentation, which
might help developers in writing their first test or in writing more tests more easily.

21.10 Conclusion

React Native is an important framework for mobile apps, used by many prominent services. Both the
development process and codebase are generally of high quality, although we identified significant testing
debt. We have made several code contributions to improve the technical debt in the system. Finally, we
observe that apps using the framework are highly diverse in structure and believe that a more opinionated
guideline could help developers.

21.11 Appendices

21.11.1 Top Contributor Analysis

From the core team we see a lot of contributions from shergin (ranked 1st), sahrens (5), hramos (7), mdvacca
(11), and TheSavior (15).

Although the core team consists of Facebook employees, it is interesting to see that other Facebook
employees also actively contribute to React Native. In fact, the top 15 most active contributors consists
mostly of Facebook employees: javache (2), davidaurelio (3), mkonicek (4, former Facebook employee,
currently inactive), vjeux (8, currently inactive), jeanlauliac (10, currently inactive), frantic (12, currently
inactive), and bestander (14, currently inactive). Some of these employees may be former core team
members.

Finally, we have identified a few non-Facebook employees in the top contributors: nicklockwood (6),
tadeuzagallo (9), and janicduplessis (13).

21.11.2 Merged PRs

Id Reason for getting merged

17751 Simply added an error message, merged due to uncontroversial nature.

https://jestjs.io/
https://jestjs.io/docs/en/tutorial-react-native
https://github.com/wix/Detox
https://github.com/facebook/react-native/pull/23958
https://www.reactiflux.com/transcripts/react-native-team/
https://github.com/shergin
https://github.com/sahrens
https://github.com/hramos
https://github.com/mdvacca
https://github.com/TheSavior
https://github.com/javache
https://github.com/davidaurelio
https://github.com/mkonicek
https://github.com/vjeux
https://github.com/jeanlauliac
https://github.com/frantic
https://github.com/bestander
https://github.com/nicklockwood
https://github.com/tadeuzagallo
https://github.com/janicduplessis
https://github.com/facebook/react-native/pull/17752

21.11. APPENDICES 527

Id Reason for getting merged

21492 Small discussion, author implemented suggested fix.
18300 Most comments were about comment style, eventually merged. note: A lot of

pining, implying that the core team and/or maintainers was overloaded at the time.
18278 Problem was urgent. note: A lot of frustration sensed, due to slow replies and

asking for information updates often.
21702 Dominated by bots. Short discussion followed by merge.
23318 Maintainer was quick to point out that a lot of work had to be done. Author

implemented changes and eventually large subset was merged.
18522 Interesting technical discussion lead by hramos. Stack trace of internal fb test was

shared, before fix was implemented and merged.
21392 Mostly code quality issues, uncontroversial and quickly merged.
18534 At the time this PR was merged, it seems that the internal team was heavily

focused on getting tests to work on the master. Only after a month was the PR
revisited, and changes from an internal review were applied. After this, it was
merged. This reveals the team also has an internal agenda which determines if
something gets merged or not.

22242 Supportive discussion, where the author quickly implemented suggestions from
the original author before it got merged.

21.11.3 Unmerged PRs

Id Reason for not getting merged

22733 There was no activity on the PR for over a month.
17422 A long discussion ensued, and eventually it was decided it was better to start a new

PR as suggested by hramos.
17741 The functionality implemented by this PR was added to master in the meantime.
20904 Targeted functionality which was moved to a separate repository.
19489 Rebase went wrong so a new PR was opened.
20854 A large subset of this PR was merged during the discussion.
18187 Author did not have time anymore to work on this PR and no one volunteered.

However as of writing this PR has been reopened.
18456 Targeted bug was fixed elsewhere.
19536 Functionality of PR was implemented by other PR’s in the meantime.
17572 Closed in favour of moving fix to separate repository.

21.11.4 Manual Static Technical Debt Analyses

We analysed a sample of 4 source code files. We present our findings below.

Modal.js: A component used to display modal dialogs. This component has a clear single responsibility
and its public interface is well documented. In fact, every property that can be passed to it is individually
annotated. The render() method might be split into smaller submethods: There are 7 branching points in

https://github.com/facebook/react-native/pull/21492
https://github.com/facebook/react-native/pull/18300
https://github.com/facebook/react-native/pull/18278
https://github.com/facebook/react-native/pull/21702
https://github.com/facebook/react-native/pull/23318
https://github.com/facebook/react-native/pull/18522
https://github.com/hramos
https://github.com/facebook/react-native/pull/21392
https://github.com/facebook/react-native/pull/18534
https://github.com/facebook/react-native/pull/22242
https://github.com/facebook/react-native/pull/22733
https://github.com/facebook/react-native/pull/17422
https://github.com/hramos
https://github.com/facebook/react-native/pull/17741
https://github.com/facebook/react-native/pull/20904
https://github.com/facebook/react-native/pull/19489
https://github.com/facebook/react-native/pull/20854
https://github.com/facebook/react-native/pull/18187
https://github.com/facebook/react-native/pull/18456
https://github.com/facebook/react-native/pull/19536
https://github.com/facebook/react-native/pull/17572

528 CHAPTER 21. REACT NATIVE

this method, which is on the high side. However, this is not as straightforward as it might seem, since the
computed values in those branches are needed in the rendering part in the final JSX part of the method.

Geolocation.js: A component used to get the geolocation of the host device. This component also has a clear
single responsibility. Two functions (clearWatch and stopObserving) did not have public documentation.
Although the reader might be able to deduce what they do, adding documentation here would help clarify
this proactively. We added this documentation in a pull request. We also found an obsolete static analysis
suppression comment.

ShakeDetector.java: A hardware interface that detects shakes using the accelerometer. The class has two
public methods to start and stop shake detection, and two that are used by the SensorManager to indicate
that the sensor’s state has changed. While the public interface is easy to understand and well-documented,
the design may not be optimal. Firstly, the class seems to violate the single responsibility principle because it
has two responsibilities: Translating accelerometer measurements to a usable format, and deciding whether
the measurements correspond to a shake. This could be resolved by adding an interface in between the
sensor manager and the detector. Secondly, the shake detector supports exactly one listener, but it may be
worthwhile to make it support multiple listeners.

InterpolationAnimatedNode.java: A drawable node of which the location can be interpolated in between
frames. This class suffers from several design issues which make it hard to comprehend. Firstly, the available
interpolation methods are hardcoded as a series of strings. A first, naive solution would be to use an enum
that lists the methods. This would resolve the issue of not being able to check whether all users of the
interpolation method support a newly added method. However, this solution does not allow for adding new
methods, and thus violates the open/closed principle. A second problem is that ranges are described as
arrays of values, but its bounds are never checked and some functionality is written in helper methods in
the node class. This class would become easier to comprehend and safer to use if ranges were described as
objects which perform validation internally.

21.11.5 Contributions to Decrease Technical Debt

• Adding tests for utilities: #23903 and #23989.
• Adding tests for the geolocation module: #23987.
• Fixing existing end-to-end tests for Android: #23958.

21.11.5.1 Coverage Improvement Breakdowns per File

We created this comparison by starting at the last commit before our first contribution, 581711c. We then
ran yarn jest --coverage to compute the test coverage. To add our contributions, we cherry-picked the
relevant (squashed) commits (47e0615, f541c34, and 6047d42) and computed the coverage again.

Libraries/Geolocation Before After (+9 tests)

Branches 0% 0/40 77.50% 31/40
Lines 0% 0/49 91.84% 45/49

https://github.com/facebook/react-native/pull/23987
https://github.com/facebook/react-native/pull/23903
https://github.com/facebook/react-native/pull/23989
https://github.com/facebook/react-native/pull/23987
https://github.com/facebook/react-native/pull/23958

21.11. APPENDICES 529

Libraries/Utilities Before After (+35 tests)

Branches 34.77% 153/440 41.36% 182/440
Lines 48.3% 398/824 54.25% 447/824

21.11.6 Contributions

• https://github.com/react-native-community/discussions-and-proposals/pull/103
• https://github.com/facebook/buck/pull/2200
• https://github.com/facebook/react-native-website/pull/805
• https://github.com/facebook/react-native/pull/23804
• https://github.com/facebook/react-native/pull/23903
• https://github.com/facebook/react-native/pull/23958
• https://github.com/facebook/react-native/pull/23987
• https://github.com/facebook/react-native/pull/23989

https://github.com/react-native-community/discussions-and-proposals/pull/103
https://github.com/facebook/buck/pull/2200
https://github.com/facebook/react-native-website/pull/805
https://github.com/facebook/react-native/pull/23804
https://github.com/facebook/react-native/pull/23903
https://github.com/facebook/react-native/pull/23958
https://github.com/facebook/react-native/pull/23987
https://github.com/facebook/react-native/pull/23989

530 CHAPTER 21. REACT NATIVE

Chapter 22

SciPy

By Noor ul Sehr Zia, Sharanya Suresha Konandur, Shikhar Dev and Srinath Sudharsan

22.1 Abstract

SciPy is a popular open source software which is widely used for scientific and numerical computing in
Python. SciPy is maintained and developed by the core developers on Github as well as external contributors.
In this chapter, we study the software architecture of SciPy, precisely its stakeholders, context, deployment,
and evolution. Finally, we elaborate upon an analysis of its architecture development and its technical debt.
In conclusion, we observe that SciPy is very well engineered project with minor technical holes or debt.

22.2 Table of Content

• Introduction

531

https://gitlab.ewi.tudelft.nl/nzia
https://gitlab.ewi.tudelft.nl/ssharanyasures?nav_source=navbar
https://gitlab.ewi.tudelft.nl/sdev
https://gitlab.ewi.tudelft.nl/ssudharsan
https://paper.dropbox.com/doc/SciPy--AbClduGF_aMQSSnQSnonswALAg-CvRFpiALgp8sgDBjaXdO0#:uid=069536392133450179621222&h2=Introduction

532 CHAPTER 22. SCIPY

• Stakeholders View
• Context View
• Development View
• Deployment view
• Technical debt
• Evolutionary Perspective
• Conclusion
• References

22.3 Introduction

SciPy is an open source software library that abstracts and implements key functionalities for scientific
computing, mathematics and engineering. It is written in Python and is supported by a large community of
developers, researchers and some of the world famous companies including Github, Intel and Travis CI.
SciPy has been under active development since 2001 and is now used in a wide range of applications by
companies across the world. Some of the prominent modules implemented in SciPy include linear algebra,
integration, interpolation, Fast Fourier Transforms, and signal and image processing. In this chapter, we
derive views and perspectives from Rozanski & Woods book and perform a thorough analysis of the library.
Given the global scale of impact, SciPy provides for a very interesting study in many dimensions. The goal
of this article is to provide an overview of key architectural elements of SciPy and to possibly attract more
contributors for open source development.

22.4 Stakeholder’s Analysis

“A stake holder in a software architecture is a person, group, or an entity with an interest in or concerns about
the realization of the architecture.” - Software Systems Architecture. Apart from just the users of a software
system, there are many different individuals or groups of no individuals who have a direct impact on the
system. From conceptualization, design, documentation, implementation, maintenance, to even developing
business cases around the software system, development life-cycle of a software involves many different
stake holders working in harmony to make a valuable and sustainable system. This section describes the
different types of stake holders we have identified for the project, and attempts to identify their contributions
to the project. Most of the information below have been sourced from the SciPy github page and the main
SciPy website. Minor points have been inspired from numerous blogs, wikipedia and google search.

Type Brief Description Owner

Acquirers Acquirers are stakeholders
who oversee the long term
and short term strategy of
the project. This also
includes parties who partly
/ fully sponsor the project.

A large part of strategic positioning was done by
the original creators of SciPy, Travis Oliphant,
Pearu Peterson, and Eric Jones. Apart from
them, NumFOCUS provides financial support to
the project, garnering some influence in the
overall strategy.

https://paper.dropbox.com/doc/SciPy--AbClduGF_aMQSSnQSnonswALAg-CvRFpiALgp8sgDBjaXdO0#:uid=540064461358700759659203&h2=Stakeholder%E2%80%99s-Analysis
https://paper.dropbox.com/doc/SciPy--AbClduGF_aMQSSnQSnonswALAg-CvRFpiALgp8sgDBjaXdO0#:uid=304026020136085541953822&h2=Context-View
https://paper.dropbox.com/doc/SciPy--AbClduGF_aMQSSnQSnonswALAg-CvRFpiALgp8sgDBjaXdO0#:uid=435544008912413080052480&h2=Development-view
https://paper.dropbox.com/doc/SciPy--AbClduGF_aMQSSnQSnonswALAg-CvRFpiALgp8sgDBjaXdO0#:uid=003579782478521333032110&h2=Deployment-View
https://paper.dropbox.com/doc/SciPy--AbClduGF_aMQSSnQSnonswALAg-CvRFpiALgp8sgDBjaXdO0#:uid=188849135038293725160538&h2=Technical-Debt-Analysis
https://paper.dropbox.com/doc/SciPy--AbClduGF_aMQSSnQSnonswALAg-CvRFpiALgp8sgDBjaXdO0#:uid=034554682657308877741914&h2=7.-Evolutionary-Perspective
https://paper.dropbox.com/doc/SciPy--AbClduGF_aMQSSnQSnonswALAg-CvRFpiALgp8sgDBjaXdO0#:uid=294430708999519433278396&h2=Conclusion
https://paper.dropbox.com/doc/SciPy--AbClduGF_aMQSSnQSnonswALAg-CvRFpiALgp8sgDBjaXdO0#:uid=105861018644215105445874&h2=References
https://www.viewpoints-and-perspectives.info/home/stakeholders/
https://github.com/scipy/scipy
https://www.scipy.org/
https://en.wikipedia.org/wiki/SciPy
http://www.numfocus.org/

22.4. STAKEHOLDER’S ANALYSIS 533

Type Brief Description Owner

Assessors Assessors oversee the
system’s compliance to
standards and legal
regulations.

Python Software Foundation (PSF)

Communicators Communicators ensure
crisp and unambiguous
communication of relevant
details of the project to
appropriate stakeholders.

The SciPy Code of Conduct committee polices
all public spaces managed by the SciPy project,
and ensures an abuse free productive
communication environment. All of the
technical documentation and inquiry response is
handled by the active contributors active
participants in the project.

Developers Developers are responsible
for creating and deploying
software solutions that
comply with all the
expectations.

SciPy originated with code contributions by
Travis Oliphant, Pearu Peterson, and Eric Jones
in 2001. Since then, significant contributions
have been made by over 200 contributors.

Maintainers Maintainers manage the
evolution of the system
once it is deployed and
operational.

All of the pull requests for SciPy are reviewed
and integrated by the community of developers
and users of SciPy. All contributors who
participate in the PR discussion can be
considered Maintainers. In rare cases that
agreement cannot be reached, maintainers of the
individual module in question decide on the
outcome.

Suppliers Suppliers source the
hardware, software, or
infrastructure on which the
system will run.

Some of the organisations that have funded parts
of Scipy operations are: Enthought: scipy.org
and mailing lists hosting, holding the SciPy
trademark. Enthoughts also sponsors SciPy
conferences in the United states and across the
world. () Github: code hosting and development
workflow platform () Travis CI: continuous
integration service; SourceForge: hosting
released sources and installers; Intel: Intel MKL
licenses; NumFOCUS: hosted Mac Mini build
machine

Support Staff Support staff provide
support to users for the
product or system.

Most open questions and queries are catered to,
by the community of users and contributors of
SciPy on different channels, including
Stackoverflow and Github. Commercial support
is offered for SciPy by a number of companies,
including Anaconda, Enthought and Quansight.

System
Administrators

System administrators
ensure smooth operations
of the system once it has
been deployed.

Since SciPy is offered as a library, no system
critical assurance is for the operation. Services
such as Hosting, Mailing list, etc are fulfilled by
companies listed in Suppliers.

https://www.python.org/psf/
https://www.enthought.com/
https://github.com/
https://travis-ci.org/
https://sourceforge.net/
http://www.intel.com/
https://software.intel.com/en-us/intel-mkl/
http://www.numfocus.org/
https://www.anaconda.com/
https://www.enthought.com/
https://www.quansight.com/

534 CHAPTER 22. SCIPY

Type Brief Description Owner

Testers Testers systematically test
the system to ensure that it
is suitable for deployment
and use.

All code contributors are expected to perform
unit tests on their code before submitting a Pull
Request. There is no separate team of testers
who test the system.

Users Users are individuals and
organisations who use
Scipy for their projects.

SciPy is primarily designed for Mathematics,
Science and Engineering. SciPy caters to a wide
range of users, including researchers, students,
data scientists, as software engineers. The
library is used in academic, as well as business
setting.

In addition to the above discussed categories which were based on Software Systems Architecture, following
categories stakeholders have also been accounted for.

Type Brief Description Owner

Event Organiser Event organisers organise
regular outreach and
awareness programs.

Conferences are organised by SciPy (in the
United States), EuroSciPy (in Europe) and
SciPy.in (in India)

Competitors Competitors include other
projects that provide
similar offerings.

Some of the most prominent competitors of
SciPy are : Matlab; R; Stata

Dependencies These are entities on
which Scipy is reliant
upon for services.

Python is the base language SciPy offers its
services in; C and Fortran are used for several
key components in the SciPy Library; NumPy
provides fast and convenient N-dimensional
array manipulation capabilities for SciPy.

https://www.viewpoints-and-perspectives.info/home/stakeholders/

22.5. POWER - INTEREST ANALYSIS 535

22.5 Power - Interest Analysis

Figure: Power Interest Grid

The power vs interest grid correlates the influence and the interests of different stakeholders involved in the
project. The relation can be studied 4 different categories.

• Low Power and Low Interest : While this group of stakeholders are invested in the success of SciPy,
they do not hold a strong influence on the project, and neither do they have a strong interest in the
development activities of SciPy. As shown in the Stakeholders Analysis, Github, Intel, Travis CI and
Sourceforge have all contributed services to ensure smooth operations of SciPy - but they do not have
any contribution on development activities. [SciPy Donations]

• Low Power and High Interest : Users, Communicators and Supporters are stakeholders who actively
follow developments of SciPy, but do not have any direct influence on the software project itself.
These functionalities are also supported by the open community of par [Contributing to SciPy]

• High Power and Low Interest : NumFocus, Enthought and the Python Software Foundation (PSF)

https://www.scipy.org/scipylib/donations.html
https://scipy.github.io/devdocs/hacking.html
http://www.numfocus.org/
https://www.enthought.com/
https://www.python.org/psf/

536 CHAPTER 22. SCIPY

provide vital contributions to the project, but do not derive value from the contributions. NumFocus
is one of the primary sources of funds for SciPy. Eric Jones, the co-founder of Enthought was one
of the co-creators of SciPy, and had significant contributions to the project. The Python Software
Foundation continually develops and improves Python - which has a direct influence on SciPy.

• High Power and High Interest : The creators of the library - Travis Oliphant, Pearu Peterson, and
Eric Jones hold the largest influence on development activities of SciPy. However, beyond the creators,
the library is largely maintained and further developed by a community of contributors and participants
of the review process. [Contributing to SciPy]

22.6 Integrators

In analyzing pull requests, we have identified Ralf Gommers, Pauli Virtanen and Matthew Brett as some
of the most active contributors and integrators on the the project. They have individually closed numerous
pull requests and are very active in discussions under pull requests. While we have not been identified exact
areas where we could contribute to SciPy library, it would be very interesting to reach out to them and to get
their take on directions they think are important for SciPy.

22.7 Context View

In this section we explore the context view which describes the relationship and interactions between SciPy
and other related entities. We visualized and categorized the external entities by their involvement in SciPy.
The following image shows the interactions of these entities.

22.7.1 System Scope and Responsibilities

The system scope defines the main responsibilities that SciPy provides, which consists of providing a open
and free Python library for the development and utilization of scientific and technical computing. Scipy has
many responsibility that has distinct entities contributing to the SciPy. The main contributions are:

• Scipy is scientific computing software platform in python which incorporate The SciPy ecosystem.
• Scipy also holds exclusive conferences for numerical and scientific analysis in python such as SciPy,

cipy.in, EuroSciPy etc.
• Scipy builds on NumPy array which is a numerical stack which provides many user-friendly tools for

numerical data analysis and optimizations.
• Scipy is a cross platform software which works on multiple operating systems such as linux, OSX

and windows.
• The SciPy library consists of numerical algorithms and software toolbox for signal processing, special

functions, FFT, etc.

https://github.com/teoliphant
https://github.com/pearu
https://github.com/TheDiemer
https://scipy.github.io/devdocs/hacking.html
https://github.com/rgommers
https://github.com/pv
https://github.com/matthew-brett

22.7. CONTEXT VIEW 537

22.7.2 External entities

In this subsection we will explore an how SciPy handles its dependencies. SciPy has several external entities
which are listed below, who work as a single community to make the environment for it.

• Developing language: Python
• Sponsored by: Enthought, Inc
• IDE for programming: IPython, wxPython, Traits, Django,etc.
• Communication tools: Stack overflow, Mailing-List, GitHub
• Quality assurance: Nose and Pytest provides framework for python testing.
• Continuous integration service: Travis CI
• License support: BSD license
• SciPy development: Github
• Governance: Pauli Virtanen is the Benevolent Dictator for Life (BDFL) and steering council.
• Competitors: Stata, Alteryx, Base SAS, Arcadia Data.
• Dependency: Numpy, nose (test suite run), asv (benchmarks run), matplotlib (plotting), Pillow (saving

images), mpmath (special tests), LaTeX (pdf docs), Cython(development versions)
• Users: MTEQ, Raytheon, Amgen, VMware, Jefferson Frank, global foundries, students, researchers,

etc.

22.7.3 Context view diagram

The below diagram summaries SciPy and its entities which devises the environment. It contains the key
stakeholders as mentioned in the stakeholder section and the external entities.

Figure: Context View Diagram

http://ipython.org/
http://www.wxpython.org/
http://code.enthought.com/projects/traits/
https://www.djangoproject.com/
https://travis-ci.org/
https://www.datanyze.com/market-share/advanced-analytics-and-data-science/stata-market-share
https://www.datanyze.com/market-share/advanced-analytics-and-data-science/alteryx-market-share
https://www.datanyze.com/market-share/advanced-analytics-and-data-science/base-sas-market-share
https://www.datanyze.com/market-share/advanced-analytics-and-data-science/arcadia-data-market-share
https://numpy.org/
http://cython.org/

538 CHAPTER 22. SCIPY

22.7.4 Pull Request Analysis

We analyzed 20 pull requests from SciPy github repository. The criteria used for selecting the pull requests
is:

• Accepted: We sorted the merged and closed pull requests according to their number of comments and
took the ones with most comments/discussions.

• Rejected: For rejected, we took pull requests that were closed by the members of SciPy or those that
weren’t merged in any child pull request. To add diversity, we chose pull requests that were from
different labels, like “won’t fix”, “defect”, “maintenance” and “documentation”.

22.7.5 Reviewing guidelines

Everyone can review the pull requests, however the members of SciPy are people who perform the final
merge process. Moreover, SciPy HACKING.rst provides detailed guidelines about the reviewing process.
These guidelines include:

• The change should be discussed in detail and all changes that will follow in existing behavior should
be reported.

• The change should be logically and scientifically correct.
• The behavior should be clear under all conditions and all unexpected behavior and exceptions should

be reported
• The code should meet the quality, test and documentation expectations outlined in CONTRIBUT-

ING.rst.

22.7.6 Decision making

We noticed that most pull requests that were rejected or closed were due to one of the following reasons:

• The cost of making the change did not exceed the benefits
• There were incorrect assumptions in the logic
• The implemented code did not address all the conditions
• The pull request was not updated in a long time and another fix was already implemented
• The changes proposed were not backward compatible

Through the accepted ones we noticed that some of the reasons a pull request was accepted were:

• It introduced a new method and that method passed all tests
• It optimized an existing routine
• Provided a better alternative to an existing method
• Improved the performance of an algorithm

We have provided a detailed analysis of pull requests in Appendix A of our report.

As an attempt to codify the pull requests, we analyzed each comment and assigned a tag to it. To stay
consistent in our analysis, we used a common tagging terminology in our codification process. The details
of the tags we used and their distribution is shown in Appendix B. We have attached the csv files with tags
per comment in PR_codified folder in our gitlab repository.

https://github.com/scipy/scipy/blob/master/HACKING.rst.txt
https://github.com/scipy/scipy/blob/master/CONTRIBUTING.rst
https://github.com/scipy/scipy/blob/master/CONTRIBUTING.rst
https://paper.dropbox.com/doc/SciPy--AbG~zP9G95P60e0XL08_CsbmAg-CvRFpiALgp8sgDBjaXdO0#:uid=450447681037738403139882&h2=Appendix-A:-Pull-Request-Analy
https://paper.dropbox.com/doc/SciPy--AbG~zP9G95P60e0XL08_CsbmAg-CvRFpiALgp8sgDBjaXdO0#:uid=450447681037738403139882&h2=Appendix-A:-Pull-Request-Analy
https://paper.dropbox.com/doc/SciPy--AbG~zP9G95P60e0XL08_CsbmAg-CvRFpiALgp8sgDBjaXdO0#:uid=502855545620582028342594&h2=Appendix-B:-Codification-analy
https://paper.dropbox.com/doc/SciPy--AbG~zP9G95P60e0XL08_CsbmAg-CvRFpiALgp8sgDBjaXdO0#:uid=502855545620582028342594&h2=Appendix-B:-Codification-analy
https://gitlab.ewi.tudelft.nl/in4315/2018-2019/TI3125TU-swa-16-scypy/swa-16-scypy/tree/master/PR-codified

22.8. DEVELOPMENT VIEW 539

22.8 Development view

In this section, we delve into the code structure and analyse the architecture of SciPy. The primary objective
of this section is to describe various technical design aspects of the project including code structure,
dependencies, the build and configuration processes and the design patterns, especially from the perspective
of developers and testers.

22.8.1 Code Organization

In this section we explore the code structure of SciPy. The code of SciPy is organized in folders in github.
In the project, there are four main folders: benchmarks, doc, Scipy and tools. There a other files in the
main project folder that are concerned with setup, gitignore, gitattributes, init files etc. We will explain the
purpose of each main folder below:

• Benchmarks This folder contains code for bench marking SciPy with Airspeed Velocity. This folder
contains code for bench marking SciPy over its lifetime. Run time, memory consumption and value
changes may be tracked over time. Benchmarks are written for interpolate, optimize, filtering and
linear algebra functions.

• Doc This section contains the code used to generate the documentation. It contains documentation
of each release. It contains a release folder that contains release notes of each SciPy release and
explains the new features and changes, the deprecated features and backward incompatible changes.
The source folder contains the code to generate the documentation. It also contains a tutorial folder
that consists of example uses of SciPy. SciPy releases new versions as version number x.x.x and the
release notes accompany each release and summarize all the files changed and functionality added or
removed.

• Scipy This folder contains code for all functionality of SciPy. It contains a library folder that handles
all dependencies and version checks. It contains each module of SciPy in a separate folder: integrate,
optimize, linalg, signal etc. Each module contains its own test folder and its source code.

• Tools This folder contains code for CI (continuous integration), build scripts for Windows, installer
file for MacOS, code to generate C files of python files and other helper files that are used in running
tests and installation. It also includes scripts for GitHub like getting author names who contributed to
the release.

https://asv.readthedocs.io/en/stable/

540 CHAPTER 22. SCIPY

Figure: Code structure of SciPy. The code is organized on github in folders. The sub directories are shown
for only one level.

22.8.2 Module Structure Models

In this section we focus on the organization of the Scipy source code and group the code modules into layers
of abstraction. We noticed that the source code can be organized into four layers based on its usage and
functionality. These layers are: Core, Utility, Platform, Build.

22.8. DEVELOPMENT VIEW 541

542 CHAPTER 22. SCIPY

Figure: Diagram of module structure of SciPy. It can be described by a 4 layer structure based on the
functionality of modules

• Core Layer: This layer consists of the main functionality of SciPy. It consists of modules that were
present in SciPy folder of the repository. They contain implementation of all methods. It consists
of optimize, linalg, interpolate, integrate, signal, spatial, special, io, sparse and ndimage. Here we
have only shown the main modules of SciPy core. It consists of other modules as well like fftpack,
constants, cluster and many more.

• Utility layer: This layer consists of modules that are utilized by the core layer and helper files. It
consists of code for generating documentation, examples and tutorials, code for testing and bench
marking against previous releases. It depends on the Core module and uses the methods from core
module for testing and bench marking.

• Platform layer This layer consists of packages that are required by SciPy to run. SciPy needs Python,
numpy, cython and sphinx (for documentation, optional). This module consists of the external libraries
and dependencies. Dependencies are the programs or libraries that a user has to install in order to
build/test a package. SciPy has minimum dependencies so that the user can easily perform the required
tasks without any hassle.

• Build layer This layer consists of build modules. It consists of code to check for libraries and
dependencies, get the correct versions according to system. It also contains installers and build scripts
for Windows, Travis.yml file and Appveyor to build and test projects with continuous integration
support. It also contains build and install instructions for BLAS/LAPACK which are recommended
for SciPy. For CI support, SciPy relies on Travis and Appveyor.
The support for multiple platforms is a primary reason for using two different CI services. It uses
Travis for its support on OSX and Linux and Appveyor for windows.

22.8.3 Internal dependencies in core layer:

The modules in core folder are dependent on each other and every modules uses functionality implemented
as part of other module(s) . The module level dependency has been analyzed and shown as a graph. Modules
lib and build_tools contain utility and helper functions and are therefore imported by almost all other
modules.

http://www.numpy.org/
http://cython.org/
http://www.sphinx-doc.org/
https://travis-ci.org/
https://ci.appveyor.com
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
https://travis-ci.org/
https://ci.appveyor.com
https://travis-ci.org/
https://ci.appveyor.com

22.8. DEVELOPMENT VIEW 543

Figure: The module level dependencies in SciPy. It can be observed that the modules are heavily dependent
on each other. We have only shown the internal dependencies of modules here and ignored the standard
python libraries that are imported within the files.

22.8.4 Common Design Models

In this section, we describe the common designs used in the development of SciPy.

• Design standardization SciPy uses uniformity of style in its coding to make sure that the code
is understandable. It follows the standard python guidelines for code style PEP8. It encourages

https://pypi.org/project/pep8/

544 CHAPTER 22. SCIPY

contributors to make sure that their code conforms to PEP8 standards and to use PEP8 package style
checker. For new functionalities, SciPy follows a two level structure which means new function
should appear as *scipy.submodule.my_new_func**.* Each module has a init.py file where public
functions are imported and private functions and classes have a leading underscore (_) in their name.

• Testing standardization Every module in SciPy core is accompanied by its test folder that consists
of unit tests that cover all functionality. For new code, testing guidelines are provided in Numpy
testing guidelines which SciPy follows. For testing, SciPy uses the testing framework from numpy
which uses Pytest framework and nose test suite. SciPy provides contributor guidelines to write their
tests and encourages writing unit tests to exercise all the code they are adding. SciPy uses Travis and
Appveyor for continuous integration and integrated with github to run tests on every pull request. This
makes sure that the code does not run into any exceptions or errors.

• Third Party libraries SciPy relies on third party libraries for some of its functionalities. It uses
python package Numpy for calculations. It also uses BLAS functions in its linalg module.

22.8.5 Programming Languages

In SciPy there are in total 2229 files. The code is written in multiple programming languages and the
distribution is shown below (analysis performed using CLOC). Most code is written in C and Python.

Language Files Blank lines Comment Code

C 322 38125 162361 296772
Python 638 59108 103970 158677
Fortran 77 459 4238 74285 81899
Cython 41 5954 7998 32748
C++ 19 2007 7493 22375
C/C++ header 117 3012 6240 14011
JSON 2 14 0 1455
TeX 2 131 161 1168
YAML 5 43 84 564
Others (css, markdown, html, TOML, make, matlab) 16 159 109 555

22.9 Deployment View

The development view of SciPy shows how the program is expected to perform at run-time.The SciPy is not
a stand-alone of software. The view shows the dependencies and hardware and software requirements of
SciPy.

22.9.1 Third-party Software Requirements

Dependencies are the programs or libraries that a user has to install in order to build/test a package. SciPy
has minimum dependencies so that the user can easily preform the required tasks without any hassle, such as

https://pypi.org/project/pep8/
https://pypi.org/project/pep8/
https://github.com/numpy/numpy/blob/master/doc/TESTS.rst.txt
https://docs.pytest.org
https://nose.readthedocs.io/
https://travis-ci.org/
https://ci.appveyor.com
http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://github.com/AlDanial/cloc

22.9. DEPLOYMENT VIEW 545

run-time dependencies: build-time dependencies:

Unconditional- Numpy Numpy; Cython(for development
versions)

Conditionalnose (test suite); asv (benchmarks); matplotlib
(functions that can produce plots); Pillow (image
loading/saving); scikits.umfpack (optionally used in
sparse.linalg); mpmath (used for extended tests in
special)

- setuptools; wheel (python setup.py
bdist_wheel); Sphinx (docs);
matplotlib (docs); LaTeX (pdf docs);
Pillow (docs)

22.9.2 Working environments

As SciPy runs entirely within a single system, and on this system it runs inside python. Most of its working
environment is either highly simplified or defined by its hosting programs. The following list shows some of
these environments.

Environments Description

Python(x,y) It is a python distribution which is based on Qt and Spyder. It is used by free scientits
and engineers for develping software for numerical computations, data analysis and
data visualization.

WinPython provides compiler for scientific analysis (Mingw64) for Python 3.4 which is fully
integrated with Cython and Numba.

IPython IPython (Interactive Python) is build for Python which provides command shell for
multiple programming languages, it has features for visualization,use of GUI
toolkits,etc.

Anaconda Anaconda a enterprise-ready, free open source Python distribution which is a
cross-platform software. Whose goal is simplification packages for Mac OS X,
Windows,and Linux users.

Enthought
Canopy

The free and commercial versions include the core scientific packages. Supports Linux,
Windows and Mac.

Spyder IDE Provides working environments on Windows and Ubuntu; Py2 only.
Microsoft
Visual Studio

A free, rich IDE that supports Anaconda and Python. It also supports CPython,
IronPython, the IPython REPL, debugging, profiling, Git and GitHub. Built-in
languages include C,[6] C++, C++/CLI, Visual Basic .NET, C#, F#,[7] JavaScript,
TypeScript, XML, XSLT, HTML, and CSS. Visual Studio Code is also available, which
is a code editor with debugger. It is supported on Linux, Windows and MacOS.

Enthought
Canopy

it is an analysis environment that includes Enthought’s Python distribution which also
has a analysis desktop with text-editor, code-checker and an IPython console.
Enthought Canopy also includes TraitsUI, Pyface,Enable,SciMath etc on all platforms.

IEP IEP is used for interactivity and introspection, which makes it very suitable for
scientific computing. It is very simple to use a cross-platform Python IDE. The editor
and the shell,are the two main components which also includes plug-in tools for the
programmer use. Few examples are structure, project manager, interactive help,
workspace,etc.

Pymacs A Emacs tool allows users to communicate between Emacs Lisp and Python.

https://numpy.org/
https://numpy.org/
http://cython.org/
https://nose.readthedocs.io/
https://asv.readthedocs.org/
https://matplotlib.org/
https://pillow.readthedocs.org/
https://pypi.python.org/pypi/scikit-umfpack
http://mpmath.org/
https://bitbucket.org/pypa/setuptools
https://wheel.readthedocs.io/
http://www.sphinx-doc.org/
https://matplotlib.org/
https://pillow.readthedocs.org/
http://python-xy.github.io/
https://winpython.github.io/
http://ipython.org/
https://www.anaconda.com/download
https://www.enthought.com/products/canopy
https://www.enthought.com/products/canopy
https://www.spyder-ide.org/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio#cite_note-6
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/C%2B%2B/CLI
https://en.wikipedia.org/wiki/Visual_Basic_.NET
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/F_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio#cite_note-7
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/TypeScript
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/XSLT
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
http://www.iep-project.org/
https://github.com/pinard/Pymacs

546 CHAPTER 22. SCIPY

Environments Description

Plotly It is a online tool on Python environment for which is used for data exploration and
graphing. Plotly contains a command line which allows users to store and share Python
scripts.

Pyzo Open and free distribution on Anaconda and the IEP interactive development
environment. It is supported for Linux, Windows and Mac.

Wakari A browser based Scientific and Technical Computing tool. users can create and share
workflows, IPython notebooks, plots, and applications on cloud which also features
Anaconda- Big-Data Python distribution.

22.9.3 Basic Versions required

During the initial installation the following distributions of packages should be included. The (x.x.x) indicate
the required versions for the dependencies to run on SciPy.

Dependencies Version required

Python (2.x >= 2.6 or 3.x >= 3.2)
NumPy (>= 1.6)
SciPy library (>= 0.10)
Matplotlib: dateutil; pytz; Support for at least one backend (>= 1.1)
IPython (>= 0.13): pyzmq; tornado (>= 0.13)
pandas (>= 0.8)
nose (>= 1.1)
Sympy (>= 0.7) (>= 0.7)

22.9.4 Running Code Written In Other Languages

Below is a list of software platforms which helps wrapping code of different languages.

• SWIG: SWIG is a software that primarily connects programs written in C and C++ with a wide range
of high-level programming languages. It also supports scripting languages such as Javascript, Perl,
PHP, Python, Tcl and Ruby.

• Boost.Python: a C++ library which enables seamless ability to transform between C++ and Python.
• F2PY: Mainly used to warp Python and Fortran languages. F2PY is a Python extension tool for

creating Python C/API modules from signature files (or directly from Fortran sources).
• matlab: Has interfaces for Python by treating it as a computational tool. For information about how to

interface with Python from MATLAB, visit this link here.
• pythoncall:it connects MATLAB-to-Python which runs a Python interpreter inside Matlab and allows

transferring data between the Python and Matlab workspaces.
• ctypes: a package which allows users to create and manipulate C data types in Python, and to call

functions in dynamic link libraries/shared dlls. It wraps these libraries in pure Python programming
language.

• railgun: ctypes utilities for faster and easier simulation programming in C and Python.

https://plot.ly/python/
http://www.pyzo.org/
https://wakari.io/
http://www.swig.org/
http://www.boost.org/libs/python/doc/index.html
https://sysbio.ioc.ee/projects/f2py2e/
http://www.mathworks.com/help/matlab/matlab_external/get-started-with-matlab-engine-for-python.html
http://www.mathworks.com/help/matlab/getting-started_buik_wp-3.html
http://pav.iki.fi/software/pythoncall/
http://starship.python.net/crew/theller/ctypes
http://tkf.bitbucket.org/railgun-doc/

22.10. TECHNICAL DEBT ANALYSIS 547

• rpy2: a very simple, yet robust, Python interface to the R Programming Language. It can manage all
kinds of R objects and can execute arbitrary R functions (including the graphic functions). All errors
from the R language are converted to Python exceptions. Any module installed for the R system can
be used from within Python.

• mirpyidl: it provides a library to call IDL (Interactive Data Language) from python. Allows transparent
wrapping of IDL routines and objects as well as arbitrary execution of IDL code. It utilizes connections
to a separately running idlrpc server.

22.9.5 Minimum Hardware Requirements

Below listed is the basic hardware requirements for running SciPy successfully.

• Disk space: 1 GB
• Operating systems: Windows* 7 or later, MacOS, and UNIX-based systems
• Processors: Intel Atom® processor/Intel® Core™ i3 processor or higher

22.9.6 Making a SciPy release

Manger is the main actor in release of a new SciPy release, below are the steps followed:

1. Schedule is proposed and released on the Scipy-dev mailing list.
2. maintenance branch is created for the release.
3. Tagging
4. Building is released for artifacts such as sources, installers, docs.
5. Upload the release artifacts.
6. Announcement is released.
7. Port release notes and scripts are built onto master.

22.10 Technical Debt Analysis

In this section we analyse the technical debt of SciPy. We make use of an automatic tool for code quality
analysis. The subsections respectively describe the debt identified in the system with regard to defects,
code-style, testing and documentation. The following metrics were analysed:
(Note: In this section, we discuss the relevance of the metrics with SciPy and values noted from our code
analysis. Intricate details have been explained in the Appendix C)

22.10.1 1. Maintainability

Maintainability is focused on code smells, which is a maintainability-related issue found in the code analysis
[1].

1. Code Smells Code Smells refers to any symptom in the source code of a program that possibly
indicates a deeper problem. [2]

http://rpy2.bitbucket.org/
https://www.r-project.org/
https://pypi.python.org/pypi/mirpyidl/
https://paper.dropbox.com/doc/SciPy--AbG~zP9G95P60e0XL08_CsbmAg-CvRFpiALgp8sgDBjaXdO0#:uid=825143202751942454825198&h2=Appendix-C:-Technical-Debt-Glo
https://paper.dropbox.com/doc/SciPy--AbEU4jG5pjXuP4DIafNH7fgAAg-CvRFpiALgp8sgDBjaXdO0#:uid=825143202751942454825198&h2=Appendix-C:-Technical-Debt-Glo
https://paper.dropbox.com/doc/SciPy--AbEU4jG5pjXuP4DIafNH7fgAAg-CvRFpiALgp8sgDBjaXdO0#:uid=825143202751942454825198&h2=Appendix-C:-Technical-Debt-Glo

548 CHAPTER 22. SCIPY

For Scipy, we noted 4,373 Code Smells from the results of static analysis. We used Quality Profile evaluation
to be the default Sonar Way evaluator. Additionally, the benchmarks we reported against default Sonar Way
benchmarks. The debt that was reported for the code smells were estimated 56 days. The maintainability
ratio was grade with A. The reported technical debt ratio for Scipy was 0.5%

The figure below depicts the results obtained from the test using SonarQube.

Figure: Maintainability Overiew

22.10.2 2. Code Complexity

Code Complexity or Cyclomatic complexity is a quantitative measure of the number of linear independent
paths through a program code. For SciPy, the code complexity was performed using Pylint. Pylint analysis
the code at a file level and also performs an integrated complexity check with adherence to the standard
developed by T.J McCabe in “A Complexity Measure.” Additionally, Pylint provides a rating based on the
analysis performed on a scale of 10. For the SciPy project, we received a rating of 2.67/10. As a remediation
measure, we have listed possible ways to obtain better scoring of Pylint’s code complexity analysis [3].

22.10.3 3. Code Duplication

This section describes the amount of code blocks that were found to be duplicated during the static code
analysis. [4] In Scipy, we observed 280 code blocks that were copied, which amounted to roughly 1.3 % of
the total code base. The Code Duplication was performed using SonarQube. The results of code duplication
is represented in the figure below where the size of the bubbles represent the duplication blocks of code.

https://www.sonarqube.org/
https://www.pylint.org/
https://ieeexplore.ieee.org/document/1702388
https://paper.dropbox.com/doc/SciPy--AbEU4jG5pjXuP4DIafNH7fgAAg-CvRFpiALgp8sgDBjaXdO0#:uid=825143202751942454825198&h2=Appendix-C:-Technical-Debt-Glo
https://paper.dropbox.com/doc/SciPy--AbEU4jG5pjXuP4DIafNH7fgAAg-CvRFpiALgp8sgDBjaXdO0#:uid=825143202751942454825198&h2=Appendix-C:-Technical-Debt-Glo
https://www.sonarqube.org/

22.10. TECHNICAL DEBT ANALYSIS 549

Figure: Visual representation of Duplication

22.10.4 4. Reliability & Security

1. Reliability The source of reliability in code is the ability to produce a predictable outcome given
wildly varying inputs. [5] For Scipy, the Reliability Ratings graph is represented with a bubble graph.
Additionally, the graph showcase the number of bugs reported while performing the code analysis.
We have used SonarQube for reliability reporting

https://paper.dropbox.com/doc/SciPy--AbEU4jG5pjXuP4DIafNH7fgAAg-CvRFpiALgp8sgDBjaXdO0#:uid=825143202751942454825198&h2=Appendix-C:-Technical-Debt-Glo
https://www.sonarqube.org/

550 CHAPTER 22. SCIPY

Figure: Visual Representation of Code Reliability

b. Security Static analysis looks for security vulnerabilities in source code by referencing the most
common vulnerabilities as defined by OWASP. [6] The Figure below depicts the Security related
vulnerabilities obtained as part of our analysis. We note that there are no security vulnerabilities for
SciPy. We have used SonarQube for security vulnerability reporting

https://www.owasp.org/index.php/Main_Page
https://paper.dropbox.com/doc/SciPy--AbEU4jG5pjXuP4DIafNH7fgAAg-CvRFpiALgp8sgDBjaXdO0#:uid=825143202751942454825198&h2=Appendix-C:-Technical-Debt-Glo
https://www.sonarqube.org/

22.10. TECHNICAL DEBT ANALYSIS 551

Figure: Visual Representation of Security Analysis

22.10.5 5. Code Coverage Tests

Code coverage describes the degree to which the source code of a program is executed by a particular test
suite [7]. For Scipy, as part of the code coverage task, missing test coverage’s long-term risks are analysed.
We have used native SciPy testing suite for our code coverage tests.

A visualization has been made from our results below.

https://paper.dropbox.com/doc/SciPy--AbEU4jG5pjXuP4DIafNH7fgAAg-CvRFpiALgp8sgDBjaXdO0#:uid=825143202751942454825198&h2=Appendix-C:-Technical-Debt-Glo

552 CHAPTER 22. SCIPY

Figure: Results of Coverage Tests

The run-time of the test was 543.9 seconds. The important metrics to note here would be the passed legend
which represents code pass as part of our testing and xFailed which represents code failure which is reported
at approximately 0.5% of our code base.

22.10.6 6. Dependency of Individuals to SciPy

In this section, we analyse the dependencies of individual contributors of Scipy. If there are more sole
responsibilities assigned to a select people of the Scipy project, it is implicitly considered to be high risk as
the absence of these individuals may lead to failure in the progress of Scipy.

The figure below reports the overall activities of the contributors from the start of SciPy.

Dependency graph of all the activities of contributors from inception of Scipy

22.10. TECHNICAL DEBT ANALYSIS 553

The figure below shows the top 10/100 contributors of Scipy. The contributions to master, excluding merge
commits are depicted here. With the contributors being:

554 CHAPTER 22. SCIPY

Figure: Top 10 contributors to SciPy

For SciPy, there has been fluctuating yet distributed dependency graph of Contributors. Hence, this does not
affect the progress in lack of any significant-individual dependency for SciPy.

22.10.7 7. Evolutionary Perspective

In this section we discuss, the evolutionary perspective of SciPy, its past and present transitions and the
present version usage. Additionally, we address documentation debt.

a. Documentation Debt Scipy is a massive project with over 160,000 lines of code. While the code itself
had appropriate comments in most of the sections, we were unable to find any documentation that detailed
the architectural details and design principles followed in the project. Also, given that Scipy has an extremely
active contributor base, the need for strong documentation was very evident in our study.

b. Evolutionary Diagram - Code Frequency As part of reporting the Historical Analysis of Technical
Debt we have used the Evolution diagram which showcases the code additions and deletions of Scipy over a
time stamp as per 1 year. The reporting is done every year in the graph below since the inception of SciPy in
2001.
The below figure is the code frequency of Scipy activity.

22.10. TECHNICAL DEBT ANALYSIS 555

Figure: Code Frequency

The peaks in green legend refer to the additions that were reported and made to commit while the red refers
to the deletions that were performed from a code removal standpoint. It was noted that on 2007-2008 saw
the highest addition and deletion of code implementations for Scipy. However, asides this, there has been a
healthy code addition/deletion report graph for all years.

c. Versions SciPy has 103 releases in total and the present version release is v1.2.1 (on February 8, 2019).

d. Testing Debt In Summary, we used the following tools for Code Analysis for reporting the metrics:

1. SonarQube with Travis CI integration - Maintainability, Code Duplication, Reliability & Security
2. Pylint - Code Complexity
3. SciPy Native test suite - Code Coverage
4. SciPy Insights - Evolutionary Perspective, Dependency of Individuals to SciPy.

As part of contributing to reduce the testing debt, we identified critical issues from testing of technical debt
and raised PR requests with SciPy team for approval. The possible methods to reduce testing debt and our
contributions to SciPy have been discussed in Appendix D.

https://www.sonarqube.org/
https://www.pylint.org/
https://github.com/scipy/scipy/blob/master/runtests.py
https://github.com/scipy/scipy/pulse
https://paper.dropbox.com/doc/SciPy--AbG~zP9G95P60e0XL08_CsbmAg-CvRFpiALgp8sgDBjaXdO0#:uid=823718998222582291935567&h2=Appendix-D

556 CHAPTER 22. SCIPY

22.11 Conclusion

SciPy is currently the most popular and widely used tool for students and data scientists for scientific
computing, mathematics and engineering. The course provided an exciting opportunity for us to perform
an in depth analysis of one of the most famous python libraries in its domain. Listed below are some key
activities we performed as a part of our curriculum.

• Identified key stakeholders and drafted a contextual view.
• Performed technical analysis on the SciPy library via deployment and development perspectives.
• Performed Static Code Analysis on SciPy’s code repository using automated tools
• Performed Pull Request (PR) analysis and defined an appropriate Codification Standard for merged

and unsuccessful PRs.
• Made a contribution to the project in form of describing one of the fundamental classes based on an

open issue. Based on technical debt analysed, some contribution is still in process and we hope to
make more contributions to the library we love using.

Based on these activities, we were able to draw the following conclusions.

• SciPy has a high degree of reliance on the open community of contributors. The participants own
significant responsibilities on the library.

• It caters to wide set of user-group both in scientific as well as commercial communities.
• It builds on other libraries in the scientific computation suite and offers abstraction of a wide range of

scientific functionalities.
• While we did notice significant technical debt and possible improvements, SciPy is under active

development support by its strong community.

22.12 References

1. Nick Rozanski and Eoin Woods. Software Systems Architecture: Working with Stakeholders Using
Viewpoints and Perspectives. Addison-Wesley, 2012, 2nd edition.

2. SciPy Issues(https://github.com/scipy/scipy/issues)
3. SciPy documentation (https://docs.scipy.org/doc/scipy/reference/roadmap.html)
4. Arie van Deursen and Maurício Aniche and Joop Aué (editors). Delft Students on Software Architec-

ture (DESOSA). https://delftswa.gitbooks.io/desosa2016/content/, TU Delft, 2016.
5. SciPy Donations webpage: https://www.scipy.org/scipylib/donations.html ## Appendix A: Pull

Request Analysis

The table below summarizes the context of the pull requests we analyzed.

22.12.1 Accepted requests

ID Proposed by
Nr.
part. Active discussions by

Started
on

Merged
on Tags

4374 @Sturlamolden 8 @ewmoore, @jakevdp
@rgommers, @ogrisel

Jan 7,
2015

May 10,
2015

Enhancement,
scipy.spatial

https://github.com/scipy/scipy/pull/10053
http://www.viewpoints-and-perspectives.info/
http://www.viewpoints-and-perspectives.info/
https://delftswa.gitbooks.io/desosa2016/content/

22.12. REFERENCES 557

ID Proposed by
Nr.
part. Active discussions by

Started
on

Merged
on Tags

4890 @Sturlamolden 8 @ewmoore, @jakevdp
@rgommers, @pv,
@rainwoodman

19 May,
2015

22 Nov,
2015

Enhancement,
scipy.spatial

8357 @mikofski 16 @tkelman, @person142 ,
pvanmulbregt ,
@rgommers , scopatz,
@andyfaff, @jaimefrio

Feb 2,
2018

Jun 25,
2018

maintenance,
scipy.optimize

335 @js850 6 @josef-pkt, @diax,
@rgommers

Oct 9,
2012

Feb 3,
2013

not
defined

3174 @ev-pr 9 @rgommers @pv
@mathew-brett

Dec 27,
2013

Oct 21,
2016

enhancement,
scipy.interpolate

7616 @ghost 8 @ larsoner, @
matthew-brett @pv, @
rgommers,

Jul 17,
2017

Aug 12,
2017

Build
issues,
enhancement

6326 @nmayorov 15 @ nmayorov, @ aarchiba,
@pv, @ bmcage, @ev-br

Jun 28,
2016

Apr 21,
2017

enhancement,
scipy.integrate

3717 @larsoner 8 @larsoner, @coveralls,
@argriffing, @endolith,
@rgommers, @pv

Jun 06,
2014

Jan 21,
2015

enhancement,
scipy.signal

4021 @insertinterestingn8 @larsoner, @coveralls,
@argriffing, @endolith,
@rgommers, @pv

Sep 24,
2014

Mar 27,
2015

enhancement,
scipy.linalg

5608 @stsievert 13 @larsoner, @ stsievert, @
jaimefrio, @ tacaswell,
@rgommers, @pv, @
WarrenWeckesser,
@endolith

Dec 15,
2015

Jul 20,
2016

enhancement,
scipy.signal

22.12.2 Rejected requests

ID Proposed by
Nr.
part. Active discussions by

Started
on

Merged
on Tags

6725 @alvasorg 7 @nmayorov, @josef-pkt,
@ev-br

Oct 25,
2016

Feb 9,
2017

needs-
decision,
wontfix

6895 @nils-werner 6 @pv, @larsoner Dec 28,
2016

scipy.signal,wontfix

5301 @giorgiop 6 @jaimefrio, @argrigging,
@ev-br, @josef-pkt

Oct 1,
2015

Jab 18,
2016

defect,scipy.spatial,wontfix

3044 @bbudescu 3 @pv, @rgommers Nov 7,
2013

Sep 17,
2017

Build
issues,needs-
work

https://github.com/larsoner

558 CHAPTER 22. SCIPY

ID Proposed by
Nr.
part. Active discussions by

Started
on

Merged
on Tags

8454 @samyak0210 7 @peterjc, @ilayn, @pv,
@ev-br, @rgommers

Feb 21,
2018

Jun 11,
2018

maintenance,
scipy.integrate

7033 @ashwinpathak204 @ashwinpathak20,
@person142, @ev-br,
@rgommers,

Feb 12,
2017

Feb 16,
2017

Documentation,
scipy.special

3893 @WarrenWeckesser5 @ coveralls, josef-pkt,
@pv, @
WarrenWeckesser,
@rgommers,

Aug 22,
2014

Dec 02,
2014

Documentation,
maintenance

5226 @WarrenWeckesser3 @ argriffing„ @pv,
@WarrenWeckesser.

Sep 04,
2015

defect,needs-
work,scipy.special

4379 @juliantaylor 10 @larsmans, @ jaimefrio,
@ev-br,
@WarrenWeckesser

Jan 08,
2015

Jan 21,
2015

enhancement,scipy.spatial

The analysis and our theories about each pull request are explained below.

22.12.3 Accepted requests

https://github.com/argriffing
https://github.com/larsmans
https://github.com/jaimefrio

22.12. REFERENCES 559

ID Contributions Decision

4374 This PR was mostly related to code
enhancement in the spatial package. The
main additions in the initial PR were:
Make the kd-tree data structure
inspectable and walkable from Python;
Add support for pickle; Removed
memory leaks in cKDTree.query; Use
PyMem_Malloc instead of libc malloc;
Add an option for creating balanced trees;
Add an option for compacting/shrinking
tree nodes; Clean op the coding style;
Change language to C++; Reimplement
cKDTree.query in C++; Release GIL in
cKDTree.query. It started out as work in
progress and the tests were added later.
One of the most discussed topic in
comments was to use the scikit-learn
implementation of kd-tree but the author
pointed out the differences between both
and this implementation was
comparatively faster. The added
functionality was tested on Linux,
windows and OSX.

This PR was merged. According to our
analysis, the performance of the kd-tree
method implemented was significantly
better than the previous ones available.
This was one of the main reasons for
merge. The enhancement also passed all
of the tests. It only gave an error on
MinGW-w64 past gcc 4.x but that was
due to another dependency that needed to
be fixed separately so the decision to
merge was taken.

4890 This PR was created after debasing #4860
which was related to porting the
remaining cKDtree query methods to
C++. Moving to C++ allows for
significant speed improvement. Moving
to C++ resulted in 6x faster performance
as mentioned in PR #4860. Some initial
work is also found in #4850. All the query
and build methods and many conditional
branches are converted to C++. There was
a significant improvement in two query
methods. Pickling was added in python 2.

This PR was a follow up to the cKDtree
implementation work and work was
related to porting the methods to C++ to
improve performance. The tasks still
pending were testing on Windows, code
review, bug fixing and using a different
method in one of the functions. Updates
for these tasks were given in the
comments and discussion. An important
point of discussion was to benchmark all
releases of cKDtree and this was done in
a separate repository. There was some
performance regression for few methods
compared to an earlier release but those
were resolved in later commits. After
passing all the builds and tests
successfully, it was merged. According to
us, the decision to merge was most likely
made because of the 6x faster
performance that makes this a significant
improvement.

560 CHAPTER 22. SCIPY

ID Contributions Decision

8357 This PR was created to address the issues
in #8354. In #8354 a custom vectorized
newton method was proposed. This PR
adds tests for newton method with arrays
and checks newton step deltas and checks
for zero derivatives. This PR also
addressed #7242.

Most of the discussion in this PR was
related to coding practices, suggestions
on how to improve the code and
explanation of the programming decision
by @mikofski. The vectorized
implementation was bench-marked
against other alternatives. The bugs
identified through the discussion were
debugged and fixed. Many code fixes
were implemented for example, fixing the
exceptions, wrong assumptions about
function arguments etc. The performance
degradation cases were successfully
addressed and test cases were added. This
PR improves the performance for those
cases where a vectorized approach is
needed and supports the scalar version
too. In our opinion it was merged because
it is a useful change that provides a
vectorized implementation of newton’s
method which didn’t exist before.

335 This PR introduces the implementation of
basinhopping global optimization
algorithm. It used the minimizers already
implemented in scipy.optimize. Basin
hopping is a random algorithm which
attempts to find the global minimum of a
smooth scalar function of one or more
variables. It is a useful approach for non
linear optimization.

The initial comments to the PR were
about coding style and suggestions to fix
it, for example: more descriptive variable
naming, spacing etc. Other comments
were about understanding the algorithm
implementation. It was suggested to add
more test cases. This algorithm was also
merged. We think it was merged because
it was a new feature that was a useful
addition to scipy.optimize.

22.12. REFERENCES 561

ID Contributions Decision

3174 This PR implements a base class for
evaluation of b-splines without fitpack. It
implemented a base class which could be
used through API directly and in the
interpolation/fitting algorithms. It also
contained tests to verify the
implementation.

In the discussion, updates regarding
implementation were given. The behavior
of class was updated to be consistent with
the definition in literature. The other
comments were by reviewers asking
about the purpose of some lines in the
code and the reasoning behind adding
them, suggesting alternatives or
suggesting changes to improve the code
structure, improve the implementation
and make code more readable and
conform to the standards used in rest of
the code base. There were also
considerations about how to replace the
existing spline implementations with this
implementation. The implementation was
initially slower than fitpack so it was
investigated how to improve that and
updated in later commits. The
implementation was given a needs-work
label by @ev-br because the algorithm
was for creating periodic splines was
naive and needed a fix with linear algebra.
And the periodic spline part was removed
to be able to merge this. This PR also
deprecated splmake/spleval. The final
performance was comparable with fitpack.
The PR was closed and reopened for
testing. The issues of revierwers were
addressed in new commits and changes
made were approved by @pv and merged
into master. It was merged as it was an
enhancement in scipy.interpolate and
offered an implementation without one
dependency (fitpack) with comparable
performance as the implementation with
fitpack.

7616 This PR is about enabling builds on to
Appveyor for effective test integration.
Issue was encountered when the fotran
code had C code calling usage. As
solution, all the DLLs (with OpenBLAS
and mingw dlls) were separately stored.
Was stored under tool/ directory.
Additionally, due to verbosity,
numpy.distutils was taken up for cleanup.

This PR was merged. According to our
analysis, the performance of Appveyor on
32 bit implementation gave lot of errors
and they worked on that as the major PR
upgrade. Although the initial issue was
stderr malfunction which was eventually
solved, the PR thread was continued with
32-bit implementations.

562 CHAPTER 22. SCIPY

ID Contributions Decision

6326 In this pull request, @nmayorov, has
initiated a request and suggestive
implementation to the ODE class
belonging to “scipy.integrate.ode”. A
monolithic implementation with solutions
to address the issues of no continuous
solution output, (i.e. which can be
evaluated at any point with the same
accuracy as the values computed at
discrete points) and absence of event
detection capabilities are proposed
eventually.

At the start of the PR discussions, there
are conversations from @pr, @aaricha
and the author of the PR on the scientific
aspects of the ode class and its
implications. There are clarifications
provided and example cases are presented
such as the RK45 method, DOPRI5 etc.
Upon discussions, it was found that the
ODE solvers in Matlab were also of
research prospect. @drhagen proposes an
event detection mechanism to the ODE
solvers in scipy. A code level change of
the return parameter was changed to suite
the functionality of the solver. As for the
testing and compilation, the team
encounters some issues and they are
resolved in the same PR as comments.
Upon testing, it is noted that there are
issues in the test case failures and the
troubleshooting steps are undertaken by
doing code-level scans (manually) at each
function library and class solvers. Finally,
it is concluded that there is an option to
include where the solvers switching
between stiff and non-stiff solvers can be
made. The code is created and tested, and
the original design is retained.
Additionally, the event callbacks are
updated in accordance with the new code
changes. A re-test is conducted. 1 out 2
tests only pass. However, they still go
ahead with the merge and the contributor
is complimented for the suggestion.

22.12. REFERENCES 563

ID Contributions Decision

3717 In this pull request, @larsoner, has
initiated a request from a previous PR -
#2444 which discusses the addition of
support for second order sections in
scipy.signal. PR #2444 was re-opened
along with PR and closed after successful
merge in Jan 21, 2015 of PR #3717. Here,
the author proposes the following
changes: sosfilt, which performs filtering
using second-order sections. zpk2sos /
tf2sos to convert to sos format. Wanted to
remove tf2sos. users might have filters in
tf form and think that going to sos will
reduce numerical error. Forcing them to
do zp2sos(tf2zpk(b, a)) might make them
think twice about why there isn’t a tf2sos
function. (seeking opinions) cplxpair and
cplxreal, which are helper functions for
dealing with complex conjugate pairings.

@endolith, starts the conversation with
the review of @larsoner’s
implementations and encounters minor
travis errors which are eventually fixed at
once. Additionally, as the review
procedure continues, there are several
errors that are reported such as functional
issues of n_stages and n_sections, etc.
Additionally, a critical error at review was
reported: Changes Unknown when
pulling e4f4aa0 on Eric89GXL:sosic into
on scipy:master. This forms the basis of
the discussion as it was attributed to
continuous code failures. The author
resolves the same. And the discussion on
the test results are discussed. There are
code changes being made in terms of
logical attributions and not syntaxial or
run-time relevance. The code is tried in
many second order cases such as analog
ordering cases, computational efficiency
testing etc. Upon testing the code on
possible mathematical test cases, a merge
approval is provided by the contributors
and the PR is merged. However, in May
24, 2016, it was reported that there was an
issue recorded “scipy.signal needs a
unified filter API” which is tagged to a
PR #6137 which was created at a later
stage and followed up to closure.

564 CHAPTER 22. SCIPY

ID Contributions Decision

4021 In this pull request, the author has
requested for support for the
implementation of lpack and blas (which
are mathematical/scientific libraries) for
Cython via API referencing. In the base
request comment the following have been
identified, codified and implemented (the
implementation was identified as work in
progress by the author): Add interface for
lapack and blas routines.; Add working
example in tests; Review signatures for
correctness; Add function to get directory
of scipy.linalg (similar to
numpy.get_include); Finish wrappers for

‘gees’ and ‘gges’ functions.; Add
interfaces to the functions added in #3984
(wrapping blas routines); Add this api to
the documentation

@pv identified an error “f2py._cpointer
does not point to the wrapped fortran
routines, but directly to the
BLAS/LAPACK symbols” which is
attributed to incorrect pointer referencing
for ABI calls. Furthermore, a formulated
list of cases of failure are identified and
introduced in the forum. The changes are
worked upon. The solutions are identified
by changing the entry statements in entry
wsdot(n,x,offx,incx,y,offy,incy) and
altering call statement declarations. Upon
rectification, a code review is performed
by @ewmoore and has reported issue in
calling at the interface of python
scipy.linalg.lapack. The author worked on
this assigning arithmetic float pointers in
the calling interface thereby making them
safe on all platform executions. Minor
code beautification procedures are
discussed and brought up as issues which
are concurrently resolved. Another PR
#4105 BUG: Workaround for SGEMV
segfault in Accelerate is referenced to this
PR. The relevance is explained. A
cythonize script is written for adding a
submodule named cython to preclude the
use of these wrappers in scipy.linalg itself.
This is being reviewed by Scipy
contributors and the resultant warnings,
errors are rectified in successive
conversations. A major build failure with
Cython 0.20.2 was reported by
@rgommers. Additionally segmentation
faults (segfaults) were also reported
alongside the build failure. The root cause
is performed and found that
test_blas_pointers.test_wfunc_pointers
that crashes, the other tests pass and also
the segfaults belonged to different
cynthon version. @rgommers performs a
backtrace of the code and rectifies the
errors with the help of fellow contributors.
Asides, these major issues, there are
minor clarifications seeked out with
minor test failures eventually rectified in
subsequent conversations. A complete
rebase is done at the end and merged
successfully!

22.12. REFERENCES 565

ID Contributions Decision

5608 In this pull request, the author has
extended the work of PR #2651 (this PR
adds the keyword argument method to
scipy.signal.convolve to choose the
choose the convolution method. method
can take vales ‘auto’, ‘fft’ or ‘direct’) and
PR #1792 (faster convolution method,
either the direct method or with
fftconvolve.). In this PR, the author, has
proposed a test failure and further details
on impactful documentation for the
above-mentioned parent PRs. A build
failure was noted while using ffconvolve.
The root cause of this issue was traced to
passing on TravisCI without any
adjustment. Later, the author conducted
the test again with gcc and Homebrew
and noted the ffconvolve to plot the points
correctly.

@ jaimefrio begins the discussion with a
review of the proposed fix. It was
suggested to change the default aspects of
ffconvolve to parameterized custom
initializations which was agreed by
several contributors to the PR. However,
there was an observed error log that was
reported by @rgommers while executing
the same on a 32-bit system (Errors being
test_convolve_method
(test_signaltools.TestConvolve),
test_rank3
(test_signaltools.TestCorrelateComplex192),
test_rank3
(test_signaltools.TestCorrelateComplex192)
and
test_signaltools.test_choose_conv_method).
However, the 64 bit systems did not
report these error messages. Hence, the
task of resolving these four error
messages were taken up and discussed in
the PR workflow. The author had
proposed the re-worked code and was
tested by the contributors and approved
for appropriate functionalities. The PR
was finally merged successfully.

22.12.4 Rejected requests

566 CHAPTER 22. SCIPY

ID Contributions Decision

6725 This PR implements a method to calculate
the numerical inverse of any invertible
continuous function. The method used
existing functions in scipy to solve the
problem of finding the inverse of function
under continuity and monotonicity
conditions. There were certain conditions
mentioned under which the algorithm
failed to give accurate results. The
functions should be continuous and
strictly monotonic.

The discussions about this PR were about
the motivation for adding such a function,
explaining possible use cases.
Suggestions about variable names and
pointing out mistakes in the
implementation (the intervals were not
supported, global root finding was not
well defined). The members of scipy were
not in support of the idea of having a
library function to numerically invert a
given function. The approach was found
to be flawed by the reviewers. Main
reason was that the method failed to
detect if a function wasn’t monotonic and
the choice of algorithm to find inverse is
problem dependent and this algorithm
isn’t fit for that purpose.

6895 This PR aims to deprecate get_window
and instead have people use the window
functions directly. The current
implementation of get_window() is very
messy and consists of many conceptual
problems. It adds functionality to pass a
callable to get_window(), replaces all
occurrences of get_window() and raises
deprecationwarning when no callable is
passed. It also removed string arguments.

The main reason for rejecting this PR was
that the changes were not backward
compatible. Most code is not actively
developed and the users who obtained
code from a source may not have the
expertise to fix it. The new method does
make things clearer but was ruled out due
to backward incompatibility. There are
also places where using string arguments
is the clearest option so that made the
string argument removal not useful. The
benefits of the cost were not worth the
cost and the PR was closed.

5301 This PR handles corner cases for
correlation. Correlation is not defined for
constant input vector but it was defined to
complete the definition at the limits of
vectors with zero variance. This
implementation was also justified by the
reasoning that if variance is zero, co
variance is also zero and correlation
distance is 1.

In the discussion, few coding changes
were suggested (for example to change
the iteration). There were also questions
about whether defining corner cases made
sense and that using NaN for corner cases
made more sense. The reviewers were not
convinced that returning 0 or any value
instead of NaN for corner cases was
correct. It was initially proposed to clarify
the documentation by adding the limit
behavior changes in doc strings in either
this or new PR. The PR was closed
because there was no work update and
they made the decision to keep the current
behavior.

22.12. REFERENCES 567

ID Contributions Decision

3044 This PR provides a hack to build scipy on
win64 with msvc9. It was proposed that
this code could be used to make a true
solution that works across platforms and
compilers.

The functions were added manually in the
build and that was considered a wrong
solution. There were issues related to
fortran that arise when using static libs
from fortran code. The PR included
match functions of C99 in msvc2013 but
it was not clear why they were needed
and suggested to look into npy_math to
find the issue. During testing, python
continued to crash during scipy tests. The
PR was not updated for 4 years and in
2017 @rgommers closed the PR as
MSVC + gfortan now worked and they
continuous integration for it.

8454 This PR fixes #8389 which was about
using single letter variable names that
were ambiguous (I, O, l). This was an
issue because certain letters look like
numbers in a different font.

The problematic letters were replaced by
different letters, for instance I was
replaced by K. In the discussion it was
pointed out that instead of renaming to a
different letter, why not replace with
longer meaningful variable names. The
benefits did not justify the code churn and
the PRs that were about fixing variable
names and minor style issues were not
encouraged by @pv. This PR was
rejected.

7033 In this pull request, the author has
changed the doc string of hyp2f1 function
and included all the necessary details
from the PR #6966 (Hypergeometric
Functions documentation is lacking).

As a root cause analysis method,
@person142 ran generate_ufuncs.py for
these changes to actually show up in the
published docs. However, it was later
indetified that the author’s issue was not
with relevance to hyp2f1 and noted that
the pattern was like eval_jacobi. It was
identified that there was a
misunderstanding that the author had in
relevance to the conceptualization and
later this PR was closed by the author
upon seeking inputs from the other
contributors in the channel as an
ineffective and incorrect approach.

568 CHAPTER 22. SCIPY

ID Contributions Decision

3893 In this pull request, the author has
presented a special case of warning that
was encountered “WARNING: document
isn’t included in any toctree” at base.rst
and has noted that the default was
overridden by custom orphan:1. This was
also concurrently printed in all output
files.

Although there were many questions
raised on why the warning was to be
removed, the author clearly defines that
the warning was inappropriate and could
lead to misleading error modifications in
future. Hence, as a solution, the orphan
settings were tracked down and changes
in the ‘doc-sphinx-orphan’ were made by
@rgommers. However, it was noted that
the warnings generated in the autodoc
weren’t included in the fix and they were
unable to work on the same. At the end,
the author executed the same and figured
out that with sphinx 1.2.2, python 2.7.8,
and numpy 1.8.1 (but the numpydoc
sphinx extension is from numpy’s master
branch), this change reduces the number
of warnings from 406 to 323. Beyond this
the author or the contributors could not
work to reduce the warnings and hence
they decided to close the PR as an
unsuccessful attempt as the contribution
was not sufficient. Finally, it was noted
that the incorrect approach was used for
this rectification, and they decided to
close the PR as incorrect approach rather
than insufficient output.

22.12. REFERENCES 569

ID Contributions Decision

5226 In this pull request, the author has
presented a special case of rewriting the
Fotran code to compute the zeros of Ys in
subroutine JYZO of scipy.special. The
initial subroutine JYZO in specfun.f
computes the zeros of J, J’, Y and Y’
using Newton’s method. This is the
function used by jn_zeros, jnp_zeros,
yn_zeros and ynp_zeros. The problem
was that the code that computed the zeros
of Y’ did not always provide a good
initial guess for Newton’s method. When
the code saw that Newton’s method had
converged to a previously found zero of
Y’, it added pi to the initial guess and
tried again. This did not always work, and
it didn’t prevent the code from converging
to a zero that was larger than the expected
zero. Neither Newton’s method nor the
retry loop were protected from iterating
indefinitely. In the particular case of
jn_zeros(281, 6), eventually it used an
initial guess for a zero of Y’ that put
Newton’s method into an infinite loop. As
a solution, a fix was made to use the
previously computed zeros of J as the
initial guesses of the zeros of Y’, and then
only allow at most 10 Newton iterations.
(After that, NAN is returned.) This works
very well. I haven’t found a case where
Newton’s method fails to converge.

Upon testing of the code, it was reported
by the author that special.jn_zeros(281, 6)
hangs and was referenced to PR #4690
for resolution. It was later figured out that
for large values, there was an error
message and code hangs were reported.
However, there were no solutions
provided to this problem and hence, the
author decided to close the issue without
any resolution mechanism. PR was closed
due to no improvement and inactivity.

570 CHAPTER 22. SCIPY

ID Contributions Decision

4379 In this pull request, the author has
focussed on reductions that cannot be
auto vectorized by gcc without adding
unsafe-math optimization flags, so
vectorize them manually for SSE2 which
is available on all amd64 machines. This
changes the numerical result as the
summation ordering is different, but the
change should be only in the order of a
few machine precisions. Also, the author
has requested for GIL computations
releases. Also, the author has broken the
code base for ease of testing. Upon code
review, the contributors reported that
option (+ -O3/-ftree-vectorize) gcc can
vectorize but gcc specific could not be
done and also it was not recommended
for the semantic flags on a per function
basis. Additionally, it was noted that the
performance improves by a factor of
1.5x-2x for appropriate inputs. An RCA
was conducted, and it was found that
unrolling of the loop functions benefitted
for GCC. However, the performance was
improved only by 10% which was
negligible as per the contributors.

When the Scipy team were involved in the
conversation, it was noted that as per the
policy they cannot speed by 1.5x-2x and
hence they were unable to proceed with
the request. The reason was the speeding
up policy did not aid substantial results in
the performance for them to consider it as
a major enhancement level change. Hence
the PR was closed unsuccessfully.
However, the specifics of GCC
optimization was carried over to PR
#4551 while the auto vectorization was
dropped with this PR. It was closed due to
insufficient results to substantiate the
effort of the auto vectorization – GCC.

3417 In this pull request, the author has
referred to an extension work on
constrained optimization, based on nonlin
leastsq where he states that it would bring
extra to scipy as slsqp seems present. To
make it more visible what slsqp can do, it
was suggested by adding an example also
in the reference, and not only in the
tutorial. Example taken here was based
on the main section in slsqp.py and
different from the tutorial which uses
minimize directly.

Upon acting to the proposal, @coveralls
noted that there were no changes when
pulling 0f8416b on bmcage:slsqp into
3879d21 on scipy:master. Hence, a
review was conducted by @dlax and it
was reported that minimize (from the
code propsed) did not have a disp
keyword argument and _minimize_slsqp
was private initialization. Also, it was
identified and concluded that minimize to
fmin_slsqp do not have any comparisons
and hence had to be deprecated for
fmin_slsqp. However, at the end, there
were no resolutions steps for the request
of the author and hence the author closed
the PR in an unsuccessful attempt. It was
closed as approach was not required or
did not add value to the proposed problem
of adding example to slsqp

22.13. APPENDIX B: CODIFICATION ANALYSIS 571

22.13 Appendix B: Codification analysis

For codifying the tags we used are:

• Update: All comments that contain information about new changes to the code by the author of the
PR is tagged as update.

• Conceptualization: All comments that ask for understanding of the code or the logic behind the
approach are tagged as conceptualization. This includes the comments where they give suggestions or
offer alternatives to approach and the author of PR explains his rationale.

• Testing: This includes all comments related to testing and testing results

• Misc: This includes random remarks and issues about github merge/rebase etc.

• Code change: This includes all syntax related comments and comments about suggestions to use
different function.

• Performance: Comments about performance gain or regression are classified under performance tag

• Review: All reviews to the PR are tagged under review

• build: All comments about build issues or build process

• Dependency: All comments about dependencies and library errors etc are classified under this

• Configuration: Comments about setting up accounts and admin related matters come under this tag.

22.14 Appendix C: Technical Debt Glossary

1. Maintainability

In best case scenario, leaving maintainability-related issues means that even the best developers will have
a hard time when they try to introduce new code changes. In the worst case scenario, developers may
be confused by the state of the code, thereby introducing additional errors in the process of making code
changes.

2. Code Smells

Code smells are usually not bugs—they are not technically incorrect and do not currently prevent the program
from functioning. Instead, they indicate weaknesses in design that may be slowing down development or
increasing the risk of bugs or failures in the future. Bad code smells can be an indicator of factors that
contribute to technical debt.

3. Maintainability Ratio

The maintainability ratio is a metric given to a project related to the value of Technical Debt Ratio. For all
technical debt ration values less than 5%, a rating of A was provided.

4. Measures of reducing Code complexity thereby improving Pylint rating

• make sure your code writing style is conform to what Pylint is expecting (or tune Pylint to match your
style / conventions). This includes function, variables, class, method names, spaces at various places,
etc.

572 CHAPTER 22. SCIPY

• write Python code in an as static as convenient way, and avoid dynamic tricks.
• write doc-strings

5. Reliability In static analysis, the parser identifies specific methods and isolates them, emulating their
behaviour when ported into other software modules.

Once isolated, the algorithm will generate arguments and read method outputs, expecting the outputs to
contain specific information and formatting. It will raise flags for any anomalies in a method.

6. Security
The primary cause of software vulnerabilities are defects, bugs and logic flaws. Organisations should
take proactive actions to decrease vulnerabilities before software deployment. Hence educating the
employees on secure coding techniques can help eliminate these vulnerabilities.

7. Code Coverage (specifications) In specific, it is a measure of how many lines/blocks/arcs of code
are executed while the automated tests are running.

22.15 Appendix D

D1. Resolving Testing Debt

Testing Debt can occur owing to several kinds of testing methods such as: 1. integration testing 2. system
testing 3. security testing 4. usability testing 5. performance testing 6. unit testing 7. While these tests help
in identifying accurate test results for a software in pre-release phase, often the associated debt is ignored.

Here, we have highlighted some important methods which maybe incorporated for SciPy.

Additionally, these guidelines maybe useful for other large repository project like SciPy too. They are: 1.
Having a clear augmented testing platform for SciPy owing to multiple language dependencies in the project
(from codebase reference) 2. Tesitng the development versions on a regular basis for SciPy and not at the
time of pre-release 3. Since, testing debt cannot completely be erradicated, we need to prioritize the best
resolutions and work for SciPy, which is not presently being done. With these, we believe that the testing
debt maybe reduced for an instance like SciPy.

D2. Contributions

• Issue URL: https://github.com/scipy/scipy/issues/10014
• Pull-Request URL: https://github.com/scipy/scipy/pull/10053
• Description: The existing code base lacked an intuitive description of weibull_max_gen and

weibull_min_gen classes in file scipy > stats > _continous_distns.py. We added a description to
both of these classes based on the issue and a brief research on wikipedia.

Chapter 23

Servo

23.1 The Parallel Browser Engine Project

By Dominique van Cuilenborg, Bart van Schaick, Fabian Stelmach and Aron Zwaan

Servo is a modern, high-performance browser engine. It takes advantage of the memory and concurrency
management provided by the Rust language. The project was started by Mozilla Research and is being built
by a community of individual contributors from companies such as Mozilla and Samsung. The long-term
goal of Servo is to incrementally replace components in Firefox. Other than that, Servo is also trying to
become a stand-alone browser.

In this chapter, we provide a detailed insight into the architecture and development of Servo. We start
this chapter by analyzing the development process of Servo, this involves analyzing pull requests, the
stakeholders and the context. We then continue with the architecture and conclude with a section on
technical debt.

23.2 Table of Contents

• Pull Requests
– Commonly Occurring Patterns in Pull Requests
– Commonly Occurring Patterns in Unsuccessful Pull Requests
– Decision process
– Integrators

• Stakeholders
– Rozanski and Woods classification
– Other Stakeholders

• Context View
• Development View

– Module Structure Model
– Common Design Model

573

https://github.com/Dominique2509
https://github.com/BartGitHub
https://github.com/Fabianstelmach
https://github.com/AZWN
https://servo.org/
https://www.rust-lang.org/

574 CHAPTER 23. SERVO

Figure 23.1: Servo Logo

23.3. PULL REQUESTS 575

– Codeline Model
• Concurrency View

– Process model
– Passed messages

• Technical Debt
– Single Responsibility Principle
– Open Closed Principle
– Interface Segregation Principle
– Dependency Inversion Principle
– Testing Debt
– Discussion
– Evolution
– Debt summary

• Conclusion
• Appendices

– Appendix 1 - Analyzed Pull Requests
– Appendix 2 - Contributions

23.2.1 Contact

If you are interested in the Servo project and would like to know more, we would recommend you to contact
@jdm. He has left us with very helpful feedback on our Pull Requests and is very active in the Servo
community.

23.3 Pull Requests

A total of 20 pull requests have been analyzed in order to identify patterns that differentiate successful pull
requests from unsuccessful ones. The pull requests with the highest number of comments have been selected.
The list of analyzed pull requests is present in appendix 1. In this section, we aim to provide a summary of
the decision-making process for the acceptance of pull requests.

23.3.1 Commonly Occurring Patterns in Pull Requests

The most commonly occurring discussion point is the automated testing suite. The testing suite can be
automatically ran on a pull request after one of the core team members has given permission to do so.
Successfully running the test suite on a particular pull request is required in order to successfully merge a
pull request. This requirement is often difficult to achieve, since pull requests with new features or bugfixes
are required to add relevant tests and the testing suite currently runs on 25 different targets, including
Windows, Linux, MacOS and Android. Quite often, developers have to change their code in order to pass
the tests on all the platforms. Most discussions revolve around how the failing tests can be fixed.

The second most occurring discussion point is general code quality. The Servo team welcomes contributions
from non-experienced programmers, and therefore, it is often needed for the experienced members to request
adjustments to the pull requests. These adjustments can consist of re-structuring of the code as well as

https://github.com/jdm
https://github.com/servo/servo/blob/master/CONTRIBUTING.md#pull-request-checklist

576 CHAPTER 23. SERVO

re-implementing some functionality in a more efficient way. Noticeably, apart from the pull request checklist,
the only other official guideline is the set of strict rules for styling Rust code by the Rust language team. No
further official guidelines are officially presented by the Servo team.

23.3.2 Commonly Occurring Patterns in Unsuccessful Pull Requests

Unsuccessful pull requests differ from successful pull requests in that they are not merged into the main
branch of Servo. After thorough research, we have found that most of the rejected pull requests were closed
simply due to inactivity of the creator of the pull request. Many pull requests are dropped in the stage where
the failing tests need to be fixed. This often proves to be more of a challenge than the creator originally
expected. As such, these pull requests are simply left untouched and closed after some time of inactivity.

The second most commonly occurring reason for refusal of a pull request is the supersedence by another pull
request. This can happen when a developer has written a solution to address some issue, but that solution is
only partial, and so it does not fully solve the problem or does not successfully pass the test suite. In this
case, another developer may decide to use this partial solution and complete it in another pull request. In the
case that the completed solution is merged, the original pull request is automatically rejected.

23.3.3 Decision process

The decision process of the acceptance of the pull request by the Servo team depends mostly on the quality
of the supplied code. If the solution supplied is of acceptable quality and it passes the testing suite, then the
pull request is generally accepted.

The pull requests are rarely challenged for the actual functionality they implement. This is possible due to
the fact that most of the pull requests are targeted to fix a particular issue that has been identified by the
developers beforehand. Issues which do not need fixing, get shut down before a pull request for them is
made.

23.3.4 Integrators

The integrators, those who approve or rejects these PRs, are found in the Governance. This governance
states the core group of Servo (@larsbergstrom, @metajack, @jdm and @pcwalton). This core group can
be seen as the integrators of the Servo project, since they govern the direction of Servo and make all the
final decisions.

23.4 Stakeholders

For a research browser-engine project, it is reasonable that many stakeholders are involved. Be it companies,
who of course have an interest in the product itself, or simply the developers working on Servo. We compiled
a list of stakeholders using Rozanski and Woods classification. More on this classification can be found in
their book Software Systems Architecture.

https://github.com/servo/servo/blob/master/CONTRIBUTING.md#pull-request-checklist
https://doc.rust-lang.org/1.0.0/style/style/README.html
https://github.com/servo/servo/wiki/Governance
https://github.com/larsbergstrom
https://github.com/metajack
https://github.com/jdm
https://github.com/pcwalton
https://www.viewpoints-and-perspectives.info/

23.4. STAKEHOLDERS 577

23.4.1 Rozanski and Woods classification

23.4.1.1 Acquirers

The primary stakeholder is Mozilla and Servo can be seen as a playground for Mozilla’s Firefox browser.
As stated on the roadmap, if certain functionality gets implemented in Servo, Mozilla may merge this with
their main Firefox browser. Most of the roadmap is set out by the Mozilla employee @jdm, this ensures that
the project takes the direction Mozilla wants.

23.4.1.2 Assessors

When it comes to conformance to standards, a browser has the comply with various browser standards,
such as those stated by W3C. Ensuring this is the responsibility of the core developer team, where various
developers have their own specialization. For example, @nox takes care to make sure that the behavior of
the CSS renderer in Servo complies to the browser standards. Furthermore, regarding legal regulations, the
Servo project uses Mozilla Public License 2.0 (MPL). This license clearly states that the contributors are not
liable and there are no warranties for using Servo.

23.4.1.3 Communicators

The communicators are the core servo team. They wrote several wiki pages on the design of Servo to ensure
that every stakeholder can get up-to-date with the architecture of the program. Other than the design, there
are also numerous wiki pages written on the development guidelines of Servo. These pages ensure that new
developers know what is expected of them.

23.4.1.4 Developers

The developers are the contributors on Github. Most, but not all, of the main developers work for Mozilla.
This once again strengthens Mozilla’s stakeholder position in the development of Servo. Other than these
main developers there are still lots of Rust enthusiasts committing to the project. The developers are involved
to actually implement the ideas of the other stakeholders.

23.4.1.5 Maintainers

Servo is not yet ready for full deployment; however, certain subsystems certainly are. These subsystems are
maintained by the group of core developers, which consists mostly of Mozilla employees. They are involved
to make sure that the project is well documented and limit technical debt.

23.4.1.6 Suppliers

The main sponsor of Servo is Mozilla, they provided the necessary resources to get the project to where
it is today. One of the resources provided by Mozilla are the employees actively working on this project.

https://github.com/servo/servo/wiki/Roadmap
https://github.com/jdm
https://github.com/servo/servo/issues/created_by/nox
https://github.com/servo/servo/wiki/Design
https://github.com/servo/servo/graphs/contributors

578 CHAPTER 23. SERVO

Furthermore, Mozilla also provides the build server and many other Rust development tools to streamline
the development of Servo.

23.4.1.7 Support Staff

Since the product is not meant to be your daily driver when it comes to browsing, there is no real support staff
yet. Since this project is targeted at developers, the main support staff can be considered as the developers
on GitHub, which you can contact using the issue tracker.

23.4.1.8 Testers

The developers themselves are responsible for testing their own commits. Apart from that fact that they
should choose a test approach that matches the altered component, which can be found in CONTRIBUT-
ING.md, no strict rules are enforced.

23.4.1.9 Users

There are no real users for this project. Rather than the final product being the goal, the goal is to function
as a test-bench for Mozilla’s Firefox browser. Therefore, Mozilla can be seen as the main user. While
Servo as a whole is not used by people; certain subsystems, such as WebRender, are already used to create
applications. An example of such an application is Azul which allows for web applications to run on your
desktop, similarly to Electron.

23.4.2 Other Stakeholders

Other than the classification of Rozanski and Woods, other stakeholders can be found.

23.4.2.1 Researchers

The browser is a playground for Researchers, since servo is mostly meant as a research project and not yet
as a deployable product. Servo has been used to write many papers regarding the parallelism of browsers,
improving browser performance and many other topics.

23.4.2.2 Competitors

Competitors could also be seen as stakeholders of Servo, since the success (or failure) of the project may
result in a change of the competitors their market position. The main competitors of Servo are Chromium
and WebKit.

https://github.com/servo/servo/blob/master/CONTRIBUTING.md
https://github.com/servo/servo/blob/master/CONTRIBUTING.md
https://github.com/servo/webrender
https://github.com/maps4print/azul
https://github.com/servo/servo/wiki/Browser-Engine-Research#parallelizing-browser-tasks
https://github.com/servo/servo/wiki/Browser-Engine-Research#improving-browser-performance
https://github.com/servo/servo/wiki/Browser-Engine-Research

23.5. CONTEXT VIEW 579

23.5 Context View

The context view shows the relationships, dependencies and interactions between Servo and its environment.
This context view allows us to easily see the connections between the various external entities and Servo.

Figure 23.2: Visualization of the context view

Using this visualization we can analyze the context. Servo is written in Rust, a programming language
developed by Mozilla. Furthermore, Jenkins and Python are used to allow for a streamlined development
process. The source code and issue management are performed on GitHub, the source code and all issues
are kept here. Other than GitHub, communication is done on the Mozilla’s IRC (irc.mozilla.org) and the
Servo mailing list.

The main competitors of Servo are all other browser engines. These engines are usually made by very big
companies (Microsoft, Apple, Mozilla) with lots of funding. However, it is interesting to note that Gecko
(Mozilla) and Servo are not real competitors. Their relationship is mutualistic, since Mozilla supports the
development of Servo and Servo functions as a test bench for Mozilla’s Gecko engine.

Servo is meant to service all major platforms. It did not support Windows and iOS during the first few years
of development, due to technical difficulties that come with having a browser engine work cross-platform.
However, as the project got a bigger development team, Windows and iOS support was added.

It is interesting to see that there are not that many people using Servo, especially considering the amount
of development that goes into Servo and the competitors it is fighting up against. However, due to the
mutualism between Gecko and Servo, there is still a very important reason to continue development.

https://lists.mozilla.org/listinfo/dev-servo

580 CHAPTER 23. SERVO

23.6 Development View

The development view supports the design, build and testing of Servo, by describing the architecture that
supports the software development process. Code structure and module organization are important aspects
of this architecture, which also involves identifying areas of common processing, codeline organization
and standardization of design and testing approaches. This chapter addresses these concerns by depicting a
module structure, common design and codeline model for Servo.

23.6.1 Module Structure Model

Servo’s logic is divided into a number of components. At the moment Servo contains 52 components, each
with its own internal and external dependencies. Modeling these components into one giant diagram would
be cumbersome, time-consuming and above all, not aid developers in getting a better understanding of the
system. Instead a high-level overview is given that will explain the relations between the most important
components and their interactions with the outside world.

Servo is advertised as the ‘Parallel Browser Engine Project’. This leaves very little to the imagination of the
intention of the developers. To aid this goal, a task-based architecture is adopted in which major components
are loosely coupled and modeled as threads. These components can interact with each other by passing
messages over channels or by borrowing (sharing a reference to) a data structure.

In Servo, the thread that owns these channels is called the constellation. The constellation can be thought of
as a tab in a browser (Servo currently supports only a single tab). It tracks all of the information related to the
current tab and updates its state based on the messages it receives from other components. The constellation
also manages all pipeline objects. A pipeline encapsulates a means of communication with the script, layout
and render thread. Each pipeline is responsible for correctly displaying a particular document in its assigned
window or frame.

Apart from the constellation, some other major components of Servo are identified and explained in greater
detail below.

• The Script thread creates and stores the DOM representation of the document, by invoking the HTML
Parser and executing Javascript code.

• The Layout thread takes a snapshot of the DOM provided by the script thread applies styles and
calculates the layout of nodes. From this layout, it builds a display list, which is basically a list of
concrete rendering instructions.

• The Render thread is tasked with translating the display list it got from the layout thread into a set of
drawing commands.

• The Compositor is charged with two tasks. The first is compositing the views of several render
threads and display this on screen. Furthermore, the compositor receives input events from the
operating system and should forward these to the constellation.

• The Net or network thread handles all network interactions, such as creating HTTP requests and
fetching data.

• Data is not identifiable in the way it is represented in the diagram, but should be seen as a combination
of resource, storage and caching components that aid the data persistence department of the browser.

• The Servo Media component is tasked with the playback of numerous multimedia file formats. It is
developed as a standalone project.

https://servo.org
https://github.com/servo/servo/blob/master/components/constellation/constellation.rs
https://github.com/servo/media

23.6. DEVELOPMENT VIEW 581

Figure 23.3: Module Structure Model

582 CHAPTER 23. SERVO

23.6.2 Common Design Model

To maximize commonality, reduce risk and duplication of effort on implementation on the component,
module and function level, a set of design constraints is used. These design constraints identify standard
approaches to be used when solving certain types of problems. Apart from some standard coding rules,
Servo does not explicitly mention design approaches in its documentation. However, areas of common
processing, standard design approaches and common software used across all components can certainly be
identified.

23.6.2.1 Common Processing

In a highly concurrent and parallel system such as Servo, it is of utmost importance to specify a set of clear
rules regarding the responsibility for and communication between threads. They specify how threads should
act to avoid or recover from failure.

In the case of Servo, most threads can and are allowed to fail when encountering certain errors. The
constellation is not, as it is unique in its kind and tasked with the crash reporting of other threads. The
Concurrency View explains the threads and their relationships in great detail, among measures to prevent
them from failure.

23.6.2.2 Standard Design Approach

Servo follows Rust’s guidelines on file and directory structure. Servo’s so-called components are designed
like packages, better known as crates in Rust. A component has the following directory structure:

- component-x/
|- bar/ (optional 0-n)
|- Cargo.toml
|- lib.rs
|- build.rs (optional 1)
|- foo.rs (optional 0-m)

A module always contains a Cargo.toml and lib.rs file. The Cargo.toml file is called the manifest and
contains general information such as the name and version of the package, but also lists dependencies on
other packages. The lib.rs file declares the modules (foo and bar in the example). build.rs is used to
build third-party non-Rust code before the compilation of anything else in the package.

23.6.2.3 Common Software

Servo uses Rust’s standard logging crate log through its codebase. It contains several logging levels, of
which error, warn, info and debug are the ones used. A short message is added to describe the event that
occurred. The constellation tracks any error and warn messages generated by itself and other components.

https://github.com/servo/servo/blob/master/components/constellation/constellation.rs
https://docs.rs/log/
https://github.com/servo/servo/blob/master/components/constellation/constellation.rs

23.6. DEVELOPMENT VIEW 583

23.6.3 Codeline Model

In a giant open source project like Servo, it is important to have a clear and detailed specification of the
organization of the system’s code. A good codeline model incorporates a definition on the overall structure
of the code and the automated tools used to build, test, release and deploy the software.

23.6.3.1 Code Structure

For developers who just started working on the project, it is important to know where certain source files
and tools are located in the project structure, as this will speed up the development process significantly.
In the next table, an overview of Servo’s directory structure is presented, including a description of what
developers can expect to find in these directories.

Directory Description

components Basically the source files, a directory containing
all Servo’s components

docs Documentation useful to new developers, ranging
from debugging tips to the style developers should
adhere to

etc A number of useful tools and scripts for developers
ports Code to create a Servo instance
python Several Python modules to support Servo

development
resources Resources needed at runtime
support Code needed for Servo to run on different

platforms
tests Files and tools for testing

23.6.3.2 Build, Integration and Test Approach

Servo is hosted on Github, which gives developers the option to open pull requests and issues and have
discussions on them. The project welcomes contributions from everyone, in the form of a pull request, which
is reviewed by at least one of the core contributors. Pull requests must meet a number of requirements. First
off, it should fix an issue claimed by the contributor and is expected to add or alter relevant tests. Secondly,
commits should be as small as possible and build successfully, independent of other commits. At last, all
coding guidelines should be followed.

Mozilla’s Mach tool is provided to orchestrate the build and other tasks. It provides several self-explanatory
options for building and testing of the software, making the developer’s life easier.

When new functionality is pushed to Servo’s repository the code is built and tested using Travis CI, AppVeyor
and TaskCluster. Travis CI and AppVeyor run tests on Linux and Windows, respectively, while TaskCluster
runs certain commands like a formatter. This is not enough to assure that a pull request will not break things
after being merged. Another pull request may be merged in the meantime. Therefore Servo uses Homu,
which runs CI again, and only merges when everything succeeds.

https://github.com/servo/servo
https://github.com/servo/servo/blob/master/docs/HACKING_QUICKSTART.md
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/mach
https://travis-ci.org
https://www.appveyor.com
https://tools.taskcluster.net
https://github.com/servo/homu

584 CHAPTER 23. SERVO

23.7 Concurrency View

Servo advertises itself explicitly as a parallel browser engine. This implied concurrency drives the design of
the project. Therefore, in order to understand the project’s architecture, it is very helpful to investigate how
concurrency is dealt with in Servo. Therefore we elaborate more on this topic in this section.

First, we will describe what different thread types servo has, and how thread communication works. After
that, we will investigate messages passing patterns some deeper.

23.7.1 Process Model

Servo has a task-based architecture, in which every major component executes in its own thread or process.
Different threads communicate through channels. The full Process model of Servo can be seen in the
diagram below.

Figure 23.4: Visualization of the Process Model

The Servo project uses three different message passing channel implementations, represented by the three
different arrows in the figure. These implementations are explained in the subsequent section. The process
model is clearly centered around the constellation struct, as seen in the figure. The two important roles of this
struct are the maintenance of channels to threads and passing messages between those threads. Inter-thread
communication can, however, also occur directly between threads, without passing through the constellation.
Finally, some channels, such as the debugger and devtools, are optional.

23.7.1.1 Communication

Servo uses three different channel implementations:

https://servo.org/
https://github.com/servo/servo/wiki/Design

23.7. CONCURRENCY VIEW 585

• MPSC: The Multi-Producer, Single-Consumer channel implementation from the Rust standard library.
This implementation is only used to communicate with the webrender component.

• Crossbeam-channel: This channel implementation is used throughout the application. It has some
benefits over MPSC. For example, it can block on multiple receivers using the select! macro.
This feature is used in the constellation, background hang monitor, layout thread, script thread and
service worker manager. Moreover, its receivers can be cloned, effectively making this an MPMC
(Multiple Producer, Multiple Consumer) channel. Contrary to MPSC, in this implementation, sending
is blocking the thread.

• IPC-channel: This is a custom channel implementation specifically for Servo. It supports inter-thread
communication as well as inter-process communication. This makes it especially suitable for Servo,
since it is optionally multi-process (specified by the -M switch). Like crossbeam-channel, the send
operation might be blocking.

23.7.1.2 Deadlock Prevention

Probably, the most well-known problem in concurrent applications is deadlock. Deadlock occurs when
different threads are mutually waiting for each other to make progress, resulting in a situation where no
single thread can make progress, so that the process got stuck. Servo mitigates the risk deadlock by avoiding
the circular wait condition. To do so, it defines a hierarchy between threads. This hierarchy is only defined
in documentation, but not enforced by a compile or runtime error.

The primary source of a thread waiting for another thread are blocking sends. This risk could be avoided by
only using MPSC channels, but then Servo could not take advantage of the other channel implementations.
Instead, channels are routed into other channels, using the ROUTER struct from IPC-channel. This router
uses a dedicated thread to forward messages, and therefore sends become non-blocking. We identified three
different patterns in which message routing is used:

• Routing IPC receivers to MPSC senders: This enables non-blocking inter-process sends.
• Routing IPC receivers to crossbeam receivers: This enables the receiver thread to try to read from

multiple receivers using the select! macro.
• Routing IPC receivers to listener objects, that process messages. This pattern will be further explained

in the next subsection.

23.7.1.3 Data Races

Another commonly occurring problem in concurrent applications is the presence of data races. Servo does
not explicitly deal with data races, since by design, safe Rust guarantees the absence of data races. This is
guaranteed by the strong ownership system of the language, which prevents aliasing of mutable references,
thus making data races impossible. Note that this only holds for data races and not general race conditions.
The latter is addressed manually by contributors, using synchronization. This solution is viable, but due to
its complexity, it often manifests itself in bugs [1] [2] [3].

23.7.2 Passed Messages

Usually, a concurrency viewpoint contains a state model, which “describes the set of states that runtime
elements can be in and the valid transitions between those states”. However, since all the thread interactions

https://doc.rust-lang.org/std/sync/mpsc/
https://github.com/servo/webrender
https://github.com/crossbeam-rs/crossbeam/tree/master/crossbeam-channel
https://docs.rs/crossbeam-channel/*/crossbeam_channel/struct.Sender.html#method.send
https://docs.rs/crossbeam-channel/*/crossbeam_channel/struct.Sender.html#method.send
https://github.com/servo/ipc-channel
https://github.com/servo/servo/issues/14704
https://github.com/servo/servo/issues/14704
https://github.com/servo/servo/blob/9ab0af01fe2618d81555f0c2bea3585c0f468628/components/constellation/constellation.rs#L64
https://doc.servo.org/ipc_channel/router/struct.ROUTER.html
https://github.com/larsbergstrom/papers/blob/master/icse16-servo-submitted.pdf
https://github.com/larsbergstrom/papers/blob/master/icse16-servo-submitted.pdf
https://github.com/servo/servo/issues/14154
https://github.com/servo/servo/issues/11685
https://github.com/servo/servo/issues/10017
https://www.viewpoints-and-perspectives.info/home/viewpoints/concurrency/
https://www.viewpoints-and-perspectives.info/home/viewpoints/concurrency/

586 CHAPTER 23. SERVO

in Servo are relatively independent, and there are several hundreds of different message types, such a model
would be cumbersome to make, and not very helpful. Instead of such a model, we describe the general
approaches Servo uses to update the state of individual components.

In some situations, the sending thread does not care what the result of a message is. In a state model,
this would indicate no state transition on the sending thread. This is implemented by just performing a
(non-blocking) send, and resuming execution.

23.7.2.1 Task Queue

In some situations, tasks are queued in the channel, to be processed later. This can be the case when the
receiving thread might be busy. In this case, the sending thread adds the message to a queue, so that the
receiving thread can process them when it becomes available again.

This pattern can easily be spotted in the script thread, where all pending events are stored in a vector, and
processed together. A similar pattern is employed in the worker event loop.

23.7.2.2 Send Reply Channel

A special type of callbacks occurs when a message passes a sender along, which the receiver can use to
reply to that message. This pattern occurs many times, for example when the constellation requests the
current epoch from the layout thread. An advantage of this pattern is that the sender can block on the passed
channel, achieving some sort of synchronous communication.

23.8 Technical Debt

In this section, we will assess the technical debt of the system, using the SOLID principles. We used these
principles since they are well-known, well-defined and apply to the Rust language and the target project.
However, we skipped the Liskov Substitution Principle, since Rust does not support inheritance. We verified
all properties at module-level, since that is the most basic coherent unit in Rust. After analyzing the SOLID
principles, we analyze the testing debt, how developers manage their technical debt, and how the technical
debt evolved over time. Finally, we give an overall assessment of this project’s technical debt.

Analyzing the architecture was quite tedious, since there are no good automated tools available to do so
in Rust. The only serious candidate was clippy (an extensive linter), but running this analysis tool failed
on the project, since it is not incorporated in the Mach build system. Therefore, the SOLID analysis was
done manually. Therefore, the figures we gathered might be somewhat inaccurate, since the name resolution
in IntelliJ is not fully implemented, and Rust does not require explicit types everywhere. Therefore, given
figures will, in general, be underestimations.

23.8.1 Single Responsibility Principle

Regarding this principle, we think it is adequately taken care of, although there is still some room for
improvement.

https://github.com/servo/servo/blob/9ab0af01fe2618d81555f0c2bea3585c0f468628/components/script/script_thread.rs#L1229
https://github.com/servo/servo/blob/9ab0af01fe2618d81555f0c2bea3585c0f468628/components/script/dom/abstractworkerglobalscope.rs#L125
(https://github.com/servo/servo/blob/9ab0af01fe2618d81555f0c2bea3585c0f468628/components/constellation/constellation.rs#L3784)
(https://github.com/servo/servo/blob/9ab0af01fe2618d81555f0c2bea3585c0f468628/components/constellation/constellation.rs#L3784)
https://github.com/rust-lang/rust-clippy

23.8. TECHNICAL DEBT 587

We could find several violations of this principle:

Module

Issues

script/dom/window.rs

Functions base64_btoa and base64_atob do not use any of Windows properties, and therefore should be
in a separate utility module.

Functions cancel_all_tasks and cancel_all_tasks_from_source should be in script/task_manager.rs,
because they only manipulate tasks in the task manager.

layout/block.rs

Function assign_block_size_block_base is 372 lines long, and local variable usage analysis shows it
can be split with some effort.

23.8.2 Open Closed Principle

This pattern is difficult to enforce fully in Rust, since idiomatic Rust uses matching on enums a lot. Therefore
changing an enum often requires fixing several match statements (as we did in our first PR). The advantage
that Rust match statements have compared to switch statements in C-like languages is that the compiler
warns if not all possible patterns are matched.

Moreover, throughout the project, struct properties are hidden and accessed using getters and setters
consequently.

23.8.3 Interface Segregation Principle

In Rust, the construct that matches the concept of an interface in OOP languages is a trait. In servo, traits
are usually kept small, one to three functions, with some exceptions. For example, the LayoutRPC trait
has 11 functions, which are never used together in a function, although all are used in different functions
in window.rs. Therefore, technically, the interface could be split, although that would not improve the
understandability of the code. Other occurrences of this problem are ThreadSafeLayoutNode (31 functions,
of which 6 are used together once), ThreadSafeLayoutElement (15 functions, never referenced directly),
TNode(17 functions, 4 used together) and TElement (71 functions, 4 used together).

23.8.4 Dependency Inversion Principle

This pattern is implemented really well in Servo. Many components consist of a module defining the traits
and data types, and a module containing the implementation. Other modules usually reference the module
defining the traits. For example, there exists a module bluetooth and a module bluetooth_traits, where
the first implements the latter. Now there is one module having a dependency on bluetooth, while there
are 5 modules referencing bluetooth_traits. The same pattern happens in script (2 references) and
script_traits (12 references), and several other modules.

https://github.com/servo/servo/pull/23007

588 CHAPTER 23. SERVO

23.8.5 Testing Debt

The testing approach taken is pretty sophisticated for a Rust project. There are three categories of tests,
which we discuss in detail in the following subsections. Unfortunately, it is not possible to measure coverage,
since the rust coverage tools are not compatible with the mach build system, which servo uses, and the latter
2 test approaches.

23.8.5.1 Unit Tests

Firstly, there are some unit tests, testing important components of the project, like the scripting engine and
the styling. However, there are 73 dedicated test files, 6 files containing source code and tests (which is
quite usual in Rust), containing a total of 13k lines of code (measured using tokei). For comparison: the
project has almost 1000 source code files (excluding generated code) with almost 250k lines of code. This
suggests a very strong lack of unit testing. We think this is serious technical debt, since it makes tracing
back issues quite hard, and leaves a lot of uncertainty for components that implement behavior that is not
directly related to the following test categories.

23.8.5.2 Web Platform Tests

Web platform tests(WPT) is “a W3C-coordinated attempt to build a cross-browser test suite for the Web-
platform stack”. This is a massive test suite tests, testing a browser against the official W3C and WHATWG
specifications. Servo uses a bot to keep the WPT tests updated. However, examining the configuration file
determining what tests are included, we see the vast majority of tests is skipped. This is most likely due to
the fact Servo is not compatible with the full specification yet. Nevertheless, 25014 tests from the suite are
run, which guards for regressions.

23.8.5.3 CSS Tests

Like the web platform tests, the W3C established a set of CSS tests as well, which are partially included in
the Servo test suite. The testing guide states ./mach test-css would execute those. However, trying this
failed. We suspect that the CSS tests are included in the command to run the wpt tests, which would imply
that this is outdated information.

23.8.5.4 Continuous Integration

The unit tests, together with the static analysis, are run in CI on any PR for Linux as well as for Windows.
Before a PR is merged, the build bot runs the full test suite on 25 different targets, ranging from Windows to
different variants of Linux, MacOS, Android, ARM and Magic-leap.

On top of the integration testing, a bot is employed that warns if code is touched, but no tests were changed
(see this PR for an example). This could be a very useful means to maintain a good test suite. However,
as we saw in the section on Unit Tests, there is a lack of unit tests. Therefore, we think it is not used that
well. In our opinion, it would be possible to monitor the testing effort better by employing a CI check that
validates if some coverage criterion is not dropped.

https://github.com/Aaronepower/tokei
https://github.com/web-platform-tests/wpt
https://github.com/servo/servo/blob/master/tests/wpt/include.ini
https://github.com/servo/servo/blob/master/tests/wpt/include.ini
https://www.w3.org/Style/CSS/Test/
https://github.com/servo/servo/wiki/Testing
https://build.servo.org/
https://github.com/servo/servo/pull/21583#issuecomment-417957497

23.8. TECHNICAL DEBT 589

23.8.6 Discussion

The developers do monitor the technical debt of their project. There are approximately 1350 TODO/FIXME
comments in the code. The repository has 315 issues labeled I-cleanup, of which 28 are still open, and
322 issues labeled I-refactor, of which 41 are still open. This suggests there is a considerable amount of
work that can be done to reduce technical debt. Moreover, there are much more comments tracking technical
debt than issues monitoring it, which suggests that some issues are out of sight. This could be solved by
introducing a static analysis tool in the CI that checks the diff of the PR for TODO/FIXME comments, and
blocks merging until they are gone, or at least suggests to make issues for them.

23.8.7 Evolution

Figure 23.5: Open Refactor Issues

The level of technical debt is generally increasing slowly, as can be seen in the number of open Issues
plot. This is not strange if we consider the growing project size. We could not observe bursts of closed
I-cleanup and I-refactor issues, except for the first week of October 2017. Analyzing the issues closed
in that period learns that many outdated issues were closed back then. Some of these (like issue #4786) were
more than 2 years old, indicating that they were not monitored closely.

https://github.com/servo/servo/issues/4786

590 CHAPTER 23. SERVO

23.8.8 Debt Summary

We can conclude that the code itself well organized albeit some exceptions. In addition to that, the CI
infrastructure is outstanding, with test ran on many different targets before a change can be merged. However,
we think the unit test suite is not adequate for the size, maturity and complexity of the project. The end-to-end
tests will cover the most important behavior, but are not suitable to verify the internal workings of the
browser engine. Finally, the technical debt, of which the developers are aware, is managed adequately.

We think the impact of the technical debt is moderate. Many regressions will be detected by the WPT tests,
but the actual cause will be hard to trace down. With a proper set of unit tests, tracing down regressions is a
lot easier. Moreover, since this is a playground/research project, no great interests are at stake when the
project malfunctions.

23.9 Conclusion

In this chapter, we conclude that there are various stakeholders, the main one being Mozilla, and that the
project does not have a lot of users for the scale of the project. This lack of users is mostly caused by the
fact that Servo is meant as a research project and not for daily use.

We analyzed the general modularity of the project. We found that the project is heavily modularized, as is the
goal of Servo, and that these modules are very loosely coupled. All these modules run on their own thread
and communicate by passing messages. Furthermore, we analyzed the technical debt. We conclude that the
project is fairly well organized; however, it should be said there is quite some technical debt regarding tests
and open refactoring issues.

The inspection of the message-passing based concurrency model of Servo has revealed that the project
has a carefully planned hierarchical architecture to prevent deadlocks. The use of the safe Rust language
prevents data races from occurring. Finally, commonly occurring design patterns such as task queue and
reply channel sending lower the complexity of the concurrency model, making it fearless to use.

All in all, we conclude that the architecture of servo is well organized. We think that there are still some
improvements to be made, especially regarding technical debt, but in general, we think Servo is a great
example of a well-engineered software architecture.

23.10 Appendices

23.10.1 Appendix 1 - Analyzed Pull Requests

A table of pull request used in the analysis in the chapter “Pull Requests”.

Pull request ID Title Number of comments Merged

21029 Upgrade to SM 60 433 Yes
21325 Replace mpsc with

crossbeam-channel
249 Yes

https://github.com/servo/servo/pull/21029
https://github.com/servo/servo/pull/21325

23.10. APPENDICES 591

Pull request ID Title Number of comments Merged

8641 No more headless
compositor. Just the
normal one.

232 Yes

12186 Implement
video-metadata check

190 Yes

5652 Kicking off a WebGL
implementation

185 Yes

16176 Halve number of
processes for test runs.

160 Yes

20755 Implement
unhandledrejection
event

220 Yes

10373 Enable WebGL tests 146 Yes
16508 Properly set origin of

fetch requests
173 Yes

20678 Implement
Window.open and
related infrastructure

194 Yes

12989 Add headless rendering
mode, and run WPT
tests with Webrender
enabled.

180 No

15852 Update to
cargo-0.18.0-nightly
(fa1b12a 2017-02-07)

97 No

20850 Investigate websocket
timeouts

92 No

9410 Adding sync method to
update atrr from inline
style updates

105 No

11969 Use a winres to give
servo.exe an icon on
Windows

101 No

14764 [WIP] Make
subsequent about:blank
loads async

114 No

10604 Implement
XMLHttpRequest.send(Document)

91 No

8374 CSS test fonts 71 No
11739 constellation: Don’t

ignore inconsistent
frame-tree states when
determining when to
take a screenshot.

66 No

https://github.com/servo/servo/pull/8641
https://github.com/servo/servo/pull/12186
https://github.com/servo/servo/pull/5652
https://github.com/servo/servo/pull/16176
https://github.com/servo/servo/pull/20755
https://github.com/servo/servo/pull/10373
https://github.com/servo/servo/pull/16508
https://github.com/servo/servo/pull/20678
https://github.com/servo/servo/pull/12989
https://github.com/servo/servo/pull/15852
https://github.com/servo/servo/pull/20850
https://github.com/servo/servo/pull/9410
https://github.com/servo/servo/pull/11969
https://github.com/servo/servo/pull/14764
https://github.com/servo/servo/pull/10604
https://github.com/servo/servo/pull/8374
https://github.com/servo/servo/pull/11739

592 CHAPTER 23. SERVO

Pull request ID Title Number of comments Merged

12858 Enable wpt WebGL
tests on Linux

71 No

23.10.2 Appendix 2 - Contributions

Other than analyzing Servo, we also got a few of our pull requests merged into Servo. The following issues
were picked up and fixed by our team:

• #22986 - HTMLIframeElement.set_visible is unused - fixed in #23007
• #22982 - Promise::new crashes if no compartment has been entered - fixed in #23158

This last PR has gotten a follow-up issue #23167, one of our team members is planning to follow up on this
issue after this project is finished.

https://github.com/servo/servo/pull/12858
https://github.com/servo/servo/issues/22986
https://github.com/servo/servo/pull/23007
https://github.com/servo/servo/issues/22982
https://github.com/servo/servo/pull/23158
https://github.com/servo/servo/issues/23167

593

594CHAPTER 24. SPRING BOOT - PRODUCTION-GRADE SPRING-BASED APPLICATIONS THAT YOU CAN “JUST RUN”

Chapter 24

Spring Boot - production-grade
Spring-based Applications that you can
“just run”

by Andrei Simion-Constantinescu (top right), Hendrig Sellik (top left), Milko Mitropolitsky (bottom left),

https://github.com/simionAndrei
https://github.com/hsellik
https://github.com/mmitropolitsky

24.1. ABSTRACT 595

Viktoriya Kutsarova (bottom right)

24.1 Abstract

Spring Boot is an open source project part of the Java Spring Framework designed to simplify the creation
of stand-alone, production-grade Spring-based applications. Spring Boot has revolutionized the way
production-ready applications are developed, allowing developers to focus more on the application logic
rather than spending time on boilerplate code to handle the necessary configurations and dependencies to
run the application. Spring Boot is used in many enterprise solutions (e.g Netflix) for the fast building
of massive applications, especially web-based ones. This chapter will be going from introducing Spring
Boot’s stakeholders and their roles in the decision making process to looking at the project from multiple
perspectives like the Context View, Development View and Functional View. Finally, a research of the
impact of Technical Debt is provided followed by the final conclusions of this project’s complex architectural
analysis.

24.2 Table of Contents

1. Introduction
2. Stakeholders

• Integrators and Decision-making process

• Power-interest grid
• People to contact

3. Context View
• System Scope & Responsibilities
• Context View Diagram

4. Functional View
• Functional Capabilities
• External Interfaces

5. Development View
• Module Structure
• Codeline Organization Model
• Common Design Model
• Testing and Release Models

6. Technical Debt
• Identifying Technical Debt
• Insights from Stéphane Nicoll
• Testing Debt
• Evolution of Technical Debt
• Discussions about Technical Debt
• Possible Improvements

7. Conclusions
8. Bibliography
9. Appendix A

https://github.com/viktoriya-kutsarova
https://spring.io/projects/spring-boot
https://spring.io/
https://www.netflix.com

596CHAPTER 24. SPRING BOOT - PRODUCTION-GRADE SPRING-BASED APPLICATIONS THAT YOU CAN “JUST RUN”

10. Appendix B

24.3 Introduction

Spring Framework for Java was born in February 2003 after Rod Johnson’s book Expert One-on-One J2EE
Design and Development 1 was published. In his book, the author described how a scalable high-quality
application can be developed without Enterprise JavaBeans (EJB) framework using dependency injection in
addition to ordinary java classes. Over the years, one of the most criticized aspects of the Spring Framework
was the complex dependency management handled by massive XML configuration files.

Spring Boot was launched in April 2014 resolving the problem of complex XML configurations by having
three notable features that make it both unique and easy to use:

• intelligent auto-configuration - setting the application based on the surrounding environment and
information provided by the developer

• stand-alone - eliminating the need of deploying to a web server or any other special environment by
embedding Tomcat, Jetty or Undertow servers directly

• opinionated - saving developer’s time by configuring the most popular libraries by default in the
most standard way

Due to the power of creating Spring-based applications that can “just run,” Spring Boot’s popularity grew
faster. Spring Boot is being used by many large companies such as Netflix, American Express, ESPN,
Mobile.de, Wix.com etc. To present a complete architectural description of Spring Boot, we follow the
approach defined by Rozanski & Woods (2012) 2, starting with the Stakeholders analysis, followed by
multiple architectural views such as the Context View, the Development View, the Functional View and
continue with the Technical Debt analysis before drawing the final conclusions of this chapter.

24.4 Stakeholders

The stakeholders of Spring Boot are described in Table 1. Categories used correspond to the stakeholder
types described by Rozanski & Woods (2012) 3. In the Other stakeholders section, we have identified
additional people and organizations concerned with the Spring Boot project.

Category Stakeholders
Acquirers Pivotal company, with their Board of Directors

and leadership team.
Assessors The Board of Directors of Pivotal have created a

corporate governance framework.

1Johnson, Rod, and Juergen Hoeller. “Expert One-on-one J2EE Development without EJB.” (2003).
2Rozanski, Nick, and Eóin Woods. Software systems architecture: working with stakeholders using viewpoints and perspectives.

Addison-Wesley, 2011.
3Rozanski, Nick, and Eóin Woods. Software systems architecture: working with stakeholders using viewpoints and perspectives.

Addison-Wesley, 2011.

https://spring.io/
https://twitter.com/springrod
https://spring.io/projects/spring-boot
https://hub.packtpub.com/netflix-adopts-spring-boot-as-its-core-java-framework/
https://www.linkedin.com/jobs/view/engineer-java-web-app-dev-spring-boot-at-american-express-613972702/
https://www.entertainmentcareers.net/espn/java-software-engineer/job/248744/
http://www.technology-ebay.de/the-teams/mobile-de/blog/moving-from-war-to-jar-with-spring.html
https://stackshare.io/wix/scaling-wix-to-60m-users-from-monolith-to-microservices
https://investors.pivotal.io/governance/board-of-directors/default.aspx
https://pivotal.io/team
https://investors.pivotal.io/governance/governance-documents/default.aspx

24.5. OTHER STAKEHOLDERS 597

Communicators Pivotal offers Spring Boot training courses for
developers, architects, system administrators, and
technical managers. The official Spring Boot
documentation and reference guide are created and
maintained mainly by the core engineering team.
There is also large community support on Gitter.

Developers Main developers of the system are part of the
Pivotal company. Most active ones are Stéphane
Nicoll, Andy Wilkinson, Madhura Bhave. The
founder Dave Syer and co-founder Phil Webb have
also contributed a lot in the development process.

Maintainers Overlapping with developers. Mostly Stéphane
Nicoll, Andy Wilkinson, Madhura Bhave. People
from the Spring community are also actively
contributing to improving the project.

Suppliers Spring Boot is built on top of Java SE and Spring
Core.

Support staff Spring Boot team is monitoring stackoverflow.com
for questions tagged with spring-boot. Chat with
the community happens on Gitter. Reporting bugs
happens at their GitHub repository.

System administrators Administrators of Spring Boot are the software
engineers that have incorporated Spring Boot in
their projects and products.

Testers Large overlap with developers and maintainers.
Andy Wilkinson and Phil Webb seem to be mostly
contributing to the testing parts.

Users A large user base in the Java world. Both
individuals and large companies. Examples of
companies: KLM Royal Dutch Airlines, ING,
Philips.

Table 1 - Stakeholders of Spring Boot

24.5 Other stakeholders

• Spring ecosystem stakeholders - As Spring Boot is part of the whole ecosystem of Spring, other
Spring projects (Spring Core, Spring Cloud, etc.) are important stakeholders that can affect the
decision-making process for the framework.

• Contributors - Spring Boot is an Open Source system and various developers are contributing to the
software.

• System Architects - Phil Webb is the lead architect of the Spring Boot project. Along with his
colleagues at Pivotal, they are the ones forming the architecture of the framework.

https://pivotal.io/training/courses/spring-boot-developer-training
https://docs.spring.io/spring-boot/docs/2.2.0.BUILD-SNAPSHOT/reference/html/
https://docs.spring.io/spring-boot/docs/current/reference/html/
https://gitter.im/spring-projects/spring-boot
https://spring.io/team/snicoll
https://spring.io/team/snicoll
https://spring.io/team/awilkinson
https://spring.io/team/mbhave
https://spring.io/team/dsyer
https://spring.io/team/pwebb
https://spring.io/team/snicoll
https://spring.io/team/snicoll
https://spring.io/team/awilkinson
https://spring.io/team/mbhave
https://stackoverflow.com/
https://stackoverflow.com/tags/spring-boot
https://github.com/spring-projects/spring-boot/issues
https://spring.io/team/awilkinson
https://spring.io/team/pwebb
https://www.klm.com/
https://www.ing.nl/particulier/index.html
https://www.philips.nl/
http://spring.io/projects/spring-framework
http://spring.io/projects/spring-cloud
https://spring.io/team/pwebb

598CHAPTER 24. SPRING BOOT - PRODUCTION-GRADE SPRING-BASED APPLICATIONS THAT YOU CAN “JUST RUN”

• Courses and instructors - there are plenty of tutorials, courses and instructors that are helping the
Java community integrate the project within their own applications. Some examples are Ken Kousen,
Udemy, Baeldung and SpringFramework Guru.

• Open source projects - Spring Boot is extremely popular in the Java world. There are plenty of
open source projects based on the framework. As such, they are interested in and dependent on the
development of Spring Boot. Some examples are JHipster, Java Blogs Aggregator, Project Sagan.
Another example can be found here.

24.6 Integrators and Decision-making process

Spring Boot is an avid example of an open-source system. It is backed up by a company (Pivotal) and is
accepting contributions from anyone who complies with their code of conduct and signs a release form. All
of the work is done in GitHub, and the mergers and maintainers of the code are members of the Pivotal team.
The process analysis is based on some of the most commented issues and pull requests in the Spring Boot
repository, described in Appendix A.

Most of the time contribution and decision-making follow a similar path. The work pipeline first requires an
issue or a pull request (PR) creation from a team member or a contributor from the community. Contributors
are strongly advised to create a small proof-of-concept project and create a pull request with the example in
the spring-boot-issues repository. After that, the issue is either declined or approved.

The decision of what issues to be included, as well as which issues are relevant and should be pursued in a
release seem somehow centralized. There is no evidence of a wide discussion for the general direction of
the framework which seems to be decided internally at Pivotal. Issues added by contributors are mainly
about bugs and smaller enhancements. The decision is also influenced by the number of people requesting a
certain feature.

After approval, the PRs regarding the issue are merged after a discussion between the contributor and team
members. Team members often lend a hand with polish and code standard compliance. Some issues can
interfere or intersect with the work on other Spring projects (e.g. Spring Data, or Spring Cloud). In that
case, representatives of those projects voice their concerns or comments. Issues might be declined if they
are postponed for too long and become irrelevant, or if the Spring Boot team decides it is not in the direction
they want to bring the product.

Work is done on release branches (e.g. 2.1.3.RC, 2.1.4.M2, etc.) following their release train. Those
branches are regularly merged into the Master branch of the project. PRs are merged into the release branch
by members of the team. Most often these members are Andy Wilkinson or Phil Webb, as well as Stéphane
Nicoll. Phil Webb and Dave Syer are the project’s creators and sometimes partake in the discussions.

24.7 Power-interest grid

After identifying the stakeholders for the Spring Boot project, a power-interest matrix was created. The grid
classifies the stakeholders according to their power over the project and their interest in it.

Figure 1 - Spring Boot Power-Interest Diagram

https://learning.oreilly.com/live-training/courses/reactive-spring-and-spring-boot/0636920233435/
https://www.udemy.com/topic/spring-boot/
https://courses.baeldung.com/p/rest-with-spring-the-certification-class?affcode=22136_bkwjs9xa
https://www.baeldung.com/spring-boot-start
https://www.jhipster.tech/
https://github.com/RameshMF/java-blog-aggregator-boot
https://github.com/RameshMF/sagan
https://www.javaguides.net/2018/10/free-open-source-projects-using-spring-boot.html
https://github.com/spring-projects/spring-boot-issues
https://github.com/wilkinsona
https://github.com/philwebb
https://github.com/snicoll
https://github.com/snicoll
https://github.com/philwebb
https://github.com/dsyer

24.9. CONTEXT VIEW 599

Figure 24.1: Spring Boot Power-Interest Grid

24.8 People to contact

After going through various sources of information regarding Spring Boot, our team came to the conclusion
that the following three people would be the most interesting to contact:

Name Reason to contact
Andy Wilkinson Big role in the decision-making process
Phil Webb Project lead and active on GitHub
Stéphane Nicoll One of the most active software engineers in the project

Table 2 - People to contact regarding Spring Boot

24.9 Context view

In this section, the context view of Spring Boot will be discussed. According to Rozanski and Wood,
“Context View describes the relationships, dependencies, and interactions between the system and its
environment (the people, systems, and external entities with which it interacts)”. It defines what are the
system’s capabilities and constraints and should be understandable to all stakeholders.

24.9.1 System Scope & Responsibilities

Spring Boot is a framework running on the Java Virtual Machine (JVM) and meant to ease the configuration
process of Spring-based applications. It also addresses the learning curve of using the Spring ecosystem,
which prohibited new developers from adopting it (Spring Framework #14521). This means that Spring Boot
has excellent support for a vast range of Spring ecosystem projects such as Spring Data, Spring Security,
Spring Cloud etc. Spring Boot includes the following capabilities, also described in the documentation and
this article:

• Provide an opinionated and out-of-the-box Spring application with pre-selected configurations, but
get out of the way once requirements start to diverge from the defaults.

• Give a range of non-functional features such as metrics, security, health checks, embedded servers,
and externalized configuration.

• Offer a fast and accessible getting-started experience for Spring applications. This includes embedded
Tomcat, Jetty and Undertow servlet containers which remove the need to set them up manually.

• Provide minimal and intuitive annotation-driven configuration. One of the main problems with Spring
Framework is a lot of boilerplate configuration, such as XML descriptors and annotations. While it is
true that the Spring Framework can be configured without XML as well, it is not as convenient as
Spring Boot’s configuration.

• Provide CLI (Command Line Interface) tool to develop and test Spring Boot applications from
command prompt very conveniently and quickly.

• Offer lots of plugins to develop and test Spring Boot Applications easily using build tools like Maven
and Gradle.

• Provide the opportunity to use an embedded in-memory database or effortlessly connect to existing
SQL database such as PostgreSQL, Oracle DB, etc.

https://github.com/wilkinsona
https://github.com/philwebb
https://github.com/snicoll
https://github.com/spring-projects/spring-framework/issues/14521
https://spring.io/projects/spring-data
https://spring.io/projects/spring-security
https://spring.io/projects/spring-cloud
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#getting-started-introducing-spring-boot
https://dzone.com/articles/what-is-spring-boot
http://tomcat.apache.org/
https://www.eclipse.org/jetty/
http://undertow.io/
https://maven.apache.org/
https://gradle.org/
https://www.postgresql.org/
https://www.oracle.com/database/

600CHAPTER 24. SPRING BOOT - PRODUCTION-GRADE SPRING-BASED APPLICATIONS THAT YOU CAN “JUST RUN”

All this makes Spring Boot a good starting point to develop production-ready Spring applications with
minimal effort while making it easy to create custom modifications.

24.9.2 Context View Diagram

Context View Diagram can be seen in Figure 2 with the entities further detailed below.

Figure 24.2: Context View

Figure 2 - Spring Boot Context Diagram

• Languages - Spring Boot is developed almost exclusively in Java (being an extension of the Spring
Core Framework). According to the information found on Spring Boot GitHub Repository, the rest
(HTML, Groovy, Javascript, Shell, Kotlin) make up less than 2% of the codebase.

• Contributors - Main contributors to this project are employees of Pivotal (most notably Andy
Wilkinson, Stéphane Nicoll, Phil Webb, Dave Syer, and Madhura Bhave). Pull requests from third-
party developers are accepted and encouraged.

• Database Support - Spring Boot supports embedded databases such as H2 but also accepts connection
to a wide variety of databases through easily configurable JDBC drivers. Spring Boot also supports
Spring Data which offers powerful object-mapping abstractions.

• Investors - Spring Boot is financed by Pivotal.

• License - Spring Boot is an open-source project released under the Apache 2.0 license.

https://github.com/spring-projects/spring-boot
https://pivotal.io/
http://www.h2database.com/html/main.html
https://pivotal.io/
https://www.apache.org/licenses/LICENSE-2.0

24.10. FUNCTIONAL VIEW 601

• Communication - Open and informal discussion about Spring Boot is on Gitter. Spring Boot used to
have a forum managed by Pivotal but they decided to move it over to Stackoverflow. Some of the
communication is also happening on the GitHub issue tracker.

• Issue Tracking - Spring Boot’s issues are tracked in GitHub issue tracker. People can also submit
pull requests on GitHub.

• Continuous Integration - For CI, Spring Boot project uses Concourse CI and Bamboo.

• Dependencies - Even if the end-user will probably not be using all the dependencies, Boot project
has to maintain all the options and therefore is dependent on a number of third-party software. Key
dependencies include Maven/Gradle for dependency management, Tomcat/Jetty/Undertow for Java
servlet containers and the Spring framework itself.

• Platform - Spring Boot is usually run on Windows, Ubuntu and other Linux based operating systems
but it can run everywhere where Java Runtime Environment is available.

• Users - Spring Boot is used by individual developers to create minimum viable products (MVPs) as
well as companies for Spring-based Web applications and microservices. This means that the users’
skill level varies greatly. Spring Boot is also used as a core dependency by third-party open source
software, such as JHipster.

• Competitors - For deploying Java microservices, WildFly is a competitor to Spring Boot, but it is
not as widely used and has a smaller community. Django is a popular alternative in Python, which is
more lightweight but may not have all the enterprise solutions Spring Boot offers. Other competitors
include Flask (Python) and ASP.NET Core (C#).

24.10 Functional View

In the System Scope & Responsibilities section, we discussed what features and capabilities Spring Boot
has. In this part, an overview is given of how the system interacts with its users and external entities. We
try to present the Spring Boot in a way that people working with Java and the Spring ecosystem can get a
general idea of what it is about.

Figure 3 - Functional Structure Model of Spring Boot

Spring Boot is comprised of multiple components. Their internal hierarchical structure and dependencies
are discussed in detail in the Module Structure section of this chapter. The interactions between the different
functional elements are shown in Figure 3.

Generally, the features provided by the project are aimed at the software developers who want to use the
Spring ecosystem in their projects. It is a Rapid Application Development framework which allows for swift
setup of a new project while allowing for customizations.

Functional Capabilities

A short walk through the initial parts of an application’s lifecycle will explain where Spring Boot is
positioned in the development process and how the project helps it. For the purpose of this example we
assume that the developers have already chosen Java as their primary language and Spring Boot as the tool
to kick-off the project.

https://gitter.im/spring-projects/spring-boot?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
http://forum.spring.io/forum/spring-projects/boot/751211-forum-deactivated
https://github.com/spring-projects/spring-boot/issues
https://ci.spring.io/teams/spring-boot/pipelines/spring-boot
https://build.spring.io/browse/BOOT
https://www.baeldung.com/ant-maven-gradle
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-web-servers.html
https://www.oracle.com/technetwork/java/javase/overview/index.html
https://www.jhipster.tech/
https://wildfly.org/
https://www.djangoproject.com/
http://flask.pocoo.org/
https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-2.2

602CHAPTER 24. SPRING BOOT - PRODUCTION-GRADE SPRING-BASED APPLICATIONS THAT YOU CAN “JUST RUN”

Figure 24.3: Functional Structure Model

24.10. FUNCTIONAL VIEW 603

For the sake of simplicity, the example project consists of a Database connection and a REST service.

The project is started by choosing one of the provided starters. They are conveniently bundled dependency
descriptors used to simplify the dependency files. Developers can now include a single dependency for a
certain functionality (e.g. working with an ORM) instead of the large number of dependency declarations
needed otherwise.

The Spring Boot CLI can optionally be used to write Groovy scripts for fast prototyping and creating the
project. It gives an alternative to just picking starters and writing boilerplate code in Java.

Developers can then opt-in to the auto-configuration functionality with a simple annotation. It is one
of the most powerful time-saving tools in the Spring Boot toolset. Based on the dependencies on the
classpath, the framework attempts to configure the application. For example, if HSQLDB is on the classpath,
an in-memory database will be configured with default settings and values which are based on best practices
and common usage models. Of course, Spring Boot always gives precedence to user-defined configurations
over auto-configuration.

As the example project is a web-application which exposes a REST endpoint, a web-server is needed. Spring
Boot provides embedded web-servers out of the box. The server is embedded in the resulting stand-alone
.jar. As with other configurations, it is completely customizable.

In order to speed up the development process even further, quality-of-life improving tools module dev tools
with features such as automatic restarts and resource caching can be used.

Using the provided tools, the example project can now expose a REST endpoint and store information in
an in-memory database using only a few annotations and can be contained in a single executable .jar file.
However, a running app needs to be monitored and audited. Spring Boot offers a solution to that as well
with the Actuator. The Actuator provides endpoints such as healthcheck and auditevents to ease that
process.

24.10.1 External Interfaces

Spring Boot makes it easier to start up and run a production-ready software quickly. However, most of the
features (except the Actuator) it has, are provided by external sources. Creating a software application can
be complicated but is helped by the various projects in the Spring ecosystem - from managing work with
a database with the Spring Data projects to creating web applications with Spring MVC. All of those can
be configured separately, but Spring Boot is very good at configuring and orchestrating them. It is created
to alleviate the difficulties when creating an application and to allow developers to focus on the business
problem they are facing.

As mentioned in the System Scope & Responsibilities Spring Boot is the answer to the critique of the Spring
ecosystem and its steep learning curve. As such, its external interfaces are connected with the various Spring
projects and indirectly with the service providers that some projects work with (e.g. different databases
when using Spring Data).

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#using-boot-starter
https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-auto-configuration.html
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-web-servers.html
https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-devtools.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html

604CHAPTER 24. SPRING BOOT - PRODUCTION-GRADE SPRING-BASED APPLICATIONS THAT YOU CAN “JUST RUN”

24.11 Development View

24.11.1 Module Structure

Spring Boot is comprised of several modules, each serving a different purpose. A high-level overview of the
module hierarchy is shown in Figure 3.

Figure 24.4: Module Structure

Figure 3 - Spring Boot high-level module structure. Overlapping indicates a dependency between modules.

• spring-boot is the main module, which provides features and methods that are used by the other
modules of Spring Boot. For example, the ability to create applications with embedded web servers
(e.g. Tomcat or Jetty).

• spring-boot-autoconfigure is responsible for the opinionated configuration of a Spring Boot
application based on the contents of the classpath. It is also base for other autoconfigure endpoints.

• spring-boot-actuator provides the infrastructure and endpoints to monitor and audit applications.
• spring-boot-actuator-autoconfigure provides the configuration of different endpoints based

on classpath content.
• spring-boot-test contains annotations and methods to write tests.

24.11. DEVELOPMENT VIEW 605

• spring-boot-test-autoconfigure automatically configures the tests and their dependencies based
on what is present on the classpath.

• spring-boot-devtools is a toolset for quicker and smoother development with features such as
automatic restarts.

• spring-boot-loader allows a Spring Boot application to be packaged in a single stand-alone Java
archive (.jar) with all dependencies bundled (including web servers).

• spring-boot-cli is another developer oriented module providing a simple command line tool to
quickly script and get an application up and running.

• spring-boot-starters are a set of modules providing prepackaged dependency descriptors so that
developers need to manage only a single dependency.

24.11.2 Codeline Organization Model

For creating the Codeline Organization Model, we analyzed the project directory structure from the Spring
Boot GitHub repository. The overall code structure of Spring Boot can be seen in Figure 4, with the main
application folder spring-boot-project being further expanded.

Figure 4 - Spring Boot Code Structure

The Functionality Part of Spring Boot contains multiple modules that are grouped in the
spring-boot-project folder. These modules were described in detail in the Module Structure.
Each of the sub-folders (with a few exceptions such as spring-boot-starters which contains XML
dependency descriptors) is organized into a src folder, which contains main and test folders for module
source code and module unit tests (following the standard maven structure) and a separate pom.xml file
among other properties and configuration files.

The Development and Deployment Part of Spring Boot is handled in spring-boot-tests for deploy-
ment (/spring-boot-deployment-tests) and integration (/spring-boot-integration-tests) tests.
For Continuous Integration the Concourse pipeline scripts are grouped in ci. The folders eclipse and
idea are used for providing support for Eclipse and IntelliJ IDEA to people that want to contribute.

The Documentation Part is contained in spring-boot-samples with Java sample applications and
spring-boot-cli/samples with Groovy samples for the command line application. Javadoc and Asci-
idoctor documentation are found in spring-boot-docs. Other Asciidoctor files are placed in the root folder
explaining the contribution pipeline, how to get support and so on. The repository root also contains the
maven wrapper to ensure that the build has everything necessary to be run independently. By using the maven
wrapper, mvnw, the reference documentation in HTML format can be built. The generated documentation can
be found at spring-boot-project/spring-boot-docs/target/generated-docs/reference/html.

24.11.3 Common Design Model

In this section, part of the common design model is identified and discussed.

24.11.3.1 Standardization of Codeline

As previously mentioned in Codeline Organization Model, the actual program code and the unit test code
are structured as follows:

https://github.com/spring-projects/spring-boot
https://github.com/spring-projects/spring-boot
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://ci.spring.io/
https://www.eclipse.org/
https://www.jetbrains.com/idea/
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://asciidoctor.org/
https://asciidoctor.org/
https://github.com/takari/maven-wrapper

606CHAPTER 24. SPRING BOOT - PRODUCTION-GRADE SPRING-BASED APPLICATIONS THAT YOU CAN “JUST RUN”

Figure 24.5: Code Structure

24.11. DEVELOPMENT VIEW 607

src/main/java/com/foo/Bar.java
src/test/java/com/foo/BarTests.java

Apart from the obvious codeline organization advantage, this ensures that unit tests are written separately
from the mainline code, but still have access to package protected classes, methods, etc.

24.11.3.2 Object-Oriented Programming (OOP)

As most big Java projects, Spring Boot project uses the OOP paradigm. This has well-known advantages
such as encapsulation, inheritance, and polymorphism. While conducting an interview with Stéphane Nicoll,
he explicitly stated that the Spring Boot team tries to keep classes and classes contents as private as possible.

24.11.3.3 Dependency injection

Spring Boot uses the dependency injection technique. This allows enforcing the Inversion of Control
principle which helps to increase the modularity of the project and make it more extensible. The Spring
Boot project uses the @Autowired annotation in most cases for dependency injection which was introduced
by the Spring Framework.

24.11.3.4 Modularity

When discussing with Stéphane Nicoll from the Spring Boot team, he stated that the Spring Boot project
aims to have stand-alone modules which are not interdependent. The goal of this is to minimize coupling
which increases maintainability of the code. While they make the code modular, they also wish to avoid
making split packages.

24.11.3.5 Message logging

Spring Boot’s logging relies on Commons Logging API for all internal logging and provides default
configurations for Java Util Logging, Log4J2 and LogBack implementation of the API.

The default format for Spring Boot log messages is the following:

2014-03-05 10:57:51.112 INFO 45469 --- [main] org.apache.catalina.core.StandardEngine : Starting Servlet Engine: Apache Tomcat/7.0.52
2014-03-05 10:57:51.253 INFO 45469 --- [ost-startStop-1] o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring embedded WebApplicationContext

By default, the logs are only displayed in the console. They can also be stored in a file, which requires
configuration (e.g. in application.properties).

https://en.wikipedia.org/wiki/Object-oriented_programming
https://www.baeldung.com/inversion-control-and-dependency-injection-in-spring
https://www.baeldung.com/inversion-control-and-dependency-injection-in-spring
https://www.logicbig.com/tutorials/core-java-tutorial/modules/split-packages.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-logging
https://commons.apache.org/proper/commons-logging/
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-logging-file-output

608CHAPTER 24. SPRING BOOT - PRODUCTION-GRADE SPRING-BASED APPLICATIONS THAT YOU CAN “JUST RUN”

24.12 Testing and Release Models

24.12.1 Testing process

Integration tests, located in module spring-boot-tests (see Codeline Organization Model), are executed
with every PR, as well as on every release. In addition, when a version is ready to be released, deployment
tests (located in the same module) are also executed.

24.12.2 Release process

Spring Boot project is using Concourse for CI. The release versions of the project consist of milestones
(M#), release candidates (RC#) and general availability releases (RELEASE) (expected to be stable and
feature complete). There are also service releases, used for maintenance after a major release. Each release
is available on repo.spring.io and GA are also available on Maven Central.

A prime example of the release process is the release of the major version 2.0.0 and can be seen in Figure
5.

Figure 24.6: Spring Boot release process

Figure 5 - Spring Boot release process for the major version 2.0.0

Like all the other projects in the Spring ecosystem, there is a strong set of rules for versioning the releases
of Spring Boot. This is not just following best practices, but the community download page depends on the
naming and semantic details of the release artifacts.

Scripts for releasing a version can be found in the ci module. Each version is accompanied by release notes
which can be found in the Wiki section of the GitHub repository. Release notes contain information on how
to upgrade from a previous version, new noteworthy features, as well as various deprecations.

https://ci.spring.io/
https://github.com/spring-projects/spring-boot/milestones
https://repo.spring.io
https://spring.io/blog/2018/03/01/spring-boot-2-0-goes-ga
https://github.com/spring-projects/spring-build-gradle/wiki/Spring-project-versioning
https://github.com/spring-projects/spring-build-gradle/wiki/Community-download-page
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.2-Release-Notes

24.13. TECHNICAL DEBT 609

24.13 Technical debt

Technical debt is a concept in programming that reflects the extra development work that arises when code
that is easy to implement in the short run is used instead of applying the best overall solution.

24.13.1 Identifying technical debt

Identifying technical debt in a project is an extremely challenging task. We used automated code inspection
tools, but they can only support the identification process. Our team interviewed one of the leading software
engineers of Spring Boot - Stéphane Nicoll - who gave us valuable insights on how big the technical debt is
and what does the project’s team do to keep it to a minimum.

24.13.2 Static code analysis

Static code analysis is done using SonarQube, to understand the technical debt of Spring Boot.

There are four main elements that the static code analysis tool emphasizes on: - Bugs and vulnerabilities -
Most of the bugs identified by SonarQube are minor. Still, the tool gives Spring Boot a Reliability Rating E,
which stands for at least one blocker bug in the code, shown in Figure 6.

Figure 24.7: Critical issue according to SonarQube

Figure 6 - Critical issue - Not closing an input stream can lead to memory leaks.

• Code smells - Technical debt ratio of the Spring Boot project is less than 5.0%, according to Sonar-
Qube. This result indicates that the Spring Boot team takes quality in a serious manner as was
confirmed by the conducted interview.

https://www.techopedia.com/definition/27913/technical-debt
https://github.com/snicoll
https://sonarcloud.io/dashboard?id=viktoriya-kutsarova_spring-boot

610CHAPTER 24. SPRING BOOT - PRODUCTION-GRADE SPRING-BASED APPLICATIONS THAT YOU CAN “JUST RUN”

• Duplications - According to SonarQube the code duplication is only 0.7% hence it is not a big
problem for the framework.

• Cyclomatic complexity - Using SonarLint and manual code inspection, we have identified several
cases of high Cyclomatic complexity 4. An example can be seen in Figure 7 where the recommended
value is exceeded.

Figure 24.8: Cyclomatic complexity in Spring Boot

Figure 7 - High cyclomatic complexity (21) in Spring Boot

Spring Boot overall has a small amount of technical debt. Some of it is known to the development team.
This deliberate debt is placed in a separate milestone. The issues in this backlog are not yet scheduled for a
particular release and are mostly bugs or enhancements that Spring Boot team wants to solve in a future
version.

24.13.3 Insights from Stéphane Nicoll

Spring Boot’s core team engineer Stéphane Nicoll discussed the technical debt of the project in details in the
interview we did. In this section, we put some of the most exciting findings according to our team:

• Major refactoring - Spring Boot team had to perform a significant refactoring of the actuator
module once Spring Framework implemented the reactive paradigm. The module heavily relied on
Spring MVC that uses servlet containers, which is not compatible with the new reactive style.
The team decided to rewrite the whole module from scratch but kept its public API.

• For team attention - we have noticed flagging of issues with a label for-team-attention. Once
an issue is created (either from a team member or from a contributor), a team member can label it.
The team holds two meetings every week. During those meetings, the person who marked an issue

4McCabe, Thomas J. “A complexity measure.” IEEE Transactions on software Engineering 4 (1976): 308-320.

https://www.sonarlint.org/
https://hackernoon.com/there-are-3-main-types-of-technical-debt-heres-how-to-manage-them-4a3328a4c50c
https://github.com/spring-projects/spring-boot/milestone/94
https://spring.io/blog/2016/07/28/reactive-programming-with-spring-5-0-m1

24.15. EVOLUTION OF TECHNICAL DEBT 611

explains the reasoning behind it, and then the participants in the meeting collectively decide how to
handle the problem.

Stéphane Nicoll confirmed our finding that the Spring Boot team tries to keep the technical debt to a
minimum and is building its code base with great care for readability and quality. A remarkable fact is that
the Spring Boot team does not use a technical debt identification tool, apart from the static code analysis
tool provided by IDEs. As Stéphane stated, “we don’t use any tool, we don’t see any benefit from using
one”. The team works “in an organic way”, relies mostly on experience, strong sense of belonging to the
project and is heavily influenced by the Spring community. In his words:

If we do something wrong, the community will kick our asses anyway.

24.14 Testing Debt

Issue analysis (#13526 and #14684) prior to interview with Stéphane Nicoll made us believe that there are
no code coverage reports in CI tools. This was later confirmed while conducting the interview.

The project has an advanced testing environment with embedded Docker containers (#10516) and Servlets
which makes test coverage of the project high. The test suite is simple to run on the command line with
./mvnw verify.

IntelliJ IDEA built-in code coverage tool was used to run unit tests on most important modules,
which were spring-boot, spring-boot-actuator, spring-boot-actuator-autoconfigure and
spring-boot-autoconfigure. The results show that those modules are very well tested with class and
line coverage being mostly over 90% (see Table 4).

Module Class Coverage Line Coverage
spring-boot 93% 90%
spring-boot-actuator 94% 93%
spring-boot-actuator-autoconfigure 95% 90%
spring-boot-autoconfigure 89% 93%

Table 4 - Test coverage for Spring Boot’s main modules

Therefore it can be said that testing debt of Spring Boot is minimal and will not affect the project negatively
if kept at this level. However, the project could make use of automated tooling to report on potential testing
debt and make this information available to contributors.

24.15 Evolution of technical debt

In order to “calculate the trends of the technical debt time series” 5 for the Spring Boot project, we first
need to take a look at the history of the whole Spring Framework. The evolution of Spring Framework from
interface21 to SpringSource and finally Pivotal is displayed in Figure 8.

5Digkas, Georgios, et al. “The evolution of technical debt in the apache ecosystem.” European Conference on Software Architecture.
Springer, Cham, 2017.

https://github.com/spring-projects/spring-boot/issues/13526
https://github.com/spring-projects/spring-boot/issues/14689
https://github.com/spring-projects/spring-boot/issues/10516
https://spring.io/blog/2006/12/16/why-the-name-interface21
https://www.crunchbase.com/organization/springsource#section-overview
https://pivotal.io/

612CHAPTER 24. SPRING BOOT - PRODUCTION-GRADE SPRING-BASED APPLICATIONS THAT YOU CAN “JUST RUN”

Figure 24.9: Spring History

Figure 8 - History of Spring Framework (adapted from here)

Spring Boot was launched in April 2014 due to the need for support for containerless web application
architectures in Spring Framework with Phil Webb as lead architect, after Pivotal was created in 2013. Due
to this, Spring Boot was not affected by a major change in management that could determine Technical Debt
arising from different performance management styles.

Another aspect related to the evolution of technical debt from the Spring world is the launch of Spring IO
in June 2014. Generally, as a release pipeline, a new Spring Framework version will trigger a new Spring
Boot release followed by a Spring IO platform release which incorporates the new version of Spring Boot.
The Technical Debt arising from here is related to the decreasing difference between Spring Boot’s and the
platform’s dependency management. That is the reason why Spring IO Platform end-of-life was announced
with Cairo being the last maintained version.

The fact that “software process evolution has a clear effect on technical debt” 6 was proved in Spring
Boot project by a major switch. When Spring Boot decided to replace their CI platform from Bamboo to
Concourse, they benefited from having a platform maintained by Pivotal. The migration to Concourse was
problematic, but it was a known fact to the developers and they took the effort to remove the debt later on.

From its conception until today Spring Boot has had steady growth in the code base (as seen in Figure 9) but
we did not manage to find any major technical debt issues.

Figure 9 - Evolution of code size (Made using git-of-theseus)

6Yli-Huumo, Jesse, Andrey Maglyas, and Kari Smolander. “The Effects of Software Process Evolution to Technical Debt—
Perceptions from Three Large Software Projects.” Managing Software Process Evolution. Springer, Cham, 2016. 305-327.

https://www.quora.com/What-is-the-history-of-The-Spring-Framework
https://github.com/spring-projects/spring-framework/issues/14521
https://github.com/spring-projects/spring-framework/issues/14521
https://spring.io/blog/2013/08/06/spring-boot-simplifying-spring-for-everyone/
https://techdebtpolicy.com/performance-management-systems/
https://spring.io/blog/2014/06/26/introducing-the-spring-io-platform
https://spring.io/blog/2018/04/09/spring-io-platform-end-of-life-announcement
https://github.com/spring-projects/spring-boot/issues/10516
https://github.com/spring-projects/spring-boot/issues/10516
https://github.com/erikbern/git-of-theseus

24.15. EVOLUTION OF TECHNICAL DEBT 613

Figure 24.10: Code Size Evolution

614CHAPTER 24. SPRING BOOT - PRODUCTION-GRADE SPRING-BASED APPLICATIONS THAT YOU CAN “JUST RUN”

24.16 Discussions about technical debt

Spring Boot’s team generally uses Labels to identify and characterize issues. There are currently 29 labels,
but none of them is directly related to technical debt (e.g. technical-debt, or refactoring).

On the other hand, when searching through the issues on GitHub, there are less than 90 issues out of more
than 16000 issues in total mentioning technical debt or refactoring. Usually, these are proposing some
behavioral changes (for example #14680). There are some issues created by the team with known technical
debt (#14412). However, the maintainers are very cautious to make major changes, as they might be breaking
ones to some end-users that have already adopted the existing functionality.

TODOs and FIXMEs for the whole project are an almost negligible amount. They mostly relate to testing
scenarios rather than actual functionality. There are only two examples of FIXME that are in the mainline
code that are not about changing the name of a method.

The cleanliness of the code is helped by the reviews of team members before merging. Another reason is the
provided code style guidelines and schemes for IntelliJ IDEA and Eclipse, which disallow comments in the
code, as well as other polluting elements like unused imports.

24.17 Possible Improvements

We chose to propose two improvements to the Externalized Configuration functionality, which now allows
expressions instead of a fixed list of profiles defined by the users.

Stéphane Nicoll pointed out that after introducing expressions for profiles, the changes have caused quite
a few bugs and they have not decided on how to tackle them. Analyzing the GitHub issues confirmed the
technical debt.

The first problem is the wrong order of profile overriding. We suggest deciding on an intuitive solution
on profile configuration ordering that is based on industry standards. Specifically, old GitHub issue #3845
indicates that instance specific values (outside JAR) should override environment (i.e. PROD, TEST, etc.)
specific properties embedded in the application (JAR). Hence, in current configuration ordering, this:

1. Command line arguments.
...
7. Profile-specific application properties packaged inside your jar (application-{profile}.properties and YAML variants)
8. Application properties outside of your packaged jar (application.properties and YAML variants).
9...

should become this:

1. Command line arguments.
...
7. Application properties outside of your packaged jar (application.properties and YAML variants).
8. Profile-specific application properties packaged inside your jar (application-{profile}.properties and YAML variants)
9...

where configuration with a smaller number will override the one with a higher number.

https://github.com/spring-projects/spring-boot/labels
https://github.com/spring-projects/spring-boot/search?q=refactor&type=Issues
https://github.com/spring-projects/spring-boot/search?q=&unscoped_q=&type=Issues
https://github.com/spring-projects/spring-boot/pull/14680
https://github.com/spring-projects/spring-boot/issues/14412
https://github.com/spring-projects/spring-boot/blob/ca0de4385c01cbbd120e96ec9f83427fb48c9a15/spring-boot-project/spring-boot-tools/spring-boot-test-support/src/main/java/org/springframework/boot/testsupport/rule/OutputCapture.java#L84
https://github.com/spring-projects/spring-boot/blob/master/CONTRIBUTING.adoc#code-conventions-and-housekeeping
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-external-config
https://github.com/spring-projects/spring-boot/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+profiles
https://github.com/spring-projects/spring-boot/issues/3845
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-external-config

24.18. CONCLUSIONS 615

The second problem is related to referencing profiles. In Spring Boot configuration, you can use
spring.profiles.include keyword to add different application profiles (other configurations). The
problem arises when profiles with higher ordering than the original configuration file, are referenced. In this
specific case, the referenced profile has no effect, and this behavior is unexpected by the users.

The issue can be solved by giving spring.profiles.include special privileges which would combine
values across all configuration files. This solution was also suggested in #16023.

The proposed changes would be breaking ones, but they are eventually unavoidable and deal with the
technical debt to avoid future complications regarding profiles in Spring Boot.

Our team has also actively contributed to the Spring Boot project as shown in Appendix B.

24.18 Conclusions

This chapter provides an overview of the Spring Boot project whose purpose is to simplify the work with
Spring Framework. We analyzed Spring Boot’s Stakeholders, Context View, Functional View, Development
View and Technical Debt.

During our work, we found that the Spring Boot team is really community oriented which was confirmed by
a video call with Spring Boot core developer, Stéphane Nicoll.

The project’s architecture is divided into independent modules. While they do not have a list of requirements
to follow specific coding principles, such as SOLID, they rely on experience and pragmatic thinking to apply
good coding practices along with strict contribution guidelines.

Looking into Technical Debt, we found that Spring Boot has good test coverage. While analyzing issues,
the SonarQube report and interviewing Stéphane Nicoll, we concluded that the project also has a very small
technical debt. To our surprise, they use no tools for code coverage other than the ones provided by the
IDEs.

Overall, it can be said that Spring Boot is heavily used by the Java community and the design decisions
are taken with great care. Therefore Spring Boot will undoubtedly remain as one of the go-to choices for
creating web and enterprise applications with Java.

24.19 Bibliography

24.20 Appendix A

A compilation of researched issues and pull requests from the Spring Boot repository is presented below.

PR Context Final Decision

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-external-config
https://github.com/spring-projects/spring-boot/issues/16023

616CHAPTER 24. SPRING BOOT - PRODUCTION-GRADE SPRING-BASED APPLICATIONS THAT YOU CAN “JUST RUN”

ASCII art banner generated
from an image

Big discussion about adding
ASCII image to the loading
screen or not, with a rather
humorous tone. No real
discussion of whether or not it
should be merged - all opinions
are positive. Proposed by a
third-party committer.

Unanimously accepted by all
parties, i.e. team members,
contributors and members of
other Spring teams. Merged by
Phil Webb for release 1.4.0.M2

Add Quartz Scheduler
support

The issue was proposed by an
active contributor (vpavic). It
was met with a big positive
response from the community
(many +1s) and the team
members.

It took more than 1.5 years for it
to be approved and merged.
Merged in version
v2.1.3.RELEASE by Andy
Wilkinson in 2017.

Make run_user for the launch
script configurable

The creator is a first-timer and
he created a PR and an issue.
The team marked the issue as a
duplicate to the PR with the
comment “no need to create an
issue and a PR. A PR is enough,
thanks!”. Discussion about the
PR is straightforward and only
minor comments are made by
the team and some contributors.
Note: If someone is too slow to
respond, the ticket is passed
down to other people

It took exactly 1 year to be
merged in release 2.1.0.M3.
Merger: Andy Wilkinson

Add auto-configuration for
WebServiceTemplate

The issuer (first-timer) created a
PR directly without an issue.
There was no answer from the
team, so he persisted and
pushed them for one. After that,
a back-and-forth
communication between the
contributor and the team starts
in order to fix code issues. Part
of the discussion is whether or
not this feature should be part of
Spring Boot, or another Spring
project.

In the end, the PR is merged
after only 2 months in
v2.1.0.M1 Merger: Stéphane
Nicoll

Introduce
HealthIndicatorRegistry

An issue is created. A
discussion ensues what might
be some use cases for the
proposal. After that, this PR is
created. There is a discussion
about the code.

The merging is postponed for
after the major change to add
reactive streams to the code
base of the project. After that,
the issue is merged. Merger:
Stéphane Nicoll Time needed:
2.5 years

https://github.com/spring-projects/spring-boot/pull/4647
https://github.com/spring-projects/spring-boot/pull/4647
https://github.com/spring-projects/spring-boot/pull/4299
https://github.com/spring-projects/spring-boot/pull/4299
https://github.com/spring-projects/spring-boot/pull/10275
https://github.com/spring-projects/spring-boot/pull/10275
https://github.com/spring-projects/spring-boot/pull/12707
https://github.com/spring-projects/spring-boot/pull/12707
https://github.com/spring-projects/spring-boot/pull/4965
https://github.com/spring-projects/spring-boot/pull/4965
https://github.com/spring-projects/spring-boot/issues/4894

24.20. APPENDIX A 617

Provide a @DataMongoTest
similar to @DataJpaTest

A simple technical discussion.
Note: Apparently PR is
interchangeably used with an
issue in GitHub. The interesting
thing here is that team members
merge suggestions from people,
however, they might add some
polishing to the PR (with
consent from the author of the
PR, of course).

Merged after only a couple of
months in January 2017 Merger:
Andy Wilkinson Release:
v1.5.0.RELEASE

Add Spring Data Neo4j
support

Technical discussion. The
Spring team member was not
very familiar with the proposed
technology, so there was a bit of
an explanation phase going on.
Stakeholders from other
projects pitched in (neo4j and
Spring Data) with some
knowledge.

After discussing with the team
members of Spring Data and
Neo4J, enough context was
gained by the Spring Boot team
to accept this change. Merged
by Stéphane Nicoll Release:
v1.4.0.M2

Add Couchbase support There is a technical discussion
between the Spring boot team
and the contributor. Members of
other Spring projects (Spring
Data) pointed out that the target
component is being rewritten
and this change should wait.
“Since the
spring-data-couchbase
module is in the process of
being rewritten and ported to
Couchbase SDK 2.x, I think it’d
be better to wait for it before
starting integration in Spring
Boot. See (work in progress)” -
Simon Basle

After waiting for the next major
release, the PR is updated with
the new changes based on
changes of adjacent components.
All stakeholders are happy and
the PR is merged by Stéphane
Nicoll Release: 1.4.0.M1

Added Cassandra support for
Spring Boot

Just large technical discussion
between the team members and
the contributor. A lot of
comments from the team
members about the code. A
contributor asks for status.
Otherwise, nothing particularly
interesting.

Merged by Phil Webb Release:
v1.3.0.RC1

https://github.com/spring-projects/spring-boot/pull/7600
https://github.com/spring-projects/spring-boot/pull/7600
https://github.com/spring-projects/spring-boot/pull/5458
https://github.com/spring-projects/spring-boot/pull/5458
https://github.com/spring-projects/spring-boot/pull/3499
https://github.com/spring-projects/spring-boot/pull/2214
https://github.com/spring-projects/spring-boot/pull/2214

618CHAPTER 24. SPRING BOOT - PRODUCTION-GRADE SPRING-BASED APPLICATIONS THAT YOU CAN “JUST RUN”

Add support for configuring
‘lobgack’ logging via JMX

A contributor wants to make an
enhancement in the logging
module. Wants to make it in the
1.3.1.RELEASE. PR is opened
on Nov 14, 2015. The PR is
closed in favour of more general
logging endpoint. Spring Boot
team realizes there is a similar
feature in Spring Cloud which
they wish to integrate for
version 2.0. PR is reopened
because the integration with
Spring Cloud would happen in
release 2.0. After a long and
large technical discussion, the
contributor and Spring Boot
team realize they need a public
API from logback to finish the
ticket. Since there is no
movement from logback side -
the PR is closed.

PR has been opened, then
closed and then reopened. First,
Spring Boot team did not want
to make the configuration too
specific (for logback only) -
they wanted a generic endpoint.
After a new PR was opened by
the contributor for the generic
endpoint, Spring Boot team
realizes such a thing exists in
Spring Cloud and would be
integrated into a later version.
PR was reopened but the team
realized they need a public API
provided by logback. A ticket
was opened in logback Jira.
Stéphane Nicoll closed the PR
on May 18, 2018, as there was
no progress with the logback
ticket.

Fix issue #1668: Added support
for custom system class
loader to enable loading of
various classes that are
packaged inside nested jars at
the system level

A contributor opens this PR on
Oct 7, 2014. Other contributors
seem also interested in the
progress of the PR. A large
discussion is raised of how to
test the enhancement. There
seems to be no progress on it.

Closed by Andy Wilkison on
Jan 8, 2016, after internal
discussion. Spring Boot team
has decided this is an edge case
and not needed by the vast
majority of Spring Boot users.

Add Neo4J auto-configuration PR created by a contributor on
Sep 4, 2015. The main topic in
the comments - integration test
the sample. Due to other
pressing issues, this PR is
postponed for the next release.
With the new Spring Boot
release, there is an update that
needs to be integrated into the
current PR. The contributor
creates a new PR instead of
updating the current one.
Current one becomes obsolete.

Stéphane Nicoll closed the PR
on Mar 22, 2016. Marked as
duplicated in favour of Spring
Data Neo4j support. Reason - it
duplicated a newly create PR.

https://github.com/spring-projects/spring-boot/pull/2214
https://github.com/spring-projects/spring-boot/pull/2214
https://github.com/spring-projects/spring-boot/issues/5321
https://github.com/spring-projects/spring-boot/issues/5321
https://jira.qos.ch/browse/LOGBACK-1371
https://github.com/spring-projects/spring-boot/pull/1669
https://github.com/spring-projects/spring-boot/pull/1669
https://github.com/spring-projects/spring-boot/pull/1669
https://github.com/spring-projects/spring-boot/pull/1669
https://github.com/spring-projects/spring-boot/pull/1669
https://github.com/spring-projects/spring-boot/pull/1669
https://github.com/spring-projects/spring-boot/pull/3899
https://github.com/spring-projects/spring-boot/pull/5458
https://github.com/spring-projects/spring-boot/pull/5458

24.20. APPENDIX A 619

Delegate command line
system properties to
spring-boot-gradle-plugin
runApp task

PR opened on Mar 27, 2014, by
a contributor. Apparently, the
issue was introduced with a
specific version of Spring Boot.
Technical discussion about how
to do this. A few other
contributors jump in to help
with code. Phil Webb closed the
PR after the statement that it
should be done the way Grails
do it. After the PR is closed,
there is still a discussion on
whether the improvement is
needed or not. Andy Wilkinson
clarifies at the end that in the 2.0
snapshot, the configuration is
back to being the same as in 1.x.

Closed by Phil Webb on Jan 11,
2017. Reason - Spring Boot
team prefers to follow the Grails
convention of passing
properties, even though the
proposed one is easier.

Make sure that starting a JMS
connection does not block
infinitely

PR opened by a contributor on
Oct 31, 2017. The change is too
large for entering the current
release, also due to the fact that
Spring Boot team needs to
support Java 6. Later on, the
contributor dives further into the
problem. Together with the
Spring Boot team, they discover
that the approach to fixing the
issue should be different. A new
PR was created and the current
one was closed.

Closed by Andy Wilkinson on
Nov 15, 2017. Reason - the
approach to fixing this issue
should be different. A new PR
is created for that purpose.

Add MessagePack support Created by a contributor on Nov
21, 2015. On Jan 6, 2016, the
PR was marked with status
“waiting-for-votes” to see what
is the demand for this ticket.
One of the comments expresses
concern that it is weird to wait
for votes to merge the issue.
Response from Andy Wilkinson
is that ongoing cost needs to be
considered after it being merged
(more code to maintain, another
dependency, another feature for
users to understand). In the end,
PR is closed because Jackson
2.9 is not supported yet.

Closed by Toshiaki Maki on Oct
13, 2018. Reason -
MessagePack hasn’t supported
Jackson 2.9 yet.

https://github.com/spring-projects/spring-boot/pull/592
https://github.com/spring-projects/spring-boot/pull/592
https://github.com/spring-projects/spring-boot/pull/592
https://github.com/spring-projects/spring-boot/pull/592
https://github.com/spring-projects/spring-boot/pull/10853
https://github.com/spring-projects/spring-boot/pull/10853
https://github.com/spring-projects/spring-boot/pull/10853
https://github.com/spring-projects/spring-boot/issues/10809
https://github.com/spring-projects/spring-boot/pull/4573

620CHAPTER 24. SPRING BOOT - PRODUCTION-GRADE SPRING-BASED APPLICATIONS THAT YOU CAN “JUST RUN”

Customize compression only
when it is enabled

Created by a contributor on Oct
12, 2018. A discussion arises
whether the issue exists in the
current version (2.x) or only in
an old one (1.5.x).

Phil Webb closed this PR on
Oct 15, 2018. It is an issue only
in 1.5.x and Spring Boot team is
trying to keep changes there to a
minimum.

Add
@DataElasticSearchTest
support

Introduction of a new
annotation by a contributor on
Mar 15, 2017. The changes
were initially approved. After
technical discussion, the PR was
polished. Andy Wilkinson
jumps into the discussion and
points out that ElasticSearch
have dropped support of a
feature needed for this ticket.
He also states that due to this,
there are severe restrictions
regarding integration tests.

Andy Wilkinson closed the
issue on Feb 2, 2018. Statement
- it seems that the situation with
the limitation due to
ElasticSearch tests won’t
change in the foreseeable future.

Expose Hibernate Statistics Created on Jul 24, 2015 to fix
issue #2157. Spring Boot team
could not figure out a way how
to integrate integration tests for
Spring Boot 5, which delayed
this issues. Two year later, the
statistics were move to
micrometer and this PR was
closed.

Stéphane Nicoll closed this PR
on Oct 3, 2017. Reason -
statistics were moved to
micrometer team. The
contributor should discuss the
changes with that team now.

Add option to configure
logging filters

Enhancement PR, created on Jul
9, 2016. The ticket was moved
back and forward for
improvements. Andy had some
concerns it was not the best
approach to tackle the problem.
The contributor said he would
implement it but could not do it
within reasonable time and the
PR was closed.

Stéphane Nicoll closed this PR
on Feb 20, 2019. Reason - issue
was moved back and forward
without any progress, it could be
reconsidered again in the future.

24.21 Appendix B

Our team’s contribution to the Spring Boot project is presented in the table below.

PR Status Release version

https://github.com/spring-projects/spring-boot/pull/14801
https://github.com/spring-projects/spring-boot/pull/14801
https://github.com/spring-projects/spring-boot/pull/8636
https://github.com/spring-projects/spring-boot/pull/8636
https://github.com/spring-projects/spring-boot/pull/8636
https://github.com/spring-projects/spring-boot/pull/3596
https://github.com/spring-projects/spring-boot/issues/2157
https://github.com/spring-projects/spring-boot/pull/6366
https://github.com/spring-projects/spring-boot/pull/6366

24.21. APPENDIX B 621

#16327: Add Spring-specific
styling to Gradle Plugin’s
documentation

Merged 2.2.0.M2

#16326: Add Spring-specific
styling to Actuator’s API
documentation

Merged 2.2.0.M2

#16174: Replace ${sys:PID}
with %pid in log4j2
configuration

Merged 2.2.0.M2

#16166: Update ambiguous
documentation about
ConfigurationProperties

Merged 2.1.4

#16182: Determine Spring Boot
version on startup correctly
when using Jigsaw

Merged 2.2.0.M3

Our team is represented in the Spring Boot 2.1.4 release with Update ambiguous documentation about
ConfigurationProperties #16166.

https://github.com/spring-projects/spring-boot/pull/16327
https://github.com/spring-projects/spring-boot/pull/16327
https://github.com/spring-projects/spring-boot/pull/16327
https://github.com/spring-projects/spring-boot/milestone/134
https://github.com/spring-projects/spring-boot/pull/16326
https://github.com/spring-projects/spring-boot/pull/16326
https://github.com/spring-projects/spring-boot/pull/16326
https://github.com/spring-projects/spring-boot/milestone/134
https://github.com/spring-projects/spring-boot/pull/16174
https://github.com/spring-projects/spring-boot/pull/16174
https://github.com/spring-projects/spring-boot/pull/16174
https://github.com/spring-projects/spring-boot/milestone/134
https://github.com/spring-projects/spring-boot/pull/16166
https://github.com/spring-projects/spring-boot/pull/16166
https://github.com/spring-projects/spring-boot/pull/16166
https://github.com/spring-projects/spring-boot/milestone/138
https://github.com/spring-projects/spring-boot/pull/16182
https://github.com/spring-projects/spring-boot/pull/16182
https://github.com/spring-projects/spring-boot/pull/16182
https://github.com/spring-projects/spring-boot/milestone/135
https://github.com/spring-projects/spring-boot/releases/tag/v2.1.4.RELEASE
https://github.com/spring-projects/spring-boot/pull/16166
https://github.com/spring-projects/spring-boot/pull/16166

622CHAPTER 24. SPRING BOOT - PRODUCTION-GRADE SPRING-BASED APPLICATIONS THAT YOU CAN “JUST RUN”

Chapter 25

Terraform

Delft University of Technology

Terraform is a tool for writing infrastructure as code. It makes it possible to code infrastructure in HCL
(Hashicorp Configuration Language) for many different cloud providers. The project itself is open-source

623

624 CHAPTER 25. TERRAFORM

and written in Go. The purpose of this report is to provide an overview of the Terraform’s architecture from
different perspectives: stakeholders, context, developers, technical debt and usability.

Terraform was researched by looking for information online, analyzing GitHub pull requests, analyzing
code manually, with tools, and doing an interview with a day-to-day user.

The stakeholders and their roles were identified, along with the integrators of Terraform. The context view
shows Terraform with all services it facilitates or uses. In the development view the modules of Terraform
are outlined and standardized practices are described. Technical debt and its history over different Terraform
versions was identified. Lastly, this report looks at the usability of Terraform.

The Terraform project has many strong points and, in our opinion, also some flaws. A strong point is that
the project is written with modules providing separation of responsibility. Flaws were mainly found for
technical debt department, where good practice is not always adhered to. Another good point of Terraform
is that it makes collaborating on infrastructure configurations an easy job.

25.1 Table of Contents

• Introduction
• Stakeholders
• Context View
• Development view
• Technical Debt
• Usability Perspective
• Conclusion
• References

25.2 Abstract

Back in the days businesses built their IT infrastructure in large air conditioned server rooms. Nowadays,
there is a much easier option; use resources from cloud providers such as Amazon, Microsoft or Google.
It is no longer necessary to have the hardware in-house and configure them manually. We can now even
write Infrastructure as Code (IaC). Terraform is an open source project that is used for this purpose. Instead
of learning to code one or more cloud specific languages, Terraform presents the possibility to code
infrastructure for many different cloud providers in HCL. Currently, the stable version is v0.11.0, but
v0.12.0-beta1 is also out.

In this report, the architecture of Terraform will be discussed from various viewpoints. Firstly, the stakehold-
ers and their interests will be identified and described. Then, information about Terraform’s context will be
given, partly via a model. The development view summarizes interesting details for developers who want
to work with Terraform. Next, ‘technical debt’ will go into several different types of debt and the history
of them. Lastly, Terraform will be discussed from a usability perspective. Some details will be left out of
the report to allow the report to focus on the most important aspects. These appendices can be found in the
appendices folder on GitLab.

25.3. STAKEHOLDERS 625

25.3 Stakeholders

25.3.1 Stakeholder identification

Firstly, the stakeholders will be identified. Rozanski and Woods identified 11 classes of stakeholders 1. The
table below presents these classes and describes the corresponding stakeholders for the Terraform project.
Three classes, which are less interesting, are left out and can be found in appendix A.

Class Stakeholder Description

Acquirers HashiCorp HashiCorp is the owner of
Terraform. HashiCorp is a
company that develops
(open-source) software to
provision, secure, connect, and run
any infrastructure easily 2. The
board of HashiCorp is responsible
for creating their ToA in which the
foundations for their vision,
roadmap and product design are
presented. HashiCorp also attain
ownership of all contributions
made to the system through Github
by requiring contributors to sign
their CLA.

Assessors HashiCorp and core team Since HashiCorp as a corporation
is the publisher of Terraform, the
board is likely involved in ensuring
legal and regulatory compliance.
This has to be done in collaboration
with the core team of Terraform, as
they are responsible for day-to-day
desicion-making regarding the
development.

1Rozanski, Nick, and Eoin Woods. 2011. Software Systems Architecture: Working with Stakeholders Using Viewpoints and
Perspectives. 2nd ed. Addison-Wesley Professional.

https://www.hashicorp.com/about
https://www.hashicorp.com/tao-of-hashicorp
https://cla.hashicorp.com/hashicorp/terraform

626 CHAPTER 25. TERRAFORM

Class Stakeholder Description

Communicators Core team and contributors The core team of Terraform
published the Terraform website,
including the docs and guides, to
their GitHub along with the source
code of Terraform. This allows for
contributors to help maintain their
documentation and even add
guides. The core team published
guidelines with the aim to structure
the communication on GitHub in
order improve efficiency.
Companies that offer services
which integrate with Terraform
also offer communication and
training, as an example Microsoft
has published a video series on how
to use Terraform with Azure.

Developers Core team and contributors Terraform is developed by
contributors and the core team in
collaboration via their GitHub.

Maintainers Core team Because HashiCorp offers their
products as a service to customers
they have a huge stake in
maintaining the source code. They
will do so independent from
open-source contributors, even
though they are of course welcome
to help.

Suppliers AWS, GCP, Azure, etc. Terraform is built on suppliers of
resources. The main suppliers are
the following: Microsoft Azure,
Google Cloud Platform and
Amazon Web Services. Besides
these Terraform can be used with
many different suppliers ranging
from Infrastructure as a Service
(e.g. AWS, GCP, Azure) to
Platform as a Service
(e.g. Heroku).

Testers Core team and contributors HashiCorp requires contributers to
write their own tests when they add
features with a new pull request,
however because many
contributions are made by the core
team, they can be classified as
testers themselves as well.

https://github.com/hashicorp/terraform/tree/master/website
https://github.com/hashicorp/terraform/blob/master/.github/CONTRIBUTING.md#checklists-for-contribution
https://www.hashicorp.com/blog/microsoft-publishes-videos-series-on-hashicorp
https://github.com/hashicorp/terraform/graphs/contributors
https://www.terraform.io/docs/providers/type/community-index.html
https://github.com/terraform-providers/terraform-provider-heroku
https://github.com/hashicorp/terraform/blob/master/.github/CONTRIBUTING.md#checklists-for-contribution

25.3. STAKEHOLDERS 627

Class Stakeholder Description

Users Variety of companies The system is used by different
companies, including: Barclays,
ITV and SAP Ariba. Barclays even
proudly writes they value acting as
customer advisor and contributors
to Terraform.

25.3.2 Additional stakeholder type identification

After looking into the different types of stakeholders identified by Rozanski and Woods, additional stake-
holder types which are specific to the Terraform project are identified. These stakeholder types are presented
and described in the following table:

Class Stakeholder Description

Cloud-specific
competitors

AWS Cloud Formation, Azure
Resource Manager, Google Cloud
Deployment Manager, etc.

Many suppliers we identified in the
previous table offer Infrastructure
as Code tooling similar to
Terraform specifically for their
infrastructure products. This leads
to interesting dynamics since these
companies now are both suppliers
and offer a competing product.

Cloud-agnostic
competitors

Chef, Puppet, Saltstack, etc. Even though these products work
differently from Terraform (and can
even be used together), we still list
them since they offer companies
different methods to create
‘Infrastructure as Code’. The main
difference is between Configuration
Management (e.g. Terraform and
CloudFormation) and
Orchestration Management
(e.g. Chef, Puppet and Saltstack).

2HashiCorp. “About Hashicorp.” 2018. https://www.hashicorp.com/.

628 CHAPTER 25. TERRAFORM

Class Stakeholder Description

Partners List of companies Different companies partner up
with HashiCorp to ‘expand their
technical skills and go-to-market
initiatives around DevOps
principles, cloud technologies, and
data centre management by
leveraging the differentiated
offerings of the HashiCorp product
suite.’ 3

25.3.3 Stakeholder identification summary

To sum up the identification of the stakeholders involved in this project we present a table which shows the
involved actors and the different roles they fulfil in the project.

Nr. Stakeholder Roles

1 HashiCorp Acquires, assessors
2 Core team Communicators, developers,

maintainers, support staff,
testers

3 Contributors Communicators, developers,
testers

4 AWS, GCP, Azure, etc. Suppliers, cloud-specific
competitors, partners

5 Chef, Puppet, Saltstack, etc. Cloud-agnostic competitors
6 Customers Users
7 HashiCorp customer service Support staff
8 Sysadmin teams (HashiCorp

and external)
System administrators

9 Production Engineering teams
(HashiCorp and external)

Production Engineers

Stakeholders 1 through 6 will be analysed in the stakeholder analysis. The stakeholders 7 through 9 will be
left out since they are not as relevant to the decision-making processes.

25.3.4 Stakeholder interests

In this part the interests of the different stakeholders in Terraform are identified. A table containing the
interests per stakeholder can be found in the appendix B.

3HashiCorp. “About Hashicorp.” 2018. https://www.hashicorp.com/.

https://www.hashicorp.com/partners

25.3. STAKEHOLDERS 629

The main conclusion is that it is important for HashiCorp and the core team to correctly identify what it is
their users want. Different companies (AWS, GCP, Azure, etc. but also Chef, Puppet, etc.) want to work
with them and combine their products to create cool solutions. However, HashiCorp needs to focus on what
it is their users want and spend their resources on making that happen rather than satisfying these other
stakeholders, since that is their own goal. This also aligns with their vision of being cloud agnostic.

25.3.5 Power-interest grid

In the following diagram we show the power and the interest the different stakeholder have in the project.

Figure 25.1: power-interest

It can be concluded that HashiCorp and the Terraform team have a lot of power in the project. So even
though different stakeholders might put pressure on them to move in their direction, they have enough power
to determine their path themselves.

After identifying the interests of the involved organization involved we try to identify people who actually
make the day-to-day decisions and look at how they argue their decisions. After this we identify interesting
people to contact.

630 CHAPTER 25. TERRAFORM

25.3.6 Identifying integrators

Members of the core team of Terraform are also the integrators on the GitHub project. Some of the most
active integrators at the moment (March 2019) are the following: apparentlymart, jbardin, radeksimko,
paddycarver, mitchellh, catsby, stack72 and svanharmelen. Whenever contributors fix an issue or bug they
quickly check and confirm that it works and merge the pull request, however when they find a contributor
adds a feature that would change workflows or requires decision-making in a different way they add a
thinking label and comment that this will be discussed in the team. They write a comment mentioning the
reasons why this requires further discussion. Reasons often mentioned are the following:

• Usability
• Semantics
• Backward compatibility
• Consistency
• Security
• Proper testing (acceptance tests are mandatory)
• Proper documentation

We can recognize the user-centered approach we identified before in this reasoning.

25.3.6.1 Pull request analysis

To derive a general theory on the way contributions evolve and are discussed, pull request containing
important features, long discussion or that were created by Hashicorp themselves were analysed.

There’s notably a strong community, as the bigger part of PRs are finished, tested thoroughly and merged.
There are some cases were an author starts working on new features, implements them to the point it is
usable for their own use case but neglects to finish it to the point it works in all possible cases, or to adhere
to the requested quality standards. Usually however these partial implementations are picked up by someone
else in a new branch.

The general flow of a contribution starts with a user already having implemented most of the new functionality.
When the architecture is not in line with Terraform, a Hashicorp employee insists on improvements. When
cloud provider services do not model nicely to Terraform, authors propose an implementation and the
community and Hashicorp discuss the best way to move forward. Acceptance tests and documentation
updates are required. The Hashicorp reviewer usually waits before some community members have done
their checks, after which they check themselves. There are occasions this takes a really long time, some
requests have waited more than 3 months for a review.

Sometimes a small bug is ignored in favour of adding the new functionality, and a new issue is generated for
this bug to be solved after merging.

https://github.com/apparentlymart
https://github.com/jbardin
https://github.com/radeksimko
https://github.com/paddycarver
https://github.com/mitchellh
https://github.com/catsby
https://github.com/stack72
https://github.com/svanharmelen

25.4. CONTEXT VIEW 631

25.4 Context View

25.4.1 System scope and responsibilities

Terraform is an open source project by HashiCorp. It is an Infrastructure as Code (IaC) tool; with Terraform
it is possible to manage and provision IT infrastructure without having to configure physical hardware. Using
IaC, the infrastructure can be managed under version control. This allows comparison of configurations,
e.g. for discovering bugs. Aside from version control, it also allows for consistent deployments 4.

The responsibilities of Terraform are to describe a certain infrastructure and the desired configurations for it.
With Terraform, the user can more easily see which changes were made in the configuration. The program
knows what has changed and can create incremental execution plans 5.

25.4.2 Context model

The figure shows a context model of entities Terraform deals with in some way. A short explanation will be
given for the less trivial relations 6 7:

• Development: Terraform is developed by Hashicorp, an IT-infrastructure company. Collaboration
and version control are handled via Github, where the code of the project (95% Golang) is stored.

• Communication: Developers of Terraform use Gitter to communicate. Furthermore, there is com-
munication via Facebook, Twitter and YouTube videos. Terraform also uses MeetUp for groups in
various countries.

• Provision: Terraform helps creating and managing infrastructure, and also in provisioning during
creation or deletion of resources. Provisioners, such as chef, are used to execute scripts (locally or
remotely) as a part of resource creation or destruction.

• Facilitation: Terraform facilitates many providers such as DNSimple, AWS etc. These are generally
Infrastructure, Platform or Software as a Service. The providers in the model a just a few of the many
that Terraform facilitates.

• Collaboration: HashiCorp closely collaborates with its cloud partners to ensure Terraform works
well with these platforms.

• Paid services (resellers): Companies like AHEAD use terraform in services they provide to their
customers.

• Competition: Interestingly, some of Terraforms partners also have their own Infrastructure as Code
services. AWS Cloud Formation, Azure Resource Manager, Google Cloud Deployment Manager offer
IaC tooling similar to Terraform. These tools only support their own platform, whereas Terraform is
cloud agnostic.

4HashiCorp. “Terraform Introduction.” 2018. https://www.terraform.io/i ntro/index.html.
5HashiCorp. “Terraform Introduction.” 2018. https://www.terraform.io/i ntro/index.html.
6HashiCorp. “HashiCorp Partners.” 2019. https://www.hashicorp.com/ partners.
7HashiCorp. “Terraform Github.” 2019. https://github.com/hashicorp/t erraform.

632 CHAPTER 25. TERRAFORM

Figure 25.2: Context model illustration

25.5. DEVELOPMENT VIEW 633

25.5 Development view

The development view describes the system in such a way that stakeholders who build, test, maintain or
enhance the system are supported 8. Below the development view is subdivided into the module composition
describing the different modules and their relation to the core, the state of the system, testing methods and
the standardized practices of contributing.

25.5.1 Module composition

Terraform is written in Go, where package management by convention is done using a directory structure.
Hence, for the following paragraph the top level directories will be denoted as ‘modules’ while their
subdirectories will be denoted as ‘packages’. This will make it easier to understand the module organisation
of Terraform.

To give a high-level overview of the module organisation, it was oriented around the terraform/terraform
module, which is often denoted as the core. This provides insight in how the core module links the other
modules and packages to provide the Terraform functionality. In the figure below, there are a few modules
not directly used by the core package; these modules are coloured red.

Below follows a brief summary of each module, this can be a summary of the doc.go that is inside each
module or an analysis of the code with respect to the terraform/terraform package:

• terraform (core): The core package contains the classes related to the graph traversal (the directed
acyclic graph ‘roadmap’ of Terraform for applying the infrastructure changes to a provider), the
different types of nodes that the graph can contain, transforms, user interface logic and evaluations
that nodes can perform. These classes combined perform the core logic of Terraform’s goal to manage
infrastructure.

• providers / provisioners: The providers/provisioners module provides an interface of communication
to a provider or provisioner during evaluation of nodes in the graph traversal.

• tfdiags: Diagnostics module of terraform. Packages can use this module to generate lists of diagnostics
which can inform the user of warnings and errors that might occur.

• version: Module containing SemVer information
• addrs: Module that exposes types that can link to a terraform state or configuration object.
• helper: Directory of high-level helper packages for Terraform. Described as the “Terraform standard

library” 9

• plugin: Module that is responsible for downloading, installing and discovering locally installed
plugins for providers and provisioners.

• dag: Module containing the direct acyclic graphs used in the graph traversal.
• lang: Module that contains the Go implementation for functions that can be used in the Terraform

configuration syntax (e.g. “tomap”).
• plans: Module that represents the changes that Terraform ‘plans’ from the previous state and the

configuration files.
• httpclient: Module that provides a http client with additional configuration such as the Terraform

user-agent string.
8Rozanski, Nick, and Eoin Woods. 2011. Software Systems Architecture: Working with Stakeholders Using Viewpoints and

Perspectives. 2nd ed. Addison-Wesley Professional.
9mitchellh. “README.md - Terraform/Helper.” 2019. https://raw.gith ubusercon-

tent.com/hashicorp/terraform/master/helper/README.md.

634 CHAPTER 25. TERRAFORM

Figure 25.3: module-organisation

25.5. DEVELOPMENT VIEW 635

• moduledeps: Module that exposes types that represent dependencies of a provider or configuration.
• flatmap: Module that flattens internal maps.
• states: Module that handles state operations and types.
• config / configs: Modules responsible for reading the terraform configurations written by the user.

Other modules not directly linked to the terraform core package are:

• backend: Module that handles storing the state of Terraform to either local or remote storage.
• builtin: Built in provisioners and providers.
• command: Module that exposes commands that can be executed (e.g. using CLI)
• communicator: Module that exports interface of communication for provisioners.
• digraph: Module that exports basic structures for creating directed graphs.

Other (external) entities used by Terraform are:

• zclconf: A module that provides a dynamic type system for Go primarily for configuration languages
10

• mitchellh: Github user that exports two Go modules: copystructure 11 and reflectwalk 12. Copystruc-
ture deep copies values while reflectwalk allows manipulations on unknown structures.

• hcl2: toolkit for writing structured configuration languages 13

• hil: Module for configuration interpolation originally written in Terraform but extracted as a general
purpose module 14

25.5.2 Providers / Provisioners

The providers and provisioners mechanism is an interesting component to highlight. During the graph
traversal Terraform only sees the interface that all providers / provisioners should conform to. The providers
start a gRPC server which is compliant with the protobuf files in internal/tfplugin5. This creates an
‘airgap’ between the actual provider (e.g. AWS, Azure, etc..).

25.5.3 State

Terraform stores it’s state in a .tfstate. Access to the state file is managed through the statemgr (state
manager). Schemas of the state are stored in the terraform/states package. Writing, reading and
migrating the actual state file itself is done using the terraform/states/statefile package.

25.5.4 Testing and Static Analysis

Terraform uses (by Go convention) files with *_test.go to denote tests. Additional data used in the tests
are stored in fixture/* directories. There is also one package related to e2e testing which is conveniently
called e2e.

10Atkins, Martin. 2019. “Zclconf/Go-Cty.” 2019. https://github.com/zclconf/go-cty.
11mitchellh. “Mitchellh/Copystructure.” 2019. https://github.com/mitch ellh/copystructure.
12mitchellh. “Mitchellh/Reflectwalk.” 2019. https://github.com/mitchellh /ref lectwalk.
13HashiCorp. 2019. “Hashicorp/Hcl2.” 2019. https://github.com/hashicorp/hcl2.
14HashiCorp. 2019b. “Hashicorp/Hil.” 2019. https://github.com/hashicorp/hil.

636 CHAPTER 25. TERRAFORM

25.5.4.1 Static Analysis

The terraform repository code formatting is analysed using gofmt. This is integrated in the Makefile and
checked before running any tests.

25.5.4.2 CI/CD

Travis is used for CI/CD. It uses the Makefile and checks if the formatting is correct (prerequisite of make
test), runs the unit tests and runs the e2e tests. After all tests have completed a go build job is executed
to test if a binary can be created.

25.5.5 Standardized practices

There are a few guidelines for contributing to Terraform, described on their GitHub page. First of all, one
must sign the CLA. Furthermore the community guidelines must be adhered. These cover being respectful in
communication, harassment policy and incident handling. Hashicorp remains the right to perform punitive
actions.

In contributing to Terraform, the community emphasizes that any sort of contribution is appreciated, the
worst that can happen is that you’ll politely be asked to change something. A description of what is expected
in a feature request, new issue or new pull request is provided. Also a checklist has been put together
for contributions per type of contribution (Documentation update, enhancement / bug fix to a resource or
provider, a new resource or a new provider). Adhering to this list helps in achieving quick merges. Finally
acceptance tests are required for each new or updated feature. All of this is described in detail, including all
descriptions and checklist, in appendix C.

25.6 Technical Debt

To analyse Terraform’s technical debt, SonarQube, BetterCodeHub and an analysis tool of the GoLand IDE
were used. More information on the results of the tools can be found in appendix D.

25.6.1 Types of Technical Debt

There are several types of technical debt, for example: code debt, testing debt, defect debt and documentation
debt. It was decided to discuss code debt and testing debt, since documentation debt and defect debt are
scarce in the project.

25.6.1.1 Code Debt

According to SonarQube, Terraform v0.12.0-beta1 has 1.4k code smells and v.0.11.0 has 507. The large
amount of code smells is bad; it means maintaining the code will be harder than it should be and additions
to de code can lead to new errors in the code. The code debt expressed in number of days to fix it, is 29 days

25.6. TECHNICAL DEBT 637

for the beta version and 12 days for v0.11.0. The technical debt for v0.12.0 is a lot and they should reduce
this before making an official release.

BetterCodeHub found a fair amount of classes do not have short units of code written in them. The Lines-of-
Code (LoC) count for functions of the worst offenders ranges between 111 and 193. The tool also checked
how simple units of code were. The results were bad, manual checks in the code revealed extremely long
functions filled with many if-statements. The two worst functions have over 130 LoC and over 30 branches.
As was also seen in the SonarQube analysis, the code also has some duplication. Several classes have
between 13 and 18 LoC duplicated. Lastly, unit interfaces were not kept small, the worst functions had 5
parameters.

25.6.1.2 SOLID

The code was also checked manually to see if there are violations of the SOLID design principle. Since
the project is so large, we focused on the terraform core package. The single responsibility principle was
met. For example, the package structure is very extensive; this is because all different responsibilities are
split over different packages. We also saw various structures that had very specific tasks such as ‘destroy
edge’. The open-closed principle was met in certain instances. A good example is the refactoring of the
providers/provisioners in which they removed much duplicate code and replaced it with a plugin system
containing an interface. This is open for extension but closed for modification. However, in other structures
we saw many complicated switch and if-structures, which can be an indicator of bad design according to
this principle. We found that, concerning the dependency inversion principle, Terraform does quite well.
They have interfaces all subtypes must comply with.

25.6.1.3 Testing Debt

SonarQube gave a test coverage of 59.8% on the current master branch. However, these numbers do not
accurately reflect how well the system is tested, because Terraform uses a unique testing system, some
packages were left out as the SonarGo could not process these results. When manually looking at the code, it
can be estimated the coverage is a lot higher. Terraform has unit tests for most structures and an end-to-end
test structure that takes commands. There has been quite extensive testing and many test fixtures were
written. We did find 25 functions with a testing TODO in the core package. These were all in their evaluate
modules.

25.6.2 Discussion about Technical Debt

With GoLand’s TODO utility, the code was checked for remarks in comments that indicate code needs to
be refactored or iterated upon. The terraform/terraform package had the most markers: 61. As of 17-3-19,
the code has 157 open TODOS. The developers communicate in pull requests on GitHub as well. When
examining some pull request, no direct mention to technical debt was found. However, many pull requests
do relate to fixing bugs, testing or code improvements.

638 CHAPTER 25. TERRAFORM

25.6.3 Historical Analysis Technical Debt

The history of the technical debt will be discussed by going into the evolution of Terraform’s modules and
the evolution of technical debt.

25.6.3.1 Evolution of Modules

Terraform is split into modules according to Go conventions. We looked at both the evolution of the LoC
and of the file count. The metrics showed exactly the same trends, so it was decided to include the figure of
the evolution of the LoC shown below.

Figure 25.4: Evolution LoC

The evolution of software components can be described using astronomical terminology as described in the
paper written by 15. The evolution of a few modules will be described in more detail using this methodology:

• digraph: this is a typical example of an idle module with good design. The module has not been
touched since v0.2.0 while still being used in the project.

15Lanza, Michele, and Stéphane Ducasse. “Understanding Software Evolution Using a Combination of Software Visualization and
Software Metrics.” Springer Verlag, 2002.

25.6. TECHNICAL DEBT 639

• command: this handles the commands which Terraform can execute. As Terraform grows in
functionality this module grows. This module has been growing since v0.1.0. This means it classifies
as a red giant and might need to be refactored at some point.

• builtin: this module could first be seen as a red giant until the refactoring in v0.10.0. However, after
this big refactoring the class is growing in size. Which means we can classify this module as pulsar.

• state: this is another example of a pulsar module as its size has been varying since the launch of
Terraform. An argument can be made to classify this as a white dwarf since it has been slowly
shrinking since v0.8.0

• configs: this module has remained constant (as an idle, or even sleeper, module) from v0.1.0 to
v0.11.0, however due to the refactoring and launching of the plugin system this module suddenly
exploded to contain many more configurations. Therefor this can be classified as a supernova.

25.6.3.2 Evolution of Technical Debt

We combine this data with the metrics we gathered by using SonarQube for different releases. The diagram
below shows the technical debt in days of work over the last few releases. It was not possible to run
SonarQube for versions before v0.7.0 as dependencies were no longer available.

Figure 25.5: Technical debt in days

In version v0.9.0, 1925 of the 2045 code block duplications are in the terraform/builtin/providers package.
This package was moved to github.com/terraform-providers in v0.10.0 and in v0.12.0 moved to the new
plugin system. This also accounts for 109d of the debt and therefore greatly decreases the technical debt.
They did introduce some technical debt in this migration by postponing the implementation of the plugin
system to v0.12.0 instead of directly implementing this. The introduction of many new modules over the
last couple of versions is a promising sign that the core team tries to manage technical debt as the system
grows larger.

640 CHAPTER 25. TERRAFORM

25.7 Usability Perspective

In this chapter the usability of Terraform will be discussed. In order to gain insights in how users experience
working we Terraform the team interviewed an enthusiastic developer who recently introduced his company
to Terraform and is working with it in a professional environment.

25.7.1 User Interaction

User interaction is an important part of the usability of the software. Great software can have a very
non-intuitive user interface and therefore be of no good to anyone. In this section, the interface of terraform
is analysed. Terraform uses a command line interface, which will be described below.

25.7.1.1 Command Line Interface

Terraform is used via a CLI. This CLI should be installed and can be executed in any directory containing
*.tf (Terraform configuration) files. The commands contain a synopsis which can be found by executing
terraform or terraform --help. Every command also contains a larger documentation using terraform
<command> --help, which will output a larger summary and possible arguments that can be supplied to
the command.

The most common commands to use are terraform init (which initializes a new or existing directory),
terraform plan (which generates an execution plan for later use) and terraform apply (which applies
the current configuration to a provider).

25.7.2 Learnability

How easy is it to learn Terraform? That depends on what would be considered ‘learning Terraform’.
According to the interviewee, learning to write Terraform’s configuration language is not that difficult.
However, one could also consider learning about infrastructure and cloud services of specific providers as
part of learning Terraform. Including this makes the learning curve steeper. Infrastructure can become very
complicated, especially as it gets larger. Cloud services of specific providers can be very complex, and
working with Terraform to create infrastructure on them does require knowledge of how they work. Also
infrastructure coded with Terraform for provider x, is not interchangeable with code for similar infrastructure
on provider y.

25.7.3 Effectiveness

The goal of Terraform is to provide an easy, cloud-agnostic way to write infrastructure as code (IaC). This
allows infrastructure to be managed and deployed more consistently and allows for faster provisioning of
resources. Also, software development best practice (e.g. use of Git) can be applied to infrastructure and its
development can be viewed over time. These benefits will differ between companies, e.g. companies which
have to spin up the same infrastructure in different situations (for example to create systems for their clients)
will experience way bigger advantages compared to a company which just has to host their relatively simple
webserver.

25.7. USABILITY PERSPECTIVE 641

25.7.3.1 Migration to Terraform

Migrating to Terraform requires at least some employees in an organization to familiarize themselves with
the tool as well as with IaC as a concept. In the previous paragraph it was concluded that it is not necessarily
very difficult to learn how to use Terraform, however this does take up time which might not be available.
Our interviewee estimated this process to take up to a week, however he did have a lot of experience with
infrastructure. If having no experience with infrastructure or infrastructure is not an important part of a
company, learning Terraform may not be a good investment. After learning the tool existing infrastructure
can be imported easily, and the tool is quickly setup.

25.7.3.2 Overhead in using Terraform

Because Terraform allows infrastructure as code, the infrastructure is often managed under version control.
A branch structure and pull requests are often used to collaborate. Along with the benefits this has, it also
introduces some overhead to create all the documentation around the code and changes to the code. Besides
this Terraform does not provide any real overhead.

25.7.3.3 Reliability of Terraform

A major concern in the decision to use Terraform is the reliability of the tool. A created configuration can be
applied many times in exactly the same manner, which is a reliable feature. However, a reliability risk of
Terraform is a state called drift, which is a term for when the real-world state of the infrastructures differs
from the configuration. This cannot be detected automatically, and must be fixed by manually updating the
configuration or infrastructure. Being aware of this responsibility is important when working with any IaC
tool.

Furthermore, Terraform is still quite young: a v1 has not yet been released, and new features are being
added frequently. On the other hand, some big corporations are already using Terraform in large projects so
some battle testing has been done.

25.7.4 Collaboration

One of the biggest selling points of Terraform is being able to work on an infrastructure configuration via
version control with a team of people. This can be done rather easily, as long as the state is stored remotely.
A local state makes collaborating hard, as it should be checked into and pulled from version control with
each change.

The interviewee explained that currently their CI/CD pipeline is in development. At the moment they do
code review via PRs on GitHub, and once merged manually apply the configuration. Automatic unit testing
could be done using TerraTest.

25.7.4.1 Contribute to existing projects

Joining in development of an existing Terraform should not be hard, as long as the configuration has been
set up modularly. This means certain blocks of responsibility in the infrastructure configuration have been

https://github.com/gruntwork-io/terratest

642 CHAPTER 25. TERRAFORM

separated. The Terraform files are self-explanatory for the most part, assuming knowledge of the syntax and
the way cloud infrastructure is orchestrated.

Terraform supplies a graph command, which combined with for example GraphViz’s dot command can
be used to draw a diagram of the Terraform resources according to the configuration files in the current
directory. This visualization can help in getting a feeling for the existing configuration.

$ terraform graph | dot -Tsvg > graph.svg

25.8 Conclusion

Terraform is an interesting Infrastructure-as-Code project with many benefits, e.g. version control in IT
infrastructure management. With the availability of many cloud services, this type of software can become
very important in the future.

We identified the stakeholders and concluded the power lies mainly at HashiCorp and the Terraform core
team. Providers, such as Amazon and Azure, can have an interest, and a fair amount of power. For example,
if an API for a service is not made public yet, Terraform may not be able to call it. We denoted this as them
being on the high side of low power, as this is more of an indirect influence.

In the second chapter, we looked at Terraform in its context. It is written in Go language and uses Fossa and
Travis CI for continuous integration. We saw it is not only used by companies for their infrastructure, but
also by resellers who teach Terraform or configure infrastructure for companies. Terraform collaborates
with various cloud providers and facilitates a few more. It also competes with a few, like CloudFormation
by Amazon. However, it is not real competition as such; these cloud providers will still make money when
people use their resources with Terraform.

In the development view, we looked at interesting details for developers wanting to work with Terraform.
The module structure of Terraform is mostly oriented around the terraform core package. Among these
packages are the provisioners/providers, tfdiags (diagnostics) and plugin. In addition to this, it has packages
like the backend (stores Terraform state) that are not directly linked. Lastly, Terraform has a few external
dependencies such as Hcl2, a toolkit for writing structured configuration languages. We also looked at
guidelines for contributing to Terraform. The developer must sign the CLA and adhere to the community
guidelines. Acceptance tests are required for each new or updated feature.

Looking into Terraform’s technical debt, we found much duplicate code and many code smells. The
technical debt is 29 days for the beta version and 12 for v.0.11.0. It also has very long functions with many
if-statements. The testing debt seemed great, but the tools did not accurately reflect all the tests. Looking
through them manually, there has been quite extensive testing. An interesting discovery we made in the
history of technical debt was that v0.10.0 suddenly had a drastic decrease in technical debt (> 100 days).
This was because Terraform moved to a new plugin system, but it is debatable whether this is a true decrease.

Lastly, we introduce a usability perspective. We looked at what Terraform’s UI is like; it uses a command line
interface. Terraform appears quite easy to learn. However, it does require knowledge about infrastructure
and cloud services, which makes it more difficult. Terraform can be effective as it allows for version control
and faster provisioning of resources. A reliability risk of terraform is a state called drift; when the real-world
infrastructure differs from the configuration. This cannot be detected automatically and must be fixed
manually. A benefit of Terraform is cooperating on infrastructure via version control. This is easy when the
state is stored remotely, a local state makes this almost impossible.

http://www.graphviz.org/

25.9. REFERENCES 643

25.9 References

References in footnotes.

Figure 25.6: Chapter_header

644 CHAPTER 25. TERRAFORM

Chapter 26

Vim

Vim is a text editor most commonly used by system administrators who use it as a command line tool to
edit scripts, texts and code. Vim is highly customizable with multiple shortcuts and commands available. It
is this flexibility that has built its popularity but also the fact that Vim is open source and therefore users
have a big say in the development of the product. Vim was originally created by Bram Moolenaar in an
attempt to recreate an editor he had previously used, VI, and hence the name was born, “VI Improved”, what
became Vim in short. The first release of Vim was in November 1991 making it older than most students in
this course. Vim quickly established itself as a stable and reliable editor and became the editor-of-choice
for system administrators. Despite the arrival of commercial editors such as Microsoft VS, Notepad++ and
many others, Vim still remains popular, especially with the aforementioned system administrators. Bram
still remains the main developer of Vim and due to a broad and active community of developers, updates
are still common with around 30 commits per week on average and a lively mail list discussing potential
changes and improvements.

26.1 Table of content

1. Stakeholder analysis
1.1 Core developers
1.2 Other developers
1.3 Communicators
1.4 Communities
1.5 Competitors
1.6 Managing stakeholders

2. Context view
2.1 System scope and responsibilities
2.2 Context model

3. Merge decision strategy
3.1 Criteria for pull requests to be analyzed
3.2 Information obtained from pull requests
3.3 Theory about the merge decision strategy

645

646 CHAPTER 26. VIM

4. Development view
4.1 Module structure model
4.2 Common design model
4.3 Codeline model

5. Technical debt
5.1 Organisational debt
5.2 Bus factor
5.3 Automated analysis
5.4 Conclusion

6. Evolution perspective
6.1 History of Vim
6.2 Evolution of Vim

7. Conclusion

26.2 1. Stakeholder analysis

A stakeholder in the architecture of a system is an individual, team, organization, or classes thereof, having
an interest in the realization of the system [1]. This paragraph describes the different stakeholders in the
Vim project. The types of stakeholders are based on types defined in the book of Rozanski and Woods [1].
Next to those types, three more types of stakeholders have been defined, namely integrator, sponors and
eco-system enhancers.

26.2.1 1.1 Core developers

26.2.1.1 Bram Moolenaar (@brammool)

Stakeholder type: Acquirer, Developer, Maintainer, Production engineer, Communicator, Integrator
Bram is the author of the open-source project Vim and is actively updating the runtime files for maintenance
purposes. The authorship defined him as the acquirer of this project. More importantly, he is in charge of
adding bug fixes over OS compatibility, platform compatibility and functional inconsistencies, thus he serve
as the maintainer as well. This developer also decides the future roadmap of the development of Vim. Bram
is the integrator, meaning he is the one who in the end decides to merge a pull request (PR) with the master
branche [2].

26.2.1.2 Henk Elbers, Eric Fischer, Dany St-Amant, Roger Knobbe & more

Stakeholder type: Developers, Maintainers, Production engineers
This list of authors (non-exhaustive) lists authors that are production engineers and developers that help
porting Vim from a single platform to Windows, Mac OS and various other operating platforms [3].

http://vimdoc.sourceforge.net/htmldoc/intro.html

26.2. 1. STAKEHOLDER ANALYSIS 647

26.2.2 1.2 Other developers

26.2.2.1 K. Takata & Christian Brabandt (@k-takata, @chrisbra)

Stakeholder type: Assessors, Testers, Developers, Production Engineers, contact person
K. Takata and Christian Brabandt are reviewers for potential merge requests that add functions to Vim or
attempt to fix bugs, thus defined as assessors. They are also members of Vim repository and Vim Github
base. They are also the contact person for user-oriented and developer-oriented queries.

26.2.2.2 Enno (@konfekt)

Stakeholder type: Developer, Tester, Contributor
Enno developed several plugins for Vim and is actively contributing to the core Vim repository by proposing
new features and bug fixes, thus named as testers and contributor.

26.2.2.3 Dominique Pelle (@dpelle)

Stakeholder type: Developer, Assessor, Contributor
Dominique actively contributes to the main Vim codebase by reviewing pull requests, proposing new features
and bug fixes and producing valgrind reports for Vim [4].

26.2.3 1.3 Communicators

26.2.3.1 Dan Sharp and Stefan ‘Sec’ Zehl

Stakeholder type: Communicators
Dan is the active maintainer of the official Vim documentation on Sourceforge. Stefan is the maintainer of
the official website of Vim open-source project.

26.2.4 1.4 Communities

Vim users, developers and sponsors formed various Vim communities that actively contribute to both the
administrative and program development of the Vim project.

26.2.4.1 Vim Github Repository members

Stakeholder type: Support Staff, Developers, Maintainers
The Vim Github Repository is very active with around 30 posts per day. Github Repository members are
users that comment on issues, PRs and assist each other with issues and problems that come up. The same
persons also propose new features and submit PRs for other members to evaluate.

http://vimdoc.sourceforge.net/htmldoc/debug.html#valgrind
http://vimdoc.sourceforge.net
https://www.vim.org/

648 CHAPTER 26. VIM

26.2.4.2 Vim Plugin Developers

Stakeholder type: Eco-system enhancer
Vim Eco-system enhancers are a group of programmers who actively develop and maintain Vim plugins. A
plethora of Vim plugins has been created allowing users to customize their own Vim experience. Some of
those plugin developers are also involved in the development of Vim itself, but all of them depend on the
Vim source code being stable and error free.

26.2.4.3 Sponsors

Stakeholder type: Sponsor
Sponsors (list of Vim sponsor here) are a group of donators who financially support Vim’s development by
donation and they are crucial for the project [5], all the money donated goes to a charity which has been
selected by Bram personally and donations increase his and others’ motivation to continue their efforts on
Vim [6].

26.2.4.4 Vim users

Stakeholder type: User, Tester (if applicable), System Administrator
Vim users use Vim and its components from basic word processing, development operation, software
development and administrations. Vim has a relatively large marketshare in developer communities and
integrated development environment market. Vim constitutes diverse user types, ranging from students and
code learners with a relatively higher learning curve due to the non-graphical user interface and keyboard
shortcuts. Expert users are adjusted and acquainted with the editing and programming style based on their
adaptation to the Vim editor.

26.2.4.5 Google help group

Stakeholder type: Support Staff
A google help group is a collection of users and their discussions on Vim-related issues. Users are encouraged
to ask for help in a Google group. The Google group consists of several mailing lists, of which one is
specifically for discussion on the current development of Vim. Several of the individuals mentioned earlier
are present and active in that group, however so are other individuals who have not been mentioned and
therefore this is considered its own group of stakeholders.

26.2.5 1.5 Competitors

Vim competitors are every text editor or IDE, including Atom, gedit, notepad++ and VS code. However, the
main competitors of Vim are the ones in the same niche - command-line text editors including EMACS and
Nano: * MACS is an extensible, customizable text editor. At its core, Emacs is a Lisp interpreter that just so
happens to support text editing. However, it includes a bunch of plugins that greatly extend its functionality.
* Nano is a text editor for Unix-like computing systems or operating environments using a command line
interface. It is licensed under the GNU General Public License (GPL), thus it is very popular to use in
command-line.

https://www.vim.org/sponsor/hall_of_honour.php
http://vimdoc.sourceforge.net/htmldoc/uganda.html
https://insights.stackoverflow.com/survey/2018/#technology-most-loved-dreaded-and-wanted-platforms

26.2. 1. STAKEHOLDER ANALYSIS 649

26.2.6 1.6 Managing stakeholders

In each project stakeholders have to be managed. To get an overview of the power and interest each
stakeholder has on the realization of Vim a Power-Interest grid can be found in figure 1.

Figure 26.1: PI_grid

Figure 1. Power-Interest diagram for Vim project

The integrator, developers, communicators and GitHub repository members all have very high interest in the
realization of Vim. However, there is only one integrator and thus he has the highest amount of power. The
individual developers also have a very high amount of power, but lower than the integrator. The less active
developers, represented by the GitHub repository members, have less power than the active developers.
The communicators have almost no power on the realization of Vim, but do have some power since they
communicate version release, updates about the development of Vim, etc. The Google help group has a
lot of power, because PRs are discussed here before they are made on GitHub and the Google help group
consist of highly involved developers and thus it has high interest in the realization of Vim.

The plugin developers do not have direct power on the realization of Vim, but also do have some power as
plugins positively influence Vim competitive position. The competitors have more power than the plugin
developers, because they can influence the market share of Vim and competitor’s developments can incite
Vim’s developers to alter Vim. Competitors need to be monitored and plugin developers need to be kept
informed, as they might need to alter the code of their plugins if Vim’s code changes.

Sponsors donate money to Vim, which eventually goes to a charity. They donate money to stimulate the
realization of Vim and are thus interested in the system. Since the donations motivate the (core) developers,
they have some power as well.

Users have almost no power in the realization of Vim, but users stimulate the developers to work on Vim
and thus have a little power. Users do have I high interest though, because they depend on Vim.

650 CHAPTER 26. VIM

26.3 2. Context view

In this paragraph we are going to describe relationships, dependencies, and interactions between the system
(Vim project), its environment and the ecosystem in general. Firstly, the system scope is described, followed
by the context model scheme and a detailed explanation of relationships with external entities.

26.3.1 2.1 System scope and responsibilities

Vim is known as a stable editor and it is continuously developed as an open-source project. Its prominent
features are listed below: * persistent, multi-level undo tree * extensive plugin platform * support for diverse
programming languages and file formats * powerful search and replace features * integrates with many tools
and platforms

26.3.2 2.2 Context model

Figure 2 graphically displays the context view. The different components of the context view are explained
below.

Figure 26.2: context_view

Figure 2. Context view for Vim project

26.3. 2. CONTEXT VIEW 651

26.3.2.1 Support platform

As a text editor that has such a long history, Vim contains an extensive support platform. Most of the docu-
mentation and learning material can be found in vimdoc and on the vim homepage. However, information
can also be found on Sourceforge, StackExchange, Github and even in books.

26.3.2.2 Scripts composition

The Vim project is build with a diverse array of scripting and programming languages. The main coding
languages are Vim scripts and the C programming language, and the rest is supported by ROFF, Makefile
and C++.

26.3.2.3 Managing platform

Vim is managed on three code repository platforms: Github, Sourceforge and Bitbucket. Github is used as a
main platform as it also provides issue tracking and is popular in the developer community [7]. Bitbucket
repository is used as a back-up repository and for those who prefer Bitbucket over Github.

26.3.2.4 Build & test platform

Vim uses Travis CI and AppVeyor as continuous integration tools (different ones for different platforms). It
also uses different tools that help to ensure code quality such as CodeCov, Synopsis and Lgtm. The testing
platforms are integrated into Github workflow and test the code continuously and automatically.

26.3.2.5 Operating platforms

Vim is originally written for text editing purposes in the Amiga operating system. With the increasing
adoption and population of the tool, Vim has been ported to Windows, MsDos, Mac OS, OS/2 and Unix
platforms. Additionally, Vim is available to use even on mobile operating systems including iOS and
Android. Operating system is an external entity since it is the environment for Vim to build, install and run.

26.3.2.6 Software dependencies

Vim is composed mainly in C and Vim script, thus there are basic dependencies that need to be implemented
to ensure the operating stability of Vim editor. On the other hand, some advanced features of Vim require
other dependencies to be implemented to support their functionality. Dependencies are external entity since
it provides support and compatibility service to Vim users. Table 1 provides a list of dependencies required
or optional for Vim.

http://vimdoc.sourceforge.net/
https://www.vim.org/

652 CHAPTER 26. VIM

Dependency name Description Required or optional

Glibc A standard library for the
allocation of C-programming
language to ensure Vim’s
compatibility with hardware
devices

Required

gpm A mouse server for the
command-line environment

Required

libffi A portable foreign function
interface library to reduce time
for calling natively compiled
functions

Required

acl An access control list utilities,
libraries and headers

Required

libgcrypt A general cryptographic library
based on GnuPG code

Required

pcre A library to implement Perl-style
regular expressions

Required

zlib A compression library that
implements deflate compression
methods found in gzip

Required

gtk3 A GObject-based cross-platform
graphic user interface toolkit

Optional

lua A powerful light-weight
programming and scripting
language designed for
application extension

Optional

python A high-level scripting and
programming language to
support advanced Vim
functionalities

Optional

ruby An object-oriented programming
and scripting language for fast
and intuitive code development

Optional

tcl A high-level, general-purpose
scripting language

Optional

Table 1. List of dependencies for Vim

26.3.2.7 Plugins and extensions

Vim can be extended by extensions and plugins created externally by people who are not in Vim’s devel-
opment team. These extensions and plugins enhance, add or alter Vim’s ability to edit, code, compile and
organize files. These extensions include Vim-plug, SpaceVim, NeoBundle and more.

26.4. 3. MERGE DECISION STRATEGY 653

26.3.2.8 Adopters

Vim has been adopted by many companies and organizations due to its popularity in the development circle.
Adopters use Vim to edit, compile or organize their coding and ext-based files, and promote the tool to
internal employees and managerial staff. The adopters include Lyft, Starbucks, CircleCI and more. Adopters
are an external entity since it provides information data and user feedbacks to the developers.

26.4 3. Merge decision strategy

To get an insight into when pull requests (PRs) are accepted or rejected, multiple PRs have been analyzed.
Based on this insight, a theory about the merge decision strategy has been formed.

26.4.1 3.1 Criteria for pull requests to be analyzed

The PRs that have been chosen to be analyzed are relatively new, as they are all proposed in the last two
months. Vim has been around for a long time and since we are interested in the current merge decision
strategy it has been decided to look at relatively new PRs. Other criteria to decide whether a PR would
be analyzed and included is the amount of comments on the PR and the amount of new information about
the merge decision strategy it would offer. To get a complete picture about the merge decision strategy,
approximately the same amount of accepted and rejected pull request have been analyzed.

26.4.2 3.2 Information obtained from pull requests

Often a PR gets accepted by Bram, the integrator, without any explanation and sometimes he comments
“Thanks, I’ll include it”. In a second situation multiple people have a discussion about the PR and decide
either that it can be merged or that the proposer has to alter the PR or someone else has to offer an alternative
PR, and then it can be included. Sometimes Bram is included in those discussions and sometimes he isn’t.
In a third situation Bram himself is not certain on whether to merge the PR and asks others to comment on
the quality of the PR. The fourth possibility for a PR to be accepted is when a PR is proposed and Bram
himself makes an alteration to the PR and includes that.

Of the closed PRs, not a lot are rejected. They might get rejected at first, but if the mentioned alterations are
made, it will be merged. If a PR is rejected, often a discussion between multiple people has taken place. In
other situations, someone other than Bram comments on a PR and the proposer agrees with the comment
and thus closes the PR himself without it being merged. In one situation Bram commented on a PR that he
did not see any added value in merging the PR and thus he did not do so.

One of the mailing lists used is specifically for discussion about the current development of Vim, therefore
often a lot of discussion takes place before a PR is made. This might be a reason why a lot of PRs get
accepted.

654 CHAPTER 26. VIM

26.4.3 3.3 Theory about the merge decision strategy

As there is only one integrator, Bram, he has the final say on whether to merge a PR. But as is stated above,
he does listen to other contributors and even asks for input on whether to include a PR. If multiple people
see the PR as added value for Vim, whether the change is small or of a larger size, the PR will be merged.

In Appendix A a complete overview of the PRs analyzed can be found, including the information obtained
from each of them.

26.5 4. Development view

The development view describes the architecture that supports the software development process [1]. First
the module structure will be discussed, second the common design model and third the codeline model.

26.5.1 4.1 Module structure model

In this section a module structure model, which shows the organization of the source files into modules
that contain related code [1], is discussed. Such a structure provides an overview of the source code which
guides developers to understand and navigate the codebase.

Before diving into the module structure diagram several points should be covered: - The Vim codebase is old,
it contains more than 26 years of code including updates, patches and continuously evolving functionality.
However, the code has never been seriously refactored and is considered to be stable by it’s author and core
developers. - Most of Vim is written in C, which is a low level language. Thus, it is quite hard to follow the
structure of the code.

In figure 3 the core components of Vim may be observed. Each small rectangle represents a logical part of
the software which mostly corresponds to a *.c file with a corresponding header file *.h. Arrows indicate
logical relationships within bigger modules, however, these relations are high level, they help to understand
module interactions and are much more complex in the code. Each bigger square represents a logical
group of multiple modules. Also, keep in mind that this grouping is arbitrary as files in C are not grouped,
packaged or somehow logically separated.

26.5. 4. DEVELOPMENT VIEW 655

Figure 3. Logical components of Vim project

In order to explain logical relationship of components, lets start from the main loop, which is being run in
main module and continue with logical interactions that happen inside of Vim. The main module provides
necessary initialization and gives control to commands group.

Vim operates on several modes. The most used are Normal mode, which executes user commands and
Insert mode, which changes the contents of the file (which is called Buffer in the context of Vim). The
basic idea is that Vim waits for the user to type a character and processes it until another character is needed.
This is provided in module Getchar.

Commands usually change the contents of the Buffer (file, as mentioned above). As Vim is quite an old
text editor, it used to have quite sophisticated file loading to memory strategies, when operational memory
used to be a limiting factor for machines. The logical group called ‘Managing files’ is responsible for
correct file loading to memory, keeping the swap file (in case of the crash) and many other crucial text editor
functionality such as character encoding etc.

Vim is a multiplatform program, and I/O on different platforms are managed differently, thus Buffers use
Platform logical module in order to correctly handle I/O operations on specific platforms.

The most important part of every software application is the functionality it can provide. Vim features
such as Syntax, Spell, Term and others are grouped into Operations block. It contains modules that are
responsible for certain Vim functionalities. This block usually changes Buffer and changes how file is
presented in ‘UI’ level.

The User interface group obviously is responsible for correct visualization of Vim on the screen. Vim
originally is a terminal application, and modules UI and Screen are responsible for representation and
redrawing the terminal. However, separate Vim GUI application was developed over the years and module
GUI covers it’s functionality. Vim commands and operations usually change the screen and trigger the
redraw.

Finally, another important part of Vim is ‘Core’: modules ‘Vim’ and ‘Global’ which are mostly included into
other modules and contain state information and core code, that is being used in many different modules.

656 CHAPTER 26. VIM

26.5.2 4.2 Common design model

A set of design constraints apply in the Vim project to maximize commonality across element implementa-
tions. The common processing and standardization of design is discussed in this paragraph.

• Common processing: Common processing standardization of configuration parameter, interfacing
and internationalization are applied in each module of the Vim project. The standardization of
common processing functions in modular Vim components is accomplished by shared naming scheme,
script coding convention and is enforced by strict version control restriction.

– Internationalization: The internationalization of the Vim software command, menu elements
and internal help documentation are translated into several languages due to its popularity inter-
nationally. Vim’s international translation is managed by a collection of translation communities
per language and per translation location. The coding convention of the translation is unified
within separate modules - translated items are listed in Vim scripting files, and is called by
functions (e.g. menutrans & Langstring) depending on the location of the displayed language
and its functionality.

– Configuration parameters: Vim’s configuration parameters are highly module-dependent and
are stored separately. The editor’s mark-up parameters that determine the syntax for different
language input and the editor’s general configurations are either categorized by the type of
programming language or user’s preferred interface language. For syntax highlights, indentation
type and other programming-related settings, each programming language has a vim script stored
as their parameter sets. For message logging, error & bug reporting and other semantic-related,
application level settings, parameters are different per spoken language.

– Interfacing convention: Vim’s internal interfacing is realized by header file structure in C
scripting language that stores a group of functions and declarations exposed as application
interface for other files and programs. Each source-code file in the project’s src folder include
vim.h and other specific header files to invoke functions internally by header interfacing
mechanism.

• Standardization of design: Unlike most of the hosted application and project on the distributed
version-control system, Vim’s core application development took place before Git and Github became
the industry standard of code hosting. As a result, the design standardization is divided into a legacy
methodology and a modern methodology.

– Traditional design standardization: Vim uses a combination of mailing lists (official and
third-party) in the community and development process. Developer’s mailing list is resort to
Vim contributors and potential developers which offers a platform for discussion of bugs, new
features and development issues. In addition, Vim’s team relies on a Google group for progress
management and issue tracking. Each Google group thread contains a feature / bug description
and Github commit summary, where there are links that direct to the relevant pages.

– Modern adaptation: Aside from Google group and mailing list, due to the popularity and level
of integration of Github, Vim adapted to the version control platform in 2004 where releasing,
issue tracking, code repository, testing and support can be managed in one site. Vim increasingly
started to integrate with Github’s issue tracker and repository. By taking advantage of issue
thread, users can disclose bugs and other technical anomalies to a diversity of developers and
contributors on Github. Issues are addressed, on average, within 2 days and commits will be
enforced with the support in the corresponding thread and its management team.

https://www.vim.org/translations.php
https://github.com/vim/vim/tree/master/runtime/lang
https://github.com/vim/vim/blob/master/nsis/lang/english.nsi
https://github.com/vim/vim/tree/master/runtime/syntax
https://github.com/vim/vim/tree/master/runtime/indent
https://github.com/vim/vim/tree/master/runtime/indent
https://github.com/vim/vim/blob/master/runtime/bugreport.vim
https://github.com/vim/vim/tree/master/src
https://github.com/vim/vim/blob/master/src/vim.h
https://www.vim.org/maillist.php
https://groups.google.com/forum/#!forum/vim_dev
https://github.com/vim/vim
https://github.com/vim/vim/issues
https://github.com/vim/vim/issues

26.5. 4. DEVELOPMENT VIEW 657

– Coding styles:

* Code composition: Vim’s source code is mainly written in C and its configuration param-
eters are written in Vim script. Each source code file is dedicated to a task or a feature,
concatenated with function stacks defined in the header files.

* Debugging convention: Debugging of Vim can be achieved in the editor itself through
the command :Termdebug. Additionally, if the error or bug is time critical or too many
dependencies are involved, the channel logging ch_log can be added in the source code,
and be retrieved by :call ch_logfile for debug reference.

* Documentation: The documentation of each folder and section of the Github repository is
formulated by either Markdown or text format. With readme.md as the main documentation
for that session and possible contributing.md for potential contributions to be submitted
by developers.

26.5.3 4.3 Codeline model

In this section code folder structure, building, releasing, testing and deploying procedures are discussed.
The chapter is structured based on the “Codeline Models” chapter in Rozanski & Woods.

26.5.3.0.1 Folder structure Code folder structure of Vim is defined in table 2.

Folder Description

src C source code, containing mainly loose
unorganized files, but also some code organized
into folders

runtime Vim scripts, that are loaded into vim at runtime
ci Scripts for TravisCI continuous integration
pixmaps Pictures for Vim GUI application
nsis Tool that creates one click installation for

Windows
READMEdir It contains readme files for different platforms
src/po Contains internationalization files (translations

etc.)
src/proto .pro files for generating makefiles for specific

platforms
src/testdir Most tests

Table 2. List of Vim project’s folders and their description

26.5.3.0.2 Building For building code, Vim developers use GNU Make. It ensures that the source code
is compiled in correct order. In order to achieve that, developers create Makefile where the order and
dependencies between multiple source code files are described.

https://github.com/vim/vim/tree/master/src
https://github.com/vim/vim/blob/master/README.md
https://github.com/vim/vim/blob/master/CONTRIBUTING.md

658 CHAPTER 26. VIM

26.5.3.0.3 Testing In terms of testing, the Vim team is using it’s own script called Vimscript. It does not
use any standardized testing frameworks. The desired structure for tests is described in a readme file and
test creators are responsible for following the structure described therein and correctly adding new tests to
the test suite. Some tests use what is called Old Style Test, that style is unofficially deprecated but the
tests are still present.

26.5.3.0.4 Deploying Vim is using TravisCI for continuous integration. It runs tests and builds code for
Linux and Mac environments after each commit (Windows is handled separately). The tool also generates
CodeCov report.

26.6 5. Technical debt

Vim is a very mature project, activity has been mostly steady throughout its 28 years and the core team, lead
by Bram, has also been stable throughout. For the last decade or so Vim has been fairly static, not many new
features have been implemented, there just aren’t many new features left to implement, and so the focus
has been more on improving the smaller things. Unfortunately the git history “only” goes back to 2004 but
based on comments made by Bram and our analysis of the git history it is clear that this shift in focus from
implementing to improving has drastically reduced the technical debt within the code. However a mature
project such as Vim suffers from a different kind of technical debt; organisational debt. Through the years
the team around Vim has developed a certain way of operating and even though this way of operating may
have got Vim to where it is today there are several “organisational smells” that should be considered.

First organisational debt is discussed, second the bus factor, third the automated analysis, fourth the hotspots,
fifth the test coverage and as last a conclusion is provided.

26.6.1 5.1 Organisational debt

The backlog for Vim is quite large and non-centralised. There is a large (6k lines) TODO.txt file with a list
of issues, there is also a backlog in Git and finally there are roughly 800 TODO items in the code itself.
Some of these are connected, for example with git issue numbers, but there is no centralized list of issues
or overview available. Additionally the organization of communications regarding bugs, feature requests
and issues is quite complicated, consisting of a combination of Google Groups, Mailing Lists and Github’s
inbuilt features. This system works well for current members of the community, who are familiar with the
system and know it well, however it is unnecessarily complex. This is typical of many traits in the Vim
community, the complexity is well understood by experienced and prominent members but for newer or less
experienced members it creates a higher barrier of entry reducing.

26.6.2 5.2 Bus factor

The Bus Factor for Vim is 1. If Bram gets hit by a bus the project will suffer greatly. Bram is the sole Git
contributor, by far the most active in commenting on issues and Vim is his creation. Several other members
of the community are also important and, combined, would probably have the knowledge needed to continue
the project but short-term progress would be severely limited

26.6. 5. TECHNICAL DEBT 659

26.6.3 5.3 Automated analysis

According to our analysis conducted with SonarQube Vim receives an A for technical debt, with an estimated
224 days of work required to eliminate the debt. 224 days might seem like a lot but considering there are a
total of 348.000 LoC in the codebase that is not too bad. But in order to get a more focused look we also
analysed the git history using CodeScene. CodeScene is a tool that analyses git commits and indicates which
files change most frequently and thus should be prioritized with regards to technical debt.

26.6.3.1 Hotspots

Using CodeScene we identified 7 critical hotspots which account for 17% of the total LoCs but were edited
in just under 40% of the commits analysed. Based on this we decided to further analyse the technical debt
and code smells found in those 7 classes. As can be seen in table 3 technical debt for each of these classes
seems to be consistent with the size of each class compared to the rest of the project. However we found a
total of 174 functions across these 7 classes whose cognitive complexity was above the 25 recommended
by SonarQube, one of which had a cognitive complexity of 1762 (and an estimated technical debt of more
than 3 days)! In table 3 you can see that the complexity of these functions accounts for a majority of the
technical debt in the hotspot classes and that is not considering other technical debt within these functions.
An informal analysis shows that these complex functions are also the ones that are changed most frequently
so we highly recommend that these functions be simplified where possible. Interested readers can access the
SonarQube analysis here

Class Commits LoC Technical Debt Reducing Complexity

eval.c 421 (8.7%) 8348 (2.4%) 5d 1h (2.3%) 3d 5h
terminal.c 296 (6.1%) 4975 (1.4%) 2d 1h (0.9%) 1d 1h
channel.c 287 (5.9%) 4829 (1.4%) 2d 2h (0.9%) 1d 4h
evalfunc.c 276 (5.7%) 11846 (3.4%) 5d 2h (2.3%) 2d 4h
option.c 226 (4.7%) 10997 (3.2%) 7d 1h (3.2%) 5d 5h
ex_docmd.c 214 (4.4%) 9701 (2.8%) 7d 4h (3.2%) 4d 7h
screen.c 203 (4.2%) 8389 (2.4%) 9d 4h (4.1%) 7d 7h

__________ ___________ _____________ __________________
Total 1923 (39.7%) 59085 (17.0%) 37d 15h (16.8%) 24d 9h

Table 3. List of results from CodeScene and SonarQube

26.6.3.2 Test Coverage

Vim has been using Coveralls to monitor test coverage since 2015 and during that time coverage has gone
up from a steady 58% to just under 80% today. The Vim community is aware of the need for improved
coverage and therefore any PR that reduces test coverage gets flagged, however this does not necessarily
mean that the PR will be rejected. Aside from the level of coverage there does not seem to be much of a
structure to the test suite. Almost all tests are contained in a directory called /src/testdir with only a
few tests contained in subdirectories and while newer tests have names indicative of what is being tested
older tests are simply identified with a number. All of this combined leads to a fairly disorganized test suite

https://sonarcloud.io/dashboard?id=jonbriem_vim

660 CHAPTER 26. VIM

which will continue to grow and become even more disorganized if nothing is done. If the Vim community
is sincere in their goal to improve the test suite this problem needs to be addressed.

26.6.4 5.4 Conclusion

Ultimately Technical Debt is a measurement of the cost of introducing new features or improving old ones.
It is fair to say that in the case of Vim this cost is very low. We estimate that over the last year there have
been on average around 20 new releases every week. An informal analysis shows that the time from when a
bug is reported in Git until it a fix has been released is usually less than a week. For the long-term future of
Vim there are several organisational issues that need to be fixed, these range from simply inconveniencing
new community members to possibly endangering the future of Vim. Vim has gotten to the point where it
will soon be time to consider what happens when core members retire due to old age and new members
need to take their place, before that time comes, Vim will have to have made some changes.

26.7 6. Evolution perspective

The evolution perspective describes all of the possible types of changes that a system may experience during
its lifetime. First a brief history of the development of Vim is provided, second the evolution of Vim is
discussed in which especially the lack of documentation, the context view, development view, technical debt
and competitors are discussed.

26.7.1 6.1 History of Vim

Bram Moolenaar released the first version of Vim in 1991 and continued developing Vim during the years.
An overview of the history of Vim can be found in figure 4 [8].

Figure 4. History of Vim

26.7.2 6.2 Evolution of Vim

Vim is currently in a stable deployed state with a stable core. Vim is highly flexible and many developers
personalize Vim by adding add-ons.
The Developer Survey Results of Stack Overflow of 2018 show that Vim has a market share of around 25%
[9]. Since so many developers are used to the way Vim works and think Vim is sufficient for now, they
probably will not change to another text editor any time soon. But what will happen to Vim in the coming
years when the technical environment changes? We don’t know what technical developments will come or
when they will come, but we can assess how Vim will do in future technical environments.

26.7.2.1 Lack of documentation

One of the main issues for the evolution of Vim will be the lack of documentation. This prevents developers
who do not know a lot about Vim’s code to alter the code and become invested in the project. This small

26.7. 6. EVOLUTION PERSPECTIVE 661

Figure 26.3: History of Vim

preservation of knowledge might become difficult when people move to other projects, memories fade and
the available technical environment changes.

26.7.2.2 Context view

The context view will change in the way that the core developers and other developers might become
different people. Since Bram is currently the only integrator in the project, if he becomes less active it might
happen, that developers will make their own versions of Vim and thus multiple branches of Vim will exist.
Another possibility is that the developers will continue working on this version of Vim, which may or may
not be a copy of the Vim GitHub repository.

26.7.2.3 Development view

The most probable code needing to be altered in new technical environments is the code related to the
operating systems Vim runs on. With new technologies new operating systems will be developed and thus
Vim will have to adjust.

26.7.2.4 Technical debt

Because of the lack of documentation, new developers have a high probability of increasing technical debt.
If Vim remains only the stable core, the technical debt will not change much and will probably continue

662 CHAPTER 26. VIM

being reduced. However, this is reliant on the core continuing its effort, if their effort is diminished technical
debt might increase or development slow down.

26.7.2.5 Competitors

Because of multiple reasons Vim might lose market share in the future. The first reason is because Vim is
mostly written in C and this programming language is becoming less used and learned, because of this less
people will be able to understand and alter Vim’s code. The second reason is because of Vim’s interface,
the current interface offers a lot of possibilities that a developer might want and need, but it looks more
old-fashioned compared to some competitors. The third reason is because of the functions Vim offers, some
developers prefer other functions than the ones Vim offers and thus decide to use a competitor instead of
Vim.

26.8 7. Conclusion

After close to 30 years of existence, Vim is a mature project, set in its ways on knowing exactly what it
wants to be, its community is as active as ever with a considerable crowd participating in discussions every
day. The user group is stable and under the leadership of its creator, Bram Moolenaar, so is the development
community. Despite being created in a world where memory was a serious constraint, the internet didn’t
exist and most of current programming languages and tools such as Github or Java were a distant future,
Vim has managed to adapt to the incredible changes in IT over the last three decades and is as relevant
as ever. Yet certain core elements have not been adapted to more modern views on software architecture,
especially parts of file organization, workflow and communication patterns. Today the main focus of Vim is
to continue to make sure that Vim will be available in as many platforms as possible and maintenance of
current functionality, the team is semi-actively working towards improving things such as test coverage and
documentation. There is no reason to expect anything other than a bright future for Vim.

26.9 References

[1] Rozanski, N., & Woods, E. (2011). Software systems architecture: working with stakeholders using
viewpoints and perspectives. Addison-Wesley.
[2] Gousios, G. (2014). How do project owners use pull requests on Github? Retrieved February 15, 2019,
from http://www.gousios.gr/blog/How-do-project-owners-use-pull-requests-on-Github.html
[3] List of prominent contributors of Vim (2019). Vim’s documentation. http://vimdoc.sourceforge.net/htmldoc/intro.html
[4] Specification of Valgrind check on Vim’s codebase (2019). Vim’s documentation. http://vimdoc.sourceforge.net/htmldoc/debug.html#valgrind
[5] List of prominent Vim’s sponsor (2019). Vim’s documentation. https://www.vim.org/sponsor/hall_of_honour.php
[6] Destination of Vim’s support and sponsorships. Vim’s documentation. http://vimdoc.sourceforge.net/htmldoc/uganda.html
[7] Moolenaar, B. (2019). Vim’s Github repository. https://github.com/vim/vim
[8] Moolenaar, B. (2016). Vim 25 presentation by Bram Moolenaar on 2016 November 2 [Video]. Retrieved
from https://www.youtube.com/watch?v=ayc_qpB-93o&feature=youtu.be
[9] Stack Overflow (2018). StackOverflow’s developer survey results 2018. https://insights.stackoverflow.com/survey/2018/#technology-
most-loved-dreaded-and-wanted-platforms

https://github.com/vim/vim

26.10. APPENDIX A: ANALYSIS OF PULL REQUESTS 663

26.10 Appendix A: Analysis of pull requests

This appendix contains a complete overview of the PRs analyzed for the merge decision strategy, including
the information obtained from each of them. The PRs are grouped into accepted or rejected PRs.

26.10.0.1 Accepted pull requests

Pull request 1:
PR number: 4011
PR name: Large files were needlessly truncated to 2147483647 lines.
Proposer: dpelle
Accepted or rejected: accepted
Problem: A very long file is truncated at 2ˆ31 lines.
Solution: Use LONG_MAX for MAXLNUM.
Comment: There has been some discussion on the PR and multiple people agree on the PR.

Pull request 2:
PR number: 4004
PR name: Fix incorrect ‘mouseshape’ documentation about the defaults
Proposer: ychin
Accepted or rejected: accepted
Comment: Documentation update is committed without comments

Pull request 3:
PR number: 3974
PR name: Scroll over ten times speed in vim.exe
Proposer: ntak
Accepted or rejected: accepted
Problem: When using VTP scroll region isn’t used properly.
Solution: Make better use of the scroll region.
Comment: PR was proposed, Bram asked if others wanted to say whether this was a good idea, one person
said it was, Bram made the commit.

Pull request 4:
PR number: 3969
PR name: Fix a broken verblose messages
Proposer: mattn
Accepted or rejected: accepted
Problem: Message written during startup is truncated.
Solution: Restore message after truncating.
Comment: mattn found a problem, later offered a patch, k-takata offered another patch, they discussed both
patches and k-takata mentions (@) Bram who then committed one of the patches

Pull request 5:
PR number: 3968
PR name: Allow the window to shrink in vim.exe
Proposer: ntak
Accepted or rejected: accepted

664 CHAPTER 26. VIM

Problem:MS-Windows console resizing not handled properly.
Solution: Handle resizing the console better.
Comment: itouen made an issue with number 3611 in November 2018, at that time no comments or commits
were made. The same problem was stated in this PR. ntak states a problem and k-takata and ntak discuss a
possible solution, they agree and the PR is committed by Bram.

Pull request 6:
PR number: 3967
PR name: Add error E982 when ConPTY is not available.
Proposer: h-east
Accepted or rejected: accepted
Problem: No error when requesting ConPTY but it’s not available.
Solution: Add an error message.
Comment: h-east made a PR and this was committed by Bram without any further information

Pull request 7:
PR number: 3954
PR name: Re-enable find_module: it was deprecated, not removed
Proposer: joelfrederico
Accepted or rejected: accepted
Problem: With Python 3.7 “find_module” is not made available.
Solution: Also add “find_module” with Python 3.7.
Comment: joelfrederico mentioned a problem, Bram made a fix and committed this. joelfrederico was very
satisfied.

Pull request 8:
PR number: 3855
PR name: Proposal: Add some system names to feature-list of has()
Proposer: ichizok
Accepted or rejected: First rejected, later accepted
Problem: Not easy to recognize the system Vim runs on.
Solution: Add more items to the features list.
Comment: ichizok made a PR, multiple people commentented, which lead to ichizok altering the PR,
commenting and altering happened multiple times and finally Bram committed the PR.

26.10.0.2 Rejected pull requests:

Pull request 9:
PR number: 3929
PR name: Fix: can add the new value to “a:” dict
Proposer: ichizok
Accepted or rejected: rejected
Comment: ichizok made a PR, multiple people, including Bram, had a discussion on whether it was a good
idea to commit it. They decided it was not a good idea and so it was not committed.

PUll request 10:
PR number: 3946
PR name: Change ‘termwintype’ default to “winpty”

26.10. APPENDIX A: ANALYSIS OF PULL REQUESTS 665

Proposer: h-east
Accepted or rejected: rejected
Comment: h-east made a PR. Someone did not agree with this solution to the problem and proposed another
solution. h-east agreed the other solution is better and closed his own PR.

Pull request 11:
PR number: 3919
PR name: define RESTRICT
Proposer: mattn
Accepted or rejected: rejected
Comment: mattn made a PR, mgedmin commented that the PR was pointless and gave a reason. mattn
closed the PR.

Pull request 12:
PR number: 3867
PR name: Do away with create_cmdidxs.vim and automatically update ex_cmdidxs.h
Proposer: rbtnn
Accepted or rejected: rejected
Comment: rbtnn made a PR, Bram commented that the situation was very rare and the PR would not lead to
a lot more convenience. rbtnn agreed and closed the PR.

Pull request 13:
PR number: 3816
PR name: Add :vsb[uffer]
Proposer: bobrippling
Accepted or rejected: rejected
Comment: bobrippling made a PR, someone commented that the problem he had was solved by a plugin
and thus bobrippling closed the PR.

666 CHAPTER 26. VIM

Chapter 27

Zephyr

By Jure Vidmar, Eghonghon Eigbe, Oxana Oosterlee, Suryansh Sharma

Delft University of Technology, 2019

27.1 Table of contents

1. Introduction

2. Stakeholder Analysis

667

https://www.zephyrproject.org/

668 CHAPTER 27. ZEPHYR

3. Context View

4. Decision Making Process

5. Development View
5.1. Codeline Organization
5.2. Module Organization
5.3. Build Configuration
5.4. Variability Management
5.5. Instrumentation
5.6. Standardization of Design
5.7. Git Workflow

6. Technical Debt
6.1. Communication of Technical Debt
6.2. Automatic Tools for Avoiding Technical Debt
6.3. Automated Analysis
6.4. Evolution Analysis
6.5. Testing Debt

7. Security Perspective
7.1 Threat Model
7.2 Secure Design
7.3 Security Certification

8. Conclusion

9. References

10. Appendix
10.1 Pull Request Analysis
10.2 Key Contact Persons

27.2 1. Introduction

The Zephyr Project is an open source collaboration project hosted by the Linux Foundation. It is a
small, scalable, real-time operating system (RTOS) built for embedded platforms with diverse hardware
architectures. It is aimed at Internet of Things (IoT) devices, which often have stringent resource constraints.
Therefore, the Zephyr Project’s goal is to design a modular operating system that has a small footprint and
low power consumption. Furthermore, it places a high importance on network security to protect devices
connected to the internet from potential harm. Because of its modularity, the software can be developed
easily for different platforms with different specifications. It contains a lot of tools such as sensor and device
drivers and a networking stack to make it easy for developers to fit the software to their specific application.
It is an open-source project that has a large network of contributors, including a number of industry partners,
and the community can evolve the project to support new hardware, developer tools and drivers.

27.3. 2. STAKEHOLDER ANALYSIS 669

27.3 2. Stakeholder Analysis

Different people have different interests in the Zephyr Project. To identify these different stakeholders, an
analysis was done using the stakeholder classes as defined by Rozanski and Woods [1] as a guideline.

Type Description

Acquirers The Zephyr Project is acquired by the Linux Foundation, which provides a legal and
administrative framework for the project. Funding comes from companies that can
become a ‘member’ by paying an annual fee.

Assessors The project’s governing board sets project goals, makes marketing and legal decisions
and oversees the budget.

Developers There is a large community of regular contributors. The core developers are mainly
employees of the member companies. They manage the system and make major
contributions to it. Key developers identified are presented in Table 1 below.

CommunicatorsA community sub-group is responsible for the management and coordination of
community activities and communication. There are weekly group meetings for the
different working groups and committees that are open to the public, except for the
security working group. All user and developer documentation is provided through the
Zephyr Docs page.

Maintainers The technical steering committee sets the direction for the project, sets up new projects,
coordinates releases, enforces development processes and moderates other working
groups within the project. It is chaired by Anas Nashif (Intel). A system of codeowners
exists, in which the core developers of the project are responsible for their parts of the
system and review every code change that affects these parts. One of their main
challenges is maintaining code quality, which is necessary in order to provide secure and
functionally safe, certifiable RTOS.

Suppliers Manufacturers of hardware platforms provide an environment on which the Zephyr
RTOS can be deployed. The Zephyr kernel itself has been derived from Wind River’s
commercial VxWorks Microkernel Profile made for VxWorks. The Linux Foundation
also currently provides some servers and infrastructure to the project.

Support
Staff

An administrative advocacy sub-group focuses on managing public relations, the website
as well as training and materials management and other outreach activities. Technical
support comes directly from the project’s active contributors, who can be contacted
through different communication channels (e.g., Slack).

Testers A Testing Working Group oversees the testing procedure and tools. These tools include
the testing framework available (Ztest) and the Continuous Integration.

Users Zephyr is built for embedded programmers building real-time and connected (IoT)
systems on resource constrained devices. These can be both individual users as well as
commercial organizations that can use the software under the Apache v2.0 License.

Competitors Direct competition comes from other IoT targeted RTOSes, such as Riot OS and ARM
Mbed OS. To a lesser extent it competes with projects as freeRTOS and commercial
OSes such as µC/OS and VxWorks, which provide IoT support as part of a larger system.

External
Regulators

The Zephyr Project is subject to export compliance set by the US Export Administration
Regulations and other U.S. and foreign laws and may not be exported, re-exported or
transferred to a list of countries set by the US government.

https://www.zephyrproject.org/#members
https://www.zephyrproject.org/governance/
https://www.zephyrproject.org/governance/
https://github.com/zephyrproject-rtos/zephyr/wiki/Zephyr-Committee-and-Working-Group-Meetings
https://docs.zephyrproject.org/
https://www.zephyrproject.org/governance/
https://www.zephyrproject.org/governance/
(https://www.zephyrproject.org/governance/)
https://docs.zephyrproject.org/latest/guides/test/ztest.html

670 CHAPTER 27. ZEPHYR

Type Description

Security
Evaluators

One of the distinguishing features of Zephyr is the security it promises. Any changes
that appear to have an impact to the overall security of the system need to be reviewed
by a security expert from the project’s security working group. This working group
consists of employees of the member companies.

Figure 1 shows the most important stakeholders in a power-interest graph. The project’s organisational
bodies clearly have the largest power within the project, where the member companies play a big role in
providing the manpower. These are mainly internal stakeholders. External stakeholders have less power,
and their interest in the project is mainly based on their usage of Zephyr.

Figure 1 - Power-interest graph

Table 1 - Key Contributors to the Zephyr Project

Github ID Affiliation

Contribution (out of
8025 closed pull
requests) Role

@nashif Intel Employee 599 Reviewer, Integrator, Developer

https://github.com/nashif

27.4. 3. CONTEXT VIEW 671

Github ID Affiliation

Contribution (out of
8025 closed pull
requests) Role

@galak Intel Employee 559 Reviewer, Integrator, Developer
@carlescufi Nordic

Semiconductors
Employee

225 Reviewer, Integrator, Developer

@mike-scott Independent 122 Reviewer, Developer
@SebastianBoe Nordic

Semiconductors
Employee

285 Reviewer, Developer

27.4 3. Context view

From the stakeholders discussed in the previous section, it is clear that a lot of internal and external entities
are involved in the Zephyr Project. To provide context on who/what these entities are and how they are
connected, the context view in Figure 2 presents an overview of the most important entities.

The project is well-organised by its host the Linux Foundation. Its governance consists of two main bodies:
a governing board that makes project management decisions and a technical steering committee (TSC)
that manages the development. The TSC chair sits in both boards and provides a link between the two.
Specialized committees such as the security working group fall under the responsibility of the governance.
Members of the boards are provided by the project member companies, who pay a yearly contribution.
The membership is awarded in tiers which are based on the contribution amount. A higher tier means more
influence in the project’s governance.

Zephyr is developed by a community that consists of 400+ contributors. Most of the main contributors are
employed by member companies. For communication Github and the mailing lists are used, and to a lesser
extent the Slack and the IRC chat channel.

As development tools, Zephyr relies mainly on GitHub, using Shippable for Continuous Integration. C is
the predominant language. Documentation can be found on Zephyr’s docs website, and is generated using
both manual written documentation files that are kept in the source directory, as well as using Doxygen for
automatic generation.

Zephyr runs on multiple different architectures, and is ported to a continuously increasing list of 150+
boards. Boards that are supported are for example from manufactures as STM (Nucleo boards), Arduino,
Espressif, NXP and Nordic Semiconductor. Competitors that also provide support for (a subset of) these
platforms are for example Riot OS and ARM Mbed OS. Users can use any of the supported boards in their
project. Commercial users can use Zephyr under the Apache v2.0 license. Current examples of users include
CommSolis, an ultra-low power solutions company for the Internet of Things (IoT) and the Philae and the
accompanying Rosetta Orbiter which landed on Comet Churyumov–Gerasimenko.

https://github.com/galak
https://github.com/carlescufi
https://github.com/mike-scott
https://github.com/SebastianBoe
https://www.zephyrproject.org/governance/
https://www.zephyrproject.org/#members
https://github.com/zephyrproject-rtos/zephyr
https://lists.zephyrproject.org/g/main
https://zephyrproject.slack.com/messages/C18PLHN8H/
irc://irc.freenode.net/zephyrproject
https://docs.zephyrproject.org/latest/contribute/index.html?highlight=continuous%20integration#continuous-integration-ci
https://docs.zephyrproject.org/
https://docs.zephyrproject.org/latest/boards/index.html
https://docs.zephyrproject.org/latest/boards/index.html

672 CHAPTER 27. ZEPHYR

Figure 2 - Context view

27.5 4. Decision Making Process

This section discusses how pull requests are handled within the Zephyr Project. The analysis was done by
first clustering issues into different classes, followed by an analysis on a number of pull requests, which are
listed in the Appendix.

Figure 3 shows the groups of issues, the concerns they address and the stakeholders who influence these
issues the most.

27.5. 4. DECISION MAKING PROCESS 673

Figure 3 - Issue Clusters

27.5.1 4.1 Decision Making Process

When a pull request is made, an automatic tool Codecov analyzes it for code coverage and comments with
the percentage of the code the requested pull attempts to change. The Continuous Integration also performs
different analysis and sanity checks after which it is reviewed by the designated reviewers. Following their
approval or otherwise, a decision is reached by the integrators whether to merge or decline the request. In
the process of making this decision there is an option to request changes from the developer which can
change the decision of a reviewer. There is also a back and forth that gives the developer a chance to justify
or clarify aspects of the request before a decision is made. To merge a request, all the assigned reviewers
must approve the changes made. This process of approval was noted to be influenced by the following
factors: 1. The relevance of the pull request to the project. Not every pull request was a direct response to a
published issue and in cases where they were due to developer initiative, developers had to justify why this
feature or change was required and sometimes how it would affect other components of the project.

2. The extent to which the change alters the project. This is indicated by the Codecov analysis discussed
above but is also sometimes evaluated by developer intuition and experience with the project. A
typical instance is a pull request that attempts to change core kernel functionality like the operating
system scheduler. Such requests are put under more scrutiny than others.

3. Code quality. Usually in terms of following coding style and common practices within the project.

4. Precedence issues. There are cases in which two pull requests overlap in the issues that they solve. In
such cases, a pull request is selected over the other based on the factors discussed above with one
being merged and the other declined.

The flow is shown in Figure 4.

https://github.com/zephyrproject-rtos/zephyr/pull/8051

674 CHAPTER 27. ZEPHYR

Figure 4 - Pull request flow

27.6 5. Development View

The Development View provides an overview for the developer on how the codebase is organized, what
standard design practices are in place, and how the codebase is managed for different build configurations.

27.6.1 5.1 Codeline Organization

The Zephyr Project aims to provide all required building blocks needed to deploy complex IoT applications.
It organizes itself across multiple Git repositories, separating the RTOS code from external libraries and
development tools. This improves modularity, avoids conflicts in licensing and certification, and enables
out-of tree development. Dedicated multi-purpose command line tool called ‘west’ was developed, for easier
managment of repositories and development. Figure 5 shows a typical (west) installation directory structure.

https://docs.zephyrproject.org/latest/guides/west/index.html#west

27.6. 5. DEVELOPMENT VIEW 675

Figure 5 - Zephyr project tree structure

The layout of the base directory which hosts Zephyr’s own source code, its kernel configuration (Kconfig)
options and its build definitions is shown in Figure 6.

https://docs.zephyrproject.org/latest/application/index.html#kconfig-configuration
https://docs.zephyrproject.org/latest/application/index.html#kconfig-configuration

676 CHAPTER 27. ZEPHYR

Figure 6 - Zephyr source directory tree structure

A Zephyr application in its simplest form has the following contents:

Figure 7 - Zephyr app directory tree structure

27.6. 5. DEVELOPMENT VIEW 677

27.6.2 5.2 Module Organization

On an architectural level, the source code can be divided into modules - a collection of code serving a
specific purpose. The modules can be divided into three layers based on how close a module is to the
hardware:

• Kernel Layer: The backbone of the OS. Includes modules for managing low-level processes directly
related to the hardware and scheduling of tasks.

• OS Services Layer: Provides access to all common OS functionalities. The modules in this layer can
be seen as building blocks for designing applications.

• Application Services Layer: Using functionalities provided by the OS services, users can make
applications to implement specific functionalities according to their own project requirements. An
application can be for example reading a sensor and sending the data over Wi-Fi.

In each layer, a module can use modules from the same and each lower-level layer. Figure 8 shows an
overview of the three layers and a subset of the modules in each layer.

Figure 8 - Organization of Modules within the Zephyr source code. Kconfig files are used for managing
variability of different architectures and boards. - note: for clarity only a subset of the modules is listed.

27.6.3 5.3 Build Configuration

The Zephyr build system is application-centric, as applications configure and initiate the build process. The
kernel and application are compiled into a single binary using Zephyr SDK toolchains. Developers can also

678 CHAPTER 27. ZEPHYR

use their own toolchains for compilation, however. CMake build system is used, allowing two different
formats:

• Unix Makefiles
• Ninja

One of the advantages of Zephyr’s distributed configuration system is separation of application-specific
kernel settings from board-specific settings. At build-time, configuration (Kconfig) files from all layers are
combined into a single kernel configuration.

27.6.4 5.4 Variability Management

Variabiity is managed in the project by maintaining board specific code for each platform the operating
system supports. Aplication developers make use of configuration files to specify what versions of code is
compiled for a project. These files are shown in Figure 7 above under prj.conf.

27.6.5 5.5 Instrumentation

For aiding developers in the process of debugging and testing, the Zephyr Project provides the following
standardized tools:

• Debugging - Debugging can be done using the GNU Debugger in QEMU, which is an open-source
machine emulator and virtualization software. When building an application, the build system
automatically generates an ELF file that can be used for debugging purposes.

• Logging - Logging can be done using the Logger API. It provides logging functions with four different
severity levels (error, warning, info and debug) that can be used for debugging RTOS modules. It is
configurable via Kconfig files.

• Testing - The Zephyr Test Framework (Ztest) provides two methods of testing to the developer: unit
testing for testing specific modules and sanitycheck for testing the full software stack. The latter runs
a number of different tests (which can be extended by developers) for different architectures using the
QEMU emulator. On a daily basis, tests are automatically built and run on the whole project codebase
to verify its operation as part of their CI process (using shippable).

runrun pendingpending

27.6.6 5.6 Standardization of Design

The success of Zephyr’s architecture can be attributed to it’s standardization of development. Following the
philosophy of “standing on the shoulders of giants”, the project adopted development patterns and practices
that were proven to work well in the industry:

• Release model - The project’s release model follows the Linux kernel’s model with several adaptations.
Releases are time-based (rather than feature-based), following roughly three-month cycles. Each
release period consists of a merge window, where new features and changes can be added, and a

https://docs.zephyrproject.org/latest/application/index.html?#id4
https://wiki.qemu.org/Main_Page
https://docs.zephyrproject.org/latest/reference/logging/index.html#logger-api
https://github.com/zephyrproject-rtos/zephyr/blob/master/include/logging/log.h
https://docs.zephyrproject.org/latest/guides/test/ztest.html#quick-start-unit-testing
https://docs.zephyrproject.org/latest/guides/test/ztest.html#quick-start-unit-testing
https://docs.zephyrproject.org/latest/contribute/index.html?highlight=shippable#sanitycheck
https://docs.zephyrproject.org/latest/development_process/release_process.html

27.7. 6. TECHNICAL DEBT 679

stabilization phase where only bug fixes and documentation improvements are allowed to be merged
into the master branch.

• Development guidelines - These are also inspired from industry’s senior players. Coding style
follows the Linux Kernel’s style, with minor adaptations. A few examples of code style requirements
are: “every if-else statement needs braces”, “C-99 style of single line comments (// comment) is
not allowed” and “use spaces instead of tabs for aligning comments after declarations”.

• Naming conventions - unlike desktop operating systems, where applications are written in user-
space, Zephyr’s applications are written in kernel-space. To prevent variable naming conflicts in this
shared namespace, kernel developers defined several naming conventions, for example, kernel-specific
functions are prefixed with k_, operations called by Interrupt Service Routines should be prefixed
with isr_ etc. Individual RTOS subsystems can define their own conventions but need to have a
subsystem prefix such as bt_ for Bluetooth stack or net_ for IP stack, etc.

27.6.7 5.7 Git workflow

The Git workflow is well defined and documented, enabling developers to communicate about the code
quality and bugs. This is crucial for resolving and avoiding technical debt, discussed in the next section.
The majority of the communication about the source code is done through GitHub issues, which are used for
reporting bugs as well as proposing features or enhancements. In the latter case, the proposal is expected
to include elaborate description of the problem and the proposed implementation. Before the feature is
agreed upon, developers discuss if the proposal fits into the current architecture and give advice on its
implementation and maintenance. Large changes are discussed within the Technical Steering Committee
meetings.

Commit messages should include relevant information and the developer’s signature to DCO (Developer
Certification of Origin). Each contribution (pull request) is automatically checked by the Continuous
Integration service. Furthermore, each pull request needs to be reviewed by at least two reviewers before
being merged into the master branch.

This open review system works very well for the Zephyr Project, ensuring that no big changes are done to
the source code without having been properly thought through by multiple (core) developers within the
project. Furthermore, having the discussion open to view by anyone adds to the traceability of the code. In
case of a large contribution or issue, the discussion can continue on other communication channels such as
the mailing list and weekly developer calls.

27.7 6. Technical Debt

In this section the performance of the Zephyr Project in regards of technical debt is analyzed. First, we take
a look at what measures are taken now to avoid technical debt. Then, using tools we analyze what the state
of the codebase actually is and how the project evolved over time.

https://docs.zephyrproject.org/latest/contribute/index.html#coding-style
https://github.com/zephyrproject-rtos/zephyr/wiki/Naming-Conventions
https://docs.zephyrproject.org/latest/contribute/index.html#commit-guidelines

680 CHAPTER 27. ZEPHYR

27.7.1 6.1 Communication of Technical Debt

As already mentioned in Git Workflow, Zephyr requires all issues to be tagged properly. This combined
with their extensive communication process is essential to avoid and resolve technical debt. For technical
debt related issues, the following tags are used explicitly:

Figure 9 - Tags used for technical debt-related issues

Issues about improving the quality of the code or refactoring do not have a specific tag and can be found
under enhancement. There exists a tag for this purpose, area::Code Style, but this tag is not used often.
We find that Zephyr developers fix code issues as part of the tightly controlled development process rather
than as an afterthought.

27.7.2 6.2 Automatic Tools for Avoiding Technical Debt

The Zephyr Project uses some automated tools that are run at every pull request as part of the Continuous
Integration. These tools contribute to reducing the risk of (future) technical debt. If a pull request does not
pass the tests all automated tools run, the pull request will not be merged.

Avoiding technical debt related to the source code:

• Codecov - Generates a report on how test coverage of the full project changes with the new pull
request added. A high coverage percentage means a lower testing debt.

• Sanitycheck - Checks if all tests still pass on a range of different board builds.

• Checkpatch - Checks the pull request whether the code complies with the coding style guidelines and
naming conventions.

Avoiding technical debt related to documentation and traceability:

• Gitlint - Checks if a commit message is written according to the commit guidelines. Good commit
messages improve traceability.

• Documentation style check - Checks if added documentation adheres the documentation style guide-
lines.

https://docs.zephyrproject.org/latest/contribute/#coding-style
https://docs.zephyrproject.org/latest/contribute/#commit-guidelines
https://docs.zephyrproject.org/latest/documentation/doc-guidelines.html
https://docs.zephyrproject.org/latest/documentation/doc-guidelines.html

27.7. 6. TECHNICAL DEBT 681

They follow some of the best CI practices as can be seen from their gold badge and this process goes a long
way in avoiding technical debt.

cii best practicescii best practices goldgold

27.7.3 6.3 Automated Analysis

This section presents the results of running the Zephyr repository through Sonarqube, which is an automated
analysis tool for code quality. Results are presented for code reliability, maintainability, duplication,
coverage, complexity and size as these are deemed the most relevant to the project. These metrics are
specifically relevant because of the hard real time use cases of Zephyr (and other RTOSes) which require
predictable and easy to analyze code.

Figure 10 - Sonarqube analysis overview

27.7.3.1 6.3.1 Duplication

The analysis gave a passing grade but raised 3400 code smells. Upon looking into these, it was clear that
they were mostly from duplicated blocks of code. Putting this in context, we are reluctant to brand this a
debt because it has a lot to do with how Zephyr manages variability. The largest contributors to the count are
files from ext, include and build shown in Figure 6. It is an operating system that supports a large variety of
boards and build files are maintained for different boards with multiple boards using the same dependencies.
Upon building an application based on Zephyr, only board-related code is ported to the hardware.

27.7.3.2 6.3.2 Complexity and Size

The code base is 6 million lines of code large, 30% of which are comments. It has a cyclomatic complexity
of 3,299 of which 80% of the independent paths are in the scripts folder which houses the tests and sanity
checks. The cognitive complexity results also bear the same ratio with the bulk of the complexity lying in
the tests. Hence, we conclude that the bulk of code complexity is not in executing core functions of the
operating system but in testing and building. Therefore, this complexity is not transferred to a user that ports
Zephyr to their system and should satisfy hard real time complexity requirements.

27.7.4 6.4 Evolution Analysis

Zephyr was first released in May 2016 and by the time of writing, there are 14 releases. Despite steady and
steep growth of the projects (from only supporting 15 boards in the first release, to 150+ boards in the 1.13
release), technical debt is being avoided rather than cured.

https://bestpractices.coreinfrastructure.org/projects/74
https://www.sonarqube.org/

682 CHAPTER 27. ZEPHYR

Figure 11a - Lines of Code evolution Chart

We analyzed the evolution of Zephyr by inspecting the growth of several components across releases. This
was achieved using the tool cloc, counting the lines of code in selected top-level directories of the project:
kernel, boards, arch, misc, tests, drivers, include, lib, subsys, ext. While C is not an object oriented language,
we adopt terminology from [2] in describing its evolution.

27.7. 6. TECHNICAL DEBT 683

Figure 11b - Evo-

684 CHAPTER 27. ZEPHYR

lution Matrix

The results, shown in Figure 11b, show arch, boards, drivers and tests as ‘supernova’ directories. Test code
is seen to grow with core functionality and this is a good counter-measure against technical debt. We also
observe the misc folder might be a technical debt indicator, as it contains code that does not fit into the
folder organization otherwise. This is however a ‘DayFly’ directory which spiked once and was reduced in
subsequent versions.

Figure 12 - Evolution of external code within the code base

The ext folder, while not a ‘Persisitent’ directory, has grown disproportionately with the rest of the project
as shown in Figure 12. This contains external code integrated into the project and is currently the heaviest
folder by the chosen LOC metric. Code contained is not in sync with changes and upgrades made by the
original developers of these systems and thus, we identify this as technical debt. In the documentation, there
are plans to move such code to separate repositories to keep externally maintained code away from the core
Zephyr code. This will also ensure that such code remains in sync with the original systems.

27.7.5 6.5 Testing Debt

Technical debt in testing was evaluated by providing a measure of how much of the code is exercised in
test scenarios. The Zephyr repository is linked to Codecov, an automated coverage tool that provides such
results whenever continuous integration tests are run. This tool give the statistics as shown in Figure 13.

https://docs.zephyrproject.org/latest/guides/west/repo-tool.html

27.7. 6. TECHNICAL DEBT 685

Figure 13 - Testing coverage chart

As seen in Figure 13, the coverage of tests on the repository has been at 50% over the past 6 months. This
implies that no single day every portion of the code is tested. In Figure 14 below, we show a coverage report
on a recent sanity check. It can be seen that only one directory under arch/ and boards/ was covered in the
test.

Figure 14 - Test Coverage by File

Further investigation into tested aspects of the code show that this deficit exists because in normal use, the
tests only runs for boards marked as default. As such, passing the sanity check only implies that the build
works for a subset of the boards supported by the operating system. This is acknowledged in the docs and
an option to run a more extensive test is provided, i.e., running the sanity check with an --all tag. To fix
the possible loopholes in such a low test coverage, this should be made the default testing scenario.

https://docs.zephyrproject.org/latest/subsystems/test/sanitycheck.html

686 CHAPTER 27. ZEPHYR

27.8 7. Security Perspective

Security is an essential part of the Zephyr ecosystem. Aimed at IoT developers, the RTOS comes with an
assurance of being one of the most secure options for application development. In this section we first
analyze the threat model Zephyr faces followed by an outline of the well defined security process that
Zephyr has adopted while also addressing security compliance requirements. This is mainly divided into
Secure Development, Secure Design and Security Certification.

Figure 15 - Security Components

27.8.1 7.1 Threat Model

It is essential to first discuss an overview of the possible threats in the Zephyr project. Because Zephyr
is an RTOS running on many different platforms and environments, it is susceptible to many different
attack vectors. These can include malicious code submissions to the RTOS itself, exploiting communication
protocol vulnerabilities of the deployed devices, etc. Besides attacks on the networking stack, functional
security also needs to be addressed to prevent malicious or destructive behaviour. All the links shown in
the context view can be a potential source of security risk. The figure below shows a simplified view of
Zephyr’s threat model, including attack vectors, sensitive assets and intentions.

27.8. 7. SECURITY PERSPECTIVE 687

Figure 16 - Simplified Threat Model

27.8.2 7.2 Secure Development and Design

Zephyr provides a range of guidelines, tests and requirements to ensure functional security as well provide
quality assurance. This is achieved by assuring code quality and correctness while additional security
features, such as cryptographic libraries, are being developed as well. The Development process addresses
security concerns by enforcing strict code reviews before any piece of code is merged to the master branch.
This, in combination with static analysis tools ensures bug and backdoor-free software.

Security bugs, issue tracking and management is performed separately using JIRA where there has been
some initial work on the definition of vulnerability categorization and mitigation processes. Security issues
have more stringent reviews before they are closed as non issues (at least another person educated in security
processes need to agree). They require security reviews to be performed by a security architect before
each security-targeted release and each time a security-related module of the Zephyr project is changed. A
security subcommittee has also been formed to develop the security process in more detail.

Secure coding guidelines, written by the security subcommittee are based on several design standards (for
example “The protection of information in computer systems”, by J. H. Saltzer and M. D. Schroeder) and
address essential secure development principles such as: designed system should be simple and small,
process should operate with least privilege necessary, etc.

The security architecture is based on a monolithic design and the Zephyr kernel and all of the applications
are compiled into a single static binary which can be tailored during build-time. This static linking eliminates
the potential for dynamically loading malicious code. It also provides Stack protection mechanisms to
protect against stack overruns. In addition, applications can leverage Thread separation features which split

https://docs.zephyrproject.org/latest/security/security-overview.html#secure-coding-guidelines

688 CHAPTER 27. ZEPHYR

the system into privileged and unprivileged execution environments. Memory protection features enable
partitioning of system resources (memory, peripheral address space, etc) again as a provision for secure
design.

27.8.3 7.3 Security Certification

For certain stakeholders, certification of the code regarding safety and security is critical. Some users can
only use certified software in their products and for developers and acquirers this means that certification
can result in more widespread adoption.

The Zephyr project has announced that they plan to be the first open source RTOS to be (partly) certified. As
certification of large projects is complex and costly, they aim for a step-by-step approach wherein first the
core functionalities shall be certified. This includes the kernel, and some entities of the OS Services (mostly
system services), as indicated in Module Organization. Selecting which parts of the code will be certified,
and how the code needs to be adjusted for certification is the responsibility of the Security Working Group
in collaboration with the Technical Steering Committee.

To make this possible, the release model will be adapted. This process is shown in Figure 17. The certified
code-base will be a branch of the bi-annual long-term stable release (LTS). This branch will only contain
a subset of the code base. This so-called auditable code base will be reviewed and adjusted to comply to
certification standards, and then be submitted for certification. Important fixes for the master branch will be
merged with the LTS and auditable code. The master, LTS and auditable code will be kept in sync, meaning
that fixes for one branch will also be integrated in the other branches. One exception being new features,
which will not be merged into the LTS and auditable code.

Figure 17 - Certification process

With this process, the Zephyr Project makes it possible for the OS to be (partly) certified in the future,
making it more attractive for different types of users including those from industry. The project aims
to acquire the following certifications: MISRA C:2012 (for safety, security, portability and reliability of
embedded systems), IEC 61508 SIL 3 (for safety integrity) and ISO 26262 (for automotive certification).

https://www.zephyrproject.org/zephyr-project-rtos-first-functional-safety-certification-submission-for-an-open-source-real-time-operating-system/

27.9. 8. CONCLUSION 689

27.9 8. Conclusion

Zephyr is one of the most promising open-source RTOSes available today. Despite being a relatively young
player on the RTOS market, it is succesfull due to its well-defined organisational and development structure
while also having a good understanding of what is important for IoT applications. Code quality is maintained
by governing bodies overviewing the development process and reviewing the contributions thouroughly,
which benefits not only Zephyr but also its community of developers.

First, the stakeholders involved in the Zephyr project were presented, showing its internal structure as well
as its relation to the industry. By analyzing Zephyr’s GitHub repository, it was observed that decisions for
merging pull requests are based on experienced code reviewers, decision making bodies and automated
tests. The development process was further analyzed in depth, describing their well-defined and organized
git workflow, coding guidelines and the various tools available for developers. By giving an insight into
the project’s codeline and module organization, it became clear that code modularity is enforced as much
as possible, and variability between different hardware platforms is managed through configuration files.
Evaluating the codebase for technical debt resulted in interesting results and trends. These were mostly
positive thanks to their adoption of good development practices. Lastly, the project was analayzed from a
security perspective, outlining how the project guarantees security despite its open source nature and how
they aim to be the first safety-certified RTOS.

In conclusion, Zephyr could serve as a role model not only for Real-time Operating Systems, but also for
open-source software projects in general. It is a good example of how successful management of open-source
contributions and a well defined and documented architecture can ensure and retain the software’s quality.

27.10 9. References

[1] N. Rozanski and E. Woods, Software Systems Architecture Working with Stakeholders Using Viewpoints
and Perspectives. Addison-Wesley, 2012.
[2] Lanza, Michele, The evolution matrix: Recovering software evolution using software visualization
techniques. Proceedings of the 4th international workshop on principles of software evolution. ACM, 2001.
[3] Icons used in Figure 16 are made by Freepik from Flat Icon

27.11 10. Appendix

27.11.1 10.1 Pull Request Analysis

https://www.freepik.com/
https://www.flaticon.com

690 CHAPTER 27. ZEPHYR

Pull Request Status Summary of Events

Request 1: add
support for the
Arduino Zero and the
SAMD21 series

Merged The aim of this request was to merge code that
provided added support for two boards. These boards
were already listed on the operating system but this
patch fixed issues with board initialization and a few
drivers. The timeline for the merge was 2 months
which spoke to the significance of the request. There
were 7 commits in total with ten changes requested
from the time of request to the time of merge. This
request fits into the larger roadmap plan of supporting
as many boards as possible and this was the
motivation/stakeholder interest. This request generated
147 conversation points and did not produce any code
coverage difference.

Request 2:add
Zephyr inline code
generation with
Python

Closed without
merging

This request was closed without merging. Its aim was
to add the feature of generating in line code. Such a
feature is needed to dynamically configure of board
pins from device tree information and automate
repetitive coding tasks. The larger goal of this is to
enable Zephyr be configured with device tree data.
Discussions arising on this request included:
-Concerns about some material used in the code that
was originally licensed to MIT -Complications arising
from using code generation in line with C code. 211
conversation points were raised in trying to resolve the
issues arising and a decision was made that the project
was not currently ready for such a change.

Request 3: uart: Add
new asynchronous
UART API (Transfer
sub-API)

Merged This pull request lifts the functionality of uart transfer
from the programmer building on this operating
system. Instead of writing direct interrupt handlers for
this functionality, an API call is now used instead.
Discussions on handling full duplex transfers and the
efficiency of response to external events were raised by
different developers. It took 3 months to merge this
and this pull request has been referenced in two other
pull requests that both aim to improve API
functionality. This is directly a feature addition to the
operating system and its impact will be most felt by
users of the operating system.

Request 4: net:
context: can: Fix
typo in Kconfig
option name

Merged This was a high priority bug fix to a typo. The coverage
was minimal and the decision to merge was obvious.

https://github.com/zephyrproject-rtos/zephyr/pull/4774
https://github.com/zephyrproject-rtos/zephyr/pull/4774
https://github.com/zephyrproject-rtos/zephyr/pull/4774
https://github.com/zephyrproject-rtos/zephyr/pull/4774
https://github.com/zephyrproject-rtos/zephyr/pull/6762
https://github.com/zephyrproject-rtos/zephyr/pull/6762
https://github.com/zephyrproject-rtos/zephyr/pull/6762
https://github.com/zephyrproject-rtos/zephyr/pull/6762
https://github.com/zephyrproject-rtos/zephyr/pull/10820
https://github.com/zephyrproject-rtos/zephyr/pull/10820
https://github.com/zephyrproject-rtos/zephyr/pull/10820
https://github.com/zephyrproject-rtos/zephyr/pull/10820
https://github.com/zephyrproject-rtos/zephyr/pull/13363
https://github.com/zephyrproject-rtos/zephyr/pull/13363
https://github.com/zephyrproject-rtos/zephyr/pull/13363
https://github.com/zephyrproject-rtos/zephyr/pull/13363

27.11. 10. APPENDIX 691

Pull Request Status Summary of Events

Request 5: Flash:
Rework STM32F3
flash driver and
configure F3 based
boards for tests

Merged This pull request was to improve board support for a
class of boards who drivers had been lacking updates.
Such commits fit into the project roadmap and as such
there were no discussions into its usefulness. This
qualified as an easy merge.

Request 6: board:
stm32_min_dev:
Add USB support

Open This PR added USB support for a class of boards. This
is still open as it is pending reviews even though it has
passed all tests.

Request 7: Network
logging overhaul

Merged In February 2018, a new logging subsystem was
proposed by @nashif, aiming to improve Zephyr
logging capabilities with virtually no impact on
performance, small memory footprint and user friendly
interface. Few months later, @pizi-nordic provided a
detailed introduction to the topic, high-level overview
of the logger, requirements and some implementation
concerns. As this presented a big overhaul of the
system, the issue was divided on smaller parts and
assigned among several developers. We analyzed the
Networking part of the logger, which was assigned to
@jukkar (Intel employee and member of the Zephyr
project). His pull request re-implements logging parts
of the networking subsystem, to conform to the new
logging API. For better transitioning, both old and new
ways of logging are supported, where the old API will
be deprecated and finally removed in the future. Most
of the discussion consisted of senior developers
reviewing parts of the code. Perhaps the most
noticeable critic is given by @pfalcon, where he points
out the problem of too many commits in a single pull
request, which makes it hard to review. Others
commented on various syntactical inconsistencies,
code clarity and redundant function calls. After many
iterations of commits and reviews and approval of
couple of senior developers, the pull request was
merged into the master branch by @jukkar himself.

Request 8: Bluetooth:
settings: Always
initialize key when
storing Client
Features

Merged A bug in the Bluetooth stack was noticed by @qbicz,
where in certain conditions reading the Bluetooth
configuration could crash the system. This issue was
already fixed in previous release, but appeared again.
Discussion between three developers revealed the
possible source of problem -> new PR was created,
which fixes the mentioned bug. The developer asked
others to review if the changes affect other use cases.
Upon several clarifications of coding decisions with
@Laczen, and two approvals, the fix was merged into
master by @nashif.

https://github.com/zephyrproject-rtos/zephyr/pull/13402
https://github.com/zephyrproject-rtos/zephyr/pull/13402
https://github.com/zephyrproject-rtos/zephyr/pull/13402
https://github.com/zephyrproject-rtos/zephyr/pull/13402
https://github.com/zephyrproject-rtos/zephyr/pull/13402
https://github.com/zephyrproject-rtos/zephyr/pull/13416
https://github.com/zephyrproject-rtos/zephyr/pull/13416
https://github.com/zephyrproject-rtos/zephyr/pull/13416
https://github.com/zephyrproject-rtos/zephyr/pull/8816
https://github.com/zephyrproject-rtos/zephyr/pull/8816
https://github.com/zephyrproject-rtos/zephyr/pull/13620
https://github.com/zephyrproject-rtos/zephyr/pull/13620
https://github.com/zephyrproject-rtos/zephyr/pull/13620
https://github.com/zephyrproject-rtos/zephyr/pull/13620
https://github.com/zephyrproject-rtos/zephyr/pull/13620

692 CHAPTER 27. ZEPHYR

Pull Request Status Summary of Events

Request 9: doc:
Rework
Development Process
section

Merged This PR was filled by @nashif to provide updates on
documentation about the development process of
Zephyr. Despite having a leading role in Zephyr
development, he asked more than three developers to
review his changes. Upon replying to few questions
asking for clarification on certain points, following
comments were mostly about minor typos and style
changes. Every successful update was reviewed again
and only after few iterations of updates-feedback, the
pull request was confirmed by all developers and
merged to master branch. We observe the politeness
and high-level of respect among developers, as most of
the critiques where formed in a polite manner and
started with gratification for the work that was being
done.

Request 10: NVS:
Non Volatile Storage
solution for zephyr

Merged This pull request provided a means to store
configuration details of the operating system in non
volatile memory of the boards and provide some
persistence. The request was merged after changes
were requested to its documentation and commit logs.

Request 11: net:
zstream API to
abstract socket
transport protocols
(e.g. TCP vs TLS)

Closed without
merging

This pull request was targeted at a streaming API for
socket based protocols but was closed without merging
on the basis of its relevance to the project.

Request 12: drivers:
sensors: Add
lsm303dlhc driver

Closed without
merging

This is a case where a pull request was superseded by
another pull request. Both requests were to add
support for a class of sensors in the operating system
and the decision to close without merging was made
not based on code quality or the necessity of the
feature as we saw in other cases but simply because it
was superseded.

Request 13: Gcov:
Enable Code
coverage reporting
over UART

Merged This pull request added a feature to enable users of the
operating system generate code coverage reports over
uart. The discussions leading to its successful merge
focused on use cases and proper documentation of
them for the users.

Request 14: net:
sched: It’s ok to
preempt coop threads
if they’re polling

Closed without
merging

This pull request proposed changes to the scheduling
policy of the operating system. This is a very key
aspect of any real time operating system and as such it
raised a lot of discussion points. Such a change could
alter the core functionality of the system and could
imply deeper scheduling bugs. It was closed without
merging for this reason.

https://github.com/zephyrproject-rtos/zephyr/pull/13530
https://github.com/zephyrproject-rtos/zephyr/pull/13530
https://github.com/zephyrproject-rtos/zephyr/pull/13530
https://github.com/zephyrproject-rtos/zephyr/pull/13530
https://github.com/zephyrproject-rtos/zephyr/pull/6391
https://github.com/zephyrproject-rtos/zephyr/pull/6391
https://github.com/zephyrproject-rtos/zephyr/pull/6391
https://github.com/zephyrproject-rtos/zephyr/pull/5985
https://github.com/zephyrproject-rtos/zephyr/pull/5985
https://github.com/zephyrproject-rtos/zephyr/pull/5985
https://github.com/zephyrproject-rtos/zephyr/pull/5985
https://github.com/zephyrproject-rtos/zephyr/pull/5985
https://github.com/zephyrproject-rtos/zephyr/pull/6420
https://github.com/zephyrproject-rtos/zephyr/pull/6420
https://github.com/zephyrproject-rtos/zephyr/pull/6420
https://github.com/zephyrproject-rtos/zephyr/pull/6441
https://github.com/zephyrproject-rtos/zephyr/pull/9717
https://github.com/zephyrproject-rtos/zephyr/pull/9717
https://github.com/zephyrproject-rtos/zephyr/pull/9717
https://github.com/zephyrproject-rtos/zephyr/pull/9717
https://github.com/zephyrproject-rtos/zephyr/pull/8051
https://github.com/zephyrproject-rtos/zephyr/pull/8051
https://github.com/zephyrproject-rtos/zephyr/pull/8051
https://github.com/zephyrproject-rtos/zephyr/pull/8051

27.11. 10. APPENDIX 693

Pull Request Status Summary of Events

Request 15:
Introduce the west
repository to the
Zephyr Project

Merged The west module(discussed under main isssues) is
managed in a separate repository from the RTOS
components of the project. This pull request
introduced the tool to users and documented its
cloning mechanisms. This would classify as an easy
merge because the need for this documentation was
clear-it is included in the project roadmap to include
such a tool- and as such the only changes requested
were document edits.

Request 16: doc:
west: Document
build system
integration

Closed without
merging

Similar to Request 15, this was a pull request for
documentation on the west module. This time, not to
introduce it to users but proper code documentation of
its operation. This was however not merged but closed
in favor of another pull request that achieved the same
purpose. The combination of these requests paid an
important technical debt.

Request 17: Drop
ARP requests based
on specific scenarios

Merged This was an addition to the networking stack for the
board to drop broadcast or multicast ARP requests as
no single board really replies to such ARPs. This
request was accepted because this is standard
networking practice and was an oversight in the
original implementation. It was however requested to
log the reasons for any dropped packets to avoid
loopholes in the future.

Request 18: power:
Add device idle
power management
support

Open This is an open pull request to provide a power
management framework to suspend devices based on
their idle state. It is still unmerged because of technical
issues with its implementation.

Request 19: cmake:
Introduce a
user-local
configuration file

Closed without
merging

Closed without merging, this pull request aimed to
provide a file for users to configure the operating
system without having to run scripts. This was
determined to remove the flexibility of switching
between different toolchains and tools.

Request 20: Remove
link layer reserve
concept from
network stack

Merged This separates levels 2 and 3 of the network stack as
implemented by the operating system. This change
provided a 68% code coverage difference. Minor
issues were noted and a merge was implemented after
all the tests were passed.

27.11.2 10.2 Key Contact Persons

https://github.com/zephyrproject-rtos/zephyr/pull/11715
https://github.com/zephyrproject-rtos/zephyr/pull/11715
https://github.com/zephyrproject-rtos/zephyr/pull/11715
https://github.com/zephyrproject-rtos/zephyr/pull/11715
https://github.com/zephyrproject-rtos/zephyr/pull/12938
https://github.com/zephyrproject-rtos/zephyr/pull/12938
https://github.com/zephyrproject-rtos/zephyr/pull/12938
https://github.com/zephyrproject-rtos/zephyr/pull/12938
https://github.com/zephyrproject-rtos/zephyr/pull/13067
https://github.com/zephyrproject-rtos/zephyr/pull/11407
https://github.com/zephyrproject-rtos/zephyr/pull/11407
https://github.com/zephyrproject-rtos/zephyr/pull/11407
https://github.com/zephyrproject-rtos/zephyr/pull/12172
https://github.com/zephyrproject-rtos/zephyr/pull/12172
https://github.com/zephyrproject-rtos/zephyr/pull/12172
https://github.com/zephyrproject-rtos/zephyr/pull/12172
https://github.com/zephyrproject-rtos/zephyr/pull/9801
https://github.com/zephyrproject-rtos/zephyr/pull/9801
https://github.com/zephyrproject-rtos/zephyr/pull/9801
https://github.com/zephyrproject-rtos/zephyr/pull/9801
https://github.com/zephyrproject-rtos/zephyr/pull/11374
https://github.com/zephyrproject-rtos/zephyr/pull/11374
https://github.com/zephyrproject-rtos/zephyr/pull/11374
https://github.com/zephyrproject-rtos/zephyr/pull/11374

694 CHAPTER 27. ZEPHYR

Name Email Address Role Contact Made

Brett Preston bpreston @
linuxfoundation.org

Program Manager for
IoT Products at Linux.
Currently assigned to
LF Edge and Zephyr

None yet

Erwan Gouriou erwan.gouriou @
linaro.org

Zephyr codeowner.
Contributor for STM32
boards.

Reached out for
guidance with
submitting pull
requests to the project

Chapter 28

Zulip

28.1 Abstract

Zulip is an open-source team chat application that provides all the benefits of real-time chat, distinguishing
itself by remedying many shortcomings of common team chat applications through intuitive asynchronous
means. The project is one of the larger open-source python projects and has extensive documentation and
tools for programmers to start contributing. This report is an analysis of the architecture of the Zulip project.
An overview of the project is provided by analyzing the project from both technical perspectives, such as the
development process, technical debt and the deployment, as well as more organizational perspectives, such
as the context of the project and the stakeholders involved. We find that the codebase of Zulip is of high
quality overall and the project has a strong community, but there is a high dependence on one person, which
has multiple risks tied to it.

28.2 Table of contents

• 1. Introduction
• 2. Stakeholder View

– 2.1 Rozanski and Woods stakeholders
– 2.2 Other types of stakeholders
– 2.3 Power-interest grid
– 2.4 Integrators
– 2.5 Relevant people
– 2.6 Contact persons
– 2.7 Decision-making process

• 3. Context View
– 3.1 System Scope and Responsibilities
– 3.2 External Entities and Interfaces

* 3.2.1 Users and target audience
* 3.2.2 Competition

695

696 CHAPTER 28. ZULIP

– 3.3 Impact of the System on its Environment
• 4. Development View

– 4.1 Module Structure
* 4.1.1 Back-end
* 4.1.2. Front-end
* 4.1.3. Deployment
* 4.1.4. Integration with external modules and bots

– 4.2 Common Design Model
– 4.3 Development Process

* 4.3.1 Version Control
· 4.3.1.1 Issues
· 4.3.1.2 Pull Requests
· 4.3.1.3 Releases

* 4.3.2 Testing
– 4.4 Documentation and localization

• 5. Deployment View
– 5.1. Concerns

* 5.1.1 Runtime Platform Requirements
* 5.1.2. Third party dependencies
* 5.1.3. Network requirements

– 5.2. Runtime platform model
• 6. Technical Debt

– 6.1. Identification of technical debt
– 6.2. Discussions about technical debt
– 6.3. Evolution of technical debt

* 6.3.1 Evolution of bugs
* 6.3.2 Evolution of code smells

– 6.4. Testing debt
* 6.4.1. JavaScript code coverage
* 6.4.2. Python code coverage

– 6.5. Documentation debt
– 6.6. Impact of technical debt

• 7. Conclusion
• 8. References

28.3 1. Introduction

The concept of using team chats to improve the quality of communication and efficiency of teams within
universities or companies has become increasingly popular in the last decade. The team chat application
that most people have heard of and probably used is called Slack. According to the creators of Zulip,
Slack and other applications following Slack’s conversation model, such as Hipchat or Mattermost, are
unable to provide the means to effectively communicate within organizations 1. Zulip, “The worlds most
productive team chat”, offers an open-source alternative to these applications and attempts to remedy these
shortcomings by focusing on asynchronous communication.

1Why Zulip? Retrieved on 30-3-2019. https://zulipchat.com/why-zulip/

https://slack.com/
https://www.atlassian.com/partnerships/slack
https://mattermost.com/
https://zulipchat.com/
https://zulipchat.com/why-zulip/

28.4. 2. STAKEHOLDER VIEW 697

Zulip is an open-source team chat application. The application was originally created by a small team from
MIT and was acquired by Dropbox while the project was still in private beta. After 1.5 years of not being
in active development, Dropbox decided to release the project as open-source software. Since then, Zulip
steadily gained new contributors and eventually grew to be one of the largest and most active open-source
projects on Github 2. As of march 2019, Zulip has had merged more than 1600 pull requests created by the
community of Zulip contributors, of which about 75 pull requests were merged in the past 3 months 3.

Zulip has a unique structure for their platform, which sets it apart from competitors. They argue that this
structure is more efficient, less messy and has better persistence of information. An organization can create
what is called a realm, which is comparable to a channel in Slack. These realms in turn contain streams
with a list of topics, where a topic is much like an e-mail thread with a title. These topics are used to host
conversations between users, which persist through long time intervals. This allows users to catch up to
older conversations by filtering streams for topics,while still being able to converse in real-time. The figure
below shows what this structure looks like in practice.

This chapter of the Delft Students on Software Architecture book 2019 aims to provide a clear overview of
the Zulip project as a whole, shown from different perspectives. Not only the technical aspects of the project
are highlighted, but also the organizational aspects. First, to understand the role of us as architects in the
system, all the relevant stakeholders are identified and analyzed. Then, to gain a better understanding of the
relationships and interactions in the system, a context view of the project is created. Once those are clear,
we will go into the more technical aspects of the project by analyzing the process of the development of the
project, as well as how to deploy the application. Lastly, we take a look at the technical debt of the project
and finish with concluding remarks.

28.4 2. Stakeholder View

This chapter identifies the different stakeholders of Zulip and the decision-making process of Zulip is
analysed to understand how the leaders of the project try to fulfil the needs of the stakeholders at all times.

28.4.1 2.1 Rozanski and Woods stakeholders

Type Stakeholders Description

Acquirers Zulip team, Dropbox, Kandra
Labs

The main acquirer is the core
Zulip team, who manages the
project. Dropbox acquired the
project when it was still in private
beta and later open-sourced it.
Kandra Labs was founded by the
lead developer of Zulip, Tim
Abbott, to steward and financially
sustain Zulip.

2Zulip History. Retrieved on 23-03-2019. https://zulipchat.com/history/
3Query on the Zulip Github pull requests page. Retrieved on 29-3-2019. https://github.com/zulip/zulip/pulls?page=3&q=is%3Apr+

is%3Aclosed+is%3Amerged&utf8=%E2%9C%93

https://zulip.com/team/
https://zulip.com/team/
https://www.dropbox.com/
https://www.linkedin.com/company/kandra-labs/about/
https://github.com/timabbott
https://github.com/timabbott
https://zulipchat.com/history/
https://github.com/zulip/zulip/pulls?page=3&q=is%3Apr+is%3Aclosed+is%3Amerged&utf8=%E2%9C%93
https://github.com/zulip/zulip/pulls?page=3&q=is%3Apr+is%3Aclosed+is%3Amerged&utf8=%E2%9C%93

698 CHAPTER 28. ZULIP

Type Stakeholders Description

Assessors Zulip team, Tim Abbott The role of assessors is taken by
the Zulip team. They assess
project’s internal quality through
code reviews and discussions. All
merge requests are approved by
Tim Abbott before merging into
master branch.

Communicators Zulip team, Zulip community Most communication with
stakeholders is done through Zulip
community server, GitHub issues
and documentation. Main
participants are the Zulip team
and community.

Developers Zulip team, Zulip community Developers of Zulip come from
the community and everyone who
wants to contribute. The Google
Summer of Code and Google
Code-In also contributed 30+
developers to the project.

Maintainers Zulip team, Zulip community Most of the maintenance is done
through the documentation,
managed by the community. The
development environments are
maintained by the core team.

Production engineers Kandra Labs, Zulip Team One of Kandra Labs products is a
hosted Zulip service. The Zulip
team is responsible for
maintaining the production
on-site.

Suppliers i.e. Oracle, Hashicorp, Kubernetes The project uses a multitude of
available software packages and
programs, which include (but are
not limited to) Virtualbox, Vagrant
and Kubernetes. This makes the
creators of this software supplying
stakeholders.

Support staff Zulip team, Zulip community The community acts as the support
team. User support is provided
through a help center which
includes extensive documentation
and contact e-mail address.

System administrators Zulip team Zulip has a hosted service for chat,
administered by the core team.

https://zulip.readthedocs.io/en/latest/contributing/chat-zulip-org.html
https://zulip.readthedocs.io/en/latest/contributing/chat-zulip-org.html
https://summerofcode.withgoogle.com
https://summerofcode.withgoogle.com
https://codein.withgoogle.com/
https://codein.withgoogle.com/
https://www.virtualbox.org/
https://www.vagrantup.com/
https://kubernetes.io/

28.4. 2. STAKEHOLDER VIEW 699

Type Stakeholders Description

Testers Zulip community Testers are the same group as the
developers. Testing is done by the
community both through software
testing and live testing using the
community Zulip channel.

Users i.e. Akamai, Wikimedia, LevelUp Zulip is used for communication
by other open source projects,
Fortune 500 companies and
various organizations.

28.4.2 2.2 Other types of stakeholders

Type Stakeholders Description

Competitors Slack, Mattermost, others Many companies offer similar services as Zulip.
These parties hold a lot of interest in Zulip as a
direct competitor, but have little to no power over it.

Partners i.e. Hubot, Bitbucket,
MailChimp

Zulip offers integrations for a multitude of existing
applications.

Non-code
contributors

Zulip community Contributing to Zulip is not limited to writing code.
Many members of the Zulip community contribute
by reporting issues of, giving feedback on or
translating the application.

Sponsors USNSF, unnamed sources
of funding

Kandra Labs received a large grant from the US
National Science Foundation, along with additional
sources of funding.

28.4.3 2.3 Power-interest grid

The acquirers and Tim Abott are the owners of the project and have full control of any alternations that
are made to the source code. The community has a lot of interest in the project, which is their reason for
contributing. Users, sponsors and competitors also have high interest in the project, as its quality influences
people’s choice of team chat application. The sponsoring stakeholder is mainly interested in the fact that
their money is being put to good use. Suppliers hold both little interest and power over the project, as their
products do not depend on Zulip, but rather the other way around. Lastly, partners have little interest in
Zulip as their product is standalone and does not depend on Zulip, but hold some power, as one of the main
qualities of Zulip is the integration with these tools.

28.4.4 2.4 Integrators

Zulip has one integrator, Tim Abbott. He reviews every single pull request and decides if a pull request gets
merged. Other members of Zulip also review and provide feedback, but Tim Abbott always makes the final

https://zulip.com/hello/#quote-carousel
https://zulipchat.com/integrations/
https://seedfund.nsf.gov/
https://www.nsf.gov/
https://www.nsf.gov/

700 CHAPTER 28. ZULIP

Figure 28.1: Example of a list of topics within a stream

28.4. 2. STAKEHOLDER VIEW 701

Figure 28.2: Power-grid diagram showing stakeholders involved with Zulip

decision.

Pull-based development model is used mainly for resolving issues and code reviews. Based on pull request
analysis, features being implemented are often already discussed on a different platform. The pull request is
then only used to review code for an already agreed feature.

Main reasons for rejecting/accepting pull requests are code quality/style and test passing. Tim Abbott is
consistent in desired quality code, hence pull requests get merged only if quality code passes test cases.

Common issues that Tim Abbott faces are a high workload, difficult issues that nobody claims and developers
that take a long time to incorporate feedback.

28.4.5 2.5 Relevant people

The leaders of this project are:

• [@Tim Abbott](https://github.com/timabbott): the absolute lead developer of this project.
• [@Rishi Gupta](https://github.com/rishig): focuses on product development.
• [@Steve Howell](https://github.com/showell): a full stack developer.
• [@Greg Price](https://github.com/gnprice): focuses on Zulip for mobile.
• [@Boris Yankov](https://github.com/borisyankov): focuses on Zulip for mobile.
• [@Akash Nimare](https://github.com/akashnimare): focuses on Zulip for desktop.

702 CHAPTER 28. ZULIP

28.4.6 2.6 Contact persons

People that can be contacted on the Zulip channel for developers are: Tim Abbott, Rishi Gupta and Steve
Howell. They are actively responding to (new) developers.

28.4.7 2.7 Decision-making process

The 10 most discussed accepted pull requests and the 10 most discussed rejected pull requests were analysed
to reveal the decision-making process. Pull requests were selected by ordering them by the number of
comments. It ensures that analyzed pull requests are relevant and relatively important.

Every accepted pull request, was only merged after extensive code review and after ensuring tested and
functional quality code. The reasons for accepting the pull requests that we analysed can then be categorized
in one of three ways: 1. It was a necessary bug fix. This was the case for PRs #7522 and #7472. 2. A new
feature (#6012, #2828, #3026, #2688, #2911 and #2738). 3. Updated (or new) docs (#3056 and #2766).

The reasons for rejecting the pull requests that we analysed can also be categorized in one of three ways:
1. The implementation was never finished (#2881, #2771, #749). 2. The code was merged through other
branches/PRs (#2552, #450, #6017 and #769). 3. The code was merged and pushed to master locally (#3923,
#756, #3082).

Many of the analyzed unmerged pull requests were not actually rejected, rather they were merged through
different pull requests/branches or Tim Abbott merged them into master on his local machine and then
pushed this to master. When there is much discussion on a pull request, it has to be deemed important by
lead developers and effort is dedicated to integrate it.

Most discussions on features happen on the Zulip chat channel and not on Github. The discussions on
Github focus mainly on the code quality of a PR. Usually this is a lead developer doing a review of the code
and the creator of the PR implementing this feedback.

Finally, Zulip created its own bot for Github. This bot does numerous things, including adding a tag
indicating the size of a PR and sending a reminder to the creator of a PR when he has not responded to a
review yet.

28.5 3. Context View

The context view of the system describes the relationships, dependencies, and interactions between the
system and its environment 4. This section describes the system’s scope, responsibilities and its external
entities to provide an overview of Zulip’s environment.

4E. Woods, N. Rozanski (2012). Software Systems Architecture: Working with Stakeholders using Viewpoints and Perspectives.
Addison-Wesley.

https://chat.zulip.org/
https://github.com/zulip/zulip/pull/7522
https://github.com/zulip/zulip/pull/7472
https://github.com/zulip/zulip/pull/6012
https://github.com/zulip/zulip/pull/2828
https://github.com/zulip/zulip/pull/3026
https://github.com/zulip/zulip/pull/2688
https://github.com/zulip/zulip/pull/2911
https://github.com/zulip/zulip/pull/2738
https://github.com/zulip/zulip/pull/3056
https://github.com/zulip/zulip/pull/2766
https://github.com/zulip/zulip/pull/2881
https://github.com/zulip/zulip/pull/2771
https://github.com/zulip/zulip/pull/749
https://github.com/zulip/zulip/pull/2552
https://github.com/zulip/zulip/pull/450
https://github.com/zulip/zulip/pull/6017
https://github.com/zulip/zulip/pull/769
https://github.com/zulip/zulip/pull/3923
https://github.com/zulip/zulip/pull/756
https://github.com/zulip/zulip/pull/3082

28.5. 3. CONTEXT VIEW 703

Figure 28.3: Context diagram showing dependencies and related external entities

704 CHAPTER 28. ZULIP

28.5.1 3.1 System Scope and Responsibilities

Zulip is an open source group chat application, and so its main objective is to support various types of
communication between team members 5.

The responsibilities of Zulip consist of:

• Processing messages
• The creation and maintenance of message streams, topics, user registrations and communities
• Provide native apps for Windows, Mac, Linux, iOS, and Android
• Support integration via APIs, webhooks and third-party extensions
• Support bot scripts
• Documented support on hosting Zulip on your own server

Zulip is a platform for communication between project team members, rather than a simple communication
application. Modular design, open source licence and close relation with the community allows Zulip to
grow based on needs of its users and clients. Furthermore, Zulip aims to become a hub for information
management and development process monitoring, by integration with development tools and platforms.

28.5.2 3.2 External Entities and Interfaces

Zulip uses the following tools to manage its project:

• Git: version control
• Github: code hosting and issue tracking
• Readthedocs.io: documentation
• Zulip: community communication

In order to work, Zulip depends on Python 3.x and Django framework. These form basic building blocks
of back-end services and facilitate communication between interconnected components. Back-end servers
utilize Ubuntu and Debian software.

The core of Zulip makes use of widely used web technologies for server hosting, front-end rendering and
communication between internal services.

As described in the context diagram, Zulip integrates with multiple third-party services. By providing
interfaces and APIs for different platforms and programming languages, Zulip encourages the community
to extend the list of available integrations by contributing own implementations. With these integrations
being Zulip’s major selling point, such dependencies on external and uncontrolled interfaces can cause a
drawback. The more services are supported, the more coordination efforts between the integrator maintainer
and service provider are needed.

Zulip has a strong community. From release date (Q3 of 2015) to March 2019, more than 350 people
contributed to the project. A dedicated chat group is hosted to facilitate direct communications with
contributors and users. Zulip also hosts multiple internships to support the community.

5Zulip documentation: Zulip overview. Retrieved on 20-02-2019. https://zulip.readthedocs.io/en/latest/overview/readme.html

https://zulip.readthedocs.io/en/latest/overview/readme.html

28.6. 4. DEVELOPMENT VIEW 705

28.5.2.1 3.2.1 Users and target audience

Zulip targets companies and organizations of any size as their primary users. Main focus at this point is on
programming community, due to heavy integration with platforms and tooling used in this industry. The
audience for Zulip is by no means restricted because of this. With its recent success and growing interest in
the community, new features and integration with less development-oriented tooling will broaden the target
market for Zulip.

28.5.2.2 3.2.2 Competition

As messaging and communication form the basis of the Internet’s functionality, the market for professional
communication platforms is strongly saturated. Slack being the market leader for many years is an obvious
competitor to Zulip, however many other organizations joined in an attempt to provide the functionality Slack
is missing. Multiple open source initiatives offer similar communication experience, while allowing self-
hosting, higher customizability, or providing integration with external tooling. The strongest open-source
competitors are Mattermost and Rocket.Chat.

28.5.3 3.3 Impact of the System on its Environment

Zulip introduces advanced functionality, user-friendliness, open and active community, and levels of
communication management which are lacking in competing products. Because of this, the market will see
certain degree of new dynamics.

Considering the level of Zulip’s integration with many development platforms and tools, these can benefit
from exposure to new users, and consolidating their functionality into communication streams of users. The
unique selling point of Zulip is its integrations with tools, which other products adopt to if they want to
compete.

28.6 4. Development View

This perspective considers the structural design of the project, the development process and configuration
management, as well as various system constraints and standards. The goal is to gain a better understanding
of the architecture supporting the development of Zulip.

28.6.1 4.1 Module Structure

The code structure of Zulip is organized into directories, which broadly represent the components. As can
be noticed in the diagram below, some of the subdirectories contain various assets for related functionality,
without clear separation of asset types. For example, testing code is spread amongst various components, with
additional documentation and scripting resources. This was done to cater for the open-source development
model, and ensure focus on relevant components by assigned developers.

https://mattermost.com/
https://rocket.chat/

706 CHAPTER 28. ZULIP

Figure 28.4: Diagram depicting Zulip’s module structure. A functional categorization for separate pipelines
(back-end, front-end, deployment and miscellaneous) is presented with the directories holding the source
code for the involved modules.

28.6. 4. DEVELOPMENT VIEW 707

28.6.1.1 4.1.1 Back-end

The core of the application consists of classes holding server functionality. These are responsible for user ac-
count creation, management and authentication, message processing, notification system and various queues,
database content management, and handling of Zulip realms, groups and streams. Most of communication
and redirection functionality is also defined here.

Many classes belonging to the core modules are responsible for supplying graphical components with
appropriately formatted and parsed data. Zulip team has also created their own implementation of Markdown
(called ‘Bugdown’) for custom rendering of messages and ensuring only desired content will reach the end
user.

Core library classes are over-saturated with responsibilities and do not provide clear separation of duties. A
good example of it is the ‘actions.py’ module located in the ‘/lib’ directory. The class has over 5500 lines of
code responsible for notification events, realm configuration, user updates, and message processing.

Server-side of the application can be customized according to an organization’s needs through extendable
Django modules. These enable organization-oriented customization of the service, without having to alter
the server code-base.

This layer depends heavily on third-party implementation of server-side software. Django and Tornado
software packages serve most of this module’s functionality and any major change to their APIs will
necessitate a significant amount of migration and maintenance costs.

28.6.1.2 4.1.2. Front-end

The front-end application and various related assets are contained within the ‘/static’ and ‘/templates’
directories. Zulip uses Handlebars templates for live-rendering of interface elements. The front-end is also
capable of validating correctness of rendered messages and confirming this against the back-end server.
Simple user messages are processed locally on the client-side, unless they require advanced validation (e.g.,
in case of source code boxes, or Markdown scripts in a message). This effectively acts as a load-balancer for
rendering tasks.

Due to a lot of custom code in JavaScript and HTML templates, this layer bears many third-party dependen-
cies on npm packages for HTML manipulation, graphics handling and input parsing.

28.6.1.3 4.1.3. Deployment

The Zulip project uses Puppet as their main approach to deployment. Puppet is self-described as “an
automatic way to inspect, deliver, operate and future-proof all of your infrastructure and deliver all of your
applications faster” 6. To run a standard standalone Zulip server, the main Puppet manifest (Puppet programs
are called manifests) called voyager.pp is used to manage all the modules that are needed for an entire Zulip
installation. Lastly, scripts that might need to ran manually, for instance restart-server, are contained in the
scripts module of the repository.

6How Puppet Works. Retrieved on 20-3-2019. https://puppet.com/products/how-puppet-works

https://handlebarsjs.com/
https://puppet.com/products/how-puppet-works

708 CHAPTER 28. ZULIP

Third-party dependencies come from this layer’s heavy reliance on testing suites for front-end (CasperJS and
TravisCI) and back-end (CircleCI). The testing environment also requires an existing Vagrant installation to
run.

28.6.1.4 4.1.4. Integration with external modules and bots

One of the biggest advantages of Zulip over its competition is the ability to integrate the communication ap-
plication with external services and tools. These event-driven integrators and automated bots are extensions,
as they are not part of the main code-base. They react to internal or external triggers by posting messages.
They are special user types, and are maintained in separate repositories.

28.6.2 4.2 Common Design Model

Strict coding style and code review process is in place, to ensure consistency and ease of code-base
understanding, despite multitude of collaborating developers. Event-driven functionality is standardized
through use of RabbitMQ software and specified queueing strategies. Creation of graphical components of
the application is guided by a set of HTML templates to maintain coherent style among all user interface
views. Rendering of messages and many textual elements is done by custom Markdown implementation,
further driving consistent design. A variety of linters and automated code quality verification tools are used,
to safeguard uniformity of coding style and detect most common programming mistakes.

A dedicated chapter in the documentation is devoted to contributors joining the development cycle, describing
style, requirements and constraints on the code quality 7. A tutorial on the process of including a new Zulip
feature is provided 8, explaining the dependencies and most important source code which the developer
should consider, while extending functionality of the application.

28.6.3 4.3 Development Process

While there have been many releases of Zulip, the project is still in active development. With over 40
releases, roughly 500 contributors and more than 500 merged commits in the past month (the month of
February 2019), a solid development process is of great importance.

28.6.3.1 4.3.1 Version Control

Zulip uses Github as the main tool for version control. The conventions that are used on this platform are
described below.

7Zulip documentation: Code contribution guide. Retrieved on 04-04-2019. https://zulip.readthedocs.io/en/latest/contributing/index.
html

8Zulip documentation: Writing a new application feature. Retrieved on 04-04-2019. https://zulip.readthedocs.io/en/latest/tutorials/
new-feature-tutorial.html

https://zulip.readthedocs.io/en/latest/contributing/index.html
https://zulip.readthedocs.io/en/latest/contributing/index.html
https://zulip.readthedocs.io/en/latest/tutorials/new-feature-tutorial.html
https://zulip.readthedocs.io/en/latest/tutorials/new-feature-tutorial.html

28.7. 5. DEPLOYMENT VIEW 709

28.6.3.1.1 4.3.1.1 Issues Any contribution that is made to Zulip is first introduced as an issue, usually
created by one of the members of the core Zulip team. These issues are labelled with descriptions of the
project area that the issue relates to (testing-coverage, production etc.), the status of the issue (in progress,
inactive etc.) and for which kind of developer the issue is fit (e.g. good-first-issue). Zulip employs a bot to
provide possible contributors with information on the issue, such as external references to the issue and tips
for first-time contributors.

28.6.3.1.2 4.3.1.2 Pull Requests Pull requests are the main way for a contributor to receive feedback on
their work on a specific issue. Zulip encourages submitting work-in-progress pull requests as early and often
as possible. This way, they aim to manage expectations of contributors correctly and prevent unfinished
work from being merged.

28.6.3.1.3 4.3.1.3 Releases So far there have been many releases of Zulip. The project adheres to a
checklist that distinguishes between a week before the release, right before the release, during the release
and post-release. Summarizing, these include upgrading dependencies, generating and extensively testing a
release tarball, publishing the new version on external platforms and making announcements and pushing
the release commit to the master branch respectively.

28.6.3.2 4.3.2 Testing

Development package contains a dedicated ‘Vagrant’ environment for easy test deployment. This facilitates
quality of testing results and reduces the configuration time needed by developers for setup.

Additionally, Zulip makes use of continuous integration tools. Two pipelines have been created:

• CircleCI, for running front-end and back-end tests on a variety of Linux distributions,
• TravisCI, for exclusively running end-to-end production installer tests.

28.6.4 4.4 Documentation and localization

Main documentation files are stored in the ‘/docs’ folder, however many text files are scattered around
the project in locations corresponding to what they relate to. This goes in line with the main idea of
compartmentalization by relevance.

Localization assets and main documentation are residing in dedicated directories, together with necessary
scripts and assets for compiling complete documentation.

28.7 5. Deployment View

The deployment view highlights aspects of the system which come to light after it has been built, when it
transitions to live operation 9. According to Rozanski and Woods (2012) this “is useful for any information
system with a required deployment environment that is not immediately obvious to all of the interested

9E. Woods, N. Rozanski (2012). Software Systems Architecture: Working with Stakeholders using Viewpoints and Perspectives.
Addison-Wesley.

710 CHAPTER 28. ZULIP

stakeholders.” In Zulip’s case this view is important for clients that want to host their own Zulip servers,
since they need to know how to do this. This section identifies the key aspects of the deployment of Zulip.

28.7.1 5.1. Concerns

This section discusses the requirements of the runtime platform, third parties that Zulip depends on, and
network requirements. The information in this section is retrieved from the documentation of Zulip 10.

28.7.1.1 5.1.1 Runtime Platform Requirements

Zulip’s server software is designed to run on Linux, supporting versions 16.04 and 18.04 of Ubuntu strain,
and Debian 9. These particular operating systems have no hardware constraints, and this allows Zulip to be
deployed on general purpose computing nodes. Use of a dedicated machine is advised, to avoid version
incompatibility for libraries on which multiple software applications depend. It is possible to install Zulip
on a system with 2GB of RAM, but 4GB of RAM is recommended for an organization with more than 100
users, and for more than 1000 users the server should have 8GB of RAM. The server should have at least
10GB of free disk space.

Zulip uses Postgres as a database engine. It can run on the same machine as the primary server or on a
remote one. A remote database is recommended for isolation. For the database server SSD disks are highly
recommended for faster reading and writing. With 30GB of RAM and 8 cores the database should be able
to scale to 10,000s of active users. File storage can be handled locally, however for scaling purposes and use
of multiple Zulip servers, it is recommended to use Amazon S3 as file storage solution.

Zulip is designed to run behind a reverse proxy server (e.g. Nginx). This can be useful to re-route traffic
and/or can act as an additional security layer. The reverse proxy server can be setup on the same machine as
the primary server. The Zulip server will then never have to be exposed to the public internet.

28.7.1.2 5.1.2. Third party dependencies

The Zulip server software depends on numerous third party dependencies. They include:

• Postgres: required as a database engine.
• Redis: an in-memory data structure store, used for caching.
• Memcached: another caching system.
• RabbitMQ: message-queueing software.
• Django: the actual application server.
• Tornado: a real-time push server, used for events.

28.7.1.3 5.1.3. Network requirements

The server needs to handle incoming HTTPS access (usually over port 443) from the network where the users
reside. Communication over unencrypted channel (HTTP) will be redirected automatically to HTTPS. To

10Zulip documentation: Development environment. Retrieved on 01-04-2019. https://zulip.readthedocs.io/en/latest/development/
index.html

https://zulip.readthedocs.io/en/latest/development/index.html
https://zulip.readthedocs.io/en/latest/development/index.html

28.8. 6. TECHNICAL DEBT 711

facilitate secure communication the server needs an SSL certificate for the domain name it uses. Furthermore,
outgoing HTTP(S) access to the public internet is also required. Finally, outgoing SMTP access to a SMTP
server is necessary for Zulip to send and receive email.

28.7.2 5.2. Runtime platform model

The runtime platform model shows an overview of all systems and nodes that are involved when Zulip
is running. It is a schematic overview of the aforementioned runtime platform requirements, third party
dependencies and network requirements. Parts of the diagram are based on an architectural overview in the
Zulip documentation [10].

28.8 6. Technical Debt

Technical debt reflects the implied cost of additional work that needs to be done in the future caused by
choosing an easy solution now instead of using a better approach that would take longer [11]. This implies
that technical debt is incurred by choice. This section discusses the technical debt of Zulip.

28.8.1 6.1. Identification of technical debt

We used SonarQube to inspect the quality of the code. Bugs, vulnerabilities and code smells can be detected
by automated analysis. Therefore we assume that a developer that wrote such faulty code knew about it
but decided not to fix it. This makes it technical debt. Code duplication is also technical debt, as updating
this code requires changes in multiple places. The following table shows the results of the analysis by
SonarQube.

Programming
language Lines of Code Bugs Vulnerabilities Code smells

Duplicated
code

JavaScript 36,000 18 0 18 0.7%
Python 92,000 3 0 400 1.4%

Overview of the metrics found by SonarQube

Most of the code smells found by SonarQube in the JavaScript code are expressions that always evaluate
to true. These issues are simple to resolve. Manual analysis of the other code smells show that these are
also easily solvable. SonarQube categorizes 6 bugs as “Critical”. All 6 are a function call where the caller
provides one argument too many. This can be solved by removing the redundant argument. SonarQube
estimates that it takes around 5 hours to fix all code smells and bugs related to JavaScript.

For the Python code there are only 3 bugs which does not impose a lot of technical debt. However, there
are many code smells. A lot of the code smells are related to the cognitive complexity of functions and the
number of parameters that functions take. These are issues that require some thought about the architecture
of the code to be resolved, and thus impose a higher technical debt. SonarQube estimates it takes 9 days to
resolve all code smells and bugs. An important note is that the code smells only cover 0.2% of Python code,

https://www.sonarqube.org

712 CHAPTER 28. ZULIP

Figure 28.5: Graph showing an abstraction of a runtime platform model of Zulip’s components.

28.8. 6. TECHNICAL DEBT 713

so the majority of Python code is ‘clean’.

28.8.2 6.2. Discussions about technical debt

We searched for keywords in the code that represent technical debt, namely todo, fixme and hack. These
keywords imply technical debt since it indicates that the author knew the code is not optimal but decided not
to resolve it immediately. The table below shows the amount of these instances.

Language TODO FIXME HACK

JavaScript 135 8 22
Python 262 2 59

The count of different keywords in the codebase

Technical debt in Zulip can also be discussed through issues on Github and/or Zulip’s own chat realm
for developers. However, Zulip does not record technical debt explicitly outside the code. This could be
improved by adding issues with a dedicated label for every piece of code that incurs technical debt.

28.8.3 6.3. Evolution of technical debt

To assess the evolution of technical debt in Zulip we ran SonarQube on multiple previous releases of Zulip.
We picked the following releases: - 1.1.5: the first release on Github, November 2013. - 1.2.0: February
2014, shortly after this there was no development on the project for a long time. - 1.3.0: February 2017. The
first release again after Tim Abbott picked up the project. - 1.4.0: February 2017. - 1.5.0: February 2017. -
1.6.0: June 2017. - 1.7.0: October 2017. - 1.8.0: April 2018. - 1.9.0: November 2018. - 2.0.0: the release
discussed above, which is the current release.

28.8.3.1 6.3.1 Evolution of bugs

Over time the JavaScript codebase grew from 12,000 to 36,000 lines of code (LOC). Despite this growth,
the number of bugs in JavaScript only increased slightly over time. This indicates that the linters and code
reviews are working well to keep the bugs out of the JavaScript code.

The Python codebase grew from 32,000 to 92,000 LOC and also has few bugs currently. There is a big
increase followed by a big decrease in bugs. It is not clear what caused the increase, but the decrease is most
likely caused by the migration to Python 3 in release 1.7.0. A lot of the bugs in the 2 releases before that
were most likely not bugs in older versions of Python, but SonarQube just scans the project assuming it uses
Python 3. Zulip has very little bugs, so it seems that here the linters and code reviews are also working well.

28.8.3.2 6.3.2 Evolution of code smells

In release 1.4.0 there were 57 code smells and in release 1.5.0 7 were left, indicating a big cleanup was done
in between.

https://github.com/zulip/zulip/releases/tag/enterprise-1.1.5
https://github.com/zulip/zulip/releases/tag/enterprise-1.2.0
https://github.com/zulip/zulip/releases/tag/1.3.0
https://github.com/zulip/zulip/releases/tag/1.4.0
https://github.com/zulip/zulip/releases/tag/1.5.0
https://github.com/zulip/zulip/releases/tag/1.6.0
https://github.com/zulip/zulip/releases/tag/1.7.0
https://github.com/zulip/zulip/releases/tag/1.8.0
https://github.com/zulip/zulip/releases/tag/1.9.0
https://github.com/zulip/zulip/releases/tag/2.0.0

714 CHAPTER 28. ZULIP

Figure 28.6: The progression of the number of bugs in the JavaScript and Python code of Zulip, respectively

Figure 28.7: The progression of the number of code smells in the code base of Zulip

28.8. 6. TECHNICAL DEBT 715

As for the Python code the code smells steadily increased over time. It seems that with the addition of so
much code, it is inevitable to get some code smells.

28.8.4 6.4. Testing debt

Zulip uses Codecov to measure code coverage of their Python testing suite. The maintainers have set certain
rules regarding the required test coverage for pull requests to be submitted, to keep testing debt small. The
initial line coverage requirement to run a successful build is low (50%), to allow for quick addition of
features. However when a PR changes a pre-existing source code file, that file must not decrease in test
coverage. This holds for both Python and JavaScript source code.

28.8.4.1 6.4.1. JavaScript code coverage

The coverage output of the JavaScript code is shown below. This was the output after running
./tools/run-js-with-node --coverage.

Directory Statements Branches Functions Lines

static/js 67.17% 59.57% 66.64% 67.15%

Coverage output of JavaScript code

The majority of the JavaScript source files have 100% statement coverage. However some files have very
low coverage, such as subs.js. Most coverage issues are related to user interface interaction, which are
tested using the tool CasperJS. CasperJS performs automated browser testing [12]. It is hard to tell what the
actual code covered by CasperJS is, as only contains assumptions of the structure of the DOM output, and
does not test the intermediate calls in the JavaScript code. Overall the testing debt for JavaScript code is low
as it has high coverage, but it is difficult to measure the debt for the uncovered code.

28.8.4.2 6.4.2. Python code coverage

The overall Python line coverage is 22%, which is a lot lower than the required 50%. The tool test-backend
declares a list of files that do not have proper coverage yet, with an explanation per file, and are not taken
into consideration when calculating the overall coverage. Remarkable is the fact that some major lib files
are included here, while a comment says Major lib files should have 100% coverage as these are
components with many dependants. This results in high testing debt.

28.8.5 6.5. Documentation debt

Another form of technical debt is documentation debt. The code of Zulip is poorly commented which
makes it difficult for new developers to get started on the project. Updating the codebase to have sufficient
comments would be an immense task and therefore imposes a big technical debt on the project.

https://codecov.io/
http://casperjs.org/

716 CHAPTER 28. ZULIP

28.8.6 6.6. Impact of technical debt

The metrics found by SonarQube and the keywords described in section 6.2 show that there is relatively
little technical debt in the codebase of Zulip. The biggest issue is the lack of documentation of the code.
There are few comments in the code which makes it difficult for new developers to start developing. Because
adding comments to the project is such a big task, it will likely never be done.

28.9 7. Conclusion

Zulip is a very active open source project on Github. Every day multiple issues and pull requests are
submitted and features are being added weekly. However, this is a double edged sword, as such activity
poses large challenges in regard to maintenance. Currently Tim Abott, the main developer of the project,
decides for every pull request whether it gets merged or not. Such dependence on one person creates high
risk for a project.

The community of Zulip is very welcoming to new contributors. They provide a Zulip chat channel for new
contributors and a specific label to mark issues to be solveable for new contributors. They set rules on a CI
for code coverage, git usage, static analysis, cross-platform testing and more to keep code quality high.

Overall the codebase of Zulip is of high quality. There is a low amount of code smells and bugs, however it
should contain more comments. The project is under very active development, and has a strong community,
but there is high dependence on one person (Tim Abott) to keep it up-to-date.

28.10 References

	Delft Students on Software Architecture: DESOSA 2019
	Recurring Themes
	First-Hand Experience
	Feedback
	Acknowledgments
	Previous DESOSA editions
	Further Reading
	Copyright, License and Availability

	The Arduino IDE
	Table of Contents
	Introduction
	Stakeholder Analysis
	Context View
	Development View
	Deployment View
	Technical Debt
	Suggestions
	Conclusion
	References
	Appendix

	Cataclysm: Dark Days Ahead (CDDA)
	Table of contents
	Introduction
	Stakeholders
	Context Viewpoint
	Development Viewpoint
	Functional Viewpoint
	Technical Debt
	Conclusion
	Annex A - PR Analysis
	References

	Eclipse Che
	Introduction
	Context View
	Technical Debt
	Development view
	Functional View
	Conclusions
	References

	Cockpit
	Table of Contents
	Introduction
	Stakeholders
	Context View
	Development view
	Deployment View
	Technical Debt
	Conclusion
	References
	Appendix A
	Appendix B

	Django
	Table of Contents
	Introduction
	Stakeholders
	Decision-making process of pull requests
	Context view
	Development view
	Technical debt
	Evolution Perspective
	Conclusion

	Flair
	Table of contents
	Introduction
	Stakeholders
	Context View
	Development View
	Technical Debt
	Functional View
	Performance and scalability perspective
	Conclusion
	Appendix
	References

	Flutter
	Table of contents
	Introduction
	Stakeholders
	Power versus Interest
	Context View
	Development View
	Technical debt
	Operational View
	Conclusion
	References

	Gutenberg
	Table of Contents
	Introduction
	Stakeholders
	Context View
	Development View
	Technical Debt
	Accessibility Perspective
	Conclusion

	Home Assistant
	Table of Contents
	Introduction
	Stakeholders
	Contact persons
	Context View
	Technical Debt
	Development view
	Functional View
	Conclusion
	References
	Appendix

	IPFS
	Contents
	Introduction
	Structure of IPFS Project
	Stakeholders
	Context View
	Technical Debt
	Development View
	CLI Architecture
	Dependency Management
	Testing
	Deployment View
	Conclusion

	Keras: Fast Neural Network Experimentation
	Contents
	Introduction
	Stakeholders
	Context View
	Development View
	Technical Debt
	Deployment view
	Conclusions
	References
	Appendix

	Kotlin
	Table of Contents
	Introduction
	Stakeholders
	Context View
	System Scope
	Pull Request Analysis
	Technical Debt
	Development View
	Contributors Perspective
	Conclusion
	Appendix

	Lila (lichess.org)
	Introduction
	Stakeholder Analysis
	Context View
	Development View
	Technical Debt
	Conclusion
	Appendix
	References / Footnotes

	MAPS.ME
	Table of Contents
	Introduction
	Stakeholders
	Pull Request Analysis
	Integrators
	Context View
	Development view
	Information View
	Technical Debt
	Conclusions
	References
	Appendices

	pandas | Python Data Analysis Library
	Table of Contents
	Introduction
	Stakeholders
	Context View
	Development View
	Performance Perspective
	Technical Debt
	Conclusion
	Appendix A: Core Team
	Appendix B: Suppliers
	Appendix C: Decision making analysis
	Appendix D: Code Coverage
	References

	Poco
	Table of Contents
	Introduction
	Context View
	Pull Request Analysis
	Development View
	Functional View
	Technical Debt
	Conclusion
	Appendices

	Polymer
	Table of Contents
	Introduction
	Stakeholder Analysis
	Context View
	Development view
	Technical debt
	Variability
	Conclusion
	Appendix A - Analyses of pull requests

	PowerShell
	Table of Contents
	Introduction
	Stakeholder Analysis
	Context View
	Development View
	Technical Debt
	Functional Debt
	Conclusion
	References

	PyTorch
	Abstract
	Table of Contents
	Introduction
	Stakeholder Analysis
	Context view
	Development View
	Technical Debt
	Deployment View
	Conclusion
	References
	Appendix

	React Native
	Table of Contents
	Introduction
	Stakeholder Analysis
	Context View
	Development View
	Pull Request Analysis
	Technical Debt
	Architecture of Apps Written in React Native
	Testing and Software Quality
	Conclusion
	Appendices

	SciPy
	Abstract
	Table of Content
	Introduction
	Stakeholder's Analysis
	Power - Interest Analysis
	Integrators
	Context View
	Development view
	Deployment View
	Technical Debt Analysis
	Conclusion
	References
	Appendix B: Codification analysis
	Appendix C: Technical Debt Glossary
	Appendix D

	Servo
	The Parallel Browser Engine Project
	Table of Contents
	Pull Requests
	Stakeholders
	Context View
	Development View
	Concurrency View
	Technical Debt
	Conclusion
	Appendices

	Spring Boot - production-grade Spring-based Applications that you can ``just run''
	Abstract
	Table of Contents
	Introduction
	Stakeholders
	Other stakeholders
	Integrators and Decision-making process
	Power-interest grid
	People to contact
	Context view
	Functional View
	Development View
	Testing and Release Models
	Technical debt
	Testing Debt
	Evolution of technical debt
	Discussions about technical debt
	Possible Improvements
	Conclusions
	Bibliography
	Appendix A
	Appendix B

	Terraform
	Table of Contents
	Abstract
	Stakeholders
	Context View
	Development view
	Technical Debt
	Usability Perspective
	Conclusion
	References

	Vim
	Table of content
	1. Stakeholder analysis
	2. Context view
	3. Merge decision strategy
	4. Development view
	5. Technical debt
	6. Evolution perspective
	7. Conclusion
	References
	Appendix A: Analysis of pull requests

	Zephyr
	Table of contents
	1. Introduction
	2. Stakeholder Analysis
	3. Context view
	4. Decision Making Process
	5. Development View
	6. Technical Debt
	7. Security Perspective
	8. Conclusion
	9. References
	10. Appendix

	Zulip
	Abstract
	Table of contents
	1. Introduction
	2. Stakeholder View
	3. Context View
	4. Development View
	5. Deployment View
	6. Technical Debt
	7. Conclusion
	References

