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A computational model for fluid leakagein
heter ogeneous layered porous media

Mehdi Musivand Arzanfudi, Rafid Al-Khoury, Lambertus J. Sluys

Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box
5048, 2600 GA Delft, The Netherlands

ABSTRACT

This paper introduces a new and computationally efficient model for the simulation of non-wetting phase
leakage in a rigid heterogeneous layered medium domain constituting layers of different physical properties.
Such a leakage exhibits a discontinuity in the saturation field at the interface between layers. The governing field
equations are derived based on the averaging theory and solved numerically using a mixed finite element
discretization scheme. This scheme entails solving different balance equations using different discretization
techniques, which are tailored to accurately simulate the physical behavior of the primary state variables. A
discontinuous non-wetting phase saturation — continuous water pressure formulation is adopted. The standard
Galerkin finite element method is utilized to discretize the water phase pressure field, and the partition of unity
finite element method is utilized to discretize the non-wetting phase saturation field. This mixed discretization
scheme leads to a locally conservative system, giving accurate simulation of the saturation jump. The boundary
between layers is embedded within the finite elements, alleviating the need to use the typical interface elements,
and allowing for the use of structured, geometry-independent and relatively coarse meshes. The accuracy and
capability of the proposed model are evaluated by verification and numerical examples covering water, DNAPL

and CQ leakage through layers of different hydraulic properties.

Keywords: leakage; mixed discretization; partition of unity; heterogeneous layered porous media; CO2
sequestration

1 Introduction

Leakage of a non-wetting phase through a porous medium domain constituting
heterogeneous layers can have a significant consequence on the environment and life on earth.
Leakage of contaminants, infiltration of dense oil and Leakage gft€@e ground surface

or layers containing ground water, among many others, are currently considered one of the
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main concerns of exploiting the earth space to copé the current technological

advancement.

Designing oil and gas fields, planning contamirgtotages and selection of an appropriate
geological formation for C@sequestration require a good estimate of the atmufueakage
that might take place in time. It is therefore Vi@ acquire computational tools capable of
modelling this phenomenon. Modelling the leakagenmmenon accurately would not only
give a good estimate of the amount of the leakbgealso an accurate approximation of the
pore pressure distribution in the ground, and hemcaccurate estimation of the mechanical
behaviour of the region surrounding such projects.

Computational modelling of multiphase flow in gegilmal formations often requires
modelling heterogeneous porous medium domains giomal scales with irregular and
complicated geometry. Discretization of such a getoynis rather demanding. It requires
finite element meshes (finite difference or fimt@ume grids), which are relatively fine and
aligned along the boundaries between the layersthaslayers usually differ in porosity,
permeability, and capillary entry pressure, fisjgmerated by the fluid flow exhibit a jump at
the boundary between them. This effect, in manyesasannot be captured by standard
numerical discretization schemes.

The physics of fluid leakage at boundaries betwksmers with different hydraulic
properties has been intensively studied by sevessarchers, including Van Duijn et al. [1],
Helmig and Huber [2], Van Duijn et al. [3], and &k and MikySka [4]. The capillary
pressure plays an important role in the amouneakage between two layers. Neighbouring
layers in a heterogeneous layered medium have reliffecapillary pressure-saturation
relationships. Fig. 1 shows typical Brooks and @oreapillary pressure-saturation
relationships [5] for two layers having differergrmeability.

To illustrate the effect of capillary pressure and flow in heterogeneous layered domain,
a layered porous medium occupied by a wetting plaséer) that is being displaced by a
non-wetting phase (COfor example) is considered. In such a mediumom@lcg to Brooks
and Corey capillary pressure-saturation relatigrshihe following conditions exist at the
boundary between two layers:

* The non-wetting phase does not leak from a laydrigth permeability to a layer of low
permeability unless the capillary pressure of ing fayer exceeds a threshold pressure,
known as the entry pressure (also called bubbliegsure), of the second layef. iB Fig.

1 indicates the entry pressure of the high pernfigalayer, and B indicates that of the
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low permeability layer. This condition gives riserhass accumulation of the non-wetting
phase at the boundary between the two layers.

* Accumulation of the non-wetting phase continuesotour for all capillary pressures
between point B and point A in Fig. 1. In this region the capillapressure at the
boundary between the two layers exhibits a disooiti.

» Above point A, the non-wetting phase starts toltirdie into the second layer. In this
region, the capillary pressure is continuous, and &esult, the saturation field exhibits a

discontinuity. The capillary pressure crossing i@ and D, in Fig. 1 is an example of

this condition. It can be seen that these two godmirrespond to water saturatiofg"

and s, , respectively.

* If the non-wetting phase flow occurs from the lowrmpeability layer to the high
permeability layer, the saturation field also extsila jump, but in this case in the form of
suction. Initially, atS, = 1, the entry pressure of the low permeabilifyela(B) is readily
higher than that of the high permeability layef)(BDue to this, upon the arrival of the
non-wetting phase to the boundary between the &yers, leakage (suction) immediately
occurs, maintainings, = 1 in the low permeability layer and decreasingthe high
permeability layer.

Note that the van Genuchten capillary pressureuraan relationship [6] exhibits
continuous capillary pressure at all times. Howgews for Brooks and Corey, the van
Genuchten relationship exhibits the saturationatisouity at the boundary between layers.
In this paper, we utilize the Brooks and Corey treteship, though extension to van
Genuchten is straightforward.

The presence of these complicated physical comditiat the boundary between
heterogeneous layers exerts sever difficulties o rtumerical solution procedure. The
standard Galerkin finite element method (SG), fastance, is not able to simulate this
problem accurately, even if a fine mesh is utilizet&lmig and Huber (1998) intensively
studied this problem and found that using SG twesdhe infiltration of a Dense Non-
Aqueous Phase Liquid (DNAPL) into a heterogeneaygred domain produces erroneous
results. It fails to capture the discontinuity e tsaturation field at the boundary between two

layers, giving an incorrect impression of the antmirieakage.
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Fig. 1 Brooks and Corey capillary pressure-satonatélationships for two layers.

Therefore, in order to solve such a problem, thaerical scheme must be able to capture
the discontinuity in the capillary pressure andisdton fields. In literature, several solution
techniques with different discretization complesgtihave been proposed. Friis and Evje [7],
Brenner et al. [8], Cances [9] and Szymkiewiczlefl®] used the finite volume method for
this purpose. Helmig and Huber [2] used the subdoroallocation finite volume method
(Box Method) to solve the problem. This method cdegs coupling between the finite
element method and the finite volume methodtilcand MikySka [4] utilized a mixed hybrid
finite element-discontinuous Galerkin discretizatmrocedure (MHFE-DG).

Here, we solve this problem using a mixed finiteneént discretization scheme. This
scheme differs from the well-known mixed FEM, sticat in the mixed FEM, different state
variables are utilized but a single discretizatiechnique is adopted. However, in the mixed
discretization scheme, we utilize different statgiables and adopt different discretization
techniques, depending on the nature of the statabla and the associated balance equations.
We use the Partition of Unity finite element meth@gdUM) [11] to discretize the
discontinuity in the non-wetting phase saturatieidf and the standard Galerkin method
(SG) to discretize the continuous water (wettingg®) pressure. We adopt the partition of
unity property within the framework of the extendedte element method (XFEM), which
entails decomposing the saturation field into atiooious part and a discontinuous part,
where the latter is enhanced by use of a functibichvclosely describes the nature of the

jump in the field (the Heaviside function in cadestrong discontinuity, for instance). The
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main advantages of this method is two-folds. Fitstaptures the discontinuity accurately.
Second, the discontinuity at the boundary betwegart can be modelled regardless of the
finite element mesh. Therefore, the mesh is ndticésd to be aligned with the discontinuity,
enabling the use of structured, geometry-indeperate relatively coarse meshes.

This paper is organized as follows. In Section @;egning equations based on a wetting
pressure — non-wetting saturation formulation aeeived. In Section 3, a detailed finite
element formulation of the proposed PUM-SG modefiien. In Section 4, a verification
example and two numerical examples describing a PNAafiltration problem, and a 2D

heterogeneous layered domain subjected to as6@rce are presented.

2 Governing Equations

The continuity equations of the wetting phase (fation water) and the non-wetting phase
for isothermal, immiscible, incompressible two-phdl®w in a rigid porous medium domain
can be expressed as [12]

Water phase

o py

pwkkﬂ(_VpW‘f‘pwg) =Qu (1)

W

Non-wetting phase

Kken

n

a_Sn _|_iv .
ot pp

Pn (—V Pn + Pn g) =Qn (2)

in which g is the gravity force vectory,, is the water densityp,, is the non-wetting density,
Sy IS water saturationg, is non-wetting saturation is the porosity,p,, and p, are water
and non-wetting pressurg, is the absolute permeabilitk,, and k,, are water and non-
wetting relative permeability (functions of satuweal, ., and n,, are water and non-wetting
viscosity, andQ,, and Q,are the volumetric source or sink terms. Note Huwscriptn is

utilized to describe a non-wetting phase which baroil, gas, or supercritical GOamong
others.
We adopt a water phase pressure — non-wetting adgeation formulation. In a porous

domain, water and non-wetting phase are jointlyupgang the pores, implying:

Sw+ S =1 (3)

and



pc(Sn) = Pn— Pw 4)

where p.(S,) is the capillary pressure, a function of non-wetphase saturation.

Applying the chain rule to Eqg. (4), the non-wettiphase pressure gradient can be
described as

d
Vm=vm+vmzvm+£§v% (5)

Substituting Egs. (3) and (5) into Egs. (1) and, (@) the absence of volumetric
sources/sinks, the continuity balance equationseasescribed as
Water phase

627 [k(VPy — 0] = O (6)

Non-wetting phase

9% _
ot

dp;

v &

—0 7)

M4VW+

V&, - Png]

in which )\, =k, /u, and x, =k, /u, are the water and non-wetting phase mobility. The

advantage of this formulation is that the non-wettphase saturation is made a primary
variable, and hence can be explicitly discretizaking into account its discontinuity at the
boundary between layers.

21  Constitutivereationships

In literature, there are several empirical formiola$ correlating the capillary pressure and
relative permeability to saturation, such as vamugaten [6] and Brooks and Corey [5].
Here, the Brooks and Corey formulation is adop#&dcordingly, the capillary pressure-

saturation relationship is described as

b = P ¥/ (®)
with
Sw — Sw
% —_ W @ TW
1-Sw—Sn (9)



and the relative permeability-saturation relatiopsHor the water and the non-wetting phases

are described as

krW _ Sé2+39 )0 (10)

ken = (1— 55)2 (1 5270)7) (11)

where S, is the effective saturatiors,,, is the irreducible water saturatio8,,is the residual

non-wetting phase saturatiom, is the pore size distribution index ang, is the entry

pressure, corresponding to the capillary presseegled to displace the water phase from the

largest pore.

2.2 Initial and boundary conditions

Initially, the water pressure and the non-wettih@ge saturation are set to

Pw = Pwo(X)

att=20 (12)
Sn = Sno(x)

The Dirichlet boundary conditions are prescribed as

=py onT

P = Pw " (13)

Si=& only
in whichT'=T, UT,, is the Dirichlet boundary surface.

The relevant Neumann boundary conditions are:

Water flux

Kwow(—VPy+ang)-n=G,on Ty, (14)
Non-wetting phase flux

dpc ~ q
KAnpn | = VP —VS —~+png|-n=0pon 'y (15)

in which n is the outward normal to the boundary and=rY Urd is the Neumann

boundary surface. The boundarieand ' are shown in Fig. 2.



Fig. 2 Domain definition.

3 Mixed Finite Element Discretization

Egs. (6)-(11), together with the initial and boundaonditions, Eqgs. (12)-(15), represent
an initial and boundary value problem of isothernmmlompressible immiscible two-phase
flow. This problem is solved here using a mixedtéirelement discretization scheme. This
scheme entails solving different balance equatiosiang different discretization schemes,

which are tailored to accurately describe the matdthe primary state variables.

3.1 PUM-SG Formulation

Egs. (6) and (7) are utilized here to describe iphéise flow in an initially saturated
domain injected by a non-wetting phase. The wateissure is continuous even at the
boundaries between layers, but the non-wettinggobaturation and capillary pressure (under
certain conditions, described in the Introducti@yhibit a jump across the boundaries
between layers. Considering this mixed nature @f ithvolved variables, we utilize the
standard Galerkin finite element method to disezeetthe water pressure field, and the
partition of unity finite element method to discretthe saturation field. This kind of a mixed
finite element discretization has been introducgdbKhoury and Sluys [13] to model fluid
flow in fracturing porous media, and employed b#,[15] to model coupled electrokinetic—
hydromechanic processes in £@eo-sequestration in single and double porositsoym®
medium domains. The difference, however, is thahis scheme a geometrical discontinuity
is modelled, whereas in the previous ones eithéiseontinuity across a crack in the solid
phase or a moving front of fluid phase were modkelle

Accordingly, using the Galerkin finite element meadh the water pressure can be
discretized as



P (G =Y N () Py (6) = N(x) Py (1) (16)
i€l

in which | is the set of all nodes in the domaiN;(x) is the shape function of node

evaluated atx, p,;(t) is the nodal value of water pressure for nodevaluated at time,

N(x) is the nodal vector of shape functions, angdt) is the nodal vector of water pressure.

Using the patrtition of unity finite element methdbde non-wetting phase saturation field
can be discretized as

SD=Y NS O+ Y NS 0
iel icl* (17)
= N()Sy(1) +N" ()3, (1)
where 1" is the subset of enriched nodes, FigS3.(t) and S, (t) are the conventional and
additional (extended) nodal values associated thithnon-wetting phase saturation for node

i, Nieh(x) is an enriched shape function for nodeands,(t), S,(t) and Neh(x) are the

associated nodal vectorN.eh(x) is defined as

N (x) = N(X)H (x) (18)

where H(x) is any function that can closely describe the ifgodf the field within an

element. Here, the Heaviside function is utilizthat reads

H (x) = 0 xeQ (19)
1 xeQt
in which Qt and @~ represent subdomains occupied by two differenérgyschematically

illustrated in Fig. 2.

== |nterface
O Nodal setin I*

Fig. 3 Subset of enriched nodes.



The weak form of Eqgs. (6) and (7) can be obtairgdgithe weighted residual method. To
compensate for the extra degrees of freedom intexdiloy PUM in Eq. (17), two different
weight functions are necessary. A continuous weligihttion w is utilized for the water mass
continuity equation, Eg. (6); and a discontinuowsghit functionw' is utilized for the non-
wetting phase mass continuity equation, Eq. (R)ingi

Water phase
j;W{— %—S{”—V-[k/\w(VpW—pr)”dQ—O (20)

Non-wetting phase

wi’ qsaa—st‘”—v- kAn[VpW +%V3n—png”d920 (21)
where

w=N (22)
w =N+ N (23)

in which the dependencies on the spatial and teahpoordinates are discarded for simplicity
of notation.
Substituting Egs. (22) into Egs. (20) and apply@rgen’s theorem vyields

f NT¢(NSn+Ne*‘én)dQ+f VNTkA, VN p,,dQ
. L (24)

- f VNTKA,0,,0dQ + — qNTquF:O
Q

Pw FW
Substituting Eq. (23) into Eg. (21) and applying&@r’s theorem yields two equations: one

representing the continuous field and another tbeodtinuous field, as

f NT¢(NSn+Neh§n)dQ+f VNTk)\nVNdeQJrf VNTkAndﬁVNsndQ
Q Q Q ds, (25)

d - .
[ INTK, SPe gnens, dQ—f UNTKAyongd2 + = [ NTG,dr=o
ot ds, 0 pn J g
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j;+(Neh)T¢(N'Sn+NehLSn)dQJrfsﬁ(VNeh)Tk/\nVNdeQ

+f (N Tk, e (TN, + VNS, ) do (26)
ot ds,

1 N 1
- N owpgas o [ (N (N gfdar=o
n n n d

wherer 4 is the boundary between layers as shown in Figd2,is the part ofrd which acts

on the boundary ofh™, and qﬁd is the non-wetting phase flow rate across the taopn

between layers, describing the leakage betweemndagefined as
ond =qpd -m 27)

where qﬁd is the associated flux vector, amdis the unit normal vector to the interface. This

leakage term is treated in details in Section 3.3.

3.2 Linearization

The resulting weak formulations, Eqgs. (24)-(26present a set of semi-discrete nonlinear
equations, where the nonlinearity arises from tbasttutive relationships between the
relative permeability and water saturation, andwieen the capillary pressure and water
saturation, described in Egs. (8)-(11). A fully imj approach is adopted to solve the
resulting nonlinear system of equations. Sincerntbwelinearity is due to scalar coefficients
(i.e. \ys» Aq, dp./ds,, etc.), and as the constitutive relationships ematinuous, it is
convenient to linearize these equations using Tasgwies expansions up to the first order

(equivalent to the standard Newton-Raphson). Thaofaeries expansion of a functiagx)

around a poinX is given by

9(x)=9g(x) +% (x—X) + higher order term (28)

X=X

For example, the mobility parametgy, at the current iteration+1, can be linearized as

r+1 __ r dAW(SQ)

Aw —AW(Sn)+—dSh 0Sh (29)
with

§S =S -S| (30)
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where the superscriptdenotes the iteration number and the prefixienotes the increment
of the state vector. Other nonlinear parametersedimearized in the same manner.

The primary variables and their time derivatives ba written as

pl=pltopy  Sht=shess,  SiT=Si+6S, (31)
plt=pl +op,  SH1=8 +6S, St =g +65,

Using Brooks and Corey model given in Egs. (8)-(&hJd assuming a constant viscosity, the
mobility gradients can be calculated analyticattg@ding to

d\, 1 dky, dSe

_ = Thw T (32)
05, S, dS,
dhy _ 1 dkypy dSe (33)
dS, 05, G5,

2
dnn  dX, dpe A d“p; (34)

dS, dS,ds, " ds,2

wheren, = )‘“j%'
It is worth mentioning that when the wetting phasmishes, the ternap, / dS,, goes to

infinity. To avoid this situation, we follow a relguwization technique proposed in [16]. In this
technique, the marginal values of capillary pressane regularized. This means, instead of
following Brooks-Corey relationships for very low etting phase values, a linear
approximation is used. However, more advanced aegaltion techniques can be found in
[17-19].
Inserting Eqs. (29) and (31) into Egs. (24)-(28Yr rearrangements, gives
Water continuity equation: continuousfield

- f NToNSfdO — f NToN 63,0 — f NToNS!dO — f NToN6S,dO
Q Q Q Q
+ f VNTKA VN pl dQ + f VNTKA! VN 6p,,dQ
Q Q

+f VNTKVN pgv[dﬂ NSS,
0 ds,

dQ+f VNTKVNDp!,
Q

fVNTkAVerngQ fVNT Wg[dg: NSS ]dQ

[dﬂ Nehéén]dQ (35)
ds,

—f VNTk Wg[ Aw nensg ]d9+i NT g, dr =0
Q ds, pwJ T,
12



Non-wetting phase continuity equation: continuousfield

fQNT¢N’s;dQ+fQNT¢N5'sndQ+fQNT¢Neh‘sﬁ,dQ+fQNquNehaéndQ

+f VNTk)\rr]VNp\rNdQ%—f VNTkAQVNédeQJrf VNTkVNp\rN[%NcSSn]dQ
Q Q Q

d )
+fQVNTkVNp5V[d—;‘Nehasn]dQ+fQVNTknWNsﬁ] dQ+fQVNTkn,2VNasn dQ

dQ

dn T dnn \en oz
+ | YNTKkVNS! [—DN§S dQ+f VNTKYNS! | =N N®sS
fQ n [dSn n q n ds, n

i ) - (d
+f VNTkn{,VNd’sﬁ,dQJrf UNTknf VNS, dQ+f VNTKUN®S | =0 Ns's, | do
ot ot Q ds,

d\

+f UNTKVNENS! %Nehéén dQ—f VNTk/\rr,pnng—f UNTkpng| =2 N6'S;, |d
0 ds, Q Q ds,

o+ . NTG,dI' =0

dA i
- f VNTkpng[—” NS,
Q dsn pn Fn

(36)
Non-wetting phase continuity equation: discontinuousfield
f (NS T gNSfdQ + f (N 6N 5S,dQ2 + f (N®)T NS!dO
ot ot ot
+f+(Nm)T¢Neh6§ndQ+f+(VNeh)Tk)\rr,VNp\rNdQ+f+(VNeh)Tk)\rr,VN6deQ
Q Q Q

eh\T r{dAn eh\T r | dAn \ehce
+L+(VN ) kVNpW[dSn N§S, dQ+j;2+(VN ) kVNpW[dShN 58, |dQ

+f+(VNeh)TknLVNsrndQ+f+(VNeh)TknWN<ssndQ
Q Q

+L+(VNm)TkVNs;[%Nésn dQ+L+(VNeh)TkVNSE[%NEhéén]dQ

ds,

+f+(VNeh)Tkn{1VNeh§LdQ+f+(VNeh)Tknrr1VNeh6§ndQ
Q Q

eh\T ehar [ A7n
+fQ+(VN )TkVN S”[dSh NSS,

%Neh(sén]dg
ds,

dQ+f (VNS T kNS,
ot
YT o\ Ty, of I
_L+(VN ) kAnpnng—L+(VN ) kpng[d% Nésn]dQ
—f (VNeh)Tkpng[%Nehéén]dQ+if (Neh)andr—if (N glddr =0
ot ds, pnJ gt Pn Ty

(37)
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In a concise form, Eq. (35) can be written as

Kis8Py+K 188, +K 108, +C 108, +C S, =F —(K°,pl, +C°.§ +C°§) (38)
Similarly, Egs. (36) and (37) can be written as

K 216Pw + K 2268, + K 2385, +C 265, +C 295,

—f _(KOp' +KO. & 1 KOG L O CO;r (39)
=fy —(K21Pw + K 228, + K 235, + C 55, + C 2$)

K 310Py + K 3088 + K 335, 4+ C 365, +C 345,

4
o (K%p" kO L KkOE O CO*r (40)
=f3 — (K31Pw + K 328, + K 335, +C 35, +C 38n)

Collecting Egs. (38)-(40) in a matrix form, yields

Kig Kio Kagl[épw| [0 Cyp Cq 5Pw
Ka1 Kz K33[6S,] |0 C3p C3 5én

. (42)
fy K1 0 0 |lp| [0 CP» CR3|(ph

0 0 0 0 ~0||e
=1fo1—|K21 K% K33[iShi—|0 C% C33iSh

0 0 0 ||z 0 ~o0llz
f3) |K31 K3 K3|Sh| |0 C% C%4|S,

The matrix entries of this equation are given impApdix A.

Eq. (41) contains an extra degree of freedom ageaczd to that if the standard Galerkin
method is utilized to discretize all variables. Fhntails that the system of equations that
needs to be solved is larger. However, this inaéaminor, as the extra degree of freedom is
only added to the nodes where the element interdbet boundary between layers. This
increase in the system size is compensated bydtrentages of the partition of unity method.
This method is effectively mesh-independent, alfaywthus for the utilization of relatively
coarse meshes. Also, as the boundary betweenytees ls described within the element, the
mesh can be independent of the alignment of thelwed layers, allowing thus the use of
structured meshes.

Time discretization of the semi-discrete equatigq, (41), can be done using a standard
time discretization algorithm. Here, the theta-roethl2] is utilized. A direct sparse linear

solver is utilized to solve the linearized algebrset of equations.
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3.3 Leakageterm

The leakage termqrrlOI in Eqg. (26) is the mass flux, which describesrtte of mass flow
per unit area of the interface between two layAtsthe interface between two layers, the
following conditions exist [1, 2, 4] (see Fig. 1):

1. Immobile non-wetting phase:

Un (42)
P = Pc
2. Mobile non-wetting phase:
ond >0 43)
+ -
Pc = Pc

in which the superscript$)(and {) indicate the field values at the" side and thex™
side of the interface, respectively (see Fig. 2).
Substituting Egs. (3), (8), and (10) into the secequation of Eq. (43) leads to

10" i+1)\— o
_ pb—[l_(sn ) S’W

- (S - S, o
1-Sh—Sh

y (44)

1-Sw—Sn

where (S-)* and (S1)~ are the non-wetting phase saturations correspgnttinthe

current time stept1, that can be delineated as
(S =(s)" +ast (45)
(&) =(s) +as, (46)

in which AST and AS, are the current saturation changes that are reges satisfy the

capillary pressure field condition given in the ed equation of Eq. (43).
Substituting Egs. (45) and (46) into Eq. (44) gives

i\ =10
1-(S) —AS -Sw o a7)
1- Sw—Sn

—1ht
_ po_

o | (S) " —AS; — Sy
1- S~ S

where all parameters are known, excep§ and AS,. Since Eq. (47) contains two

unknowns, another equation is necessary.
15



Following the conservation of mass, the mass ergdthe interface should be equal to the
mass leaving, implying that the mass flow ratehef mon-wetting phase is equal at both sides

of the interface, as

gpd T -mT =qrd"-m- (48)

wherem” is the unit vector pointing out aft zone intoo™ zone, andm’ is the unit vector

pointing out ofo~ zone intoo™ zone, with

m*=-m" (49)
giving
e (50)

where these mass fluxes can be described as

At vyt
rat_ 0T ASTHV 51
On AAL (51)
I'q— :_qb_ASr?pn ~ 52
On AL (52)

in which A is the interface surface area avidand V™ are the volumes of the non-wetting

phase mass accumulating just before and aftemteeface, respectively. Assuming” =V~
and substituting Egs. (51) and (52) into Eq. (50gg

AS, = —z—iAST (53)

Substituting Eq. (53) into Eq. (47) would eliminaks, , giving an algebraic equation with

one unknown ASY), as

—16~
5 iV, 0 Aot o
: —ut 1— +—ASy —Sw
pl?)L 1- (SI‘I)+ _AS::_ B Sr—"\;v o pbi (S'l) ¢7 S'l S -0 (54)
1-S, - Sh 1- Sw—Sm

Having AS, the mass flux across the boundary between twerdagan then be calculated

using Eqg. (51). This equation can be written as
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TAST pV TAST pnZ
EdJr:_(b SheY 0 ASy (55)

a AAt At

where Z is the thickness of the non-wetting mass accunmgjdiefore the interface (in case
of fluid flow from a high to a low permeability dam) or the thickness of the suction zone
(in case of fluid flow from a low to a high permdap domain). This parameter depends on
the physics of the problem, mainly on the contdastween the entry pressures of the
neighbouring layers, permeability of the involvedaterials and the applied fluid flux.

Formulating an exact constitutive relationship foris beyond the scope of this work.
Alternatively, we employed an iterative scheme fitg determination such that the
conservation of mass between the two sides of thendary between two layers is
maintained. The algorithm of this iterative schame

0. Doloop overi (time steps)

Lo(5) (&)
2. Doloop overz
3. InitializeZ
4 CalculateAS, Eq. (54)
Calculateg,d™ | Eq. (55)
Do loop overr (nonlinear iterations)

Compute state vector increments, Eq. (41)
End Do loop overr.

© © N o O

If the conditions in Egs. (42) and (43), fonmobile and mobile non-wetting
phase, are not satisfied, mod#yand go back to step 4. Otherwise exit the loop.

10. End Do loop overZ.

11. Calculate(S;™)*

12.End Do loop overi.

4 Verification and Numerical Examples

In this section, a verification example comparihng PUM-SG computational result to that

obtained from a semi-analytical solution is studi@dditionally, two numerical examples

17



evaluating the numerical capabilities of the moftel simulating layered medium domains

exhibiting leakages are presented.

4.1 Modd Verification

Van Duijn and De Neef [20] provided a semi-anaBftisolution based on the similarity
solution technique to solve fluid flow in a two-Eysystem. The geometry constitutes two
semi-infinite porous medium domains in-contact,saewn in Fig. 4. The left-hand side
domain is initially saturated with a wetting phaaad the right-hand side domain is initially
saturated with a non-wetting phase. With time, wuthe capillary pressure, the wetting phase
starts to infiltrate into the non-wetting phase @m As expected, a jump in the saturation

field occurs at the boundary between the two layers

ki, @, k.,

S, (=0)=1 S, (=0)=0

Fig. 4 Van Duijn and De Neef [20] domain and ifitiandition.

We solve this problem using the proposed PUM-SGeahdthe computational domain and
boundary conditions are shown in Fig. 5. To comparéhe semi-analytical solution, the

following dimensionless parameters are utilized:

1
* * \’ * * E
L fiy L b oy o]

in which x* is a dimensionless distance from the interfaceis a reference quantity for
length, x is the distance from the interface, is a dimensionless time, is the interfacial
tension, k* is a reference permeability. We implemented=1, h =05, M =1, F =1,
pore size distribution indexd§ = 2, entry pressure at the left-hand side dormain/¢, /k
and entry pressure at the right-hand sidem, as given by Van Duijn and De Neef
[20].

18



1.2L 1.2L

No Flow No Flow
2 2
3| & =
S o o
o | z Z
No Flow No Flow

Fig. 5 Computational domain and boundary conditions

Finite element meshes with different sizes ardzetl: 75, 125 and 300 linear elements
along the length of the domair-direction). Fig. 6 shows the computed resultstifer three
mesh sizes, together with the semi-analytical smiubf Van Duijn and De Neef [20]. The
figure clearly shows that there is a good matchvben the two solutions, whereas the results
obtained from the fine mesh is almost identicahi semi-analytical solution.

A convergence study is conducted to investigaterae of convergence of the proposed

model. Thd_; error norm is utilized, defined as

L1—error = f‘sw - S\NrEf ‘dQ (57)
Q

where Swref is the reference value calculated from the seralyaical solution of Van Duijn

and De Neef [20]. The error norms for three difféneoints in time using four mesh sizes, 25,
75, 125, and 300 elements have been calculatedreBudts are plotted in Fig. 7 along with
those reported by Friis and Evje [7], who solveel pihoblem using the finite volume method
with two different permeability averaging techniguéharmonic averaging and arithmetic
averaging. The figure shows that the convergente ahthe proposed model is relatively
high, several times higher than that based onitite fzolume method.

Table 1 shows the error in jump in saturation vemsuesh sizes for three points in time.
The table clearly exhibits that with finer meshib® error becomes smaller. Nevertheless, all

mesh sizes give a reasonable error, which sugtiedtthe method is mesh-independent.
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Proposed method, t*=1
= = = Semi-analytical, t*=2
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Proposed method, t*=3

14

Semi-analytical, t*=1
Proposed method, t*=1
- = = Semi-analytical, t*=2
= = = Proposed method, t*=2
e oo oo Semi-analytical, t*=3

. Proposed method, t*=3
(%)
0.4 -
‘0 1 T I ! ! ! !
0.6 -0.4 -0.2 0 0.2 04 0.6
x*
(c)

Fig. 6 PUM-SG versus Van Duijn and De Neef semingital solution using: (a) 75 elements, (b) 126maénts,
and (c) 300 elements.
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'-ng 0.1 A ««x++ Finite Volume, Harmonic, t*=2
S == % = Finite Volume, Arithmetic, t*=2
g
SR S O .
J o014 TR
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10 100 1000
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Fig. 7 Model convergence rate.

Tablel
Error in saturation discontinuity at three poimtgime.
Number of Error (%)
elements
t*=1 t*=2 t*=3
25 0.74 3.74 3.62
75 3.69 0.88 0.24
125 1.44 0.15 0.99
300 1.12 0.15 0.18

4.2 DNAPL Infiltration

Helmig and Huber [2] and Eik and MikySka [4], among others, numerically exaed
the infiltration of a Dense Non-Aqueous Phase LdgIDNAPL) in a multilayer system. The
geometry constitutes a three-layer soil columnhwitrelatively high permeabilityk() at the
upper and lower layers, and a relatively low peforgg (k,) in the middle layer. The

geometry of this problem together with the dimensiand boundary conditions are shown in
Fig. 8.
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Fig. 8 DNAPL infiltration problem.

Initially, the domain is saturated with water. Th&@NAPL was injected from the upper
boundary at a constant flow rate of 0.05 kg/s. Tie and right-hand side boundaries are
closed to the flow, and a pressure boundary candis defined at the lower boundary so that
the water and DNAPL can freely exit the domain. Tgravitational force is taken into
account, and the Brooks-Corey relationships arezedi. Table 2 lists the fluid and layers
properties, and Fig. 9 shows the corresponding lBramd Corey diagrams.

High Permeable (k;)

Low Permeable (k,)

A
Pe

9%
~
|
~
%R 4

S,C SD SE = W

w w w

Fig. 9 Brooks and Corey diagrams for DNAPL infititce example.
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Table 2

Fluid and porous media properties for DNAPL inéition problem.

Fluid properties Water DNAPL
Density [kg/m] 1000 1400
Viscosity [Pa.s] 0.001 0.001
Porous media properties Porous M edium #1 Porous M edium #2

(high per meable)

(low permeable)

Permeability [mM] 5.04x10% 5.26x10"
Porosity 0.4 0.39
Entry pressure (Brooks-Corey ) [Pa] 370 1324
é (Brooks-Corey ) 3.86 249
Water residual saturation 0.08 0.10
DNAPL residual saturation 0.00 0.00

We first utilized the standard Galerkin finite elemt method to solve the problem. Fig. 10
shows a DNAPL saturation distribution at timme 1700 s using a relatively fine mesh (500
linear elements). It shows that there is a risthénDNAPL saturation starting just before the
boundary between the upper and middle layers amtincong in the middle layer. This
behaviour is physically not correct as there shcagdan accumulation of DNAPL at the
boundary between the two layers, followed by a jumfhe saturation field. This erroneous
result is expected since the standard Galerkin odgkeit not capable of modelling the jump in

the saturation field between layers of differentdtaylic parameters. Helmig and Huber [2]

have shown similar results for the standard Gabefikite element method.

1

o
[0¢]
1

o
(o)}
1

©
EAN
1

J

DNAPL Saturation
o
N}

-

o

0.1 0.2 0.3

o

0.4

Distance from the Top of the Column [m]

Fig. 10 Solution of DNAPL infiltration problem ugirstandard Galerkin FEM method.
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Fig. 11 shows the DNAPL saturation distributiontiate t = 1700 s using the proposed
PUM-SG model. Three finite element mesh sizes stingi of 25, 50 and 200 linear elements
were utilized. The computational results show thfa proposed model could capture
accurately the saturation jump at the interfacesnewith the use of the relatively coarse
mesh. However, the 25 elements mesh exhibits sommsebefore the jump, which is
expected for such a coarse mesh. The 50 and 20@ele meshes exhibit accurate results in
the whole domain. The computational results wit@ 2ments have been compared to the
results given by Riik and MikySka [4], as illustrated in Fig. 12. Hrcbe seen that the results
are very close, though the PUM-SG results are raccearate at the suction interface, where it
predicts full suction, while Riik and MikySka's model does not. The differencehat front
location, however, is due to thatdkand MikySka have stopped their analysis at 1§5hd
we have stopped at 1700 s.

High Permeable Low Permeable High Permeable
1 i
-==-- PUM-SG, 25 elements
£ 0.8 - = = PUM-SG, 50 elements
— 1
s —— PUM-SG, 200 elements
5 0.6 !
fd 1
[y} |
v |
a044 7  eme——— :
< 1
Z i
0.2
0 T T

0.2 0.3 0.4 0.5
Distance from the Top of the Column [m]

Fig. 11 Solution of DNAPL infiltration problem usirPUM-SG model.

1 T T
' o MHFE-DG, Friis and Evje [5], t = 1650 s
s 0.8 A ——PUM-SG, 200 elements, t = 1700 s
":6 '
é 0.6 - i
(s} I
(7] 1
g 04 1 C i
2 | 2\
(=] 0 2 A : o
1 (o]
1 d (o]
0 T : T T T 0
0 0.1 0.2 0.3 0.4 0.5

Distance from the Top of the Column [m]

Fig. 12 PUM-SG versus Eik and MikySka model.
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At the beginning, DNAPL accumulates at the boundaetween the upper layer and the
middle layer, on the upper layer side. In this ¢dlse capillary pressure is discontinuous at
the boundary. As the capillary pressure exceedsetitey pressure of the middle layer,
DNAPL infiltrates into the middle layer. In thissm, the capillary pressure is continuous and
the saturation is discontinuous, as shown on pdiitand D on the Brooks and Corey
diagram, Fig. 9.

On the boundary between the middle layer and theddayer, suction occurs, appearing
as a drop in the saturation profile before the loaumy between the two layers and a sudden
rise after the boundary. In this case, the entessure of the middle layer is initially higher
than that of the lower layer, giving rise, upon treival of the DNAPL, to an immediate
leakage. This behaviour corresponds to points EFand the Brooks and Corey diagram in
Fig. 9. Note that point F in Fig. 11 indicat&sap. = S = 0, which corresponds &, =1 in
Fig. 9.

43 CO;Leakage

CO, geo-sequestration is currently utilized as a meansiitigate CQ emission to the
atmosphere in an attempt to reduce the likely dreese effect. Selection of an appropriate
geological formation for C@®sequestration requires a good estimate of the anadueakage
that might take place in time. Leakage of Q®the ground surface or upper layers containing
ground water is considered as one of the main caead applying this technology.

This example demonstrates the computational capabihd efficiency of the proposed
model to simulate the likely leakage of €@ a two-dimensional non-horizontally layered
domain. The geometry is assumed to describe afeadpaiunded by a cap-rock and subjected
to CO injection. Fig. 13 shows the geometry and boundarnditions, and Table 3 lists the
material and physical properties of the domain. flind and the porous medium properties of
the aquifer are taken from the well-known benchmedkage problem, which is utilized in
literature to compare between numerical simulaf@d§. For the cap-rock layer, the entry
pressure is made 1.156 times that of the aquifet tlae permeability is made 0.375 times that
of the aquifer. The Brooks and Corey relationstaps assumed. The G injected at a
constant flow rate of 12.5 kg/day from the lowelt leorner of the aquifer. The gravity is
taken into consideration so that the buoyancy ®onsdl lead the CQ to flow upwards,

towards the cap-rock. Because leakage is the maarest here, this set of material properties
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and boundary conditions is imposed such that weergbs a significant contrast in

performance between the proposed model and modsésilon standard numerical schemes.

Pressure = 5 atm

> = Cap-rock
kl kZ < k g
2 v
A
= £ 2
5 =%
Aquifer z
ky
co2 —
10 m
No Flow

Fig. 13 Geometry and boundary conditions for the @§&ction problem.

This problem is solved using the standard Galéfikite element method and the proposed
PUM-SG model by means of five mesh sizes: 9, 23, 225 and 400 linear elements. The
finite element mesh for the SG must coincide whlk boundary between the two layers,
while for PUM-SG, this is not necessary. A struetimesh can be used for the PUM-SG
model which enables the use of a standard simp# generator. Fig. 14 shows an example

of these meshes.

Table3

Fluid and domain properties for the problem of;@ection.

Fluid properties Water CO,
Density [kg/m] 1045 479
Viscosity [Pa.s] 2.535x10 3.950x1¢F
Porous media properties Aquifer Cap-rock

(high per meable)

(low permeable)

Permeability [mM] 2.0x10™ 7.5x10%
Porosity 0.15 0.1
Entry pressure (Brooks-Corey ) [kPa] 225 260
é (Brooks-Corey ) 4.0 2.0
Water residual saturation 0.20 0.20
CO;, residual saturation 0.00 0.00
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(a) )
Fig. 14 Finite element meshes: (a) standard Galerkidel, and (b) PUM-SG model.

Fig. 15 shows the computational results of both eledt time = 82 days. Apparently, the
standard Galerkin model, even for the relativelgfmeshes, was not able to capture the jump
in the saturation field at the boundary betweenttelayers, giving a false impression about

the amount of leakage.
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+3.20e-001

+2.40e-001
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+8.00e-002

+0.00e+000

Fig. 15 CQ phase saturation distributiontat 82 days. Left: standard Galerkin model; RightMRSG model:
(a) 9 elements, (b) 25 elements, (c) 121 eleméatit225 elements, (e) 400 elements.
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On the other hand, the PUM-SG model could captbhre phenomenon even with 9
elements, though the leakage was not as accuratelZl to 400 elements meshes, the
computational results exhibit analogous accumutasiod leakage, indicating that the model
is effectively mesh-independent.

Fig. 16 shows the resulting pore pressupe-§,p, *+ S,p,) Obtained from the SG model
and the PUM-SG model. Clearly, the figure showsigmiicant difference in the pore
pressure distribution in the aquifer and the cagkiayer between the two models. Failure to
capture gas accumulation at the boundary betweeradifer and the cap-rock by the SG
model leads to incorrect pore pressure distribytemd hence incorrect prediction of the

mechanical behaviour of the G8equestration region.

Pressure [Pa]

+7.00e+005
+5.60e+005
+6.20e+005

+5.80e+005

+5.40e+005

+5.00e+005

i

Fig. 16 Pore pressure distribution for the {€akage problem dt= 82 days (by using 400 elements): (a) SG
model, and (b) PUM-SG model.

(a) (b)

5 Conclusions

Leakage of fluids into underground formations isriany cases unwanted. Among others,
contaminants, DNAPL and GQeakage to the groundwater layers or to the grauntace is
considered as one of the main concerns of applygegenvironmental engineering
technologies. This necessitates the developmeodraputational tools capable of simulating
this phenomenon accurately and efficiently.

In this work, we introduced a computationally effitt model capable of capturing a non-
wetting phase leakage at the boundary betweendyeteeous layers. A mixed discretization

scheme is utilized. This scheme entails solvingpteai balance equations using different
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discretization schemes, which are tailored to aately describe the physics of the primary
state variables. We utilized the standard Galefkiite element method to discretize the
continuous water pressure field, and the partigbanity finite element method to discretize
the discontinuous saturation field. The finite edminformulation is three-dimensional (3D)
but the computer implementation is two-dimensio2D). The focus here is on the
computational scheme which requires an intensivdfication and validation study, that
necessitates relatively short CPU time and smatipder capacity. However, extension to
3D can be made using the usual finite element implgation practice.

The advantages of the proposed model is, in addttoits accuracy and robustness, its
ability to embed the boundary between layers withi@ elements, allowing for the use of

structured and geometry-independent meshes.
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Appendix A. Components of the finite element masic
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