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Abstract—Frequent variations in throughput make mobile
networks a challenging environment for video streaming. Current
video players deal with those variations by matching video
quality to network throughput. However, this adaptation strategy
results in frequent changes of video resolution and bitrate, which
negatively impacts the users’ streaming experience. Alternatively,
keeping the video quality constant would improve the experience,
but puts additional demand on the network. Downloading high
quality content when channel quality is low requires additional
resources, because data transfer efficiency is linked to channel
quality. In this paper, we present a predictive Channel Quality
based Buffering Strategy (CQBS) that lets the video buffer
grow when channel quality is good, and relies on this buffer
when channel quality decreases. Our strategy is the outcome of
a Markov Decision Process. The underlying Markov chain is
conditioned on 377 real-world LTE channel quality traces that
we have collected using an Android mobile application. With our
strategy, mobile network providers can deliver constant quality
video streams, using less network resources.

Index Terms—Video streaming; HTTP Adaptive Streaming;
5G Mobile Networks; Markov Decision Process; Buffering
strategy

I. INTRODUCTION

Online video streaming is one of the most popular ap-
plications on fixed and mobile networks. Network traffic
predictions, such as Sandvine’s Internet phenomena report
[1], not only show an increase in data volume, but also
show that on-demand video streaming is the dominant driver
for this increase. Currently, around 70% of downlink traffic
accounts for video streaming. However, mobile networks are
a challenging environment to deliver high-quality video. A
shared radio-based medium combined with user movement
creates high variability in channel quality from eNodeB to
User Equipment (UE). The effective throughput to UE is
strongly depending on cell load and radio channel conditions.

Currently, Dynamic Adaptive Streaming over HTTP
(DASH) is the primary video streaming technique for online
video [2]. It has shown to effectively deal with throughput
variations [3], [4]. DASH players adapt the video quality

to match network throughput. On the one hand, lowering
the video quality when network conditions decrease reduces
annoying playback interruptions. On the other hand, increasing
the video quality when throughput increases provides a benefit
for the user. However, frequently streaming at low quality
and too many quality switches negatively impact the viewers’
Quality of Experience (QoE) [5]. It could even lead to users
stopping the stream [6].

The next generation of mobile networks potentially offers
better support for video streaming. In 5G networks, so-called
network slices can be used to optimize the network for
video stream delivery. Having the 5G architecture in mind,
we investigate the potential of a network slice that requests
network resources for maintaining a constant video quality.
Instead of letting video players adapt their quality to the
mobile network conditions, we propose a strategy that adjusts
the number of network resources to let players stream at
constant video quality.

Streaming at a constant video quality is possible but
requires more network resources. In LTE terms this means
an increasing usage of Resource Blocks (RBs). The effective
data rate per RB strongly depends on the quality of the radio
channel between eNodeB to UE. When the channel quality
decreases, the eNodeB uses modulation settings with more
redundancy, thus effectively reducing the throughput per RB
to the UE. Maintaining a constant video quality means using
a relatively large number of RBs when channel quality is low.

Traditional adaptation algorithms are efficient, because
they lower the video quality when the channel quality
decreases, thus relieving the network when it’s needed. In
this paper, we propose a downloading strategy that also
relieves the network when channel quality is low, but it
maintains constant video quality. The intuition behind our
predictive Channel Quality based Buffering Strategy (CQBS)
is to grow the video buffer when channel quality is high
(bandwidth is thus relatively cheap), and consume this buffer
when channel quality decreases (relieve the network when



bandwidth becomes expensive). To determine when the buffer
should grow or shrink, we compose a Markov chain that
represents the changes and behavior of LTE channel quality.
The Markov chain is conditioned on an extensive set of 377 5-
minute LTE channel quality traces containing measurements in
different environments and under different speeds. We define
a Markov Decision Process (MDP) based on this model and
the current play-out buffer level in the video player to obtain
the optimal downloading strategy. With CQBS we can deliver
constant video quality for the same price as the varying video
quality from traditional adaptation algorithms. We summarize
the contribution in this paper as follows:

• A Markov chain that describes LTE channel quality
behavior. The model is conditioned on an extensive set
of LTE channel quality traces that we have collected in
the real word using an Android application.

• CQBS: a predictive downloading strategy for video
streaming (grow-, maintain-, and shrink the video buffer)
that reduces network resources while streaming in a
constant video quality. We formulate the strategy as an
MDP.

• Performance evaluation of CQBS, comparing it to tra-
ditional adaptation algorithms. We cross-validate CQBS
using our real-world channel quality traces.

The remainder of this paper is structured as follows. Section
II discusses related work. In Section III we describe our
Markov model for LTE channel quality, which we use in
Section IV to compute the optimal downloading strategy. In
Section V we evaluate the performance of CQBS. Section VI
discusses our findings and concludes this paper.

II. RELATED WORK

Dynamic Adaptive Streaming over HTTP (DASH) is the
dominant video streaming technology for the Internet [7]. In
DASH, a video is encoded at multiple bitrates and resolutions.
Each representation is then split into small segments of a few
seconds. A manifest file describes the characteristics of each
representation and contains URLs where to find each segment
[2]. A DASH player downloads the video segments one-by-
one adapting the video quality to the network conditions. This
process is challenging [8], especially in mobile networks that
show large throughput variations. The resulting fluctuations in
video quality are distracting for the viewers [5] and may even
lead to users stopping the stream [6].

To improve the stability of video streams, so called
DASH Aware Network Elements (DANEs) are introduced [9].
DANEs are a cross-utilization solution where DASH players
exchange information with network elements, such as routers,
Wi-Fi access points, and potentially mobile base stations. Most
DANEs (or comparable solutions) are targeting wired or Wi-
Fi networks. Bouten et al. use proxy servers to guide DASH
players [10]. Cofano et al. [11] and Kleinrouweler et al. [12]
both presented implementations that employ WebSockets for
information exchange. They apply traffic shaping to guarantee
that enough bandwidth is available for video streaming.

DANEs also prove to be useful in mobile networks, where
they primarily focus on reducing video freezes. In [13], Wirth
et al. present a cross-layer solution where the LTE eNodeB has
access to the DASH manifest. It allows the eNodeB to better
schedule resources and reduce the number of freezes. Essaili
et al. present a pro-active resource scheduler for DASH [14].
Based on the clients’ buffer levels, the scheduler determines
the best streaming rate. This reduces video freezes and is more
fair among clients. Zahran et al. present a solution with a
comparable goal and effect [15]. Begen et al. adapt the video
quality based on the probability of video freezes using a pre-
computed buffer map [16].

In this paper, we assume the existence of a DANE
implementation that can exchange information about channel
quality, videos stream, and player state (i.e. play-out buffer
level) between mobile base station and client. Instead of only
looking at the current state of network and video player, we
also predict the evolution of channel quality while determining
our buffering strategy. Wang et al. present a channel quality
predictor based on machine learning techniques [17]. They
target real-time applications but not consider a specific appli-
cation like we do. Colonnese et al. formulate a closed form
solution that models channel quality obtain the probability of
video freezes [18], but they don’t present measures against
freezes.

III. MODELING CHANNEL QUALITY BEHAVIOR

Data transmission efficiency in mobile networks depends
on the channel quality. We anticipate on this by downloading
more video content into the buffer when efficiency is high,
and play video from the buffer when efficiency decreases.
To determine when to start growing/consuming the video
buffer, we have to understand the evolution of channel quality.
Accordingly, we follow the next three steps:

A) collect an extensive set of real-word channel quality
measurements with a mobile application;

B) fit a Markov chain on the collected traces and determine
data transmission efficiency for each state;

C) predict data transmission efficiency for future video
segments.

A. Collecting channel quality traces

In LTE networks, UEs determine the channel quality using
a reference signal that is broadcasted by the eNodeB. This
process is known as channel estimation. One of the parameters
that the UE obtains during channel estimation is the so-
called Reference Signal Received Quality (RSRQ). The RSRQ
reporting range is defined by the 3GPP from -20 dB (very poor
channel quality) to -3 dB (excellent channel quality) [19].

To the best of our knowledge, no large and consistent
dataset that includes RSRQ parameters exists. Therefore, we
developed a smartphone application for the Android platform
to measure LTE downlink channel quality. Our app uses
the Android 8.0 Telephony API1 to gather LTE statistics at

1https://developer.android.com/reference/android/telephony/package-
summary.html (accessed March 20, 2018)



intervals of two seconds. This interval is the lowest update
frequency that the platform provides. RSRQ is subject to
frequent small changes as a result of interference and multi-
path fading. Therefore, UEs internally determine RSRQ (and
other parameters) every two milliseconds. Nevertheless, the
Telephony API gives a good summary of the last two seconds.
Small changes would have little to no effect on downloading
video segments of a few seconds. The Telephony API reports
RSRQ as discrete values within the RSRQ reporting range.

We used two Google/LG Nexus 5X2 smartphones for
collecting the traces. We measured LTE channel quality in
traces of five minutes in several different environments (e.g.
urban, rural), under different speed profiles (e.g. walking, car)
and with a varying number of people around us (e.g. village,
city). In total, we have collected 377 real-world traces.

B. Modeling channel quality and data rate behavior

Through analysis of the channel quality traces we obtained
how RSRQ evolves over time. Based on this information, we
construct a Markov chain to fit this process. The state space S
is defined as eighteen states representing the RSRQ reporting
range in steps of one decibel. Transitions in the Markov chain
express changes in RSRQ. We observed in our traces that
RSRQ can change between any two levels. Therefore, we use a
fully connected Markov chain. Nevertheless, small changes in
RSRQ are more probable. The transition probability matrix P
is obtained through a straightforward mapping between from
number of channel quality changes we have observed in the
traces to the transition probabilities. We opt for a transition
interval of 1/3 second. The two-second intervals from our
channel quality traces are too coarse to express the download
process of DASH video segments at different buffering speeds.
A too small transition interval would cause long execution
times when deriving our strategy by solving the MDP that we
will describe in the next section.

For each state in the Markov chain, the data transmission
efficiency that corresponds with the RSRQ is computed.
We follow a process that is similar to how the modulation
settings (which determine the efficiency) in LTE networks
are established. In the first step, we map RSRQ to Signal to
Noise and Interference Ratio (SINR). A theoretical mapping
between RSRQ and SINR exists, and is approximated using
the following function [19], [20]:

SINR =
1

1
12−RSRQ − ρ

, (1)

where ρ is the load of the serving cell. We use ρ = 1/6,
which indicates a lightly loaded cell. Given the SINR, we use
a lookup table to obtain the Channel Quality Indicator (CQI)
and corresponding data rate. The data rate is the fraction of
bits in a Resource Block (RB) that remains after demodulation
(i.e. the actual data). Table I lists the mapping from RSRQ
to the data rate. The function d(x) applies this mapping and
provides the effective data rate for state x.

2http://www.lg.com/in/lg-nexus-5x/specification.jsp (accessed January 23,
2018)

Table I
MAPPING RSRQ TO EFFECTIVE DATA RATE

RSRQ (dB) SINR (dB) CQI Eff. data rate

-20 -9.12 0 0.000
-19 -8.10 0 0.000
-18 -7.07 0 0.000
-17 -6.03 1 0.026
-16 -4.98 1 0.026
-15 -3.92 2 0.039
-14 -2.85 2 0.039
-13 -1.75 3 0.063
-12 -0.06 3 0.063
-11 0.54 4 0.101
-10 1.76 4 0.101
-9 3.05 5 0.147
-8 4.45 6 0.198
-7 6.00 6 0.198
-6 7.82 7 0.248
-5 10.13 9 0.404
-4 13.70 10 0.459
-3 INF 15 0.930

C. Predicting transmission efficiency

Given the RSRQ Markov chain and the mapping to effective
data rate, we can make predictions on how the data rate will
evolve. We will use those predictions to estimate how many
resources will be required to download the next video segment
at a certain speed (i.e. grow, maintain, or shrink the video
buffer). Depending on the download speed, downloading a
video segment may to take longer than one interval in our
model. We compute the multi-step transition probabilities to
determine how RSRQ and data rate change while downloading
this video segment. Given transition probability matrix P , we
obtain the n-step transition probabilities by multiplying P . We
denote the probability that our RSRQ model transitions from
state x to y in n steps as Pn

x,y .
Driven by the changes in RSRQ that can occur during

one segment download, the effective data rate may also
vary. To get the expected network resources needed for one
video segment we need to estimate the data rate during that
download. Therefore, we average the data rates for each
possible path between two states, weighing each path by its
probability of taking it. We compute the expected data rate
when transitioning from state x to y in n steps as follows:

Dn
x,y =

1

n

n∑
i=1

∑
z∈S

dPn−i
z,y eP i

x,z∑
w∈S
dPn−i

w,y eP i
x,w

d(z). (2)

For each of the n steps, we compute the expected data
rate in that step, which is the average data rate of all states,
weighted by the probabilities that a route from x to y traverses
a state in the given step. However, not all paths provide a
viable route x → y, especially when the number of steps
becomes small. Therefore, we only consider transitions that
after a transition have enough steps left to reach destination
state y. For each sub-state z in Equation (2), we only include
z when the probability of transitioning z → y in n − i steps



is non-zero. Since not all states are included, we adjust the
weights accordingly.

IV. CHANNEL QUALITY BASED BUFFER STRATEGY

The number of network resources that are required for
downloading one segment can be estimated with Dn

x,y and the
current channel conditions. How many intervals are needed
to download one segment depends on how fast it should be
downloaded. Assuming a segment with a duration of two
seconds, downloading it in two seconds would maintain the
buffer level. Downloading faster increases the buffer, while
downloading slower than two seconds (or not at all) would
shrink the buffer. We define six different buffering actions
(denoted as Bxxx) for our CQBS strategy:
• Growing the buffer: Downloading video segments two

(B200) or three (B300) times faster than playing segments
out.

• Maintaining the buffer: Download one video segment
takes the same time as playing one segment (B100). This
action will be chosen over B200/300 when the buffer
reaches its maximum level.

• Shrinking the buffer: Relieving the network when band-
width becomes expensive. We download video segments
either at 1

3 (B033) or 1
2 (B050) of the playback speed.

• Not downloading: Data transmissions are sometimes not
possible because channel quality it too low. During those
periods, no video segments will be downloaded and no
resources are required (B000).

Depending on the buffering action, downloading one two-
second segment will take between two and eighteen intervals
of 1/3 second. The channel quality of the client and the current
buffer fill level determine the best buffer action at each time.
We formulate this problem, which is the core of CQBS, as an
MDP. Let (S ′, A, P ′, R, γ) be our MDP. The state space S ′,
describes the state of a single video player instance. A state
is defined as a couple (c, b) combining the current channel
quality (indicated by RSRQ) with the current buffer level.
Buffer fill levels are modeled as the number of video units with
a duration 1/3 second, aligned with the transitions intervals in
our Markov chain. As such, one video segment of two seconds
consists of six video units. The buffer is limited to 60 seconds.

The set of actions A covers the six buffering actions, B000
to B300. Based on the buffering action, and the download time
of one segment given that action, certain transitions within S ′
are possible. For example, downloading a two-second segment
at speed B200 takes three steps. While downloading six video
units, the video player plays out three units. The buffer grows
with three units. For buffering action B200, transitions are
possible to all states in S ′, such that b → b + 3. The
probabilities for these transitions are obtained from the 3-step
transition probability matrix of the RSRQ Markov chain, P 3

x,y .
Following this principle, the transition matrix P ′ is build for
each combination of RSRQ and buffer level.

The rewards for each transition, R, are in general linked
to the expected cost in the network. For each action and
transition, we compute the expected load on the network as

the percentage of resource blocks required by the video player.
We calculate the expected load as follows:

ld(x, y, n) =
B · 3Tsegment

Dn
x,y

· 1
1
3Rbs · n

(3)

where B is the video bitrate, Tsegment the duration of a video
segment in seconds, Rbs the number of resource blocks that
is available per second, and n the number of steps that the
segment download takes. Whether the load is used in the
reward depends on the following three step process:

1) Check if the buffering action is possible. Only actions
that don’t cause an overload on the system (ld(x, y, n) >
1) are accepted. Also the B000 action is restricted to
only being used when channel quality is too low for
data transmission. A high negative reward (-10000) to
ensure invalid actions.

2) Check if the buffering action would lead to an empty
buffer. In case the buffer becomes empty, a penalty of
-50 times the duration of the freeze (in ticks) is assigned
as a reward for the transitiotns

3) When 1) and 2) don’t apply the inverse load (1 −
ld(x, y, n)) is used as reward.

We solve the MDP using the value iteration algorithm
with discount factor γ = 0.999 from the Python-based
mdptoolbox3. The resulting policy is the optimal buffering
strategy. For each channel quality and buffer level the strategy
provides the buffering action (B000 to B300) to take. A
visualization of our strategy is shown in Figure 1. The
lighter the color is in the visualization the faster should be
downloaded. The strategy reflects the intuition behind CQBS.
When the network resources becomes expensive, the buffering
actions that shrink the buffer are selected. Only when the
buffer level is low, the buffer has to grow, or has to be
maintained as a minimum. As such, the strategy avoids the
penalty for an empty buffer. When network traffic becomes
cheaper, the strategy lets the buffer grow. The maximum
fill level of the buffer grows with the channel quality. This

3http://pymdptoolbox.readthedocs.io/en/latest/api/mdptoolbox.html
(accessed March 12, 2018)

Figure 1. Buffering strategy for constant video quality (1458 Kbit/s), best
buffering action for each channel quality and buffer level.
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Figure 2. Example operation of CQBS: interaction between channel quality
and buffer level.

means that the strategy stops filling the buffer at some point.
Only when the channel quality further increases the strategy
continues to grow the buffer.

Figure 2 shows an example streaming session with the
channel quality and the buffer level overlaid in the same plot.
Initially, CQBS grows the buffer when channel quality is good.
Around, t = 60, the signal quality decreases and more video
from the buffer is used. The buffer level is restored when signal
quality restores. Around t = 350, the signal quality becomes
excellent. This triggers CQBS to fill the buffer to a higher
level than it did before.

V. PERFORMANCE EVALUATION

In this section, we present the simulation results that
compare CQBS to two traditional adaptation algorithms and
a naive constant video quality strategy. First, we detail the
simulation setup. Then, we compare different algorithms in
simulations where channel quality behavior is retrieved from
the Markov chain from Section III. The goal of this step is to
check the concept behind CQBS, while assuming that CQBS
has accurate probabilities on how channel quality behaves.
Last, we cross-validate CQBS against our real-word channel
quality traces to access the practical performance.

A. Simulation setup

We look into the performance of CQBS from the perspective
of a single client (i.e. how many resources would be required
to execute the strategy). We assume that the video streaming
client gets the resources assigned that it needs. We use discrete
event simulations to simulate an LTE network and a video
streaming application. For simplicity, the simulation covers a
single video node that is associated to one LTE base station.
The LTE base station is configured with 15 MHz bandwidth
and has 75,000 RBs available per second. In this section, we
denote the network load as the fraction of those RBs that are
used by our video streaming application. The channel quality
(and changes in channel quality) between the LTE base station
and mobile client are either based on the RSRQ Markov chain
from Section III or are obtained from our real-world channel
quality traces.

The video player that runs on the client node simulates the
download of a DASH video stream. A video clip is taken
from the movie Sintel4 and encoded in ten representations5

(i.e. combinations of bitrate and resolution). The video is
segmented for DASH with a segment size of two seconds. The
video player informs the LTE base station about it its current
buffer level and channel quality. The player signals the base
station every time before downloading the new video segment.
The base station executes our CQBS strategy by combining the
buffer level with the current channel quality, selecting the best
buffer action and allocating appropriate resources.

As part of this evaluation, we compare four different
adaptation and buffering strategies:

1) Conventional: The conventional algorithms uses the
download speed of previous video segments to estimate
future bandwidth. The video quality will be the highest
bitrate that is below this estimation.

2) BOLA: An implementation of the Buffer Occupancy-
based Lyapunov Algorithm from Spiteri et al. [4]. We
use a version that reduces video quality oscillations,
comparable to the reference implementation in the
DASH.js6 player.

3) Static: A naive implementation that produces static
video quality. Until the buffer is full, resources for twice
the video bitrate are allocated to quickly growing the
buffer and prevent freezes. When the buffer is full,
resources matching the video bitrate are allocated. When
the video bitrate exceeds the networks capacity (e.g.
when signal quality is very low), the maximum amount
of resources are allocated.

4) CQBS: Adjusts its buffer based on the current channel
quality and buffer level. Resources between one third-
and three times the video bitrate are allocated, depending
on the selected buffering action. When the video buffer
drops below four seconds (i.e. two video segments), and
the channel quality does not permit streaming in the
target quality, the video player temporarily lowers its
video quality, as part of a failover mechanism to ensure
uninterrupted playback.

We want to compare the four algorithms for different video
quality levels. The conventional algorithm and BOLA always
try to get the highest possible video quality, for which they
require many network resources. To create a fair comparison
between the algorithms – where fair means that the average
video quality is the same for each algorithm – we cap the
network resources for the conventional algorithm and BOLA
as specified in Table II. The resource limits are specified as
the maximum fraction of RBs that can be used by a video
streaming client.

4https://durian.blender.org (last accessed: February 20, 2017)
5296Kbit/s@240p, 395Kbit/s@240p, 493Kbit/s@360p, 732Kbit/s@360p,

971Kbit/s@480p, 1.458Kbit/s@480p, 1.934Kbit/s@720p, 2.878Kbit/s@720p,
3.779Kbit/s@1080p, 5.544Kbit/s@1080p

6https://github.com/Dash-Industry-Forum/dash.js/wiki (accessed: March 5,
2018)



Table II
NETWORK RESOURCE LIMITS AS A FRACTION OF THE TOTAL AVAILABLE RBS

Target video quality level 3 4 5 6 7 8 9 10

Conventional adaptation limit 0.063 0.095 0.140 0.200 0.280 0.400 0.650 1.00
BOLA limit 0.045 0.072 0.110 0.156 0.216 0.305 0.435 1.00

B. Performance comparison based on the channel quality
behavior model

In the first part of the evaluation we simulate channel quality
behavior based on random walks in the RSRQ Markov chain
from Section III. The CQBS strategy is based on the same
Markov model, and thus it is based on accurate probabilities
how RSRQ can change. As such, CQBS will perform optimal,
allowing us to check the concept behind our strategy. Per
setting, we generate 25,000 channel quality traces. For each
trace, we simulate one 10-minute DASH streaming session,
which we will call an instance. For each instance, we measure
the video quality (levels ranging from 1 to 10) and load on
the network. A video quality level is used instead of the video
bitrate. The encoding settings of our video are chosen such that
every step gives a comparable increase in quality. However,
the bitrate that is needed for each step increases with the
video quality. Averaging over video bitrate would give skewed
results.

First, we looked into the differences in video quality
between the four algorithms. The target video quality is level
five. For each instance we computed the mean video quality.
The distribution of mean video qualities is shown in Figure 3.
The boxes in Figure 3 indicate the four quartiles. The red line
in the box in the median. For the static and CQBS strategies,
Figure 3 reveals that the overall video quality matches the
target quality in almost all instances. The exceptional instances
suffered from either low channel quality at the startup or
long periods of low channel quality. As result, the fallback
mechanism temporarily lowered the video quality. For the
conventional and BOLA algorithms the mean video quality lies
within one and a half video quality levels around the target.

The video quality within one instance is also not constant
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Figure 3. Distribution of mean video quality per instance, target video quality
level five.

for the conventional and BOLA algorithms. These adaptation
algorithms adapt the video quality to match the network
conditions. Because the network conditions change (as a result
of the channel condition chaning), the video quality changes
as well. The cumulative distribution of video quality within
instances is shown in Figure 4. The figure shows that the
video qualities are spread out over all levels, as can be seen
by comparing the dashed lines to the solid lines in Figure 4.
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Figure 4. Cumulative distribution of video quality within the instances, target
video quality level five.

When using the conventional and BOLA algorithm, the
video is streamed in the target quality only a relatively small
fraction of the time. The broad spread of video qualities during
each run indicates that the video quality changes from time
to time. In Figure 5, we observe that both the conventional
algorithm and BOLA show many video quality switches. The
conventional algorithm performs worst, resulting in more than
12 quality switches per minute for most of the target quality
levels. BOLA perform better, but the switching frequency is
still high. A big difference can be observed from target quality
level 10. In this case, all algorithms had the full spectrum
available for streaming. In the case of BOLA, it meant that it
could maintain large buffers. Due to the nature of BOLA, an
almost full buffer will result in video segments of the highest
quality. Even when the signal quality decreased, the buffer
levels were still sufficient for BOLA to request video quality
level 10. As the result, BOLA worked similar (except during
the startup phase) to the naive static strategy. This resulted in
little quality switches, but to an increased network load as we
will discuss next in this section.

The high number of quality switches when using the
traditional algorithms may be perceived by the user as
annoying. In comparison, the naive static quality strategy and
CQBS maintain an almost perfectly constant video quality.
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Figure 5. Number of quality switches as a function of video quality.

Although providing a constant video quality may be more
beneficial for the end-user, it could increase cost for the
network operator. Figure 6 shows the distribution of network
load (percentage of RBs that were used for video streaming)
per instance. For most of the instances, the network load
for the conventional algorithm and BOLA is comparable.
Nevertheless, BOLA shows some instances that have relatively
high load. Comparing the medians of the traditional algorithms
with the naive static quality strategy, we observe and increase
in network load of 25%. This increase in network load takes
up resources that cannot be used by other clients in the same
cell. The increase makes a difference over ten minutes, from up
to 2 Mbit/s bandwidth for clients with good signal quality, to
about 330 Kbit/s for an average client. This bandwidth cannot
be used anymore for several Web browsers, a high quality
music stream, or a low quality video stream.

Conventional BOLA Static CQBS

Adaptation/Buffer Algorithm

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

N
et

w
or

k
L

o
a

d

Figure 6. Distribution of overall network load per instance, target quality
level 5.

Our CQBS strategy is designed to reduce the load on the
network. It consumes video from the buffer when network
bandwidth is expensive. When channel quality becomes better
and bandwidth comparatively cheap, it re-fills the video buffer.
Figure 6 shows the impact of this strategy on the network load.
On average, the use of network resources by CQBS is on the
same level as the traditional adaptation algorithms. In 23% to

64% of the cases, CQBS requires less resources than the most
efficient instance from the conventional algorithm and BOLA.

Figure 7 shows the difference in network usage per video
quality level for the four different implementations. The
differences are shown relative to the network resources used
by CQBS. CQBS significantly reduces the network load
compared to non-optimized static quality implementation. On
average, the network load is 19% lower when using CQBS.
When comparing CQBS to the conventional algorithm and
BOLA, we see overall a similar network load for the three
strategies.

For quality level 9, the conventional algorithm yields a high
network load. The conventional algorithm bases the quality of
future video segments on the network throughput in the near
past. Past performance is thus not a good indicator for the
future. In this case, the conventional algorithm overestimated
the quality and had to recover the buffer afterwards. The reason
for the higher load for BOLA at quality level 10, is given
earlier this section.
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Figure 7. Additional usage of network resources relative to the resources
used by CQBS.

C. Validation against real-world traces

In the second part of the evaluation, we validate our CQBS
algorithm against the real-world LTE traces that we have
collected. We use the cross-validation technique, where our
strategy was trained on 80% of the traces and then tested
against the remaining 20% of the LTE traces, where the
fraction of traces that is used for validation rotates. This sums
up to 377 instances per setting. The DASH player streams
a 8:20 minutes clip from the movie Sintel using the same
encoding settings as before. The LTE channel quality traces
have a duration of five minutes. Therefore, we repeat a trace
to cover the full length of the video.

In general, the performance of CQBS and the other
algorithms is similar when using the real-world traces instead
of the model-based traces. Therefore, we will focus on the
differences that we have observed, starting with the stability
of the streams’ qualities. Figure 8 shows the distribution of
mean video quality for each instance. Given target quality level
7, the constant video strategies perform well, having almost
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Figure 8. Distribution of mean video quality per instance, target video quality
level seven.
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Figure 9. Mean number of quality switches as a function of video quality.

all instances at the target video quality. For the conventional
algorithm and BOLA the spread of average video quality is
larger. With video resolutions ranging between SD (360p) and
Full-HD (1080p) the differences between instances are large,
indicating that reserving a fixed portion of network resources
cannot provide guarantees on the video quality.

With regards to the number of quality switches, we don’t
observe a difference for the conventional algorithm and BOLA
(the video was slightly shorter, but the number of switches is
consistently lower). In contrast, our CQBS strategy produces
a higher switching frequency, especially for the high target
qualities. In CQBS, quality switches only occur when channel
quality is bad and the buffer level is too low to guarantee
uninterrupted streaming. This indicates that buffers levels get
lower more often because the duration and severity of low
channel quality is underestimated by our model. Our model is
thus not entirely accurate at low channel qualities. However,
even though there is a slight increase in quality switches,
CQBS still greatly outperforms the traditional algorithms.

In Figure 10, the differences in network resource usage
relative to CQBS for the target quality levels are shown.
Compared to the model-based traces, the network loads for
the real-world LTE traces show small differences. There is
a slightly smaller difference in network load between the
naive static strategy and CQBS. The naive static strategy
seems to perform slightly more efficient given the real-world
traces. Nevertheless, our CQBS strategy is able to decrease
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Figure 10. Additional usage of network resources relative to the resources
used by CQBS.
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Figure 11. Distribution of the number of video freezes per instance, target
quality level 7.

the network load by on average 15%. In terms of network
load, CQBS performs slightly better than the conventional
algorithm, and on average as good as BOLA.

Although BOLA performs overall best when it comes to
network load, we did observe a high number of freezes when
using BOLA. In Figure 11, it can be seen that BOLA has
a structural problem and that freezes occur in most of the
instances. In a large number of runs, the number of freezes
can even be considered as very high. A high number of
freezes is disastrous for the user experience, and will lead to
abandonment of the video stream [6]. The other algorithms,
including CQBS, do no have playback interruptions in almost
all the runs. Only in exceptional cases freezes might occur.
This shows that even though CQBS actively reduces the buffer
level, it does not compromise the continuity of the stream.

Overall, we can conclude that CQBS can maintain a
constant video quality. It outperforms the traditional adaptation
algorithms that show fluctuations in video quality as a result
of variations in LTE channel quality. Compared to high
number of freezes in BOLA, CQBS is able to stream without
interruptions in almost all runs. As such, CQBS provides the
best experience to the user. When looking at network load,
CQBS performs on par with the traditional algorithms, but
outperforms the non-optimized static quality strategy.



VI. CONCLUSION & FUTURE WORK

Online video streaming is one of the biggest contributors
to data consumption on mobile networks. Because of the
high data volumes and the mobile networks’ high throughput
variations, it is a difficult practice to deliver high quality
video to the end-user. Video streaming players adapt the video
quality to the networks’ conditions. However, the common
variations in LTE channel quality can cause large fluctuations
in video quality during playback, which may be perceived
by users as annoying. The CQBS buffering strategy that
we present in this paper allows to deliver near-constant
video quality to mobile clients without an increase in costs,
compared to the traditional adaptation algorithms. The method
that we use to derive the optimal buffering strategy is elegant.
At its base, the state space of the Markov chain that drives our
MDP consists of only two dimensions: RSRQ channel quality
and buffer level. The results show that this relatively simple
model already yields good performance, and thus models the
environment well. Furthermore, channel quality and buffer
level can both be measured by the client device, which is
important when implementing CQBS in practice.

In a practical deployment, channel quality, video quality and
buffer level should be send to the base station. Exchanging
CQIs is already part of the LTE protocol and will continue to
exists in future 5G networks. Exchanging information about
video quality and buffer level is not default in DASH-based
streaming. To realize our strategy we rely on DASH Aware
Network Elements. These network elements coordinate DASH
players and manages network resources. In our case, the
DANE will be located in the mobile base station where it
executes our CQBS strategy. Communication between DANE
and DASH player will follow the standardized interactions
as described in Server and Network Assisted DASH [9],
[21]. Given the standardization efforts we expects DANEs to
become more common, especially in future 5G deployments.

In future work, we will look into scenarios with multiple
video players in a mobile cell. We will investigate the
interactions between concurrent clients. We are interested
in the impact of concurrent clients on the video streaming
applications and the implications for the mobile operator
(i.e. how can the mobile operator better divide the available
networks resources among the video clients). In addition, we
will investigate further improvement of CQBS by extending
the state space of the Markov chain. We have already explored
the effect of including trends in channel quality into our model,
in particular upward versus downward trends. Our first results
show slightly better performance than CQBS, but less than
expected. It appears that in most of the cases, CQBS selects
the same buffering action as this initial model enhancement.
Differences mostly occur at the edges of the state space, which,
however, are rarely reached.
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