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On Crop Growth and InSAR Closure Phases
Yan Yuan, Marcel Kleinherenbrink, and Paco López-Dekker, Senior Member, IEEE

Abstract—The closure phase, which is a circular summation of
the phases of the three multilooked interferograms, comprises a
geophysical component and phase noise. In agricultural regions
of southern Spain, encompassing both open crop fields and
greenhouses, the closure phases constructed from Sentinel-1
acquisitions consistently exhibit positive signatures. The evolution
of these observations appears to be related to the phenological
stages of plants, as evidenced by crop calendars. Moreover, the
signatures of closure phases stand out as a potential indicator
of vegetation development under dense vegetation conditions
when compared to coherence and normalized radar cross-section
(NRCS). Two existing models, one based on dielectric variation
in the sub-surface and another on volume scattering combined
with perpendicular baselines, do not explain observed time series.
Therefore, the presence of these positive closure phases implies
the existence of supplementary factors contributing to closure
phases associated with plant development. In this context, we
explore two potential factors: variations in dielectric properties
within crop canopies and the line-of-sight motion of crops. These
factors are considered to establish connections between temporal
changes in vegetation parameters and observed closure phase
signatures. Regarding the first factor, we characterize the crop
canopies using the dielectric constant of an equivalent medium,
thereby capturing changes in wave propagation within the
canopies due to leaves and vertical stalks development throughout
the crop growth stages. We then model their contributions to
closure phases in a manner analogous to an existing soil-moisture
model. By using realistic vegetation parameters derived from
in-situ measurements, this forward model generates synthetic
data comparable in magnitude to the observations. As for the
second factor, we propose an additional contributing mechanism
to closure phases — skewed motion in the radar line-of-sight
(LoS) direction induced by plant growth. This motion model
is mathematically verified under a small-motion approximation.
Both models offer valuable insights into the origins of geophysical
closure phases.

Index Terms—Closure phases, plant development, propagation
model, skewed-motion model.

I. INTRODUCTION

CLOSURE phases are defined as the sum of the phases
of the three spatially averaged interferograms formed by

circularly interfering three Synthetic Aperture Radar (SAR)
images. Recent research has shown that there is a geophysical
signal in these SAR interferometry (InSAR) closure phases
[1]–[7]. In current literature, changes in dielectric properties
of a medium including soil moisture variations, water content
variations in vegetation and snow metamorphism, volume
scattering in combination with perpendicular baselines, and
differential movements are recognized as three contributors
to geophysical closure phases [1], [5], [7]. Two analytical
expressions have been developed to model closure phases
induced by the first two mechanisms: a soil moisture dielectric
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of Geoscience and Remote Sensing, Delft University of Technology, 2628 CD
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propagation model and a volumetric scattering model [1],
[2]. Current research mainly focuses on the relation with soil
moisture changes, while other physical processes in closure
phases remain largely unexplored [2], [3], [5]–[9]. For exam-
ple, the soil moisture model has been broadly used to retrieve
soil moisture from radar stacks or to support the analysis of
InSAR deformation time series. However, in the presence of
vegetation, the validity of the soil moisture model is limited, as
the vegetation development introduces additional components
to closure phases which the soil moisture variation mechanism
is not able to describe completely [3], [5], [7], [8].

Significant consistently positive closure phases are observed
in Sentinel-1 interferometric time series during crop growth
in the South of Spain. This signature is evident in agricultural
areas, including open crop fields and greenhouses. Open crop
fields, characterized by their exposure to stronger environ-
mental forces, present a more complex scenario compared to
greenhouses. The province of Almerı́a, on the southeastern
coast of Spain, has a dense concentration of greenhouses.
While the plastic greenhouses add elements of complexity
to the observed radar signals, they also provide a more
controlled crop-growth environment. For example, we may
expect smaller fluctuations in soil moisture, which should
help isolate closure-phase contributions associated with the
evolution of the crops. However, despite the differences in
environmental conditions, the closure phases observed in corn
and citrus fields exhibit similar signatures to those observed
in greenhouses. As the crop-growth season varies from green-
houses to open fields, periods of positive closure phases appear
at different times of the year. The existing soil moisture model,
which considers soil moisture variations only [2], and the inter-
ferometric model for volumetric scattering, which is a function
of scattering profile and perpendicular baselines [1], fail to
explain the observed closure phase temporal signatures, in
particular their positive bias. Therefore, the observed positive-
signed signatures suggest the existence of one or several
additional mechanisms leading to non-zero closure phases.

This paper explores the link between vegetation growth
and closure phases. The remaining sections of the paper are
structured as follows. Section II introduces the concept of
closure phases and provides a summary of existing geophysical
models to explain non-zero closure phases. In Section III,
we describe the data used and the methodology applied in
data processing. In Section IV, we provide empirical evi-
dence for the existence of crop-growth-related closure phases
with Sentinel-1 data examples over various agricultural areas
and qualitatively analyze the closure phase signatures. Then,
Section V predicts the plant contributions to closure phases.
First, we distinguish observed closure phase signatures from
signatures that existing models predict. Next, we propose
two distinct closure phase models that account for vegetation
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development by considering wave propagation within a lossy
medium and the variation of travel distance in line-of-sight
(LoS). We then evaluate their potential to explain observed
signals correlated with plant growth. Lastly, Section VI pro-
vides conclusions to the work and gives recommendations for
future research.

II. BACKGROUND

Single-Look Complex (SLC) SAR data can be written in the
form of a set of phasors i = Aejϕ, where A is the amplitude
and ϕ is the phase. After alignment of SLCs obtained from
two acquisitions, an interferogram can be computed as

I12 = i1i
∗
2

= A1A2e
j(ϕ1−ϕ2)

= |I12|ejϕ12 .

(1)

By using all combinations of three acquisitions, three interfer-
ograms can be computed. A so-called closure phase is then
computed as the product of the three circularly generated
interferograms [10], i.e. the phase of

I12I23I31 = |I12||I23||I31|ej(ϕ12+ϕ23+ϕ31), (2)

such that
Φ123 = ϕ12 + ϕ23 + ϕ31. (3)

At single-look resolution, i.e. without any spatial averag-
ing (multilooking) of the complex-valued interferograms, this
quantity is always equal to zero by mathematical construction.
However, when computing closure phases from spatially av-
eraged (multilooked) interferograms, non-zero closure phases
emerge. Under the assumption of spatial ergodicity, one can
treat the multilooked interferogram as an estimate of its
expected value. Besides decorrelation noise, non-zero closure
phases emerge when we interfere data with contributions from
different scatterer families, where each family exhibits distinct
interferometric behaviors [1]. In current understanding, there
are three potential geophysical origins of the non-zero closure
phase: the first is the variations of dielectric properties within
a medium, the second is volumetric scattering combined with
perpendicular baselines, and the third is differential move-
ments of objects [1] [5]. De Zan et al. developed two analytical
expressions to interpret geophysical closure phases considering
the first two mechanisms respectively [1], [2], [8]. However,
a model for the third contributor has not been developed yet.

The first mechanism was studied by De Zan et al. for
the specific case of non- and sparsely-vegetated areas, where
variations in water content in the sub-surface change the
dielectric properties of soil [2], [8]. This alteration in the wave
propagation within the medium results in non-zero closure
phases. The interferometric model for soil moisture is written
as

I(ϵr1, ϵr2) =
1

2jk
′
z1 − 2jk

′
z2

, (4)

where k
′

z is the complex-valued vertical wavenumber in the
soil, and it is a function of the dielectric constant of the
medium, denoted as ϵr [2]. This dielectric constant can be
modeled based on soil moisture, soil texture, and frequency

[11]. Utilizing the interferometric model, the corresponding
closure phase can be expressed as

Φ123 = ̸ (I(ϵr1, ϵr2)I(ϵr2, ϵr3)I(ϵr3, ϵr1))

= ̸ (
1

2jk
′
z1 − 2jk

′
z2

1

2jk
′
z2 − 2jk

′
z3

1

2jk
′
z3 − 2jk

′
z1

),

(5)

where the ̸ operation denotes extracting the phase of a
complex value. This model was validated with in-situ soil
moisture measurements [2] [8].

The second mechanism is revealed in scenarios where
scatterers exist at different heights, exhibiting a skewed ver-
tical scattering profile [1]. In such cases, non-zero closure
phases emerge due to volume scattering in combination with
perpendicular baselines. For a real-valued height-dependent
scattering profile f(z), this mechanism yields a closure phase

Φ123 = −1

2
E[(z − µz)

3]κ12κ23κ31

= −1

2
E[(z − µz)

3]κ123,
(6)

where E[(z−µz)
3] is the 3rd central moment of the scattering

profile [1]. Each κ is the differential vertical wavenumber
resulting from the perpendicular baseline B⊥,

κ =
4πB⊥

λR sin θi
, (7)

where λ is the wavelength, R represents the one-way range of
the secondary date and θi is the incident angle.

III. DATA PROCESSING

In this research, we use multiple datasets, including multi-
looked Sentinel-1 radar observables [12], a Sentinel-3 derived
300 m resolution Leaf Area Index product [13], Sistema
de Información Geográfica de Parcelas Agrı́colas (SIGPAC)
shapefiles of land usage [14], daily precipitation data provided
by Visual Crossing Corporation weather records [15], and the
hourly ERA5 volumetric soil moisture product [16]. Except for
the SIGPAC shapefiles, which correspond to 2017, the rest of
the data stacks are from the time window 2016-12-10 to 2018-
01-10 with different temporal and spatial resolutions (Table I).
The data stack of Sentinel-1 images with 6 days of temporal
sampling is our main data set for all fields. It includes two
ascending passes with acquisition times around 18 o’clock,
pass 1 and pass 74, which cover our area of interest (open crop
regions and greenhouses area). The range of corresponding
incident angles varies from area to area as shown in Table II.

Since large systematic geophysical closure phases often
appear in low interferometric coherence scenarios, where the
phase-noise level is high, the following two choices help
expose the geophysical signals. First, closure phases are con-
structed using three successive acquisitions, which have the
shortest temporal lag, to minimize additional coherence loss
due to temporal decorrelation. In our consecutive Sentinel-
1 acquisition scenario, each interval spans 6 days. Second,
phase-noise suppression is achieved by substantial spatial
averaging (multilooking).
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TABLE I
INFORMATION FOR EACH DATASET.

Data set Temporal resolution Spatial resolution Source

Multilooked Sentinel-1 6-day 1 km European Union Copernicus programme

Sentinel-3 LAI 10-day 300 m Copernicus Global Land Service

Land usage 1-year - Junta de Andalucı́a

Precipitation 1-day - Visual Crossing Corporation

ERA5 volumetric soil moisture 1-hour 9km European Centre for Medium-Range Weather Forecasts (ECMWF)

TABLE II
SENTINEL-1 GEOMETRY INFORMATION FOR EACH FIELD.

Crop field Sentinel-1 pass Incident angle

Corn fields Ascending pass 74 [34.02◦, 38.83◦]

Citrus fields Ascending pass 74 [30.57◦, 42.13◦]

Greenhouses Ascending pass 1 [37.77◦, 43.82◦]

In multilooking, we want all averaged samples to be re-
alizations of the same random distribution. Therefore, we
implement a three-step polygon-based multilooking strategy.
We start with box-car multilooked 20 m × 20 m resolution
products instead of 5 m × 20 m single-look complex (SLC)
images to reduce computational costs. This small degree box-
car multilooking process has a negligible effect on the final
1 km× 1 km output. We refer to each multilooked data point,
which represents the spatially averaged value of a set of single-
look interferometric values, as a ’cell’. Then, we determine
which 20 m×20 m cells fall within the polygons correspond-
ing to a specific crop field type. This step utilizes SIGPAC
geographic information, which offers polygons representing
different land uses, along with the latitude and longitude
coordinates of each 20 m× 20 m cell. Lastly, to generate our
1 km×1 km product, we calculate the average intensities and
interferograms over the selected 20 m× 20 m cells within the
1 km × 1 km window (see Appendix A for detail). For each
crop field type, Figure 1 illustrates the multilooking processing
steps.

Fig. 1. Diagram of multilooking data progressing for each crop field type.

For each type of crop field, time series of a specific mul-
tilooked quantity behave differently due to differences in the
equivalent number of looks (ENL) and other local conditions
in each 1 km×1 km averaged cell. To reduce the risk of having
a high noise-level time series, we exclude the 1 km × 1 km
cells with ENL smaller than one thousand. Despite differences
in ENL and local conditions, we assume that time series of
a specific multilooked product within fields of a given crop
type share a common overall trend. We visualize the mean
time series of each multilooked quantity, closure phases Φ123,

normalized radar cross-section (NRCS) σ and coherence γ,
for three different classes, in Figure 5, 3, and 4, to show
their evolution in time. In addition, we visualize the 5th and
95th percentiles of all closure phases time series to reveal the
asymmetry in their distribution.

To support the qualitative analysis and interpretation of the
observed closure phases, we provide two auxiliary data sets:
Leaf Area Index (LAI) and precipitation records. As LAI
characterizes vegetation canopies, we treat it as an indicator
of crop growth and qualitatively study its correlation with
closure phases for open crop fields. In addition, soil moisture
variations have been recognized as one contributor to closure
phases, and they are highly related to precipitation. Therefore,
for each selected area, we include precipitation records from
nearby areas to study the relation between precipitation events
and radar observables.

IV. OBSERVATIONS

In southern Spain, several areas exhibit large positive one-
year averaged closure phases, as shown in Figure 2. With
Google map images and SIGPAC land usage information, we
identified them as agricultural areas, including two open crop
field areas and one greenhouses region. The open crop fields
considered are corn fields (39◦N, 6◦W) around the town of
Santa Amalia, and citrus fields (37.7◦N, 5.5◦W) in the upper
Guadalquivir valley. The greenhouse area (36.7◦N, 2.7◦W)
is located in the province of Almerı́a where the greenhouse
concentration is very high. For each class, the number of

Fig. 2. VV polarized temporal mean closure phases over southern Spain in
2017
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TABLE III
NUMBER OF AVERAGED 1 KM × 1 KM CELLS AND ENL INFORMATION

FOR EACH FIELD.

Crop field Cells Mean ENL Standard deviation of ENL

Corn fields 1187 3.8 · 103 1.3 · 103

Citrus fields 855 2.3 · 103 1.1 · 103

Greenhouses 563 3.2 · 103 1.4 · 103

averaged 1 km × 1 km cells and statistics of ENL are shown
in Table III.

A. Observations over corn fields

Santa Amalia has a large portion of its surrounding fields
allocated to corn production. Since SIGPAC does not have
a class for corn, we first selected areas labeled as arable
land, and then we selected polygons where LAI increases
only during the corn crop-growth period from mid-spring to
mid-autumn [17]. The mean radar observables time series
represented in Figure 3 show a clear alignment with the
LAI, in particular the peak of the mean closure phase, Φ123.
Within the time window where the LAI is larger than 0.5
m2/m2, the distribution of closure phase time series indicated
by their 5th and 95th percentiles shows a large spread from
−10◦ to 55◦ as well as a significant asymmetry around the
mean closure phase. The mean NRCS pattern, σl, seems to
follow that of the LAI with a noisier signature except a
0.6 dB drop around mid-July. However, the mean coherence,
γ, which drops significantly from 0.55 to 0.3 around April,
increases steadily from late June until it reaches 0.55 again
in October. Outside of summertime, the mean closure phase
drops to 2.5◦ with variations between −2◦ and 5◦ except
a local maximum around 12◦ in early March, while the
mean coherence (between 0.2 and 0.7) and the mean NRCS
(between −11.4 dB and −7.0 dB) both have large variations.

Corn in southern Spain is normally sowed around April. The
emergence stage, about two weeks after sowing [18], coincides
with a significant increase in the LAI from 0.25 m2/m2 to 4.2
m2/m2 as well as in the mean NRCS from −11.4 dB to −9.6
dB because of added scattering due to plants growth. As the
crop at an early stage grows rapidly, such evolution causes high
temporal decorrelation and thus brings the mean coherence
down by 0.25. With the development of corn canopies, the
LAI, the mean closure phase, and the mean NRCS start
decreasing around August until the harvest season finishes
and stalks are chopped, around October. However, as canopy
conditions stabilize post-LAI peaks, the mean coherence starts
increasing from 0.35 to 0.55. The occurrence of post-harvest
chopping activities coincides with another 0.3 significant drop
in the mean coherence in mid-October. After the corn growth
period, fields enter a rest period with catch crops in fields
until the next sowing season. In spring, a slight increase in
LAI values around March may be associated with the growth
of grass in fields, with the subsequent decrease attributed to
mowing before planting.

Weather data from Santa Amalia shows frequent precipita-
tion across the year. Such frequent precipitation events provide

an explanation for the large fluctuations in the mean coherence
and the mean NRCS, while they are less obvious in the mean
closure phase.

B. Observations over citrus fields

The Guadalquivir River basin hosts a large number of citrus
fields. As shown in Figure 4, between spring and early winter,
the mean closure phase again presents a consistently positive
mean closure phase, Φ123, with 90% of the distribution in
the range 0◦ to 50◦. These large positive closure phases are
accompanied by reduced mean 6-day coherence values, which
decrease from around 0.6 to around 0.3, and a relatively stable
mean NRCS (−9.4 dB). Although the harvest season varies
with species, most citruses are picked from mid-September till
May [19]. This harvest period coincides with a decrease in the
mean closure phase from 25◦ to near 0◦. With this information,
the increase in the mean closure phase from May can be
explained by fruit growth and summer leaf flushes. Summer
leaf flushes refer to new leaf growth, and they occur during
the period of flowering and fruit development to maintain an
adequate photosynthesis level in citrus trees [20].

In contrast to the corn fields, the LAI does not correlate
with the radar observables in the citrus fields. There is a
drop in the mean satellite-derived LAI values from 1.4 m2/m2

to 0.8 m2/m2, starting in May and ending before November.
Considering citrus trees are evergreen and the plantation frame
of citrus fields is about 6 to 7 m × 2.5 m [21], the limited
above-ground biomass with wide space between trees makes
grass at the ground relevant for the LAI. In the considered
location, the hot temperatures ensure that grass usually dries in
summer, which contributes to a decrease in LAI. Since LAI is
highly affected by grass, the contribution from citrus canopies
is hardly discernible in the LAI time series.

The weather record in Brenes (37.55◦N, 5.87◦W) indicates
this area is very windy and has regular precipitation events
outside of summertime. Large changes in the SAR-observables
time series, especially in the mean coherence and the mean
NRCS, are likely caused by these precipitation and gust events.

C. Observations over greenhouses

The time series of observables after averaging 1 km×1 km
cells with SIGPAC-designated greenhouses are visualized in
Figure 5. The mean closure phase, Φ123, is mainly positive
across the year, with values ranging from 0◦ to 10◦, and
it drops close to zero (1◦) during summer from July to
September. The mean NRCS, σl, shows a similar trend with
values as low as −8.8 dB during summer and as high as −7.2
dB out of the season. However, the mean coherence, γ, exhibits
an opposite trend where it is significantly higher in summer
(0.6) and lower during other seasons (0.4). The spread in the
distribution of closure phases, indicated by their 5th and 95th
percentiles, correlates with the coherence, the band is narrower
when the coherence is higher and vice versa.

Collected field information from El Ejido greenhouses in-
dicates that the majority of greenhouses are dedicated to the
growth of everyday vegetables including pepper, cucumber,
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Fig. 3. Observations over corn fields around Santa Amalia: precipitation records P in Santa Amalia, mean time series of Leaf Area Index (LAI), VV polarized
mean time series of closure phases Φ123 with corresponding 5th and 95th percentiles, NRCS σl and coherence γ.

Fig. 4. Observations over citrus fields in upper Guadalquivir valley: precipitation records P in Brenes, mean time series of Leaf Area Index (LAI), VV
polarized mean time series of closure phases Φ123 with corresponding 5th and 95th percentiles, NRCS σl and coherence γ.

tomato, and eggplant, and a small portion for fruits like melon
and watermelon. According to local farmers1, they typically
plant vegetables at the end of August. This planting season
coincides with the emergence of positive mean closure phase,
increasing in the mean NRCS from −8.0 dB to −7.2 dB,
and decreasing in the mean coherence from 0.5 to 0.3. The
mean closure phase peaks in December with 10◦ when the
harvest season starts. After that, there is a gradual decrease in
the mean closure phase, while the mean NRCS and the mean
coherence remain stable around −7.2 dB and 0.4, respectively.
The mean closure phase remains positive until the end of
June. From June, the mean coherence exhibits an increasing
trend, while the mean NRCS shows a significant decreasing
trend. These tendencies coincide with the end of harvest
season for most crops. After harvesting, greenhouses typically
undergo a period of rest and preparation for days to weeks.

1We obtained this information by visiting thirteen different greenhouses in
El Ejido and consulting with their owners. These greenhouses are situated
across various locations around El Ejido: (36.74◦N, 2.82◦W), (36.78◦N,
2.79◦W), (36.77◦N, 2.72◦W) and (36.76◦N, 2.71◦W). Despite gathering
field information from diverse locations, the information regarding growing
season remains consistent. The authors would like to thank the owners of El
Ejido greenhouses for providing field information to help us explain observed
signals.

During the rest, only bare soil is left inside of greenhouses
which explains the high mean coherence (0.6) and the lower
mean NRCS (−8.8 dB) during summertime. Overall, a lower
mean coherence, a higher mean NRCS, and a positive mean
closure phase coincide with the crop growth period within the
greenhouses.

Weather records in El Ejido show multiple precipitation
events occurred throughout the year, especially outside of
the summer season. Precipitation in spring and late autumn
coincided with local minima in the mean coherence and
the mean closure phase time series, followed by subsequent
increases. Two events in October and November correlate with
local peaks in the mean NRCS. Apparently, even though the
plants are inside greenhouses, the return signal is affected by
precipitation. One explanation could be water accumulation on
plastic roofs.

D. Discussion

The nature of each radar observable determines its role
in conveying information. The NRCS reflects the state of
the observed object at the acquisition time. In contrast, the
coherence and closure phases, formed with two and three
acquisitions, respectively, provide information about the vari-
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Fig. 5. Observations over Almerı́a greenhouses: precipitation records P in El Ejido, VV polarized mean time series of closure phases Φ123 with corresponding
5th and 95th percentiles, NRCS σl and coherence γ.

ation in the state of the object over time. In conditions of
dense vegetation, variations in radar observables highlight their
varying sensitivity to detect changes in biomass.

Dense vegetation limits the C-band microwave penetration
depth in the crop canopy, implying that the radar return
corresponds primarily to vegetation and not to the underlying
surface. This limited penetration also results in a relatively
quick saturation of the NRCS time series, implying that
the biophysical information content in the NRCS after this
saturation is reached is limited. Although interferometric co-
herence is an indicator of change and has been studied as a
vegetation index [22], it also tends to saturate at low values.
Moreover, the magnitude of the coherence cannot be easily
linked to a particular cause. All the observations discussed
strongly suggest that the closure phase has the potential to
serve as an indicator of plant growth or plant productivity.
Although the signal is noisy, its mean varies smoothly during
the crop-growth cycle, suggesting that a quantitative link may
be established between the closure phase and the evolution of
crop parameters.

V. MODELS: PROPOSAL AND VERIFICATION

Positive closure phase observations in agricultural areas
indicate a relation to plant development. We try to interpret
such signatures by modeling the contributions of different
mechanisms to the closure phases. Starting with existing
models, the soil moisture model and the interferometric model
for volume scattering, we demonstrate that neither of these
models produces positive closure phases that align with plant
growth. Therefore, considering canopy developments only,
we formulate and discuss two novel conceptual models that
account for dielectric variations in canopies with vertical stalks
and the motion of scatterers in line-of-sight direction during
plant growth, respectively.

A. Existing soil moisture model

Since soil moisture data within the greenhouses is not
available, we only study the soil moisture variation mechanism
in open crop fields. Predicting the closure phases related to soil
moisture changes consists of three steps. First, we interpolate
hourly ERA5 volumetric soil moisture products in soil layers

0-7 cm with the acquisition time of radar observables (Figure
6 (a) and Figure 7 (a)). Second, we use the dielectric mixing
model [11] in combination with Sentinel-1 frequency (5.405
GHz), ERA-5 volumetric soil moisture products, and soil
texture in Seville, southern Spain (57.4% Sand and 19.6%
Clay) [23] to model the dielectric constant of the soil. Third,
we feed (5) with the modeled dielectric constant and predict
the soil moisture-related closure phases. The simulations are
compared with the observations in Figure 6 (b) and Figure 7
(b).

Results over both corn fields and citrus orchards show
that most time of the year there is no correlation between
closure phases induced by soil moisture variations and ob-
served closure phases (Figure 6 and Figure 7). This lack of
correlation is particularly evident during the corn crop growth
period from April to October and the development period of
citrus canopies from May to mid-September. The reliability

Fig. 6. Comparison between observed closure phases and closure phases
modeled by the soil moisture model over corn fields: (a) mean ERA5 volu-
metric soil moisture products in soil layer 0-7 cm (blue) Θ, (b) closure phase
observations Φ123 (black) and simulations Φs,123 (blue) with corresponding
5th and 95th percentiles.

of the comparison may be affected by the heterogeneity in
soil moisture variation that the 9 km resolution ERA5 product
does not capture. However, the distribution of the modeled
time series, as indicated by their 5% and 95% percentiles,
suggests that soil moisture in these research areas exhibits
limited spatial dynamics. Therefore, each ERA5 data point
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Fig. 7. Comparison between observed closure phases and closure phases
modeled by the soil moisture model over citrus fields: (a) mean ERA5 volu-
metric soil moisture products in soil layer 0-7 cm (blue) Θ, (b) closure phase
observations Φ123 (black) and simulations Φs,123 (blue) with corresponding
5th and 95th percentiles.

represents soil moisture across a sizable area. Consequently, it
can be deduced that, when vegetation significantly contributes
to the scattered radar signal, the soil moisture model cannot
explain the observed closure phases. Therefore, during the
canopy development period under lush vegetation conditions,
we can confidently discard soil moisture variation as being the
main source of the observed signatures.

B. Existing interferometric model for volume scattering

Volume scattering in combination with perpendicular base-
lines is considered as one contributor to closure phases. We
simulate its contribution using (6). As the scattering profile
remains unknown lacking tomographic measurements, we
only take the differential vertical wavenumbers κ as inputs
to calculate closure phases resulting from this mechanism.
The modeled time series in Figure 8 exhibit closure phases
with fluctuation in signs over all fields. Since Sentinel-1
acquisitions over corn and citrus fields are from the same
ascending pass, apart from negligible differences induced by
variations in locations, the modeled closure phase time series
show comparable behavior. In addition, as the contributions

Fig. 8. Closure phase time series simulations from Sentinel-1 perpendicular
baselines of ascending pass 1 (black solid line) and pass 74 (red and blue
dotted lines).

from the triplets of vertical wavenumbers are very small
(in the order of 1e − 5), a large height difference within
the product resolution would be required to cause closure
phases with magnitudes in the same order as the observations.
Therefore, the perpendicular baseline-related mechanism can
also be excluded in explaining the observed consistent positive
closure phases.

C. Equivalent-medium propagation model

Developments in crop canopies, including leaf and stalk
growth, affect closure phase observations by altering the
propagation of electromagnetic waves within the canopies. To
establish a connection between observed closure phases and
the evolution of crop parameters, we developed a propaga-
tion closure phase model for canopies with vertical stalks,
excluding ground contribution. This propagation model is
analogous to the existing soil moisture model [2], retaining
the assumptions of isotropic and linear media. However, we
substitute the dielectric constant of soil with that of the
vegetation canopies and introduce a finite depth for the media
based on plant height.

We assume the canopies are a dielectric mixture of stalks
and leaves in the air, and describe it as a uniform equivalent
lossy medium where stalks and leaves are represented by
identical vertically oriented cylinders and randomly oriented
thin circular discs [24]. A sketch in Figure 9 illustrates
the wave propagation on the equivalent medium in a two-
dimensional incidence plane xz. The interface between air and
the canopies is parallel to the x-axis at z = 0. Modeling the

Fig. 9. Illustration of wave incidence and fraction on an equivalent medium
model with a 2D geometry.

dielectric constant of the equivalent medium consists of three
steps. First, we compute the dielectric constant of each element
in canopies (leaf and stalk) with Ulaby and El-Rayes’ linear
model which takes frequency f0, salinity S, and gravimetric
moisture mg as inputs [25]. Second, we consider stalks in the
air as a background dielectric medium. According to Ulaby et
al., the dielectric constant of this background, ϵrb, relates to
the complex refraction index np as,

ϵrb = (n
′

p + jn
′′

p )
2, (8)

where np is a function of incident angle θi, radius of stalks r,
dielectric constant of stalks ϵrs, and number of cylinders per
unit area N [26]. Last, we add leaves, small in size relative to
wavelength, to the background material, the dielectric constant
of the full canopies can be written as

ϵr = ϵrb +
vl

3
(ϵrl − ϵrb)(2 +

ϵrb

ϵrl
), (9)

where vl and ϵrl are the volume fraction and dielectric constant
of leaves, respectively [24].
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Taking the modeled dielectric constant of the equivalent
medium as input, the expected value of an interferogram of
two images with different dielectric constants can be written
as

I(ϵr1, ϵr2) =

∫ ∞

0

f(z)e−j2k
′
z1z(e−j2k

′
z2z)∗dz, (10)

where f(z) is the volumetric scattering coefficient which we
assume to be constant, k

′

z1 and k
′

z2 are complex-valued vertical
wavenumbers in canopies of each acquisition [2]. According
to the wave equation, the vertical wavenumber within the
equivalent medium is computed as

k
′

z(ϵr) =
√
ω2ϵµ− k2x, (11)

where ϵ = ϵrϵ0 is the permittivity of the medium, and
kx = 2π

λ sin θi is the horizontal wavenumber, which satisfies
the boundary condition that k

′

x = kx. As we neglect the
contribution from the ground and consider the vegetation
canopies only in the model, the propagation of waves is limited
by a finite depth of vegetation. In addition, since only the
variations in the same group of scatterers contribute to the
interferogram, we set the upper limit of the integral in (10) as
the shorter plant height h between two acquisitions and rewrite
the integral as

I(ϵr1, ϵr2) =

∫ h

0

f(z)e−j2k
′
z1z(e−j2k

′
z2z)∗dz. (12)

This integral gives

I(k
′

z1, k
′

z2, h) =
1− e−2jh(k

′
z1−k

′
z2

∗
)

2jk
′
z1 − 2jk

′
z2

∗ . (13)

At the stage when the plant grows taller, the plant height h in
(13) is the height at the earlier acquisition. Then the canopies’
development-related closure phases can be computed as

Φ123 = ̸
(
I(k

′

z1, k
′

z2, h1)I(k
′

z2, k
′

z3, h2)I(k
′

z3, k
′

z1, h1)
)
.

(14)
The flowchart in Figure 10 illustrates the input parameters we
need and the steps we followed to derive the final equivalent-
medium propagation model in (14).

Fig. 10. Equivalent medium propagation model derivation flowchart with
input parameters: frequency f0, incident angle θi, salinity of stalks Ss and
leaves Sl, gravimetric moisture of stalks mgs and leaves mgl, number of
cylinders per unit area N , volume fraction of leaves vl, radius of stalks r,
and plant height h.

We assume the crop type is the primary factor in affecting
the evolution of vegetation parameters regardless of location.
To qualitatively evaluate the outputs of our proposed model,
we use in-situ measurements made in corn fields near Citra,
Florida, USA in 2018 [27]. Vegetation parameters are mea-
sured in the cultivated field every 2 - 3 day, starting from the
corn crops’ planting on 13th April until their harvest on 18th
June. Considering the revisit time of Sentinel-1, and discarding
the first two weeks of measurements when the soil contribution
is dominant as the ground is sparsely vegetated, we resample
measurements to a 6-day sampling between 2nd May and
13th June. Following Ulaby et al. [28], with the measured
vegetation water content (VWC) and dry biomass md, one
can compute the gravimetric moisture mg as

mg =
VWC

VWC +md
. (15)

The calculated values are visualized in Figure 11 (a). Using the

Fig. 11. Inputs and intermediate results of propagation closure phase model
with red stars represent samples: (a) gravimetric moisture of stalk and leaf,
(b) the dielectric constant of the equivalent medium which describe the full
canopy condition, (c) measured plant height in corn crop fields near Citra,
Florida, USA in 2018.

C-band frequency of Sentinel-1 f0 = 5.405 GHz, an incident
angle θi = 40◦ and vegetation parameters, such as the stalk
radius r, volume fraction of leaves vl (approximated as 20%
of stalk volume) and a constant salinity 10 psu for both stalk
and leaf, we estimate the dielectric constant of full canopy ϵr
with (9) (Figure 11 (b)). Taking the plant height as the last
input (Figure 11 (c)), we can then model the corresponding
closure phases.

The modeled closure phases in Figure 12, where the x-axis
represents the first date of three acquisitions, exhibit positive
values. Their magnitudes are comparable to observations in
corn fields, particularly in May because the planting time in
southern Spain is similar to that in the Florida research site.
From the modeled results, we can infer the following: first,
the rate of change in both the dielectric constant of the full
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canopy and the plant height correlates to the magnitude of
closure phases. This signature suggests the sensitivity of the
model outputs to the first and the second derivative of the
input parameters. Second, when the variations in the dielectric
constant and the plant height are relatively small in June, the
modeled closure phases drop to zero. However, observations
still show positive closure phases. This disparity suggests
we need a more complete and complex equivalent-medium
propagation model.

Fig. 12. Modeled closure phases with vegetation parameters in Figure 11 at
C-band f0 = 5.405 GHz and incident angle θi = 40◦.

Our preliminary propagation model captures the propagation
of the incident wave in the canopies under assumptions of
an isotropic and linear equivalent medium with a finite depth
and a uniform vertical scattering profile. The main value of
the model is that, despite the oversimplifications made, it
provides a biogeophysical explanation of the observed phase
closures. It is clear that simplification of the canopy elements
and the lack of other scattering contributions (e.g. surface and
double bounce scattering) limit the predictive performance and
applicability of the model.

D. Skewed motion model

Throughout the crop development, in addition to dielectric
variations, plants exhibit growth in height from the emergence
stage. Growth rates can be very high, as in the case of corn,
where it is as high as 5 cm/day after emergence and gradually
decreases after approximately two months (Figure 11 (c)) [29].
For other crops, such as citrus trees, growth rates are much
slower. Crop growth will undoubtedly lead to decorrelation of
the scatterers. However, we expect that some scattering centers
will remain partially coherent as their position changes due to
the growth process.

We consider a small magnitude of the LoS projection of
velocity (in the order of 0.001 m/day) and develop a motion-
induced closure phase model. The derivation of the model is
largely analogous to the volumetric scattering model reflected
in (6) (see Appendix B for detail), resulting in the skewed-
motion model

Φ123 = −8k30E[(v − µv)
3]τ3, (16)

where k0 = 2π
λ is the radar wave number, E[(v − µv)

3] is
the third order central moment of the velocity profile, and τ
is the temporal lag in the case of closure-phase construction
with continuous Sentinel-1 acquisitions. This model implies
that under a small motion approximation, a skewed velocity
distribution will lead to non-zero closure phases.

In the absence of ground truth measurements, we are
currently unable to directly link the model to closure phase

observations. Nevertheless, under the assumption that some
scatterers will remain coherent while being subjected to crop-
growth-related motion, we can expect that a skewed motion
distribution will introduce closure phases. On the one hand,
as crops within a 1 km resolution cell exhibit diverse and
non-uniform developmental characteristics, non-zero closure
phases will manifest when there is a skewed distribution in
their LoS motion. This phenomenon holds across different
crop types. On the other hand, the level of skewness can be
expected to vary with the stage of vegetation development,
potentially resulting in closure phases that align with the crop
growth cycle.

VI. CONCLUSION

Our work clearly points to the existence of a crop-
development signature in closure phases and provides possible
mechanisms to model it. Sentinel-1 observations show consis-
tent positive closure phases throughout the plant development
cycle in agricultural regions. The magnitude of these closure
phases changes during the growth season, being clearly aligned
with crop-growth rates. These observed closure phase signa-
tures cannot be explained using existing models. To address
this, we developed two new conceptual models, one based
on variations in dielectric properties and the other on line-
of-sight motion during vegetation development. These two
new models provide plausible explanations for the observed
positive closure phases.

We developed a propagation model under the assumptions
of an isotropic and linear medium to account for the modifi-
cations in electromagnetic wave propagation caused by crop
canopy developments. This equivalent-medium propagation
model is able to relate temporal variations of biophysical
parameters to closure phases and produce closure phases in
comparable magnitudes as the ones observed in corn fields
in southern Spain. While other crops may exhibit different
behaviors, adjusting input parameters could allow for the
adaption of this model based on corn canopies to other
types of vegetation. Some disparities remain between modeled
closure phases and observations in corn fields which indicate
the incompleteness of the model. By constructing closure
phases using acquisitions from different geometric passes,
these observations have the potential to shed light on additional
mechanisms and contribute to the advancement of the model.

The skewed-motion model established a connection between
the distribution of the line-of-sight motion and closure phases
within the framework of a small-motion approximation. Vali-
dation of the model is challenging without knowledge of the
motion rate. While initially tailored for vegetation growth,
this model holds relevance in scenarios featuring skewed slow
motion, such as ice dynamics leading to a skewed deformation
within a resolution cell. In instances where the velocity is
large, fast-evolving parts of plants are less likely to contribute
to closure phases due to decorrelation. Under such conditions,
a tomographic experiment would help to investigate whether
the observed closure phases originate from contributions near
the ground.

There is an opportunity for future research to explore the
development of a unified model that considers both sug-
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gested mechanisms. Furthermore, in scenarios where radar
can observe both soil and vegetation, a combination of soil
and vegetation models would benefit the agricultural study.
However, like many other related problems, such as modeling
the NRCS of vegetation, physical models are always subject
to oversimplifications that limit their performance. Their main
value is that they provide a geophysical interpretation frame-
work and that they expose sensitivities. For inversion purposes,
parametric models are probably required.

We are not yet able to quantitatively exploit the full ob-
served signal. On the one hand, Sentinel-1-derived closure
phases in agricultural regions are inherently noisy, requiring
us to work at relatively low product resolution, which also
limits the scope of how the closure phases can be investigated
and exploited. This will improve with future higher-resolution
systems. On the other hand, further development of the model
requires extensive ground-truth data and, possibly, dedicated
experiments.

APPENDIX A
MATHEMATICAL REPRESENTATION OF MULTILOOKING

Multilooking is performed on both complex-valued inter-
ferograms and intensities. The multilooked intensities are
calibrated to represent the NRCS values. Using the nota-
tion consistent with the main text, for a single pixel, we
denote the amplitude as A, and the interferometric phase
as ϕ12 = ϕ1 − ϕ2. Correspondingly, the real and positive-
valued coherence can be represented as |γ12|. With these three
quantities, we can construct the interferogram phasor as

I12 = |γ12|A1A2e
j(ϕ1−ϕ2). (17)

We then estimate the multilooked coherence as a sample
average

γ̂12 =

∑Np

i=1 Ii,12√∑Np

i=1 I
2
i,11

∑Np

i=1 I
2
i,22

=

∑Np

i=1 γi,12Ai,1Ai,2e
j(ϕi,1−ϕi,2)√∑Np

i=1 A
2
i,1

∑Np

i=1 A
2
i,2

.

(18)

Here, Np is the number of samples within a multilooking
window. The multilooked interferometric phase is given by
ϕ̂12 = ̸ (γ̂12). In addition, the multilooked intensity is

Â2 =

∑Np

i=1 A
2
i

Np
. (19)

APPENDIX B
SKEWED MOTION MODEL DERIVATION

Let us start our derivation by writing a conceptual model
of the received radar signal at time t as a summation of the
reflection from a collection of scatterers

s(t) =

Ns∑
m=1

sm(t), (20)

where sm represents complex signals from individual scatter-
ers, Ns is the number of scatterers. For each scatterer, we

can write the reflected signal as a combination of phase and
amplitude,

sm(t) = Am(t)ejϕ0,m(t)e−2jk0rm(t)

= s0,m(t)e−2jk0rm(t),
(21)

where Am is the amplitude of scatterers, ϕ0,m is the phase of
the scattering coefficient, k0 = 2π

λ is the radar wave number,
and rm is the position of the scatterers in the line-of-sight
direction. With another inteferometric compatible acquisition
at time t + τ , we can construct the expected value of the
interferogram, I(τ), as

I(τ) = E [s(t)s∗(t+ τ)]

= E

[
Ns∑

m=1

Ns∑
n=1

sm(t)s∗n(t+ τ)

]

=

Ns∑
m=1

Ns∑
n=1

E[sm(t)s∗n(t+ τ)]

=

Ns∑
m=1

Ns∑
n=1

E[s0,m(t)s∗0,n(t+ τ)e2jk0(rn(t+τ)−rm(t))],

(22)

where τ is the time lag. Assuming that the complex backscatter
s0,m(t) and the term related to the position of the scatterer,
e−2jk0rm(t), are independent from each other, we can write
I(τ) as

I(τ) =

Ns∑
m=1

Ns∑
n=1

Rs(τ)δmnE[e2jk0(rn(t+τ)−rm(t))]

= NsRs(τ)E[e2jk0(r(t+τ)−r(t))]

= NsRs(τ)E[e2jk0∆r],

(23)

where Rs(τ) represents the autocorrelation of s0(t) between
t and t+ τ , the Kronecker delta, δmn, reflects the assumption
that the scattering coefficients s0,m are zero-mean independent
identically distributed random variables, and ∆r = r(t +
τ)− r(t) is the differential motion of scatterers between two
acquisitions.

To simplify the expected value of interferogram (23) in an
integral form, we make three assumptions. First, we consider
the LoS differential motion ∆r as a function of velocity v and
time lag τ ,

∆r = vτ. (24)

Second, we treat Ns as a scaling factor. Third, we assume
the temporal decorrelation within the term Rs(τ) does not
influence the closure phases. Focusing solely on the phase
information, and normalizing the signal so that it has unit
power, we define I(τ) as

I(τ) =

∫
f(∆r(τ))e2jk0∆r(τ)d∆r(τ)

=

∫
f(v)ej2k0vτdv,

(25)

where f(∆r(τ)) is the probability density function (PDF)
of the differential LoS motion, f(v) is the PDF of the LoS
velocity.
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Following the same approach adopted by De Zan et al. [1],
we equate (25) with the complex interferogram expression,
I(τ) = A(τ)ejϕ(τ). Then by taking the first to the fourth order
derivatives for both sides, we derive the following relations:

A(0) = 1

ϕ′(0) = 2k0µv

A′′(0) = −4k20E[(v − µv)
2]

ϕ′′′(0) = −8k30E[(v − µv)
3]

AIV(0) = 16k40E[(v − µv)
4].

(26)

To construct an approximation for closure phases, we expand
each interferometric phase up to the fourth-order Taylor series
with relations in (26). Since ϕ′′(0) = 0 and ϕIV(0) = 0, by
summing three interferometric phases in a circular way, we
get

Φ123 = ϕ12 + ϕ23 + ϕ31

≈ ϕ′(0)(τ12 + τ23 + τ31) +
1

6
ϕ′′′(0)(τ312 + τ323 + τ331)

= 2k0µv(τ12 + τ23 + τ31)

− 4

3
k30E[(v − µv)

3](τ312 + τ323 + τ331),

(27)

where E[(v − µv)
3] is the third order central moment of the

velocity profile. In the case of closure-phase construction with
continuous Sentinel-1 acquisitions, τ12 + τ23 + τ31 = 0 and
−τ12 = −τ23 = 1

2τ31 = τ . Therefore, (27) becomes

Φ123 = −8k30E[(v − µv)
3]τ3. (28)

We employed a simple approach by assuming a skewed-
normal distribution for LoS velocity to generate closure
phases with numerical simulations. According to the maximum
likelihood estimation, the skewness γ1 of a skewed-norm
distribution can be written as a function of shape parameter
α1,

γ1 =
4− π

2

(δ
√

2/π)3

(1− 2δ2/π)2
, (29)

where δ = α1√
1+α2

1

. When α1 = 0, the skewness γ1 = 0 and

thus the distribution becomes a normal distribution. Assuming
the shape parameter α1 follows a uniform distribution within
the range of −28 to 28, corresponding to a theoretically
derived skewness (29) in the range of −0.99 to 0.99, and
considering 6-day revisit time of Sentinel-1, we simulated
closure phases using (28) for different skewness inputs. The
closure phases results, range from −30◦ to 30◦, are visualized
against the estimated skewness from the shape parameter in
Figure 13. These results confirm that as long as the velocity
distribution is skewed, the motion in LoS will result in a non-
zero closure phase. Additionally, a larger degree of skewness
produces larger closure phases.
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Fig. 13. Numerically simulated closure phases with the skewed motion model
when the estimated skewness γ1 ranges from −1 to 1.
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Politècnica de Catalunya (UPC), Barcelona, Spain,
in 1997, the M.S. degree in electrical and com-
puter engineering from the University of California,
Irvine, CA, USA, in 1998, under the Balsells Fellow-
ship, and the Ph.D. degree in clear-air imaging radar
systems to study the atmospheric boundary layer
from the University of Massachusetts, Amherst, MA,

USA, in 2003. In 2003, he joined Starlab Barcelona, where he worked on the
development of GNSS-R sensors and techniques. From 2004 to 2006, he
was a Visiting Professor with the Department of Telecommunications and
Systems Engineering, Universitat Autonoma de Barcelona. In March 2006,
he was awarded a Ramon y Cajal Grant to conduct pioneering research on
bistatic synthetic aperture radar (SAR) at Remote Sensing Laboratory, UPC.
Between November 2009 and August 2016, he led the SAR Missions Group
at the Microwaves and Radar Institute, German Aerospace Center, Wessling,
Germany. Since September 2016, he has been an Associate Professor with the
Geoscience and Remote Sensing Department, Faculty of Civil Engineering and
Geosciences. He has been deeply involved in the development of several radar
missions and mission proposals, and is the Lead Investigator of the Harmony
ESA Earth Explorer 10 Mission. He has coauthored over 50 peer-reviewed
journal articles and more than 125 conference contributions in a broad range
of topics related to radar remote sensing.

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3432396

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Delft Library. Downloaded on July 31,2024 at 09:24:45 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Background
	Data processing
	Observations
	Observations over corn fields
	Observations over citrus fields
	Observations over greenhouses
	Discussion

	Models: proposal and verification
	Existing soil moisture model
	Existing interferometric model for volume scattering
	Equivalent-medium propagation model
	Skewed motion model

	Conclusion
	Appendix A: Mathematical representation of multilooking
	Appendix B: Skewed motion model derivation
	References
	Biographies
	Yan Yuan
	Marcel Kleinherenbrink
	Paco López-Dekker


