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Abstract The policies of Third National Energy

Efficiency Action Plan for the Netherlands, regarding

the reduction of household energy consumption

(HEC), were made based on the unwritten presump-

tion that the stimuli of HEC are similar in each and

every location of the Netherlands, and that it therefore

is possible to formulate an identical set of incentives

and regulations that are optimally suitable in all the

locations of the country. The objective of this study is

to examine the validity of this presumption by

formulating two research questions: what are the

national determinants of HEC, i.e. the stimuli that

trigger the same response across the whole country?

What are the local determinants of HEC, i.e. the

stimuli which trigger different responses across the

country? To identify local and national determinants

of HEC, the impact of nine determinants of HEC in 2

462 neighbourhoods of the Netherlands is assessed by

employing the geographical variability test. The

results show that two of the determinants are national:

(1) the number of frost-days, (2) wind speed. The

results indicate that seven of the determinants are

local: (1) income, (2) household size, (3) building age,

(4) surface-to-volume ratio, (5) population density, (6)

number of summer days, and (7) land surface temper-

ature. By employing a semi-parametric geographically

weighted regression analysis, the impact of the local

and global determinants of HEC is estimated and

mapped.

Keywords Household energy consumption � Semi-

parametric geographically weighted regression �
Mixed geographically weighted regression � Energy
policy � Netherlands

Introduction

The policies of Third National Energy Efficiency

Action Plan for the Netherlands (Ministry of Eco-

nomic Affairs 2014) regarding the reduction of

household energy consumption (HEC) were devel-

oped based on a one-size-fits-all approach: in the

policy document, as it is reported to the European

commission, the ‘‘geographical area’’ of all the

proposed incentives and regulations is specified as

‘‘the Netherlands’’, without any differentiation

according to location-specific circumstances, i.e.

socioeconomic patterns, climate, level of urbanisation,

land cover, and housing stock (see Table 1). In this

respect, the policy is made based on an unwritten

presumption: that the stimuli of HEC are similar in
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each and every location of the Netherlands, and that it

therefore is possible to formulate an identical set of

incentives and regulations that is optimally suitable in

all locations of the country. This presumption is not

valid. The presumption, however, reflects a gap in the

existing body of literature on HEC. Almost all the

previous studies are based on the assumption that the

determinants of HEC are identical across all areas, and

almost all have tried to discover the universally

applicable rules that explain the level of HEC. A

small portion of previous studies, in contrast, has

presumed that all determinants of HEC are location-

specific. These studies, however, have failed to prove

whether or not that is the case for each and every

determinant of HEC.

The objective of this study is bridge the knowledge

gap by seeking answers to two research questions:

what are the national determinants of HEC, i.e. the

stimuli that trigger the same response across the whole

country? What are the local determinants, i.e. the

stimuli that trigger different responses across the

country? This study analyses annual energy consump-

tion per capita within dwellings (HEC) in the neigh-

bourhood units—a rough translation of the Dutch

wijk—of the Netherlands in 2014. The level of HEC is

studied against nine independent variables that have

previously been considered effective determinants of

HEC: income, household size, building age, surface-

to-volume ratio of buildings, population density,

degree days (i.e. number of summer days and number

of frost days), wind speed, and land surface temper-

ature. The methodology of this study is twofold. First,

by employing the geographical variability test

(Nakaya et al. 2009), the local and national determi-

nants of HEC are identified. Second, by employing a

semi-parametric geographically weighted regression

(SGWR) analysis, the impact of national and local

determinants of HEC is estimated and mapped. In the

next parts, the previous studies are briefly reviewed,

and the methodology and data of this study are

described. Results and conclusions are presented at the

end.

Previous studies on local and global determinants

of household energy consumption

Subsequent to the publication of the two seminal

papers on modelling spatial associations (Brunsdon

et al. 1996; Fotheringham et al. 1996), and the follow-

up book by Fotheringham et al. (2003), two new

concepts went viral among scholars conducting geo-

graphic analysis: (1) local determinants, i.e. the insight

that the impact of a phenomenon is spatially non-

Table 1 Third National Energy Efficiency Action Plan for the Netherlands (2014) regarding the reduction of residential energy

use—all of the listed measures are applicable to the Netherlands as a whole

Policy measure

1. Tightening of energy performance standards (EPC) of buildings

2. Lente Agreement on energy-efficient new buildings

3. More with Less: agreement for energy saving in existing residential and other buildings

4. Changes to the Home Valuation System: link maximum rent of a dwelling to its energy label

5. Reduced VAT rate for the maintenance and renovation of residential buildings

6. Block-by-block approach (large-scale approach to improve existing housing stock)

7. Acceleration (facilitating investments in improving the energy efficiency of residential buildings)

8. Revolving fund for energy saving (encouraging investment in the energy efficiency of existing buildings)

9. Energy-saving agreement for the rental sector (corporations, landlords, tenants)

10. Subsidy available for landlords in the social rental sector to improve the energy efficiency of buildings

11. Energy tax (tax levy on energy tariffs)

12. EIA: Energy Investment Allowance (tax reduction for the purchase of energy-efficient equipment)

13. Green Investment and Finance (tax incentive for investment in environmental friendly projects)

14. Green Deal (support for investment in energy-saving and renewable energy measures)
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stationary and thus varies from one location to

another; (2) global determinants, i.e. the stimuli of a

phenomena that provoke the same response in all

locations of interest. This new perspective sharply

contrasted with the presumption that underlies studies

prior to that date—which merely searched for global

explanations for different spatial phenomena—and

left a profound impact on the studies in different fields;

scholars in different disciplines have disclosed the

local determinants of a variety of geographic phe-

nomena, e.g. violent crime (Stein et al. 2016), regional

development (Yu 2014), poverty (Vaziri et al. 2018),

residential burglary (Zhang and Song 2014), and

utilisation of prenatal care (Shoff et al. 2012). It has

also raised a new and fundamental question for

scholars in different disciplines: what are the local

and global determinants of the phenomenon in ques-

tion? A variety of studies have shown that the best

understanding of a range of phenomena—e.g. hedonic

house price (Geniaux and Napoléone 2008), academic

performance (Figueroa et al. 2018), soil organic matter

(Zeng et al. 2016)—is achieved only when global and

local determinants are distinguished.

In the last two decades, while the local and global

determinants of the phenomena of interest have been

explored in a variety of disciplines, HEC studies have

significantly lagged behind in the application of the

new methods of geographic analysis. Previous

empirical studies on HEC could be categorised into

two groups according to their methodology. The first

group, accounting for the vast majority of previous

studies on HEC, neglects the possibility that deter-

minants of HEC could be local. These studies are

based on an underlying presumption that all deter-

minants of HEC are global, i.e. they presume that

there are some generic rules applicable to all

locations. A variety of the studies following this

presumption have cited global rules to explain levels

of HEC, such as the following examples: the higher

the income level, the higher the HEC (Druckman and

Jackson 2008; Joyeux and Ripple 2007); per capita

HEC drops in larger households (Kowsari and

Zerriffi 2011; Isaac and Van Vuuren 2009); the older

a building, the higher the HEC (Belaı̈d 2016;

Steemers and Yun 2009); the higher the surface-to-

volume ratio of the buildings, the higher the HEC

(Steemers and Yun 2009; Druckman and Jackson

2008); HEC drops in areas with a higher population

density (Porse et al. 2016; Pachauri and Jiang 2008);

the more cooling and heating degree days there are,

the higher the level of consumption (Wiedenhofer

et al. 2013; Reinders et al. 2003); the impact of wind-

speed on the heat loss of buildings is substantial

enough to change the level of HEC (Sanaieian et al.

2014; van Moeseke et al. 2005); land surface

temperature affects HEC in all urban areas (Azevedo

et al. 2016; Lee and Lee 2014).

The second group of the earlier studies is based on

the underlying assumption that all determinants of

HEC are local. Bouzarovski and Simcock (2017,

p. 640) state that ‘‘there are clear geographic pattern-

ings associated with [household] energy [consumption

and] poverty, as well as a geographically embedded

and contingent nature of … underlying causes.’’ Yu

(2012) concludes that in eastern China, the intensity of

energy use of a province is strongly associated with

that of its neighbouring provinces, and that there is a

‘‘convergence [between] provincial energy intensity.’’

(2012, p. 583). Robinson et al. have observed that

‘‘vulnerabilities [to energy poverty] associated with

disability or illness… is stronger… in some southern

cities [of England] including London, Luton and

Southampton.’’ (2018, pp. 12–13). An analysis of the

carbon emissions related to HEC in north-west China

conclude that the determinants of pollution vary from

one region to another: ‘‘income indicates a greater

influence,’’ for instance, ‘‘in northern Ningxia and

northern Shaanxi’’ (Li et al. 2016, p. 183). A study on

HEC in California (Sultana et al. 2018) estimated that

the aging of the population has a significant impact on

increasing HEC in north-eastern areas, whereas no

significant effect is expected in the north-western

areas. Two studies on HEC in the Randstad region in

the Netherlands show that building age, as a proxy for

buildings’ energy efficiency, has a greater impact in

rural areas than in urban areas (Mashhoodi 2018), and

the main determinant of households’ gas consump-

tion—i.e. building age, household size, income, and

population density—vary across neighbourhoods of

the region (Mashhoodi and van Timmeren 2018).

There is a knowledge gap in the previous studies on

HEC. Most of the earlier studies presumed that the

determinants of HEC are global, while some studies

presumed that all determinants of HEC are local. A

central and fundamental question, however, has never

been posed: what are the local and global determinants

of HEC?
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Methodology

This study aims at estimating the local and global

determinants of HEC. In the first step of the analysis, a

convectional linear regression model, OLS, which

holds all the determinants as global determinants of

HEC, is employed:

yi ¼ b0 þ
X

k

bkxik þ ei ð1Þ

where yi denotes the estimated value of HEC in the

location i, b0 denotes the intercept, and bk shows the

coefficient slope of the kth independent variable. xik

and ei show the values of independent variables and

random error term in location i. In the second step of

the analysis, the GWR model, all the independent

variables are held as local determinants of HEC:

yi ¼ b0 li; mið Þ þ
X

k

bkðli; miÞxik þ ei ð2Þ

where li; mið Þ shows the x–y coordinate of location i.

bk li; mið Þ and b0 li; mið Þ are the local coefficient and

intercept of kth independent variable in location i. A

fixed Gaussian function is used to weight the instances

around location i:

Wij ¼ exp �d2
ij=h

2
i kð Þ

� �
; if dij\h

0; otherwise

(
ð3Þ

where Wij is the weight assigned to the instance

observed at location j for the estimation of local

coefficients at location i, dij is the geodesic distance

between i and j in metres, and hi kð Þ is the fixed

bandwidth. Using the golden selection function of the

GWR 4.0 tool (Nakaya et al. 2009), the optimal hi kð Þ,

which minimises the AICc (Akaike information

criterion) value of the GWR model, is determined.

To identify local and national determinants of HEC,

for each of the k independent variables in Eq. 2, a

geographical variability test is applied. The third

session, a semi-parametric geographically weighted

regression, SGWR, estimates the effect of global and

local determinants of HEC:

yi ¼ b0 li; mið Þ þ
X

m

bmðli; miÞxim þ
X

n

cnzni þ ei

ð4Þ

where bm li; mið Þ denotes the coefficient of the mth

local determinant at location i, and cn shows the

coefficient of the nth national determinant. A fixed

Gaussian function is used. The optimal bandwidth for

the SGWR model is estimated by the golden selection

function of GWR 4.0.

The performance of the OLS, GWR, and SGWR

models is compared by means of four tests: adjusted

R2, AICc (corrected Akaike information criterion),

cross-validation (CV), and randomness of the spatial

distribution of the residuals (assessed by Moran’s I).

Data and case study

Case study

The case study of this research is comprised of the

neighbourhood units, wijken in Dutch, of the Nether-

lands. The neighbourhoods are spatial divisions

defined by the Dutch central bureau of statistics

(CBS). The CBS divides all areas of the Netherlands

into 2 836 neighbourhood units. The reason for the use

of the neighbourhood units is the availability of data:

the CBS annually publishes data on a variety of

socioeconomic characteristics of the neighbourhoods.

This study is carried out on 2462 out of the 2836

neighbourhoods of Netherlands. The neighbourhoods

excluded from the study, accounting for 15% of the

total, are of six types: (1) water bodies; (2) the

neighbourhoods that are not covered by the satellite

image of 17 September 2014 (which is used to

calculate land surface temperature); (3) the neigh-

bourhoods covered by cloud in the satellite image; (4)

the neighbourhoods of the three isolated islands of

Texel, Terschelling and Nes; (5) non-residential

neighbourhoods; (6) neighbourhoods identified as an

outlier based on an abnormally low level of HEC per

capita. The reason for excluding the latter is that the

CBS database on households’ gas and electricity

consumption merely reports the consumption supplied

from the distribution grid of gas and electricity in the

neighbourhoods. The supply from district-heating

systems or solar panels, however, is not reported by

the CBS database. It is likely that a neighbourhood

with an abnormally low level of consumption in the

CBS database is provided with district-heating or a

large number of solar panels. In this case, the

neighbourhoods with an abnormally low values (z-

score\ 2.5) are excluded from this study (Fig. 1).
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Dependent variable

The dependent variable of this study is annual

expenditure per capita, on gas and electricity, within

dwellings in 2014 (Fig. 1). The data on gas and

electricity is provided by the CBS (Centraal Bureau

voor de Statistiek 2013). The average gas and

electricity price for domestic use in the Netherlands,

in 2014, is provided by Eurostat (2015).

Independent variables

This study is conducted on nine independent variables

(see Table 2). Income shows annual disposable

income per capita. Household size shows the average

household size in the neighbourhoods in question.

Building age shows the median age of the buildings.

Surface-to-volume shows the ratio of buildings’

external surfaces to their volume. Population density

denotes the number of inhabitants per square kilome-

tre. Following the definitions of degree days provided

by the Royal Netherlands Meteorological Institute

(KNMI), the air temperature in neighbourhoods is

measured by two variables: Summer days, the number

of days with a maximum temperature higher than 25

degrees Celsius, and Frost days, the number of days

with a minimum temperature lower than 0 degrees

Celsius. To obtained the variables, based on KNMI

guidelines (Sluiter 2012), the number of summer days

and frost days in the KNMI’s 28 meteorological

stations is interpolated—universal kriging with exter-

nal drift of log distance to shore.

Wind-speed shows the speed of the wind blowing at

a height of 10 m above ground. The variable is

obtained based on a two layer model of the planetary

boundary layer (for a detailed description see Stepek

and Wijnant 2011). To conduct the calculations three

datasets are used: wind speed at KNMI meteorological

stations in 2014 (KNMI 2018); the CORINE land-

cover database (European Environment Agency 2016)

and the roughness length classifications of the

CORINE land-cover classes (Silva et al. 2007); and

Fig. 1 Case study and dependent variables of the study
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finally the land surface temperature (LST) on 17

September 2014. The variable is used as a proxy for

the average LST in different seasons. The choice of the

date was due to two facts. First, there are few days in

which the Landsat-8 satellite image of the Netherlands

is available and a large part of the country the areas is

not covered by cloud. Secondly, most of the vegetation

and trees are green in September, therefore miscalcu-

lation of the NDVI (Normalized Difference Vegeta-

tion Index), which is used as the basis for calculating

LST, could be avoided. To obtain LST, the atmo-

sphere spectral radiance is first calculated:

Lk ¼ MLQcal þ AL ð5Þ

where Lk is the top of the atmosphere spectral

radiance, ML is the band 10 multiplicative rescaling

factor from metadata (3.3420E-04), Qcal is the band

10 value in the Landsat-8 image, and AL is the band 10

additive rescaling factor from metadata (0.1). Subse-

quently the satellite brightness temperature is

calculated:

T ¼ K2= ln K1=Lk þ 1ð Þð Þ ð6Þ

where T is the satellite brightness temperature and K2

(1321.08) and K1(774.89) are thermal conversion

constants for band 10. To correct T for land-cover

emissivity, the emissivity-corrected surface tempera-

ture, LST, is corrected as follows:

LST ¼ T= 1þ kT

q

� �
� ln eð Þ

� �
ð7Þ

e ¼ 0:004PV þ 0:986 ð8Þ

PV ¼ NDVI � NDVImin

NDVImax � NDVImin

� �2

ð9Þ

NDVI ¼ NIR � Red

NIR þ Red
ð10Þ

where LST is the emissivity-corrected surface tem-

perature, k is the wavelength of emitted radiance

(11.5), e is emissivity, PV is vegetation proportion,

NIR is near infrared (band 5), and Red is band 4 in the

Landsat-8 image (USGS 2018a; Stathopoulou and

Cartalis 2007; Kim 2013).

The data on Income,Household size and Population

density are provided by the Wijk-en-buurt-kaart 2014

(Centraal Bureau voor de Statistiek 2013). The data

used to calculate Building age and Surface-to-volume

are obtained by use of the building height database—

3D BAG (Esri Netherlands 2016). Data of meteoro-

logical stations—used to calculate Summer days,

Frost days and Wind speed—are provided by Royal

Netherlands Meteorological Institute (KNMI 2018).

Data on land-cover—used to calculate surface rough-

ness length to obtain Wind speed—is provided by the

CORINE database (European Environment Agency

2016). The Landsat-8 satellite images—used to

calculate LST—is taken from the USGS website

(USGS 2018b).

Results

The identification of local and national

determinants of HEC

The geographical variability test, formulated by

Nakaya et al. (2009), is used for the identification of

Table 2 Descriptive

statistics of the independent

variables

Variable Mean Minimum Maximum SD

Income 23.11 12.00 52.70 3.80

Household size 2.35 1.24 4.00 0.30

Building age 39.33 0 164 15.01

Surface-to-volume 0.2691 0.1128 0.3972 0.0347

Population density 1777.66 3 21,656 2591.81

Summer days 23.1080 6.0600 37.6800 8.0470

Frost days 68.8040 52.6200 80.7400 6.3187

LST 21.75 15.23 26.22 1.03

Wind speed 39.58 28.39 64.63 5.28
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local and national determinants. The test is based on a

comparison between performance of multiple GWR

models. To assess geographical variability of the kth

independent variable a model comparison between

two models is carried out: first, a GWR model which

holds all variables as local and the kth variable as

national; second, a GWR model which holds all the

variables as a local variable. A comparison between

AICc of the two models determines whether the kth

variables are local or national determinants of HEC: if

the AIC of the second model is lower than that of the

first model, the ‘‘DIFF of Criterion’’ measure is

smaller than zero, then the kth variable is a local

determinant of HEC; if not, the kth is a national

determinant. The application of the geographical

variability test shows that two of the variables are

national: Frost days, and Wind speed. The results

indicate that seven of determinants are local: Income,

Household size, Building age, Surface-to-volume,

Population density, Summer days, and LST (Table 3).

In order to check for multicollinearity between the

nine determinants, an OLS model is applied. The

results show that the Variance Inflation Factor (VIF)

of all the independent variables is well below the

maximum threshold of 2.5. This implies that the effect

of the variables is fairly unique and therefore there is

no multicollinearity bias (Table 3).

Comparison between the performance

of the SGWRmodel and that of the GWR and OLS

models

Subsequent to the identification of the local and global

determinants of HEC, a SGWR model is employed.

The model estimates the impact of the determinants of

HEC by simultaneously holding two of the variables

as global determinants and seven of the variables as

local determinates (Table 4).

The comparison between the performance of the

SGWRmodel and that of the OLS model (which holds

all variables as global determinants) and the GWR

model (which holds all variables as local determi-

nants), shows that the former model provides the best

understanding of HEC in the neighbourhoods of the

Netherlands: the SGWR model has the lowest level of

AIC, AICc and CV, the highest value of the adjusted

R-square, and the most random spatial distribution of

residuals—assessed by Moran’s Index (Table 5).

Estimates of the local and national determinants

of HEC

The results of the SGWR model show that the

estimated coefficient of one of the two national

determinants, Frost days, is significant at the

p value\ 0.01 level. The coefficient is larger than

the estimated effect of the local determinants of HEC

Table 3 Geographical variability test and estimates of OLS and GWR models

Variable OLS results GWR results Geographical variability test

b VIF b mean b min b max b SD DIFF of criterion Determinant type

Intercept 0.000** 0.032 - 17.568 15.424 2.315 - 1078.42

Income 0.271** 1.1 0.406 - 0.958 0.839 0.129 - 16.96 Local

Household size - 0.098** 1.63 - 0.042 - 0.795 0.555 0.205 - 60 Local

Building age 0.340** 1.36 0.336 0.019 0.761 0.125 - 18.79 Local

Surface-to-volume 0.061** 1.34 - 0.015 - 0.277 0.256 0.101 - 8.62 Local

Population density - 0.532** 1.76 - 0.528 - 1.271 - 0.027 0.216 - 48.36 Local

Summer days 0.043* 1.81 0.53 - 11.497 11.805 1.668 - 97.16 Local

Frost days 0.173** 1.78 - 0.184 - 5.603 4.36 1.001 3.84 National

Wind speed 0.003 1.14 - 0.016 - 0.515 0.184 0.059 42.79 National

LST - 0.097** 2.06 - 0.058 - 0.435 0.547 0.152 - 11.89 Local

b standardized regression coefficient

*p value\ 0.05; **p value\ 0.01
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in almost all neighbourhoods of the Netherlands. This

result implies that the number of frost days is the most

influential determinant of HEC, and this statement

could be generalised for all neighbourhoods. The

estimated coefficient of the other national determi-

nant, Wind speed, is not significant at the

p value\ 0.05 level. Wind speed, therefore, is not

an effective factor of HEC in the neighbourhoods of

the country. In the case of the estimated local

coefficients, it is found that, Income and Building

age have a substantial impact on increasing HEC

levels. Population density has a considerable impact

on decreasing the HEC levels of most neighbour-

hoods. In the case of Summer days, LST and House-

hold size, the local impact of the determinate could

vary in nature across the neighbourhoods, i.e. in some

neighbourhoods they contribute to mitigate levels of

HEC, whereas in others they boost the levels of HEC

(Fig. 2).

The distribution of local coefficients across the

neighbourhoods of the Netherlands shows that more

than 93% of the local coefficients of Income are

significant at the p value\ 0.05 level, which are all

positively associated with HEC. A pocket of high

Table 4 Estimates of the

SGWR model

b standardized regression

coefficient

**p value\ 0.01

Variable National coefficients Local coefficients

b SE b mean b min b max b SD

Intercept - 0.451 - 13.240 3.247 0.995

Income 0.410 - 0.803 0.946 0.155

Household size - 0.047 - 0.969 0.729 0.217

Building age 0.336 - 0.038 0.906 0.138

Surface-to-volume - 0.011 - 0.389 0.293 0.113

Population density - 0.547 - 1.605 - 0.016 0.255

Summer days - 0.316 - 7.809 2.236 0.688

Frost days 0.623** 0.170

Wind speed - 0.017 0.014

LST - 0.048 - 0.567 0.618 0.175

Table 5 Diagnostics of the OLS, GWR and SGWR models

OLS GWR SGWR

AIC 5394.08 4711.53 4645.60

AICc 5394.19 4788.57 4733.63

CV 0.5251 0.4349 0.4311

R2 0.481 0.686 0.699

Adjusted R2 0.479 0.626 0.638

Residuals Moran’s I 0.1718 0.0211 0.0163

Bandwidth (m) NA 12,867.58 11,070.30

Fig. 2 The box plot illustrates the variability of the coefficients

of local determinants of HEC. The solid red line shows the

coefficient of the significant national determinant (Frost days).

The dashed red line shows that of the not-significant national

determinant (wind speed). (Color figure online)
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values is observed in the north-east of the country

between the cities of Groningen, Emmen, Zwolle and

Leeuwarden (Fig. 3a).

Some 37% of the local coefficients of Household

size are significant at the p value\ 0.05 level. The

sign of almost 71% of the significant coefficients is

negative, where that of 29% is positive. Most of the

negative coefficients are observed in the areas of The

Hague, Rotterdam and the area north and west of

Amsterdam, i.e. Haarlem and Zaanstad. The largest

positive coefficients are observed in vicinity of

Tilburg and Breda. Also, in some neighbourhoods

Amsterdam and Utrecht a modest positive coefficient

is observed (Fig. 3b).

In the majority (89%) of neighbourhoods, the local

coefficient of Building age is significant at the

p value\ 0.05 level, which is positively associated

with HEC. The magnitude of the association is

remarkably lower in the case of the most urbanised

part of Netherlands, the so-called Randstad, comprised

of the four main Dutch cities of Amsterdam, Utrecht,

Rotterdam and The Hague (Fig. 3c).

In merely 13% of the neighbourhoods the local

coefficient of Surface-to-volume is significant at the

p value\ 0.05 level. The majority of the significant

coefficients, nearly 78%, are positive. The largest

pockets of positive values are observed in the areas

enclaved between the Markermeer lake and the North

sea, as well as on the banks of the river Nieuwe Maas.

The areas with negative local coefficients are dis-

persed (Fig. 3d). In a majority of the neighbourhoods,

nearly 91%, coefficients of Population density are

significant at the p value\ 0.05 level, which is

associated with lower levels of HEC. The magnitude

of the effect is lower in the more urbanised area—

eminently the Randstad (Fig. 3e).

In the case of Summer days, almost in 39% of the

neighbourhoods local coefficients are significant

(p value\ 0.05). Distribution of the coefficient value

shows a clear geographical pattern: there is a gradual

change from largest negative coefficients in the north-

Fig. 3 Spatial variation of the estimated standardised coefficients of the local determinants of HEC
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west to large positive coefficients in the south-east.

Almost 84% of the significant coefficients are negative

(Fig. 3f). Some 26% of the local coefficients of LST

are significant at the p value\ 0.05 level. Most of the

negative coefficient values are concentrated in the

vicinity ofWestland, The Hague, Rotterdam and south

of Utrecht. About one fourth of the positive local

coefficients are located in the vicinity of Tilburg and

Breda (Fig. 3g).

Discussion

The results show that most of the determinants of HEC

are local, i.e. their impact varies across the neigh-

bourhoods of the country. Merely two of the nine

determinants of HEC are identified as national deter-

minants: Frost days and Wind speed. The results show

that the impact of merely one of the national deter-

minants, Frost days, is statistically significant. The

impact is remarkably large; in most of the neighbour-

hoods, Frost days is the most decisive determinant of

HEC. This national-scale impact could be explained

by the substantial share of heating-related consump-

tion of total HEC in the Netherlands. The data on end-

use of energy in the Netherlands published by Eurostat

shows that 63% of total energy consumed by the

households is related to space heating and nearly 17%

is related to water heating (Eurostat 2018). In short,

there is just one national-scale explanation for HEC in

all neighbourhoods of Netherlands: the higher the

number of frost days, the higher the level of HEC. The

impact of the rest of the determinants of HEC,

however, is highly variable across the neighbourhoods

of the Netherlands. In the next paragraphs the local

determinants of HEC and their spatial variability

across the country are discussed.

The results reveal a strong association between

levels of Income and HEC. The strongest association is

observed in the north-east of the country. Given that

the neighbourhoods in the north-east of the country are

among the most energy intensive neighbourhoods of

the Netherlands, presumably the associations between

Income and HEC increases at the upper end of the

consumption spectrum. This could be explained from

a behavioural point of view: the life-style of a heavy

user is constructed such that (s)he increases the level

of consumption if and when it is affordable to do so

(similar to conclusions drawn by Kaza 2010).

The results show that Household size could have an

opposite impact on the HEC of different neighbour-

hoods. In most of the neighbourhoods, a larger

Household size is associated with lower levels of

HEC. This is in line with the conclusions drawn by a

variety of previous studies (e.g. O’Neill and Chen

2002) which explain a similar observation by referring

to economies of scale in large households. Unexpected

results are observed in some neighbourhoods of

Amsterdam and Utrecht where larger Household size

is found to be associated with higher levels of HEC.

This is presumably due to higher HEC per capita in

households with young children compares to young

single-person-households. Amsterdam and Utrecht are

cities with a relatively large young population and

known for their lively urban life. A large portion of

small households accounts for young people who are

less bounded to indoor activities, do not parent

children, and possess a smaller number of appliances.

The HEC in such a household could be significantly

lower than in a larger household with young children

in which energy consumption for cooking and water

heating is higher (Weber and Perrels 2000); the

motivation for energy saving is lower (Abrahamse

and Steg 2009; Barr et al. 2005); and the possession of

a variety of appliances is more common.

The results show that a higher Building age, as a

proxy for buildings’ energy inefficiency, is associated

with higher levels of HEC. This is no unexpected

discovery. However, what is special to the results of

this study is that this association is weaker in the more

urbanised areas, specifically in the Randstad region. In

other words, the more urbanised the areas, the less

important the energy efficiency of the buildings. This

result opens a new dimension for studies focused on

the relation between urbanisation and energy con-

sumption. A variety of previous studies have exam-

ined the effect of urbanisation on the total amount of

energy consumption (e.g. Wang 2014); however

possible changes to the determinants of HEC in

response to the level of urbanisation has barely been

studied.

In most of the neighbourhoods no significant

association between HEC and Surface-to-volume is

found. In the areas with a scattered pattern of

urbanisation and exposure to the sea breeze from the

North Sea, Surface-to-volume is found to be associated

with a higher level of HEC. As suggested by various

previous studies, presumably this is due to higher heat
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loss of the dwellings. Higher Surface-to-volume has an

opposite impact on HEC of some neighbourhoods in

the east and south of the Netherlands. In the latter a

higher surface-to-volume is associated with lower

levels of energy consumption. Considering the

warmer weather in these areas, presumably a larger

building surface decreases the energy used for

ventilation.

The results show that, in almost all areas of the

Netherlands, a higher Population density is associated

with lower levels of HEC. The association is remark-

ably higher in less urbanised areas, e.g. the neigh-

bourhoods located in the south of Friesland and

Zeeland provinces. Presumably, this is due to a

marked difference between the life-styles of residents

of more urbanised neighbourhoods and to those in

adjacent rural neighbourhoods: urbanites tend to be

more engaged in outdoor activities and spend less time

at home; this can result in a substantial decrease in

levels of HEC (similar to the conclusions drawn by

Heinonen et al. 2013; Yu et al. 2013).

The number of Summer days could have a different

impact in different neighbourhoods. In the neigh-

bourhoods toward the north-west, where Summer

days are less frequent, an increase in the number of

Summer days is associated with lower HEC. This is

presumably due to less energy consumed for water

heating and more outdoor activities. In contrast, in

the south-east, with more frequent heat waves in

summer, the factor is associated with higher HEC.

Presumably, the increase in the number of Summer

days boosts electricity consumption for space cooling

in these neighbourhoods.

In areas in the vicinity of Rotterdam, the Hague and

Utrecht, higher values of LST are associated with

lower levels of HEC. Higher levels of LST could result

in an increase in air temperature. Presumably, this

contributes to a decreased amount of energy consumed

for space heating in these areas. An opposite associ-

ation is observed in some southern neighbourhoods—

with a warmer climate—where higher levels of LST is

associated with higher HEC. Presumably, the higher

air temperature consequent to higher levels of LST

results in higher energy consumption for space-

cooling in these neighbourhoods (similar to what is

suggested by Lee and Lee 2014; Ewing and Rong

2008).

Conclusion and policy implications

The core objective of this study was to examine the

validity of an unwritten presumption underlying the

policies regarding HEC in the Netherlands: that the

stimuli of HEC are similar in each and every location

of the Netherlands, and that it is therefore possible to

formulate an identical set of incentives and regulations

that is optimally suitable in all locations of the country.

The results show that the validity of such a presump-

tion is questionable. It is established that the determi-

nants of HEC in the Netherlands could be categorised

in two types: national determinants and local deter-

minants. The effect of national determinants (Frost

days and Wind speed) on HEC could be generalised

across all the neighbourhoods of the country, whereas

the effect of local determinants (Income, Household

size, Building age, Surface-to-volume, Population

density, Summer days, and LST) vary from one

neighbourhood to another. In this case the most

effective way to reduce HEC could be related to a

variety of factors that could vary from one neighbour-

hood to another. These findings have two major policy

implications: first, one-size-fits-all policies need to be

completed with location-specific strategies; secondly,

in order to properly address the local determinants of

HEC, the policies need to be enriched by the addition

of socioeconomic, morphological and climate-related

angles to their approach. The two policy implications

are elaborated in the next paragraphs.

It is established that the nature and magnitude of

local determinants’ impact vary across the neighbour-

hoods of the Netherlands. In the most eminent cases,

an increase in Household size and Summer days can

have an opposite impact on the HEC of different

neighbourhoods. In the case of other local determi-

nants, though the nature of the effect is similar in all

the neighbourhoods, their magnitude differs vastly

from one neighbourhood to another. For instance,

though it is established that a higher Building age, as a

proxy for buildings’ energy efficiency, is associated

with higher levels of HEC, such an effect is substan-

tially smaller in highly-urbanised neighbourhoods. In

this respect, a rigid set of policies would not optimally

suit the different local circumstances in various parts

of the country. As the energy efficiency of buildings is

more crucial in less urbanised areas, for instance,

building regulations could be tightened up in suburban
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and rural neighbourhoods, and additional incentives

for building renovation could be introduced.

Most of the incentives and regulations introduced

by the policies are related to buildings’ energy

efficiency. The results of this study, however, show

that energy consumption within dwellings is affected

by a variety of factors such as income, household

type, urban morphology, population density and

urbanisation, land surface temperature and urban

heat islands. It is established that in some neighbour-

hoods the effect of such factors outnumbers that of

buildings’ energy efficiency. Presumably, this is the

reason that the actual energy consumption of the

labelled dwellings in the Netherlands does not

necessarily match to their theoretical energy con-

sumption (Majcen et al. 2013). This calls for a shift in

the approach of the current policies regarding the

reduction of HEC in the Netherlands—in which

energy efficiency of buildings is the keystone of

introduced incentives and regulations (see Table 1).

Policies need to break through the narrow perspective

of building energy efficiency and take a more

multidimensional approach. This is eminently nec-

essary in order to properly adapt to ongoing trends in

the Netherlands: the projected changes in household

type towards smaller and more aged households—see

population projections by the CBS (2011); the

planned construction of half a million new dwellings

in the Randstad region which will transform mor-

phology of the cities—see the Randstad structural

vision for 2040 (Rijksoverheid 2008); the expected

change of climate in terms of temperature, wind

speed, precipitation, solar radiation and cloudiness—

see the climate scenarios by the KNMI (2015); the

growing concerns about the urban heat island effect

in Dutch urban environments and its effects on the

urban microclimate—see, e.g. the study on urban

heat islands in Amsterdam and Rotterdam (van der

Hoeven and Wandl 2015a, b). Energy polices should

not pass all these trends unnoticed. Household energy

consumption within dwellings is not just about

dwellings; policies shouldn’t be either.
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Geniaux, G., &Napoléone, C. (2008). Semi-parametric tools for

spatial hedonic models: An introduction to mixed geo-

graphically weighted regression and geoadditive models.

In: Baranzini, A., Ramirez, J., Schaerer, C., & Thalmann,

P. (Eds.), Hedonic Methods in Housing Markets (pp.

101–127). New York, NY: Springer.

Heinonen, J., Jalas, M., Juntunen, J. K., Ala-Mantila, S., &

Junnila, S. (2013). Situated lifestyles: I. How lifestyles

change along with the level of urbanization and what the

greenhouse gas implications are—A study of Finland.

Environmental Research Letters, 8(2), 025003.

Isaac, M., & Van Vuuren, D. P. (2009). Modeling global resi-

dential sector energy demand for heating and air condi-

tioning in the context of climate change. Energy Policy,

37(2), 507–521.

Joyeux, R., & Ripple, R. D. (2007). Household energy con-

sumption versus income and relative standard of living: A

panel approach. Energy Policy, 35(1), 50–60.

Kaza, N. (2010). Understanding the spectrum of residential

energy consumption: A quantile regression approach. En-

ergy Policy, 38(11), 6574–6585.

Kim, J. P. (2013). Variation in the accuracy of thermal remote

sensing. International Journal of Remote Sensing, 34(2),

729–750.

KNMI. (2015). KNMI’ 14 Climate scenarios for the Nether-

lands. http://www.climatescenarios.nl/. Accessed Aug 03,

2018.

KNMI. (2018). http://www.sciamachy-validation.org/climatology/

daily_data/selection.cgi. Accessed Mar 08, 2018.

Kowsari, R., & Zerriffi, H. (2011). Three dimensional energy

profile: A conceptual framework for assessing household

energy use. Energy Policy, 39(12), 7505–7517.

Lee, S., & Lee, B. (2014). The influence of urban form on GHG

emissions in the US household sector. Energy Policy, 68(C),

534–549. https://doi.org/10.1016/j.enpol.2014.01.024

Li, J., Huang, X., Yang, H., Chuai, X., Li, Y., Qu, J., et al.

(2016). Situation and determinants of household carbon

emissions in Northwest China. Habitat International, 51,

178–187. https://doi.org/10.1016/j.habitatint.2015.10.024

Majcen, D., Itard, L. C. M., & Visscher, H. (2013). Theoretical

vs. actual energy consumption of labelled dwellings in the

Netherlands: Discrepancies and policy implications. En-

ergy Policy, 54(C), 125–136. https://doi.org/10.1016/j.

enpol.2012.11.008

Mashhoodi, B. (2018). Spatial dynamics of household energy

consumption and local drivers in Randstad, Netherlands.

Applied Geography, 91, 123–130. https://doi.org/10.1016/

j.apgeog.2018.01.003

Mashhoodi, B., & van Timmeren, A. (2018). Local determinants

of household gas and electricity consumption in Randstad

region,Netherlands:Application of geographicallyweighted

regression. Spatial Information Research, 26(6), 607–618.

Ministry of Economic Affairs. (2014). Third National Energy Effi-

ciency Action Plan for the Netherlands. Submitted toEuropean

Commission: https://ec.europa.eu/energy/sites/ener/files/

documents/NEEAP_2014_nl-en.pdf238282/. Accessed

May 08, 2018.

Nakaya, T., Fotheringham, A. S., Charlton, M., & Brunsdon, C.

(2009). Semiparametric geographically weighted gener-

alised linear modelling in GWR 4.0. In B. Lees & S. Laffan

(Eds.), 10th International conference on geocomputation.

Sydney, Australia. Accessed 10 Dec 2018.

O’neill, B. C., & Chen, B. S. (2002). Demographic determinants

of household energy use in the United States. Population

and Development Review, 28, 53–88.

Pachauri, S., & Jiang, L. (2008). The household energy transi-

tion in India and China. Energy Policy, 36(11), 4022–4035.

Porse, E., Derenski, J., Gustafson, H., Elizabeth, Z., & Pincetl,

S. (2016). Structural, geographic, and social factors in

urban building energy use: Analysis of aggregated account-

level consumption data in a megacity. Energy Policy, 96,

179–192. https://doi.org/10.1016/j.enpol.2016.06.002

Reinders, A. H., Vringer, K., & Blok, K. (2003). The direct and

indirect energy requirement of households in the European

Union. Energy Policy, 31(2), 139–153.

Rijksoverheid. (2008). https://www.rijksoverheid.nl/documenten/

brochures/2008/09/01/structuurvisie-randstad-2040-in-het-

kort. Accessed Mar 08, 2018.

Robinson, C., Bouzarovski, S., & Lindley, S. (2018). Under-

representing neighbourhood vulnerabilities? The mea-

surement of fuel poverty in England. Environment and

Planning A: Economy and Space, p.0308518X18764121.

Sanaieian, H., Tenpierik, M., van den Linden, K., Seraj, F. M., &

Shemrani, S. M. M. (2014). Review of the impact of urban

block form on thermal performance, solar access and ven-

tilation. Renewable and Sustainable Energy Reviews, 38(C),

551–560. https://doi.org/10.1016/j.rser.2014.06.007

Shoff, C., Yang, T. C., & Matthews, S. A. (2012). What has

geography got to do with it? Using GWR to explore place-

specific associations with prenatal care utilization.

GeoJournal, 77(3), 331–341.

Silva, J., Ribeiro, C., & Guedes, R. (2007). Roughness length

classification of Corine Land Cover classes. In Proceed-

ings of the European Wind Energy Conference, Milan,

Italy (Vol. 710, p. 110).

Sluiter, R. (2012). Interpolation methods for the climate atlas.

KNMI technical rapport TR–335, Royal Netherlands

Meteorological Institute, De Bilt (pp. 1–71).

123

GeoJournal

http://ec.europa.eu/eurostat/statistics-explained/index.php%3ftitle%3dFile:Half-yearly_electricity_and_gas_prices%2c_second_half_of_year%2c_2012%25E2%2580%259314_(EUR_per_kWh)_YB15.png%26oldid%3d238282
http://ec.europa.eu/eurostat/statistics-explained/index.php%3ftitle%3dFile:Half-yearly_electricity_and_gas_prices%2c_second_half_of_year%2c_2012%25E2%2580%259314_(EUR_per_kWh)_YB15.png%26oldid%3d238282
http://ec.europa.eu/eurostat/statistics-explained/index.php%3ftitle%3dFile:Half-yearly_electricity_and_gas_prices%2c_second_half_of_year%2c_2012%25E2%2580%259314_(EUR_per_kWh)_YB15.png%26oldid%3d238282
http://ec.europa.eu/eurostat/statistics-explained/index.php%3ftitle%3dFile:Half-yearly_electricity_and_gas_prices%2c_second_half_of_year%2c_2012%25E2%2580%259314_(EUR_per_kWh)_YB15.png%26oldid%3d238282
http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households
http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households
https://doi.org/10.1080/026937996137909
https://doi.org/10.1080/026937996137909
http://www.climatescenarios.nl/
http://www.sciamachy-validation.org/climatology/daily_data/selection.cgi
http://www.sciamachy-validation.org/climatology/daily_data/selection.cgi
https://doi.org/10.1016/j.enpol.2014.01.024
https://doi.org/10.1016/j.habitatint.2015.10.024
https://doi.org/10.1016/j.enpol.2012.11.008
https://doi.org/10.1016/j.enpol.2012.11.008
https://doi.org/10.1016/j.apgeog.2018.01.003
https://doi.org/10.1016/j.apgeog.2018.01.003
https://ec.europa.eu/energy/sites/ener/files/documents/NEEAP_2014_nl-en.pdf238282/
https://ec.europa.eu/energy/sites/ener/files/documents/NEEAP_2014_nl-en.pdf238282/
https://doi.org/10.1016/j.enpol.2016.06.002
https://www.rijksoverheid.nl/documenten/brochures/2008/09/01/structuurvisie-randstad-2040-in-het-kort
https://www.rijksoverheid.nl/documenten/brochures/2008/09/01/structuurvisie-randstad-2040-in-het-kort
https://www.rijksoverheid.nl/documenten/brochures/2008/09/01/structuurvisie-randstad-2040-in-het-kort
https://doi.org/10.1016/j.rser.2014.06.007


Stathopoulou, M., & Cartalis, C. (2007). Daytime urban heat

islands from Landsat ETM ? and Corine land cover data:

An application to major cities in Greece. Solar Energy,

81(3), 358–368.

Steemers, K., & Yun, G. Y. (2009). Household energy con-

sumption: A study of the role of occupants. Building

Research & Information, 37(5–6), 625–637.

Stein, R. E., Conley, J. F., & Davis, C. (2016). The differential

impact of physical disorder and collective efficacy: A

geographically weighted regression on violent crime.

GeoJournal, 81(3), 351–365.

Stepek, A., & Wijnant, I. L. (2011). Interpolating wind speed

normals from the sparse Dutch network to a high resolution

grid using local roughness from land use maps. Koninklijk

Nederlands Meteorologisch Instituut, Technical Report

TR-321.

Sultana, S., Pourebrahim, N., & Kim, H. (2018). Household

Energy Expenditures in North Carolina: A Geographically

Weighted Regression Approach. Sustainability, 10(5),

1511.

USGS. (2018a). https://landsat.usgs.gov/using-usgs-landsat-8-

product. Accessed Mar 08, 2018.

USGS. (2018b). https://earthexplorer.usgs.gov/. Accessed Mar

08, 2018.

van der Hoeven, F. D., & Wandl, A. (2015a). Amsterwarm:

Mapping the landuse, health and energy-efficiency impli-

cations of the Amsterdam urban heat island. Building

Services Engineering Research and Technology, 36(1),

67–88.

Van der Hoeven, F. D., & Wandl, A. (2015b). Hotterdam: Hoe

ruimte Rotterdam warmer maakt, hoe dat van invloed is op

de gezondheid van inwoners, en wat er aan te doen is.

TUDelft Bouwkunde.

Van Moeseke, G., Gratia, E., Reiter, S., & De Herde, A. (2005).

Wind pressure distribution influence on natural ventilation

for different incidences and environment densities. Energy

and Buildings, 37(8), 878–889.

Vaziri, M., Acheampong, M., Downs, J., &Majid, M. R. (2018).

Poverty as a function of space: Understanding the spatial

configuration of poverty in Malaysia for Sustainable

Development Goal number one. GeoJournal. https://doi.

org/10.1007/s10708-018-9926-8.

Wang, Q. (2014). Effects of urbanisation on energy consump-

tion in China. Energy Policy, 65(C), 332–339. https://doi.

org/10.1016/j.enpol.2013.10.005

Weber, C., & Perrels, A. (2000). Modelling lifestyle effects on

energy demand and related emissions. Energy Policy,

28(8), 549–566.

Wiedenhofer, D., Lenzen, M., & Steinberger, J. K. (2013).

Energy requirements of consumption: Urban form, cli-

matic and socio-economic factors, rebounds and their

policy implications. Energy Policy, 63(C), 696–707.

https://doi.org/10.1016/j.enpol.2013.07.035

Yu, D. (2014). Understanding regional development mecha-

nisms in Greater Beijing Area, China, 1995–2001, from a

spatial–temporal perspective. GeoJournal, 79(2),

195–207.

Yu, H. (2012). The influential factors of China’s regional energy

intensity and its spatial linkages: 1988–2007. Energy

Policy, 45, 583–593. https://doi.org/10.1016/j.enpol.2012.

03.009

Yu, B., Zhang, J., & Fujiwara, A. (2013). A household time-use

and energy-consumption model with multiple behavioral

interactions and zero consumption. Environment and

Planning B: Planning and Design, 40(2), 330–349.

Zeng, C., Yang, L., Zhu, A. X., Rossiter, D. G., Liu, J., Liu, J.,

et al. (2016). Mapping soil organic matter concentration at

different scales using a mixed geographically weighted

regression method. Geoderma, 281, 69–82. https://doi.org/

10.1016/j.geoderma.2016.06.033

Zhang, H., & Song, W. (2014). Addressing issues of spatial

spillover effects and non-stationarity in analysis of resi-

dential burglary crime. GeoJournal, 79(1), 89–102.

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

GeoJournal

https://landsat.usgs.gov/using-usgs-landsat-8-product
https://landsat.usgs.gov/using-usgs-landsat-8-product
https://earthexplorer.usgs.gov/
https://doi.org/10.1007/s10708-018-9926-8
https://doi.org/10.1007/s10708-018-9926-8
https://doi.org/10.1016/j.enpol.2013.10.005
https://doi.org/10.1016/j.enpol.2013.10.005
https://doi.org/10.1016/j.enpol.2013.07.035
https://doi.org/10.1016/j.enpol.2012.03.009
https://doi.org/10.1016/j.enpol.2012.03.009
https://doi.org/10.1016/j.geoderma.2016.06.033
https://doi.org/10.1016/j.geoderma.2016.06.033

	Local and national determinants of household energy consumption in the Netherlands
	Abstract
	Introduction
	Previous studies on local and global determinants of household energy consumption
	Methodology
	Data and case study
	Case study
	Dependent variable
	Independent variables

	Results
	The identification of local and national determinants of HEC
	Comparison between the performance of the SGWR model and that of the GWR and OLS models
	Estimates of the local and national determinants of HEC

	Discussion
	Conclusion and policy implications
	Acknowledgements
	References




