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STRUCTURE-AWARE SPARSE BAYESIAN LEARNING-BASED CHANNEL ESTIMATION
FOR INTELLIGENT REFLECTING SURFACE-AIDED MIMO

Yanbin He and Geethu Joseph

Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
Emails: {y.he-1, g.joseph}@tudelft.nl.

ABSTRACT

This paper presents novel cascaded channel estimation tech-
niques for an intelligent reflecting surface-aided multiple-
input multiple-output system. Motivated by the channel
angular sparsity at higher frequency bands, the channel es-
timation problem is formulated as a sparse vector recovery
problem with an inherent Kronecker structure. We solve the
problem using the sparse Bayesian learning framework which
leads to a non-convex optimization problem. We offer two
solution techniques to the problem based on alternating min-
imization and singular value decomposition. Our simulation
results illustrate the superior performance of our methods in
terms of accuracy and run time compared with the existing
works.

Index Terms— Cascaded channel, Kronecker product,
compressed sensing, structured sparsity, alternating mini-
mization, singular value decomposition

1. INTRODUCTION

An intelligent reflecting surface (IRS) is a digitally controlled
meta-surface containing a large number of passive reflecting
elements. By reconfiguring the reflection coefficient of each
element, IRS controls the wireless channel to improve the
coverage and capacity of the communication system [1–4].
However, to enhance the channel properties via IRS, obtain-
ing accurate channel state information is inevitable. There-
fore, in this paper, we address the uplink channel estimation
problem for an IRS-aided multi-input multi-output (MIMO)
system by exploiting the intrinsic channel structure.
Related works: Early works on channel estimation for IRS-
aided communication systems focused on unstructured chan-
nel models [5], employing least squares or linear minimum
mean square error estimators [6]. However, in higher fre-
quency bands (for example, millimeter wave or terahertz
band) both mobile station (MS)-IRS and IRS-base stations
(BS) channels exhibit strong sparsity in the angular do-
main [6]. This observation motivated the IRS-aided channel
estimation algorithms to explore the intrinsic sparsity of the
channel, reducing the pilot overhead [6]. Recent estimators
further enhanced the accuracy by accounting for additional

structures along with sparsity. Some examples are clus-
tered sparsity structure in the angular domain [7] and joint
sparsity in a multiuser setting [2, 8]. Most studies use orthog-
onal matching pursuit (OMP)-based methods. Despite low
complexity, their heuristic nature leads to inferior channel
estimation accuracy compared to other sparsity-driven ap-
proaches. An alternative approach is the iterative reweighted
method-based sparse channel estimation [9], but it does not
incorporate any additional signal structure. [10] presents a
sparse Bayesian learning (SBL) scheme to handle the inher-
ent Kronecker structure of the cascaded BS-IRS-MS sparse
channel. However, the derivation of the SBL algorithm relied
on several approximations leading to a suboptimal estimation
accuracy [11]. Hence, we seek a novel channel estimator that
exploits the Kronecker-sparse structure of the cascaded chan-
nel and offers improved estimation accuracy and complexity.
Contributions: Our contributions are two novel SBL channel
estimation algorithms for an IRS-aided system:

• Alternating minimization (AM)-based: This method solves
the underlying optimization problem of the SBL algorithm
exactly using the AM procedure, inheriting the convergence
property of the SBL algorithm.

• Singular value decomposition (SVD)-based: The second
method uses a simple approximation to obtain the SBL
algorithm. However, the resulting algorithm is faster
and more accurate than the state-of-the-art Kronecker-
SBL [10].

Overall, we derive two SBL-based channel estimators that
exploit the Kronecker-sparse structure, leading to improved
pilot overhead. The algorithms can be of independent interest
because Kronecker-sparse structure naturally arises in a basis
expansion problem with multiple unknown parameters.

2. CASCADED CHANNEL ESTIMATION PROBLEM

Consider an uplink MIMO millimeter-wave/terahertz band
system with an MS with M antennas, a BS with B antennas,
and a uniform linear array IRS with L elements. We assume
that the line-of-sight (LOS) path between the BS and MS is
blocked, and the LOS paths between the BS and IRS andIC
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the IRS and MS are much stronger than the non-LOS paths.
Let HMS ∈ CL×M and HBS ∈ CB×L denote the MS-IRS
and IRS-BS channels, respectively. We assume a narrowband
fading channel following the Saleh-Valenzuela model [7]:

HMS =

PMS∑
p=1

√
LM

PMS
βMS,paL(ϕMS,p)aM (αMS)

H (1)

HBS =

PBS∑
p=1

√
BL

PBS
βBS,paB(αBS,p)aL(ϕBS)

H, (2)

where PMS and PBS are the number of rays. Also, for any
integer Q and angle ψ, steering vector aQ(ψ) ∈ CQ×1 is

aQ(ψ) =
1√
Q

[
1 ej2πδ cosψ · · · ej2π(Q−1)δ cosψ

]T
. (3)

Here, we assume half-wavelength spacing, i.e., δ = 0.5.
The angles ϕMS,p, αMS, αBS,p, and ϕBS denote the p-th an-
gle of arrival (AoA) of the IRS, and the angle of departure
(AoD) of the MS, the p-th AoA of the BS, and the AoD of
the IRS, respectively (see Fig. 1). Therefore, the cascaded
MS-IRS-BS channel is given by HBS diag(θ)HMS for the
IRS configuration θ ∈ CL×1. Here, the i-th entry of θ rep-
resents the gain and phase shift due to the i-th IRS element.
We aim to estimate the cascaded channel for any θ given
by HBS diag(θ)HMS. This problem arises, for example,
in beamforming problem to obtain the IRS configuration
that maximizes the channel gain ∥HBS diag(θ)HMS∥2F [12].
However, vec(HBS diag(θ)HMS) = (HT

MS⊙HBS)θ, where
⊙ is the Khatri-Rao product. Therefore, the cascaded channel
estimation is equivalent to estimating HT

MS ⊙HBS.
To estimate the channel, we send pilot symbols over K

time slots over which HMS and HBS are assumed to be con-
stant. We choose KI < K IRS configurations, and for each
configuration, we transmit pilot data X ∈ CM×KP over KP

time slots such that K = KIKP. Hence, the received signal
Yk ∈ CB×KP corresponding to the k-th configuration θk is

Yk = HBS diag(θk)HMSX +Wk, (4)

where Wk ∈ CB×KP is the additive white Gaussian noise
with zero mean and known variance σ2. Our objective is
to estimate HT

MS ⊙ HBS, using the data model in (4) and
the knowledge of X and {Yk,θk}KI

k=1. The estimation task
is challenging because of (i) highly structured unknowns
HMS and HBS entangled with the known quantities θk and
X; and (ii) the scaling ambiguity due to the product form
HBS diag(θk)HMS. In particular, if an algorithm estimates
HMS and HBS separately, it cannot distinguish two solutions
(HMS,HBS) and (1/qHMS, qHBS), for any q ̸= 0. The
following section presents our estimation algorithm.

3. CHANNEL ESTIMATION ALGORITHMS

This section formulates the channel estimation task as a
sparse recovery problem exploring angular sparsity and de-
rives new Bayesian algorithms using the SBL framework.

IRS

· · ·

BS MS

αBS

ϕBS ϕMS

αMS

Scatter 1Scatter 2

Fig. 1: An illustration of AoAs and AoDs in the uplink channel of
an IRS-aided system.

3.1. Sparse Recovery Formulation

The first step to formulate the sparse recovery problem is to
disentangle θk from the unknowns HMS and HBS. For this,
we vectorize both sides of (4) to obtain

ȳk =
(
(XTHT

MS)⊙HBS

)
θk + w̄k ∈ CBKP×1, (5)

So, the received data Ȳ ∈ CBKP×KI for the IRS configura-
tions Θ=[θ1, . . . ,θKI

]∈ CL×KI is
Ȳ =[ȳ1,. . ., ȳKI ]=

(
(XTHT

MS)⊙HBS

)
Θ+ W̄, (6)

where W̄ = [w̄1, . . . , w̄KI
]∈ CBKP×KI . Next, we leverage

angular sparsity in the channel matrices HMS and HBS. For
this, we apply the basis expansion model by discretizing the
angular domain using a set of N grid angles {ψn}Nn=1 such
that cos(ψn) = 2n/N − 1 [13]. Then, (1) and (2) reduce to
HBS = ABgBg

H
L,dA

H
L and HMS = ALgL,ag

H
MAH

M ,
(7)

where for any integer Q > 0, using (3), we define
AQ =

[
aQ(ψ1) aQ(ψ2) . . . aQ(ψN )

]
∈ CQ×N . (8)

Also, gB, gL,d, gL,a, gM ∈ CN×1 are the unknown sparse
channel representations. The non-uniform grid points in the
angular domain help to reduce the computational complexity
of the estimation algorithm, which is discussed in (11). We
also note that we use the same grid angle set {ψn}Nn=1 for the
AoAs and AoDs of the two channels for simplicity, but our
framework and algorithm can also handle different grid sets.

Combining (7) and (6), and using the properties of the
Khatri-Rao product [14, Lemma A1], we disentangle the un-
known sprase vectors from the known matrices as follows:

Ȳ =
[
(XTA∗

M )⊗AB

][
(gL,ag

H
M)T ⊗ (gBg

H
L,d)

]
× (AT

L ⊙AH
L)Θ+ W̄ , (9)

where ⊗ denotes the Kronecker product. Using Kronecker
product’s mixed-product property, we vectorize (9) to derive
ỹ = (Φ̃L⊗ΦM⊗ΦB)(gL,a⊗ gL,d⊗ g∗

M⊗ gB) + w̃, (10)

where Φ̃L = ΘT(AT
L ⊙AH

L)
T, ΦM = XTA∗

M , and ΦB =

AB . Further, we note that the only distinct columns of Φ̃L

are its first N columns [12]. Hence, removing the redundant
columns to reduce the dimension of the representation, we get
ỹ = (ΦL ⊗ΦM ⊗ΦB)g + w̃ = H̃g + w̃ ∈ CBK×1, (11)

where ΦL ∈ CKI×N is the submatrix formed by the first N
columns of Φ̃L and H̃ = ΦL⊗ΦM⊗ΦB ∈ CBK×N3

. Also,
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we define g = gL ⊗ g∗
M ⊗ gB ∈ CN3×1 with gL ∈ CN×1

being the scaled version of the first N entries of gL,a ⊗ gL,d.
Hence, (11) translates the channel estimation problem into a
sparse vector recovery problem with unknown g. Using g
and (7), we obtain the product term in the channel as

vec(HT
MS ⊙HBS) = (ΦA ⊗A∗

M ⊗ΦB)g, (12)

where ΦA is the firstN columns of (AT
L⊙AH

L)
T. Finally, the

cascaded channel for a given IRS configuration θ is computed
as (HT

MS ⊙HBS)θ. Thus, the rest of this section is devoted
to derive an algorithm to estimate Kronecker-sparse g in (11).

3.2. Kronecker-Sparse Bayesian Learning Algorithms

Inspired by the SBL framework [15], we impose a fictitious
sparsity promoting zero-mean Gaussian prior [15] (with un-
known covariance) on the sparse vector g. In our setting,
to mimic the Kronecker structure, we construct the covari-
ance matrix as diag(⊗3

j=1γj) where the vectors γ1,γ2,γ3 ∈
RN×1 are the unknown hyperparameters corresponding to the
low-dimensional sparse vectors gL, g∗

M, and gB, respectively.
Specifically, we assume
p(g;γ1,γ2,γ3) = CN (0,diag(γ)) with γ = ⊗3

j=1γj .
(13)

Then, we use Type-II maximum likelihood (ML) esti-
mation, i.e, we first estimate the hyperparameters {γj}3j=1,
and using them, the estimate of g is the maximum point of
p(g|y; γ1,γ2,γ3). The ML estimates of {γj}3j=1 are ob-
tained by maximizing the likelihood p(ỹ;γ1,γ2,γ3, σ

2) with
respect to them. However, this maximization problem does
not admit a closed form solution, and therefore, we resort
to the Expectation-Maximization (EM) algorithm [15–17].
The EM algorithm iterates between the E-step that provides
a lower bound of the log-likelihood and the M-step which
maximizes the bound. Specifically, the r-th iteration of EM is

E-step: Q(γ1,γ2,γ3|γ(r−1))

= Eg|ỹ;γ(r−1){log[p(ỹ, g;γ1,γ2,γ3)]}, (14)

M-step: {γ(r)
1 ,γ

(r)
2 ,γ

(r)
3 }= argmax

γ1,γ2,γ3

Q(γ1,γ2,γ3|γ(r−1)),

(15)

where γ(r) = ⊗3
j=1γ

(r)
j is the r-th iterate. Further, we have

p(ỹ, g;γ1,γ2,γ3) ∝ p(ỹ|g)p(g;γ1,γ2,γ3). (16)

Thus, from (13), the M-step can be simplified as
argmin
γ1,γ2,γ3

log |diag(γ)|+ dTγ−1 s.t. γ = ⊗3
j=1γj , (17)

where (·)−1 is the element-wise inversion, and we define d =
diag(Σg + µgµ

H
g ). Here, µg and Σg are the mean and vari-

ance of conditional distribution p(g|ỹ;γ(r−1)):

µg=σ
−2ΣgH̃

Hỹ, Σg=
[
σ−2H̃HH̃+(Γ(r−1))−1

]−1

,

(18)
with Γ(r−1) = diag(γ(r−1)). We present two novel ways to
solve (17): AM-based and SVD-based, as discussed below.

AM-based Kronecker SBL (AM-KroSBL): The AM-KroSBL
solves (17) by setting the gradient of the objective function
with respect to the optimization variables to zero which gives
γj = N−2[(⊗j−1

l=1γ
−1
l )⊗I⊗(⊗3

l=j+1γ
−1
l )]Td, j = 1, 2, 3.

(19)
The AM-KroSBL alternatively updates γ1, γ2, and γ3 us-
ing (19) until converge. Also, to resolve the scaling ambigu-
ity, i.e., γ = ⊗3

j=1γj = α−1γ1⊗αγ2⊗γ3, we normalize γ1

and γ2 to have unit norm. As estimating g only needs γ, nor-
malization causes no issue but reduces solution space. Since
the M-step is solved exactly, the algorithm inherits the con-
vergence property of the EM algorithm [18]. However, due
to an (inner) iterative step in the M-step, AM-KroSBL is not
computationally efficient. So, we next present a non-iterative
method based on SVD.
SVD-based Kronecker SBL (SVD-KroSBL): In this method,
we solve (17) without the constraint γ = ⊗3

j=1γj and then
project the solution to the constraint set. Specifically, we have

argmin
γ

log |diag(γ)|+ dTγ−1 = d. (20)

To project the solution to the constraint set, we solve for
γ1,γ2,γ3 that minimizes ∥d−⊗3

j=1γj∥. We further approxi-
mate this optimization problem as two rank-1 approximations
solved using SVD:
argmin

γ1,γ̃
∥γ1∥=1

∥d− vec(γ̃γT
1 )∥, argmin

γ2,γ3

∥γ2∥=1

∥γ̃ − vec(γ3γ
T
2 )∥, (21)

where we use the fact that vec(γ̃γT
1 ) = γ1 ⊗ γ̃ and the unit-

norm constraints resolve the scaling ambiguity.

3.3. Complexity Reduction and Analysis

SBL is known to be computationally inefficient due to ma-
trix inversion in (18). [11] introduced a technique to reduce
the algorithm complexity using the Kronecker structure. We
next present a novel technique to further improve the com-
plexity, which can applied to both AM-KroSBL and SVD-
KroSBL. Specifically, invoking the matrix inversion lemma
and the mixed product property of the Kroncker product and
using the definition H̃ = ΦL⊗ΦM⊗ΦB, we rewrite (18) as

Σg = Γ(r−1) − Γ(r−1)H̃H(σ2I + (ΦLΓ
(r−1)
1 ΦH

L)

⊗ (ΦMΓ
(r−1)
2 ΦH

M)⊗ (ΦBΓ
(r−1)
3 ΦH

B))
−1H̃Γ(r−1), (22)

where Γ
(r−1)
j = diag(γ

(r−1)
j ), for j = 1, 2, 3. Let the

eigenvalue decomposition of the three matrices in (22) be
ΦLΓ

(r−1)
1 ΦH

L = U1Π1U
H
1 , ΦMΓ

(r−1)
2 ΦH

M = U2Π2U
H
2 ,

and ΦBΓ
(r−1)
3 ΦH

B = U3Π3U
H
3 . Then, we derive

Σg = Γ(r−1)(I − H̃HU(σ2I +Π)−1UHH̃Γ(r−1)), (23)

where U = ⊗3
j=1Uj , and Π = ⊗3

j=1Πj . Combining (18)
and (23), the posterior mean µg is

µg = σ−2(Γ(r−1)H̃Hỹ

− Γ(r−1)H̃HU(σ2I +Π)−1UHH̃Γ(r−1)H̃Hỹ). (24)
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The overall complexity of the different algorithms are
summarized in Table 1. Here, REM is the number of EM
iterations that varies across algorithms, and RAM is the num-
ber of alternating iterations in (19). We see that the proposed
schemes have lower complexity compared to the KroSBL.

In short, we present two SBL algorithms which differ
from the state-of-the-art KroSBL [10, 11] in two ways: the
new complexity reduction technique in the E-step and the
AM and SVD based-solutions in the M-step. Comparing our
two schemes, AM-KroSBL enjoys the convergence guarantee
while SVD-KroSBL is more efficient in practice (see Fig. 2).

Table 1: Time complexity of different versions of KroSBL

Method Complexity
AM-KroSBL O

(
REM(RAMN

3 +N3KB)
)

SVD-KroSBL O
(
REM(N4 +N3KB)

)
KroSBL in [10, 11] O

(
REMN

6
)

Algorithm 1: Our KroSBL Channel Estimation
Data: Received signal ỹ, Pilot signal X , IRS

configuration Θ, noise power σ2

1 Parameters: Threshold ϵ and iterations Rmax

2 Initialization: γ(−1)
1 = γ

(−1)
2 = γ

(−1)
3 = 1;

µ
(0)
g = 0, µ(−1)

g = 1; and r = 0.
3 while ∥µ(r)

g − µ
(r−1)
g ∥2 > ϵ and r < Rmax do

4 Define Γ
(r−1)
j = diag(γ

(r−1)
j ),∀j = 1, 2, 3

5 Compute Σg and µg using (23) and (24)
6 Obtain {γ(r)

j }3j=1 either using (19) and

normalizing {γ(r)
j }2j=1 (AM-KroSBL), or using

(21) (SVD-KroSBL).
7 Update iteration number r ← r + 1

8 end
9 Compute HT

MS ⊙HBS from (12) with g = µ
(r)
g

Result: Cascaded channel function (HT
MS ⊙HBS)θ

4. NUMERICAL SIMULATION

Our simulation setting is as follows. We choose B = 16
BS antennas, M = 6 MS antennas, and L = 256 IRS el-
ements. Each entry of the IRS configurations {θk}KI

k=1 is
uniformly drawn from {−1/

√
N , 1/

√
N} with KI = 4, 10.

For each IRS configuration, we send KP = 6 pilot signals.
The number of grid angles is N = 18 and all AoDs/AoAs are
drawn uniformly from the grid angles. Further, the channel
gains {βBS,p}PB

p=1 and {βMS,p}PM
p=1 in (1) and (2) are drawn

from CN (0, 1) [19]. We use four performance metrics: nor-
malized mean squared error (NMSE), support recovery rate
(SRR), run time, and symbol error rate (SER). Here, NMSE
is given as 1

KI

∑KI

k=1
∥HBS diag(θk)HMS−H̃BS diag(θk)H̃MS∥2

F

∥HBS diag(θk)HMS∥2
F

,

with H̃BS diag(θk)H̃MS being the reconstructed channel,
and SRR is | supp(g̃)∩supp(g)|

| supp(g̃)−supp(g)|+| supp(g)| , with g̃ being the es-
timate of g and supp(·) representing the set of indices of the
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KroSBL [9,10]

Classic SBL
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Perfect CSI

Fig. 2: Comparison of NMSE, SRR, run time, and SER of AM-
KroSBL and SVD-KroSBL with the competing schemes as a func-
tion SNR when KI = 4, 10, KP = 6 and N = 18.

nonzero entries of a vector. We use the classic SBL [15],
OMP, and the KroSBL in [11] as benchmarks.

From Fig. 2, we observe that both SVD-KroSBL and AM-
KroSBL outperform the other schemes in terms of NMSE,
SRR and SER. Especially in the low SNR and low overhead
(quantified by KI) regimes, our algorithms have the best
NMSE. From Fig. 2 (b), in the low SNR regime, the AM-
KroSBL has the best SRR, while the SVD-KroSBL has the
optimal performance in the high SNR case for both low and
high overhead cases. We observe that in the low SNR regime,
SVD-KroSBL outputs a sparse vector with many small terms,
leading to a low SRR. But since the sparse vector is domi-
nated by large values on the correct support, NMSE is still
low. Further, Fig. 2 (c) indicates that SVD-KroSBL, com-
pared with other SBL-based methods, has one order less run
time. The high run time of AM-KroSBL is expected due to
the inner loop in the M-step, yet its run time is compara-
ble to the classic SBL and KroSBL but with better NMSE.
Finally, Fig. 2 (d) shows that when KI = 4, our schemes
possess better SER than others. In contrast, when KI = 10,
only SVD-KroSBL has lower SER compared to the existing
schemes and approaches the oracle scheme with perfect CSI.

5. CONCLUSION

In this paper, we studied the channel estimation for IRS-aided
MIMO system, exploiting the Kronecker sparse structure
in the angular domain. We presented two novel SBL-based
channel estimation methods with superior performance over
the state-of-the-art methods. Our AM-KroSBL enjoys strong
convergence guarantees while the SVD-KroSBL is suitable
for practical applications owing to its low run time. Han-
dling off-grid angle mismatch and extending our algorithms
to multi-user case are interesting avenues for future work.
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