
Expanding Search-Based Software
Modularization to Enterprise-Level

Projects: A Case Study at Adyen

Master’s Thesis

Casper Schröder

Expanding Search-Based Software
Modularization to Enterprise-Level

Projects: A Case Study at Adyen

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Casper Schröder
born in ′s-Hertogenbosch, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Tech-
nology
Delft, the Netherlands
www.ewi.tudelft.nl

Adyen
Simon Carmiggelstraat 2-50

Amsterdam, the Netherlands
www.adyen.com

www.ewi.tudelft.nl
www.adyen.com

©2020 Casper Schröder. All rights reserved.

Expanding Search-Based Software
Modularization to Enterprise-Level

Projects: A Case Study at Adyen

Author: Casper Schröder
Student id: 4485629
Email: c.j.schroder@student.tudelft.nl

Abstract

Code quality of software products often degrades while they grow. Coun-
teracting the degradation of code quality or improving it requires immense
effort. Tools that reduce this effort are a hot topic in software engineering
research. Software Modularization in particular aims to aid in the process
of improving the quality of code structure, by finding flaws in code struc-
ture and suggesting improvements. Much research has been done in this
field, however, most of it is applied on small to medium scale codebases.
In addition, the quality of solutions implied by this research is often not
properly validated. This thesis aims to apply an existing approach to an
enterprise-level codebase, namely that of Adyen, and validating the results
with developers experienced with the code. We achieve this by taking a
graph-based approach, applying the NSGA-II algorithm, and introducing a
new metric called the Estimated Build Cost of module Cache Breaks. We
evaluate the approach in two ways. First, we performed a controlled exper-
iment exploring the feasibility of the approach on larger scale codebases.
For this experiment, we apply the approach to the Adyen codebase. The
results show that the approach is scalable and shows a significant improve-
ment of code quality in terms of the metrics used. We then performed a user
study where we explore the feasibility of these results in practice. For this
study, solutions generated during the experiment are split up and filtered
to form groups with less than 10 changes, which are reviewed by develop-
ers that have changed that code recently or are a senior with experience in
that specific area of the code. The results show that the algorithm is suc-
cessful in identifying flaws in the codebase. However, the improvements it
suggests are less precise and require future work.

c.j.schroder@student.tudelft.nl

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. M. Aniche, Faculty EEMCS, TU Delft
Company supervisor: MSc. A. van der Feltz, Adyen
Committee Member: Dr. N. Yorke-Smith , Faculty EEMCS, TU Delft

ii

Preface

I would like to start off this thesis by thanking the people that made my study
and thesis possible. I would like to thank the Delft University of Technology and
all my teachers for enabling me to learn so much in the past five years. I would
like to thank the other Computer Science students, some of whom became good
friends, for the team spirit we had and how we supported each other. I would
like to give special thanks to my professor and supervisor Maurício, for the great
guidance and feedback during the thesis. I would also like to thank Annibale
Panichella, for sharing ideas and giving feedback at several moments during
the thesis. I would also like to thank Arie van Deursen and Neil Yorke-Smith for
being members of my thesis committee and their time.

I am honored by the opportunity Adyen gave me to do this research with
them, and for supporting it to continue by enabling working from home during
the Covid-19 lockdown. I am grateful to my company supervisor Adriaan and
the rest of the DATT team at Adyen for helping me apply this research on the
Adyen codebase, sharing ideas, and most of all having fun while doing it.

Last but not least I would like to thank my friends, family, and girlfriend for
all the support over the years.

Casper Schröder
Delft, the Netherlands

September 2, 2020

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Contributions . 3

2 Code Quality & Modularization 5
2.1 Code Quality . 5

2.2 Modularization . 7

3 Related Work 11
3.1 Code Quality Metrics . 11

3.2 Algorithms/Approaches . 14

3.3 Comparison of Exiting Modularization Approaches 22

4 Adapting to Scale 25
4.1 Adyen . 25

4.2 Challenges of the Scale . 25

4.3 Algorithm . 26

4.4 Modeling & Representation . 27

4.5 Estimated Build Cost of module Cache Breaks 28

5 Constructing & Fine-Tuning the Algorithm 31
5.1 Optimization Variables . 31

5.2 Selection . 33

5.3 Crossover . 33

5.4 Mutation . 36

v

Contents

5.5 Constraints . 37
5.6 Population Initialization . 37
5.7 Optimization Variable & Parameter Tuning 38

6 Empirical Study: Approach in Theory 41
6.1 Research Questions . 41
6.2 Methodology . 41
6.3 Results . 42

7 Case Study: Approach in Practice 51
7.1 Research questions . 51
7.2 Methodology . 51
7.3 Results . 55

8 Discussion 57
8.1 Implications . 57
8.2 Practical Use . 58
8.3 Threats to Validity . 58

9 Conclusions and Future Work 61

Bibliography 65

A Glossary 75
A.1 Terminology . 75

B Interview 77
B.1 Interview Questions . 77
B.2 Interview answers . 78

C Figures & Tables 85
C.1 LOC correlation with build costs . 85
C.2 Optimization variable tweaking results 87
C.3 Parameter tuning results . 91

D Pseudocode Estimated Build Cost of module Cache Breaks Dif-
ference 99

vi

List of Figures

2.1 Module dependencies inferred from class dependencies 8

5.1 Crossover operator: effects of trying to preserve building blocks and
prevent duplicates. Two modules (M1 & M2) are copied to child so-
lutions in two steps respectively. Classes copied from parent 1 are
colored blue and ones copied from parent 2 are colored green. The
classes that are copied from parent 1 due to preventing duplicates are
colored red. 35

6.1 Pareto front of the first run1 . 42
6.2 Solutions that improve on all metrics from the pareto front of the first

run2 . 43
6.3 Pareto front of the second run3 . 43
6.4 Solutions that improve on all metrics from the pareto front of the sec-

ond run4 . 44
6.5 IntraMD convergence of the 72 hour-long run, best and average val-

ues of the pareto front . 47
6.6 InterMD convergence of the 72 hour-long run, best and average val-

ues of the pareto front . 48
6.7 EBCCB convergence of the 72 hour-long run, best and average values

of the pareto front . 49

C.1 The runtime of a compile Java task relative to the lines of code in the
module . 86

C.2 The runtime of a jar task relative to the lines of code in the module . . 87

vii

Chapter 1

Introduction

Over the past decades, software has become more intertwined with our daily
lives. With the ever-growing demand for functionality provided software, and
tech companies wanting to out-compete each other, software services need
more and more features and are ever-growing. With the value of the software
being defined by its functionality and not its code quality, the latter often de-
grades when the former is expanded. Especially in enterprise-level software,
the emphasis on the delivery speed of features is high. Often the amount of de-
velopers working on the code is also relatively high, of which most do not fully
understand the entire codebase. The missing understanding of the codebase
combined with the number of changes being done and the time pressure for
new functionality results in bad code quality if not prevented by putting in lots
of effort. The effort cost is not attractive from a business perspective, but the
effects of ignoring code quality can be worse.

Bad code quality negatively impacts the software development process in
many ways [4] and can also impact the quality of the product [62]. One of the
main aspects that is negatively impacted is the understandability of the code. In
other words, how easy developers can work with the code. Another is the costs
associated with building, running, and testing the code. Different parts of the
codebase can get more coupled, duplicate code can arise and code can get less
efficient. While these effects might not be apparent in the short term, the code
quality keeps degrading over time, slowly increasing the negative effects and
decreasing the understandability [66]. This concept is known as technical debt
[20].

As understandability and usability are abstract and subjective concepts, they
cannot be easily defined or measured. Instead, researchers often measure code
quality by coupling and cohesion [54]. Coupling represents how intertwined
the code is, while cohesion represents how well the code is organized so that it
belongs together. These are still abstract concepts but measurable metrics that
represent them are easier to make. These metrics can be used to create tools

1

1. Introduction

that can help improve code quality.

These tools that assist in this process are very useful, as improving code
quality can be very costly and time-consuming. In this thesis, we propose and ex-
plore a remodularization recommendation approach, based on a multi-objective
evolutionary algorithm, that is adjusted for enterprise-level software. The ap-
proach is applied to an enterprise-level codebase which is object-oriented. The
goal of this approach is to reduce the effort needed to remodularize a codebase
by removing the need to manually search through dependencies. This thesis
contributes to the knowledge in the field of search algorithms for modulariza-
tion by applying an existing approach on larger scale software than done before
and adjusting it as needed, adding a new metric as an optimization variable, and
investigating the quality of the suggestions in practice with the help of develop-
ers working on the enterprise software it is applied on.

There exist a significant body of related work in modularization and code
refactor suggestions. Some use Machine Learning [60, 70], some Cutting or
Clustering [33, 37, 43, 17], and most use Evolutionary Algorithm approaches
[36, 35, 46, 56, 50, 1, 53, 30, 38, 27, 6, 2, 31, 61]. The most used algorithm
is the NSGA-II algorithm [22], which we also use in this thesis. Many different
code quality measures are used, yet close to all works use some measurements
representing coupling and cohesion.

In order to apply the approach to enterprise-level software, we make deci-
sions based on existing work. These decisions try to find the most efficient way
to tackle the problem. We test several optimization variable configurations con-
sisting of metrics used in existing work. We also add a new metric to represent
a coupling issue that is more prevalent in bigger codebases, namely transitive
coupling. The metric is called the Estimated Build Cost of module Cache Breaks
(EBCCB), and it represents weighted transitive coupling. The configuration
we decide to use contains the following metrics: Intra-Module Dependencies,
Inter-Module Dependencies, # Class Move Refactorings, and EBCCB. The re-
sults show that the approach was successful, and the added metric significantly
reduces weighted transitive coupling.

To validate the results work in a real scenario, parts of the generated solu-
tions were reviewed by developers that are experienced in that part of the code-
base. They were interviewed to understand the quality of the suggestions. From
these interviews, we found that less than half of the inspected code changes,
which were all good according to the metrics, were good in reality, which ques-
tions the applicability of this type of approach in reality. However, all suggested
changes led a developer to find a flaw in the code and an idea on how to fix it.

These results show that the approach and likely similar ones can be applied
to enterprise-level codebases and achieve a theoretical significant improvement
in terms of the metrics used. It is also shown that the metric values do not neces-
sarily translate to practical quality, which implies that modularization research

2

1.1. Contributions

results should be validated. This validation is often overlooked [52].
The thesis starts with explaining the relation between code quality and mod-

ularization and stating the modularization problem. After this, it goes into re-
lated work. The chapter after describes the challenges the bigger scale code-
base introduces, and which decisions were made to tackle these challenges.
This is followed up by the chapter that describes the configuration of the algo-
rithm. The theoretical and practical value of the approach is examined in the
empirical study and case study chapters. The empirical study chapter describes
how the approach performs from a metric point of view, and the case study
chapter describes how the solutions delivered by the approach were reviewed
by developers. Finally, the approach is discussed, conclusions are made, and
the potential future work is proposed.

1.1 Contributions

This project makes three main contributions.

1. A multi-objective evolutionary optimization approach to the remodulariza-
tion problem can be applied on large-scale enterprise-level codebases and
reach significant improvements from a metric point of view, verified by a
controlled experiment showing its effectiveness.

2. A user study on the practical value of solutions that are generated by the
approach. This study shows the importance of this type of validation and
that more work is required to properly translate the improvement shown
by the metrics to a real scenario.

3. A new metric is introduced to measure an aspect of a codebase which be-
comes more important the bigger the codebase becomes, namely weighted
transitive dependencies. The metric is called the Estimated Build Cost of
module Cache Breaks.

3

Chapter 2

Code Quality & Modularization

In this chapter, code quality and the relation it holds with the modularization
problem are explained. The chapter starts with going into code quality, specif-
ically structural quality, and the two most used aspects of it in research, cou-
pling, and cohesion. After this, it explains the dependency structure and its
implications and uses for modularization. Finally, it states the modularization
problem.

2.1 Code Quality

Code quality represents lots of factors. How well the code performs in terms
of runtime, how readable it is, how well it is documented, etc. For this thesis,
we will look at the quality of the code structure specifically, as it is the goal
of modularization to improve this. Code structure quality represents how well
classes are put together, how well classes are divided among modules, and how
proper these modules are connected among other things. Two aspects that are
often used when investigating code structure quality are coupling and cohesion.

2.1.1 Coupling

Bavota et al. state that coupling is a fundamental property of software systems
and that coupling measures are often used to determine code structure quality
[8]. Coupling is an abstract concept, representing how interconnected the code
is. As stated by Stevens, Myers, and Constatine, coupling is the measure of the
strength of association between modules [63]. On a class level, this represents
how connected to other classes a class is, be it through using other classes or
being used by other classes. If a piece of code is using many other pieces of
code, or it is used by many other pieces of code, chances are that it’s using or
being used wrongly.

5

2. Code Quality & Modularization

Higher coupling is a negative aspect, among other reasons due to the following
[8, 11, 13, 15]:

• It makes the code harder to change. The more code is connected, the
more code needs to be checked and possibly changed if a part of the code
is changed.

• It propagates errors further. If a part of the code is faulty and performs
unwanted behavior, returns faulty output, or even crashes, this impacts a
bigger part of the codebase.

• It makes the code harder to understand. To fully grasp a part of the code,
it and the code it depends on need to be looked at. More coupled code
means more code to inspect.

Coupling plays an important role in modularization research, as it is relatively
easy to measure and an easy to grasp concept. It has also been shown to have
a strong relation with fault detection [13]. Decoupling code is the process of
decreasing coupling and as such improving code quality [42]. These improve-
ments in terms of coupling can be achieved by removing code connections in
any way.

Coupling has been empirically shown to be perceived by developers similarly
as it is measured by some coupling measures. Revelle, Gethers, and Poshyvanyk
introduce a set of textual and structural feature coupling metrics and show that
the metrics align with how developers perceive coupling [57]. Bavota et al.
show that coupling is best measured in structural and semantic measures [8].
In their study, developers’ perception aligns most with the semantic coupling
measures.

2.1.2 Cohesion

Another code quality concept often used in code quality assessment is cohesion
[19, 26, 14]. Cohesion is the abstract idea representing the degree to which
elements inside a module belong together [69]. From a class perspective, this
means it should fulfill one purpose or hold one responsibility, and every variable
and method defined should contribute to that purpose or responsibility. From a
module perspective, this means that classes in a module should use each other
and/or be used together and have a clear shared purpose.

Higher cohesion is a positive aspect. It makes the code easier to understand
and work with. It causes the code to be more robust. If a piece of code is highly
cohesive, it is most likely easier to reuse, refactor, or replace. In other words, it
has opposite effects of high coupling.

Cohesion plays an important role in modularization research as well, as it
is a powerful tool in the design of modular structures [69]. It can show how

6

2.2. Modularization

to divide the code into modules [42]. Code can be restructured optimizing for
many different aspects, however, if the code has low cohesion afterwards, it will
be hard to use, understand and maintain, and more error-prone. Cohesion is
generally harder to measure than coupling, as its definition is more abstract,
making it difficult to represent it in metrics.

Cohesion being harder to grasp becomes clear from a developer perspective
in empirical research such as Counsell et al. [19]. They show a difference in
judging cohesion between novice and experienced developers. Their results im-
ply that a class is cohesive if it has low coupling, higher numbers of comment
lines, and methods that contribute to a common goal of the class. The difficulty
of forming proper cohesion metrics is clear from the work of Etzkorn et al. [26].
They show that many cohesion metrics correlate to the developers’ perspective,
however not to a degree where the metrics capture the majority of the value. In
the case of improving code quality through refactoring, developers do not nec-
essarily pursue an optimal balance between cohesion and coupling, as shown by
Candela et al. [14]. Additionally, the majority of developers surveyed confirmed
that they were guided by other properties than cohesion and coupling.

2.2 Modularization

A type of problem definition that specifically tries to improve on code struc-
ture quality is modularization. Modularization is the effort of dividing code into
groups in such a way that it results in a good code structure. Often this is done
on module level, meaning that it tries to optimize package or class organization
over modules. Modularization is key in large codebases and its quality is impor-
tant, as bad modularization can be worse than no modularization at all [9]. In
order to properly define the problem of modularization, we need to explain the
concept of a dependency structure.

2.2.1 Dependency Structure

A dependency structure represents the individual pieces of code of a codebase,
and the connections between them. In object-oriented programming, classes
are the pieces of code and the dependencies are the connections between them.
A class depends on another class if the former uses any functionality from the
latter directly, by for example using a method from the latter. From now we will
refer to this as class dependencies.

These dependencies form a dependency structure, which can be represented
by a directed graph where the nodes are classes and the edges are the depen-
dencies from the using classes to the used classes. This graph will be referred
to as the class dependency graph. By grouping these classes into modules, the
module dependency structure can be inferred. If modules that classes are in

7

2. Code Quality & Modularization

Figure 2.1: Module dependencies inferred from class dependencies

are represented as groups of nodes, the edges that go from group to group,
show the dependencies between modules. This can be seen in Figure 2.1. This
figure shows classes as nodes, labeled with numbers, and the dependencies as
directed edges. The squares represent a possible modularization, which results
in the module to module dependency structure below the arrow.

To run a piece of code, it needs to be compiled. Before this can happen,
all its dependencies should be compiled first. These two graph representations
can be used to determine which modules need to be compiled and built first
when compiling and building a module. These graphs can also be used to derive
information about the codebase. Specifically, they can be used as the input of
metrics that measure code quality, for example, metrics representing coupling
and cohesion.

2.2.2 Problem

The problem we are faced with is as follows: What is the best division of code
into modules? We want to create these modules in such a way that the result
is a dependency structure of high quality, and in turn a code structure of high

8

2.2. Modularization

quality. Managing dependencies to solve this problem is not trivial. One of
Martin’s most well-known books describes design flaws that all relate to depen-
dency management, and how they should be prevented or fixed through proper
development, management, and planning[42]. As many other factors also go
into what makes a specific modularization "good", finding the optimal solution
is infeasible. Instead, modularization is optimized according to one or multiple
metrics, often ones that represent coupling and cohesion and are measured us-
ing the dependency structure among others. By creating a modularization that
improves on these metrics, we assume that the code structure quality and as
such the overall code quality is also improved upon.

9

Chapter 3

Related Work

Modularization of code is not a new topic in software engineering research.
The field has been researched for more than 20 years [60, 33]. The goal of
modularization is to improve the codebase it is applied to from a structural point
of view. As a "good" codebase is an abstract concept that is hard to quantify,
instead metrics are used to measure code quality. The metrics that are used to
measure code quality are explored in the first section. To apply these metrics
on code projects, various approaches have been implemented over the years
using various algorithms, which will be described in the second section of this
chapter. Finally, papers that compare approaches are inspected and potential
shortcomings of existing research and additions to the field are identified.

3.1 Code Quality Metrics

There are many ways to measure the quality of code. In this section, we de-
scribe code quality metrics that have been proposed by related work, structural
metrics specifically.

Allen, Khoshgoftaar, and Chen propose coupling and cohesion as quality
measures, and that they can be easily measured in a modular system [3]. They
measure coupling by the amount of inter-module connections, and cohesion by
the intra-module coupling, normalized to between zero and one. In describing
these measures, the authors refer to work done by Briand, who has expanded
these measures further to also apply on class level. In his paper with Devanbu
and Melo, the coupling measure is further expanded to inter-class coupling [10].
This coupling measure is based on how every class in an object-oriented sys-
tem is connected. It covers more than direct class to class connections. This
measurement has been empirically shown to be a reasonable measure of fault-
proneness. In another paper by Briand, Daly, and Wüst, many established ways
of measuring cohesion between classes are compared [12]. A critique that is
applied to most measurements is that they do not have empirical studies behind

11

3. Related Work

them and the ones that do may not improve the quality of the code in practice
when they are used. In a later paper, Briand et al. show that when a proper set
of coupling and cohesion measures are used together, accurate models can be
built to find fault-prone classes [13].

Chidamber and Kemerer propose a set of six metrics to measure code quality,
which has been used in modularization related research [16]. The metrics are
the following:

1. Weighted Methods per Class (WMC): the complexity of all methods in a
class.

2. Depth of Inheritance Tree (DIT): the maximum length from the class to the
root of the inheritance tree.

3. Number Of Children (NOC): the number of children a class has.

4. Coupling Between Object classes (CBO): the count of the number of other
classes to which it is coupled.

5. Response For a Class (RFC): the size of the response set of a class. The
response set of a class consists of all methods that this class can call.

6. Lack of Cohesion in Methods (LCOM): measured by for every pair of meth-
ods in a class, summing the number of class variables that are used by only
one of the methods.

Hitz and Montazeri show that the measures proposed by Chidamber and Ke-
merer were not correctly empirically tested, because the representation condi-
tion was ignored [32]. The representation condition states that for every em-
pirical relation, the same relation should hold after applying the measure. They
show that this does not hold for the measures.

Another set of metrics called Modularization Quality (MQ) is proposed by
Mancoridis et al. [40]. This set consists of intra-connectivity represented by a
fraction of the maximum number of intra-dependencies, and inter-connectivity
represented by a fraction of the maximum number of inter-dependencies. The
resulting modularization is a weighted sum of the two, such that the resulting
value is bounded between -1 (no cohesion) and 1 (no coupling).

Martin also proposes a set of metrics in his book [42]. Three metrics
that are often used in modularization research are the following. Acyclic-
Dependencies Principle (ADP), which states that no cycles are allowed in the
package-dependency graph. The Common-Closure Principle, which states that
classes in a package should be closed together against the same kinds of
changes. A change that affects a package affects all the classes in that pack-
age and no other packages. And the Common-Reuse Principle (CRP) states that

12

3.1. Code Quality Metrics

classes in a package are reused together. If you reuse one class in a package,
you should reuse them all.

Different types of metrics have been proposed and investigated. Meyers and
Binkley study sliced base cohesion and coupling metrics [44]. It shows that
these metrics quantify the deterioration of a program as it ages. They show
that the metrics are not proxies for size-based metrics and that they should
have baselines. The cohesion metrics they use are: the number of statements in
every slice, the ratio of the smallest slice compared to a module’s length, length
of slices to length of module, largest slice to the length of a module, amount of
statements common to all slices, and the number of slices with no more than n
statements in common.

Besides structural cohesion metrics, semantic cohesion metrics are also
used. Marcus, Poshyvanyk, and Ferenc have used the conceptual cohesion of
classes to predict faults [41]. This cohesion measure is based on textual infor-
mation in the source code, both in identifiers as in comments. They use Latent
Semantic Indexing to get this textual information.

Some studies combine structural and semantic metrics. Bavota et al.
measure package cohesion for modularization by using the following metrics
[7]. Information-Flow-based Coupling (ICP) and Conceptual Coupling Between
Classes (CCBC). ICP is measured by the number of methods called between to
classes weighed by the number of parameters shared in those methods. CCBC
is measured by code semantics in comments and identifiers.

Because of the different quality types to measure, different types of metrics,
and the number of metrics introduced, some proposed models to measure code
quality are significantly more complex. One of these examples is the model that
Bansiya and Davis propose, which assesses the quality of high-level design at-
tributes [5]. It combines metrics such as encapsulation, modularity, coupling,
and cohesion to represent quality attributes such as reusability, flexibility, un-
derstandability, etc. They show that models like these can be used to monitor
the quality of a software product. Another example of a model with high com-
plexity is the one Sarkar, Rama, and Kak present. They present a new set of
metrics to measure software modularization quality [59]. It is a combination
of coupling-based structural metrics, size-based metrics, architectural metrics,
and metrics based on the similarity of purpose, which amalgamates to twelve
metrics in total.

Models to measure coupling and cohesion also differ in complexity, Dhama
presents a model to measure coupling and cohesion, where both concepts are
divided into several aspects [23]. Cohesion is split into functional, data flow,
action-bundling, and logical bundling cohesion. Coupling is split into data and
control flow, global, and environmental coupling. This model is not applied in
this paper and no conclusions are made.

Acknowledging the importance of practicality for code quality metrics,

13

3. Related Work

Bavota et al. performed an empirical study on how developers perceive software
coupling in several open-source systems [8]. They focussed on class coupling
specifically, and show that the concept of coupling goes beyond the structural
measures which are often used to represent it. Coupling can also be captured
by semantic measures, which seem to complement the structural measures.

History of development can be an important factor, as Ying et al. show. They
show that source code change recommendations can be formed by using the
change history a project [68]. They imply that sets of files that have been fre-
quently changed together will likely need to be changed together in the future.
They achieve this through data mining and coupling/cohesion metrics.

Multiple papers have also shown a correlation between code quality metrics
and historical development data, using one to determine the other. Romano and
Pinzger use code metrics to predict change-prone java interfaces [58]. They use
the following metrics: Coupling Between Objects, Lack of Cohesion Of Meth-
ods, Weighted Methods per Class, Number of Children, Depth of Inheritance
Tree, Response For Classes, and Interface Usage Cohesion. Elish and Al-Khiaty
present a suite of metrics for quantifying historical changes to predict change
prone classes [25]. This suite consists of 16 metrics meant to translate the
change history to future changes.

Not all of these attempts are successful, however. Kabaili, Keller, and Lust-
man propose to use cohesion as an indicator of changeability [34]. They state
that coupling has already been shown to be such an indicator. Two class level
cohesion metrics, LCC and LCOM, are used but are shown to not cover cohesion
properly and should not be used as changeability indicators.

3.2 Algorithms/Approaches

The modularization problem has been approached using several types of algo-
rithms. This section will describe the algorithms used. A summary of these
approaches can be seen in Tables 3.1, 3.2, and 3.3.

14

3.2. Algorithms/Approaches

Table 3.1: Summary of problems optimized for, algorithms used, and variables
optimized of related work (1/3)

Authors (year) Problem Approach
Optimized for
(+: maximize / -: minimize)

Schwanke,
Hanson
(1994)

Modularization

Machine
Learning
(neural
network)

More-than-similar judgements (+)

Jermaine
(1999)

Modularization K-cut
Cohesion (intra-edges) (+)
Coupling (inter-edges) (-)

Kook Lee
et al.
(2002)

Split components
from codebase

Novel
clustering
algorithm

Cohesion (core
functionality similarity) (+)
Coupling (message passing
between classes) (-)
Coupling (connection
in some form) (-)

Harman,
Hierons,
Proctor
(2002)

Modularization GA
Cohesion (intra-edges) (+)
Coupling (inter-edges) (-)
of modules (-)

Zhang,
Jacobsen
(2003)

Refactor
suggestions

Aspect Mining

Discover non-localized units
of modularity
(type-based,
lexical-based patterns) (+)

Mitchell
(2003,
2006,
2007)

Modularization
GA,
clustering by
hill climbing

Cohesion (intra-edges) (+)
Coupling (inter-edges) (-)

Kwong
et al.
(2010)

Modularization GA

Cohesion (intra-edges) (+)
Coupling (inter-edges,
class interactions) (-)
Functional performance (+)

Kessentini
et al.
(2010)

Defect detection GA
detected defects compared
to example defects (+)

Marx,
Beck,
Diehl
(2010)

Split components
from codebase

Exhaustive,
hill climbing,
and min-cut
algorithms

Amount of class to class
dependencies broken (-)

15

3. Related Work

Table 3.2: Summary of problems optimized for, algorithms used, and variables
optimized of related work (2/3)

Authors (year) Problem Approach
Optimized for
(+: maximize / -: minimize)

Praditwong,
Harman,
Yao
(2011)

Module clustering
Two archive
pareto optimal
GA

Cohesion (intra-edges) (+)
Coupling (inter-edges) (-)
of clusters (+)
MQ (+)
of isolated clusters (-)
Difference between min and
max # of modules
in a cluster (-)

Ouni
et al.
(2012)

Modularization NSGA-II

Local semantic similarity
(vocabulary based) (+)
Program structure quality
(shared method calls /
field access) (+)

Fadhel
et al.
(2012)

Model refactoring GA
Similarity between model
and expected model (+)

Bavota
et al.
(2012)

Remodularization
Interactive
NSGA-II

MQ
Effort required (MoJoFM)
Developer can designate
changes to be useless

Mahouachi,
Kessentini,
Cinneide
(2013)

Find refactorings
that took place

GA
Similarity between historical model
and current model (+)

Ghannem,
Boussaidi,
Kessentini
(2013)

Model refactoring Interactive IGA
Similarity between model
and expected model (+),
Designer can rate solutions 1-5

Mkaouer
et al.
(2013)

Model refactoring
Preference based
MOEA

Model quality (+)
Rule complexity (-)

Abdeen
et al.
(2013)

Remodularization NSGA-II

Cohesion (CCP, CRP) (+)
Coupling (ADP) (-)
Package size (-)
of module changes (-)

Chong,
Lee,
Ling
(2013)

Cluster software

Dendogram
cutting,
Least squares
regression

Cohesion (avg. distance between
each entity in cluster) (+)
Coupling (min. distance between
centroids of the sides
of the cut) (-)

16

3.2. Algorithms/Approaches

Table 3.3: Summary of problems optimized for, algorithms used, and variables
optimized of related work (3/3)

Authors (year) Problem Approach
Optimized for
(+: maximize / -: minimize)

Mkaouer
et al.
(2014,
2016)

Refactor
suggestions

NSGA-II

Code smell severity
improvement (+)
Improvement importance (+)
Quality of improvement (+)

Mkaouer
et al.
(2015)

Remodularization NSGA-III

classes per package (-)
packages (-)
Package cohesion (intra-edges) (+)
Package coupling (inter-edges) (-)
Semantic grouping
(vocabulary similarity) (+)
code changes needed (-)
Consistency with
development history (+)

Ghannem
et al.
(2017)

Refactor
suggestions

NSGA-II

Structural similarity compared
to refactored models (+)
Structural similarity compared
to well designed models (-)

Mahouachi
(2018)

Remodularization NSGA-II

Structural quality
(intra, inter-package
dependencies) (+)
Semantic Cohesiveness
(vocabulary similarity) (+)
Refactor effort
(rate of achieved improvement) (+)

Alizadeh
(2018)

Refactor
suggestions

Interactive
NSGA-II

code smells (-)
Semantic coherence (+)
Quality Model for Object-Oriented
Design (+)
of refactorings needed (-)

Da Silva
et al.
(2020)

Product Line
Architecture

NSGA-II

Feature modularization (+)
SPL extensibility (+)
Variability (-)
Coupling (-)
Cohesion (+)

3.2.1 Evolutionary Algorithms

Evolutionary Algorithms (EA) work through simulating some sort of population
of solutions. Every solution is measured by some optimization variable, often
called fitness, to define how good it is. In addition to these fitness measure-

17

3. Related Work

ments, EAs consist of an exploration technique and a selection technique, effec-
tively simulating evolution in order to optimize a problem. A very common EA
is the Genetic Algorithm (GA), which creates new solutions by combining their
aspects, and mutation, in which solutions gain or lose aspects in some way. Af-
ter new solutions are formed, often either the parent solutions or the worst n
solutions in terms of fitness are discarded. This process is repeated until a time
limit or generation limit is found, or until the algorithm has converged, meaning
it found a local optimum from which it cannot find better optima.

Kwong et al. used a GA to optimize the modularization problem [36]. They
optimize for cohesion, which they measure by the number of class interactions
within modules, and coupling, which they measure by the number of class inter-
actions between modules. Besides cohesion and coupling, they use another ob-
jective, namely maximizing the functional performance of the component-based
software system based on a formula representing how well the components fit
in their respective modules.

Kessentini et al. use a GA in which the population is modeled as combina-
tions of refactorings to find a solution that optimizes by maximizing the number
of detected defects in comparison to expected ones in the base of examples [35].

Some studies also show that GAs outperform hill-climbing algorithms in mod-
ularization problems. One example is the works related to the Bunch tool.
Mitchell has published multiple works that describe the workings of this tool
[45, 46, 47]. The purpose of this tool is to modularize a codebase. Initially, it
used clustering algorithms, of which some were hill climbing. Later, genetic al-
gorithms were added to increase the search potential of the tool, as hill climbing
had an issue in creating new modules. These algorithms optimize the codebase
for coupling and cohesion measures. More specifically, the amount of inter-
module dependencies and intra-module dependencies. This tool has been used
successfully on real projects. Praditwong, Harman, and Yao propose to use a
novel two-archive pareto optimal genetic algorithm to optimize module cluster-
ing [56]. They optimize for six different values: Cohesion by summing intra-
cluster interactions, Coupling by summing inter-cluster interactions, maximiz-
ing the number of clusters, maximizing MQ, minimizing the number of isolated
clusters, and minimizing the difference between the maximum and the minimum
number of modules in a cluster. They advocate that this approach reaches better
results than single-objective approaches and that the richer solution space gives
more choices to the software engineer that will use it. They use weighted and
unweighted module dependency graphs. The GA outperforms the hill-climbing
algorithm significantly on the weighted graph, but the computation cost is ap-
proximately double. It is argued that this cost is worth the increase in the quality
of the results.

Two algorithms that are often used in modularization problems are the Non-
dominated Sort Genetic Algorithm-II (NSGA-II) and NSGA-III. Deb et al. intro-

18

3.2. Algorithms/Approaches

duced the NSGA-II algorithm [22]. This algorithm is a multi-objective evolution-
ary algorithm (MOEA) which is based on nondominated sorting. Instead of one
solution which is the fittest, this algorithm measures the solutions using multi-
ple optimization variables and results in a pareto front. A solution is part of the
pareto front if no other solution is found that is equal or better on all optimiza-
tion variables and at least better on one. This algorithm was found to perform
well, but lose proper solution diversity when faced with many optimization vari-
ables. Deb and Jain, in their paper, show that for MOEA approaches with higher
amounts of objectives optimized for, the NSGA-III algorithm they propose out-
performs NSGA-II [21]. This algorithm uses solution reference points to force
solution diversity for all dimensions. Ciro et al. even show that for some prob-
lems in large-sized instances, NSGA-III outperforms NSGA-II when optimizing
more than 2 variables [18].

Mkaouer et al. propose a way to suggest possible refactorings that can deal
with code smells [49]. They focus on adding two aspects to existing research,
namely code smell severity and code smell class importance. They also propose
using the NSGA-II algorithm to implement this. As a continuation of this work,
Mkaouer et al. use a modified NSGA-II to refactor in a way that tries to find
the best trade-off between three objectives: quality, severity, and importance of
improvements [50].

Abdeen et al. state that before their work, modularization was considered
from the ground up. They introduce the remodularization problem, which takes
an existing codebase and improves its quality while minimizing changes [1].
They use the NSGA-II algorithm. They optimize for coupling, cohesion, modi-
fication degree, and class distribution, which are constructed from CCP, CRP,
ADP, package sizes, and the number of moved classes. They allow the users
of the algorithm to set certain constraints, namely constraining the refactoring
space, guiding the process by marking code that is likely to move and limiting
the maximum amount of changes.

Some studies optimize not only on program structure but also on semantics
or structural similarity to verifiably good models. Ouni et al. create refactoring
suggestions using the NSGA-II algorithm which optimizes program structure
and semantics. The semantics are measured by using vocabulary-based similar-
ity, and program structure by shared method calls and shared field access [53].
From the solutions generated, they decide that the best solution is the one that
is ideal in terms of Euclidian distance in the pareto front. Ghannem et al. use
the NSGA-II to suggest refactorings by maximizing the structural and textual
similarity between the model to be refactored and models that have undergone
refactorings, and minimizing the structural and textual similarity between the
model and well-designed models that do not need refactoring [30]. Mahouachi
also uses the NSGA-II algorithm to optimize remodularization for 3 objectives,
structural quality, semantic cohesiveness, and minimizing the refactoring effort.

19

3. Related Work

Structural quality is measured by intra- and inter-package dependencies, se-
mantic cohesiveness by vocabulary similarity, and refactoring effort by the rate
of achieved improvement [38]. Mkaouer et al. approach the remodularization
problem using the NSGA-III algorithm and 7 optimization objectives, including
size metrics, intra- and inter-edges representing cohesion and coupling, num-
ber of code changes, and similarity to historical changes [51]. They argue that
modularization should be optimized for more than structure quality in the form
of cohesion and coupling to achieve solutions of higher quality. Fadhel et al.
use a GA to create an adjusted high-level code model through refactorings that
should be as similar to a given expected model as possible [27]. It optimizes
for the similarity between the given and expected model as fitness. Mahouachi,
Kessentini, and Cinneide use a genetic algorithm to take a set of refactoring
possibilities and several versions of the software to find which refactorings have
taken place between those versions [39]. The algorithm is near identical to the
one used in the work by Fadhel et al. [27].

Some works have made the algorithms interactive or preference-based, to in
a way optimize for a developer perspective as well. Ghannem, Boussaidi, and
Kessentini provide an interactive genetic algorithm to perform model refactor-
ing [29]. The GA is also near-identical to that of Fadhel et al. [27], with the
interactive part added. The designer can rate changes in 5 ways, reaching from
critical to inappropriate. The value of these refactorings is weighted by the de-
signer’s feedback. Bavota et al. use an interactive genetic algorithm (based on
NSGA-II) to tackle the remodularization problem [6]. They evaluate the solu-
tions with MQ as the quality metric and MoJoFM [67] as the effort required. Al-
izadeh et al. used an interactive version of the NSGA-II algorithm to create soft-
ware refactoring recommendations [2]. The goal is to improve software quality
while minimizing the deviation from the initial design. The algorithm runs for a
set amount of generations, optimizing for the number of code smells, semantic
coherence, Quality Model for Object-Oriented Design, and the number of refac-
torings needed. After that, a developer reviews the results, and feedback is fed
into the algorithm. Solutions are modeled as a list of field/method level refac-
torings. 6 optimization variables are used that are constructed from summing
and weighing 10 different measures. Mkaouer et al. tackle multiple software
modeling challenges with a different algorithm. They use a preference-based
multi-objective evolutionary optimization technique [48]. The preferences are
modeled by weights assigned by the user and setting a desirability threshold
to optimization variables. The algorithm optimizes for model quality and rule
complexity.

Some studies emphasize the importance of preserving building blocks while
performing crossover. This means that a different crossover operator is used
which is made specifically to prevent aspects in a solution that amplify each
other’s positive effect from being split up. Harman, Hierons, and Proctor pro-

20

3.2. Algorithms/Approaches

pose an approach to modularization which uses a GA [31]. They use a fitness
function that includes 3 metrics: coupling in the form of inter-module coupling,
cohesion in the form of intra-module coupling, and granularity in the form of
the number of modules. They introduce a new crossover operator, which in-
stead of choosing a single point in the list of changes and forming children with
the pieces it divides the modules of the parents uniformly over the children.
This should preserve building blocks and is shown to work better than the sin-
gle point crossover in most architectural structures. Da Silva et al. propose
two new crossover operators for multi-objective search-based approaches [61].
They apply them using NSGA-II to the Product Line Architecture problem, op-
timizing for feature modularization, SPL extensibility, variability, coupling, and
cohesion. The first crossover operator first adds all the parent’s features to their
respective children except for one, which is put into the other parent’s child. Af-
ter this, duplicate functionality is removed based on the one that has the worst
feature modularization. The second crossover operator is similar to single-point
crossover, but it only chooses a crossover point only in one parent. The child
receives the first part from parent one. For the second part, the child receives
elements from the other parent which are not yet in its first part. The remaining
elements are received from parent 1 as well.

3.2.2 Machine Learning

Another type of approach used to tackle modularization is machine learning.
Machine learning approaches for optimization problems often combine some
sort of exploration algorithm with a neural network that evaluates the quality of
solutions or parts of solutions.

Schwanke and Hanson demonstrate, back in 1994, a tool that uses machine
learning in the form of neural networks to modularize software [60]. It uses
more-than-similar judgments as features by constructing triples where < S, G,
B > represents that S is more similar to G than S is to B. This tool is meant to be a
software architecture assistant, which gives advice in the form of recommended
changes. The tool is compared to nearest neighbor clustering and classification
tools and is shown to have similar effectiveness. Zhang and Jacobsen introduce
the Prism project, which discovers non-localized units of modularity by applying
aspect mining based on type-based and lexical-based patterns [70]. These units
are used for refactoring possibility recommendations, as they most likely fit
better elsewhere.

Machine learning has been used successfully for code structure quality pre-
diction in general as well, which means it could be used as a metric in an op-
timization algorithm. Thwin and Quah used a General Regression Neural Net-
work to predict software quality [65]. They use the following metrics: Depth of
Inheritance Tree, Number of Children, Coupling Between Objects, Response For

21

3. Related Work

a Class, Inheritance Coupling, Coupling Between Methods, Weighted Methods
per Class, and Number of Object Allocations.

3.2.3 Cutting & Clustering

As modularization is often represented as a type of graph, cutting and clustering
approaches are another way of optimizing it.

Chong, Lee, and Ling propose a dendrogram cutting approach to cluster
software [17]. The approach uses least-squares regression to find the best cut
level. The value of the cut is determined by its effect on cohesion and cou-
pling. Cohesion is represented by the average distance between each entity
in a cluster, and coupling by the minimum distance between the two centroids
of the sides of the cut. The distance between parts of the code is defined by
4 different similarity measures. It’s stated that to properly use this approach,
utility classes need to be removed from the simulations first, as those negatively
affect the accuracy of the software clustering. Jermaine implements the k-cut
method in order to modularize software [33]. The cuts are meant to create
modules with high cohesion and low coupling. The edges are weighted by their
sociability metric that represents the amount of inter- and intra-module function
invocations. Marx, Beck, and Diehl propose a way to optimize a cut between a
component and the remaining system, in order to reuse it in other software or
outsourcing development [43]. They use a combination of exhaustive, hill climb-
ing, and min-cut algorithms to extract components. The cut is optimized for the
(possibly weighted) amount of class to class dependencies broken.

Kook Lee et al. introduce a component identification method that considers
coupling, cohesion, dependency level, connection through interface, and granu-
larity [37]. This approach makes use of a novel component clustering algorithm
to cluster nodes. Nodes are made up of one or more classes. The cluster-
ing algorithm weighs the connection between nodes using cohesion based on
core functionality similarity, and coupling modeled as static connections and
the amount of message passing connections.

3.3 Comparison of Exiting Modularization
Approaches

Due to the vastness of existing works on modularization specifically, some stud-
ies have compared the different approaches. They identify which ones seem
promising, and what seems to be missing from existing work.

Ebad and Ahmed, in their work, compare different approaches to the mod-
ularization problem [24]. They create a framework that measures approaches
based on the given packaging goal, underlying principle, input artifact, inter-

22

3.3. Comparison of Exiting Modularization Approaches

nal quality attribute, search algorithm, fitness function, scalability, soundness,
practicality, and supportability. They observe the following aspects:

• Most see packaging as an optimization problem

• Most maximize intra-package cohesion and minimize inter-package cou-
pling

• Most use Genetic Algorithms as their search methods

• All approaches are graph-based

• Most use source code as the input artifact

• Selection of parameters of the heuristic search method is very crucial (due
to local optima)

• Most approaches are scalable

• The soundness of results is questionable

• Only one is supported by tools to easily apply it to a codebase

Mohan and Greer also performed a survey of search-based refactoring for
software maintenance [52]. Several search techniques are used in the sur-
veyed papers: Hill climbing, Simulated annealing, Genetic algorithms, and
multi-objective evolutionary algorithms. The papers apply their approaches to
projects that are generally adequate as they are large enough to justify them
representing a real project. These projects generally consist of tens of thou-
sands of lines of code. There was one study that used a large system with more
than one million lines of code [55]. They conclude that software developer feed-
back is needed to support the approaches.

The two factors this thesis focuses on that are made clear in these review/-
comparison papers are the following:

• The assumption that these approaches are scalable, even though none
seems to have been applied on a large scale codebase.

• The questionable quality of the results, caused by the evaluation of the
results. This is measured by the metric improvement only, not by verifying
the results with software developers that are experienced with the code.

As Mohan and Greer state in their paper: "It needs to be evaluated whether the
search-based refactoring techniques that have been developed can carry over to
the business environment or whether real-world application scenarios will bring
to light further issues." [52].

23

Chapter 4

Adapting to Scale

To achieve one of the goals of this thesis, we need to find a way to successfully
apply an approach similar to existing research on a significantly bigger scale.
This chapter describes what Adyen is as a business and the effects on the code-
base. The chapter also contains the identified challenges of the bigger scale
and the reasoning behind choices that were made to tackle or minimize these
challenges.

4.1 Adyen

Adyen is a payment service provider, gateway, acquirer, and point of sale termi-
nal service1. The company was founded in 2006 and has grown rapidly, totaling
over 1400 employees as of August 2020. Most of the code is part of a monolithic
repository, consisting of 5.5M+ lines of code. This is the codebase we will ap-
ply the approach to. Due to the emphasis on uptime, performance, and growth
potential for this type of business, good code quality and with it code structure
quality is essential. A codebase of this size and speed of growth brings addi-
tional challenges when compared to smaller codebases.

4.2 Challenges of the Scale

The most obvious challenge coined by the bigger scale is the complexity of the
codebase. Instead of a piece of software with very focused functionality and con-
sisting of tens of thousands or hundreds of thousands lines of code, we will be
applying the approach to a piece of software with many different functionalities
and responsibilities and which exists out of more than 5 million lines of code.
This increases the size of the input the chosen algorithm will take, and through
the input size, and differences between and amount of functionalities, increase

1https://www.adyen.com/

25

https://www.adyen.com/

4. Adapting to Scale

the complexity of the software. This effect will be amplified by the complexity
of the algorithms used in the approaches, which scale worse than linearly with
the size of the problem.

The many different functionalities and responsibilities the codebase holds
emphasize an aspect more than smaller codebases, namely transitive coupling.
Transitive coupling can be described as follows: if module M1 depends on mod-
ule M2, and module M2 depends on module M3, M1 is transitively dependent
on M3. The reason this is further emphasized is because of the depth of these
dependencies caused by the size of the codebase, the chance of different func-
tionalities being dependent on code they do not need, and the loss of overview
of developers. For a developer, understanding what every module is responsi-
ble for and which code it contains in a codebase with twenty small modules is
doable, while the same task is infeasible to do for hundreds of modules sup-
porting different functionalities. When this is combined with different teams
of developers being responsible for different functionalities in a fast-growing
codebase, unnecessary coupling is bound to arise. This unnecessary coupling
causes more unnecessary transitive coupling. The negative effects of coupling
mentioned in section 2.1.1 are amplified further through transitive coupling,
especially if the modules that are being transitively depended on are sizable.

The speed of growth of the codebase as mentioned before, mostly caused by
being enterprise software and the push for features created by business goals,
poses a risk in code quality. The pressure can cause flaws to slip through, and
the developers to take on a "fix it later" mentality. This implies that over time
code quality will degrade if gone unchecked, potentially increasing the size of
the problem.

Another aspect of the size and goal of the codebase which influences mod-
ularization as a problem is that in order to completely refactor and reorganize
the codebase an immense amount of time and effort is needed. Because of this,
a modularization solution that is very different from the current state of the
modularization will be mostly useless in practice.

4.3 Algorithm

Given the challenges posed by the bigger scale, we need to choose an algorithm
that will be able to find good solutions in an acceptable amount of time. As mod-
ularization is not a problem which needs to be fixed overnight, we will aim for an
algorithm that can run for more than a day, and preferably less than a week. We
also want to have a high diversity of solutions. In addition, the algorithm needs
to be able to handle the complexity of the problem, and optimize for multiple
variables.

The Non-dominated Sort Genetic Algorithm II (NSGA-II) [22] was chosen to

26

4.4. Modeling & Representation

optimize this problem. This choice is supported by the fact that the amount of
optimization variables we are aiming for is low (< 5), it one of the most used
algorithms for modularization, and it has shown to be one of the most effective
in modularization and similar problems [1, 2, 6, 61, 30, 50, 38, 53]. Due to
the possible runtime, this algorithm can be applied on the entire codebase in
one run, and make improvements in different parts. The fact that its result is
a pareto front of solutions means it can and most likely will contain multiple
suggestions for improvement each run.

4.4 Modeling & Representation

Modularization can be optimized on different levels. Often it is performed on a
module level [36, 31, 46, 6], meaning the smallest changes are classes moved
from modules to other modules. It has also been performed on a package or
subfolder level [1, 38], making the problem harder than the module level. Re-
cent research has shown the potential of doing it on class level, meaning the
smallest changes are methods and variables moved between classes [51, 2].

To tackle the bigger scale and show whether modularization approaches can
be extended to it, we need to respect the challenges it brings. Therefore, we
choose to optimize the modularization on a module level.

Given that modularization solutions which restructure the entire codebase
are useless in practice on this scale, we need to find solutions similar to the
current structure of the codebase. More specifically than the modularization
problem, we tackle the remodularization problem. A solution to the remodular-
ization problem is a modularization that is better than the current modulariza-
tion, while not requiring too much effort to achieve.

We model the software remodularization problem as a search problem where
the search space consists of all possible modularizations. In other words, all
possible groupings of classes in modules. All classes are part of exactly one
module, which can be seen as a group of classes. Code contained in a class, and
the class’ dependencies are seen as unchangeable information. The problem
is modeled as two graphs, one representing the dependencies on class level
and one on module level. The class dependencies are unchangeable, while the
module level dependencies are inferred from those class dependencies. If there
exists at least one class dependency from module M1 to a class in module M2,
there exists a module dependency from M1 to M2. This results in another graph
that shows the module dependencies (see chapter 2).

A solution to this problem consists of a new and optimized dependency struc-
ture. In our algorithm, classes are moved to different modules to achieve better
dependency structures. A solution in the algorithm is modeled as a list of tuples
containing the classes that were moved and the modules they were moved to,

27

4. Adapting to Scale

for example, see Table 4.1.

Table 4.1: An example of a solution to the remodularization problem

Move To

example.package.class1 example-module
example.package.class2 example-module
other.package.class4 another-module

The choice to model the solutions as changes instead of a complete de-
pendency structure was made to reduce the cost of evaluating solutions. Re-
evaluating entire modularizations takes significantly more processing power
than evaluating the difference that a list of changes makes. Also, when a so-
lution is modeled as an entire modularization, other steps of the algorithm run
significantly slower and the algorithm needs more memory. Modeling the solu-
tions this way has been argued by Abdeen et al. [1] and implemented in other
remodularization research [38, 50].

4.5 Estimated Build Cost of module Cache Breaks

The added emphasis on transitive coupling shows the need for a metric that
measures it. To optimize for this properly, we want a metric that represents
weighted transitive coupling. The metric we propose is the Estimated Build
Cost of module Cache Breaks (EBCCB). The value is formed by summing for
each module an estimation of its build cost multiplied by the number of times
its cache was broken over a set period of time. This section will further explain
the relation between caching and transitive coupling, and why this coupling is
weighted by using module rate of change and build cost.

4.5.1 Caching

Caching is often used to remedy the fact that building code after making
changes in enterprise software can take a long time. Module caches reduce the
build cost of the codebase after a change. Instead of all modules, only the mod-
ules that changed and the modules that depend on the ones that are recompiled
and rebuild need to be recompiled and rebuild. This causes any change to have
a cascading effect throughout the codebase, in the reverse direction of the mod-
ule dependencies. Removing a single dependency or splitting a module could
have a significant effect on the number of caches broken. As this cache break
effect follows the transitive dependencies, it represents the transitive coupling
aspect of EBCCB.

28

4.5. Estimated Build Cost of module Cache Breaks

4.5.2 Rate of Change

How volatile a module is (i.e. how often it changes) is represented by its Rate
of Change (ROC). The ROC of a module is based on the number of commits
that change one or more classes in the module. The modules are weighted by
ROC because the more a module changes, the more likely it is to introduce
errors, introduce new dependencies, or grow in size. An unwanted transitive
dependency on a completely static module is less problematic than on a volatile
one.

To calculate how many times a module’s cache breaks, the ROC of itself and
all its transitive dependencies are needed. All ROCs of the transitive dependen-
cies need to be considered, for which the module dependency structure formed
by a solution is used. If multiple dependencies of a module have their cache
broken by the same commit, the module only has to be rebuild once.

4.5.3 Build Cost

The build cost of a module gives an indication of how big and complex it is. Un-
necessarily breaking the cache of a low build cost module has a smaller negative
impact than that of a high build cost module. Similarly, bigger and more com-
plex modules are impacted more by the negative effects caused by (transitive)
coupling.

Building every solution is impossible, so instead an approximation is made.
To approximate the build cost of a module, we build a function through regres-
sion that uses the lines of code (LOC) of a module to predict its build time. In
other words, the LOC of a module combined with this function is taken as a
proxy for the build cost. This value can be determined quickly and it can be eas-
ily re-evaluated after changes are made by subtracting the LOC of the moved
classes from their original modules and adding it to the ones they were moved
to.

To find the LOC of a module, the LOC of every class in it is summed up. A
function is derived through regression of Y on X where Y is the module’s build
time and X is the module’s LOC. The similarity between these values, specifically
in the codebase this algorithm was applied on for the case study, can be seen in
Figures C.1 and C.2 in Appendix C.

4.5.4 Metric value

Multiplying the estimated build cost with the number of cache breaks of a mod-
ule results in an estimation of the build cost of cache breaks of said module.
The summation of this for all modules is the total Estimated Build Cost of Cache

29

4. Adapting to Scale

Breaks. The resulting formula for the metric is the following:

EBCCB(S) = ∑
m

LOCtoCost(LOC(m))∗Cb(m) (4.1)

Where S is a solution, m is a module, LOCtoCost is the formula that translates
LOC to the build cost, and LOC(m) is the lines of code of a module. Cb(m) is the
number of cache breaks of a module, in other words, the number of commits
that change a class in the module or in any of its transitive dependencies.

The pseudocode of this optimization variable can be found in Appendix D.

30

Chapter 5

Constructing & Fine-Tuning the
Algorithm

In a nutshell, our algorithm works as follows. The problem is modeled as two
graphs, one representing the dependencies on class level and one on module
level. A solution is represented as a set of classes that are moved from their
original module to a new one. The used optimization variables consist of a
combination of some or all of the following values: a coupling metric, multiple
cohesion metrics, amount of classes moved to a different module, and expected
build cost of cache breaks. Selection is used in the same way as in the intro-
duction of NSGA-II. Crossover is done by two operators: one simple single-point
crossover, and one that tries to preserve good aspects of a solution. Mutation
is performed by a min-cut based operator and by a random neighborhood op-
erator, which both determine a group of classes to move from one module to
another. The problem has one constraint, namely that there should be no circu-
lar dependencies. The details of these aspects are stated in the next sections of
this chapter.

This chapter describes how the remodularization problem was approached.
It starts with how the problem was modeled and which algorithm was used.
After that, it goes into the specific aspects of the algorithm, which variables
were optimized for, and the constraints the problem has. Finally, it describes
the tuning process applied to achieve proper performance.

5.1 Optimization Variables

We want to optimize how well the architecture is modularized, so we experiment
with different metrics:

• Inter-Module Coupling (InterMD), also referred to as Coupling, is mea-
sured by the total amount of module dependencies.

31

5. Constructing & Fine-Tuning the Algorithm

• Cohesion of modules. We experiment with 3 different metrics used as
separate optimization variables:

– The Common Closure Principle (CCP), which is measured by the sum
of the number of classes in a module changed in the same commit, for
each module and every commit over a set period of time[42].

– The Common Reuse Principle (CRP), which is measured by the num-
ber of classes used together from a module for each class. [42].

– Intra-Module Coupling (IntraMD), namely the number of intra-
dependencies (class dependencies in a module) divided by the maxi-
mum possible amount of intra-dependencies [31].

• The effort required to achieve the solution, modeled by the amount of
"move class" refactorings, i.e. the number of classes that have been moved
to a different module in the solution.

• The Estimated Build Cost of module Cache Breaks (EBCCB) over a set time
in the future.

The optimization variables representing coupling and cohesion are often pro-
posed as code quality measures [44, 41, 33, 32, 12, 8, 5]. They are also often
used in combination with search algorithms to improve the code quality of a
codebase [1, 53, 38, 56, 51, 46, 39, 31, 17, 6, 3, 2].

For coupling, the average amount of inter-dependencies of modules was
used. This metric is used very often in search-based (re)modularization and
refactoring research [1, 33, 17, 38, 6, 46, 51, 56, 53]. For cohesion, several val-
ues are tested. One is the value used originally proposed as a part of Modulariza-
tion Quality by Mancoridis et al. [40], and used for a similar problem by others
[31, 46, 47, 36, 56], two others are, as stated by Robert Martin, the Common
Closure Principle (CCP), which aims to minimize the number of packages that
would be changed in any given release cycle, and the Common Reuse Principle
(CRP), which states that classes that are reused together should be packaged
together [42]. The Acyclic Dependencies Principle (ADP) is ignored because it
is inherent to the EBCCB, as calculating this optimization variable will reveal
any circular dependencies. Usage of CCP, CRP, and ADP for re-modularization
is also proposed by Abdeen et al. [1].

The amount of changes needed to achieve the solution covers another as-
pect of remodularization, namely the effort required to achieve the solutions.
As stated before, many changes can be made to the codebase, however, the
effort needed might not be worth the gain in quality. As the architecture is
from enterprise software, and the goal is to improve it by moving classes and
iteratively running the algorithm, it does not make sense to generate solutions
that require moving thousands of classes. Finding solutions that achieve similar

32

5.2. Selection

quality gains with fewer changes is preferred. Therefore the amount of changes
needed to reach the solution is one of the optimization variables.

Finally, Estimated Build Cost of Cache Breaks (EBCCB, see section 4.5) com-
bines a form of transitive coupling with the size and rate of change of modules
and represents a tangible value that shows the expected build cost of cache
breaks based on time. It represents a form of weighted transitive coupling.

5.2 Selection

For selection, the partial order and crowding distance of solutions were used in
combination with simple tournament selection with a tournament size of 5, as
has been proposed in the original paper introducing NSGA-II [22]. The partial
order defines which solutions are taken to the next generation and which fall
off. Solution i is chosen over j if i has a lower rank than j, meaning it is part of
a better front. If i and j have the same rank, crowding distance decides which
order the solutions take. Crowding distance is calculated by first sorting the
population according to each optimization variable. The solutions with the max-
imal and minimal value for one of the metrics are assigned an infinite distance
value. The others are assigned a distance value equal to the absolute normalized
difference in an optimization variable of two adjacent solutions. This process is
repeated for the other optimization variables. Each optimization variable value
is normalized beforehand. Solutions with a higher crowding distance value are
chosen over solutions with lower values.

5.3 Crossover

Crossover is the process of creating new solutions (children) by combining parts
of solutions that are in the current population (parents). For crossover, two
operators were tested:

• A single-point crossover. This crossover operator makes a sorted list of the
classes that were moved in both parents. It picks a random point in this
list. All changes before the point that belong to parent 1 are duplicated
in child 1, and the ones that belong to parent 2 are duplicated in child
2. For all changes after this point, the ones that belong to parent 1 are
duplicated to child 2, and from parent 2 to child 1. The list of classes is
sorted consistently during a run of the algorithm, based on the order they
were in when given as input.

• A crossover operator that tries to preserve building blocks, which in this
case are multiple changed classes that only have a positive effect when
moved together. This operator is based on the crossover operator used in

33

5. Constructing & Fine-Tuning the Algorithm

Harman et al. [31]. It aims to preserve building blocks by doing a uniform
crossover based on modules instead of classes. This means that all classes
that are in a module in one parent are set to be the same in one child, and
the classes in the same module in the other parent in the other child. This
is repeated for each module, pairing the two children with the two parents
randomly for each.

Performing crossover in this way sometimes causes conflicts, as a class
might be in module A in parent 1 and module B in parent 2. If both of
these modules are added to the same child, the class should not be in
both. So as soon as a class from one parent is added to one child, the same
class from the other parent is added to the other child. This process can
be seen in Figure 5.1.

In this figure, classes are the circles labeled with numbers, and the
rounded squares are the modules they are in. The figure shows the two
first steps of the crossover process. In the first step, module 1 (M1) is ran-
domly chosen. This module is copied from parent 1 to child 1, marked in
blue, and from parent 2 to child 2, marked in green. To prevent duplicates,
class 2 is copied from parent 1 to child 1, marked in red. In the second
step, module 2 (M2) is copied from parent 1 to child 2 and from parent 2 to
child 1, marked similarly in terms of colors. Note that class 2 is not copied
from parent 1 to child 2, as it is already present. We end up with 2 child
solutions which have the placements of class 2 and 4 mixed with respect
to the parent solutions.

34

5.3. Crossover

Figure 5.1: Crossover operator: effects of trying to preserve building blocks
and prevent duplicates. Two modules (M1 & M2) are copied to child solutions
in two steps respectively. Classes copied from parent 1 are colored blue and
ones copied from parent 2 are colored green. The classes that are copied from
parent 1 due to preventing duplicates are colored red.

35

5. Constructing & Fine-Tuning the Algorithm

5.4 Mutation

The most important factor of mutation in this problem is the ability to move both
a small amount and a large number of classes from one module to another. Two
were chosen that can do the following:

• A min-cut-based operator, which picks a random class and adds it to a
graph, then it traverses all dependencies from and to that class and adds
all the found classes to the graph. It keeps repeating this process until a
certain size is met, which is limited due to the computation cost associated
with min-cut. The operator then performs the Stoer-Wagner algorithm to
determine the min-cut of this graph [64]. The initially chosen class is in
one of the resulting subgraphs. This subgraph is then moved to a different
module. This operator is inspired by existing research that used graph
cutting algorithms for modularization [17, 33, 43].

• A mutation operator that moves a neighborhood of classes in a module of
a random size to another module. This operator was introduced by Fraser
and Arcuri [28]. It can perform anywhere between 1 and many mutations,
with increasingly less chance for higher amounts. The mutation operator
was adopted to this problem by changing the mutation to moving classes
in the following way. It picks a random class, adds it to a set, then keeps
adding random classes in the neighborhood until the following condition is
met: r > (c)n where r is a random number between 0 and 1, c is a constant
between 0 and 1 which impacts the average size of the resulting set and n
is the size of the set. The neighborhood is defined as all classes which are
in the same module, and depend on a class in the graph or are depended
on by a class in the set, but are not in the set. This set is then moved to a
different module.

The module the classes are moved to is chosen randomly from the set of modules
that the neighborhood of classes is connected to with one added module which is
a new, empty one. Limiting the moving of classes to modules that the neighbor-
hood of classes is connected to originated from trying out several configurations
of the algorithm. Moving the classes to a module that is not connected to the
neighborhood of classes almost always results in the classes being in a module
that they do not fit in. In terms of Cohesion, classes are moved to a module
comprised of classes it is not connected to in terms of dependencies. In terms
of Coupling, new dependencies are introduced to or from the new module.

36

5.5. Constraints

5.5 Constraints

There is one significant constraint in this problem: solutions should not contain
a circular dependency. There exists a circular dependency if any module can
traverse its dependencies (and its dependencies’ dependencies etc.) and find
itself. If a solution has a circular dependency the code is impossible to build.
While this constraint should not be broken by the solutions in the output of the
algorithm, it is allowed to break it during, so the algorithm can explore more. To
make sure the pareto front does not exist of only solutions containing a circular
dependency, these solutions should be dealt with in some way.

5.5.1 Punishment

Punishment was performed by lowering the value of solutions that break con-
straints, based on how many constraint violations they have. Constraint viola-
tion results in a circle in the module dependency graph. The size of this circle is
multiplied by a set value, which is then added to the estimated build cost. Also,
solutions with fewer constraint violations are chosen over solutions with more
violations during selection, as proposed by Deb et al. [22].

5.5.2 Repair

Solutions that break constraints can also undergo an attempt to repair. If a
solution contains a circular dependency somewhere, it is caused by one of the
newly added dependencies when compared to the original module dependency
structure. Changes made that cause this dependency are reverted to make it
disappear. Given the modules that are in a circular dependency, it is trivial to
find these dependencies, namely, they should be between any of these modules.
These dependencies can include ones that do not cause the circular dependency.
Differentiating between them is not trivial. In order to remove the circular de-
pendency and repair the solution, all of the classes moved to the modules which
are part of the circular dependencies are moved back to their original module.
This can affect the quality of solutions negatively by reverting good changes,
but it is an efficient and guaranteed way to remove circular dependencies.

5.6 Population Initialization

Because the remodularization problem requires the resulting modularization to
be similar to the one given as input, we can not initialize the population by
creating random modularizations. Also, due to how quickly the circular depen-
dency constraint is broken, solutions initialized by making a set of random class
changes rarely adhere to the constraints. Instead, we initialized the population

37

5. Constructing & Fine-Tuning the Algorithm

by mutating each solution for a random number of times between 0 and 100,
using the mutation operators described earlier in this chapter.

5.7 Optimization Variable & Parameter Tuning

To get an adequate performance out of the algorithm, we need to choose a
proper combination of optimization variables and we need to tune its parame-
ters. Tuning requires a significant amount of algorithm runs, and the possible
amount of combinations across optimization variables and algorithm parame-
ters is too high. To remedy this, the algorithm was run on a reduced version of
the codebase. This version consists of 17 modules, with a total of 10447 classes.
These modules were chosen to represent multiple functionalities of the code-
base and to retain the depth of the codebase in terms of transitive module to
module dependencies.

5.7.1 Optimization variables

Optimizing for all of the optimization variables stated in section 5.1 using the
NSGA-II algorithm is not preferred. For every optimization variable added the
pareto front gains a dimension, which increases the optimization difficulty ex-
ponentially. In order to keep the pareto front properly spread for all dimensions
also requires the population size to be bigger, adding to the runtime. Instead,
we want to find combinations of optimization variables that achieve relatively
good results in terms of the metrics.

To start we took default values for the parameters based on existing research
and intuition formed by running the algorithm with differing configurations (see
Appendix section C.3). Using these parameters, 11 different configurations of
optimization variables were tested. These combinations of optimization vari-
ables were tested by running the algorithm, using the default parameters, 5
times for 3 hours per combination. The configurations and results of these runs
can be seen in Appendix C.2. The best configuration found given the improve-
ment on all fronts and an adequate amount of generations is using IntraMD,
InterMD, EBCCB, and # Changes as optimization variables. These runs also
form a baseline which shows that optimizing for EBCCB is required to achieve
significant improvement in terms of EBCCB. In other words, it cannot be opti-
mized by optimizing any of the other parameters tested.

5.7.2 Parameters

Given the better combinations of optimization variables from the previous sub-
section, we can tweak the algorithm parameters. For each possible parameter,
several possible values were determined from related research and intuition.

38

5.7. Optimization Variable & Parameter Tuning

These possible values can be seen in Appendix section C.3. Given the large
number of possible combinations and the computational cost required to run
them all, we opt for tuning a smaller set of parameters, specifically tuning one
parameter at a time while using a default value for the others. 7 parameters
were tuned, resulting in 17 different configurations. The algorithm was run 5
times for 3 hours for each configuration. The results can be seen in Appendix
section C.3. The resulting parameter values are as follows:

• Population size = 500

• Mutation chance = 0.5

• The optimal ratio of mutation operator usage = 0.5

• Constraint breaks are ignored

• Duplicates are deleted

• The crossover operator that tries to preserve building blocks is used.

• An elite archive is used.

39

Chapter 6

Empirical Study: Approach in
Theory

To first show the usefulness of the approach in a controlled way, we applied in
on the Adyen codebase. After running the algorithm for a limited time, solutions
should be found that improve the code structure in terms of the metrics. After
that, we ran the algorithm for a longer period, to see if and when it converges
to see the feasibility of the approach on this scale.

6.1 Research Questions

With the configuration of the algorithm described in the previous chapter, we
want to answer the following research questions.

RQ1: What is the improvement of the code structure in the solutions
that the proposed approach finds in terms of the metrics used as opti-
mization variables? Are the algorithm and its configuration sufficient to get
results that show a significant improvement of the codebase? If so, how big is
this improvement?

RQ2: How fast does the proposed algorithm converge? How many gen-
erations does it take for the algorithm to converge to a local optimum? From
the improvement of the pareto front and the individual optimization variables
throughout the generations, we can infer when the algorithm has converged to
a local optimum. This shows how long the algorithm will realistically take to do
a proper run.

6.2 Methodology

We run the algorithm on the entire codebase for 24 hours on 8 cores at 2.1GHz
with 8GB of RAM, 2 times. For RQ1, we look at the values of the chosen op-

41

6. Empirical Study: Approach in Theory

timization variables in the resulting solutions. For RQ2, we save the values
of the optimization variables of the pareto front every 50 generations and run
the algorithm for 72 hours on the same machine to see when the improvement
stops.

6.3 Results

This section contains the results that show the improvement that the algorithm
shows and its convergence speed, which hold the answers to the first 2 research
questions.

6.3.1 RQ1: What is the improvement of the code structure in the
solutions that the proposed approach finds in terms of the
metrics used as optimization variables?

The results of the runs done to answer RQ1 can be seen in Figures 6.1,6.2,6.3
& 6.4, and Tables 6.1 & 6.2. The figures show the pareto fronts of the two runs.
These tables contain the relative improvement of the optimization variable
values of the solutions that have the best value for one of the optimization
variables. Table 6.1 only contains solutions that improve on all optimization
variables, and Table 6.2 contains the solutions with the best improvements for
each optimization variable regardless. These tables and figures and tables show
relative improvement instead of the absolute values as per Adyen’s request.

Figure 6.1: Pareto front of the first run1

42

6.3. Results

Figure 6.2: Solutions that improve on all metrics from the pareto front of the
first run2

Figure 6.3: Pareto front of the second run3

1An interactive 3d visualization of these figures can be seen in the links in the footnotes
of each figure. https://github.com/SERG-Delft/ga-remodularization-appendix/blob/mas
ter/run1_3dview.html
These figures can also be downloaded as a zip file from https://doi.org/10.5281/zenodo
.4011987

2https://github.com/SERG-Delft/ga-remodularization-appendix/blob/master/run1_

3dview_filtered.html

43

https://github.com/SERG-Delft/ga-remodularization-appendix/blob/master/run1_3dview.html
https://github.com/SERG-Delft/ga-remodularization-appendix/blob/master/run1_3dview.html
https://doi.org/10.5281/zenodo.4011987
https://doi.org/10.5281/zenodo.4011987
https://github.com/SERG-Delft/ga-remodularization-appendix/blob/master/run1_3dview_filtered.html
https://github.com/SERG-Delft/ga-remodularization-appendix/blob/master/run1_3dview_filtered.html

6. Empirical Study: Approach in Theory

Figure 6.4: Solutions that improve on all metrics from the pareto front of the
second run4

Table 6.1: Relative improvement of best solutions for each optimization variable,
that improve on all optimization variables.

Best IntraMD Best InterMD Best EBCCB

IntraMD (cohesion) 205.173% 151.335% 55.011%
InterMD (coupling) 3.567% 3.656% 1.226%
EBCCB 0.168% 0.916% 1.667%
#Class change refactorings 170 138 67

Table 6.2: Relative improvement of best solutions for each optimization variable

Best IntraMD Best InterMD Best EBCCB

IntraMD (cohesion) 530.404% 322.315% 55.010%
InterMD (coupling) 1.204% 6.041% 1.226%
EBCCB N/A -8.102% 1.667%
#Class change refactorings 418 244 67

3https://github.com/SERG-Delft/ga-remodularization-appendix/blob/master/run2_

3dview.html
4https://github.com/SERG-Delft/ga-remodularization-appendix/blob/master/run2_

3dview_filtered.html

44

https://github.com/SERG-Delft/ga-remodularization-appendix/blob/master/run2_3dview.html
https://github.com/SERG-Delft/ga-remodularization-appendix/blob/master/run2_3dview.html
https://github.com/SERG-Delft/ga-remodularization-appendix/blob/master/run2_3dview_filtered.html
https://github.com/SERG-Delft/ga-remodularization-appendix/blob/master/run2_3dview_filtered.html

6.3. Results

Observation 1: Solutions show a significant improvement in code struc-
ture quality in terms of metric values. From the solutions that improve on
all optimization variables and improve the most on one of them, improvements
of 205.173% for IntraMD, 3.656% for InterMD, and 1.667% for EBCCB can be
seen. When disregarding the quality of other optimization variables, potential
improvements of 530.404% for IntraMD, 6.041% for InterMD, and 1.667%
for EBCCB can be seen. These results show a significant improvement in all
metrics.

Observation 2: The algorithm is prone to create solutions with many
new modules consisting out of 1 class, due to the IntraMD metric. The
percentage improvement of the IntraMD metric implies that the best solution
in terms of IntraMD that improves on all optimization variables supposedly
triples the value of the codebase in terms of cohesion. This is mostly caused by
the fact that creating a new module with one or two classes adds significantly
more to the value of the metric than improving the structure of bigger existing
modules. This results in a value that does not scale linearly with the actual
cohesion quality of the codebase.

Observation 3: The best solution in terms of EBCCB improves upon the
other used metrics as well. Disregarding the other two metrics, the best
solution in terms of EBCCB still improves upon those metrics. For InterMD,
this can be explained by the total transitive build-cache breaks reducing by
removing module to module dependencies, which is needed to improve on
the coupling metric. For IntraMD, splitting modules into smaller ones and
having class dependencies inside of modules instead of to other modules can be
beneficial for both IntraMD and EBCCB.

Observation 4: The optimal solutions per metric need different amounts
of changes, with EBCCB needing the least and IntraMD needing the
most. The optimal solutions for EBCCB seem to need the least amount of
changes, while the ones for IntraMD seem to need the most. A possible
explanation for the IntraMD is that the more classes are moved to small or new
modules, the more the value increases. To improve the EBCCB value, specific
changes have lots more impact than others, so fewer changes are needed for a
relatively big impact.

45

6. Empirical Study: Approach in Theory

RQ1: Our approach shows a potential 205.173% improvement on the
IntraMD metric, 3.656% improvement on the InterMD metric, and a 1.667%
improvement on the EBCCB metric depending on the implemented solution.
These solutions improve the codebase in terms of all used metrics.

6.3.2 RQ2: How fast does the proposed algorithm converge?

In Figures 6.5, 6.6, and 6.7, the improvement of each optimization variable over
generations is seen.

Observation 5: For InterMD and EBCCB, the algorithm seems to
converge. In contrast to the first observation, for the coupling metric, the
algorithm seems to be close to convergence at generation 19000, and for the
EBCCB, it seems to be mostly converged, only finding minor improvements after
generation 14000. This shows that the algorithm converges after approximately
20000 generations.

Observation 6: For IntraMD, the algorithm has not yet converged. The
reason why it has not converged yet is likely because the optimal solution for
this metric is a structure constructed of modules with one class per module.
The mutation operators can easily move a single class to a new module, which
keeps improving solutions in terms of this metric over generations. This process
can continue until the one class per module structure is achieved.

Observation 7: The achieved number of generations is close to 20000
after 72 hours.

RQ2: Our approach converges after approximately 20000 generations in
terms of the InterMD and EBCCB metrics. It most likely does not converge
within a reasonable time in terms of the IntraMD metric.

46

6.3. Results

Figure 6.5: IntraMD convergence of the 72 hour-long run, best and average
values of the pareto front

47

6. Empirical Study: Approach in Theory

Figure 6.6: InterMD convergence of the 72 hour-long run, best and average
values of the pareto front

48

6.3. Results

Figure 6.7: EBCCB convergence of the 72 hour-long run, best and average val-
ues of the pareto front

49

Chapter 7

Case Study: Approach in
Practice

To find whether the solutions found by the proposed approach are useful from a
realistic and business perspective, we need a case study where the subjects are
developers that are experienced with the platform. They should be presented
with changes suggested by the algorithm. From inspecting which changes they
deem to be appropriate and which not, we can infer whether the solutions are
useful in practice.

7.1 Research questions

RQ3: How do developers perceive the remodularization suggestions of
the approach? The fact that the change suggestions generated by the algo-
rithm improve the code structure quality from a metric based point of view does
not prove that they are useful in a realistic scenario. They might go against
design patterns or make no sense from a developer’s point of view.

7.2 Methodology

To answer RQ3, we interview several developers experienced with the code in
question about a set of suggested refactorings. We take groups of refactoring
suggestions from the best solutions resulting from the algorithm runs done to
answer RQ1. The groups consist of up to 10 refactor suggestions. We choose
a developer that has made multiple changes to classes in this group over the
past 6 months to review the suggestions. If no such developer exists or can be
interviewed, a senior developer related to that part of the code is chosen. The
developer is first asked some contextual questions, like their experience and
understanding of the module dependency structure. They are asked to review
a set of class refactor suggestions, and reason about its quality. The answers

51

7. Case Study: Approach in Practice

from these interviews are analyzed to determine the potential quality of the
remodularization approach in practice.

7.2.1 Suggestions

In order to make the solutions generated by the approach reviewable and ver-
ifiable by developers, we need to split them into smaller groups. The solutions
generated by the algorithm consist of tens or hundreds of class refactorings,
often in different parts of the codebase. If a developer is expected to review the
suggestion in 10 minutes, it should not consist of more than 10 classes, prefer-
ably related classes. The reviewed changes should also not be taken from one
solution. To achieve this, we separated all suggested class refactorings based
on the module the classes are now in, per solution, and filtered the duplicates.
From these smaller groups, we took only the ones that improved on at least 2
of the 3 metrics (excluding the number of class moves) and did not worsen the
other. An exception was made for the coupling metric, which was allowed to be
worsened if the EBCCB was improved because the overall coupling might im-
prove and otherwise suggestions containing the creation of new modules would
be very unlikely. This process resulted in 13 suggested change groups, which
can be seen in Table 7.1.

Table 7.1: The value of the suggested class move refactoring groups in terms of
the optimization variables. Note that for InterMD and EBCCB, lower values are
better

#class moves IntraMD InterMD EBCCB

C1 1 1.002 7 -3339.428
C2 4 2.000 0 -2844.694
C3 1 0.083 -2 -536.365
C4 2 0.985 -4 -2864.221
C5 2 0.006 -7 -8259.967
C6 1 1 3 -9302.729
C7 1 0.007 -2 -146.522
C8 1 0.015 -1 0
C9 2 2 9 -18901.665
C10 1 0 -1 -6681.924
C11 1 0.083 -5 -3305.340
C12 1 0.004 -2 -2899.092
C13 7 1.000 -1 -3376.606

52

7.2. Methodology

7.2.2 Interview Design

The goal of this interview is to see whether the supposed value of the solutions
generated is representative of the value in a real scenario, and what practical
value the solutions hold. The questions of the interview are formed in such a
way to first verify the experience and knowledge of the interviewee from which
the judgments will be made. After this, they are told a summary of the research,
specifically for which metrics the code structure was optimized. Then they were
asked to verify the code suggestions.

Afterwards, if the code change suggestions are judged to be fitting, the inter-
viewee will be asked to rate the importance of the changes. If the code change
suggestions are judged to be unfitting, it could still be an improvement to move
the classes to a different module, or it could indicate an issue in the code that
has to be fixed in a different way than moving classes. To verify this the inter-
viewee is asked whether looking into this change has given them an idea of how
to improve the code in this area. The list of interview questions can be seen in
Appendix B.

7.2.3 Interview Procedure

The interviewees were asked to participate in the survey over the internal chat
service in direct messaging. The message also contained a summary of what
the survey was about, what the goal was, and the reason why they were chosen
to participate. The specific module that the classes from the suggestion were in
was also included.

The interviews were conducted in person and followed the structure stated
in the previous subsection. During the interview, answers to the open questions
were reduced to key sentences and written down. These key sentences were
repeated back to the interviewee to verify whether it represents their reason-
ing. The data was analyzed by combining these answers on their key reasoning
points.

7.2.4 Developers

The interviewees were chosen by finding developers that made a code change
to at least one of the classes in the suggested change, in the past 6 months. If
no such person could be found, was not available, or did not feel comfortable
judging the suggested changes, a senior developer with experience with the
module the classes are in was chosen. This resulted in 11 developers judging
13 different suggestions. Their experience can be seen in Table 7.2. 4 of the
developers were seniors instead of developers that made changes to the classes.
D1, D6, and D8 looked at 2 suggestions per person, and D4 and D7 looked at
the same suggestion.

53

7. Case Study: Approach in Practice

Table 7.2: The interviewed developers and their experience. Developers that
were chosen as seniors to review a suggestion are marked with (s).

Developer
Software Development
Experience (Years)

Adyen Experience
(Years)

Reviewed
Suggestions

D1 9 4 C1 (s), C2 (s)
D2 3.5 3.5 C3
D3 10 2.5 C4
D4 10 0.5 C5
D5 20 7 C6 (s)
D6 6 3 C7, C8
D7 3 3 C5
D8 10 2 C9, C10 (s)
D9 34 1.5 C11 (s)
D10 2.5 2.5 C12
D11 6 2.5 C13

Table 7.3: Whether suggested class move refactoring groups correctly identify
a flaw in the code, and properly fix it.

Correctly identifies a flaw Accurate refactoring suggestion

C1 X x
C2 X ~
C3 X X
C4 X ~
C5 X/ x X/ x
C6 X x
C7 X x
C8 X X
C9 X x
C10 X x
C11 X X
C12 X x
C13 X ~

54

7.3. Results

7.3 Results

All interview answers can be seen in Appendix B. A summary of the quality of
the reviewed class move refactoring groups can be seen in Table 7.3

Observation 8: All suggestions revealed possible improvements of the
code according to the developer. There is one exception where the developer
saw no possible improvement, however, that same suggestion was deemed to
be good by another developer.

Observation 9: About half of the suggestions were deemed to be par-
tially good by developers. 7/13 suggestions were deemed to be at least
partially good by developers, meaning that a part of it could be implemented
directly, while the rest needs different fixes or needs to be ignored. 4 of those
suggestions could be directly implemented from the suggestion as a good
change to the current state of the code. The other changes were bad for one
or more the following reasons: the classes fit better in their current module
or in a different module which was not suggested, the classes are dead code
or superseded by other functionality so they should be deleted instead, future
plans concerning the classes hinder the suggested change, and/or the module
the classes are moved to are in the process of being split up.

Observation 10: All suggestions of moving classes to new modules
were reviewed negatively. This is likely due to the size of the suggestions
examined because the new modules were too granular. Fitting modules existed
already for these classes. This could be caused by the splitting process. Most
suggestions consist of moving less than 5 classes, which would cause the new
module to be too granular. This does not necessarily imply that these types of
changes are bad, as in one case the new module was better, while it was not
suggested by the algorithm. This case required more classes from different
modules to be moved to this new module than were in the suggested to be
moved.

Observation 11: Different developers make different judgments and con-
clusions. In the case of C5, 2 developers gave completely contradictory judg-
ments on the suggestion. D4 determined C5 to be bad and saw no possible
improvements, while D7 judged it to be good.

Also, D2 and D6 had similar reasons for judgment on C3 and C7 but made
differing conclusions. In both cases, the suggestion would be good in the
current state of the code, but given future plans, the code is where it should be.
This caused D2 to conclude that the move should be implemented and reverted
when needed, and D6 to conclude that it should not be implemented.

55

7. Case Study: Approach in Practice

Observation 12: Developers rate the severity of the suggestions higher
than their priority on average. Often the severity of the suggestions that are
identified to be at least partially good is higher or equal to its priority.

RQ3: All suggestions helped the developer identify a flaw in the code,
and form an idea on how to fix it. 4/13 suggestions could be implemented
directly, and 3/13 could be partially implemented directly.

56

Chapter 8

Discussion

This chapter describes the implications given by the results, the potential prac-
tical uses of the approach, and the threats to validity.

8.1 Implications

From the results shown in the previous two chapters, two important implications
become clear. The first is that the approach can be scaled to enterprise-level
codebases. It shows that this type of approach can converge and show a signifi-
cant relative improvement as when applied on a smaller codebase. The second
is that the results must be validated in a real setting. The metric improvement
does not necessarily translate to real quality improvement. The combination of
these implications shows that successfully applying this type of approach in a
business setting can be done if the results of an approach are shown to be sound
through validation, and is scalable similar to the approach in this thesis.

Our results imply that the results support the validity of the EBCCB metric.
The algorithm converges in terms of the metric, not many changes are required
to achieve significant improvements, and code change suggestions that mostly
improved on the metric were validated by developers. The best solution in terms
of the EBCCB metric improves on both the cohesion and coupling metric. For
the coupling metric, this can be expected, but for the cohesion metric, it implies
that some of its value is captured in the EBCCB metric.

It is also implied that the improvement of the solutions shown by the metrics
cannot be taken at face value. It is shown that around half of the subgroups
of suggested class refactorings contained improvements according to the inter-
viewed developers. Also, the importance of suggestions being correct is shown,
due to the low priority the developers deem the suggestions to be.

57

8. Discussion

8.2 Practical Use

From a business perspective, it is interesting to explore potential practical uses
of the approach explored in this thesis. Due to how the suggestions helped the
developers to identify flaws, a potential practical use can be constructed in a
similar way to the experiments performed. For example, the algorithm could be
run as a weekly job. The solutions generated from this run are then reduced
to smaller class move refactor groups in the same way as was done for the
interviews. The developers that recently changed the included code are notified
with the suggestion and asked to take a short time to find the flaw in the code
and fix it.

Another option would be to use the algorithm as an aiding tool in refactoring,
specifically splitting modules that are too large. The changes made by mutation
can be limited to the specific module or group of classes that need to be refac-
tored. With this limited scope, the algorithm can be run for a relatively short
time on the developer’s machine. The solutions created might contain the refac-
toring the developer is looking for, it or could reveal information. Also, if the
developer has found a way to refactor the code, it can be verified by running the
metrics that the algorithm optimizes for on the adjusted codebase.

8.3 Threats to Validity

We acknowledge the threats to validity described in this section. For internal
validity we identify the following threats:

• In the parameter tuning step, we did not explore every combination of
parameters. Also, not every possible parameter value was tried. Exploring
every combination or testing every possible parameter value would result
in a vast amount required runs, making the optimization infeasible. The
found combination is valid, but it may not be optimal. More extensive
parameter tuning may result in better performance and potentially better
solutions from the algorithm.

• The relative improvement in terms of the cohesion metric does not hold
a very specific value. The algorithm can "cheat the system" by moving a
single class to a new module multiple times, increasing the metric value
significantly without actually improving the codebase in terms of cohesion.
The metric also will not converge until a solution of one class per module
has been constructed. For these reasons, it is not a correctly representa-
tive value for the cohesion of the codebase. Using a better cohesion metric
might result in better solutions in terms of cohesion.

58

8.3. Threats to Validity

This does not mean that the solutions do not improve the codebase in terms
of cohesion, however. Suggestions that developers concluded to be good
also improved on cohesion in their opinion.

• The suggested groups of class move refactorings that were shown to de-
velopers in the interview process are not entirely representative of the
solutions they originate from, due to the filtering and grouping process
beforehand. Due to this, the conclusion that all suggested groups indicate
flaws in the code might not hold for all class move refactorings in the so-
lutions. The conclusion that the solutions cannot be taken at face value is
still sound, because a majority of the reviewed change groups were flawed,
which on their own represent a significant part of the improvement the so-
lutions imply.

• Interviews are prone to bias. Two major inherent biases can be identified
in this interview. The first is that developers might be prone to judge
suggestions positively after they have been told its positive effects in terms
of the metrics. The other is that developers who have been involved in
making decisions on in which module the classes which are suggested to
be moved should be, or involved in its creation, might be prone to judge
the suggestions negatively, as they are already convinced that the classes
are where they should be.

In terms of construct validity, we identify the following threats:

• The results imply that different developers judge differently. All but one
suggested changes have been reviewed by one developer. For proper val-
idation, it would be preferred to have multiple developers review each
suggested change. This would lead to a more rigorous validation.

• We measured the effort of code changes by the number of classes moved.
This may not properly represent the effort required for the changes, as
some classes might be significantly harder to move than others. To more
accurately measure the effectiveness of solutions, the MoJoFM metric [67]
could have been used for example. This metric shows the efficiency of a
solution by evaluating the achieved improvement relative to the effort re-
quired to achieve it. This way of evaluation has been used in remodular-
ization research [6].

In regards to external validity, the approach in this thesis was applied to
one codebase which is used and developed by one company. More research
is required to determine whether the results are generalizable to systems us-
ing different programming languages, developed by different people, fulfilling
different purposes, or other systems in general.

59

Chapter 9

Conclusions and Future Work

This chapter first restates the problem tackled. Afterward, we draw conclusions
from the results. Finally, potential future work will be discussed.

The problem tackled in this thesis is the remodularization problem. To optimize
for this problem, a modularization into modules has to be found that improves
on the given modularization. This modularization can be done on several lev-
els. In this thesis, we looked at a grouping of classes into modules. A solution
consists of a set of class moves that when implemented achieve improved mod-
ularization.

Specifically, the contribution of this thesis is scaling the approach up to a
larger scale codebase and validating the results by interviewing developers
that have worked on the code that is suggested to be changed. Both of these
factors are often missing in related research [52].

We approached this problem by modeling the codebase in a similar way to
existing work, namely graph-based. We view the problem as an optimization
problem and apply the NSGA-II algorithm to it. After testing combinations of
optimization variables, we set the algorithm to optimize for 4 metrics. The first
is cohesion, which is modeled by the amount of intra-module class dependencies
divided by the maximum possible per module. The second is coupling, which is
modeled by the amount of module to module dependencies. The third is a novel
metric representing weighted transitive coupling, called Estimated Build Cost
of module Cache Breaks. The final is the number of class move refactorings
required to achieve the solution. The algorithm is run for 72 hours once to show
how long it takes to converge. It is also run for 24 hours twice, to prove the
improvement potential in theory. The same results are split into small groups
and reviewed by developers that have worked on the code that is suggested to
be changed. We use the results to answer the following research questions.

61

9. Conclusions and Future Work

RQ1: What is the improvement of the code structure in the solutions
that the proposed approach finds in terms of the metrics used as op-
timization variables? From observation 1 we can conclude that the results
of this approach show significant improvement to the code in terms of the
metrics used, namely a 205.173% improvement on the IntraMD metric, 3.656%
improvement on the InterMD metric, and a 1.667% improvement on the EBCCB
metric depending on the implemented solution.

RQ2: How fast does the proposed algorithm converge? We can conclude
from observations 5 and 6 that the algorithm can converge in terms of two
metrics in an acceptable amount of time, namely around 20000 generations or
72 hours on the used hardware. In terms of the other metric, the algorithm will
not converge within an acceptable amount of time.

RQ3: How do developers perceive the remodularization suggestions of
the approach? The value of the solutions cannot be taken at face value how-
ever, we can conclude from observation 9, as it is shown that more than half of
the subgroups of suggested class refactorings are not improvements according
to the interviewed developers. This does not mean that the suggestions hold no
value, as from observation 8 it can be concluded that the suggested refactorings
reviewed all indicated flaws in the code according to the developers.

The results and conclusions imply some potential future work. In the modular-
ization field of research, lots of work exists that prove their approach solely on
a metric point of view. Due to the results in this thesis showing that the metrics
do not always translate to reality well, we propose for validation efforts being
done to see whether this research achieves different results. The validation can
be performed by applying the approaches to a codebase with full-time develop-
ers and then interviewing the developers to review the suggested refactorings
similarly as was done for this thesis. An improvement in the interview would be
to have suggestions be validated by multiple developers, as observation 11 has
shown that different developers can have completely contradictory judgments.

From the results, it’s clear that the reviewed suggestions show flaws in the
codebase, but some are arguably unfitting. A potential way to find better refac-
tor suggestions, or offer a developer more options, is to introduce a form of local
search into the process. This could be in a post-processing step or integrated
into the MOEA. More work is needed to see if using such an approach can result
in a higher ratio of suggestions that are good in practice.

The number of change group suggestions acquired in the filtering process
imply that the generated solutions are not very diverse. This might be caused
by improvements being propagated through the front where possible. Other
approaches may achieve a more diverse set of code changes. Some research

62

has indicated that in bigger problems, MOEAs that take front diversity into ac-
count, for example, NSGA-III, which can outperform NSGA-II when using more
than two optimization variables [18]. NSGA-III has been used successfully for
modularization in the past when using more optimization variables [51]. It may
be more successful in producing a set of solutions that varies more in terms of
code changes, or in achieving higher performance.

Another possible way of improving the solutions in practice is taking a devel-
oper’s perspective into the algorithm. This way, factors of code that can be more
easily identified by developers than metrics are taken into account. This can
be achieved by making the algorithm interactive or preference-based. Using
interactive evolutionary algorithms or preference-based has shown to be suc-
cessful in the past for remodularization and refactor recommendation research
[6, 29, 2, 48]. These approaches may result in better results in practice, due to
the developer’s influence on the solutions produced. This should be verified by
for example using a similar way of interviewing as performed for this thesis.

Assuming that the previous proposed research cannot acquire solutions with
100% good code changes in practice, more work is needed to determine how to
divide the solutions into smaller groups that can be reviewed by a developer. If
this is done properly, less value of the solution will be lost in that process, and
reviewing these solutions becomes easier. Given this work, existing modular-
ization research can be measured to see how well the supposed solution quality
translates to a business environment or other real-world scenarios.

We would also like to propose research into modularization quality metrics
that take transitive coupling into account. Most metrics work on a local module
measurement, and none examined seem to take into account the depth of mod-
ule dependencies or weighed transitive coupling. The EBCCB metric proposed
in this thesis has shown to be able to break transitive dependencies success-
fully. This metric has not yet been validated thoroughly, like some others [32].
We acknowledge that this metric may not be optimal and propose research that
either improves and validates this metric or introduces a better one.

63

Bibliography

[1] H. Abdeen, H. Sahraoui, O. Shata, N. Anquetil, and S. Ducasse. Towards
automatically improving package structure while respecting original de-
sign decisions. In 2013 20th Working Conference on Reverse Engineer-
ing (WCRE). IEEE, October 2013. doi: 10.1109/wcre.2013.6671296. URL
https://doi.org/10.1109/wcre.2013.6671296.

[2] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni, and Y. Cai.
An interactive and dynamic search-based approach to software refactoring
recommendations. IEEE Transactions on Software Engineering, pages 1–
1, 2018. ISSN 2326-3881. doi: 10.1109/TSE.2018.2872711. URL https:
//doi.org/10.1109/TSE.2018.2872711.

[3] E. B. Allen, T. M. Khoshgoftaar, and Y. Chen. Measuring coupling and cohe-
sion of software modules: an information-theory approach. In Proceedings
Seventh International Software Metrics Symposium. IEEE Comput. Soc,
2001. doi: 10.1109/metric.2001.915521. URL https://doi.org/10.1109/
metric.2001.915521.

[4] R. Baggen, J. P. Correia, K. Schill, and J. Visser. Standardized code quality
benchmarking for improving software maintainability. Software Quality
Journal, 20(2):287–307, May 2011. doi: 10.1007/s11219-011-9144-9. URL
https://doi.org/10.1007/s11219-011-9144-9.

[5] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented design
quality assessment. IEEE Transactions on Software Engineering, 28(1):4–
17, 2002. doi: 10.1109/32.979986. URL https://doi.org/10.1109/32.
979986.

[6] G. Bavota, F. Carnevale, A. De Lucia, M. Di Penta, and R. Oliveto.
Putting the developer in-the-loop: An interactive GA for software re-
modularization. In Search Based Software Engineering, pages 75–89.

65

https://doi.org/10.1109/wcre.2013.6671296
https://doi.org/10.1109/TSE.2018.2872711
https://doi.org/10.1109/TSE.2018.2872711
https://doi.org/10.1109/metric.2001.915521
https://doi.org/10.1109/metric.2001.915521
https://doi.org/10.1007/s11219-011-9144-9
https://doi.org/10.1109/32.979986
https://doi.org/10.1109/32.979986

Bibliography

Springer Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-33119-0_7.
URL https://doi.org/10.1007/978-3-642-33119-0_7.

[7] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto. Using
structural and semantic measures to improve software modulariza-
tion. Empirical Software Engineering, 18(5):901–932, September 2012.
doi: 10.1007/s10664-012-9226-8. URL https://doi.org/10.1007/
s10664-012-9226-8.

[8] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De Lu-
cia. An empirical study on the developers perception of software cou-
pling. In 2013 35th International Conference on Software Engineering
(ICSE). IEEE, May 2013. doi: 10.1109/icse.2013.6606615. URL https:
//doi.org/10.1109/icse.2013.6606615.

[9] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Connallen, and
K. A. Houston. Object-oriented analysis and design with applications, third
edition. ACM SIGSOFT Software Engineering Notes, 33(5):29–29, August
2008. doi: 10.1145/1402521.1413138. URL https://doi.org/10.1145/
1402521.1413138.

[10] L. Briand, P. Devanbu, and W. Melo. An investigation into coupling mea-
sures for c++. In Proceedings of the 19th international conference on
Software engineering - ICSE '97. ACM Press, May 1997. doi: 10.1145/
253228.253367. URL https://doi.org/10.1145/253228.253367.

[11] L. Briand, J. Daly, and J. Wüst. A unified framework for coupling mea-
surement in object-oriented systems. IEEE Trans. Software Eng., 25:91–
121, 1999. doi: 10.1109/32.748920. URL https://doi.org/10.1109/32.
748920.

[12] L. C. Briand, J. W. Daly, and J. Wüst. A unified framework for cohesion
measurement in object-oriented systems. Empirical Software Engineering,
3(1):65–117, 1998. doi: 10.1023/a:1009783721306. URL https://doi.or
g/10.1023/a:1009783721306.

[13] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter. Exploring the relation-
ships between design measures and software quality in object-oriented
systems. Journal of Systems and Software, 51(3):245–273, May 2000.
doi: 10.1016/s0164-1212(99)00102-8. URL https://doi.org/10.1016/
s0164-1212(99)00102-8.

[14] I. Candela, G. Bavota, B. Russo, and R. Oliveto. Using cohesion and cou-
pling for software remodularization: Is it enough? ACM Transactions on

66

https://doi.org/10.1007/978-3-642-33119-0_7
https://doi.org/10.1007/s10664-012-9226-8
https://doi.org/10.1007/s10664-012-9226-8
https://doi.org/10.1109/icse.2013.6606615
https://doi.org/10.1109/icse.2013.6606615
https://doi.org/10.1145/1402521.1413138
https://doi.org/10.1145/1402521.1413138
https://doi.org/10.1145/253228.253367
https://doi.org/10.1109/32.748920
https://doi.org/10.1109/32.748920
https://doi.org/10.1023/a:1009783721306
https://doi.org/10.1023/a:1009783721306
https://doi.org/10.1016/s0164-1212(99)00102-8
https://doi.org/10.1016/s0164-1212(99)00102-8

Bibliography

Software Engineering and Methodology, 25(3):1–28, August 2016. doi:
10.1145/2928268. URL https://doi.org/10.1145/2928268.

[15] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb. Software de-
pendencies, work dependencies, and their impact on failures. IEEE Trans-
actions on Software Engineering, 35(6):864–878, November 2009. doi:
10.1109/tse.2009.42. URL https://doi.org/10.1109/tse.2009.42.

[16] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented de-
sign. IEEE Transactions on Software Engineering, 20(6):476–493, June
1994. doi: 10.1109/32.295895. URL https://doi.org/10.1109/32.
295895.

[17] C. Y. Chong, S. P. Lee, and T. C. Ling. Efficient software clustering tech-
nique using an adaptive and preventive dendrogram cutting approach. In-
formation and Software Technology, 55(11):1994–2012, November 2013.
doi: 10.1016/j.infsof.2013.07.002. URL https://doi.org/10.1016/j.in
fsof.2013.07.002.

[18] G. C. Ciro, F. Dugardin, F. Yalaoui, and R. Kelly. A NSGA-II and NSGA-III
comparison for solving an open shop scheduling problem with resource
constraints. IFAC-PapersOnLine, 49(12):1272–1277, 2016. doi: 10.1016/j.
ifacol.2016.07.690. URL https://doi.org/10.1016/j.ifacol.2016.07.
690.

[19] S. Counsell, S. Swift, A. Tucker, and E. Mendes. Object-oriented cohesion
subjectivity amongst experienced and novice developers. ACM SIGSOFT
Software Engineering Notes, 31(5):1–10, September 2006. doi: 10.1145/
1163514.1163530. URL https://doi.org/10.1145/1163514.1163530.

[20] W. Cunningham. The WyCash portfolio management system. In Addendum
to the proceedings on Object-oriented programming systems, languages,
and applications (Addendum) - OOPSLA '92. ACM Press, 1992. doi: 10.
1145/157709.157715. URL https://doi.org/10.1145/157709.157715.

[21] K. Deb and H. Jain. An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, part
i: Solving problems with box constraints. IEEE Transactions on Evolution-
ary Computation, 18(4):577–601, August 2014. doi: 10.1109/tevc.2013.
2281535. URL https://doi.org/10.1109/tevc.2013.2281535.

[22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, April 2002. doi: 10.1109/4235.996017. URL
https://doi.org/10.1109/4235.996017.

67

https://doi.org/10.1145/2928268
https://doi.org/10.1109/tse.2009.42
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1016/j.infsof.2013.07.002
https://doi.org/10.1016/j.infsof.2013.07.002
https://doi.org/10.1016/j.ifacol.2016.07.690
https://doi.org/10.1016/j.ifacol.2016.07.690
https://doi.org/10.1145/1163514.1163530
https://doi.org/10.1145/157709.157715
https://doi.org/10.1109/tevc.2013.2281535
https://doi.org/10.1109/4235.996017

Bibliography

[23] H. Dhama. Quantitative models of cohesion and coupling in software.
Journal of Systems and Software, 29(1):65–74, April 1995. doi: 10.1016/
0164-1212(94)00128-a. URL https://doi.org/10.1016/0164-1212(94)
00128-a.

[24] S. A. Ebad and M. Ahmed. Software packaging approaches —a com-
parison framework. In Software Architecture, pages 438–446. Springer
Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-23798-0_44. URL https:
//doi.org/10.1007/978-3-642-23798-0_44.

[25] M. O. Elish and M. A. Al-Khiaty. A suite of metrics for quantifying histori-
cal changes to predict future change-prone classes in object-oriented soft-
ware. Journal of Software: Evolution and Process, 25(5):407–437, January
2012. doi: 10.1002/smr.1549. URL https://doi.org/10.1002/smr.1549.

[26] L. H. Etzkorn, S. E. Gholston, J. L. Fortune, C. E. Stein, D. Utley, P. A.
Farrington, and G. W. Cox. A comparison of cohesion metrics for object-
oriented systems. Information and Software Technology, 46(10):677–687,
August 2004. doi: 10.1016/j.infsof.2003.12.002. URL https://doi.org/
10.1016/j.infsof.2003.12.002.

[27] A. Fadhel, M. Kessentini, P. Langer, and M. Wimmer. Search-based de-
tection of high-level model changes. In 2012 28th IEEE International
Conference on Software Maintenance (ICSM). IEEE, September 2012.
doi: 10.1109/icsm.2012.6405274. URL https://doi.org/10.1109/icsm
.2012.6405274.

[28] G. Fraser and A. Arcuri. Whole test suite generation. IEEE Transactions
on Software Engineering, 39(2):276–291, Feb 2013. ISSN 2326-3881. doi:
10.1109/TSE.2012.14. URL https://doi.org/10.1109/TSE.2012.14.

[29] A. Ghannem, G. El Boussaidi, and M. Kessentini. Model refac-
toring using interactive genetic algorithm. In Search Based Soft-
ware Engineering, pages 96–110. Springer Berlin Heidelberg, 2013.
doi: 10.1007/978-3-642-39742-4_9. URL https://doi.org/10.1007/
978-3-642-39742-4_9.

[30] A. Ghannem, M. Kessentini, M. S. Hamdi, and G. El Boussaidi. Model
refactoring by example: A multi-objective search based software engineer-
ing approach. Journal of Software: Evolution and Process, 30(4):e1916,
November 2017. doi: 10.1002/smr.1916. URL https://doi.org/10.1002/
smr.1916.

[31] M. Harman, R. Hierons, and M. Proctor. A new representation and
crossover operator for search-based optimization of software modulariza-

68

https://doi.org/10.1016/0164-1212(94)00128-a
https://doi.org/10.1016/0164-1212(94)00128-a
https://doi.org/10.1007/978-3-642-23798-0_44
https://doi.org/10.1007/978-3-642-23798-0_44
https://doi.org/10.1002/smr.1549
https://doi.org/10.1016/j.infsof.2003.12.002
https://doi.org/10.1016/j.infsof.2003.12.002
https://doi.org/10.1109/icsm.2012.6405274
https://doi.org/10.1109/icsm.2012.6405274
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1007/978-3-642-39742-4_9
https://doi.org/10.1007/978-3-642-39742-4_9
https://doi.org/10.1002/smr.1916
https://doi.org/10.1002/smr.1916

Bibliography

tion. GECCO’02, page 1351–1358, San Francisco, CA, USA, 2002. Morgan
Kaufmann Publishers Inc. ISBN 1558608788.

[32] M. Hitz and B. Montazeri. Chidamber and kemerers metrics suite: a
measurement theory perspective. IEEE Transactions on Software En-
gineering, 22(4):267–271, April 1996. doi: 10.1109/32.491650. URL
https://doi.org/10.1109/32.491650.

[33] C. Jermaine. Computing program modularizations using the k-cut method.
In Sixth Working Conference on Reverse Engineering (Cat. No.PR00303).
IEEE Comput. Soc, 1999. doi: 10.1109/wcre.1999.806963. URL https:
//doi.org/10.1109/wcre.1999.806963.

[34] H. Kabaili, R. K. Keller, and F. Lustman. Cohesion as changeability in-
dicator in object-oriented systems. In Proceedings Fifth European Confer-
ence on Software Maintenance and Reengineering. IEEE Comput. Soc. doi:
10.1109/csmr.2001.914966. URL https://doi.org/10.1109/csmr.2001.
914966.

[35] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni.
Design defects detection and correction by example. In 2011 IEEE 19th
International Conference on Program Comprehension. IEEE, June 2011.
doi: 10.1109/icpc.2011.22. URL https://doi.org/10.1109/icpc.2011.
22.

[36] C. K. Kwong, L. F. Mu, J. F. Tang, and X. G. Luo. Optimization of software
components selection for component-based software system development.
Computers & Industrial Engineering, 58(4):618–624, May 2010. doi: 10.
1016/j.cie.2010.01.003. URL https://doi.org/10.1016/j.cie.2010.01.
003.

[37] J. Kook Lee, S. Jae Jung, S. Dong Kim, W. Hyun Jang, and D. Han Ham.
Component identification method with coupling and cohesion. In Proceed-
ings Eighth Asia-Pacific Software Engineering Conference. IEEE Comput.
Soc. doi: 10.1109/apsec.2001.991462. URL https://doi.org/10.1109/
apsec.2001.991462.

[38] R. Mahouachi. Search-based cost-effective software remodularization.
Journal of Computer Science and Technology, 33(6):1320–1336, Novem-
ber 2018. doi: 10.1007/s11390-018-1892-6. URL https://doi.org/10.
1007/s11390-018-1892-6.

[39] R. Mahouachi, M. Kessentini, and M. Ó Cinnéide. Search-based refac-
toring detection using software metrics variation. In Search Based Soft-
ware Engineering, pages 126–140. Springer Berlin Heidelberg, 2013.

69

https://doi.org/10.1109/32.491650
https://doi.org/10.1109/wcre.1999.806963
https://doi.org/10.1109/wcre.1999.806963
https://doi.org/10.1109/csmr.2001.914966
https://doi.org/10.1109/csmr.2001.914966
https://doi.org/10.1109/icpc.2011.22
https://doi.org/10.1109/icpc.2011.22
https://doi.org/10.1016/j.cie.2010.01.003
https://doi.org/10.1016/j.cie.2010.01.003
https://doi.org/10.1109/apsec.2001.991462
https://doi.org/10.1109/apsec.2001.991462
https://doi.org/10.1007/s11390-018-1892-6
https://doi.org/10.1007/s11390-018-1892-6

Bibliography

doi: 10.1007/978-3-642-39742-4_11. URL https://doi.org/10.1007/
978-3-642-39742-4_11.

[40] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner. Using
automatic clustering to produce high-level system organizations of source
code. In Proceedings. 6th International Workshop on Program Comprehen-
sion. IWPC'98 (Cat. No.98TB100242). IEEE Comput. Soc. doi: 10.1109/wp
c.1998.693283. URL https://doi.org/10.1109/wpc.1998.693283.

[41] A. Marcus, D. Poshyvanyk, and R. Ferenc. Using the conceptual cohesion of
classes for fault prediction in object-oriented systems. IEEE Transactions
on Software Engineering, 34(2):287–300, March 2008. doi: 10.1109/tse.
2007.70768. URL https://doi.org/10.1109/tse.2007.70768.

[42] R. C. Martin. Agile Software Development: Principles, Patterns, and Prac-
tices. Prentice Hall PTR, USA, 2003. ISBN 0135974445.

[43] A. Marx, F. Beck, and S. Diehl. Computer-aided extraction of software
components. In 2010 17th Working Conference on Reverse Engineering.
IEEE, October 2010. doi: 10.1109/wcre.2010.28. URL https://doi.org/
10.1109/wcre.2010.28.

[44] T. M. Meyers and D. Binkley. An empirical study of slice-based cohesion and
coupling metrics. ACM Transactions on Software Engineering and Method-
ology, 17(1):1–27, December 2007. doi: 10.1145/1314493.1314495. URL
https://doi.org/10.1145/1314493.1314495.

[45] B. S. Mitchell. A heuristic search approach to solving the software cluster-
ing problem. 2002. AAI3039424.

[46] B. S. Mitchell and S. Mancoridis. On the automatic modularization of soft-
ware systems using the bunch tool. IEEE Transactions on Software En-
gineering, 32(3):193–208, March 2006. doi: 10.1109/tse.2006.31. URL
https://doi.org/10.1109/tse.2006.31.

[47] B. S. Mitchell and S. Mancoridis. On the evaluation of the bunch search-
based software modularization algorithm. Soft Computing, 12(1):77–93,
June 2007. doi: 10.1007/s00500-007-0218-3. URL https://doi.org/10.
1007/s00500-007-0218-3.

[48] M. W. Mkaouer, M. Kessentini, S. Bechikh, and D. R. Tauritz. Preference-
based multi-objective software modelling. In 2013 1st International Work-
shop on Combining Modelling and Search-Based Software Engineering
(CMSBSE). IEEE, May 2013. doi: 10.1109/cmsbse.2013.6605712. URL
https://doi.org/10.1109/cmsbse.2013.6605712.

70

https://doi.org/10.1007/978-3-642-39742-4_11
https://doi.org/10.1007/978-3-642-39742-4_11
https://doi.org/10.1109/wpc.1998.693283
https://doi.org/10.1109/tse.2007.70768
https://doi.org/10.1109/wcre.2010.28
https://doi.org/10.1109/wcre.2010.28
https://doi.org/10.1145/1314493.1314495
https://doi.org/10.1109/tse.2006.31
https://doi.org/10.1007/s00500-007-0218-3
https://doi.org/10.1007/s00500-007-0218-3
https://doi.org/10.1109/cmsbse.2013.6605712

Bibliography

[49] M. W. Mkaouer, M. Kessentini, S. Bechikh, and M. Ó Cinnéide. A ro-
bust multi-objective approach for software refactoring under uncertainty.
In Search-Based Software Engineering, pages 168–183. Springer Inter-
national Publishing, 2014. doi: 10.1007/978-3-319-09940-8_12. URL
https://doi.org/10.1007/978-3-319-09940-8_12.

[50] M. W. Mkaouer, M. Kessentini, M. Ó Cinnéide, S. Hayashi, and K. Deb.
A robust multi-objective approach to balance severity and importance of
refactoring opportunities. Empirical Software Engineering, 22(2):894–927,
March 2016. doi: 10.1007/s10664-016-9426-8. URL https://doi.org/
10.1007/s10664-016-9426-8.

[51] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb, and
A. Ouni. Many-objective software remodularization using NSGA-III. ACM
Transactions on Software Engineering and Methodology, 24(3):1–45, May
2015. doi: 10.1145/2729974. URL https://doi.org/10.1145/2729974.

[52] M. Mohan and D. Greer. A survey of search-based refactoring for software
maintenance. Journal of Software Engineering Research and Development,
6(1), February 2018. doi: 10.1186/s40411-018-0046-4. URL https://do
i.org/10.1186/s40411-018-0046-4.

[53] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi. Search-based
refactoring: Towards semantics preservation. In 2012 28th IEEE Inter-
national Conference on Software Maintenance (ICSM). IEEE, September
2012. doi: 10.1109/icsm.2012.6405292. URL https://doi.org/10.1109/
icsm.2012.6405292.

[54] J. Pantiuchina, M. Lanza, and G. Bavota. Improving code: The (mis) per-
ception of quality metrics. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, September 2018.
doi: 10.1109/icsme.2018.00017. URL https://doi.org/10.1109/icsme.
2018.00017.

[55] M. Di Penta. Evolution doctor: A framework to control software system
evolution. In Ninth European Conference on Software Maintenance and
Reengineering. IEEE. doi: 10.1109/csmr.2005.29. URL https://doi.or
g/10.1109/csmr.2005.29.

[56] K. Praditwong, M. Harman, and X. Yao. Software module clustering as
a multi-objective search problem. IEEE Transactions on Software En-
gineering, 37(2):264–282, March 2011. doi: 10.1109/tse.2010.26. URL
https://doi.org/10.1109/tse.2010.26.

71

https://doi.org/10.1007/978-3-319-09940-8_12
https://doi.org/10.1007/s10664-016-9426-8
https://doi.org/10.1007/s10664-016-9426-8
https://doi.org/10.1145/2729974
https://doi.org/10.1186/s40411-018-0046-4
https://doi.org/10.1186/s40411-018-0046-4
https://doi.org/10.1109/icsm.2012.6405292
https://doi.org/10.1109/icsm.2012.6405292
https://doi.org/10.1109/icsme.2018.00017
https://doi.org/10.1109/icsme.2018.00017
https://doi.org/10.1109/csmr.2005.29
https://doi.org/10.1109/csmr.2005.29
https://doi.org/10.1109/tse.2010.26

Bibliography

[57] M. Revelle, M. Gethers, and D. Poshyvanyk. Using structural and
textual information to capture feature coupling in object-oriented soft-
ware. Empirical Software Engineering, 16(6):773–811, March 2011.
doi: 10.1007/s10664-011-9159-7. URL https://doi.org/10.1007/
s10664-011-9159-7.

[58] D. Romano and M. Pinzger. Using source code metrics to predict change-
prone java interfaces. In 2011 27th IEEE International Conference on
Software Maintenance (ICSM). IEEE, September 2011. doi: 10.1109/ic
sm.2011.6080797. URL https://doi.org/10.1109/icsm.2011.6080797.

[59] S. Sarkar, G. Rama, and A. Kak. API-based and information-theoretic met-
rics for measuring the quality of software modularization. IEEE Transac-
tions on Software Engineering, 33(1):14–32, January 2007. doi: 10.1109/
tse.2007.256942. URL https://doi.org/10.1109/tse.2007.256942.

[60] R. W. Schwanke and S. J. Hanson. Using neural networks to modularize
software. Machine Learning, 15(2):137–168, May 1994. doi: 10.1007/bf
00993275. URL https://doi.org/10.1007/bf00993275.

[61] D. F. Da Silva, L. F. Okada, T. E. Colanzi, and W. K. G. Assunção. Enhancing
search-based product line design with crossover operators. In Proceedings
of the 2020 Genetic and Evolutionary Computation Conference. ACM, June
2020. doi: 10.1145/3377930.3390215. URL https://doi.org/10.1145/
3377930.3390215.

[62] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris. Code quality anal-
ysis in open source software development. Information Systems Journal,
12(1):43–60, January 2002. doi: 10.1046/j.1365-2575.2002.00117.x. URL
https://doi.org/10.1046/j.1365-2575.2002.00117.x.

[63] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design. IBM
Systems Journal, 13(2):115–139, 1974. doi: 10.1147/sj.132.0115. URL
https://doi.org/10.1147/sj.132.0115.

[64] M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the ACM
(JACM), 44(4):585–591, July 1997. doi: 10.1145/263867.263872. URL ht
tps://doi.org/10.1145/263867.263872.

[65] M. M. T. Thwin and T. S. Quah. Application of neural networks for software
quality prediction using object-oriented metrics. Journal of Systems and
Software, 76(2):147–156, May 2005. doi: 10.1016/j.jss.2004.05.001. URL
https://doi.org/10.1016/j.jss.2004.05.001.

72

https://doi.org/10.1007/s10664-011-9159-7
https://doi.org/10.1007/s10664-011-9159-7
https://doi.org/10.1109/icsm.2011.6080797
https://doi.org/10.1109/tse.2007.256942
https://doi.org/10.1007/bf00993275
https://doi.org/10.1145/3377930.3390215
https://doi.org/10.1145/3377930.3390215
https://doi.org/10.1046/j.1365-2575.2002.00117.x
https://doi.org/10.1147/sj.132.0115
https://doi.org/10.1145/263867.263872
https://doi.org/10.1145/263867.263872
https://doi.org/10.1016/j.jss.2004.05.001

Bibliography

[66] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. Lucia, and
D. Poshyvanyk. When and why your code starts to smell bad (and whether
the smells go away). IEEE Transactions on Software Engineering, PP:1–
1, 01 2017. doi: 10.1109/TSE.2017.2653105. URL https://doi.org/10.
1109/TSE.2017.2653105.

[67] Z. Wen and V. Tzerpos. An effectiveness measure for software clustering
algorithms. In Proceedings. 12th IEEE International Workshop on Program
Comprehension, 2004. IEEE. doi: 10.1109/wpc.2004.1311061. URL http
s://doi.org/10.1109/wpc.2004.1311061.

[68] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. Predicting source
code changes by mining change history. IEEE Transactions on Software
Engineering, 30(9):574–586, September 2004. doi: 10.1109/tse.2004.52.
URL https://doi.org/10.1109/tse.2004.52.

[69] E. Yourdon and L.L. Constantine. Structured design: fundamentals of a
discipline of computer program and systems design. Prentice-Hall, Inc.,
1979. ISBN 0138544719.

[70] C. Zhang and H. A. Jacobsen. Prism is research in aspect mining. pages
20–21, 01 2004. doi: 10.1145/1028664.1028676. URL https://doi.org/
10.1145/1028664.1028676.

73

https://doi.org/10.1109/TSE.2017.2653105
https://doi.org/10.1109/TSE.2017.2653105
https://doi.org/10.1109/wpc.2004.1311061
https://doi.org/10.1109/wpc.2004.1311061
https://doi.org/10.1109/tse.2004.52
https://doi.org/10.1145/1028664.1028676
https://doi.org/10.1145/1028664.1028676

Appendix A

Glossary

A.1 Terminology

In this section we give an overview of frequently used terms and abbreviations.

• Codebase: The entire source code of a certain piece of software.

• Dependency structure: The dependency structure is the total picture
that arises from the dependencies from class to class. The way these
classes are divided into modules results in dependencies from module to
module. Both of these dependency levels can be represented with directed
graphs. (see section2.2.1)

• (software/code) Architecture: The structure of a piece of software or
codebase. In this thesis, the term is often used to refer to the dependency
structure in particular.

• Modularization: The problem of dividing classes into modules in such a
way that a good module structure is achieved. Re-modularization is the
same problem, but from an already existing modularization, preferably
with not too many changes.

• Cohesion: An abstract concept representing how well a piece of code fits
together. (see section 2.1.2)

• Coupling: An abstract concept representing how interconnected a piece
of code is. (see section 2.1.1)

• IntraMD: Intra Module Dependencies. The metric used in to represent
cohesion. It is measured by the number of class depenencies in a module
divided by the number of possible ones, summed for each module.

• InterMD: Inter Module Dependencies. The metric used in to represent
coupling. It is measured by the number of module dependencies.

75

A. Glossary

• CCP: The Common Closure Principle [42]. This is measured by the number
of pairs of classes changed in the same commit over a set period of time.

• CRP: The Common Reuse Principle [42]. This is measured by the number
of pairs of classes which are both in the same module and used by the
same class, per class.

• (EA) Evolutionary Algorithm: An optimization algorithm based on the
concept of evolution. It contains some sort of population made of solutions,
which procreate and mutate to form new solutions. The fittest solutions,
which are the ones that optimize the problem the best, are allowed to
procreate and mutate with the goal of finding fitter solutions.

• (MOEA) Multi-Objective Evolutionary Algorithm: A type of evolution-
ary algorithm that optimizes for more than one value at the same time.
In this type of algorithm, there is more than one "optimal" solution, often
described as the pareto-front.

• Enterprise software: Software made specifically to satisfy the needs of
an organization. Often used in a way to emphasize the size/scale of the
software.

• Build cost: The cost of building a module, expressed in time.

• Dead code: Code that has not been used and changed in a while, and is
not part of future plans.

• Transitive coupling / transitive dependencies: If module M1 depends
on module M2, and module M2 depends on module M3, M1 is said to be
transitively coupled to / transitively dependent on module M3.

• Caching: In this thesis caching refers to module build caching specifically.
Module build caching is often used in enterprise-level software, especially
in monolithic repositories. When a module is built, the built state is saved
and shared so that any developer that needs the same state of the module
does not have to build it. This process saves a lot of time for developers,
whenever they want to run their code.

• Transitive cache breaks: When some part of the code in a module is
changed, its cache is broken. Due to this module being rebuilt, all the
modules using this module also need to be rebuilt. This causes a cascading
effect through the module dependency structure of cache breaks.

• (EBCCB) Estimated Build Cost of module Cache Breaks: The new
metric introduced in this thesis representing weighed transitive coupling.
For further explanation see section 4.5.

76

Appendix B

Interview

B.1 Interview Questions

• Interviewee is given an explanation of the interview, the goal of the re-
search, and that they are going to review a part of a solution generated by
the algorithm.

• How many years of experience in software development do you have?

• How many years have you worked at Adyen?

• How well would you say that you grasp the module to module dependency
structure of the entire codebase, on a scale from 0 to 10?

• How well would you say that you grasp the module to module dependency
structure around the module the suggestion’s classes are from, on a scale
from 0 to 10?

• The interviewee is shown the suggestion and it is explained why this is an
improvement in terms of the metrics.

• Would you consider this suggestion to be a good change, meaning it has
an overall positive impact on the codebase?

• (If the interviewee does not give clear reasoning) Could you explain your
reasoning for the previous answer?

• (If the interviewee deems the suggestion to be good) How important would
you rate this change in terms of severity and priority, on scales of 0 to 10?

• Has this change given you an idea on how to improve the code structure
in this area of the code?

77

B. Interview

B.2 Interview answers

D1 How well would you say that you grasp the module dependency struc-
ture of the codebase?

7/10

How well would you say that you grasp the module dependency struc-
ture of the module C1 is in?

7/10

Would you consider this C1 to be a good change, meaning it has an
overall positive impact on the codebase?

C1: consists of moving one class to a new module. D1 deemed it to be a
bad move. Logically the class fits in the module it is in, and moving just this
class to a new module would make it too granular.

Has this suggestion given you an idea on how to improve the code
structure in this area of the code?

This suggestion did reveal a very strange and possibly unnecessary depen-
dency from this class to another module, causing multiple transitive depen-
dencies. This is the cause of the EBCCB value impact of the suggestion.

How well would you say that you grasp the module dependency struc-
ture of the module C2 is in?

6/10

Would you consider this C2 to be a good change, meaning it has an
overall positive impact on the codebase?

C2: consists of moving 2 classes to separate new modules, and 2 to existing
modules. D1 verified that this move is good, however, there are better mod-
ules to move these classes to. Making modules for one class is again too
granular, and there exist fitting modules for these 2 classes. Also, one of the
classes that is moved to an existing module should be moved to a different
one to follow design principles.

How important would you rate this change in terms of severity (im-
pact relative to effort), and priority (compared to the day to day de-
velopment tasks), on a scale from 0 to 10?

Severity: 4/10

Priority: 7/10

D2 How well would you say that you grasp the module dependency struc-
ture of the codebase?

6/10

78

B.2. Interview answers

How well would you say that you grasp the module dependency struc-
ture of the module C3 is in?

6/10

Would you consider this C3 to be a good change, meaning it has an
overall positive impact on the codebase?

C3: consists of moving one class to a different module. D2 deemed this to be
a good move. The class is not used and is not using anything in its current
module. However, there is a future plan for the module it is moved to that
would make it not fit. Given this information, it would be better to construct
a new module specifically for this class and related functionality.

How important would you rate this change in terms of severity (im-
pact relative to effort), and priority (compared to the day to day de-
velopment tasks), on a scale from 0 to 10?

Severity: 4/10

Priority: 4/10

D3 How well would you say that you grasp the module dependency struc-
ture of the codebase?

7/10

How well would you say that you grasp the module dependency struc-
ture of the module C4 is in?

7/10

Would you consider this C4 to be a good change, meaning it has an
overall positive impact on the codebase?

C4: consists of moving 1 class to a new module, and 1 class to a different
module. D3 deemed this suggestion to be bad and good at the same time.
The suggestion is bad because the class that is moved to a new module
is dead code causing unnecessary dependencies, so it would be better to
delete it entirely. The move of the other class is good in some sense, as it
has been the part of an ongoing discussion where a group of developers is
advocating for moving multiple classes to the module this class is suggested
to be moved to. However, another group of developers says it is where it
should be. What has become clear by this interview is that the class does
not adhere to the design pattern properly. Before a move would be made,
the class should be fixed first.

How important would you rate this change in terms of severity (im-
pact relative to effort), and priority (compared to the day to day de-
velopment tasks), on a scale from 0 to 10?

79

B. Interview

Severity: 2/10

Priority: 2/10

D4 How well would you say that you grasp the module dependency struc-
ture of the codebase?

4/10

How well would you say that you grasp the module dependency struc-
ture of the module C5 is in?

5/10

Would you consider this C5 to be a good change, meaning it has an
overall positive impact on the codebase?

C5: consists of moving 2 classes to a different module. D7 was also inter-
viewed on this suggestion. D4 saw this as a bad change. One class is not
necessarily in the wrong place. D4 is unsure about the other class, noting
that it feels out of place. The module they are moved to is unfitting for both.

Has this suggestion given you an idea on how to improve the code
structure in this area of the code?

No, no specific ideas.

D5 How well would you say that you grasp the module dependency struc-
ture of the codebase?

3/10

How well would you say that you grasp the module dependency struc-
ture of the module C6 is in?

5/10

Would you consider this C6 to be a good change, meaning it has an
overall positive impact on the codebase?

C6: consists of one class being moved to a new module. D5 verified this to be
a bad move. The class has been superseded by another piece of functionality
D5 wrote, so it should be removed and usages transferred, instead of being
moved to a new module.

Has this suggestion given you an idea on how to improve the code
structure in this area of the code?

Remove the class and transfer the usages to the other functionality.

D6 How well would you say that you grasp the module dependency struc-
ture of the codebase?

5/10

80

B.2. Interview answers

How well would you say that you grasp the module dependency struc-
ture of the module C7 is in?

9/10

Would you consider this C7 to be a good change, meaning it has an
overall positive impact on the codebase?

C7: consists of one class being moved to another module. D6 said this move
makes sense in the current state of the code, however, there are structural
plans for new functionality that will use the moved class, making the sug-
gestion bad.

Has this suggestion given you an idea on how to improve the code
structure in this area of the code?

It has shown the module to be a catch-all, so splitting it would be an im-
provement.

How well would you say that you grasp the module dependency struc-
ture of the module C8 is in?

4/10

Would you consider this C8 to be a good change, meaning it has an
overall positive impact on the codebase?

C8: consists of one class being moved to another (very closely related) mod-
ule. D6 states the class fits in both modules, so given the algorithm’s met-
rics, the move is good.

How important would you rate this change in terms of severity (im-
pact relative to effort), and priority (compared to the day to day de-
velopment tasks), on a scale from 0 to 10?

Severity: 2/10

priority: 2/10

D7 How well would you say that you grasp the module dependency struc-
ture of the codebase?

5/10

How well would you say that you grasp the module dependency struc-
ture of the module C5 is in?

8/10

Would you consider this C5 to be a good change, meaning it has an
overall positive impact on the codebase?

C5: consists of moving 2 classes to a different module. D4 was also inter-
viewed on this suggestion. D7 states that the first class should be moved

81

B. Interview

according to the suggestion as it fits better in the suggested module. The
second class doesn’t fit its current module, partly due to it holds too much
differing functionality. It should be fixed first, but in its current state, the
move would be good.

How important would you rate this change in terms of severity (im-
pact relative to effort), and priority (compared to the day to day de-
velopment tasks), on a scale from 0 to 10?

Severity: 8/10

Priority: 3/10

D8 How well would you say that you grasp the module dependency struc-
ture of the codebase?

8/10

How well would you say that you grasp the module dependency struc-
ture of the module C9 is in?

8/10

Would you consider this C9 to be a good change, meaning it has an
overall positive impact on the codebase?

C9: consists of moving 2 classes to different new modules. D8 determined
this to be bad. One of the classes is dead code, so instead it should be
removed. The other should be moved, but not to a new module, as it fits
some existing modules already.

Has this suggestion given you an idea on how to improve the code
structure in this area of the code?

Yes, remove the dead code and also move the other class to a fitting existing
module

How well would you say that you grasp the module dependency struc-
ture of the module C10 is in?

9/10

Would you consider this C10 to be a good change, meaning it has an
overall positive impact on the codebase?

C10: consists of moving 1 class to a different module. D8 stated that this
move is bad, as the class fits its current module and does not fit the sug-
gested module. However, looking at this suggestion has shown that some-
thing is off about the structure around and the usage of this class.

Has this suggestion given you an idea on how to improve the code
structure in this area of the code?

Fix the usage of this class.

82

B.2. Interview answers

D9 How well would you say that you grasp the module dependency struc-
ture of the codebase?

4/10

How well would you say that you grasp the module dependency struc-
ture of the module C11 is in?

5/10

Would you consider this C11 to be a good change, meaning it has an
overall positive impact on the codebase?

C11: consists of moving 1 class to a different module. D9 has verified this
to be a good move, as it is only used in the suggested module and not in the
one it is in.

How important would you rate this change in terms of severity (im-
pact relative to effort), and priority (compared to the day to day de-
velopment tasks), on a scale from 0 to 10?

Severity: 7/10

Priority: 4/10

D10 How well would you say that you grasp the module dependency struc-
ture of the codebase?

4/10

How well would you say that you grasp the module dependency struc-
ture of the module C12 is in?

0/10

Would you consider this C12 to be a good change, meaning it has an
overall positive impact on the codebase?

C12: consists of moving 1 class to a different module. D10 has stated that
this move is bad, due to the suggested module being in a refactoring process
with the goal of splitting it up. This class was moved to its current module
in the process, but it’s not the best place for it. A better option would
be to take this class, related functionality from the suggested module, and
related functionality which is in a different module and combine it into a new
module. Looking into this also revealed that code from the class’ module
seems quite stale, so it should be looked into.

Has this suggestion given you an idea on how to improve the code
structure in this area of the code?

Create a new module around the class and its related functionality.

83

B. Interview

D11 How well would you say that you grasp the module dependency struc-
ture of the codebase?

3/10

How well would you say that you grasp the module dependency struc-
ture of the module C13 is in?

10/10

Would you consider this C13 to be a good change, meaning it has an
overall positive impact on the codebase?

C13: consists of moving a package of 6 classes to a different module, and 1
other class to a new module. D11 confirmed the package move to be good.
However, the other class should be removed instead of moved, because it is
dead code.

How important would you rate this change in terms of severity (im-
pact relative to effort), and priority (compared to the day to day de-
velopment tasks), on a scale from 0 to 10?

Severity: 8/10

Priority: 6/10

84

Appendix C

Figures & Tables

C.1 LOC correlation with build costs

In the Figures, C.1 and C.2, the correlation between build tasks and LOC, and
the formula achieved through regression can be seen. The function shown was
achieved by feeding a function in the following form into the optimize.curve_fit
function of python package scipy, and using the relative error instead of abso-
lute:

f (x) = a∗ log10(x)b + c (C.1)

85

C. Figures & Tables

Figure C.1: The runtime of a compile Java task relative to the lines of code in
the module

86

C.2. Optimization variable tweaking results

Figure C.2: The runtime of a jar task relative to the lines of code in the module

C.2 Optimization variable tweaking results

The results can be seen in Table C.1 & C.2. These tables contain the highest
amount of generations that was achieved in the 5 runs per configuration, the
average amount of generations, the best value of each optimization variable for
solutions in all runs, and the average value of the best values per optimization
variable per run. Note that all optimization variables use the existing archi-
tecture as the 0 point and negative values show improvements (the values of
CCP, CRP, and Intra Module Coupling are flipped). The optimization variable
configurations are as follows:

1. IntraMD, InterMD, EBCCB, # Changes

A combination including all aspects optimized for, with only one Cohesion
metric.

2. IntraMD, InterMD

87

C. Figures & Tables

This combination has been used in modularization research before[31]. It
is included as a baseline to show the value of EBCCB as an optimization
variable, and other combinations tested.

3. InterMD, CRP, CCP

A combination that also optimizes for Coupling and Cohesion, with CCP
and CRP used for Cohesion.

4. IntraMD, InterMD, EBCCB, CCP, CRP, # Changes

This combination uses all optimization variables to show its performance
compared to the other combinations.

5. IntraMD, EBCCB

This combination optimizes for one of the types of Cohesion and the newly
proposed metric, which is also used here as a type of coupling.

6. IntraMD, InterMD, # Changes

A combination to show the effect of optimizing for the number of classes
moved compared to the often used cohesion/coupling combination.

7. IntraMD, CCP, CRP

The combination of only Cohesion optimization variables. It’s included to
show the effect of ignoring Coupling metrics.

8. InterMD, EBCCB

This combination of coupling and the newly introduced metric. It’s in-
cluded to show the effect of ignoring Cohesion metrics.

9. InterMD, CCP, CRP, EBCCB, # Changes

A similar combination to the first one, using the other Cohesion metrics.

10. IntraMD, EBCCB, # Changes

The same combination as #5, with the number of classes moved. This
shows the effect of optimizing or ignoring the number of changes with
these other optimization variables.

11. CCP, CRP, EBCCB, # Changes

A similar combination of optimization variables as the previous combina-
tion, with the other Cohesion optimization variables.

From the tested configurations, we concluded that configuration 1 is the
best choice, as it shows a consistent improvement across the different variables
tested, with the best improvement in some cases. It also performs well in terms
of number of generations reached.

88

C.2. Optimization variable tweaking results

T
a
b

le
C

.1
:

O
p

ti
m

iz
a
ti

o
n

va
ri

a
b

le
tw

e
a
k
in

g
re

su
lt

s
(1

/2
)

C
o
n

fi
g

u
ra

ti
o
n

H
ig

h
e
st

#
g

e
n

e
ra

ti
o
n

s
A

ve
ra

g
e

#
g

e
n

e
ra

ti
o
n

s
In

tr
a
M

D
b

e
st

In
tr

a
M

D
a
ve

ra
g

e
C

C
P

b
e
st

C
C

P
a
ve

ra
g

e
C

R
P

b
e
st

C
R

P
a
ve

ra
g

e

1
3
2
9
1

2
9
2
3

-2
0
1
.1

9
2
0
3

-1
8
8
.0

5
6
6
3
6

-3
-0

.6
-3

5
8
.5

-1
4
4
.3

2
1
6
2
7

1
3
3
2
.4

-3
5
3
.8

9
2
7
5

-3
0
3
.3

2
1
6
4
8

5
0
0

2
5
2
8
.7

-2
1
3
.5

4
9
5
3
.2

3
3
5
0

2
7
6
.6

-9
.4

4
6
5
4

-7
.5

6
7
1
7
6

-5
1

4
3

.5
-4

1
9

6
.1

-4
5
8
1
0
.5

-3
7
7
8
1
.6

4
1
6
2
9

1
4
5
1
.2

-1
5
5
.6

8
0
6
7

-1
3
6
.2

0
9
9
6
8

-3
5
9

-1
5
5
.1

-2
5
1
5

-1
8
5
6
.5

5
3
0
6
0

1
6
8
2
.6

-3
8

1
.0

6
1

1
4

-3
0
7
.1

7
3
9
3

7
1
6

2
3
2
7
.9

-3
2
3
.5

1
3
7
9
.7

6
3
4
2
2

3
2
4
2
.6

-3
7
3
.1

3
1
7
9

-3
4

9
.2

7
0

5
2

2
0

0
-8

7
-7

1
.2

7
2
4
6

2
2
7

-8
6
.3

5
8
4
4

-7
7
.4

9
9
7
5
8

-4
3
1
8
.5

-3
7
1
6

-5
4

4
6

7
-4

2
2

0
0

.2
8

6
1

3
8

5
7

0
0

.8
-4

.8
2
2
9
2

-3
.5

6
2
4
0
2

1
4

5
1
.4

-1
2
0
.5

-1
0
7
.5

9
9
9
4

4
7
9
.2

-9
.1

5
4
1

-8
.1

0
4
2
3
2

-4
8
6
6

-3
1
9
9

-4
4
5
8
8
.5

-2
8
3
5
9
.7

1
0

3
3
1
0

2
9
8
1
.2

-1
8
1
.8

9
8
9
7

-1
7
6
.1

6
3
3
7
2

0
0

0
0

1
1

4
0
1

3
3
2
.4

-9
.3

0
0
7
1

-6
.6

8
9
1
4
2

-3
5
9
0
.5

-3
2
2
5
.6

-4
8
9
9
0

-3
8
5
4
8
.4

89

C. Figures & Tables

T
a
b

le
C

.2
:

O
p

ti
m

iz
a
ti

o
n

va
ri

a
b

le
tw

e
a
k
in

g
re

su
lt

s
(2

/2
)

C
o
n

fi
g

u
ra

ti
o
n

H
ig

h
e
st

#
g

e
n

e
ra

ti
o
n

s
A

ve
ra

g
e

#
g

e
n

e
ra

ti
o
n

s
In

te
rM

D
b

e
st

In
te

rM
D

a
ve

ra
g

e
E

B
C

C
B

b
e
st

E
B

C
C

B
a
ve

ra
g

e

1
3
2
9
1

2
9
2
3

-1
0

-9
.4

-8
8
6
8
.7

6
6
3
2
7

-7
2
4
9
.2

4
9
9
4
1

2
1
6
2
7

1
3
3
2
.4

-1
0

-7
.2

-8
9
.7

5
9
1
8
0
8
5

1
5
4
6
2
.8

0
0
0
9

3
3
5
0

2
7
6
.6

-8
-5

.6
3
7
4
8
4
.1

0
4
3
1

3
4
5
3
3
5
.6

0
6
3

4
1
6
2
9

1
4
5
1
.2

-1
0

-9
-8

8
6
8
.7

6
6
3
2
7

-5
9
9
8
.5

9
6
2
3
3

5
3
0
6
0

1
6
8
2
.6

7
4

2
6
5
.2

-8
6
9
6
.1

7
5
1
4
3

-6
8
5
8
.1

7
9
2
3
7

6
3
4
2
2

3
2
4
2
.6

-9
-8

.4
-1

8
5
5
.8

8
8
8
9
7

-1
6
6
2
.6

0
9
5
2
5

7
2
4
6

2
2
7

9
3

1
3
2
.8

9
9
9
9
9
9

9
9
9
9
9
9

8
6
1
3
8

5
7
0
0
.8

-1
0

-9
.8

-8
8
6
8
.7

6
6
3
2
7

-8
4
9
7
.0

8
2
3
8
1

9
9
9
4

4
7
9
.2

-1
0

-3
.6

-8
8
6
8
.7

6
6
3
2
7

-1
8
4
6
.2

2
1
5
6
9

1
0

3
3
1
0

2
9
8
1
.2

0
0

-8
1
4
6
.3

4
1
4
5
5

-5
5
1
6
.4

9
2
5
9
8

1
1

4
0
1

3
3
2
.4

-7
-1

.4
-2

1
8
3
.0

3
7
1
6
6

-7
6
7
.4

1
5
8
6
9

90

C.3. Parameter tuning results

C.3 Parameter tuning results

This section holds the results of the parameter tuning runs. The results can be
seen in the tables in this section. One table exists per tweaked parameter. The
tables show the highest amount of generations that was achieved in the 5 runs
per parameter, the average amount of generations, the best value of each used
optimization variable for all solutions in all runs, and the average value of the
best values per used optimization variable per run.
The default settings for all parameters are as follows:

• Population size = 500

• Mutation chance = 0.5

• Both mutation operators are used with equal probability

• Constraint breaks are ignored

• Duplicates are deleted

• The crossover operator that conserves building blocks is used

• An elite archive is not used

The options the parameters are tweaked for are as follows, with the optimal
options in bold:

• Population size = {50, 100, 200, 500, 1000, 2000}

• Mutation chance = {0.05, 0.1, 0.2, 0.5}

• The optimal ratio of mutation operator usage = {0.25, 0.50, 0.75}

• Whether solutions that break constraints are punished, repaired or
whether constraint breaks are ignored

• How duplicates should be handled; by ignoring them, deleting them or
mutating them

• Which crossover operator is used; the single-point operator or the one
that tries to preserve building blocks.

• Whether an elite archive is used.

Note that for both population size and elite archive there was no clear op-
timal choice, so we decided to go for parameter values that have a balanced
trade-off in performance and solution diversity. This resulted in a population
size of 500, and using an elite archive of the size of the population, as it doubled
the number of unique solutions while barely impacting performance.

91

C. Figures & Tables

T
a
b

le
C

.3
:

M
u

ta
ti

o
n

ch
o
ic

e
p

a
ra

m
e
te

r
tu

n
in

g
re

su
lt

s

M
u

ta
ti

o
n

C
h

o
ic

e
H

ig
h

e
st

#
g

e
n

e
ra

ti
o
n

s
A

ve
ra

g
e

#
g

e
n

e
ra

ti
o
n

s
In

tr
a
M

D
b

e
st

In
tr

a
M

D
a
ve

ra
g

e
In

te
rM

D
b

e
st

In
te

rM
D

a
ve

ra
g

e
E

B
C

C
B

b
e
st

E
B

C
C

B
a
ve

ra
g

e

0
.2

5
3
0
4
7

2
7
3
5
.6

-2
0
4
.3

5
9
7
7

-1
9
6
.3

2
9
1
0
8

-9
-9

-8
8

6
8

.7
6

6
3

2
7

-7
6
1
7
.6

8
4
5
7
2

0
.5

3
3
7
9

3
0
9
4
.6

-2
4

1
.8

5
7

5
6

-2
1

1
.0

2
7

9
1

6
-1

0
-9

.2
-8

8
6

8
.7

6
6

3
2

7
-8

7
9

6
.4

5
2

6
9

4
0
.7

5
3

4
3

9
3

3
1

5
.2

-2
1
7
.3

7
0
6
7

-1
7
9
.6

9
6
8
6

-1
0

-9
.6

-8
8

6
8

.7
6

6
3

2
7

-7
5
0
4
.2

3
5
9
1
5

92

C.3. Parameter tuning results

T
a
b

le
C

.4
:

M
u

ta
ti

o
n

ch
a
n

ce
p

a
ra

m
e
te

r
tu

n
in

g
re

su
lt

s

M
u

ta
ti

o
n

C
h

a
n

ce
H

ig
h

e
st

#
g

e
n

e
ra

ti
o
n

s
A

ve
ra

g
e

#
g

e
n

e
ra

ti
o
n

s
In

tr
a
M

D
b

e
st

In
tr

a
M

D
a
ve

ra
g

e
In

te
rM

D
b

e
st

In
te

rM
D

a
ve

ra
g

e
E

B
C

C
B

b
e
st

E
B

C
C

B
a
ve

ra
g

e

0
.0

5
3
4
8
5

3
2
3
6
.8

-2
3
0
.8

6
2
2
2

-2
0
3
.4

9
6
1
9
2

-1
0

-9
.2

-8
5
0
7
.1

9
8
1
6

-8
5
0
5
.5

0
7
4
3
5

0
.1

3
3
4
9

3
2
6
8
.8

-2
3
8
.8

5
0
7

-2
0
4
.0

2
5
2
0
4

-9
-9

-8
8

6
8

.7
6

6
3

2
7

-8
6
5
0
.6

9
8
2
7
7

0
.2

3
5

1
4

3
3

7
1

-2
3
0
.8

5
7
1
8

-2
0
5
.8

7
9
5
1

-1
0

-9
.6

-8
5
0
7
.1

9
8
1
6

-7
1
7
6
.9

3
6
3
0
7

0
.5

3
3
7
9

3
0
9
4
.6

-2
4

1
.8

5
7

5
6

-2
1

1
.0

2
7

9
1

6
-1

0
-9

.2
-8

8
6

8
.7

6
6

3
2

7
-8

7
9

6
.4

5
2

6
9

4

93

C. Figures & Tables

T
a
b

le
C

.5
:

D
e
a
li

n
g

w
it

h
so

lu
ti

o
n

s
th

a
t

b
re

a
k

co
n

st
a
in

ts
p

a
ra

m
e
te

r
tu

n
in

g
re

su
lt

s

C
o
n

st
ra

in
t

B
re

a
k
in

g
S

o
lu

ti
o
n

s

H
ig

h
e
st

#
g

e
n

e
ra

ti
o
n

s
A

ve
ra

g
e

#
g

e
n

e
ra

ti
o
n

s
In

tr
a
M

D
b

e
st

In
tr

a
M

D
a
ve

ra
g

e
In

te
rM

D
b

e
st

In
te

rM
D

a
ve

ra
g

e
E

B
C

C
B

b
e
st

E
B

C
C

B
a
ve

ra
g

e

ig
n

o
re

3
3
7
9

3
0
9
4
.6

-2
4
1
.8

5
7
5
6

-2
1
1
.0

2
7
9
1
6

-1
0

-9
.2

-8
8
6
8
.7

6
6
3
2
7

-8
7
9
6
.4

5
2
6
9
4

p
u

n
is

h
2
7
0
1

2
4
7
2
.6

-1
9
1
.0

6
3
4
4

-1
7
9
.1

0
0
5
1
8

-1
0

-7
.8

-8
6
9
6
.1

7
5
1
4
3

-7
3
1
2
.5

4
3
2
3
7

re
p

a
ir

2
7
3
7

2
6
0
4

-1
6
8
.1

8
6
2
2

-1
5
9
.7

5
6
3
2
6

-9
-9

-8
8
6
8
.7

6
6
3
2
7

-8
7
2
3
.5

7
5
4
8
5

94

C.3. Parameter tuning results

T
a
b

le
C

.6
:

D
e
a
li

n
g

w
it

h
d

u
p

li
ca

te
so

lu
ti

o
n

s
p

a
ra

m
e
te

r
tu

n
in

g
re

su
lt

s

D
e
a
li

n
g

w
it

h
D

u
p

li
ca

te
s

H
ig

h
e
st

#
g

e
n

e
ra

ti
o
n

s
A

ve
ra

g
e

#
g

e
n

e
ra

ti
o
n

s
In

tr
a
M

D
b

e
st

In
tr

a
M

D
a
ve

ra
g

e
In

te
rM

D
b

e
st

In
te

rM
D

a
ve

ra
g

e
E

B
C

C
B

b
e
st

E
B

C
C

B
a
ve

ra
g

e

d
e
le

te
3
3
7
9

3
0
9
4
.6

-2
4
1
.8

5
7
5
6

-2
1
1
.0

2
7
9
1
6

-1
0

-9
.2

-8
8
6
8
.7

6
6
3
2
7

-8
7
9
6
.4

5
2
6
9
4

ig
n

o
re

3
2
2
3

3
0
1
1
.4

-2
3
6
.8

6
0
5

-2
1
2
.0

9
9
2
5
4

-1
0

-9
.2

-8
8
6
8
.7

6
6
3
2
7

-8
6
5
1
.2

6
1
8
5
2

m
u

ta
te

9
4
3
8

9
1
4
1
.4

-3
-2

.6
0
0
1
9

0
0

0
0

95

C. Figures & Tables

T
a
b

le
C

.7
:

C
ro

ss
o
ve

r
o
p

e
ra

to
r

ch
o
ic

e
p

a
ra

m
e
te

r
tu

n
in

g
re

su
lt

s

C
ro

ss
o
ve

r
O

p
e
ra

to
r

H
ig

h
e
st

#
g

e
n

e
ra

ti
o
n

s
A

ve
ra

g
e

#
g

e
n

e
ra

ti
o
n

s
In

tr
a
M

D
b

e
st

In
tr

a
M

D
a
ve

ra
g

e
In

te
rM

D
b

e
st

In
te

rM
D

a
ve

ra
g

e
E

B
C

C
B

b
e
st

E
B

C
C

B
a
ve

ra
g

e

b
u

il
d

in
g

b
lo

ck
s

3
3

7
9

3
0

9
4

.6
-2

4
1

.8
5

7
5

6
-2

1
1

.0
2

7
9

1
6

-1
0

-9
.2

-8
8

6
8

.7
6

6
3

2
7

-8
7

9
6

.4
5

2
6

9
4

si
n

g
le

4
4

9
5

4
0

1
0

.4
-7

8
.8

4
7

0
6

-7
3

.8
4

2
1

-1
0

-9
.6

-8
8

6
8

.7
6

6
3

2
7

-8
6

5
0

.6
9

8
2

7
7

96

C.3. Parameter tuning results

T
a
b

le
C

.8
:

U
si

n
g

a
n

e
li

te
a
rc

h
iv

e
p

a
ra

m
e
te

r
tu

n
in

g
re

su
lt

s

U
se

E
li

te
A

rc
h

iv
e

H
ig

h
e
st

#
g

e
n

e
ra

ti
o
n

s
A

ve
ra

g
e

#
g

e
n

e
ra

ti
o
n

s
In

tr
a
M

D
b

e
st

In
tr

a
M

D
a
ve

ra
g

e
In

te
rM

D
b

e
st

In
te

rM
D

a
ve

ra
g

e
E

B
C

C
B

b
e
st

E
B

C
C

B
a
ve

ra
g

e

fa
ls

e
3
3
7
9

3
0
9
4
.6

-2
4

1
.8

5
7

5
6

-2
1

1
.0

2
7

9
1

6
-1

0
-9

.2
-8

8
6

8
.7

6
6

3
2

7
-8

7
9

6
.4

5
2

6
9

4
tr

u
e

3
4

8
0

3
2

5
1

.6
-2

2
0
.8

5
6
8
3

-2
0
2
.0

5
8
0
1

-1
0

-9
.6

-8
8

6
8

.7
6

6
3

2
7

-7
6
5
5
.4

6
8
2
1
3

97

C. Figures & Tables

T
a
b

le
C

.9
:

P
o
p

u
la

ti
o
n

si
ze

p
a
ra

m
e
te

r
tu

n
in

g
re

su
lt

s

P
o
p

u
la

ti
o
n

S
iz

e
H

ig
h

e
st

#
g

e
n

e
ra

ti
o
n

s
A

ve
ra

g
e

#
g

e
n

e
ra

ti
o
n

s
In

tr
a
M

D
b

e
st

In
tr

a
M

D
a
ve

ra
g

e
In

te
rM

D
b

e
st

In
te

rM
D

a
ve

ra
g

e
E

B
C

C
B

b
e
st

E
B

C
C

B
a
ve

ra
g

e

5
0

1
9
7
4
4

1
8
3
9
2

-4
1
3
.5

3
2
6
8

-3
6
2
.8

0
0
8
8
8

-9
-8

.4
-8

6
9

6
.1

7
5

1
4

3
-8

5
4

1
.2

2
0

9
2

7
1

0
0

1
3

3
3

3
1

1
7

2
2

.8
-3

6
5

.0
2

7
6

3
-3

4
1

.4
6

1
6

1
2

-9
-8

.4
-8

8
6
8
.7

6
6
3
2
7

-8
6

8
8

.4
9

3
6

7
4

2
0

0
8

2
5

3
7

6
7

1
.2

-3
3

0
.7

0
0

9
3

-2
8

8
.7

2
8

3
3

4
-1

0
-8

.6
-8

6
9

6
.1

7
5

1
4

3
-8

5
0

1
.4

8
6

6
9

1
5

0
0

3
3

7
9

3
0

9
4

.6
-2

4
1

.8
5

7
5

6
-2

1
1

.0
2

7
9

1
6

-1
0

-9
.2

-8
8
6
8
.7

6
6
3
2
7

-8
7
9
6
.4

5
2
6
9
4

1
0

0
0

1
3

6
3

1
2

0
1

.8
-1

2
8

.8
5

5
4

8
-1

1
0

.5
5

2
8

0
6

-1
0

-9
.2

-8
8
6
8
.7

6
6
3
2
7

-8
5

7
7

.8
2

1
0

6
9

2
0

0
0

4
0

7
3

6
2

.8
-5

3
.8

4
1

4
1

-5
0

.1
4

5
6

2
-1

0
-9

.2
-8

8
6
8
.7

6
6
3
2
7

-8
7

2
3

.0
1

1
9

1
1

98

Appendix D

Pseudocode Estimated Build
Cost of module Cache Breaks

Difference

This appendix chapter contains the pseudocode that represents the code used
to calculate the EBCCB metric.

99

D. Pseudocode Estimated Build Cost of module Cache Breaks Difference

Algorithm 1 Functionality used to calculate the difference in EBCCB value
between the given solution and the base solution

1: function CalculateEBCCBDiff(G,Sol,T Deps,ROCpM,LOCpM,ModsCT)
2: G = (V,E) . Graph representing module depen-

dencies, weighted by the number of
class dependencies

3: Sol . The solution
4: ROCpM . The rate of change per module,

based on commit history, adjusted for
changes in this solution

5: LOCpM . the number of lines of code per mod-
ule adjusted for changes in this solu-
tion

6: ModsCT . A mapping from module to module,
containing the number of times they
were changed together, used to cor-
rect the ROC to accurately represent
the number of cache breaks

7: T Deps . A mapping from each module to all its
transitive dependencies

8: Er← /0 . Set of removed edges
9: Ea← /0 . Set of added edges

10: Ea,Er←GetChangedEdges(G,Sol)
11: T Da← /0 . Transitive module dependencies that

have been added by the changes in the
solution

12: T Dr← /0 . Transitive module dependencies that
have been removed by the changes in
the solution

13: T Da,T Dr←GetChangedTransDeps(G,Ea,Er,T Deps)
14: EBCCB←CalcEBCCB(T Da,T Dr,ROCpM,LOCpM,ModsCT)

return EBCCB
15: end function

100

Algorithm 2 Determines the module dependencies (edges) which are added or
removed by the class moves of a solution

1: function GetChangedEdges(G,Sol)
2: Ea,Er← /0

3: Ec←Map . Map of changed edges to their weights
4: for class in Sol.changes do
5: Ec← Ec∪module_edge_changes . Add every module edge affected by

this class change to Ec, and weigh
them by the effect of the change on
the edge weight

6: end for
7: for edge in Ec do
8: . If the edge is a newly introduced one
9: if edge /∈ G.E AND Ec.edge > 0 then

10: Ea← Ea∪ edge
11: end if
12: . If all class dependencies between the

vertices of this edge no longer exist
13: if edge ∈ G.E AND G.E.edge−Ec.edge == 0 then
14: Er← Er∪ edge
15: end if
16: end for

return Ea,Er
17: end function

101

D. Pseudocode Estimated Build Cost of module Cache Breaks Difference

Algorithm 3 Finds the changed transitive module dependencies which are
caused by the added and removed module dependencies of a solution

1: function GetChangedTransDeps(G,Er,Ea,T Deps)
2: vToCheck← trans_deps_Er_Ea . All transitive dependencies of destina-

tion vertices in Er and Ea
3: knownRevDeps←Map . A mapping from modules to their

known transitive reverse dependen-
cies

4: V v← /0 . Visited vertices
5: V circular← /0 . Nodes that can be found through its

own transitive reverse dependencies
6: circular← f alse
7: res←Map . Mapping of all checked vertices to a

mapping of the found reverse depen-
dencies and whether they are reach-
able or not

8: T Da,T Dr← /0

9: for v in vToCheck do
10: vRes, thisCircular,knownRevDeps,V circular ← Recur-

siveEdgeCheck(v,G,Er,Ea,V v, knownRevDeps,reachable ← true,
edgePrevExists← true,V circular)

11: circular← circular OR thisCircular
12: res.v← vRes
13: end for
14: res← updated_res . Update the reachable vertices of each

vertex in Vcircular with the reachable
vertices of all other vertices in Vcircu-
lar

15: res← updated_res . Update the reachable vertices of all
vertices that can reach a vertex in
Vcircular with that vertex’ reachable
vertices

16: for v in res do
17: for vr in res.v do
18: if res.v.vr == true AND v /∈ T Deps.vr then
19: T Da← T Da∪ (vr,v)
20: else if res.v.vr == f alse AND v ∈ T Deps.vr then
21: T Dr← T Dr∪ (vr,v)
22: end if
23: end for
24: end for

return T Da,T Dr
25: end function

102

Algorithm 4 Recusively checks the reverse transitive dependencies of a module
(vertex). Returns the found dependencies, whether they are reachable, whether
there exists a circular dependency and which modules are part of that circle. It
saves the results for each modules in a dynamic programming way.

1: function RecursiveEdgeCheck(v,G,Er,Ea,V v,knownRevDeps,reachable,edgePrevExists,V circular)
2: vRes← /0

3: thisCircular← f alse
4: if v ∈V v then . A potential circular dependency is found
5: vRes← v : edgeToPreviousExists
6: thisCircular← reachable
7: V circular←V circular∪ v
8: return vRes, thisCircular,knownRevDeps,V circular
9: end if
10: if v ∈ knownRevDeps then . v’s reverse dependencies are known
11: return knownRevDeps.v.vRes,knownRevDeps.v.thisCircular,knownRevDeps,V circular
12: end if
13: V v←V v∪ v
14: revDeps← all vo where (vo,v) ∈ G.E OR (vo,v) ∈ Ea
15: for vo ∈ revDeps do . Recursively check all reverse dependencies
16: depExists← (vo,v) /∈ Er
17: if depExists then
18: voRes,otherCircular,oknownRevDeps,oV circular ← Recur-

siveEdgeCheck(vo,G,Er,Ea,V v,knownRevDeps,reachable,edgePrevExists← true,V circular)
19: vRes.vo← true
20: for voo ∈ voRes do
21: if voo == v then
22: V circular←V circular∪ v
23: end if
24: if voo /∈ vRes then
25: vRes.voo← voRes.voo
26: else
27: vRes.voo← vRes.voo OR voRes.voo
28: end if
29: end for
30: else
31: voRes,otherCircular,oknownRevDeps,oV circular ← Recur-

siveEdgeCheck(vo,G,Er,Ea,V v,knownRevDeps,reachable ← f alse,edgePrevExists ←
f alse,V circular)

32: if vo /∈ vRes then
33: vRes.vo← f alse
34: end if
35: for voo ∈ voRes do
36: if voo /∈ vRes then
37: vRes.voo← f alse
38: end if
39: end for
40: end if
41: thisCircular← otherCircular OR thisCircular
42: end for
43: if v /∈ vRes then . Add reachability of v for the previous vertex
44: vRes.v← edgePrevExists
45: else
46: vRes.v← vRes.v∪ edgePrevExists
47: end if
48: V v.remove(v)
49: knownRevDeps.v← vRes, thisCircular

return vRes, thisCircular,knownRevDeps,V circular
50: end function

103

D. Pseudocode Estimated Build Cost of module Cache Breaks Difference

Algorithm 5 Calculates the EBCCB metric (relative) value, given the changed
transitive dependencies, Rate of Change per module, Lines of Code per module
and the amount of times module pairs are changed together.

1: function CalcEBCCB(T Da,T Dr,ROCpM,LOCpM,ModsCT)
2: costChange← 0
3: for (v1,v2) ∈ T Da do
4: cacheBreaks← ROCpM.v2−ModsCT.v1.v2
5: cost←LOCtoCost(LOCperModule.v2) ∗cacheBreaks
6: costChange+= cost
7: end for
8: for (v1,v2) ∈ T Dr do
9: cacheBreaks← ROCpM.v2−ModsCT.v1.v2

10: cost←LOCtoCost(LOCperModule.v2) ∗cacheBreaks
11: costChange−= cost
12: end for

return costChange
13: end function

104

	Preface
	Contents
	List of Figures
	Introduction
	Contributions

	Code Quality & Modularization
	Code Quality
	Modularization

	Related Work
	Code Quality Metrics
	Algorithms/Approaches
	Comparison of Exiting Modularization Approaches

	Adapting to Scale
	Adyen
	Challenges of the Scale
	Algorithm
	Modeling & Representation
	Estimated Build Cost of module Cache Breaks

	Constructing & Fine-Tuning the Algorithm
	Optimization Variables
	Selection
	Crossover
	Mutation
	Constraints
	Population Initialization
	Optimization Variable & Parameter Tuning

	Empirical Study: Approach in Theory
	Research Questions
	Methodology
	Results

	Case Study: Approach in Practice
	Research questions
	Methodology
	Results

	Discussion
	Implications
	Practical Use
	Threats to Validity

	Conclusions and Future Work
	Bibliography
	Glossary
	Terminology

	Interview
	Interview Questions
	Interview answers

	Figures & Tables
	LOC correlation with build costs
	Optimization variable tweaking results
	Parameter tuning results

	Pseudocode Estimated Build Cost of module Cache Breaks Difference

