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Abstract
This research provides an overview on how training
Convolutional Neural Networks (CNNs) on imbal-
anced datasets affect the performance of the CNNs.
Datasets could be imbalanced as a result of several
reasons. There are for example naturally less sam-
ples of rare diseases. Since the network is trained
less on those instances, this might lead to worse
performance on those cases. However, it might be
more crucial to identify those cases properly. Fur-
thermore, it is non-trivial to check whether real-
time generated data is balanced. The networks in
this research are trained on three different types
of synthetic datasets. Balanced datasets, datasets
with missing targets and datasets that have nor-
mally distributed targets. The task of the network is
to find the standard deviation of the pixel intensity
of the input. The results show that it is best to train
the network on balanced datasets, however training
networks on datasets with normally distributed tar-
gets does not result in a big loss. Furthermore, in
this case the CNNs were still able to learn the task
with decent performance if the training set missed
targets.

1 Introduction
For the last decade machine learning has been becoming
more and more popular. This is due to the vast advancement
of state-of-the-art performance on several fundamental com-
puter tasks as a result of machine learning. There are various
machine learning approaches, and deep neural networks are
widely used machine learning techniques [1][2]. Deep learn-
ing algorithms are based on the human brain structure, imitat-
ing how it perceives and handles data. Convolutional Neural
Network (CNN) is a spatial invariant class of deep neural net-
works and it has been proven to be a successful state-of-the-
art algorithm for image recognition [3]. Although CNNs are
popular, they are still widely regarded as black boxes. Treat-
ing these networks as black boxes can lead to unexpected and
possibly unfavorable behavior. There are still various aspects
of these networks that are not well understood, e.g. how train-
ing on different datasets affect the performance of these net-
works.

Real-life datasets could be imbalanced because of various
practical reasons. For instance when training a network for
disease checking, there are naturally less samples of rare dis-
eases available. This might lead to worse performance on
those cases, as the network is less trained on those instances.
Nonetheless, it could be more vital to properly identify those
cases [4]. Furthermore, it is not uncommon to use real-time
generated data in machine learning. It is complex to find out
whether real-time data is balanced. The imbalanced problem
has been studied mostly in the context of classification tasks.
Studies show that training CNNs on imbalanced datasets re-
sult in bad performance for classification tasks [5]. There
are multiple ways to reduce the negative effects of imbal-
anced datasets, e.g., over/down-sampling, feature selection,
cost sensitive learning [6] [4] and cross validation [7]. While
these examples refer to the effect of imbalanced datasets
on CNNs, they solely focus on image classification tasks.
There are studies about what data imbalance in regression en-
tails [8] and how to make those datasets suitable for training
[9][10][11]. However these studies are very generalized, and
not directed towards data imbalance for CNNs with a specific
regression task.

This paper aims to understand the influence of imbalanced
training datasets on the performance of CNNs. The CNNs are
constructed to perform a regression task, meaning that they
take images as input and return continuous values as outputs.
In this research the regression task the networks have to per-
form is finding the standard deviation of the pixel intensities
of the input image. Synthetic datasets with controlled dis-
tinct target distributions were used to train, validate and test
the network. The datasets are either balanced, missing targets
or have normally distributed targets. A baseline was used to
put the performance of the networks in context. By gaining a
better understanding of how and why the distributions of tar-
gets impact the performance of a CNN, the importance of the
target distribution is established.

From the experiments can be derived that the networks
trained on balanced datasets have the best performance.
While the networks trained on datasets with normally dis-
tributed targets had a lower performance, they still performed
quite well. The networks trained on datasets with missing tar-
gets were able to perform decently, however the performance
was inferior to that of the other networks.

The organization of this paper is as follows. Section 2
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elaborates on the research question and the relevance of it.
Furthermore, it introduces a hypothesis of the research ques-
tion. In section 3 a detailed desciption of the method is given.
It includes a description of the convolutional neural network
and datasets considered in this research. Additionally, an
overview is provided regarding the training method and the
performance metrics. The experiments and their results are
shown in section 4. These results are then discussed and com-
pared to the results of related work in section 5. A reflection
of reproducability of this research is given in section 6. Fi-
nally, the research is concluded in section 7.

2 Imbalanced Regression Problems
The research question of this paper is as follows: ”How
do imbalanced training datasets affect the performance of
CNNs?”. The networks were trained to predict the standard
deviation of the input images. An imbalanced dataset is de-
fined as a dataset that has either a non-uniform distribution of
the target domain, or poorly presents part of the range com-
pared to the test dataset [9].

2.1 Subquestions
In order to achieve an answer to the research question, it has
been divided into subquestions.
The first question answers how a network trained on a bal-
anced dataset performs on a balanced dataset. The results of
this question can be used to put the performance of networks
trained on imbalanced datasets into perspective.
How well a network trained on a dataset with missing targets
performs is researched in the second question.
The third research question pursues to answer how a net-
work trained on a dataset with a normal target distribution
performs. The dataset with normally distributed targets is im-
balanced as the test dataset has a uniform target distribution.
With the results of these sub-questions, the main research
question was answered.

2.2 Hypothesis
By looking at the performance of networks trained on imbal-
anced datasets for classification tasks, it can be expected that
networks trained on balanced datasets generally perform sig-
nificantly better than networks trained on imbalanced datasets
[5]. Studies about regression networks trained on imbalanced
datasets further support this claim [9][10][8][11]. It is uncer-
tain whether this claim holds for this research, as these studies
used different imbalanced datasets and networks, furthermore
the tasks the networks had to perform in those studies is also
different.

3 Methods
In this section detailed descriptions of the methods are given.
In subsection 3.1 an overview of the convolutional neural net-
work is presented. The datasets considered in this research,
with information on how they are synthesized is outlined in
subsection 3.3. Additionally, in subsection 3.2 a discussion
is provided regarding the hyperparameters. Finally, the opti-
mizer and the performance metrics are presented in subsec-
tion 3.4.

3.1 Convolutional Neural Networks
Implemented Network
The network used in this research has been constructed based
on an article[12] using Python. The base network was then
further adjusted to make it suitable for the regression task
and images that are used in this paper. A visualisation of
the network can be found in Figure 1. In the figure can be
seen that the network has two 2D convolutional layers, both
have a filter size of 5. The convolutional layers are followed
by two fully-connected/linear layers. The activation functions
are rectified linear units (ReLUs), these were chosen as ReLU
has high speed and accuracy [13]. Furthermore, two dropout
layers are used for regularization [14]. The network also has
two average-based pooling layers to reduce the computational
load. It was decided to keep the network fairly shallow, as
shallow networks have been proven to give a good perfor-
mance [15], furthermore this will also keep the research less
convoluted. The code of the network can be found in the Git-
Lab repository [16].

Figure 1: Visualisation of the used network with the format
(depth)@(width)x(height)

Network task
The task of the network is to find the standard deviation of
the pixel intensity of the input. Therefore the targets of the
datasamples are their standard deviations. The formula for
standard deviation is:

std =

√√√√ 1

N

N∑
i=1

(pixeli −mean)2

N = Size of the image
pixeli = Intensity of pixel i of the image
mean = The mean of the pixel intensity of the image

3.2 Hyper parameters
During the training of the networks several hyper parameters
needed to be configured. One of these parameters is the batch
size. For a good trade-off between train speed and fluctuation
sensitivity of the network, a batch size of 50 was chosen.
Another hyper parameter is the number of epochs. The num-
ber of epochs has been chosen to be 15, as the validation loss
seemed to converge before that. Furthermore, by increasing
the epochs the validation loss occasionally diverged.
The learning rate is another hyper parameter that can be



tweaked. During tweaking with the validation sets, a learning
rate of 5 · 10−7 was observed to be the most effective value.
By using a larger learning rate, the model learned faster, at
the cost of converging on a sub-optimal validation error. By
using a smaller learning rate than the chosen learning rate the
training error finalised at a lower value, however the valida-
tion error was higher. This is an indication of overfitting. A
significantly lower learning rate caused the loss never to con-
verge. An important remark is that the hyperparameters were
tweaked concurrently, as they are interdependent.

3.3 Datasets
In this research three different target distributions are con-
sidered. The used datasets are all synthetic and created for
this specific research. There has been chosen for synthetic
datasets as for those, it is easier to reason about the results.
In addition, by using synthetic datasets it was easier to make
small alterations and change parameters to satisfy the needs
of the research. As mentioned in the introduction the datasets
are tailored for the standard deviation predicting task. There-
fore, the images in the datasets are distinguishable by their
standard deviation. Furthermore, the datasets can be identi-
fied by the range and distribution of the standard deviations
(note that these are also the targets) of the samples in the
datasets. Every dataset has a training, validation and test set.
For the training sets, a sample size of 50,000 was chosen. The
validation set and test sets all have a sample size of 5,000.

Samples
For every dataset, the samples have been drawn from an
N(0, std2) distribution. This std (standard deviation) is
generated from a distribution dependant on the dataset the
sample is in. Here the assumption is made that the mean
of the images do not affect the relative performances of
the trained networks as all the images are drawn from
distributions with zero means. Therefore we can identify the
datasets solely on their distribution of targets. The images are
all 52 by 52 pixels. Visual representations of a few samples
are shown in Figure 2. The most important thing to note from
this figure is the variation in the images which correlates to
the standard deviation of the image.

Figure 2: Visualisation of N(0, 22) and N(0, 102) data samples

U(1, 10) dataset
The first dataset has a U(1, 10) target distribution, this im-
plies that the targets of all the images in the dataset are con-
tinuous values between 1 and 10, uniformly distributed. A vi-
sualisation of the target distribution can be found in Figure 3.
This dataset is used as the balanced and reference dataset as
the targets of the images are equally distributed in the full
range that is considered.

U(1, 5) dataset
The second dataset has a U(1, 5) target distribution, this can
be seen in Figure 3. The targets are, similar to the targets of
the reference dataset, uniformly distributed and continuous.
However, the range of targets in this dataset is from 1 to 5,
while the reference dataset (the dataset with a U(1, 10) target
distribution) has targets between 1 and 10. Therefore, this
dataset is imbalanced as it is missing targets.

N(5.5, 1) dataset
The last dataset has a normal target distribution, with a 5.5
mean and 1 as standard deviation → N(5.5, 1). A visualisa-
tion of this dataset can be found in Figure 3. Since the dataset
has normally distributed targets, while the reference dataset
has uniformly distributed targets, this dataset is imbalanced.

Figure 3: A graph of the target distributions per dataset

3.4 Performance
Optimizer
The optimizer updates the network properly based on the
training results. This is done by adjusting the internal net-
work parameters in response to the loss function output. The
Adam optimizer was chosen, as it generally has a good per-
formance [17] [18].

Loss Function
There are several metrics that can be used to measure the per-
formance of a CNN, this is generally calculated with a loss
function. The loss function is a function that maps the ex-
pected and actual outputs of a network onto a number that
represents the loss associated with the task. To optimize the
performance, the loss needs to be minimized. During training
the optimizer uses the outcome of the loss function to adjust



the network in a favourable manner, therefore it is important
to select the proper loss function. The network from the ar-
ticle uses the negative log likelihood, however according to
studies MSE performs better and is the most common loss
function for regression tasks [19]. The formula for MSE is:

MSE =
1

N

N∑
i=1

(predictedi − actuali)
2

N = Size of the dataset
i = Sample of the dataset
predictedi = The value predicted by the network of

sample i
actuali = The target of sample i

Furthermore, the percentage loss is used to account for the
difference in scales between the datasets. The formula for
percentage loss is:

percLoss =
1

N

N∑
i=1

(
predictedi − actuali

actuali
)× 100%

(see the legend of MSE for variable explanations)

Baseline
The reference datasets have uniformly distributed target in
the range [1, 10). Therefore the baseline randomly guesses a
continuous number between 1 and 10. The baseline is used to
compare the performances of the trained networks. Networks
that perform better than the baseline are considered as having
a good performance.

4 Results

Every experiment has been done 10 times for generaliza-
tion and reduction of the influence of random and measure-
ment errors. The first three experiments examine the perfor-
mance on the reference dataset (dataset with the U(1, 10) tar-
get distribution) per network. Then, the aggregated results of
the first three experiments are shown to compare the perfor-
mances of the networks on the reference dataset. Lastly, the
performances of every network on all the target distributions
are shown. From this can be concluded which test distribution
gives the best performance generally.

4.1 Performance of networks trained on balanced
datasets

To answer this question, networks were trained on datasets
with a U(1, 10) target distribution, and then tested on datasets
with U(1, 10) distributions. Since the train and test sets both
have the same target distributions, this is seen as balanced. In
Figure 4 and Table 1 can be seen that the network performs
significantly better than the baseline, as the MSE and percent-
age loss are lower.

Figure 4: The performances of networks trained on datasets with a
U(1, 10) target distribution, tested on U(1, 10) target distributions

Table 1: The performances of networks trained on datasets with a
U(1, 10) target distribution, tested on U(1, 10) target distributions

4.2 Performance of networks trained on datasets
with missing targets

For this question, the networks were trained on datasets with
a U(1, 5) target distribution. The networks were then tested
on datasets with a U(1, 10) target distribution. The results of
this were compared to the baseline and the performance of the
networks tested on datasets with a U(1, 5) target distribution.
From Figure 5 can be derived that the network outperforms
the baseline by a large margin. Furthermore, the network per-
forms better on datasets with the same target distribution as it
was trained on. We can see that in Table 2, as the test perfor-
mance on the U(1, 5) datasets is higher than on the U(1, 10)
datasets.

Figure 5: The performances of networks trained on datasets with a
U(1, 5) target distribution



Table 2: The performances of networks trained on datasets with a
U(1, 5) target distribution

4.3 Performance of networks trained on normally
distributed targets and tested on datasets with
uniformly distributed targets

The networks that were used for answering this question were
trained on datasets with a N(5.5, 1) target distribution. These
networks were then tested on datasets with a U(1, 10) target
distribution. To put the performance into perspective, the re-
sults also contain the performance of the networks on datasets
with a N(5.5, 1) target distribution and the performance of
the baseline. The networks performed better than the base-
line, as can be seen in Figure 6. By only looking at the MSE
one would conclude that the networks are performing better
on the datasets with the N(5.5, 1) target distribution. How-
ever since the percentage loss is seemingly equal, the differ-
ence in MSE mostly comes from imagines in the U(1, 10)
distribution having higher pixel intensities.

Figure 6: The performances of networks trained on datasets with a
N(5.5, 1) target distribution

Table 3: The performances of networks trained on datasets with a
N(5.5, 1) target distribution

4.4 Comparison of the performance of the
networks trained on different target
distributions

This question is divided into two experiments. For the first
experiment the networks have been trained on all the target
distributions and tested on the reference datasets. To com-
pare the performances of the networks more easily, the re-
sults have then been aggregated per training distribution in
Figure 7 and Table 4. From this can be seen that all the net-
works perform relatively well compared to the baseline. The
networks trained on the datasets with the U(1, 10) distribu-
tion gave the best performance. This was expected, as the
test and train datasets had the same target distributions. The
second best performing network group was the group trained
on datasets with the N(5.5, 1) target distribution. The worst
performing network group was the group trained on datasets
with the U(1, 5) target distribution.

Figure 7: The performances of networks tested on datasets with a
U(1, 10) target distribution

Table 4: The performances of networks tested on datasets with a
U(1, 10) target distribution

To get an idea of how the networks perform on all target
distributions that are considered in this research, the networks
have been tested on all the target distributions. From these
results, the average per train distribution has then been taken.
The results of this can be found in Figure 8 and Table 5. Sim-
ilarly to the previous experiment, the networks trained on the
U(1, 10) target distribution performed the best, followed by
the networks trained on the N(5.5, 1) target distribution. The
networks trained on the U(1, 5) target distribution had the



worst performance. The standard deviation of the results is
higher than in the previous experiment, as multiple test distri-
butions were used.

Figure 8: The performances of every network group tested on all
target distributions

Table 5: The performances of every network group tested on all
target distributions

5 Discussion
The experiment in subsection 4.1 showed that the networks
trained on datasets with a U(1, 10) target distribution had a
significantly higher performance than the baseline. From this
can be concluded that the networks performs well if they are
trained on balanced datasets.
The networks trained on the datasets with a U(1, 5) target dis-
tribution also outperformed the baseline by a great margin, as
the results from subsection 4.2 established. This implies that
networks trained on the datasets with missing had a relatively
good performance. Furthermore, the network performs better
on datasets with the same target distribution as it was trained
on. This is logical, as for those datasets it does not have to
predict targets that were not in the scope of the training set.
From the experiment in subsection 4.3 can be derived that the
networks trained on datasets with normally distributed tar-
gets had a good performance on the reference datasets. This
conclusion was made as those networks had a much higher
performance than the baseline.
The hypothesis in subsection 2.2 theorized that the networks
trained on balanced datasets would perform better than the
datasets trained on imbalanced datasets. From the the results
in subsection 4.4 can be seen that this is indeed the case, as
the networks trained on the balanced datasets had a better per-
formance. Furthermore, the experiments showed that the net-
works trained on normally distributed datasets performed the
second best. The reasoning for this can be that some of the
targets were underrepresented, therefore the network was not
able to predict those as effectively. The networks trained on
datasets with missing targets had the worst performance. As
those training sets did not include all of the targets of the test
sets, the networks were unable to perform as well as the net-
works from the other groups. In addition, the results showed

that the networks trained on the dataset with uniformly dis-
tributed targets covering the full target space had the highest
overall performance on all of the test target distributions.
The findings of this research can be put into perspective by
comparing it to the results of similar research. According to
studies on classification tasks, CNNs trained on datasets with
balanced distributions perform significantly better than CNNs
trained on imbalanced datasets [5]. This is in line with the
results of this research, as the networks trained on the com-
plete uniform range always performed better than the other
networks. The experiments showed that this is also the case
in the setting of this research, however the differences be-
tween the performances were not as significant. The reason-
ing for this can be that for regression tasks the network not
only learns about the target of a given training sample, but
also about other close targets. For classification, this is not
the case as labels are not continuous and do not have an or-
der. Studies involving imbalanced datasets with regression,
but not CNNs suggest that networks trained on imbalanced
datasets have a lower performance [9][10][8][11]. This is in
line with the results of the experiments.

6 Responsible Research
Many steps were taken to make this research and the experi-
ments reproducable. The code can be found in on the github
repository [16]. Although many datasets have been used for
the experiments, these have not been included in the reposi-
tory. Instead, the code which created these dataset has been
included. The algorithm creates semi-random datasets with
defined parameters, the used parameters can be found in sec-
tion 3. Since this research is about the distribution type of
targets and not about specific datasets, the research is gen-
eral enough to be reproducible with these randomly gener-
ated datasets as long as the same parameters are used. Fur-
thermore, the code for the experiments has been provided,
included with the parameters that were used for this research.
There was no involvement of sensitive data in this research,
as all the data was generated from scratch.

7 Conclusions and Future Work
In this paper research was conducted on how imbalanced
datasets affect the performance of a regression CNNs using
synthetic datasets. This is done by comparing the perfor-
mances of a baseline and networks trained on datasets that are
balanced, have missing targets and have normally distributed
targets. The networks are tailored for finding the standard de-
viation of the pixel intensity of the input. From the results can
be seen that all the networks significantly outperformed the
baseline. The networks trained on the balanced datasets had
the best performances, followed by the networks trained on
the datasets with normal targets. The networks trained on the
datasets with the missing targets performed the worst. There-
fore can be concluded that it is better to train the network
on balanced datasets, however training networks on datasets
with normally distributed targets does not result in a big loss.
There is still plenty of room for future work. One could ad-
just how many of the targets are missing in the missing targets
datasets, different amounts of missing targets could lead to



different outcomes. Furthermore, only a normal target distri-
bution with a standard deviation of 1 was used, adjusting the
standard deviation could result in different behaviour. There
can also be conducted research about distributions that were
not included in this paper, for example an inverse triangle dis-
tribution. The task considered in this research was finding the
standard deviation, using a different task like finding the me-
dian could result in different findings. Lastly as the dropout
layers provides more generalization for a network, it could be
compelling to check whether that influences the flexibility of
networks trained on a specific distribution.
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