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Summary

The Gravity Recovery and Climate Experiment (GRACE), launched in 2002, was
the first low-low satellite-to-satellite tracking (ll-SST) satellite gravity mission. One
of its primary objectives was to monitor the redistribution of mass in the Earth’s
system, which is of vital importance not only to the scientific community, but also
to society in general. GRACE allowed for the mass redistribution monitoring at much
smaller spatial scales than ever before. The data collected by the mission lead to a
proliferation of researches in many scientific domains.

The GRACE mission, completed in 2017, was considered as an outstanding suc-
cess. Consequently, the GRACE Follow-On (GFO) mission was launched in 2018 to
continue its legacy. With the GFO mission underway, it is now timely to look into
the future of satellite gravimetry.

The major goal of this thesis was to design and benchmark a set of ll-SST mission
concepts with the potential to deliver unprecedented accuracy of mass redistribu-
tion estimates. The approach taken was to develop a simulation tool capable of
handling arbitrarily complex satellite mission designs. In the first instance, this tool
was used to analyze the error budget of the GRACE mission. A combination of sim-
ulated errors from various sources showed a very good agreement with observed
noise in the GRACE inter-satellite acceleration data. Noise in the frequency range
between 1 and 9 mHz, the origin of which was previously unknown, was explained
by a combination of positioning, acceleration and ranging errors and errors in the
atmosphere and ocean de-aliasing model (cf. Chapter 6).

A good agreement between simulated and actually observed noise was only
possible by properly accounting for the propagation of errors through the computed
reference orbits. I called this error propagation mechanism the indirect effect. I
formally defined the indirect effect and demonstrated that it propagates differently
in different types of ll-SST missions (cf. Chapter 3).

Next, the error budget of future missions which replicate GRACE was simulated.
I confirmed that temporal aliasing errors are the ones that limit the performance
of these missions. A better instrumentation will not improve the performance of
those missions in any significant way. New mission concepts are required in order
to surpass the performance level of the current ones.

Afterwards the tool was used to run small-scale simulations in order to gain
insight into the mission design aspects which determine the performance of the
mission. Small-scale simulations consider relatively short timespans (between 2
and 5 days) and the obtained solutions are typically computed up to a relatively low
maximum SH degree (normally between 40 and 60). Using small-scale simulations,
I could identify mission design aspects which impact the temporal and spatial res-
olution of ll-SST missions (cf. Chapter 7) . Considering different gravity gradient
directions as observables, I have shown that collecting multiple observables from
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2 Summary

a single formation greatly increases the spatial resolution of the mission compared
to the single-observable case. This discovery begs the consideration of formations
consisting of more than two satellites in order to maximize the spatial resolution. I
have also considered missions consisting of multiple formations. For these, I have
shown that temporal aliasing errors can be minimized by orienting the polar orbital
planes of the satellite formations such that they equipartition 3-D space. Specifi-
cally, for two-formation missions, the orbital planes should be perpendicular, while
for three-formation missions they should be set 60∘ apart.

On the basis of the small-scale simulations, I have proposed a set of satellite
missions, which were benchmarked with full-scale simulations (cf. Chapter 8). The
missions were designed to combine multiple observables in a single or multiple for-
mations. In the latter case, their orbital planes were correctly oriented in order to
minimize temporal aliasing errors. Of the proposed concepts, missions which con-
sidered along-track/pendulum (which I called gamma) and along-track/cartwheel
(which I called sigma) combinations were found to yield the lowest total errors. Of
those, I selected the single-formation along-track/pendulum combination (gamma)
mission as the most promising for future ll-SST mission. I have shown that this
concept yields large improvements in terms of spatial and temporal resolutions. At
the same time, the gamma mission avoids the complexities of the cartwheel pair
of satellites and, given that it considers a single satellite formation, it is potentially
cheaper and less complex than the other alternatives which considered two. The
gamma mission shows substantially lower errors compared to existing ll-SST mis-
sions, which may be further reduced when used as the basis for a multi-formation
constellation of satellites.



Samenvatting

De GRACE-satellietmissie (Gravity Recovery and Climate Experiment: Zwaartekracht-
en Klimaatexperiment), was gelanceerd in 2002 en was daarmee de eerste missie in
een lage baan waarbij de onderlinge satellietafstand werd gemeten, de zogeheten
ll-SST-techniek (low-low satellite-to-satellite tracking). De missie maakte het moge-
lijk om de ruimtelijke herverdeling van massa te monitoren op een nog niet eerder
vertoonde wijze. Dientengevolge heeft de data die hierbij werd verzameld geleid
tot een stroomversnelling van het onderzoek in verschillende wetenschappelijke
disciplines. Het is duidelijk gebleken dat het in kaart brengen van massabewegin-
gen op onze planeet uitermate belangrijk is, niet alleen voor de wetenschap, maar
ook voor de maatschappij in bredere zin. De GRACE-missie was een groot succes
en recentelijk is de opvolger GRACE Follow-On (GFO) gelanceerd om daarmee de
continuïteit te waarborgen. Nu de GFO-missie gaande is, is het een goed moment
om stil te staan bij de toekomst van satellietgravimetrie.

De doelstelling van dit proefschrift is het ontwerpen en testen van een aantal
ll-SST-concepten die mogelijk tot veel grotere nauwkeurigheden in staat zijn dan
de GRACE- en GFO-missies. De aanpak in dit proefschrift is de ontwikkeling van
een simulatie die in staat is om te gaan met vergaand complexe satellietmissie-
ontwerpen. Ik gebruik deze techniek vervolgens om met kleinschalige simulaties
inzicht te verkrijgen in die ontwerpaspecten die bepalend zijn voor de missiepresta-
ties. Op basis van geïdentificeerde ontwerpaspecten, doe ik een voorstel voor een
aantal missieconcepten die potentieel beter presteren dan huidige missies. Vervol-
gens heb ik de voorgestelde concepten getest op prestaties en de best presterende
heb ik geselecteerd als geschikt startpunt voor toekomstige gravimetriesatellietmis-
sies.

Tevens heb ik de simulatietechniek gebruikt om het foutenbudget van de GRACE-
missie te valideren. De gesimuleerde ruis vertoont goede overeenkomsten met de
geobserveerde ruis uit de intersatelliet-acceleratiedata van GRACE. De geobser-
veerde ruis in het 1-9mHz frequentiebereik, voorheen van onbepaalde herkomst,
kan verklaard worden als combinatie van positionering-, acceleratie- en afstandsbe-
palingsfouten en fouten in de atmosfeer- en oceaanmodellen die gebruikt worden
om vouwvervorming (aliasing) tegen te gaan (zie hoofdstuk 6). De goede overeen-
komst is alleen mogelijk wanneer rekening wordt gehouden met de propagatie van
fouten in de bepaling van referentiebanen. Deze wijze van foutenpropagatie be-
noem ik als indirecte effecten. Ik geef een formele definitie van de indirecte effecten
en illustreer hoe deze fouten op verschillende wijzen doorwerken voor verschillende
type ll-SST-missies (zie hoofdstuk 3).

De analyse van de foutenmarges van de GRACE-missie en die van toekomstige
opvolgers bevestigt dat de prestatie van deze missies wordt beperkt door tijdsaf-
hankelijke vouwvervorming. Verder laat de analyse ook zien van verbeteringen in
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4 Samenvatting

instrumenten geen significante verbetering te verwachten valt voor de prestatie van
de missies. Nieuwe missieconcepten zijn noodzakelijk om tot een prestatieverbe-
tering te komen ten opzichte van de bestaande missies.

Gebruikmakende van kleinschalige simulaties, kan ik die ontwerpaspecten van
missies uitlichten die bepalend zijn voor de tijdsafhankelijke en ruimtelijke resolutie
van ll-SST-missies (zie hoofdstuk 7). Ik laat zien dat het meten van meerdere ob-
servabelen bij een enkelvoudige satellietformatie een grote verbetering in de ruim-
telijke resolutie betekent in vergelijking met het geval van een enkele observabele.
Deze vaststelling vraagt om een overweging van missies bestaande uit complexere
formaties om daarmee de ruimtelijke resolutie te maximaliseren. Daarnaast laat ik
zien dat de tijdsafhankelijke vouwvervormingsfouten geminimaliseerd kunnen wor-
den door de oriëntatie van de polaire banen van de satellietformaties dusdanig te
kiezen dat deze de ruimte tussen de baanvlakken gelijk verdeeld. Meer specifiek,
voor missies bestaande uit twee formaties zouden de baanvlakken loodrecht op el-
kaar moeten staan, bij missies van drie formaties moeten de baanvlakken onder
hoeken van 60° staan.

Op basis van deze uitgangspunten heb ik een voorstel gedaan voor een aantal
satellietmissies en hiervan de prestaties onderzocht (zie hoofdstuk 8). Deze zijn
zodanig ontworpen dat meerdere observabelen gecombineerd kunnen worden in
een enkele formatie en, wanneer meerdere formaties in aanmerking komen, zijn
de baanvlakken zodanig georiënteerd dat de tijdsafhankelijke vouwvervorming mi-
nimaal is. Van de conceptuele voorstellen presteren de, enkel- en tweevoudige
formatie, sigma- en gamma-missies als beste. Van de genoemde concepten heb ik
de gamma-missie als enkelvoudige formatie gekozen als veelbelovendste toekom-
stige ll-SST-missie, ofwel als opzichzelfstaande formatie, ofwel als basis voor een
constellatie van satellieten bestaande uit meerder formaties.
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Introduction

1.1. Background
Gravity field models provide invaluable information for a wide array of geophysical
applications with great benefits for the society. Satellite gravimetry derived data
has been used in the prediction of river basin flood potential with several months
lead time (Reager et al., 2014), and was shown to be a indicator of extreme drought
events, such as the one over Texas in 2011 (Long et al., 2013). Satellite gravimetry
data is fundamental in the monitoring of ice-mass loss over the polar regions (Di-
dova, 2017; Shepherd et al., 2012; Velicogna et al., 2014). Furthermore, ice mass
loss on land is one of the major contributors to the sea level rise; several publica-
tions dedicated to the assessment of global and regional sea level rise (Dangendorf
et al., 2017; Frederikse et al., 2017; Kleinherenbrink et al., 2017) rely on satellite
gravimetry data. Satellite gravimetry data is used to study earthquakes (Fuchs et
al., 2013), volcanoes (Battaglia et al., 2008), the Earth’s lithosphere (Bouman et al.,
2015), to estimate glacial isostatic adjustment (X. Wu et al., 2010), dynamic ocean
topography (Knudsen et al., 2011), ocean tides (Han et al., 2005), height datum
unification (Rummel, 2012), etc.

Determining a global gravity field model requires a set of gravity measurements
distributed over the surface of the Earth. The most practical way to obtain these
measurements is from space-borne instruments. Four gravity-dedicated satellite
missions have been launched since the year 2000:

• Challenging Minisatellite Payload (CHAMP)

• Gravity Recovery and Climate Experiment (GRACE)

• Gravity Field and Steady-State Ocean Explorer (GOCE)

• GRACE Follow-On (GFO)

Importantly, a continuous time-series of global gravity measurements allows for
the tracking of mass changes over time. To that effect, the GFO mission has been

5
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recently launched to continue the GRACE data series. This was the motivation to
launch the GFO mission, which extends the GRACE time-series into the future and
is certainly not the last satellite gravimetry mission. Moreover, the need for satellite
gravimetry data will likely increase in the future. Future missions are expected
to deliver even more accurate data, which will improve the scientific outcomes of
existing and open the way for new scientific applications.

This brings about the question of how should future missions be designed in
order to achieve such improvements. The main purpose of this thesis is to answer
this question by proposing a candidate mission with the greatest potential to monitor
the mass transport signal. Fundamental to the design of future satellite missions is
the understanding of the performance limitations of the current ones. Therefore, a
prerequisite to the stated goal is to close the knowledge gaps on the errors limiting
the performance of current satellite gravimetry missions. One additional motivation
to better understand the errors in the current missions is that, in doing so, it might
become possible to correct part of these errors and thus improve the quality of
existing models.

After the launch of the GRACE mission, it became apparent that noise in its
data was larger than previously expected. Over the years, several authors have
researched different possible causes for the observed errors with limited success.
Ditmar et al. (2012) is one of the major publications dealing with the error bud-
get of the GRACE mission. The authors concluded that, in the frequency range
below 1mHz, errors in the satellite orbits are the main error source is errors in
the satellite orbits. These propagate as centrifugal accelerations into the computed
residual inter-satellite accelerations. Furthermore, the authors also concluded that
the source of observed errors in the frequency range between 1-9 mHz remains
unexplained.

In an attempt to close the error budget of the GRACE mission, I identified a two
topics which could potentially explain the observed errors in the mission. They are
indirect effect errors and star camera errors.

Indirect effect errors arise in the computation of the reference orbits and ulti-
mately affect the computed solutions. The reference orbits are computed through
the numerical integration of the laws of motion. Any perturbation in the force model
used will cause the computed orbits to deviate from the true ones. Even relatively
small perturbations, grow over time as random-walk noise, resulting in computed
orbits which increasingly deviate from the true ones. Afterwards, these orbits are
used to compute the reference quantities, at which point, these errors propagate
into the residual quantities used for gravity field solution computation.

Star cameras are satellite instruments which are used to measure the attitude
of the spacecraft w.r.t. the inertial frame. Star-camera data is required to trans-
late the 3D accelerometer measurements into the inertial frame, essential to the
computation of high quality orbits. Furthermore, star-camera data is required to
relate the ranging instrument measurements to the center of mass of the GRACE
satellites. Errors in star camera data propagate through both these operations with
consequences on the quality of the computed gravity fields.

Beyond the errors affecting the current missions, the performance of all satellite
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gravimetry missions is limited by spatial instability errors, temporal aliasing errors,
and spatial aliasing errors. Spatial instability errors arise in the computation of
gravity field parameters. For a given set of globally distributed measurements,
estimating gravity field parameters of increasingly smaller spatial scales will result
in large amplification of measurement noise in the estimated parameters. Without
considering pre- and post-processing filtering procedures, spatial instability errors
set a hard limit on the spatial resolution of the mission. They are intrinsically linked
with the distribution of measurements and the level of noise in the data.

Spatial aliasing errors are a consequence of the SH degree at which the com-
puted gravity field solutions are truncated. The signals which a satellite gravimetry
mission measures are composed by an infinite number of SH degrees. In the es-
timation of a gravity field solutions, those degrees above the selected truncation
degree will map down to the set of estimated ones and result in spatial aliasing
errors.

Finally, satellite gravimetry data also suffer from temporal aliasing errors. Satel-
lite gravimetry missions require measurements to be gathered over a certain period
of time in order to attain a sufficiently dense global coverage. Mass transport sig-
nals over timescales shorter than this period will not be correctly represented in the
gathered data, which manifest in the solutions as temporal aliasing errors.

With the recent launch of the GFO mission, it is now time to reflect about the
future of low-low satellite-to-satellite tracking (ll-SST) gravimetry. The wealth of
data provided by the GRACE mission allows us to learn what the drawbacks of the
mission are what are the limitations of its performance. It is expected that future ll-
SST gravimetry missions be able to deliver more accurate mass transport models at
smaller spatial scales in order to potentiate new and existing scientific applications.

While one of the objectives of the GFO mission is to validate a new type of
ranging instrument, it is for the most part a replica of the GRACE mission. Looking
into the future, it is important to find out whether additional replications of the
GRACE mission are an appropriate way to design the missions of the future or
whether this GRACE-legacy should be deprecated.

Ultimately, the performance of future satellite missions depends on their ability
to mitigate the above discussed errors. Given that any specific satellite mission
can be stated as a set of parameters, the way to design a maximum performance
mission is to search the parameter space in order to find the ones which are most
effective at reducing these errors. The major difficulty in this endeavor is the vast
number of parameters that need to be considered along with the computationally
demanding task of computing gravity field models up to sufficiently high SH degrees.

In order to tackle this challenge my approach was split in two parts. Firstly, I
took the simplest possible mission configurations and, or different types of errors, I
analyzed which of the mission parameters affected the considered errors the most.
Once the knowledge about the most important mission design aspects was gath-
ered, I systematically designed a set of ll-SST missions with the potential to greatly
outperform the current missions and I benchmarked them in order to identify the
best candidate for the future generations of ll-SST satellite gravimetry.
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1.2. Research Objectives
1. Explain the error budget of the GRACE mission. On the basis of the a simula-
tion tool and a realistic noise model, the error budget of the GRACE mission
can be explained by comparing synthetic and observed errors in real data.
This is an important step towards predicting and comparing the performance
of different future mission concepts. Closing the error budget of GRACE re-
quires three sub-objectives to be fulfilled.

(a) Build a simulation tool and a realistic noise model to assess the perfor-
mance of satellite gravimetry missions. The variety of error sources and
the non-trivial manner in which orbits, measurements, errors and gravity
field parameters interact excludes the possibility of analytically predicting
the performance of a given mission design. These interactions can only
be realistically modeled by simulating all the required data products and
by inspecting the propagation of errors through them. Once a realistic
noise model is available, it can be validated against error realizations of
current satellite missions and afterwards to predict the performance of
future ones.

(b) Describe and predict the propagation of indirect effect errors. Indirect
effect errors are a poorly understood error propagation mechanism, in
which errors propagate into gravity field solutions through the computa-
tion of reference satellite orbits. Because these errors play an important
role in the quality of the recovered gravity field solutions, it is important
to understand them.

(c) Quantify the impact of star camera errors in the GRACE data. Preliminary
inspection of these errors lead to unexpected findings with the potential
to improve the quality of GRACE solutions. The error budget cannot be
closed until these errors have been thoroughly analyzed.

2. Quantify the performance of future GRACE-type missions. The GFO mission
was recently launched as using the same satellite formation and orbits as the
original GRACE mission. While it is convenient to build upon proven technolo-
gies, one must wonder whether continuing to replicate the GRACE-platform
is the right approach for the future.

3. Identify the set of mission design parameters that have the largest impact on
spatial aliasing, spatial instability and temporal aliasing errors. These errors
are known to limit the performance of satellite gravimetry missions. Starting
with a set of simple mission concepts, a search through the parameter space
will reveal which ones are effective at mitigating those errors. This knowledge
can then be used to drive the design of future satellite missions.

4. Compare the performance of a comprehensive set of mission concepts to
identify the best candidates for next-generation satellite gravimetry missions.
On the basis of the knowledge gathered in the previous task, a set of missions
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will be proposed and benchmarked in order to identify the concepts with the
most potential to improve the accuracy of computed gravity field solutions.

1.3. Thesis outline
In Chapter 2, an in-depth analysis of the literature on the topic of future satellite
mission is detailed. In Chapter 3, indirect effect errors are defined and illustrated for
a selection of satellite mission concepts. A detailed overview of the simulation tool
used to assess the performance of satellite mission is presented in Chapter 4. Also
in this Chapter, the error scenarios which may affect the current and future satellite
missions are presented. A analysis of star camera errors in the GRACE mission is
presented Chapter 5. In Chapter 6, the simulation tool and the considered error
scenarios are validated by comparing their synthetic noise realizations with observed
ones in real data of the GRACE mission.

Chapter 7 deals with finding the mission design parameters which are determi-
nant at mitigating spatial instability, spatial aliasing and temporal aliasing errors.
Chapter 8 is dedicated to the assessment of the performance of future satellite
gravimetry missions. In this chapter a set of future mission concepts is proposed
and benchmarked leading to the selection of the best candidate mission. Chapter 9
is reserved for the conclusions.





2
Literature review

A t the end of Chapter 1, I have stated that the focus of this thesis is the evaluation
of the performance of future ll-SST mission concepts. In this Chapter, I will

introduce the tools and concepts which are required to accomplish this task. Then
I will introduce the basic concepts regarding satellite orbits, repeat orbit design
and the elementary satellite formations. After that, I will present an overview of
all publications on errors in ll-SST data, future satellite mission concepts and the
associated spatio-temporal resolution. At the end of this Chapter, the reader will
understand the concepts upon which ll-SST missions rely, will be aware of the state-
of-the-art and will understand the tools that I will use to analyse the performance
of future missions.

2.1. Background on gravity field modelling
In this section, background information regarding gravity field modelling is provided
along with the set of tools which are commonly used to analyse gravity field models
and gravimetry observations.

2.1.1. Spherical harmonics
The Earth’s gravitational potential 𝑉(𝑟, 𝜃, 𝜆) is a harmonic function outside the do-
main of the attracting mass, It is defined as

𝑉(𝑟, 𝜃, 𝜆) = 𝐺𝑀
𝑅

ጼ

∑
፥ኺ
(𝑅𝑟 )

(፥ዄኻ) ፥

∑
፦ዅ፥

�̄�፥፦�̄�፥፦(𝜃, 𝜆) , (2.1)

where
𝑙 – spherical harmonic degree
𝑚 – spherical harmonic order
𝐺𝑀 – product of the universal gravitational constant G and the mass of

the earth M
𝑅 – an arbitrary constant, typically the equatorial radius of the Earth.

11
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Functions �̄�፥፦ are known as surface spherical harmonics. Their general form is

�̄�፥፦(𝜃, 𝜆) = {
�̄�፥፦(cos𝜃) cos𝑚𝜆 for 𝑚 >= 0
�̄�፥|፦|(cos𝜃) sin|𝑚|𝜆 for 𝑚 < 0, (2.2)

where
�̄�፥፦ – fully-normalized associated Legendre functions of the first kind.

The exact definition of the associated Legendre functions can be found in, e.g.,
Heiskanen et al. (1967). The constants �̄�፥፦ are known as spherical harmonic coef-
ficients (SH), geopotential coefficients or Stokes coefficients. This set of coefficients
can be used to fully describe the gravity field of the Earth. In practice, the maximum
degree of the spherical harmonic expansion is limited to a certain value 𝑙max.

2.1.2. Mass anomalies
For the most part, the movement of mass in our planet takes place in the atmo-
sphere, oceans and shallow subsurface. Therefore, the mass transport signal is
confined to a relatively thin near-surface layer, which is roughly 10 km thick. Then,
the mass transport can be represented by variations of surface density 𝛿𝑠(𝜃, 𝜆)
within this thin layer. As with any continuous function defined on a sphere, the
surface density variations can be represented in terms of coefficients �̄�᎑፬፥፦. It can be
shown that the relationship between the Stokes coefficients and the surface density
variation ones is,

�̄�፥፦ =
3(1 + 𝑘ᖣ፥)

𝑅𝜌ፚ፯(2𝑙 + 1)
�̄�᎑፬፥፦ , (2.3)

where
𝑘ᖣ፥ – are the load Love numbers, which account for the Earth’s elastic

deformation under load, Wahr et al. (1998)
𝜌ፚ፯ – is the average density of the Earth, approximately equal to

5500 kgmዅ3.

Another common way to express surface density variations is in terms of equiv-
alent water height (ewh) ℎ፰(𝜃, 𝜆), which represents the height of the water column
required to cause the observed surface density variation. The corresponding spher-
ical harmonic coefficients can be computed as

�̄�᎑፡፰፥፦ = �̄�᎑፬፥፦
𝜌፰

, (2.4)

where
𝜌፰ – is the density of water, equal to 1000 kgmዅ3.

Finally, one more common unit used to express mass anomalies is geoid height.
The relation between Stokes coefficients and spherical harmonic coeffifients in
terms of geoid height is straightforward,

�̄�፥፦ =
1
𝑅 �̄�

᎑፠
፥፦ . (2.5)
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It is often useful to convert SH coefficient in terms of geoid heights into ewh (and
vice-versa). Taking into account Eqs. 2.3, 2.4 and 2.5, the relation between the
two is,

�̄�᎑፠፥፦ =
3(1 + 𝑘ᖣ፥)𝜌፰
(2𝑙 + 1)𝑅𝜌ፚ፯

�̄�᎑፡፰፥፦ . (2.6)

2.1.3. Triangular plots
A common way to analyse a gravity field model is to look at the individual spherical
harmonic coefficients. This is normally done by making a 2-D plot where the values
of the coefficients are plotted row-wise starting from the lowest degree up to the
maximum degree. Because the number of orders increases linearly with the degree
(𝑚 is defined from −𝑙 to 𝑙), plots of this type are called thereafter triangular plots.
An example is shown in Figure 2.1.

Due to the typical characteristics of the gravity signals, the magnitude of the
spherical harmonic coefficients rapidly decreases with increasing degree, where as
typical errors rapidly increase at high degrees. Therefore it is also common to plot
the logarithm of the absolute value of each coefficient.

This type of plot, found throughout this thesis, is useful to reveal internal struc-
tures in the considered model and to analyse the distribution of ”energy” through
the spatial scales. This type of plot is similar to the plot of power spectral density
in time-series analysis.
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Figure 2.1: An example of a triangu-
lar plot. Depicted is the DMT2 monthly
gravity field solution for March 2009,
month in which ESA’s GOCE mission
was launched. This monthly solution
is the residual field w.r.t. the DGM-
1S long-term average field (Farahani et
al., 2013).

2.1.4. Degree variance
The Degree Variance (DV) plot is commonly used to compare different gravity field
models. The DV 𝜎ኼ(𝑙), for a given degree 𝑙, is computed as

𝜎ኼ(𝑙) =
፥

∑
፦ዅ፥

�̄�ኼ፥፦ . (2.7)
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Also useful is the cumulative DV (CDV), �̃�ኼ(𝑙), defined as

�̃�ኼ(𝑙) ≡
፥

∑
፥ᖣኺ

𝜎ኼ(𝑙ᖣ) =
፥

∑
፥ᖣኺ

፥ᖣ

∑
፦ዅ፥ᖣ

�̄�ኼ፥ᖣ፦ . (2.8)

The DV plot is useful because it shows how the energy is distributed over differ-
ent wavelengths. The wavelength 𝜆 associated with a certain SH degree is obtained
by dividing equatorial circumference of the Earth by the corresponding SH degree:
𝜆 = ኼፑፄ

፥ ≈ 40000/𝑙 km. The CDV shows the cumulative signal energy up to the
considered degree and for 𝑙 = 𝑙max the CDV represents the total variance of the
considered signal.

Figure 2.2: An example plot depicting
the DV and CDV of the DMT2 monthly
gravity field solution for March 2009,
month in which ESA’s GOCE mission
was launched. This monthly solution
is the residual field w.r.t. the DGM-
1S long-term average field (Farahani et
al., 2013). Degree
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The DV and CDV plots are very useful because they summarize the features of
a two-dimensional set of coefficients into a single dimension. This makes the com-
parison of multiple spherical harmonic models easier. This characteristic is also the
major disadvantage of this analysis tool. Because the DV plot averages much of
the information, it must be used with care. Signals which are not evenly distributed
over the orders might be misrepresented in DV plots. For example, the solutions
computed from the GRACE mission typically contain striations caused by the ampli-
fication of noise in near-sectorial coefficients. Inspecting the DV plot of a GRACE
solution will show very large errors for most degrees, because, at each degree, the
near-sectorial orders will contribute the most to the DV.

2.1.5. Spatial RMS
Another useful metric to compare different gravity field models is the distribution of
energy in the spatial domain. Parseval’s identity states the equivalence of the total
variance in the spatial and spectral domains, such that for an arbitrary continuous



2.1. Background on gravity field modelling

2

15

function defined on the unit sphere,

𝜎ኼ ≡ 1
4𝜋 ∥ 𝑓 ∥

ኼ=
፥

∑
፥ᖣኺ

፥ᖣ

∑
፦ዅ፥ᖣ

�̄�፟ኼ፥,፦ .

Just as it is useful to use the DV to inspect the distribution of energy over the
different wavelengths, it is also useful to look into the energy distribution over
different geographical regions. Starting from a spherical harmonic model, mass
anomalies values 𝛿𝑠(𝜆፣ , 𝜃።) can be computed over an equiangular grid of appropriate
dimensions. Then, the spatial RMS of the considered mass anomalies is simply the
RMS of all the grid values weighted by the area corresponding to each grid cell,

𝛿𝑠RMS = √
∑። ∑፣ 𝛿፬(𝜆፣ , 𝜃።)ኼ𝐴።,፣

𝐴sphere
. (2.9)

The area of each equiangular grid cell only depends on the latitude and for an
equiangular grid, the expression can be simplified as

𝛿𝑠RMS = √
∑። cos𝜃። ∑፣ 𝛿𝑠(𝜆፣ , 𝜃።)ኼ

𝑁፣ ∑። cos𝜃።
, (2.10)

where
𝑁፣ – is the number of meridians in the considered grid.

When analyzing the propagation of errors in ll-SST mission, it is likely that errors
propagate differently in different regions of the globe and at different spatial scales.
In order to quantify such differences it becomes also important to analyze the signal
RMS in specific geographic regions. The regional RMS can be similarly computed
using the above equations as long as the considered grid refers to the geographic
region of interest. Various geographic regions are interesting to the scientific com-
munity because of specific phenomena occurring at these locations. For example,
gravity signal over Greenland and Antarctica is dominated by ice mass loss, while
hydrology is the main signal of interest over the Amazon river basin. This motivates
the need to understand how errors propagate into these specific regions.

2.1.6. Power Spectral Density
In this thesis, an important analysis tool is the Power Spectral Density (PSD). I use
this tool to analyse the distribution of energy over the frequencies that compose
the signal (or noise) in a time-series of satellite gravimetry observations.

When analysing the propagation of errors, this tool allows one to identify the
frequency bands where errors are the largest, and by comparison with the desired
signal, to identify the spectral bands with low (or high) signal-to-noise ratios.

In the literature, several approaches to estimate the power spectral density can
be found, from the classical periodogram to the modified periodograms which pro-
vide improved variances at the cost of reduced frequency resolution. In this thesis
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we use the Lomb-Scargle periodogram (Scargle, 1982). It is formally equivalent
to the least squares fitting of sine waves to the input data. Its advantages are
that it does not require evenly spaced data and that the periodogram can be di-
rectly computed from an analytical expression. For an arbitrarily sampled signal
𝑋። ≡ 𝑋(𝑡።), 𝑖 = 1, 2, … , 𝑁, the periodogram 𝑃ፗ(𝜔) can be computed as,

𝑃ፗ(𝜔) =
1
2 {

[∑፣ cos𝜔(𝑡፣ − 𝜏)]
ኼ

∑፣ cosኼ𝜔(𝑡፣ − 𝜏)
+
[∑። sin𝜔(𝑡፣ − 𝜏)]

ኼ

∑፣ sin
ኼ𝜔(𝑡፣ − 𝜏)

} , (2.11)

where 𝜏 is defined as
tan 2𝜔𝜏 =

∑፣ sin 2𝜔𝑡፣
∑፣ cos 2𝜔𝑡፣

. (2.12)

2.2. Satellite Orbits
In this section an introduction to satellite orbits is given. I will provide background
information regarding the orbital elements, the design of repeat orbits and the
existing types of stable satellite formations.

2.2.1. Orbital elements
As mentioned in Section 2.1.1, a satellite in the Earth’s gravity field experiences
an acceleration a, directed approximately towards the centre of mass of the Earth.
The satellite orbit can be computed by integrating the Newton’s laws of motion.
Six variables are required to describe the three-dimensional position and velocity of
the satellite at each epoch. This means that, in order to describe a satellite’s orbit,
one needs a list of six-element items composed of satellite position and velocity
as functions time. Because this is inconvenient, an alternative representation of
satellite orbits is commonly used, known as orbital elements or keplerian elements
referring to the astronomer Johannes Kepler.

Kepler discovered that the orbit of any celestial body could be described by an
ellipse where the attracting mass is located at one of its focci. This means that,
instead of describing the orbit as a collection of positions and velocities, one may
use only six orbital elements. They are:

𝑎 – the semi-major axis of the orbit
𝑒 – the eccentricity of the orbit
𝑖 – the inclination of the orbit
Ω – the Right Ascension of the Ascending Node (RAAN)
𝜔 – the argument of the perigee
𝜈 – the true anomaly.

The RAAN, the inclination and the argument of periapsis define the orientation of
the orbital plane in space. The RAAN is the longitude in the celestial frame at which
the satellite crosses the equatorial plane in the ascending direction. The inclination
is the angle between the equatorial plane and the orbital plane. The argument
of the periapsis (or perigee, since we are concerned about the Earth) is the angle
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along the ellipse between the RAAN and the point at which the ellipse is the closest
to the Earth. The semi-major axis and the eccentricity define the shape of the
ellipse. Finally, the true anomaly defines the angular position of the satellite along
the ellipse.

Of course, it is important to keep in mind that an orbit stays Keplerian only if the
attracting body behaves as a point mass and other attracting bodies are absent.

2.2.2. Design of repeat orbits
In the design of satellite missions, the concept of repeat orbits is frequently used.
A repeat orbit is an orbit which follows the same ground-tracks after a specified
amount of time. The condition that defines any repeat orbit 𝛽/𝛼 is that the satellite
must complete an integer number 𝛽 of revolutions in the same time as the Earth
completes another integer number 𝛼 of revolutions. The time it takes for the Earth
to complete one full revolution is a nodal day or sidereal day (23.93 h).

For the design of any realistic repeat orbit, one must further take into account
two secular drift parameters that are caused by the oblateness of the Earth: the
precession of the orbital plane Ω̇ and the precession of the perigee �̇�. The condition
that defines a 𝛽/𝛼 repeat orbit can be written as (Wiese, 2011),

𝛽(𝑛 + �̇�) = 𝛼(Ωፄ − Ω̇), 𝛼, 𝛽 ∈ ℕ (2.13)

where

𝑛 = √ 𝜇𝑎ኽ +
3
4√

𝜇
𝑎
𝐽ኼ𝑅ኼፄ(3 cos 𝑖ኼ − 1)

(1 − 𝑒ኼ)
ኽ
ኼ

(2.14)

Ω̇ = −32√
𝜇
𝑎
𝐽ኼ𝑅ኼፄ cos 𝑖
(1 − 𝑒ኼ)ኼ

(2.15)

�̇� = 3
4√

𝜇
𝑎
𝐽ኼ𝑅ኼፄ(5 cos 𝑖ኼ − 1)

(1 − 𝑒ኼ)ኼ
. (2.16)

All the unique repeat orbits are defined by 𝛼 and 𝛽 pairs which are co-prime, i.e.
having no common divisor greater than 1. The mean motion 𝑛 is a smooth function
of the semi-major axis. For the range of useful satellite altitudes, say between 200
and 500 km, the number of satellite revolutions per nodal day is roughly equal to
16. This fact can be used to restrict the search space for (𝛼, 𝛽) pairs of co-prime
numbers to the range 15 < ᎏ

ᎎ < 17.
Equation (2.13) is a 7th degree polynomial in √𝑎,

𝐶𝑎

ኼ + 𝐶ኾ𝑎

ኾ
ኼ + 𝐶ኺ = 0 , (2.17)
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with,

𝐶 =
𝛼
𝛽Ωፄ (2.18)

𝐶ኾ = −√𝜇 (2.19)

𝐶ኺ =
3
4
√𝜇𝐽ኼ𝑅ኼፄ
(1 − 𝑒ኼ)ኼ

[2𝛼𝛽 cos 𝑖 + 1 − 5 cosኼ 𝑖 − (3 cosኼ 𝑖 − 1) ⋅ √1 − 𝑒ኼ] . (2.20)

Only circular orbits will be considered below, so that 𝑒 = 0. For a selection of
(𝛼, 𝛽) co-prime integers and the desired inclination 𝑖, there is only one real positive
solution in 𝑎 larger than the radius of the Earth. This solution is then the radius 𝑎
of the desired repeat orbit.

Once the semi-major axis 𝑎 is known, all the rotation rates that describe the
motion of the satellite in inertial space can be computed. This allows for the an-
alytical computation of the osculating orbital elements at any point in time which
can then be converted into position and velocity (Curtis, 2008).

2.2.3. Elementary satellite formations
A brief introduction to the topic of stable satellite formations can be found in M. A.
Sharifi et al. (2007) and a more complete reference is Schaub et al. (2009). In this
Section, I highlight the main results, which allows me to derive the types of stable
satellite formations that I will refer to throughout this thesis.

A satellite formation consists of at least two satellites, a chief and one or more
deputy satellite(s). The motion of a deputy satellite relative to the chief is described
in the local orbital reference frame, or Hill frame defined with the origin at center of
mass of the chief satellite, the 𝑥 and 𝑧 axis in the along-track and radial directions
and the 𝑦-axis to complete a right-handed coordinate system, thus defining the
cross-track direction. General expressions for the relative motion in this coordinate
frame are known (M. A. Sharifi et al., 2007). By restricting the general case to
only circular orbits, one obtains the so-called linearised Hill equations (Hill, 1878),
describing the motion of the deputy satellite,

�̈� + 2𝑛�̇� = 0
�̈� + 𝑛ኼ𝑦 = 0 (2.21)

�̈� − 2𝑛�̇� − 3𝑛ኼ𝑧 = 0 ,

where 𝑛 is the mean motion (cf. Eq. (2.14)). These equations are valid as long as
the distance between the two satellites is relatively small in comparison with the
semi-major axis of the orbit.

We are interested in finding out the types of satellite formations which are sta-
ble. Thus, assuming no disturbing forces act on the satellites, the linear system
of differential equations 2.21 can be solved analytically. This yields (Schaub et al.,
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2009):

𝑥(𝑡) = −2𝐴ኺ sin(𝑛𝑡 + 𝛼) −
3
2𝑛𝑡Δ𝑧 + Δ𝑥

𝑦(𝑡) = 𝐵ኺ cos(𝑛𝑡 + 𝛽) (2.22)
𝑧(𝑡) = 𝐴ኺ cos(𝑛𝑡 + 𝛼) + Δ𝑧 ,

where Δ𝑧 and Δ𝑥 represent an offset between the satellites in the radial and along-
track directions; 𝐴ኺ and 𝐵ኺ are the amplitudes of cyclic motion at the fundamental
frequency 𝑛; 𝛼 and 𝛽 represent phase shifts in this cyclic motion.

From Equation 2.22, one sees that, if there is a radial offset between the two
satellites, their separation in the along track direction grows linearly with time.
Therefore, any stable satellite solution requires that Δ𝑧 = 0, i.e., there are no stable
formations with satellites at different mean altitudes. Another interesting conclusion
is that the motion in the cross-track direction is decoupled from the motion in the
orbital plane.

The set of parameters [Δ𝑥, 𝐴ኺ, 𝐵ኺ, 𝛼, 𝛽] defines the relative motion of formation
satellites. On the basis of these equations, three elementary formations may be
defined. The idea behind all the elementary formations is that each accounts for
relative motion along one of the 𝑥, 𝑦 and 𝑧 directions.

An along-track formation is the one where the two satellites are separated by
a constant offset in the along-track direction. A pendulum formation is the one
where the deputy satellite oscillates back and forth in the cross-track direction. A
cartwheel formation is the one where the deputy satellite has a cyclic motion in the
orbital plane. Due to the coupling between the along-track and radial directions,
the amplitude of the motion in the along-track direction is twice as large as the am-
plitude in the radial direction. Table 2.1 presents the elements of each elementary
formation.

Other combinations of the formation parameters allow for more complex relative
motion. For example, in M. A. Sharifi et al. (2007), the authors consider the LISA
formation. After selecting 𝐵ኺ = √3𝐴ኺ and matching the 𝛼 and 𝛽 phases, the deputy
satellite moves in a circular path around the chief satellite with motion along all
three axes.

Formation Δ𝑥 𝐴ኺ 𝐵ኺ 𝛼 𝛽
Along-track 𝑥off 0 0 0 0
Pendulum 0 0 B 0 𝛽
Cartwheel 0 A 0 𝛼 0

Table 2.1: Key parameters for each of the considered elementary satellite formations.

2.3. CHAMP, GOCE, GRACE and GFO
The measurement of the Earth’s gravity field is a long-standing scientific goal with
applications in diverse scientific and societal domains. In recent year, advances in
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satellite technology have lead the quest for the precise measurement of gravity to
space. Several gravity-dedicated satellite missions have been launched, and active
research, including the present work, is carried out to design future ones.

The Challenging Minisatellite Payload (CHAMP) mission (Reigber et al., 1996)
was launched in 2000. The mission was successfully completed in September 2010
and it was the first example of the high-low satellite-to-satellite tracking (hl-SST)
concept in the context of satellite gravimetry. The hl-SST concept relies on the
continuous tracking of a satellite placed in a low-altitude orbit by a constellation
of GNSS satellites in high-altitude orbits, hence the term high-low. To allow for
continuous tracking, CHAMP was equipped with a GNSS receiver. The accelera-
tion of the satellite was completely determined by the net force acting on it, which
ultimately allowed for the recovery of the Earth’s gravity field. However, the mo-
tion as tracked by the GNSS receiver was also affected by non-gravitational forces
acting on the satellite, e.g., atmospheric drag and solar radiation pressure. Before
the gravity field could be recovered, the non-gravitational accelerations had to be
removed from the observations. In order to accomplish this, the satellite was also
equipped with an accelerometer, which allowed for the precise measurement of the
non-gravitational accelerations.

The Gravity and Ocean Circulation Explorer (GOCE) mission (Drinkwater et al.,
2006) was launched in 2009. It was equipped with the first gravity gradiometer
instrument, which allowed for the precise measurement of the gravity gradient ten-
sor, a measuremente principle known as satellite gravity gradiometry (SGG). The
gradiometer was, in essence, an array of six accelerometers arranged in three sets
of two accelerometers. The two accelerometers in each set were located at an off-
set of roughly 50 cm from each other on opposite sides of the satellite’s centre of
mass. The sets were aligned in three orthogonal directions, which allowed for the
measurement of 3-D differential accelerations along different axes, i.e., the gravi-
tational tensor. These characteristics made the GOCE mission extremely sensitive
to the fine details of the Earth’s gravity field.

Unlike CHAMP, SGG data of the GOCE mission did not need to rely on the differ-
ences between GNSS and accelerometer measurements to discard non-gravitational
accelerations. The gradiometer instrument alone is capable of distinguishing the
two kinds of accelerations. For each pair of accelerometers, the common-mode sig-
nal, i.e., the average of both accelerometer measurements, was the non-gravitational
acceleration while the differential-mode signal, i.e., the difference between the two
accelerometer measurements contained the gravitational signal of interest.

The mission was aimed at improving the Earth’s gravity field by reaching a very
high spatial resolution, which required the mission to be flown as low as possible.
To that end, the mission was executed at the very low altitude of about 250 km. To
maintain this low altitude, the satellite was equipped with a new drag-free propul-
sion system, which continuously compensated for the along-track component of the
significant drag force acting on the satellite. Due to that system, the mission lasted
for 4 years and ended in October 2013.

The Gravity Recovery and Climate Experiment (GRACE) mission (B. Tapley, 1997),
which was launched in 2002, consisted of two twin satellites and was the first
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demonstration of the low-low satellite-to-satellite tracking (ll-SST) concept. The
two satellites, travelling at a nominal distance of about 200 km from each other,
were equipped with a microwave ranging system (K-band ranging instrument, KBR),
which continuously tracked their relative position variations. The major advantage
relative to CHAMP was the accuracy to which the (relative) motion of satellites could
be tracked; while the accuracy of GNSS measurements is at the mm level, the KBR
instrument delivered range measurements at the μm level. Similar to CHAMP, each
of the GRACE satellites was equipped with an accelerometer in order to account for
non-gravitational accelerations in the measurements.

The GRACE mission provided significant improvements to models of the Earth’s
gravity field. For example, in Farahani et al. (2013), the DGM-1S gravity field model
was computed on the basis of a combination of GRACE and GOCE data. Other
examples of gravity field models which used GRACE data are the EIGEN (Förste,
Christoph et al., 2014), GGM (Ries, J. et al., 2016) and GOCO (Pail et al., 2010)
model series. In this combination, GRACE data is essential for the estimation of
long to medium wavelength features of the gravity field, to which the GOCE mission
is less sensitive. Conversely, the GOCE mission greatly outperforms GRACE in the
high-frequency part of the spectrum.

A major scientific objective of the GRACE mission was to recover the time-
variable gravity field of the Earth. Indeed, GRACE has demonstrated the ability to
directly measure those variations and associated mass redistribution in the Earth’s
system from space. In particular, the redistribution of water could be observed,
which is critical for monitoring key climate indicators such as ice-sheet mass bal-
ance, terrestrial water-storage change, sea-level rise and ocean circulation. Ex-
amples of the application of GRACE data in these domains are abundant over the
past few years. For instance, GRACE data has been used to quantify extended
groundwater losses in various regions, e.g. India, Northern Iraq or the Middle East
(Chinnasamy et al., 2015; Joodaki et al., 2014; Mulder et al., 2015). Other examples
include the estimation of ice mass losses in Antarctica (B. C. Gunter et al., 2014);
estimates of groundwater storage variations at the river basin scale (Tangdamrong-
sub et al., 2015); estimation of steric sea level variations (Lombard et al., 2007);
estimates of regional and global sea level rise trends (Purkey et al., 2014); and
variations in large-scale ocean circulation (B. D. Tapley, 2003). Furthemore, new
approaches were proposed to estimate geocenter motion (Swenson et al., 2008)
and the dynamic oblateness of the Earth (Sun et al., 2015) using the GRACE data
as input. Applications of GRACE data extend also to the domain of the solid Earth.
For example, GRACE data was used to improve glacial isostatic adjustment mod-
els (B. C. Gunter et al., 2014) and to estimate mass displacement triggered by
megathrust earthquakes (Broerse et al., 2014).

The GRACE mission ended on October 2017, after being operational for more
than 15 years. Due to the vital importance of the data provided by GRACE, the
scientific community mobilized to ensure the continuity of those observations with
the GRACE Follow-On mission.

The GRACE Follow-On (GFO) mission (Flechtner et al., 2014b) was launched on
May 2018. The primary objective of the GFO mission is to continue the time series
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of high-resolution monthly gravity field solutions for an additional period of at least
5 years. The secondary objective of the GFO mission is to validate the effectiveness
of a laser ranging interferometer (LRI) instrument, which was developed to improve
the accuracy of ll-SST measurements. The LRI instrument is expected to improve
the accuracy by a factor between 5 and 50, in comparison with the KBR instrument
of GRACE. Another significant difference with respect to GRACE is a new star-camera
assembly consisting of three star-cameras, instead of the two used in the GRACE
mission. In all other major aspects, the GFOmission is similar to the GRACE mission.

While the expected improvements in terms of ranging accuracy delivered are
definitely welcome, there are indications that these will not map into equivalent
improvements in terms of monthly gravity field solutions.

Loomis et al. (2011) made a comparison study, where a GRACE-type pair of
satellites was compared with a similar formation equipped with a modern drag-free
system and laser ranging instruments, the latter similar to those carried by the
GFO mission. The authors concluded that technology improvements alone do not
significantly improve the accuracy of the recovered gravity field and that future work
should focus on improving the background geophysical models, mission design and
data processing criteria in order to minimize temporal aliasing errors.

More recently, Flechtner et al. (2016) predicted that improvements brought by
the GFO mission will be small when compared to GRACE, in terms of filtered monthly
gravity field solutions. The authors argued that the limiting factor in the GFOmission
would be accelerometer errors, as well as errors in ocean tide models and in non-
tidal atmosphere and oceanic mass transport models.

First results of the GFO mission are imminent at the time of writing. Preliminary
reports indicate that the accuracy of the LRI instrument has greatly exceeded the
specification. At the same time, there are indications that one of the accelerometers
onboard on of the GRACE satellites is not meeting the requirements. Soon, new
publications will shed some light on the actual performance of the GFO mission.

While awaiting first results from the GFO mission, one may look back and realize
the many achievements of the GRACE mission. The scientific ramifications of the
application of GRACE data are an impressive statement on both, the usefulness and
the need for better gravity field modelling. In this sense, GRACE has become a vital
component of a global observation system, which monitors the Earth. Despite its
many successes, the GRACE mission has also revealed its limitations.

2.3.1. Limitations of GRACE
The performance of the GRACE mission is limited by its spatial resolution and its
temporal resolution. Formally, the spatial resolution can be interpreted as the wave-
length of the maximum spherical harmonic degree of a gravity field solution. This
straightforward definition is however not meaningful; a more realistic definition
must take into account the existence of errors in the observations. In the GRACE
mission, errors in the observations become larger than the gravitational signal at
a certain spatial frequency (see Section 2.4). As a consequence, the spherical
harmonic coefficients above this frequency become noisy. Therefore, the spatial
resolution is in fact defined by the smallest wavelength of the spherical harmonic
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coefficients estimated under favourable noise conditions. Until noise in the com-
puted solutions is quantified, the actual spatial resolution of the mission remains
unknown.

In the GRACE mission, the limitations in terms of spatial resolution are further
aggravated by two phenomena: inaccurately known reference orbits and anisotropic
sensitivity. Recovery of gravity field solution from GRACE data requires the removal
of references quantities (ranges, range-rates or range-accelerations). The refer-
ence quantities are obtained from reference orbits, which are computed on the
basis of a background force model. Deficiencies in the force model will cause er-
rors in the reference quantities, thus increasing the overall error level and further
limiting the spatial resolution.

Anisotropic sensitivity is related to the direction along which the observations in
the GRACE mission are made. Inter-satellite ranging is performed in the along-track
direction, which due to the near-polar orbits of GRACE satellites, is parallel most
of the time to the North-South direction. As a consequence, GRACE’s sensitivity
in the East-West direction is greatly reduced. This lack of sensitivity means that a
poor signal-to-noise ratio is achieved for near-sectorial coefficients in the recovered
solutions. This is the mechanism responsible for the appearance of vertical stripes,
or striations, typically seen in unfiltered GRACE solutions.

The performance of GRACE is also limited by its temporal resolution. In order
to calculate a gravity field solution, observation data has to be accumulated for a
certain period of time, until the inversion into a gravity field solution up to sufficiently
high degree is possible. For GRACE, the accumulation period is typically 1 month.
Mass transport signals occurring at shorter-time scales than one month, will map, or
alias, as temporal aliasing errors into the solutions. In paricular, there are rapid mass
transport signals caused by atmospheric and oceanic processes with time-scales
from few hours to weeks. In the case of GRACE, if left uncorrected for, these would
cause large temporal aliasing errors (Flechtner et al., 2014a). A set of background
models that represent rapid mass transport signals is used to remove their influence
from the satellite measurements. However, those models are not perfect; they fail
to represent the actual processes accurately, which causes temporal aliasing errors
in the computed monthly gravity field solutions. Background models and their errors
are further discussed in Section 2.5.2.

The GFO mission, while expected to have significantly lower instrumentation
errors, is similarly affected by the same limitations as those of the GRACE mission.
Future ll-SST missions must effectively tackle these limitations in order to signifi-
cantly surpass the performance of the GRACE and GFO missions. One final concern,
when predicting the performance of future satellite missions, is the fact that, after
the end of the GRACE mission, a complete understanding of the errors in the GRACE
data is still missing.

2.4. Incomplete error budget
Before the launch of the GRACE mission, Kim (2000) presented an in-depth study
on the propagation of instrument errors into gravity field solutions. This result
became known as the GRACE baseline. After the GRACE launch, it soon became
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apparent that the observed noise was several times larger than expected. First
investigations into the matter (Frommknecht et al., 2006; Gerlach et al., 2004)
showed that the level of noise in GRACE Level-1 A (L1A) data was, for the most part,
close to the specification, with the exception of the accelerometers. After these first
investigations, research efforts then went in a different direction; Ray et al. (2006)
and Thompson (2004) investigated the impact of temporal aliasing errors (up to
then not considered relevant), caused by innacuracies in background force models,
and showed that these could potentially be larger than instrument errors. Still,
temporal aliasing errors could not explain the observed noise in real GRACE data.
After this point, specific error sources were further investigated: attitude control
thruster pulses (Meyer et al., 2012), magnetic torquer induced signals (Peterseim
et al., 2012) and errors from star camera instruments (Bandikova et al., 2012;
Horwath et al., 2011; Inácio et al., 2015).

Ditmar et al. (2012) is the latest publications which tackle the full budget of
noise in the GRACE mission. The authors examined GRACE data noise in different
frequency bands and compared it with synthetic realizations of errors from different
sources. That publication was also the first to consider errors in the computed
reference orbits. The authors concluded that errors in frequencies above 9mHz are
well explained by KBR ranging errors. They attributed errors in the frequency range
below 1mHz to the limited accuracy of the reference orbits. The origin of noise
observed in the frequency range between 1 and 9mHz remained to be explained.

With an outlook into the future, it becomes clear that understanding the errors in
GRACE data is an essential requirement to predict the performance of future satellite
gravimetry missions. In Section 6.1, I will complete the GRACE errors budget and
explain the sources of the errors that remained to be explained. For now, in the
next sections, an overview is provided of the publications which addressed specific
error components in data from the GRACE mission.

2.5. Signal and errors in ll-SST data
The performance of a satellite gravimetry mission depends on the signal-to-noise
ratio as a function of frequency. There are several error sources that play a role
in ll-SST satellite missions. The error sources can be divided in two categories:
instrumentation and temporal aliasing errors. Instrumentation errors refer to the
noise generated by the instruments on-board typical ll-SST satellites. Temporal
aliasing errors, which were already mentioned in Sec. 2.3.1, refer to errors in the
background models that are used to remove mass transport signals at short time
scales from the observations. Ocean tides as well as non-tidal mass transport in
the ocean and atmosphere are the two largest contributors to those errors.

2.5.1. Signal
To simulate a satellite mission it is necessary to have a representation of the mass
transport signal to be recovered. In this thesis, I use as signal the ESA’s Earth
System Model for Gravity Mission Simulation Studies (ESM) (Dobslaw et al., 2014a).
This model is the subject of several related publications (Bergmann-Wolf et al.,
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2014, 2015; Dobslaw et al., 2014b, 2015).
The ESM model is an attempt of designing a realistic model of all the mass trans-

port signal components of the Earth system. It addresses the needs of simulation
studies of future satellite missions (such as this thesis) in order to suitably bench-
mark different mission concepts. The ESM model aims at providing a representation
of real mass transport signal over all temporal scales; sub-daily to weekly mass vari-
ability in the atmosphere and oceans is required to properly take into account the
impact of temporal aliasing errors while signal at monthly and yearly timespans,
particularly at small spatial scales, is essential to assess the performance of future
ll-SST missions in terms of signal recovery.

The ESM is a collection of spherical harmonic solutions for a period of 12 years
with a timestep of 6 h. The ESM signal is composed of 5 components: Atmosphere,
Ocean (non-tidal), Hydrology, Ice and Solid Earth.

As I mention in Section 2.3.1, the major sources of rapid mass transport signal
are the Atmosphere and Oceans. The signal of that origin are typically removed from
the satellite measurements with the help of models, in order to mitigate temporal
aliasing errors. Therefore, I consider only H, I, and S (HIS) components as the
signal to be recovered.

Mean mass transport signal
Even after removing the AO components, the HIS mass transport signal is by no
means static. As a consequence, the variations in the HIS signal will similarly cause
temporal aliasing errors in the solutions. In order to isolate the signal of interest
from errors, I consider the mean mass transport signal (HIS) over the data accu-
mulation period of the mission to be the signal one wishes to recover. DAP is the
period needed to collect the observations which are used to compute a gravity field
solution. As it is already mentioned above, the typical DAP of the GRACE mission is 1
month. Deviations of the recovered solutions from this mean signal are interpreted
as noise.

2.5.2. Temporal aliasing errors
Temporal aliasing errors are caused by phenomena that occur on shorter time-scales
than the DAP. There are three major sources of temporal aliasing errors: dynamic
mass transport signal (see below), ocean tides and non-tidal mass transport sig-
nal in the atmosphere and oceans. In the following sections, a description of the
considered temporal aliasing error sources is given.

Dynamic mass transport signal
While the mean HIS is the signal to be recovered, the instantaneous deviation of
the HIS signal from this mean is one of the error sources to be considered. The
dynamic mass transport signal is simply defined as the total HIS minus the mean
HIS over the DAP of the mission.

Errors in ocean tide models
The tides on Earth are primarily caused by the gravitation of the Moon and the
Sun. Other planets’ gravitation is negligible. The Sun and the Moon create the
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Variable Description Period
𝜏 The lunar day 𝑇 = 1.04 days
𝑠 The sidereal month 𝑇 = 27.3 days
ℎ The tropical year 𝑇 = 365.24 days
𝑝 The moon’s perigee 𝑇 = 8.85 years
𝑁ᖣ The regression of the moon’s nodes 𝑇 = 18.6 years
𝑝ᖣ The perihelion 𝑇 = 20942 years

Table 2.2: Doodson’s astronomical variables (given as phases) and the corresponding periods (Huess,
2001)

tide generating potential. Tidal forces periodically deform the shape of our planet.
Tidal deformation can be split into solid earth tides and ocean tides. Both types
must be taken into account in the context of gravimetry data. While solid earth
tides are quite accurately modelled, ocean tides are much more complex to do so,
especially in shallow water areas and polar regions. Nonetheless, tidal deformation
of the oceans accounts for extremely large surface mass variations which must be
accurately removed from the gravimetry data.

The tide is the elevation of the sea surface relative to the mean sea surface
in response to the tide generating potential. Another important parameter is the
equilibrium tide, which is defined as the theoretical elevation of the sea if the Earth
were fully covered by water, and the water responded instantaneously to the tidal
force. The real tide and the equilibrium tide differ because of the non-instantaneous
response of the ocean to the tide generating potential, due to friction at the sea
bottom, the presence of continents, etc. The equilibrium tide serves as a reference
for the calculation of the real tide.

The tide generating potential can be split in different harmonics, or tidal con-
stituents. The Doodson argument, 𝜃፟, is commonly used as a representation of a
specific tidal constituent 𝑓. It is a linear combination of the six astronomical vari-
ables that describe the motion of the moon around the Earth and the motion of
the Earth around the Sun (Doodson, 1921). Each variable is a phase relative to
the Greenwich meridian. The six variables are listed in Table 2.2 along with their
corresponding periods. These six variables constitute the fundamental frequencies
of the Earth-Moon-Sun system and every frequency of the tide generating potential
can be expressed as a linear combination of these fundamental ones, such that,

𝜃፟(𝑡) = 𝑖፟𝜏 + 𝑗 𝑠 + 𝑘፟ℎ + 𝑙፟𝑝 +𝑚፟𝑁ᖣ + 𝑛፟𝑝ᖣ (2.23)

where 𝑖፟, 𝑗 , 𝑘፟, 𝑙፟, 𝑚፟, 𝑛፟ are the integers known as the Doodson numbers that
define a certain tidal constituent 𝑓.

The tidal height 𝜉 at any point of the Earth’s surface (𝜑,𝜆) at time 𝑡 can be
computed as (IERS, 2010),

𝜉(𝜑, 𝜆, 𝑡) =∑
፟
𝑍፟(𝜑, 𝜆) cos(𝜃፟(𝑡) − 𝜓፟(𝜑, 𝜆)) (2.24)
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Where
𝑓 – is a certain tidal constituent
𝑍፟ – is the amplitude of constituent f
𝜃፟ – is the Doodson argument
𝜓፟ – is the phase at Greenwhich Mean Sidereal Time 𝑡 = 0

Ocean tide models have one of three origins: empirical, hydrodynamic or as-
similation. Empirical models are based on sea level observations like tide gauges
and sea level altimetry records. This approach is purely data-driven. Hydrodynamic
models are computed by applying the tide generating potential to a model of the
oceans containing the ocean boundaries, sea bottom topography, friction with sea
bottom and tidal currents. This is a physical approach where no measurements of
the ocean are used. Assimilation models are a mix of both methods, where the
dynamic models of the ocean assimilate sea level observations to combine both
theoretical and observed information.

Ocean tide models are used in GRACE data processing to remove the influence of
the ocean tides from the observations. The tidal signal is increasingly well modelled,
partly due to the ever increasing amount of radar altimetry data.

Currently, the most commonly used ocean tide models in the field of satellite
gravimetry are the EOT11a (Bosch et al., 2009) models and, more recently, FES2014
Carrère et al. (2016). At the beggining of my research the FES2014 model was not
available, therefore, in this thesis I considered the older version FES2004 (Lyard
et al., 2006).

In order to estimate tide model errors, I assume that these are adequately
represented by the differences between these two models: FES2004 (Lyard et al.,
2006) and EOT11a (Bosch et al., 2009). FES2004 is an assimilation model that
combines several years of altimetry data with a hydrodynamic model. EOT11a is a
successor of FES2004 in the sense that it is released as an increment to FES2004;
it is an empirical model estimated from the residuals of FES2004. EOT11a model
is reported to provide improvements in specific areas of the globe, e.g., in shallow
water areas where tidal dynamics are non-linear (Bosch et al., 2009).

The assumption that errors in ocean tide models are defined as the difference
between two alternative models suffers from an obvious weak point. Since both
models are roughly based on the same datasets, their differences could underes-
timate the magnitude of the errors, especially in certain areas where observations
are scarce. An evidence of this has been observed by Quinn et al. (2011) when an-
alyzing variances of ocean bottom pressure records. Despite this fact, the current
definition of errors is seen as adequate for the purpose of comparing the perfor-
mance of future satellite mission concepts.

The two considered ocean tide models consist of a set of tidal constituents.
In EOT11a, each constituent is defined by a quadrature and in-phase component.
In FES2004, each constituent is defined by amplitude and phase components. In
Table 2.3, a summary of the constituents in each tide model is given. Eqn. (2.24)
can be expanded into in-phase and quadrature components by expanding the cosine
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Table 2.3: List of tidal constituents in each of the considered tidal models

Tide Doodson FES2004 EOT11a
Long-period Mm 065.455 3 3

Mf 075.555 3 3
Mtm 086.455 3 7
Msqm 093.555 3 7

Diurnal Q1 135.655 3 3
O1 145.555 3 3
P1 163.655 3 3
S1 164.555 7 3
K1 165.555 3 3

Semi-diurnal 2N2 235.555 3 3
N2 245.755 3 3
M2 255.655 3 3
S2 273.555 3 3
K2 275.555 3 3

Quarter-diurnal M4 455.555 3 3

term:

𝜉(𝜑, 𝜆, 𝑡) =∑
፟
𝑍፟(𝜑, 𝜆) cos[𝜓፟(𝜑, 𝜆)] cos[𝜃፟(𝑡)]+

𝑍፟(𝜑, 𝜆) sin[𝜓፟(𝜑, 𝜆)] sin[𝜃፟(𝑡)] , (2.25)

where 𝑍፟ cos(𝜓፟) and 𝑍፟ sin(𝜓፟) are the in-phase and quadrature components,
which are typically provided in the form of gridded data.

Models of non-tidal rapid mass transport in the atmosphere and ocean and
their errors
Aside from mass redistribution caused by tides, other phenomena cause short-term
mass variability. Evolving synoptic weather systems result in significant variations
of surface atmospheric pressure. Heavy precipitation events cause significant accu-
mulation of water over continental regions. Winds associated with cyclonic pressure
systems may cause the re-distribution of oceanic water masses thus impacting the
ocean bottom pressure (Flechtner et al., 2014a).

The Atmosphere and Ocean De-aliasing Level-1B product (AOD1B) (Dobslaw,
Henryk et al., 2016) is used to subtract these non-tidal rapid mass transport signals
from the GRACE data. Currently in its 6th release, it is the official de-aliasing product
of the GRACE and GRACE Follow-On missions.

The product contains a set of combined atmosphere and ocean spherical har-
monic coefficients complete up to degree and order 180 with a time sampling of 3
hours. For the atmospheric component, it uses analysis and forecast data out of
the operational high-resolution global numerical weather prediction (NWP) model
from the European Center for Medium-range Weather Forecast (ECMWF). For the
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oceanic component, the global ocean circulation model MPIOM (Jungclaus et al.,
2013) is used, which is consistently forced with ECMWF atmospheric data.

In a recent publication by Bergmann-Wolf et al. (2015), the authors have built
a realistic realization of errors in the previous release RL05 of the AOD1B model.
The authors model those errors as the sum of a set of distinct error components.
Each component might differ from the others in terms of regional extent, temporal
scale and whether it refers to a continental or oceanic region. The authors show
that the overall variability of AOD errors is explained by large-scale errors over the
oceans with particularly high magnitudes in the Arctic Ocean and in the vicinity of
the Antarctic Circumpolar Current. Finally, the authors argue that errors at small
spatial scales provide only a minor contribution to the overall AOD errors. In this
thesis, I use this product as an estimation of the AOD model errors.

2.5.3. Instrumentation Errors
There are four instrumentation error sources that I will consider: star-cameras,
accelerometers, positioning and ranging.

Positioning
One of the products required in ll-SST data processing is the kinematic orbits de-
rived from GNSS receivers on-board the satellites. In the processing of ll-SST data,
kinematic orbits are used as observations during the computation of the reference
orbits. State-of-the-art accuracy of kinematic orbits derived from space-borne re-
ceivers is at the level of 3 cm (Zhou et al., 2019).

Ranging
The GRACE and GRACE Follow-On satellites are equipped with a KBR instrument,
which continuously monitors range variations between the two satellites. Errors
of the KBR instrument have two components: system noise and oscillator noise.
System noise is modelled as white noise and oscillator noise shows a 1/𝑓 behaviour,
where 𝑓 is the frequency. Above the frequency of 2mHz, the system noise is

dominant with a PSD
ኻ
ኼ specification of 1 μm√Hz

ዅ1
(Gerlach et al., 2004).

Star cameras
A star-camera (SC) is an instrument comprising a digital camera, a microprocessor,
software, and a star catalogue (Liebe, 2002). The star catalogue contains informa-
tion about the positions of the stars in the celestial sphere. The SC views a small
portion of the sky and pinpoints the brightest stars in its field of view. The pattern
formed by the brightest stars is compared with the internal star catalogue allowing
the instrument to recognize the stars in the field of view. The SC instrument uses
advanced algorithms to compute the (sub-)pixel coordinates of the centres of the
stars in the field of view. Knowing the location of the brightest stars in the camera’s
internal reference frame, the attitude of the SC instrument and consecutively that
of the spacecraft can be determined.

The origin of the SC internal reference frame is the centre of the optical system’s
field of view. Its orientation is defined with a boresight axis (typically the z-axis)
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crossing the centre of the field of view and pointing perpendicular to it. The x- and
y-axes are coplanar to the field of view and are typically named cross-boresight
axes. The rotation between this reference frame and the science reference frame
(SRF) is obtained through calibration procedures, and is provided as the quaternion
product QSA1B (Case et al., 2010).

The distinction between boresight and cross-boresight is motivated by the fact
that acuraccy of the SC data is anisotropic (Liebe, 2002). Typically, SCs are more
sensitive to rotations about the cross-boresight axes than about the boresight axis.
Rotations around the cross-boresight axes are seen by the optical system as a
translation of all the stars in the field of view. The displacement of the stars is
uniform across the whole image. On the other hand, rotations around the boresight
axis result in rotations of the stars around the centre of the field of view. Stars
close to the centre show much smaller displacements than those at the edge. As a
result, the ratio between the accuracy of the cross-boresight and the boresight axes
of typical SCs is somewhere between 6 and 20 (Liebe, 2002). For GRACE SCs, the
accuracy of rotations about the cross-boresight axes is better than that of rotations
about the boresight axis by a factor of 8 (S.-C. Wu et al., 2006, Appendix J).

It is a common practice that satellites use two (or more) SCs, looking at different
parts of the sky. This has two advantages; first of all, combining data of several SCs
improves the accuracy of attitude information. Secondly, several cameras provide
redundancy; should one of the sensors fail or look towards the Sun or the Moon,
the others are still available to provide attitude information. Regarding the GFO
mission, the star camera assembly configuration has been upgraded to a total of
three star cameras for improved redundancy and accuracy.

The GRACE satellites are equipped with two SCs each, which provide attitude
information with 1 s sampling. They are referred to as primary and secondary SC,
respectively. Fig. 2.3 depicts the relative orientation of each SC reference frame
and the SRF.

Figure 2.3: Primary SC (P), secondary
SC (S) and science (C) reference
frames. x-, y- and z-axis are repre-
sented by blue, green and red color,
respectively. The z-axis in the SC ref-
erence frames is the boresight axis.
Both SCs are assembled at ±ኻኽ∘ ro-
tation angle about the x-axis in the sci-
ence reference frame (SRF).
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Accelerometers
All recent satellite gravimetry missions (CHAMP, GRACE, GOCE and GFO) carried
three-axis capacitive accelerometers for the measurement of non-gravitational ac-
celerations. In the case of CHAMP and GRACE and GFO, the accelerometers were
located at the centre of mass of the satellite. The SuperSTAR accelerometers used
in GRACE and GFO missions were roughly one order of magnitude less sensitive in
the cross-track direction w.r.t. the other two directions.

Errors in accelerometer data may be be categorized as: noise intrinsic to the
instrument, interference noise and orientation errors. Intrinsic noise reflects the
limits of every measurement instrument. Interference noise is caused by other
instruments on-board the satellite or by changes in the physical processes related
to the spacecraft, e.g., temperature variations or deformations. Finally, orientation
errors are caused by inaccurately known attitude of the spacecraft relative to inertial
space. These deviations, in turn, affect the accuracy of the reference orbits.

Current accelerometer technology makes use of a free-floating proof mass within
a metallic enclosure. The proof mass is kept at the centre of the enclosure (i.e., the
centre of mass) by applying an electrostatic force which reproduces the total non-
gravitational one acting on the satellite. The voltage that is proportional to the
applied electrostatic force constitutes the raw acceleration measurement.

Associated with each raw measurement is an error resulting from the combi-
nation of several effects. Accelerometer measurements must be converted from
voltages into acceleration units. This conversion requires a set of parameters which
must be estimated by calibration procedures, e.g., using in-flight manoeuvres. De-
viation of the estimated parameters from the instantaneous instrument state will
result in errors in the measurements. Furthermore, the measured acceleration vec-
tor in the instrument frame must be related to the physical non-gravitational accel-
eration of the satellite in the inertial frame. This requires the orientation of the ac-
celerometer instrument with respect to the satellite and of the satellite with respect
to the inertial frame. The orientation of the accelerometer frame w.r.t the satellite
must be estimated from calibration procedures. Any inaccuracy will cause misalign-
ment errors in the accelerometer measurements. Additionally, the accelerometer
instrument is not perfectly built, and its three axes are not perfectly orthogonal,
which introduces cross-talk errors in the measurements. Finally, the location of the
proof mass slightly deviates from the centre of mass. This introduces a centrifugal
acceleration term in the measurements caused by the rotation of the spacecraft.
All these effects cause systematic errors, which are largely removed from the mea-
surements through proper modelling and calibration procedures. These are well
documented in Kim (2000).

In a general sense, quantifying the in-flight performance of accelerometers is
a troublesome task due to the scarcity of complimentary data. Similarly, it is also
difficult to distinguish between intrinsic noise and interference noise (Peterseim et
al., 2012).

In the context of the GRACE, analysis of accelerometer data has revealed several
issues which likely affected the performance of the mission. The requirement for
the accelerometer instruments of the GRACE and GFO missions along the most
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sensitive axes was that the PSD
ኻ
ኼ of noise is below (Flury et al., 2008)

√1 + 0.005𝑓 ⋅ 10 × 10ዅ10m2 sዅ1 √Hz
ዅ1

. (2.26)

Gerlach et al. (2004) examined the PSD
ኻ
ኼ of relative L1A accelerations between the

GRACE satellites along the line-of-sight (LoS) direction. This method reveals errors
in accelerometer data, but limited to the frequency ranges where noise is larger
than signal, i.e., the high-frequency part of the spectrum (above 30mHz). The
authors found that in this frequency range, L1A accelerometer noise was at the

level of 6 × 10ዅ9msዅ2 √Hz
ዅ1
, i.e., a factor of 60 above the specification.

Upon close inspection, it seems that accelerometer data above 30mHz were con-
taminated with thruster events, twangs and spikes. Thruster events were caused
by firing of satellite thrusters used to control the attitude of the satellite. They
come into play by a combination of thruster misalignments and small deviations of
the accelerometer instrument from the satellite’s CoM. However, thruster events
reflect for the most part real linear accelerations of the satellite, i.e., they should
not be considered as errors (Frommknecht et al., 2006). Twangs are described
as strong signal impulses (up to 2 × 10ዅ5msዅ2) followed by a damped oscillation
with a duration of up to 10 s, occurring very frequently (about 30% of the data) in
the radial accelerometer component and less frequently (about 1-3%) in the other
two components. Twangs are hypothesized to be caused by an uneven expansion
of a radiator foil at the bottom of each satellite (Flury et al., 2008; Gerlach et al.,
2004). Spikes are smaller in amplitude (1 × 10ዅ7msዅ2) and shorter in duration (1 s
to 3 s) but occurring much more frequently (in 30 to 40% of data) along all three
accelerometer axes. They are found to be caused by frequent heater switching
used to regulate temperature on-board the GRACE satellites (Flury et al., 2008). In
a later publication, Peterseim et al. (2012) have shown that a part of the observed
spikes were caused by the magneto-torquer instruments. Apart from these fea-
tures, the actual sensor performance seems to be close to the requirements (Flury
et al., 2008; Frommknecht et al., 2006; Gerlach et al., 2004). However, because
these features were so strong and so frequent, they degraded the overall data qual-
ity significantly. While the 35mHz low-pass filter applied to the L1A data removes
most of the noise in the high-frequency part of the spectrum, several authors warn
about the unknown impact of the effects discussed above in the low-frequency
range (Frommknecht et al., 2006; Gerlach et al., 2004). This impact may not be
negligible, since the occurrence of twangs is correlated with the orbital frequency
and the spikes also seem to exhibit certain periodicities (Gerlach et al., 2004). As
a consequence, Gerlach et al. (2004) and more recently Peterseim et al. (2012)
state that, although unlikely, it cannot be theoretically excluded that some of these
effects may have an influence in the gravity field determination.
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2.6. Future of satellite gravimetry missions
With the GFO mission underway, it is time to look into the future of satellite gravime-
try missions. In Rummel et al. (2003), the authors began by mapping all the differ-
ent phenomena that compose the gravity signal in terms of their spatial and tem-
poral spans. The authors proceeded to evaluate the potential of four different mis-
sion concepts to measure all these phenomena: very high altitude orbit missions,
gradiometry missions and ll-SST formations. The authors used a relatively simple
simulations in order to quantify the accuracy and spatial resolution of each concept.
While limited in its scope, (e.g., no temporal resolution was determined), several
interesting ideas arose from that publication. The authors showed that very high
altitude orbit missions are limited in the spatial resolution they can achieve, irre-
gardless of the improvements in terms of instrumentation noise. Envisioning future
technological developments, the authors argue that the along-track SST missions
similar to GRACE have the potential to significantly improve the achievable spatial
resolution, enabling these types of missions to completely observe several geophys-
ical phenomena of interest. The authors also showed that, while GOCE is unable to
contribute to the study of temporal gravity field variations, future gradiometer-type
missions have tremendous potential to measure those variations, as long as the or-
bits can be made significantly lower and/or the gradiometer accuracy is increased
by at least an order of magnitude. Finally, SST formations are proposed, where
satellite pairs work as a very long gradiometer-arm instrument. Several satellite
pairs may observe the gravity gradient simultaneously over several directions. This
concept is also shown to potentially bring major improvements and new scientific
applications of satellite gravimetry data.

In the following years, the study of alternative satellite (multi-)formation mis-
sions became of general interest with several publications dedicated to this topic. In
the following, I will discuss the relevant publications that deal with single-formation
missions. Then, I will proceed to discuss the missions which combine two satellite
formations.

2.6.1. Elementary satellite formations
In two closely related publications, M. A. Sharifi et al. (2007) and Sneeuw et al.
(2008) analysed the performance of the three elementary satellite formations:
along-track, pendulum and cartwheel, along with that of the LISA concept. The
authors concluded that the along-track formations are relatively poor in signal-to-
noise ratio and that both the cross-track and radial directions contain stronger grav-
ity signal. The authors concluded that the inclusion of cross-track information may
be helpful to mitigate temporal aliasing errors. They highlighted the importance of
reducing the anisotropy of future missions and that proper design of multi-formation
missions should allow for full-tensor gravity gradiometry, since different pairs of
satellites may work together as very long gradiometer arms oriented in perpendic-
ular directions.

In Wiese et al. (2009), an analysis of four candidate missions was carried out.
The authors used 30 days of data and two simulations per mission concept, at
250 km and 400 km altitude. The considered missions were: one along-track pair
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of satellites in polar orbits, two along-track pairs in polar orbits, a cartwheel for-
mation and a mission with two cartwheel formations along the same orbits with
perpendicularly oriented baselines. In the absence of temporal aliasing errors, the
double cartwheel is an order of magnitude better than the GRACE mission. How-
ever, in the presence of these errors, all missions performed at the similar level.
Another interesting conclusion was that the choice of the mission altitude did not
have a significant impact on the level of temporal aliasing errors. The authors
highlighted the need to reduce temporal aliasing errors by using better background
models and by making use of multiple formations to improve the overall temporal
resolution of the mission.

Elsaka (2010) presented an extended study of future satellite gravimetry con-
cepts. Elsaka analysed several concepts based on the elementary satellite forma-
tions: along-track, pendulum and cartwheel (the author addressed the latter as
radial-wheel). The author showed that the pendulum and cartwheel concepts per-
formed better than the along-track concept both in terms of static and temporal
gravity field recovery. The author argued that, due to the limitations of inter-
satellite ranging technology, the pendulum missions are very challenging to design.
As such, the author recommended the cartwheel type of missions to be considered
for the future.

More recently, Elsaka et al. (2013) proposed and compared seven concepts of
future satellite missions, consisting of single or dual satellite formations. The com-
parison was made under the same error scenarios. Regarding the single-formation
concepts, the authors concluded that the pendulum-type formations are desirable.
The authors showed that the so-called advanced pendulum formations exhibit the
best performance. Advanced pendulums are pendulum-type missions where the
LoS direction is tilted by up to a maximum of 45° relative to the cross-track direc-
tion. The authors warned that such type of pendulums are technologically hard
to accomplish due to the large values of the inter-satellite velocity. The authors
then recommended a moderate pendulum mission, with a maximum LoS tilt of 25°,
which is already regarded as feasible. This mission, despite a poorer performance,
still shows significant improvements relative to the along-track concept.

In Encarnação (2015), a complete analysis of the errors in the elementary satel-
lite formations was given. The author considered an extended set of ll-SST errors,
including those not taken into account in any previous work. The analysis of the
performance of the elementary formations lead to the conclusion that the pendu-
lum formations are the best. The author also concluded that the accuracy of the
pendulum formations is limited by ranging noise. Another noteworthy conclusion
was that the cartwheel mission is very sensitive to orbit errors.

When looking into the future, taking into account the foreseeable performance
of drag-free and laser-ranging technologies, it seems that temporal aliasing er-
rors are the major limitation. Regarding single-formation missions, there seems
to be consensus that, from a simulation point of view, both the cross-track and
cartwheel concepts are superior compared to the along-track formation. They are
more isotropic, which significantly reduces the level of errors in the solutions. Ad-
ditionally, the performance of the pendulum concept is shown to increase with
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increasing tilt of the LoS direction relative to the along-track direction. Increasing
tilt however results in an increase in the inter-satellite velocities, in which existing
inter-satellite ranging technology is limited, rendering concepts with an tilt larger
than 30° technically difficult to realize (Elsaka et al., 2013). Due to the same limita-
tion and additionally due to the highly dynamic behaviour of their LoS direction, the
cartwheel formations are also deemed as extremely difficult to implement in prac-
tice. Apart from choosing the proper type of formations, several additional ways
have been pointed out to mitigate temporal aliasing errors even further: the use
of better-quality background models, better data processing and the inclusion of
additional satellite formations in order to improve the overall temporal resolution of
the mission. The latter has also been a topic of extensive research.

2.6.2. Multi-formation concepts
P. L. Bender et al. (2008) proposed the concept which is nowadays referred to as
Bender mission. The authors stated that temporal aliasing errors are likely one of
the limiting factors of the GRACE mission and that such limitation will not vanish
even if the measurement accuracy is significantly improved. Same conclusion was
similarly made by Loomis et al. (2011). The Bender mission attempts to solve this
problem with the addition of another pair of along-track satellites. The second pair
of satellites result in another set of observations which both improve the temporal
resolution of the mission and provide observations with a East-West component
resulting in a more isotropic sensitivity of the mission as a whole. The authors
argued that the second pair also provides a high density of ground-tracks at mid-
latitudes each day. Furthermore, the authors suggested that the many crossings of
the two pairs would allow for significant improvements of the combined solution.
It was the first example of an attempt to improve the spatio-temporal resolution
achieved by GRACE by including an additional pair of satellites.

Capitalizing on the idea behind the Bender mission, Wiese (2011) analyzes the
future of satellite gravimetry. One of the pillars of this thesis was the optimization
of the parameters that define the Bender mission. The author analyzed different
parameters of the formation: the mission length, the maximum solved degree, the
inclination of the second pair, the choice of repeat periods, etc. The author con-
cluded that the best possible Bender-type mission consists of two pairs of satellites
in 13-day repeat period orbits. The first pair of satellites is placed in a polar orbit
at an altitude of 299 km. The second pair is placed at an inclination of 72° and an
altitude of 290 km. The author proceeded to compare the expected performance of
the designed Bender mission with two other mission concepts: a single along-track
pair in a polar orbit and two along-track pairs in polar orbits. The author showed
that the designed Bender mission is the best.

In Elsaka (2010), the author analyzed, alongside the already discussed elemen-
tary formations, a few multi-formation concepts. The author considered a so-called
GRACE-pendulum formation, consisting of three satellites which realize two inde-
pendent formations. A chief satellite takes simultaneous part in two formations: in
an along-track formation with another satellite and in a pendulum formation with
the remaining third satellite. The author considered also the so-called Multi-GRACE
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mission concepts, where two along-track pairs of satellites are combined in two dif-
ferent ways in order to improve the spatial or the temporal resolution of the mission.
Both in terms of static and time-variable gravity field recovery, the author showed
that the GRACE-pendulum mission consistently performs better in comparison with
all other considered concepts. As mentioned previously (see Section 2.6.1), the
author warned, however, that this concept is technologically challenging to imple-
ment.

Elsaka et al. (2013) compare the performance of several single formations with
a Bender-type of mission. After excluding alternative concepts due to their techno-
logically difficult nature, the authors recommended the Bender mission and showed
that it is able to reduce the overall error by at least an order of magnitude relative
to GRACE and GFO mission, with significant improvements in the short and medium
frequency ranges.

A radically different idea was proposed in B. Gunter et al. (2011), where the
authors proposed the inclusion of a gravimetry payload in the recently deployed
2nd generation Iridium constellation. This constellation consists of 66 operational
satellites at an altitude of 780 km. The authors showed that, if certain positioning
requirements could be achieved, such gravimetry constellation would allow for con-
tinuous monitoring of large-scale time-variable gravity field on a sub-monthly time
scale. This is an example of a very high altitude gravimetry constellation, which
as predicted in Rummel et al. (2003) is fairly limited to the measurement of the
long-wavelength features of the gravity field.

In retrospect, the consensus about what a future satellite gravimetry mission
should be seems to be gathering around the Bender-concept. Several publications
remark on the advantages of the Bender-mission relative to all the elementary satel-
lite formations, given that the cartwheel and pendulum concepts are deemed as
difficult to implement.

Already at this point we can identify a gap in the literature. Several publica-
tions have identified that pendulum formations offer significant improvements over
the along-track concept. Therefore, one wonders, whether a multi-pendulum con-
cept could deliver similar improvements as the ones brought by the Bender-type
missions.

Finally, from an overview of the existing literature it becomes clear that the
performance of the GRACE and GFO missions is limited by the sub-optimal along-
track concept, which suffers from highly anisotropic sensitivity. It has been shown
that, with inclusion of information along other directions (radial or cross-track),
these limitations are for the most part removed. Then, taking into account the new
generation of ranging instruments already available for the GFO mission, it has been
shown that the limitations of future satellite mission concepts are mostly related to
temporal aliasing errors. Therefore, when designing future mission concepts, it
becomes crucial to deal with the concept of temporal resolution.

2.7. Spatio-temporal resolution
Reubelt et al. (2010) introduced the so-called Heisenberg rule of satellite gravimetry,
which relates the spatial and temporal resolution of a mission. The authors assumed
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a single-sensor mission (i.e., single satellite or a ll-SST pair) in a 𝛽/𝛼 repeat orbit.
The authors defined the spatial resolution of the mission as the equatorial ground-
track spacing, 𝐷space =

ኼ
ᎏ
1, while the temporal resolution was defined as the repeat

period of the orbit, 𝐷time = 𝛼. For a given satellite gravimetry mission, the product
of the spatial and temporal resolution is,

𝐷space ⋅ 𝐷time =
2𝜋𝛼
𝛽 = 2𝜋𝑇rev . (2.27)

This product is approximately constant because, for typical altitudes of low earth
orbiters, the orbital revolution period 𝑇፫፞፯ is practically constant and approximately
equal to 90min.

Reubelt et al. (2010) tested the validity of the Heisenberg rule by simulating
various single- and multi-formation missions. The authors discussed several possi-
bilities of placing multiple satellite formations. They presented a Δ𝑡-shift to improve
temporal resolution, where one formation is delayed in time over the same ground-
tracks, and a Δ𝜆-shift to improve the spatial resolution, where one formation is
placed at 1/2 ground-track spacing from the other. A third option, a ΔΩ-shift (
i.e., a relative shift in the RAAN of the satellite-pair orbits) was also discussed,
where the authors predicted that ΔΩ ≈ 90° is likely beneficial for reducing temporal
aliasing errors.

Other studies of multi-formation missions have selected formation orbital planes
which are roughly co-planar, i.e., ΔΩ ≈ 0° or ΔΩ ≈ 180°. In Elsaka (2010), the
author simply considers the second formation to be placed at a Δ𝑀 = 180° from
the first, in order to mitigate temporal aliasing errors. A Δ𝑀-shift, i.e., a shift in the
orbital mean anomaly, does not change the orbital plane, meaning that the RAAN
shift between the two formations is ΔΩ=0. In the case of Wiese (2011), the author
analysed simulation results made at various ΔΩ-shifts. He claimed an overall better
performance for satellite missions with ΔΩ = 180°+𝜖, where 𝜖 is a small increment
which interleaves the ground-tracks of the second pair in-between the ones of the
first pair. Also in this situation, both satellite formations are nearly co-planar.

The definitions of spatial and temporal resolution used in the Heisenberg rule,
are based on the properties of the repeat orbits. In the context of satellite gravime-
try, we are concerned not with repeat orbits, but with gravity field determination.
Therefore, to quantify the spatio-temporal resolution of a mission, one must find the
link between the orbits and the gravity field solution. This link has been established
in Colombo (1983), one of the fundamental works in the field of satellite gravime-
try. In that work, the author was concerned with the problem of efficiently solving
a system of linear equations relating residual inter-satellite velocities and gravity
field parameters. At the time, solving a large system of equations was a serious
task, and much of the work done by Colombo was in designing the type of orbits
which cause a sparse normal matrix with a block-diagonal structure. The inversion
of such normal matrices is greatly simplified, which allowed for the calculation of a
solution in a reasonable amount of time.
1for a repeat orbit, ᎏ is the number of revolutions while ᎎ is the number of nodal days, see also
Sect. 2.2.2
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Colombo (1983) assumed that the two ll-SST satellites are placed in circular
polar orbits and that a gravity field solution is computed up to degree and order
𝑁max on the basis of 𝑁፝ days of data. One of the fundamental contributions made
by Colombo was the relation 𝑁፫ > 𝑁max between the number of orbital revolutions
of the repeat orbit 𝑁፫ and the maximum degree of the spherical harmonic solu-
tion. A few years later, Schrama (1990) showed that the block-diagonal structure
is obtained as long as all lumped coefficients overlapping at the same frequencies
can be avoided. This was shown to require the number of satellite revolutions 𝑁፫
to be larger than 2𝑁max. This inequality is what is nowadays referred to as the
Colombo-Nyquist rule.

Together, the Heisenberg and the Colombo-Nyquist rules are commonly used
to discuss the temporal and spatial resolutions of satellite missions, e.g., in Wiese
(2011) and Iran Pour et al. (2013). However, it should be clear that these rules,
while certainly valid, must be regarded with care when designing satellite gravimetry
missions. Firstly, the definitions of temporal and spatial aliasing as stated in the
Heisenberg rule are arbitrary. The authors themselves hint at the fact that they
represent ”worst-case numbers”, and that in reality, the spatio-temporal constant
might be better than what is predicted by the rule.

Furthermore, the temporal resolution, as defined in the Heisenberg rule, is
translated into an equivalent gravity field temporal resolution through the Colombo-
Nyquist rule. Because of the way Colombo decided to parametrize the gravity field,
which I refer as the standard parametrization, the temporal resolution of the so-
lution becomes 𝑁፝ days, i.e., the length of the dataset used to compute a single
set of spherical harmonic coefficients. However, this value by no means reflects
the potentially achievable temporal resolution of the mission; this limit is simply
imposed by the choice of parametrization. A different choice of parametrization is
likely to result in significant improvements in terms of temporal resolution. One
such example of an alternative parametrization is documented in Wiese (2011,
Chap. 4), where the author investigated the possibility of co-estimating, alongside
a full monthly gravity field solution, low-degree coefficients over daily and two-day
periods as an attempt to minimize the propagation of temporal aliasing errors into
the monthly gravity field solutions. The authors show that, for a Bender-type mis-
sion, co-estimating a daily set of spherical harmonic coefficients up to degree and
order 18 reduces the overall temporal aliasing errors in the mission by 33%. Further
evidence of the effectiveness of this approach in the Bender formation is presented
in Daras et al. (2017). Another example of alternative parametrization is found in
Kurtenbach et al. (2009), where the authors employed a Kalman filter approach to
estimate daily gravity field solutions complete up to degree and order 40.

While the discussion of alternative parameterizations is of potential interest for
gravity field modelling, further discussion of this topic is outside of the scope of this
thesis. The focus of this thesis is on the performance of future satellite mission
using the standard parametrization, i.e., , where a single set of spherical harmonic
coefficients complete up to degree and order 𝑁max is obtained from observations
made over a period of 𝑁፝ days.

The Colombo-Nyquist rule has been developed for the efficient inversion of the
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normal matrix. Over the 35 years since Colombo published his work, computing
power has grown dramatically. Many of the assumptions that allowed Colombo
to compute a gravity field solution in limited time are, nowadays, no longer a re-
quirement. In Visser et al. (2012) the authors revisit the Colombo-Nyquist rule.
The authors show that, indeed, the quality of the gravity field solution is homo-
geneous only up to maximum degree 𝑁max < 𝑁፫/2 as originally stated. More im-
portantly, the authors show that the maximum resolvable degree is actually equal
to 𝑁max = 𝑘𝑁፫ + 1, where k is 1, 2 or even 3 depending on the combination of
observations used. Furthermore, in Weigelt et al. (2013), the authors show that
this rule applies only to the order, not to the degree.

This result is remarkable. It adds a new dimension to the problem of satellite
gravimetry. It tells us that, by combining different observations, the achievable
spatial resolution may be doubled or even tripled. At first, this might seem irrele-
vant; after all, noise in the observations prevents us from increasing the maximum
spherical harmonic degree by a factor of three in comparison to what is already
possible with e.g., GRACE. However, taking into account the Heisenberg rule, one
realizes that this increase in spatial resolution can be traded by temporal resolu-
tion, i.e., by combining additional observations, one could potentially solve up to
the same maximum degree (allowed by the noise in the data) in a third of the time.
This remarkable result is yet to be applied to the design of future satellite missions.
This means that conclusions drawn by previous studies might be sub-optimal con-
sidering that this new result has not been taken into account. The application of
the modified Colombo rule to future satellite concepts is one of the pillars of this
thesis and is tackled in Chapter 8.

The modified Colombo-Nyquist rule has already prompted a new investigation
in terms of so-called sub-Nyquist gravity field recoveries (Iran Pour et al., 2013).
In that publication, the authors relied on the fact that it is possible to solve a
gravity field solution up to a higher degree than predicted by the original Colombo
rule. They investigated what are the mission parameters that have the largest
impact on the quality of these sub-Nyquist solutions. The authors concluded that
the repeat orbits which avoid large unobserved gaps in their ground-track evolution
pattern show the best performance. The concept of sub-cycle, also introduced
in this publication, has been later researched in some detail of which the latest
examples are Iran-Pour et al. (2018) and Purkhauser et al. (2020).

The two rules discussed so far are useful in the design of satellite mission due
to their simplicity. This simplicity however means that many important details that
determine the real spatial resolution of the mission are left out, such as the actual
geometry of the orbits and the signal-to-noise ratio of the observations.

Regarding the geometry, important aspects are the existence of polar gaps and
the distribution of observations. The Colombo-Nyquist rule is stated for (near-)polar,
circular orbits and it formalizes the notion that a sufficiently dense global coverage
with observations is required to solve for a set of spherical harmonic coefficients
up to a specified degree and order. New mission concepts, like the Bender mis-
sion, propose satellite orbits with significant inclinations. Non-polar orbits result in
a circular region around the poles where no observations are available. Regarding
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the distribution of observations, polar orbits are not ideal either; they do not have
the most homogeneous distribution of measurements over the latitudes, since all
ground-tracks converge to the poles, increasing the density of observations in the
polar areas (Iran Pour et al., 2013).

The geometry of the orbits, despite being crucial to the performance of the
satellite gravimetry mission, is not the only factor that limits the spatio-temporal
resolution of a gravity field solution. The other factor that determines the achiev-
able spatial resolution is the signal-to-noise ratio of the observations. In essence,
computing a gravity field solution relies on isolating in the observations all the fre-
quencies that correspond to each spherical harmonic coefficient (Schrama, 1990).
This is always guaranteed, as long as the observations are distributed densely
enough. However, if at any of these frequencies, the noise in the observations
is larger than the signal, the estimated coefficients will simply contain noise. In the
case of GRACE, while the geometry of the observations allows for high-degree so-
lutions, the signal-to-noise ratio of a large chunk of near-sectorial coefficients is too
low. This is the mechanism through which striations appear in the GRACE solutions.
This highlights the fact that the spatial resolution of a mission is not the maximum
degree of the spherical harmonic solution computed from its data. Here lies the
connection between errors in data from existing ll-SST missions, as discussed in
Section 2.4, and the performance of future mission concepts. One cannot evaluate
the performance of future missions without adequate knowledge of the errors in
the data, since these limit the achievable spatio-temporal resolution.

There are three main conclusions from this discussion, which will be further
addressed in Chapter 8:

• Not only the equatorial ground-track spacing, but the complete geometry of
the orbits as well as the orientation and the combination of the observations
are crucial aspects that ultimately determine the performance of the mission.

• The trade-off between spatial and temporal resolution in the orbital domain
does not directly translate into a trade-off in terms of spatial- and temporal
aliasing errors. The performance of a mission depends (among other errors)
on the latter and not on the former.

• Due to the complex interaction between orbits, observations and noise, the
only way to evaluate the performance of future satellite missions is to properly
simulate the impact of all these factors, including their interactions.

2.8. Summary
In this Chapter, I have provided background information required to understand the
bulk of this thesis. In Section 2.1, I have given an overview of the framework of
tools which are commonly used to evaluate the performance of satellite gravimetry
missions. Then, in Section 2.2, I have introduced the concepts of satellite orbits,
orbital elements, repeat orbit design and stable satellite formations.

Following with Section 2.3, I have given an overview of the past and present
satellite gravimetry missions with an emphasis on the GRACE mission. I have dis-
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cussed the success of GRACE and highlighted its limitations. These limitations are
partly caused by errors in the observations. In Sections 2.4 and 2.5, I reviewed
the literature that deals with errors in the GRACE mission, taking into account both
errors in the satellites’ instruments and errors in the background models. I have
pointed out that previous publications have not fully taken into account the propa-
gation of errors through the reference orbits. I also concluded that nowadays, even
after the end of the GRACE mission, we still cannot fully explain the errors in the
observations. Full understanding of the GRACE error budget is required to reliably
predict the performance of future ll-SST missions. In Section 6, I will complete the
error budget of GRACE.

Section 2.6 deals with the research regarding future mission concepts. First, I
have discussed single-formation missions and then missions consisting of multiple
formations. The literature shows that along-track formations suffer from anisotropic
sensitivity and that the alternative elementary formations are likely to perform bet-
ter. Several authors also argue that, due to the limitations of exiting ranging tech-
nology, despite their increased performance, cartwheel and pendulum formations
with large tilt angles are difficult to implement.

Multi-formation missions concepts are aimed at improving the spatio-temporal
resolution, as compared to that of a single-formation one. An example of this is the
Bender concept, which was reported by several publications as a good candidate for
a future satellite mission. An additional benefit of the Bender mission is the inclu-
sion of observations in another direction, which effectively reduces the anisotropy
compared to the along-track formation.

Then, in Section 2.7, I have presented the fundamental framework that is used
to predict the temporal and spatial resolution of a given mission concept. I have
argued that the Heisenberg and the Colombo-Nyquist rules are too simplistic to
serve as the basis for the design of future missions. An important insight of this
literature study is that the performance of future missions depends on the complex
interaction between orbits, observations and noise. These interactions can only
be properly evaluated with adequately complex simulations. In Chapter 8, I will
present a performance comparison of different future satellite formation concepts.
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Indirect effect of force model

perturbations in ll-SST
observations

A t least five approaches to estimate a gravity field solution from ll-SST data have
been developed to this date; they are the energy balance approach (Gerlach

et al., 2003; Han, 2004; Jekeli, 1999), the variational equations approach (Beutler
et al., 2010; Jäggi et al., 2010; Prange et al., 2008; Reigber, 1989; Reigber et al.,
2002, 2003; B. Tapley et al., 2005), the short-arc approach (Mayer-Gürr, 2006;
Mayer-Gürr et al., 2005, 2010), the point-wise acceleration approach (Reubelt et
al., 2003, 2006) and the average acceleration approach (Ditmar et al., 2004, 2006;
Liu, 2008; Liu et al., 2010). Encarnação, 2015, Chap. 2.5 provides a comprehensive
discussion of the advantages and disadvantages of each approach.

The two latter approaches share similarities in that they link the satellites’ ac-
celeration vector to the gradient of the gravitational potential through Newton 2nd

law of motion (Ditmar et al., 2004). They differ in the way in which the satellite ac-
celeration is obtained from ll-SST data. In this thesis I use the average acceleration
approach (Liu, 2008).

In real data processing of ll-SST data with the average acceleration approach,
residual range combinations (RRC) are the observations used for the computations
of a gravity field solution. The RRC is obtained from the differences between the
ranges measured by the satellites and the ranges computed from purely dynamic
orbits (PDO). PDOs are computed solely from an initial state vector and a force
model. The initial state vector is a set of 6 parameters describing the initial position
and velocity of the satellite. The force model accounts for all the forces acting on
the satellite. The PDO is then computed by numerical integration of the laws of
motion. In this thesis, all PDOs are computed with the PANDA software (Zhao,
2004).
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The background force model is intended to account for all the forces acting on
the satellite, to the best of possible extent, in order to isolate the signal of interest.
The force model is used to compute reference quantities and it is precisely from the
residuals between the reference and observed quantities that the signal of interest
is estimated. Similarly to the signal, any errors in the force model also propagate
into the RRC observable by means of the computed quantities and later into the
computed gravity fields. It is important to fully understand the mechanism of how
these errors propagate into the observations because these errors play an important
role in the quality of the recovered gravity field solutions.

A perturbation in the force model will manifest itself in two different ways in
the RRC. The perturbation at a particular geographic location directly propagates
into the computed inter-satellite acceleration affecting the RRC in the vicinity of
observation points. This is a very local propagation mechanism which I refer to as
direct effect. Besides that, the very same perturbation will additionally cause the
computed orbits to deviate from the true ones. This happens because computed
orbits are obtained in a numerical integration procedure of the laws of motion. Due
to the nature of this procedure, even relatively small perturbations, grow over time
as random-walk noise in the computed orbits. In this manner, errors propagate not
only locally, but also far beyond the region of the perturbation. I refer to this as
the indirect effect.

At this point, it is necessary to clarify why the indirect effect is important. No-
tice that the unknown gravity field (i.e., the signal of interest) is nothing more
than a perturbation to the force model used to compute the reference orbits. The
functional model of the average acceleration approach i.e., Newton’s 2nd law, only
applies to the direct effect component of the RRC observations. The indirect ef-
fect is a signal distortion which maps into the solutions as noise, even though it is
caused by the signal of interest. This distortion is a poorly understood error source
with an unknown impact on the quality of the solutions.

The indirect effect is not likely to be limited to the average acceleration approach.
It emerges in the computation of reference quantities from PDOs. It is likely to play
a role and similarly have an unknown impact in the gravity field solution of any
inversion approach which requires the computation of PDOs.

In this chapter, I will formally define the indirect effect and its constituents, and
will provide a meaningful example that illustrates it.

3.1. Average inter-satellite accelerations
According to Newton’s 2nd law, the instantaneous acceleration a። ≡ [𝑎፱ 𝑎፲ 𝑎፳]

ፓ

experienced by a satellite S at time instant 𝑖 caused by gravitational potential 𝑉 can
be computed as

a፬,። = ∇𝑉|r፬። , (3.1)

i.e., it is the gradient of the potential field 𝑉 evaluated at the satellite position r.
The instantaneous inter-satellite acceleration Δa between a pair of satellites A and
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B directly follows:

Δa። = ∇𝑉|rፚ። − ∇𝑉|r። . (3.2)

Average accelerations Δā can be derived by applying the so-called averaging filter
f ≡ [𝑓ዅፍ … 𝑓ኺ … 𝑓ፍ]

ፓ
to a set of 2N+1 consecutive acceleration measure-

ments centred around time instant 𝑖 (Ditmar et al., 2004),

Δā። = [Δa።ዅፍ … Δa። … Δa።ዄፍ] ⋅ f . (3.3)

Taking the projection onto the satellites line-of-sight (LOS) and expanding Eq. (3.2)
yields

Δ�̄�።,LOS = eፓ። ⋅ [∇𝑉|rፚ።ዅፍ − ∇𝑉|r።ዅፍ … ∇𝑉|rፚ።ዄፍ − ∇𝑉|r።ዄፍ ] ⋅ f , (3.4)

where e። ≡ [𝑒፱ 𝑒፲ 𝑒፳]
ፓ
is the instantaneous LOS unit vector.

Eq. (3.4) directly relates a gravitational potential with the average inter-satellite
acceleration caused by it. Importantly, a computation of the latter requires knowl-
edge of both the potential and the satellite orbit, which are not known exactly during
real data processing. In real data processing, RRCs are the observations used.

3.2. Residual Range Combinations
The RRC methodology is based on the 3-point range combinations (3RC) (Liu,
2008). This methodology has been applied in the production of the Delft Mass
Transport (DMT) monthly gravity field solutions from GRACE data. This approach
aims at recovering the perturbing gravity field from the ll-SST data converted into
average inter-satellite accelerations ̄�̈�. The latter are computed as (Liu, 2008, eq.
5.34)

̄�̈�። ≡ eፓ። ⋅ ̄r̈ኻኼ,። =
𝜉ዅ። ⋅ 𝜌።ዅኻ − 2𝜌። + 𝜉ዄ። ⋅ 𝜌።ዄኻ

Δ𝑡ኼ , (3.5)

with

𝜉±። ≡ eፓ። ⋅ e።±ኻ , (3.6)

𝜌 ≡∥ rኻኼ ∥ , (3.7)
rኻኼ ≡ rኼ − rኻ, (3.8)

where ̄�̈� – is the range combination
𝜌። – is an inter-satellite range at time instant i
e። – is the inter-satellite unit vector at time instant i.

The 3RC is computed on the basis of the ranging measurements and is equal
to the projection onto the line-of-sight at the central epoch of a 3-point double
numerical differentiation (Liu, 2008). As a consequence, in the absence of non-
conservative forces acting on the satellites, the 3RC is also equal to the projection
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onto the line-of-sigth at the central epoch of the average inter-satellite acceleration
caused by the gravity field (Ditmar et al., 2004). This is the link which allows for
the calculation of the DMT monthly gravity field solutions from GRACE ll-SST data.

In order to recover the perturbing gravity field from ll-SST data, the residual
form of the 3RC functional model, the residual range combinations 𝛿 ̄�̈� (Liu, 2008,
eq. 5.35), are used as observations.

There are two equivalent ways of computing RRCs, both of which rely on refer-
ence orbits computed on the basis of the a-priori gravitational field. RRCs can be
computed as the difference between the 3RC and the average inter-satellite accel-
erations yielded during reference orbit computation. Alternatively, RRCs can also
be obtained by applying Eq. 3.5 to the residual inter-satellite ranges 𝛿𝜌,

𝛿 ̄�̈�። =
𝜉ዅ።, ⋅ 𝛿𝜌።ዅኻ − 2𝛿𝜌። + 𝜉ዄ።, ⋅ 𝛿𝜌።ዄኻ

Δ𝑡ኼ , (3.9)

where

𝛿𝜌። ≡ 𝜌። − 𝜌።, . (3.10)

The residual inter-satellite range 𝛿𝜌 is the deviation of the measured range 𝜌 from
the computed reference range 𝜌. The computed reference ranges 𝜌, along with
the LOS unit vectors e, are computed quantities derived from the reference orbits.

3.3. Indirect effect and its constituents
Let us first setup a formalism to properly define the concept of indirect effect. Let 𝑉
be the a-priori reference potential field and 𝑇 a perturbation to it, such that the true
potential field is 𝑉 + 𝑇. Consider a pair of satellites in a ll-SST mission orbiting in
the 𝑉 + 𝑇 potential and having orbits rፕዄፓ,ፚ and rፕዄፓ,. Because the true potential
field and the true satellite orbits are unknown, PDOs are computed on the basis of
𝑉 yielding reference orbits rፕ,ፚ and rፕ,.

In this scenario, the total acceleration of satellite A is, according to Eq.(3.2),

a። = ∇(𝑉 + 𝑇)|rፚፕዄፓ,። , (3.11)

while, the residual acceleration 𝛿a caused by the residual field 𝑇 is similarly given
by,

𝛿a። = ∇𝑇|rፚፕዄፓ,። . (3.12)

Therefore the projection of the residual average inter-satellite acceleration Δ𝛿�̄�።,LOS
caused by the perturbing field 𝑇 along the true satellite orbits is defined by Eq. (3.4)
provided that 𝑉 is replaced with 𝑇.

Δ𝛿�̄�።,LOS = eፓፕዄፓ,። ⋅ [∇𝑇|rፚፕዄፓ,።ዅፍ − ∇𝑇|rፕዄፓ,።ዅፍ …

∇𝑇|rፚፕዄፓ,።ዄፍ − ∇𝑇|rፕዄፓ,።ዄፍ ] ⋅ f (3.13)
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Let 𝜌 be the inter-satellite range, e be the unit vector along the LOS of the
satellites andm the mid-point between the two satellites. The absolute position of
either satellite is easily obtained as

r ≡m± 𝜌2e. (3.14)

Using this relation, each of the terms r in Eq. (3.13) can be expanded in terms of
these new quantities. In order to keep the nomenclature compact and to highlight
the dependence on the relevant quantities 𝑇, m, e and 𝜌, let ,

𝑔።(𝑇) |
𝜌ፕዄፓ
eፕዄፓ
mፕዄፓ

≡ Δ𝛿�̄�።,LOS

= eፓፕዄፓ,። ⋅ [∇𝑇|mፕዄፓ,።ዅፍዅ
።ዅፍ
ኼ eፕዄፓ,።ዅፍ

− ∇𝑇|mፕዄፓ,።ዅፍዄ
።ዅፍ
ኼ eፕዄፓ,።ዅፍ

…

∇𝑇|mፕዄፓ,።ዄፍዅ
።ዄፍ
ኼ eፕዄፓ,።ዄፍ

− ∇𝑇|mፕዄፓ,።ዄፍዄ
።ዄፍ
ኼ eፕዄፓ,።ዄፍ

] ⋅ f (3.15)

Let us further think of the RRC as the operator ℎ taking inter-satellite ranges and
LOS unit vectors as input. The RRC as defined in Eq. (3.9) can then be rewritten as

𝛿 ̄�̈�። ≡ ℎ። |
𝛿𝜌ፕ
eፕ

= 1
Δ𝑡ኼ [

eፓፕ,። ⋅ eፕ,።ዅኻ
−2

eፓፕ,። ⋅ eፕ,።ዄኻ
]

ፓ

⋅ [
𝛿𝜌ፕ,።ዅኻ
𝛿𝜌ፕ,።
𝛿𝜌ፕ,።ዄኻ

] (3.16)

The RRC is linear in terms of inter-satellite ranges,

𝛿 ̄�̈�። = ℎ። |
𝜌ፕዄፓ
eፕ

− ℎ። |
𝜌ፕ
eፕ

(3.17)

The problem with RRC produced with Eq. (3.17) is that it is evaluated over the
reference LOS unit vector. The reference LOS unit vector is obtained from the PDOs
which deviate from the true orbits. The RRC is computed in this way because, in
real data processing, there is no better way to obtain the true LOS unit vectors.
This fact underpins a deficiency in the RRC approach, which plays a role in the
propagation of errors in ll-SST missions.

In realm of simulations, where the true LOS unit vectors are known, one can
define a simulated RRC, 𝛿 ̄�̈�∗, which takes into account the disturbances caused by
the unknown gravity field 𝑇 not only in terms of the inter-satellite ranges, but also
in terms of the LOS unit vectors e. From this point on, let us drop the index 𝑖 for
simplicity. In this case, the simulated RRC is defined as,

𝛿 ̄�̈�∗ = ℎ |𝜌ፕዄፓeፕዄፓ
− ℎ |𝜌ፕeፕ . (3.18)

With this formalism, one can quantify the modelling error 𝛿𝑝, i.e., the impact of not
taking the changes in terms of LOS unit-vectors into account,

𝛿𝑝 ≡ 𝛿 ̄�̈� − 𝛿 ̄�̈�∗ = ℎ |𝜌ፕዄፓeፕ
− ℎ |𝜌ፕዄፓeፕዄፓ

. (3.19)
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Due to the equivalence between the 3RC and the projection onto the LoS of the
average inter-satellite accelerations, Eq. (3.18) can be written as

𝛿 ̄�̈�∗ = 𝑔(𝑉 + 𝑇) |
𝜌ፕዄፓ
eፕዄፓ
mፕዄፓ

− 𝑔(𝑉) |
𝜌ፕ
eፕ
mፕ

= 𝑔(𝑇) |
𝜌ፕዄፓ
eፕዄፓ
mፕዄፓ

+ 𝑔(𝑉) |
𝜌ፕዄፓ
eፕዄፓ
mፕዄፓ

− 𝑔(𝑉) |
𝜌ፕ
eፕ
mፕ

. (3.20)

The first term in Eq. (3.20) is by definition the residual inter-satellite acceleration
caused by the perturbing field 𝑇 over the true orbits. This term is the so-called
direct effect, which was previously empirically defined. Let this term be denoted as
𝛿𝑑. The last two terms in Eq. (3.20) represent the orbital effect, i.e., the residual
inter-satellite accelerations caused by evaluating the static field 𝑉 at two different
sets of orbits. Let this effect be denoted as 𝛿𝑜.

Taking Eqs. (3.19),(3.20) into account, one can write

𝛿 ̄�̈� = 𝛿𝑑 + 𝛿𝑜 + 𝛿𝑝 (3.21)

with

𝛿𝑑 ≡ 𝑔(𝑇) |
𝜌ፕዄፓ
eፕዄፓ
mፕዄፓ

𝛿𝑜 ≡ 𝑔(𝑉) |
𝜌ፕዄፓ
eፕዄፓ
mፕዄፓ

− 𝑔(𝑉) |
𝜌ፕ
eፕ
mፕ

𝛿𝑝 ≡ ℎ |𝜌ፕዄፓeፕ
− ℎ |𝜌ፕዄፓeፕዄፓ

.

Eq. (3.21) shows that the RRC observation is constituted by the direct effect (𝛿𝑑),
an orbital effect (𝛿𝑜) and a modelling effect (𝛿𝑝) components. The modelling and
orbital effects are always errors and their sum is in fact the indirect effect. Regarding
the 𝛿𝑑 component, whether it represents signal or noise depends on the nature of
the perturbation 𝑇. If 𝑇 is caused by e.g., a real mass anomaly on the surface of the
Earth, then 𝛿𝑑 represents the signal of interest. On the other hand, if 𝑇 represents
an error in the AOD model, then 𝛿𝑑 is an error.

The orbital effect component can further be divided in three components,

𝛿𝑜 ≡ 𝑔(𝑉) |
𝜌ፕዄፓ
eፕዄፓ
mፕዄፓ

− 𝑔(𝑉) |
𝜌ፕ
eፕ
mፕ

≈ (𝑔(𝑉) |
𝜌ፕዄፓ
eፕ
mፕ

− 𝑔(𝑉) |
𝜌ፕ
eፕ
mፕ

)

+ (𝑔(𝑉) |
𝜌ፕ
eፕዄፓ
mፕ

− 𝑔(𝑉) |
𝜌ፕ
eፕ
mፕ

) + (𝑔(𝑉) |
𝜌ፕ
eፕ

mፕዄፓ
− 𝑔(𝑉) |

𝜌ፕ
eፕ
mፕ

) . (3.22)
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I denote these three terms as geometric (𝛿𝜌), orientation (𝛿𝑒) and mid-point ef-
fects (𝛿𝑚). They correspond to the residual inter-satellite accelerations caused by
evaluating the a-priori gravity field at two sets of orbits which differ only in their
ranges, LOS direction and mid-points, respectively.

It is worth pointing out that the geometric effect (𝛿𝜌) can be computed and
corrected for during ll-SST data processing. This only requires the true inter-satellite
ranges, which are accurately observed by the ranging instrument. The modelling,
orientation and mid-point effects cannot be corrected for in real data processing
because that requires knowledge of the true orbits of the satellites.

Finally, numerical integration errors 𝛿𝑛 are one additional error source, which
appears in the RRC observations arising from the computation of the PDOs. For
completeness, Eq. (3.21) can be expanded then into

𝛿 ̄�̈� = 𝛿𝑑 + 𝛿𝜌 + 𝛿𝑒 + 𝛿𝑚 + 𝛿𝑝 + 𝛿𝑛. (3.23)

The present analysis continues the previous work presented in Ditmar et al.,
2012 and Encarnação (2015). The authors treated correction, orientation and po-
sition noise as stochastic phenomena. Having understood the general physics of
how these errors propagate into the observations, real GRACE data was used to es-
timate the expected magnitude of each and to extrapolate them onto future satellite
missions.

The content of this chapter improves on previous work by adopting a determin-
istic propagation of orbital perturbations into observation noise. Given a specific
perturbation 𝑇, e.g., in the form of a spherical harmonics model, Eqs. (3.19) and
(3.22) exactly predict the corresponding errors in terms of RRC observations inde-
pendently of the considered satellite formation. Unfortunately, there is no one-to-
one correspondence between the terminology adopted in the present study and the
one in Encarnação, 2015. Previous ”orientation noise” corresponds here to ”mod-
elling effect”; previously termed ”correction noise” is here referred to as ”orientation
effect”, while previous ”positioning noise” comprises both ”geometric effects” and
”mid-point effects”.

3.4. Indirect effect: Along-Track
In order to illustrate the importance of the indirect effect, a simulation was per-
formed. The objective of this exercise is to illustrate the indirect effect and its con-
stituents, and to compare them to the signal of interest. The idea is to introduce
a Dirac-like type of perturbation and visualize how each of the elementary satellite
formation responds. A 1000Gt mass anomaly is introduced over the Pacific Ocean.
The mass anomaly was defined over an equiangular grid and thereafter converted
into a SH representation up to SH deg 120. I modelled the mass anomaly as Gaus-
sian bell shape in the spatial domain with an adequately small radius in order to
minimize the ringing effecs in the SH domain. The static gravity field is defined as
the DGM-1s model, which is complete up to degree and order 250.

Three quantities are computed and plotted: RRCs, the direct effect and the
indirect effect. The RRCs are computed following the procedure used to handle
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real data by applying Eq. (3.9). It requires the inter-satellite ranges and LOS unit
vectors of the reference orbits, i.e., the orbits computed with on the basis of the
unperturbed DGM-1s gravity field. Additionally, observed inter-satellite ranges are
required. These are derived from the true satellite orbits, which are computed in
a consistent manner on the basis of the sum of DGM-1s model and the considered
mass anomaly.

The direct effect is computed by directly applying Eq. (3.4). The mass anomaly
and the true satellite orbits are used as input. The indirect effect is simply the
difference between the RRCs and the direct effect.

An along-track satellite formation is considered, at an altitude of 272 km and an
inter-satellite distance of 200 km. The altitude was chosen in order to yield a 24-day
repeat period orbit. These will cover the Earth with homogeneously distributed ob-
servations with sufficient density to compute solutions up to SH 120, the maximum
degree of the SH representation of the mass anomaly.

In Figure 3.1, in the left panel, inter-satellite accelerations for one orbital arc
are shown. The green line denotes the direct effect of the considered perturbation
over the satellites reference orbits. One can see a distinctively large negative peak
around 16 h and two very small similar peaks at roughly 14.5 h and 17.5 h. These
features correspond to three moments in which the satellites’ ground-tracks come
into the vicinity of the introduced perturbation, the closest one being responsible
for the largest peak. The right panel of Figure 3.1 presents a zoom-in on the largest
acceleration peak. It reveals the shape of the inter-satellite acceleration caused by
the considered gravity field perturbation.
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Figure 3.1: Inter-satellite accelerations for the Along-Track formation caused by a localized mass anomaly
in terms of direct effect (in green), total effect (in pink) and indirect effect (in blue). These are shown in
the left panel for the duration of one arc. The right panel presents a zoom-in on the largest acceleration
peak.

In both panels, the residual inter-satellite accelerations computed on the basis
of the RRC are depicted in pink. The RRC matches the direct effect up to the first
peak at 14.5 h. After this point, the RRC begins to oscillate away from the direct
effect. The oscillation becomes larger after the largest perturbing peak at 16 h. In
the right panel of Figure 3.1, one can see that the peak magnitude of RRC is smaller
than that of the direct effect. The introduced mass anomalies are reflected in the
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collected RRC data along with two types of distortions: low-frequency oscillations
and a dampening of the peaks.

Figure 3.2 presents the corresponding PSD
ኻ
ኼ of the RRC, direct and indirect ef-

fects. One can see that most of energy of the direct effect is in the frequency band
between 1 and 10mHz. The RRC however exhibits most of the energy in the very-
low frequencies: below 0.1mHz. This is the frequency range in which the satellites’
orbits react to the introduced perturbation far beyond the vicinity of the perturbing
mass.
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Figure 3.2: Breakdown of the RRC
into direct and indirect effects in
terms of PSD

Ꮃ
Ꮄ of inter-satellite ac-

celerations of the along-track forma-
tion.

In Section 3.3, it was shown that the indirect effect can be split into modelling
and orbital effects. These are shown in the left panel of Figure 3.3, in the frequency
domain. It becomes clear that the orbital effect is predominant in the low-frequency
range, below 0.1mHz. The ascending tail shown in the high-frequency part of
the spectrum of the modelling effect is attributed to numerical integration noise
generated in the orbit computation. Numerical integration noise has been kept at
a minimum level by using the orbit computation software with quadruple precision.
As a consequence, numerical noise is only visible above 20mHz, with a magnitude
well below other error sources considered in this thesis. Figure 3.4 shows the
modelling and orbital effects in the time domain, for the duration of one orbital arc
and zooming in on the observed peak, in the left and right plots, respectively.

In Section 3.3, I have also shown that the orbital effect can be decomposed in
three components. Though it is possible to correct for the geometric effect in real
data processing of ll-SST data it is worth investigating how strong this component
is. In the right panel of Figure 3.3, the three orbital effect components are depicted
in the frequency domain. The geometric component dominates the orbital effect
and correcting for it will reduce the indirect effect in the low- to medium-frequency
bands.

Apart from the indirect effect errors in terms of inter-satellite accelerations, it
is also interesting to see how those errors propagate into gravity field solutions.
It is important to notice however, that the results of such analysis depend on the
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Figure 3.3: PSD
Ꮃ
Ꮄ of inter-satellite accelerations for the along-track formation caused by a localized mass

anomaly. In the left panel a breakdown of the indirect effect into orbital and modelling effects. In the
right panel, a break down of the orbital effect into geometric, orientation and midpoint components.
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Figure 3.4: Inter-satellite accelerations for the along-track formation caused by a localized mass anomaly
in terms of modelling and orbital effects. These are shown in the left panel for the duration of one arc.
The right panel presents a zoom-in on the largest acceleration peak.
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Figure 3.5: Gravity field solutions recovered with the average acceleration approach for the along-track
type of mission. On the top-left, the solution computed from the RRC data; on the bottom-left the direct
effect; the difference between the two is the indirect effect which is plotted on the top-right panel; in the
bottom-right panel the solution computed from the RRC data after applying the geometric correction.

considered gravity field recovery approach. Therefore, the following results are
valid in the context of the average acceleration approach.

After comparing maps of gravity field solutions from several simulations, it be-
came clear that, for visualization purposes, a better illustration of indirect effect
errors is obtained when the SH expansion of the introduced mass anomaly is lim-
ited to a relatively low SH degree. This is because, when solving to large SH de-
grees, indirect effect errors manifest as very narrow spatial features, oriented in
the North-South direction, with large magnitudes, which are hard to visualize and
interpret. Therefore, in order to better visualize indirect effect errors in terms of
gravity field solutions, the input perturbation and recovered solutions have been
limited to maximum SH degree 24.

The resulting fields are shown in Figure 3.5; the top-left panel depicts the recov-
ered gravity field on the basis of the RRC data, while the bottom-left panel shows the
direct effect field. The output direct effect field is equal to the input mass anomaly
disturbance up to numerical precision. One can see that the RRC solution is able
to capture the perturbing mass anomaly, however there are significant striations
in the computed solution. The recovered perturbation is also lower in magnitude
than the original perturbation, which is consistent with the observations made in
the time-domain plots.

The difference between the top-left (RRC solution) and bottom-left (direct effect
solution) plots is the indirect effect, as shown in the top-right plot. Here we see
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that the indirect effect manifests itself as a vertical striping pattern superimposed
on the perturbing gravity field.

Finally, the bottom-right plot shows the solution computed on the basis of the
RRC data after the geometric correction has been applied. The geometric correction
succeeds at partially removing the striping pattern, although significant differences
still remain compared to the direct effect field.

Having illustrated the propagation of indirect effect errors in ll-SST data for the
along-track mission, I proceed with an investigation of how these errors propagate
when considering pendulum and cartwheel-type formations.

3.5. Indirect effect: Cartwheel
A cartwheel pair of satellite was considered under similar conditions as previously:
a circular polar 24-day repeat period orbit with a mean altitude of 272 km and a
maximum inter-satellite distance of 200 km. As a consequence of the selected inter-
satellite distance (chosen to be consistent with the other formations) the satellites’
altitude oscillates between 222 km and 322 km. Figure 3.6 shows the breakdown of
the RRC into direct and indirect effects for the cartwheel pair. One can see that the
RRC is increasingly distorted by the localized mass anomaly. The distortion is very
different from the one shown for the along-track formation due to the very different
orbital dynamics of the inter-satellite baseline. The inter-satellite acceleration peaks
caused by the mass anomaly are relatively small in comparison with the acceleration
from the resulting orbital disturbances. The right panel shows a zoom-in on the
largest acceleration peak caused by the localized mass anomaly.

The corresponding PSD
ኻ
ኼ is shown in the left panel of Figure 3.7 also reveals

significant differences between the two formations. The indirect effect is signifi-
cantly larger than the direct effect between 0.1 and 2mHz. Above 2mHz and up
to 11mHz, both components have similar magnitude. The right panel of the same
Figure shows the breakdown of the orbital effect, into its constituents. One can
see that for the most part of the spectrum, the orientation effect is the largest
contributor although the magnitude of the geometric effect is similar.

In Figure 3.8, the top-right panel shows that the indirect effect introduces a
large number of features with a magnitude larger than the introduced perturbation.
Furthermore, the bottom-right panel shows that, unlike the along-track formation,
there is no significant improvement after applying the geometric correction to the
RRC.

3.6. Indirect effect: Pendulum
Similarly to the previous sections, a pendulum pair of satellites was considered in a
circular polar 24-day repeat period orbit with an altitude of 272 km and a maximum
inter-satellite distance of 200 km. In the pendulum configuration, the inter-satellite
distance cycles between the minimum at the poles, where the two satellites come
in close proximity, and the maximum over the over the equator, where the two
satellites are the furthest apart. In Figure 3.9, the RRC is shown in the time-domain
for the pendulum formation. The gaps in the RRC data correspond to the regions
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Figure 3.6: Illustration of the indirect effect caused by the considered mass anomaly for a cartwheel
type of mission. These are shown in the left panel for the duration of one arc. The right panel presents
a zoom-in on the largest acceleration peak. Notice how the mass anomaly shakes the satellites’ orbits
introducing relatively large inter-satellite acceleration signal in the low-frequency part of the spectrum,
whose magnitude grows over time.
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Figure 3.7: PSD
Ꮃ
Ꮄ of inter-satellite accelerations of the cartwheel formation. In the left panel, breakdown

of the RRC into direct and indirect effects. The right panel shows the breakdown of the orbital effect
into its components.

where the two satellite orbits cross over, such that the inter-satellite distance shrinks
to (nearly) zero. These outliers are removed at the pre-processing stage. Notice
how the indirect effect errors are modulated by the orbital dynamics of the inter-
satellite baseline of the pendulum formation. The first small peak at 13 h introduces
low-frequency oscillations in the RRC observations, which are increasingly magnified
after the following sharp perturbations at 15 and 16.5 h. A zoom-in on the largest
acceleration peak is shown in the right panel.

The PSD
ኻ
ኼ of the indirect effect is shown in the left panel of Figure 3.10. Up to

10mHz indirect effect errors are, for the most part, smaller than the introduced
mass anomaly depicted as direct effect. There is, however, a very clear resonance
peak centered at 0.4mHz (2cpr) where the indirect effect is larger than the direct
effect. From 10mHz onwards, indirect effect errors are dominant.
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Figure 3.8: Gravity field solutions recovered with the average acceleration approach for the cartwheel
type of mission. On the top-left, the solution computed from the RRC data; on the bottom-left the direct
effect; the difference between the two is the indirect effect which is plotted on the top-right panel; in the
bottom-right panel the solution computed from the RRC data after applying the geometric correction.

The right panel shows a breakdown of the orbital effect for the pendulum mis-
sion. The plot shows that the geometric effect is the dominant error source over
the whole spectrum. Since the geometric effect can be corrected for, the remaining
orbital effect will be the midpoint effect which is more than an order of magnitude
smaller. This is unlike the previous two formations, where the geometric effect
was found much closer in magnitude to other orbital components. Because of this,
in the other formations, correcting for the geometric effect only yielded relatively
small error reductions.

In terms of gravity field solutions, there are also significant differences compared
to the along-track formation. The recovered fields are shown in Figure 3.11. A
comparison between the RRC (top-left) and the direct effect solution (bottom-left)
shows good agreement between the two. The difference between these is the
indirect effect shown in the top-right. The indirect effect can be characterized
as distortion mostly in large scale features. The bottom-right panel shows the
recovered field from the RRC data after applying the geometric correction to the
data. It shows that the geometric correction removes all of the indirect effect errors.

3.7. Discussion
The indirect effect shown in this chapter is a poorly understood source of error that
arises in the processing of gravity data. One may argue that the indirect effect
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Figure 3.9: Illustration of the indirect effect caused by the considered mass anomaly for a pendulum
type of mission. In the left panel, these are shown in the left panel for the duration of one arc. The
right panel presents a zoom-in on the largest acceleration peak. The gaps in the data correspond to
the periods where the satellite orbits cross over and the inter-satellite baseline shrinks to (nearly) zero.
Notice how the mass anomaly affects the satellites orbits well beyond the geographical extent of the
perturbation.

error is only relevant in the context of the average acceleration approach that I use
to process ll-SST data. However, that is most likely not true. From a very general
perspective, the indirect effect is a consequence of the increasing discrepancy over
time between the real inter-satellite orbits and the computed ones. Any approach
which relies on reference quantities derived from computed orbits are likely to be
affected by indirect effect errors.

The present analysis shows that the considered elementary satellite formations
are differently affected by indirect effect errors. Pendulum formations are only
mildly affected and most of the distortions can be removed by applying the geo-
metric correction to the RRC. Along-Track formations are more susceptible to in-
direct effect errors, which manifest themselves as vertical stripes in the solutions.
Applying the geometric correction results in an overall improvement, although the
resulting field still shows significant distortions. The cartwheel formation is the
most sensitive to indirect effect errors. In that case, indirect effect errors mani-
fest themselves as relatively large artifacts spread over the whole spatial domain.
Furthermore, applying the geometric correction does not lead to noticeable im-
provements. The sensitivity of each formation to indirect effect errors shown in
this chapter is consistent with the previous work (Encarnação, 2015, cf. Chap. 7).

Regarding the orbital effect, one can also see significant differences in each of
the considered formations. For the along-track and pendulum formations, the geo-
metric effect is the largest orbital errors component followed by the midpoint effect.
However, the magnitude difference for these two errors is small for the along-track
while it is rather large for the pendulum. As a consequence of this difference, it
was shown that, after the geometric correction is applied, there are significant im-
provements in the pendulum mission, while only minor ones were obtained for the
along-track. For the cartwheel mission, the orientation effect was found to be the
largest orbital error component, and as a consequence the geometric correction
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Figure 3.10: PSD
Ꮃ
Ꮄ of inter-satellite accelerations caused by the considered mass anomaly for a pendulum

type of mission. The left panel shows the breakdown of the RRC into direct and indirect effects. The
right panel shows the relative magnitude of the orbital effect components.

yielded no significant error reduction.
Another characteristic of indirect effect errors is that, unlike e.g., accelerometer

errors or ranging errors, indirect effect errors are not an error source themselves;
rather, indirect effect errors are a mechanism which amplifies other existing error
sources. Even in the absence of all errors, indirect effect errors are caused even by
the signal itself. As a consequence, in building the error budget for a ll-SST mission,
it is not possible to independently account for indirect effect errors alone. Indirect
effect errors are accounted for as a part of each considered error source.

3.8. Summary
The indirect effect is a significant and poorly understood error source in ll-SST
satellite missions. I have presented a formal definition of the orbital and modeling
effects which constitute the indirect effect.

A simple simulation setup, where a mass anomaly is used as a perturbation,
was defined to demonstrate the propagation of indirect effect errors in the three
elementary types of satellite formations. It was shown that the cartwheel formation
is very sensitive to indirect effect errors, that the along-track formation is affected
to a lesser extent, while the pendulum formation is very resilient. This distinction
emerges from the way orbital perturbations map into the inter-satellite baseline.
These findings are fully consistent with the previously published works (Ditmar et
al., 2012; Encarnação, 2015).

Nonetheless, the results obtained from this illustrative example are a simplifi-
cation of reality. The introduced mass perturbation is very simple. Realistic mass
anomalies will perturb the satellite orbits in a more complex manner. The com-
plexity of the indirect effect errors prompts the need to properly account for them.
In Chapter 6, I will take indirect effect errors into account when building the error
budget of the GRACE mission.

There are likely several ways to reduce the level of indirect effect errors. The
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Figure 3.11: Gravity field solutions recovered with the average acceleration approach for the pendulum
type of mission. On the top-left, the solution computed from the RRC data; on the bottom-left the direct
effect; the difference between the two is the indirect effect which is plotted on the top-right panel; in the
bottom-right panel the solution computed from the RRC data after applying the geometric correction.

most obvious way is to reduce the magnitude of the sources of indirect effect:
better a-priori gravity field, lower accelerometer errors, better ocean tide model, etc.
Additionally, by iterating the recovery procedure, it may be possible to decrease the
discrepancy between the reference and true orbits. This should potentially reduce
the level of indirect effect errors. One final approach that may be useful in reducing
indirect effect errors is to constrain the computed reference orbits with additional
information obtained from the real ones, such as inter-satellite ranging data.

The presented results, in terms of the recovered gravity field solutions, are spe-
cific to the average acceleration approach. The design of future satellite gravimetry
mission should not be constrained by the drawbacks of any specific approach that is
used to process the data. Therefore, it is desirable to evaluate the design of alter-
native concepts independently of any given approach. While it is likely that indirect
effect errors are relevant in alternative approaches, it is difficult to quantify their
impact in each of the existing (and future) approaches. Therefore, in Chapter 8, I
opt to consider a best-case scenario, where no indirect effect errors are considered
in order to evaluate and compare the performance of future candidate missions.





4
Methodology

I n this chapter I will present the methodology that is used to evaluate the errorbudget of ll-SST satellite mission data. The chapter begins by motivating a sim-
ulation approach as a means to estimate the performance of a satellite gravimetry
mission. Afterwards, I present an overview of the steps that are required to per-
form a simulation. I proceed to discuss the details involved in generating orbits and
observations. Afterwards, I explain the computation of gravity field solutions from
the orbits and observations and the filtering that is applied.

4.1. How to evaluate the performance of ll-SST mis-
sions?

In this thesis I set out to benchmark different satellite gravimetry mission concepts.
The performance of a mission is defined by how accurately it is capable of recover-
ing mass anomalies. In broad terms, a recovery involves estimating a set of gravity
field model parameters from the observations collected by the mission. These ob-
servations are invariably contaminated by various types of errors, which affect the
recovered gravity field. Ultimately, the performance of a satellite mission depends
on the signal-to-noise ratio (SNR) and how it maps into the solutions. Therefore,
to measure the performance of a mission, it is necessary to propagate both signal
and errors into gravity field solutions. Furthermore, by quantifying individual error
sources, it becomes possible to identify the errors that limit the accuracy of a given
mission.

Quantifying errors which affect gravimetry missions is a complex endeavor.
There are different types of errors originating at different stages of the data process-
ing chain. An analytical treatment of each error source would be both impractical
and likely tackling only a limited set of the systems’ complexity. Instead, a simu-
lation tool will be used to tackle the full complexity of the task. This allows for a
unified approach to the propagation of errors from any sources. The availability of
the software used to process GRACE data makes this approach very practical.
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In order to identify the performance limitations of a given ll-SST mission, it is
necessary to separate the impact of different errors in the solutions. This is done
by propagating each individual error through the processing chain. To identify the
compound effect of several error sources, i.e., the total error, the impact of the
individual errors is added up. In order to do this, I assume that all errors compound
additively in terms of observations and gravity field solutions. This is possible since
gravity field solutions are obtained as solutions of a linear system of equations.

A general overview of the simulation procedure is as follows.

1. A simulation addresses a satellite constellation, with one or more formations
of two or more satellites. Each pair of satellites in a formation may collect
only one ll-SST dataset.

2. For each satellite in the mission, I generate the corresponding orbit. Orbit
generation is discussed in Section 4.3.

3. For each ll-SST dataset, I simulate the observations. The observations are
represented as a set of independent data vectors consisting of the signal to
be recovered and the ensemble of errors sources considered. The types of
observations are discussed in Section 4.4 and the error sources in Section 4.2.

4. A system of linear equations is set up; the normal matrix that relates all ll-SST
datasets and the gravity field parameters is explicitly computed and stored.
Once the normal matrix is available, the observations are inverted into a set
of gravity field parameters. The set consists of independent fields for the
signal and each of the error sources considered. In addition, a set of filtered
solutions may be computed by applying the statistically optimal filter. The
computation of gravity field solutions is discussed in Section 4.5.

A simulation is performed in one of two modes: complete or simplified. The
difference between the two modes is simply whether the indirect effect is taken
into account (complete) or not (simplified). Specific differences between the two
modes are discussed in Section 4.6. Nonetheless, both modes share the same
general steps as described above.

In the following sections, each of the major simulation steps is described in
detail.

4.2. Noise scenarios for GRACE, GFO and future satel-
lite gravimetry missions

In this section, I will define the error scenarios used to assess the performance
of GRACE and of future ll-SST satellite gravimetry missions. The considered error
sources are divided in three categories: instrumentation errors, temporal aliasing
errors and filtering errors.

4.2.1. Instrumentation errors
Regarding instrumentation errors, two error profiles are defined: one emulating
the errors in the GRACE mission and another with a conservative level of errors for
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Table 4.1: Comparison of instrumentation errors for the GRACE and future ll-SST missions. All error
sources are modeled as white noise. A sampling interval of 5 s is assumed, which is consistent with that
of the GRACE mission ranging data.

Error GRACE Future ll-SST Unit

Ranging Microwave 0.8 – μm/√Hz
Laser - 0.05 μm/√Hz

Accelerometer 1 0.1 nm/s2/√Hz

Attitude Roll, Pitch, Yaw 20,80,80 - μrad/√Hz
IS Pointing 1 - mrad

Positioning 3 3 cm/√Hz

future ll-SST satellite gravimetry missions. I consider four instrument error sources:
accelerometer, inter-satellite ranging, star-camera and positioning. Table 4.1 shows
the differences between the GRACE and future missions’ instrumentation error sce-
narios.

Accelerometer (ACC)

Accelerometer errors for the GRACEmission are reported to have a PSD
ኻ
ኼ of 1 nm/s2/√Hz

(Frommknecht et al., 2006). This value has been estimated from the high-frequency
part of the spectrum of the differences between L1B data of the two satellites’ ac-
celerometers.

Differences in accelerometer measurements can also be explained by residual
non-gravitational acceleration signals acting on the satellites, however these are
limited to the low-frequency part of the spectrum. The high-frequency components
are a representation of the accelerometer noise.

The considered level of accelerometer errors is unexpectedly high, about 10
times higher than the specification (JPL, 2000). While selected periods of ac-
celerometer data can be found which comply with the specification, several sys-
tematic disturbances have been identified which cause the overall quality of the
data to degrade (Flury et al., 2008; Gerlach et al., 2004; Peterseim et al., 2012).

Regarding future missions, recent publications assume a higher accuracy, at
the level of 0.01 nm/s2/√Hz, for two of the accelerometer axes (Hauk et al., 2020;
Purkhauser et al., 2020). In this thesis, I will make the conservative assumption
that the accelerometers of future ll-SST missions will meet the performance require-
ments of GRACE at 0.1 nm/s2/√Hz.

Inter-Satellite Ranging (RNG)
Ranging errors represent intrinsic noise in the ll-SST ranging sensor. Particularly,
ranging error might be defined for the K-band ranging (KBR) sensor used by the
GRACE and GFO missions, or Laser Ranging Interferometer (LRI), which is used by
the GFO and future ll-SST missions.

For the GRACE mission, Gerlach et al. (2004) estimated the noise in the ranging

data to have a PSD
ኻ
ኼ between 1 and 2.1μm/√Hz. However, more recently, Ditmar
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et al. (2012) showed that this value is a slight over-estimation. A comparison with
real GRACE data noise observations has lead to an estimate of 0.81μm/√Hz.

The major innovation of the GFO mission is the use of a new laser interferom-
eter ranging system. The new instrument brings significant improvements in the
accuracy of the ranging measurements. The noise level specification for the LRI
instrument is 50 nm/√Hz (Flechtner et al., 2014b). First data analysis from the
LRI instrument on-board the GFO mission show that the instrument is performing
much better than the specification, at the level of 1 nm/√Hz (Abich et al., 2019).
Despite the good initial performance, and partly due to the unknown evolution of
the noise level throughout the GFO mission, I will assume the noise level speci-
fication 50 nm/√Hz as conservative value for the LRI instrument for future ll-SST
missions.

Star-camera (SCA)
Each of the GRACE satellites is equipped with two Star-Camera instruments. Star-
camera errors propagate into errors in the satellite attitudes and then into errors
in the measured ranges. This type of errors is discussed in detail in Chapter 5. In
that chapter, an analysis of SC errors based on L1A GRACE data is made. SC errors
are categorized in two components with different spectral features: a harmonic
and a stochastic component. The harmonic component of star-camera errors has
been explained and corrected for (Harvey, 2016). Therefore, only the stochastic
component of star-camera errors is considered in the noise scenario. The standard
deviation of attitude errors is set equal to 20, 80 and 80μrad in terms of roll,
pitch and yaw angles, respectively (see Table 5.2 for 2006/02, month with best SC
performance).

As discussed in Section 5.4, attitude errors propagate into inter-satellite ranges
because the long axes of the GRACE satellites slightly deviate from the LOS direc-
tion. The operational requirement for the GRACE mission is that the inter-satellite
pointing angle is to be kept below 1mrad in terms of standard deviation. Consider-
ing 2006/02, a month with good AOCS performance, the standard deviation value
of the inter-satellite pointing angle was indeed found to be around 1mrad.

Each GFO satellite is equipped with an extra star-camera, adding to a total of
three star-camera instruments per satellite. The additional star-camera contributes
to a significant improvement in the accuracy of the attitude determination system
by dramatically reducing periods of single star-camera operation. Furthermore, the
LRI has an additional advantage that the virtual measurement point is placed at
the satellite CoM. As a consequence, no ranging correction needs to be applied to
the LRI measurements, and therefore star-camera errors do not impact LRI data
of the GFO mission. In the context of future missions, I will assume that the same
configuration will be used, such that the collected LRI data will also be immune to
star-camera errors.

Positioning (POS)
The computation of PDOs requires precise knowledge of the initial position and
velocity of the spacecraft. GNSS observations are used to improve the estimate of
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the initial state of the satellite. Therefore, errors in the GNSS observations perturb
the initial state vectors which in turn perturb the PDOs.

Positioning errors reflect the accuracy of the GNSS receiver aboard the ll-SST
satellites. For both GRACE and future ll-SST satellite missions, I consider the accu-
racy of the 3D absolute positioning of the GNSS receivers to be modeled as white
noise with a standard deviation of 3 cm. This is consistent with reported RMS val-
ues of differences between kinematic GRACE orbits and SLR measurements (Zhao
et al., 2010) and latest developments in kinematic orbit determination (Zhou et al.,
2019).

Relative orientation errors
Knowledge of the the relative orientation of the spacecraft instruments (e.g. each
star-camera instrument or each accelerometer) with respect to the spacecraft ref-
erence frame is required with great accuracy. In this thesis, I have made two
assumptions:

1. the orientation of the instruments w.r.t. to the spacecraft does not change
over time

2. it can be accurately estimated from on-ground and in-flight calibration to the
point where it no longer plays a role in the mission performance

At first glance, these assumptions might seem optimistic. It is likely that thermal
distortion of the spacecraft could cause relative displacement of the instruments
within the spacecraft. For example, Siemes et al. (2019) show that the relative
orientation of the star-camera instruments in GOCE changes over time, and after
proper estimation and calibrations improvements could be observed in the com-
puted gravity field solutions. However, in comparison with the other error sources
considered, relative orientation are likely to have a relatively minor contribution to
the total error budget, especially in the case of the GRACE mission.

Regarding the case for future mission, if such errors do play a role in the total
error budget of existing missions, it is likely that they will be minimized by future
spacecraft design with a better understanding of their dynamics. In general, I
believe the impact of these errors in the total error budget is minor and therefore
I chose to not include them in the presented mission scenarios.

4.2.2. Temporal aliasing errors
Any satellite gravimetry mission requires data to be collected over a a sufficiently
long period of time before a set of spherical harmonic coefficients can be recov-
ered. As it is mentioned in Sect. 2.5.1, I refer to this period of time as the data
accumulation period (DAP). During this period, different mass transport phenom-
ena unfold on the surface of the Earth. In spite of these variations, the mission
can only recover the mean of the mass transport signal within this period. Signals
(and errors) which change over the DAP will map as temporal aliasing errors in the
solutions.
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I consider three sources of temporal aliasing errors: ocean tide model errors
(OTE), non-tidal atmosphere and ocean de-aliasing model errors (AOD) and dy-
namic mass transport signal (TMP). These will be explained in the following sec-
tions.

Atmosphere and Ocean De-Aliasing (AOD) Model Errors
In Bergmann-Wolf et al. (2015), the authors present a realistic realization of errors
in the RL05 Atmosphere and Ocean De-aliasing product AOD1B, which was until
recently officially used to process GRACE data. In this thesis, I use the AOD error
product described in that publication as the realization of AOD errors for present
and future satellite missions.

Dynamic Mass Transport Signal (TMP)
In this thesis, the mass transport signal used is based on the ESM model. The
ESM model is composed of a set of mass transport components sampled at 6-hour
intervals. The mass transport signal in my study is defined as the HIS (Hidrology,
Ice and Solid Earth) components of the ESM model (cf. Section 2.5.1). The goal
of a mission is to recover the mean of the mass transport signal within its data
accumulation period. The dynamic (i.e., non-static) component of the signal maps
into the observations in a non-trivial manner, causing temporal aliasing errors in the
solution.

In order to quantify these errors, I adopt the following approach. First, the
mean of all 6-hour HIS fields is computed over the data accumulation period of
the considered simulation. Then, the resulting mean field is subtracted from each
individual 6-hour field. As a result, a new, zero-mean, dynamic mass transport
signal is obtained. This error source is used to evaluate the temporal aliasing errors
caused by the continuously changing mass transport signal.

Ocean tide model errors (OTE)
Several alternative global ocean tide models can be found in the literature.

As discussed in Section 2.5.2, I define ocean tide model errors as the difference
between the FES2004 (Lyard et al., 2006) and EOT11a (Bosch et al., 2009) tide
models. To visualize the tide model errors, the differences between the two con-
sidered tide models were computed in terms of tidal heights over a 1° equiangular
grid every hour for the time span of one month. In Figure 4.1, the RMS of the dif-
ference at each grid cell is shown. The depicted figure clearly illustrates the nature
of ocean tide model errors. Just as concluded in Stammer et al. (2014), the dif-
ferences between the EOT11a and FES2004 model reach values above 10 cm ewh.
However, these large differences are confined to very specific regions where tides
are hard to model, e.g., the southern tip of South America or the Hudson Straight.
Apart from these difficult regions, the differences between the two models are very
small, especially in the open oceans.

Static component of temporal aliasing error sources
In general, the average of the considered temporal aliasing error sources is not zero
within any given DAP. I refer to this average as the static component. As soon as
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Figure 4.1: Each grid cell represents the RMS of the differences between the EOT11a and the FES2004
ocean tide models at hourly intervals for the duration of a month. Larger span of the colorbar in the
top plot highlights the large localized features along the coastal areas. Narrower colorbar span in the
bottom plot highlights the large-scale low magnitude error features.
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the static component for a given DAP is removed, a zero-mean time-variable error
source is left. This remaining component I refer to as the dynamic component.

Notice that by definition the dynamic mass transport source (TMP) only contains
the dynamic component. However, the AOD and OTE error sources do contain a
static component. When discussing AOD and OTE errors, I refer exclusively to
the dynamic component of the AOD and OTE errors. I do not consider this static
component as a source of temporal aliasing errors. At the first glance, this might
seem strange. When dealing with satellite gravimetry data, normally we consider
AOD and OTE signals as undesired; we make use of background models to remove
them from the observations. As such, one would address the errors in these models
simply as temporal aliasing erros. In my opinion, this would be a misuse of the
concept temporal aliasing error. Temporal aliasing error should only apply to an error
source which is changing in time. With that understanding, the static component of
the AOD and OTE errors is not considered when discussing temporal aliasing errors.

The next question is whether the static AOD and OTE components should be
considered as errors or as signal. On the one hand, background models are used
to remove these signals from the observations to the extent possible. Therefore,
we find these signals undesirable and if they show up in the solutions they should
be considered as errors. On the other hand, the static AOD and OTE component
is not fundamentally different from the static component of the hydrological or ice
signals which we hope to recover from satellite gravimetry data. Therefore, I argue
that the static component of AOD and OTE are not errors but signal.

4.2.3. Signal and other errors
Input mean mass transport model (ESM) and noise-free data (SGN)
The ESM model (see Section 2.5.1) is used to compute the mean mass transport
signal over the DAP of the considered simulation. This mean signal (ESM) is then
used as input in the simulation. Noise-free observations and solutions, labeled as
SGN, are obtained from these input data and are compared to the considered errors
sources in order to assess the signal-to-noise ratio.

High Pass Filtering (FLT) error and Regularization Bias (REG)
Apart from the considered error sources, additional error sources related to the data
processing will be considered.

As will be shown in Section 6.1, where the error budget of the GRACE mission is
presented, RRC data of the GRACE mission suffer from large low-frequency errors.
In order to tackle these, a high-pass filtering procedure is routinely applied. This
procedure is discussed in detail in Section 6.1.4. While the high-pass filtering pro-
cedure will result in an overall reduction of errors, it introduces a new error source
which must be accounted for. The filtering error is computed as the difference
between noise-free data and noise-free data after applying the high-pass filter.

Additionally, as will be discussed in Section 4.5, a regularization procedure may
also be applied to the computed solutions. If one splits the ensemble of signal
and errors as independent data vectors, then regularization procedure will effec-
tively reduce the magnitude of all error realizations during the inversion procedure.
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However, since the regularization modifies the linear system of equations, a sig-
nal distortion is unavoidable. The regularization bias is computed as the difference
between the input mean mass transport signal (ESM) and the regularized solution
computed from noise-free observations (SGN).

Indirect Effect Error (IEF)
Indirect effect errors (IEF) have been formalized in Chapter 3. Any perturbation in
the background force model will cause the computed satellite orbits to deviate from
the real ones causing indirect effect errors. For all considered errors sources in the
previous sections the corresponding indirect effect error is taken into account.

However, the mean mass transport signal is also a background force model
perturbation. Therefore, the mean mass transport signal causes a corresponding
indirect effect error which has not yet been accounted for. The indirect effect (IEF)
error source is used to represent this error.

4.3. True and reference orbit generation
A large part of simulating an ll-SST mission is the computation of PDOs on the basis
of an initial state vector and a force model. All the components of the force model
used for the orbit integration are described in Liu (2008). This is a crucial step; it
is important to replicate in the simulations the approach followed during real data
processing.

Typically, the data accumulation period ranges from a few days up to a month.
For these relatively long timespans, PDOs are computed in independent arcs, each
requiring an initial state vector. In real GRACE data processing, two inputs are
required to obtain an initial state vector: a kinematic orbit (KO) and a reduced
dynamic orbit (RDO). The KO have relatively large positioning errors in the data
gathered by the GNSS receivers. Orbits computed on the basis of simple dynamic
models are more accurate over short periods but they tend to accumulated large
errors over time. RDOs couple data from the GNSS receivers with such models
in order to better estimated the true satellite orbits. At this point, it is important
to understand the role of these orbits in the computation of the PDO. The RDOs
provide an estimate of the satellite’s initial state vector. PDOs are very sensitive to
errors in the initial state vector. Therefore, in order to minimize these errors, the
initial state vector is adjusted using the KO as a set of observations. The procedure
to generate a PDO is then as follows:

1. obtain the initial state vector from the RDO.

2. starting from the initial state vector, a trial PDO is computed.

3. then, the positions of the KO are used as observations and the parameters of
the initial state vector are adjusted in a LS procedure in order to minimize the
differences between the trial PDO and the KO. This procedure is called orbit
fitting.

4. based on the the adjusted initial conditions, the PDO is computed.
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PDOs in real data processing are used as the reference orbits.
In the context of simulations, in addition to the reference orbit, also the ”true”

orbits of the satellites need to be computed. The process of creating the ”true”
satellite orbits begins with defining the parameters of the true orbit, e.g., altitude,
repeat period, inclination, etc. (see Section 2.2). The computation of a repeat
period orbit immersed in a realistic gravity field model of the Earth is an extremely
challenging task, which is well outside the scope of this thesis. It is, however,
straightforward to generate the required orbit immersed in a Keplerian force field,
i.e., assuming that the Earth is a point mass (see Section 2.2.2). In order to obtain
a true satellite orbit which approximates the design criteria, the approach is the
following (Encarnação, 2015),

1. Compute a Keplerian orbit according to the selected design criteria.

2. The Keplerian orbit provides the initial state vectors; a trial PDO orbit is com-
puted on their basis with a realistic static gravity field.

3. The trial PDO is fitted to the Keplerian orbit, i.e., the initial state vectors are
adjusted to minimize the deviations from the Keplerian orbit.

4. The adjusted initial state vectors are then used to compute the ”true” orbit.

This procedure ensures that the ”true” orbit is both realistic and matching the design
criteria.

In order to compute the reference orbit, I use the ”true” orbit to provide the
initial state vector of each arc and, simultaneously, the observations in the orbit
fitting procedure. In this manner, the ”true” orbit plays the role of the RDO and KO
in real data processing. In the absence of any perturbations, the computed refer-
ence orbit would be exactly equal to the ”true” satellite orbit. Thus, any difference
between the reference and true orbits is necessarily caused by an introduced error
source. To study the impact of individual errors on the computed satellite orbits, I
use different force models to generate the true and reference orbits.

By designing a set of error models, each considering a single error source, it
becomes possible to analyze the full impact of each one on the computed orbits.
Table 4.2 lists the types of error models which are used to generate PDOs.

Error Model 1 (EM1) is actually not perturbed by any error source. It simply
uses a static gravity field model, a necessary requirement to generate any orbit.
EM1 is exploited to generate the ”true” orbits. Regarding the reference orbits,
different versions are generated, each corresponding to a specific error source. EM2
is used to evaluate the impact of the mean mass transport signal. In this case, the
differences between the true and reference orbits are caused by the differences
between EM1 and EM2, i.e., by the mean mass transport signal. EM3 and EM4
make use of different ocean tide models. They are used to generate the ”true” and
reference orbits when I study the impact of differences between the considered
ocean tide models on the computed orbits. Similarly, EM5 is applied to evaluate
the impact of errors in the Atmosphere and Ocean De-Aliasing model. EM6 is used
to evaluate errors in the accelerometer data, EM7 to evaluate positioning errors in
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Table 4.2: Different error models considered for the numerical integration of orbits. Each error model
(EM) represents a different force model used for the computation of a PDO. MMT represents the mean
mass transport signal over the accumulation period of the mission, i.e., the signal to be recovered. OTE
are errors in ocean tide models. AOD represents errors in the Atmosphere and Ocean De-aliasing model.
ACC are errors in the accelerometer measurements. Finally, POS represents errors in the satellite orbits
used to estimate the initial state vectors in the orbit fitting procedure. TMP refers to the dynamic mass
transport signal.

Static MMT OTE AOD ACC POS TMP
EM1 3 7 7 7 7 7 7
EM2 3 3 7 7 7 7 7
EM3 3 7 FES2004 7 7 7 7
EM4 3 7 EOT11a 7 7 7 7
EM5 3 7 7 3 7 7 7
EM6 3 7 7 7 3 7 7
EM7 3 7 7 7 7 3 7
EM8 3 7 7 7 7 7 3

the reference orbit and, finally, EM8 to quantify the impact of the dynamic mass
transport signal. In Table 4.3, an overview of the error models used for each error
source is shown.

Once the true and reference orbits of all the satellites for all the considered error
sources have been obtained, it is time to compute the observations.

4.4. Observation generation
There are three types of ll-SST observations considered in the simulations, onto
which the considered error sources may be propagated:

• synthetic ranges

• residual range combinations

• average inter-satellite accelerations.

Synthetic ranging noise
Synthetic ranging noise (NOI) is the simplest kind of observations. Its computation
does not require any satellite orbits. It reproduces random errors that appear at the
level of ranging data, specifically, from star cameras and a ranging sensor. These

errors can be accurately modeled as random stationary noise defined by their PSD
ኻ
ኼ .

In order to generate a noise realization, the phase corresponding to each frequency
is randomized and the resulting complex spectrum is inverted back into the time
domain.

To be consistent with the other types of observations, defined in terms of av-
erage inter-satellite accelerations, double differentiation is applied to the noise re-
alizations. Consider a set of synthetic ranges sampled at time intervals Δ𝑡, where
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𝜌። represents the inter-satellite range at the 𝑖−th time instant. The average inter-
satellite acceleration �̈�። is obtained by applying the 3-point numerical differentiation,

�̈�። =
𝜌።ዅኻ − 2𝜌። + 𝜌።ዄኻ

(Δ𝑡)ኼ
. (4.1)

While the previous expression is strictly not consistent with the RRC (cf. Eq. 3.9),
in practice it is adequate to generate error realizations of error sources which do
not require satellite orbits to propagate into observations (e.g. ranging noise).

Average inter-satellite accelerations
Average inter-satellite accelerations (ISA) observations are directly linked to the
differenced gravity field acting on the pair of ll-SST satellites, cf. Eq. 3.4. Com-
putation of average inter-satellite accelerations requires the true orbits of the pair
of ll-SST satellites. In the context of simulations, I use average inter-satellite ac-
celerations because they allow me to compute the direct effect of each individual
component of the force model. To compute the indirect effect the corresponding
RRC observations are additionally required.

Residual Range Combinations
RRCs are computed on the basis of the residual ranges between two sets of or-
bits: the true and reference orbits and the LOS unit vectors corresponding to the
reference orbits, cf. Eq. 3.9.

4.5. Generating Gravity Field Solutions
Once the set of true orbits is available, one can assemble the normal matrix that
is needed to form the system of linear equations relating the observations and the
Stokes coefficients. After the normal matrix is assembled, a solution is obtained for
each error source.

Depending on the characteristics of the satellite mission, the quality of the ob-
tained gravity field solution might not be homogeneous; e.g., the GRACE mission
shows large errors in some near-sectorial coefficients, which result in the well-
known vertical stripe pattern seen in unfiltered solutions. Several post-processing
filters have been developed in the literature: gaussian filter (Wahr et al., 1998),
de-striping filter (Swenson et al., 2006), de-correlating non-isotropic filter (Kusche
et al., 2009) or the ”fan” filter Zhang et al. (2009). In this thesis, I make use of the
statistically optimal Wiener-type filter which is routinely applied to the DMT fam-
ily of gravity field solutions Klees et al. (2008). The optimal filtering procedure is
described in Liu et al. (2010). One of the ingredients of the optimal filter is the
variance-covariance matrix of the mass transport signal to be recovered (Liu et al.,
2010). This matrix has been computed on the basis of the ESM model and is applied
consistently to all the solutions of all the simulations.

4.6. Simulation Modes
Indirect effect errors in the context of the RRC approach were introduced in Chap-
ter 3, where simple simulations were presented to highlight their impact on the
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gravity field solutions computed with the RRC approach. They are known to oc-
cur when PDOs are computed in the presence of force model disturbances. The
way in which indirect effect errors propagate into observations and into gravity field
solutions likely depends on the considered functional model. Even assuming that
indirect effect errors affect all approaches, it is still unknown to what extent each
approach is affected. In that case, the results presented in this thesis could be re-
garded as conditioned to the choice of methodology. Had a different methodology
had been chosen, the results would likely be different. However, a comparison of
indirect effect errors in all different functional models is beyond the scope of this
thesis. In order to address this issue, the simulation of an ll-SST mission can be
performed in one of two modes: complete or simplified. The difference between
the two is that the complete mode accounts for indirect effect errors, while the sim-
plified mode does not. The ”simplified mode” implies a best-case scenario, where
the impact of indirect effect errors is reduced to zero, while the complete mode can
be regarded as a real-world example valid in the context of the average acceleration
approach.

The complete mode will be used in Chapter 6 in order to compare simulated
errors with observed inter-satellite residuals of the GRACE missions. The simplified
mode will be used in Chapter 8, in the context of future satellite missions. In this
chapter, comparing the relative performance of future mission concepts is more
important than the specific data processing approach chosen to do so.

Importantly, the processing of real data is reproduced only in the complete
mode. The simplified mode cannot be applied to real ll-SST data as it relies on
the knowledge of the true orbits of the satellites. The major processing steps
described in the previous sections refer to the complete simulation mode. This
assumption that the true orbits are known leads to a number of simplifications
when the simplified mode is used.

Since the ”true” orbits are known, they can be directly used for the computation
of residual average inter-satellite accelerations as in Eq. 3.4. Therefore, reference
PDOs are no longer required and no RRC observations need to be considered. As
a consequence of this, all indirect effect errors are excluded.

When indirect effect errors are excluded, two error sources disappear: posi-
tioning error and the indirect effect caused by the mean mass transport signal.
Positioning errors (POS) can only propagate into ll-SST observations in the compu-
tation of reference PDOs which are no longer considered. The indirect effect errors
caused by the mean mass transport signal (IEF) is also no longer considered by
definition. Other error sources remain as they are directly evaluated over the true
orbits instead of in terms of the RRC.

Tables 4.3 and 4.4 show an overview of all the errors sources, force models,
orbits and observations considered in a ll-SST simulation for the complete and sim-
plified simulation modes, respectively.

4.7. Summary
In this Chapter, I have given an overview of the methodology that is used to eval-
uate the performance of an ll-SST mission. In Section 4.2, I have presented the
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error sources which are considered in the simulations. The errors are divided into
instrumentation errors, temporal aliasing errors and others. The noise scenarios
which apply to GRACE and future ll-SST missions were also presented, which only
differ in terms of instrumentation errors.

Afterwards, the major steps in the simulation of a ll-SST mission were presented.
In Section 4.3, the procedure to generate orbits is outlined in line with the back-
ground force models considered. In Section 4.4, the three types of observations
used in the simulations were presented. In Section 4.5 the procedure to invert ll-
SST observations into gravity field parameters is discussed. Finally, in Section 4.6,
the two adopted simulation modes and their differences were addressed.



5
Star camera errors and their
impact on GRACE’s monthly

gravity field models

I n this chapter, I present the work published in Inácio et al. (2015) regarding theSC errors in GRACE’s observations. The proper simulation of future concepts of ll-
SST missions requires the development of a realistic simulation tool whose results
must be validated against the data gathered by the GRACE mission. In order to
accomplish this goal, a complete understanding of the errors present in the GRACE
dataset is a prerequisite. Following this line of research, star camera errors were
investigated and a number of interesting findings is documented below. The results
presented in this paper have prompted the discovery of a minor software bug in
GRACE’s data processing chain with consequent improvement in the corresponding
datasets (Harvey, 2016).

5.1. Introduction
The Gravity Recovery And Climate Experiment (GRACE) satellites (B. D. Tapley et
al., 2004) were launched in 2002 with the aim to measure the static and time-
variable gravity field of the Earth. The GRACE mission consists of two satellites,
following each other in a low-earth orbit separated by a distance of about 200 km.
The attitudes of the GRACE satellites are determined by two star cameras (SCs)
on board each satellite. Errors in the SC measurements result in an inaccurate
determination of the satellites’ attitudes, which ultimately propagate into errors in
monthly mass anomaly maps.

Simulation studies (Kim, 2000) done prior to the launch of the GRACE satellites
predicted a noise level, which has not yet been matched by real data (Schmidt

Parts of this chapter have been published in Inácio et al. (2015).
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et al., 2008). This discrepancy highlights the need to fully understand the overall
error budget. This is a goal on its own but may also be relevant for future mission
performance analysis depending on the overall mission concept. In a recent study,
Ditmar et al. (2012) explain the major contributions to the GRACE noise budget in
different spectral bands. They showed that low-frequency noise (<1mHz) is caused
by the limited accuracy of the computed GRACE orbits, while the K-band Ranging
(KBR) sensor is the major contributor to noise at frequencies above 9mHz. Noise in
the frequency band between 1mHz to 9mHz (5.4 to 49 cycles per revolution, cpr)
is less well understood. Although there is no one-to-one correspondence between
frequencies in the KBR data and spherical harmonic degrees, it is very likely that
relevant geophysical signal largely maps into this frequency range.

The fundamental observable of GRACE is the range between the satellites, which
is measured by the KBR system. Since the launch of GRACE, advances in ranging
technology allow the use of laser interferometers in satellites (Dehne et al., 2009).
For instance, GFO carries both KBR and laser interferometric ranging instruments,
the latter as a technological showcase. It is foreseen that laser interferometers
will be able to improve the ranging accuracy by up to three orders of magnitude
(P. Bender et al., 2003; Dehne et al., 2009). However, improvements brought by
laser interferometry alone do not guarantee similar improvements in monthly grav-
ity anomaly maps. Fully exploiting the new ranging technology requires all other
relevant error sources to be controlled. Before GRACE’s launch, pre-mission simula-
tion studies had to rely on assumptions about error sources. At this point, real data
of the GRACE mission can be used to understand the complete error budget. This
knowledge may be important for the simulation and design of future GRACE-type
missions.

Errors in attitude determination may propagate into GRACE-based gravity mod-
els either by causing errors in the orientation of the measured non-gravitational
acceleration vector or by causing ranging errors.

In the context of the gravity field and steady-state ocean circulation explorer
(GOCE) mission (Drinkwater et al., 2007), errors in satellite attitude are well un-
derstood. Pail (2005) documents a simulation study on attitude errors. He consid-
ers various scenarios of errors in the attitude product, and their impact on GOCE
gravity gradients is shown. Frommknecht et al. (2011) provide details about the
attitude reconstruction step of the GOCE data processing. They used the so-called
hybridization approach to merge information provided by the gradiometer and the
star tracker instruments using a Kalman filter. Building on this, Stummer et al.
(2012) document improvements to the attitude reconstruction method, where a
new FIR filter approach replaces the Kalman filter. All these publications rely on
a-priori knowledge of the errors in the SC instruments aboard GOCE. A different
approach was taken in Stummer et al. (2011), where an estimate of real errors
in SC instruments is shown. More recently, Herceg et al. (2017) estimates ther-
mal distortions of the star-camera assembly for the Swarm satellites. Similar idea
was applied to the GOCE mission (Siemes et al., 2019), where a new method is
presented to combine data from multiple scar-cameras along with an estimation of
offsets to their relative orientation as a function of by temperature.
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Regarding the GRACE mission, the impact of errors in the satellite attitudes has
not yet been fully addressed. Inter-satellite accelerations (ISA) reflecting gravity
field variations need to be corrected for non-gravitational accelerations. The latter
are measured by accelerometers on board the GRACE satellites. The measurements
refer to the Science Reference Frame (SRF) (Case et al., 2010), and need to be
rotated to the Inertial Reference Frame (IRF) in which the ISAs are expressed.
Attitude errors cause small deviations in the orientation of the non-gravitational
acceleration vector in inertial space, which ultimately show up as errors in the ISAs.

Observed inter-satellite ranges refer to the antenna phase centres, but need to
be reduced to the Centre of Mass (CoM) of each GRACE satellite. The corresponding
correction is referred to as the antenna phase centre (APC) correction. This type
of correction is applied to both the GNSS and KBR measurements. The APC is
computed as the projection of the estimated antenna phase centre vector along
the direction defined by the two CoM of the satellites. This computation requires
the antenna phase centre vector to be rotated from the SRF to the IRF. Inaccuracies
in the satellite attitudes introduce errors in reduced GNSS and KBR measurements.
In this paper we focus only on the APC errors in the KBR ranging data.

The KBR ranging data and the corresponding APC are publicly available as the
KBR1B product, which is part of the set of GRACE Level-1B (L1B) products (Case et
al., 2010). Other relevant products are the KBR antenna phase centre vector prod-
uct (VKB1B) and the orientation of each SC head with respect to the SRF (QSA1B).
Horwath et al. (2011) identified biases in the pitch and yaw angles of L1B attitude
data, which introduce errors in the APC. Horwath et al. also showed improvements
in gravity field solutions when removing them. Bandikova et al. (2012) conducted
a study on the inter-satellite pointing angles and found systematic effects with the
potential to affect GRACE gravity field solutions. In 2012, a new release (RL02) of
L1B data has been made available. Following up on the improvements proposed
by Horwath et al., the new RL02 version benefits from a recalibration of the QSA1B
and VKB1B products (Kruizinga et al., 2010). These results strongly support the
hypothesis that errors in APC of KBR data may play a role in GRACE final prod-
ucts and motivate the need to better understand their propagation into gravity field
solutions.

There are two main objectives of this study. The first objective is to estimate and
model actual errors in GRACE SC data. Errors in SC data are obtained by exploiting
the existing SC redundancy on board the GRACE satellites. SC data are part of
the GRACE Level-1A (L1A) data products (Case et al., 2010). Using L1A SC data,
we build models that describe errors along individual axes of GRACE SCs. These
models allow us to propagate realistic SC errors into gravity field models and may
be used to simulate SC errors under different scenarios.

The second objective is to assess the impact of estimated attitude errors on
GRACE monthly gravity anomaly maps. Realizations of SC attitude errors are first
propagated into KBR errors and then into ISA (Liu et al., 2010). From ISA, monthly
mass anomaly maps are estimated using the procedure of Liu et al. (2010). The
effect of attitude noise on the monthly mass anomaly maps is assessed by compar-
ing them with monthly mass anomaly maps obtained in the presence of synthetic
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SC noise.
SCs and their configuration in GRACE satellites have been described in Sec-

tion 2.5.3. The structure of this section is as follows. In Section 5.2 we analyse
real L1A SC data and quantify noise in individual SC axes. The noise realizations
are then used in Section 5.3 to build models of attitude noise. In Section 5.4, we
discuss the propagation of attitude errors into GRACE inter-satellite ranging data.
In Section 5.5, we show the propagation of the SC error models into the satellite
attitudes, ISA and monthly gravity field solutions. In Section 5.6, we provide a
brief summary of the main findings of the study. Finally, in Section 5.7, we discuss
the results obtained and discuss potential applications to future satellite gravimetry
missions.

5.2. Attitude Errors
In this section, we provide the basic formalism of rotations and show how we exploit
the data of the two independent SCs to quantify attitude errors. The presence of
two SCs on board each GRACE satellite provides redundant measurements of the
satellites’ attitude. The difference between the SC measurements reflects the level
of noise in the instruments. We will define the SC measurement errors as small-
angle rotations. Then we show how noise in individual SC data propagates into
the difference between primary and secondary SCs. This formalism allows us to
estimate errors along individual SC axes based on the observed differences between
SC measurements.

The relative orientation of two arbitrary reference frames can be modelled in
different ways, using either direction-cosine-matrices (DCM), quaternions or angle-
axis vectors. In Aerospace Engineering it is frequently needed to define rotations
between the reference frame of a vehicle and some external reference frame. The
most intuitive way to describe the rotation is to use Cardan angles: roll (𝛼), describ-
ing the rotation around the x-axis, which in this paper is the along-track direction;
yaw (𝛾) around the z-axis which is normally perpendicular (either up or down) to
the horizontal plane of the vehicle, and pitch (𝛽) around the y-axis, which is chosen
to complete the right-handed system. These angles are most commonly used since
they correspond to the types of rotations used to manoeuvre aircraft and spacecraft.
This set of three rotations can be used to define the orientation of the spacecraft
relative to some reference frame.

Each SC on board the GRACE satellites provides attitude information relative to
the IRF. In the following, superscript 𝐶 refers to the science reference frame (SRF),
common to all star cameras, 𝑆። to the i-th star camera reference frame, and 𝐼 to
the IRF. To the unacquainted reader, a short introduction to rotations is provided
in Appendix A. Several specific references on the topic can be found, e.g., Jekeli
(2001).

Let Rፒ።ፈ be the DCM, which transforms vectors from the IRF to the i-th SC frame.
Each SC measures this rotation with a small error 𝜀𝜀𝜀Ꭵ,።.

R̃ፒ።ፈ = R(𝜀𝜀𝜀Ꭵ,።)Rፒ።ፈ , (5.1)
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where 𝜀𝜀𝜀Ꭵ,። ≡ [𝜀ᎎ,። 𝜀ᎏ,። 𝜀᎐,።]
ፓ
is the vector representing the errors in the roll (𝜀ᎎ,።),

pitch (𝜀ᎏ,።) and yaw (𝜀᎐,።) angles in the measured rotation and where 𝑖 can be 𝑃 or
𝑆 denoting the primary or secondary star camera, respectively. R(𝜀𝜀𝜀Ꭵ,።) is the DCM
defined by the vector 𝜀𝜀𝜀Ꭵ,።, cf., Appendix A. The tilde denotes a measured quantity.
The small angle errors 𝜀𝜀𝜀Ꭵ,። in the SC frame are assumed to be stationary and well
described by a Gaussian distribution.

The relative orientation of each SC with respect to the SRF is known (QSA1B
product) and the 𝐼 → 𝐶 rotation can be written as

R̃ፂፈ,። = Rፂፒ።R(𝜀𝜀𝜀Ꭵ,።)R
ፒ።
ፈ . (5.2)

Both SCs measure the same rotation Rፂፈ and their differences expose the level of
noise in the attitude determination system. Eq. (5.2) allows us to describe the
differential rotation as a function of the errors 𝜀𝜀𝜀Ꭵ,። and 𝜀𝜀𝜀Ꭵ,፣ in the 𝑖-th and 𝑗-th SCs.
The differential rotation between measurements of any two SCs is

R̃ፂፈ,። (R̃ፂፈ,፣)
ዅኻ
= Rፂፒ። R(𝜀𝜀𝜀Ꭵ,።)R

ፒ።
ፈ (Rፂፒ፣ R(𝜀𝜀𝜀Ꭵ,፣)R

ፒ፣
ፈ )

ዅኻ

= Rፂፒ። R(𝜀𝜀𝜀Ꭵ,።)R
ፒ።
ፈ R

ፈ
ፒ፣ R(−𝜀𝜀𝜀Ꭵ,፣)R

ፒ፣
ፂ (5.3)

Notice that RRፚ = Rፚ = R፝R
፝
ፚ. Therefore,

R̃ፂፈ,። (R̃ፂፈ,፣)
ዅኻ
= Rፂፒ። R(𝜀𝜀𝜀Ꭵ,።)R

ፒ።
ፂ R

ፂ
ፒ፣ R(−𝜀𝜀𝜀Ꭵ,፣)R

ፒ፣
ፂ

For small errors 𝜀𝜀𝜀Ꭵ, the approximation R(𝜀𝜀𝜀Ꭵ) ≈ I−ΨΨΨ holds (cf. Appendix A),

= Rፂፒ። (I−ΨΨΨ
ፒ።
። ) R

ፒ።
ፂ R

ፂ
ፒ፣ (I+ΨΨΨ

ፒ፣
፣ ) R

ፒ፣
ፂ (5.4)

= I−Rፂፒ።ΨΨΨ
ፒ።
። R

ፒ።
ፂ +Rፂፒ፣ ΨΨΨ

ፒ፣
፣ R

ፒ፣
ፂ −Rፂፒ።ΨΨΨ

ፒ።
። R

ፒ።
ፂ R

ፂ
ፒ፣ΨΨΨ

ፒ፣
፣ R

ፒ፣
ፂ

Neglecting second order terms, we obtain from Eq. (A.5),

R̃ፂፈ,። (R̃ፂፈ,፣)
ዅኻ
≈ I−ΨΨΨፂ። +ΨΨΨፂ፣
= I− ΔΨΨΨፂ።፣
= R(Δ𝜀𝜀𝜀ፂᎥ,።፣) (5.5)

where,

Δ𝜀𝜀𝜀ፂᎥ,።፣ ≡ 𝜀𝜀𝜀ፂᎥ,። −𝜀𝜀𝜀ፂᎥ,፣ .

For each GRACE satellite, equipped with primary and secondary SCs, the differ-
ential rotation between individual SC measurements can be computed as

R̃ፂፈ,ፏ (R̃ፂፈ,ፒ)
ዅኻ
≈ R(Δ𝜀𝜀𝜀ፂᎥ). (5.6)
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In Eq. (5.6), the rotation 𝐼 → 𝐶 as measured by the primary SC is applied after the
inverse rotation as measured by the secondary SC. If both SC measurements are
error-free, this operation would result in the identity matrix. In reality, this operation
yields a small angle rotation R(Δ𝜀𝜀𝜀ፂᎥ), which is caused by the measurement errors
in the SCs. Eq. (5.6) shows that the measurement error Δ𝜀𝜀𝜀ፂᎥ, in terms of roll, pitch
and yaw angles, can be computed directly from the SC data.

Because of the anisotropy of the SC instruments it is important to understand
how errors in each SC axis propagate into Δ𝜀𝜀𝜀ፂᎥ, specifically in terms of their cross-
and boresight axes. Eq. (5.5) shows that attitude errors Δ𝜀𝜀𝜀ፂᎥ in the C-frame equal
the difference between errors in the individual SCs rotated to the C-frame. Using
the approximate rotation matrix from each SC frame to the SRF (see Fig 2.3), we
readily obtain

Δ𝜀𝜀𝜀ፂᎥ = R፱(−135°)𝜀𝜀𝜀Ꭵ,ፏ −R፱(135°)𝜀𝜀𝜀Ꭵ,ፒ . (5.7)

Notice that Eq. (5.7) is only valid when assuming that SC errors are small, i.e., in
the range where sin𝜃 can be approximated by 𝜃 and cos𝜃 by 1. The following
equalities hold: cos(±135∘) = − ኻ

√ኼ , sin(±135
∘) = ± ኻ

√ኼ , and Eq. (5.7) can be ex-
panded into component-wise notation:

[
Δ𝜀ᎎ
Δ𝜀ᎏ
Δ𝜀᎐

] = [
𝜀ᎎ,ፏ − 𝜀ᎎ,ፒ

ኻ
√ኼ (−𝜀ᎏ,ፏ + 𝜀᎐,ፏ + 𝜀ᎏ,ፒ + 𝜀᎐,ፒ)ኻ
√ኼ (−𝜀ᎏ,ፏ − 𝜀᎐,ፏ − 𝜀ᎏ,ፒ + 𝜀᎐,ፒ)

] . (5.8)

The right-hand side can be simplified by adding and subtracting the pitch and yaw
errors,

[
Δ𝜀ᎎ

Δ𝜀ᎏ − Δ𝜀᎐
Δ𝜀ᎏ + Δ𝜀᎐

] = [
𝜀ᎎ,ፏ − 𝜀ᎎ,ፒ

ኼ
√ኼ (𝜀᎐,ፏ + 𝜀ᎏ,ፒ)ኼ
√ኼ (−𝜀ᎏ,ፏ + 𝜀᎐,ፒ)

] . (5.9)

Notice that the errors 𝜀ᎎ,። , 𝜀ᎏ,። correspond to the cross-boresight axes, while 𝜀᎐,። cor-
responds to the boresight axis of a SC. Boresight errors are expected to be a factor
8 larger than cross-boresight errors. Based on Eq. (5.9), we derive expressions for
the attitude errors of each SC, where we neglect the cross-boresight terms in the
second and third lines:

[
𝜀ᎎ,ፏ − 𝜀ᎎ,ፒ
𝜀᎐,ፏ
𝜀᎐,ፒ

] = [
Δ𝜀ᎎ

√ኼ
ኼ (Δ𝜀ᎏ − Δ𝜀᎐)
√ኼ
ኼ (Δ𝜀ᎏ + Δ𝜀᎐)

] . (5.10)

Under the assumption of independent and identically distributed errors in pri-
mary and secondary SC data, Eq. (5.10) allows us to relate differences between SC
measurements with errors along the boresight axis of each SC (𝜀᎐,ፏ and 𝜀᎐,ፒ) and
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along a combination of one cross-boresight axis (the x-axes) of each SC. It can also
be seen that the cross-boresight axes errors 𝜀ᎏ,። (the y-axes) are not estimated. In
the following we refer to the left-hand side as SC error and to the right-hand side
as SC error estimates.

We analyse two months of L1A SC data: 2006/02 and 2006/05 and compute the
SC error estimates. The statistics are shown in Table 5.1, columns ”Obs”. Notice
that the mean SC error differs significantly from zero. Furthermore, the mean is
not time-stationary and may change from month to month.

In Table 5.1, we assume a similar error level for both SCs, such that 𝜎᎒ᎎ =ኻ
√ኼ𝜎᎒ᎎ,ፏዅ᎒ᎎ,ፒ . From this table, we see that the standard deviation of the first compo-
nent of the SC error estimates (𝜀ᎎ) is around 23μrad. This value is at the edge of
the single axis accuracy which is expected to be better than 24 μrad (E. Davis et al.,
1999). The primary SC boresight axes error estimates have a standard deviation of
230-290 μrad. For both satellites, this value is seen to change from one month to
another by up to 25 μrad. The secondary SC boresight axes error estimates have a
standard deviation of about 160-170 μrad. They are therefore more accurate than
the primary SC boresight axes. For both satellites, this value changes from one
month to another by up to 3 μrad.

Table 5.1: Statistics of SC error estimates, fitted harmonic model and stochastic model in μrad. The
mean value of the SC error estimates is attributed to the harmonic model. The stochastic model has
zero mean. ᎒ᎎ represent SC errors along the roll axis, assuming both SCs have the same level of noise
along this axis. ᎒᎐,ፏ and ᎒᎐,ፏ represent SC errors along the boresight axis of the primary and secondary
SCs, respectively.

μrad GRACE-A GRACE-B
Obs. Harm. Stoc. Obs. Harm. Stoc.

2006/02 mean std std std mean std std std
𝜀ᎎ 27 23 18 13 2 24 19 14
𝜀᎐,ፏ 97 263 198 158 -172 254 209 131
𝜀᎐,ፒ -168 162 124 98 264 170 130 103

2006/05 mean std std std mean std std std
𝜀ᎎ -10 22 16 14 -16 25 18 16
𝜀᎐,ፏ -66 288 214 164 245 229 163 143
𝜀᎐,ፒ 117 165 110 113 -234 167 122 101

If we consider the secondary SC boresight axes, the ratio between cross- and
boresight axes accuracy is close to the expected value of 8. If we consider instead
the primary SC boresight axes, then this ratio is higher than expected, with a value
between 9 and 13.

A comparison of GRACE-A with GRACE-B reveals that the noise standard devi-
ation is similar, except for the primary SC boresight axis, where GRACE-A shows
higher standard deviations by up to 59 μrad.
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5.3. Modelling SC errors
In this section we exploit Eq. (5.10) to build a model of SC errors based on L1A SC
data for the months 2006/02 and 2006/05. They can be used to cover the existing
data gaps. They can also be used to study the impact of SC errors on gravity field
solutions, in months during which we have no SC data. Such model could also be
used to investigate alternative configurations of the SC assembly.

Plotting and inspecting SC error estimates in the time domain reveals a cyclic
pattern with a period matching the orbital revolution period of the GRACE satellites.
This suggests that SC error estimates in the time domain can be better visualized
when individual orbital revolutions are plotted side-by-side against the satellite’s
true anomaly, an approach first proposed by Bandikova et al. (2012).

Plotting the data in this manner reveals a dependency between the SC error
estimates and the satellite’s true anomaly. This is seen in Fig. 5.1 as a checker-
board pattern in the top plot and as a series of stripes in the two bottom plots. The
SC error estimates can only be computed when measurements exist for both SCs.
This explains the large amount of gaps in the SC error estimates. The black regions
in Fig. 5.1 correspond to the periods of missing data in one of the SCs. They are
caused by periods during which at least one of the star cameras is blinded by the
sun or the moon shining in its field of view, either directly or through reflections in
the optical camera baffle.

In Fig. 5.2 the square-root of the periodogram estimate of the power spectral

density (PSD
ኻ
ኼ ) of one component of the SC error estimates is shown. The PSD

ኻ
ኼ

reveals a set of very sharp, energetic frequencies closely related to multiples of the
satellite’s orbital period. These spectral peaks have also been observed in the SCs
onboard GOCE (Stummer et al., 2011). These peaks are observed in both satellites
and in all three components of the SC error estimates. They contain between 50-
70% of the total energy.

Furthermore, the error pattern observed in Fig. 5.1 changes over time. A com-
parison of the error pattern during the first few and last few orbital revolutions
shows slight differences in the error pattern. SC errors depend, among others, on
the number and brightness of the stars in the field of view. For a given satellite
anomaly, a similar pattern of stars is seen in consecutive satellite revolutions. This
would explain the strong dependency of the errors with the orbital revolution fre-
quency. Furthermore, the precession of the satellite’s orbit causes a slow change
in the pattern of stars. This could, in turn, explain the slow change observed in the
error pattern depicted in the plots.

Another plausible explanation would be that thermal distortion of the SC assem-
bly would cause measurable displacement of the SC heads. As GRACE’s satellites
drift through all local times, there are continuously changing sun/shadow configu-
rations, not only during one orbit but also throughout the seasons. Similar thermal
distortions have been reported for Swarm (Herceg et al., 2017), and even for GOCE
(Siemes et al., 2019) to a lesser extent, since it is in a sun-synchronous orbit where
the sun/shadow configuration is almost fixed. In any case, this error pattern indi-
cates an influence of the satellites’ environment on the SC measurements.
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Figure 5.1: SC error estimates of GRACE-
A during 2006/02. Depicted are the cross-
boresight error term ᎒ᎎ,ፏ ዅ᎒ᎎ,ፒ (top-left),
the primary SC boresight error ᎒᎐,ፏ (top-
right) and the secondary SC boresight er-
ror ᎒᎐,ፒ (bottom-left). In each plot the
vertical axis represents the satellite’s true
anomaly, where the labels NP, EQ and
SP represent the north-pole, equator and
south-pole points along the satellite’s or-
bit, respectively. A strong dependency
can be seen between SC error estimates
and the satellite’s true anomaly. Units are
mrad.

Figure 5.2: PSD
Ꮃ
Ꮄ of the first com-

ponent of SC error estimates (᎒ᎎ,ፏ ዅ
᎒ᎎ,ፒ) for GRACE-A during 2006/02.
Sharp peaks of high magnitude can
be seen in the plot, close to the har-
monics of the orbital revolution fre-
quency, marked with a dashed red
line. They correspond to the periodic
features observed in the spatial do-
main. Similar peaks are found for all
axes and both months of data. Red
dots highlight the 300 most energetic
spectral components which are used
to form a harmonic noise model. The
zero-frequency component (bias, not
shown) is always part of the harmonic
model.
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From Fig. 5.2 we conclude that SC error estimates reveal two distinct compo-
nents. A random component with smooth spectral signature, and a systematic
component with energy distributed over the harmonics of the satellite orbital fre-
quency. We refer to these distinct SC error components as stochastic component
and harmonic component, respectively. The distinction between these two com-
ponents is purely based on their spectral properties; it is not implied that each of
them can be attributed to a single specific error source or even that they must be
caused by distinct error sources.

There are two reasons why it is necessary to separate such two components of
the SC error estimates. Firstly, interactions of the satellite with its surrounding map
presumably into harmonic errors, which means that potentially, one could be able
to reduce such errors. For example, we could optimize the orbit to achieve a more
uniform star distribution in the case of attitude errors; or one could chose a sun-
synchronous orbit which would minimize thermal-load on the satellites in the case
of (hypothetical) thermal errors. Therefore, the harmonic error component allows
one to quantify the potential benefit of such improvements and whether they would
be relevant in the context of gravity field modelling. Another reason to separate
these two components is very practical. ARMA models have proven to be a very
efficient tool to model random errors; they are now routinely used to model noise of
satellite gravity data. However, for random errors with sharp spectral features, they
are less suited unless the order of the ARMA model is chosen extremely high, which
in turn reduces the numerical efficiency of the ARMA noise model. Separating the
SC error estimates in harmonic and stochastic components allows the ARMA models
to be efficiently used while keeping the overall noise spectrum realistic.

5.3.1. The harmonic component of SC errors
Because of their spectral characteristics, harmonic SC errors can be modelled by
a relatively small number of sinusoids. Due to the presence of gaps in the SC
measurement time series, we estimate the amplitude and phase of these sinusoids
using the least-squares (LS) approach. We use the Inverse Discrete Fourier Trans-
form (IDFT) as a functional model. Consider the input signal 𝑦። ≡ 𝑦(𝑡ኺ + 𝑖Δ𝑡), 𝑖 =
0, 1, … , 𝑁−1 and the set of complex Fourier coefficients 𝑌፣, where N represents the
total number of Fourier coefficients and the total number of points, such that,

⎡
⎢
⎢
⎣

𝑦ኺ
𝑦ኻ
⋮

𝑦ፍዅኻ

⎤
⎥
⎥
⎦
= 1
𝑁

⎡
⎢
⎢
⎢
⎢
⎣

𝑒
።ኼ⋅ኺ⋅ኺ
ፍ 𝑒
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ፍ 𝑒
።ኼ⋅(ፍዅኻ)⋅ኻ

ፍ ⋯ 𝑒
።ኼ⋅(ፍዅኻ)ኼ

ፍ

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑌ኺ
𝑌ኻ
⋮

𝑌ፍዅኻ

⎤
⎥
⎥
⎦
, (5.11)

which is a linear and invertible system of equations.
The harmonic SC errors appear in the spectral domain as very sharp peaks

with high energy. Only a small subset Y፦ , ∀𝑚 ∈ [𝑚ኻ, 𝑚ኼ, ..., 𝑚ፌ] with a total of 𝑀
complex coefficients of the full set of Fourier coefficients Y። , ∀𝑖 ∈ [0, ..., 𝑁 − 1] is
required to model the harmonic SC errors. The complex coefficients to be used
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in the model correspond to the 𝑀 most energetic spectral components. They are
selected from an initial, approximate, spectrum computed by filling the gaps in the
original SC error estimates with zeros. This approximate spectrum is only used to
determine which spectral components will be estimated.

The choice of how many coefficients should be used is a trade-off between the
number of parameters used to describe the model and capturing enough energy to
describe the harmonic error component. Selecting too many parameters leads to a
leakage of stochastic errors into the harmonic model. This is undesirable because
a more adequate model can be used to describe the stochastic SC errors, as will be
discussed in Section 5.3.2.

Due to gaps in the SC data, only the subset y፥ , ∀𝑙 ∈ [𝑙ኻ, 𝑙ኼ, ..., 𝑙ፋ] with a total
of 𝐿 SC error estimates is available. Keeping only the 𝐿 lines and 𝑀 columns of
Eq. (5.11) results in the following model,

⎡
⎢
⎢
⎣

𝑦፥ኻ
𝑦፥ኼ
⋮
𝑦፥ፋ

⎤
⎥
⎥
⎦
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⎢
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ፍ
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. (5.12)

We assume that all observations are uncorrelated and have the same unknown
standard deviation 𝜎፲, so that the SC error estimates variance-covariance matrix is
Cy ≡ 𝜎ኼ፲I. As seen in Fig. 5.1, gaps cluster in large regions, resulting in unstable
linear system of equations, whose solutions show strong oscillations in the areas
void of data. To mitigate this behaviour, we apply regularization (Tikhonov et al.,
1977), in the form of a set of pseudo-observations, which are defined only over
the gapped regions of the SC error estimates. Hence, the extended mathematical
model is

[y0] = [
A
A፠
]Ym. (5.13)

The variance-covariance matrix of the pseudo-observations is C፠ ≡ 𝜎ኼ፠I, where
𝜎፠ is the standard deviation of the noise in the pseudo-observations. Then, the
regularized solution is obtained as,

�Y፦ = (AፓA+ 𝑘Aፓ፠A፠)
ዅኻ (Aፓy) , (5.14)

where 𝑘 = ኼ፲
ኼ፠
is the regularization parameter. If the standard deviation of noise in

the pseudo-observations is assumed to be large (𝜎፠ → ∞) then 𝑘 → 0. In this situ-
ation, no regularization is applied, resulting in potentially unstable LS solutions. On
the other hand, if 𝜎፠ = 𝜎፲, then 𝑘 = 1, and, in this case, the pseudo-observations
have the same weight as the observations. This is equivalent to assigning zero
values to missing data, which, as we argued before, is undesirable. Thus, both
extremes cases, 𝑘 = 0 and 𝑘 = 1, lead to sub-optimal results. A certain intermedi-
ate value of 𝑘 corresponds to a solution which suitably represents the harmonic SC
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errors. This solution is defined as the one which conserves the total energy of the
harmonic component in the SC error estimates.

The total energy 𝜉ᖣ of the observed harmonic component, which contains data
gaps, can be computed as

𝜉ᖣ =∑
፦
∥ Y፦ ∥ኼ . (5.15)

However, the fitted harmonic model contains no gaps. In view of Parseval’s iden-
tity, the total energy of the observed and fitted harmonic components can only
be compared if the observed harmonic component is up-scaled by the ratio ፍ

ፋ be-
tween the total number and the number of valid SC error estimates. This means
that Eq. (5.15) must be replaced by the expression for the up-scaled energy,

𝜉 = 𝑁
𝐿 ∑

፦
∥ Y፦ ∥ኼ (5.16)

The following procedure is used to fit a harmonic model to the gapped SC error
estimates:

1. Assign zero values to the missing SC error estimates to compute an approx-
imate PSD. This PSD is used to find the set of 𝑀 most energetic frequency
components in the SC error estimates. For one month of data, the PSD yields
around 10ዀ Fourier coefficients. However, only 100 to 300 most energetic
components typically contain between 50%-70% of the total energy. In our
models we chose the value of 𝑀 = 300. This number is empirically chosen
as a threshold beyond which adding more frequency components no longer
significantly changes the total energy of the harmonic component. In Fig. 5.2
they are marked with red circles.

2. Compute the target total energy 𝜉 of the harmonic model from the selected
set of coefficients Ym, cf., Eq. (5.16).

3. An initial value of the regularization parameter is chosen and the regularized
solution is computed.

4. The regularization procedure is iterated with different parameters 𝑘።, until the
obtained solution is within a threshold 𝛿 of the target total energy,

|𝜉 −∑
፦
∥ �Y፦ ∥ኼ| < 𝛿, (5.17)

If the total energy is too high, the solution needs more regularization (𝑘። >
𝑘።ዅኻ). Otherwise the regularization parameter should be reduced (𝑘። < 𝑘።ዅኻ).

This procedure yields a model for the harmonic error component. In the absence
of information in gapped regions, it interpolates the information observed in the
regions with measurements instead of assuming zero data in the gaps. We do not
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state that such a model represents the real, unknown errors in the gapped regions.
However, we can state that such a model is the one which, in the whole domain,
most closely represents the harmonic error observed in the non-gapped regions.

The results of the outlined algorithm are shown in Fig. 5.3. Table 5.1 shows
the statistics of the fitted harmonic models and of the respective residuals. It can
be seen that the harmonic model, despite comprising only a small set of frequency
components, contains ≈65% of the total SC error estimates energy.

The fitted harmonic model consists of one set of DFT coefficients for each com-
ponent of the SC error estimates: Y᎒ᎎ,ፏዅ᎒ᎎ,ፒ፦ , Y᎒᎐,ፏ፦ and Y᎒᎐,ፒ፦ . This model is used
to generate a harmonic error realization for all axes of both SCs. Applying the
IDFT operation to Y᎒᎐,ፏ፦ and Y᎒᎐,ፒ፦ yields the time-series of harmonic errors along
the boresight axes of the primary and secondary SCs, respectively.

Regarding the cross-boresight model Y᎒ᎎ,ፏዅ᎒ᎎ,ፒ፦ , we assume that the magnitude
of the error along each individual axis Y᎒ᎎ,ፏ፦ and Y᎒ᎎ,ፒ፦ is equally divided among both
SCs and that they are orthogonal in the complex plane. This results in a solution,

Y᎒ᎎ,ፏ፦ = −√22 𝑒
ዅ። ኾY᎒ᎎ,ፏዅ᎒ᎎ,ፒ፦

Y᎒ᎎ,ፒ፦ = √2
2 𝑒


ኾY᎒ᎎ,ፏዅ᎒ᎎ,ፒ፦ .

(5.18)

These two components are obtained as rotations in the complex plane by ±45°
of the corresponding cross-boresight model, scaled to satisfy the observation in
Eq. (5.10). The zero-frequency component (mean value) is not an imaginary value.
Therefore, assuming that it is also equally divided among both SCs, Y᎒ᎎ,ፏኺ = −ኻ

ኼY
᎒ᎎ,ፏዅ᎒ᎎ,ፒ
ኺ

and Y᎒ᎎ,ፒኺ = ኻ
ኼY

᎒ᎎ,ፏዅ᎒ᎎ,ፒ
ኺ

The two remaining cross-boresight axes Y᎒ᎏ,ፏ፦ and Y᎒ᎏ,ፒ፦ are not observable, cf.,
Eq. (5.10). We assume that the magnitude of their DFT coefficients is the same as
Y᎒ᎎ,ፏ፦ and Y᎒ᎎ,ፒ፦ while their phases are randomized.

5.3.2. The stochastic component of SC errors
The stochastic component of the SC error estimates is obtained by subtracting the
harmonic model from the original SC error estimates. This yields the random mea-
surement errors shown in the second column of Fig. 5.3. In this section, the power
spectrum of the stochastic SC error estimates is computed. An Autoregressive-
moving-average (ARMA) model is then fitted to the computed power spectrum
(Klees et al., 2003). Using ARMA models to describe the random errors in SC
measurements allows generating arbitrary long realizations with the same spectral
signature.

We assume that all cross-boresight stochastic errors, 𝜀ᎎ,ፏ, 𝜀ᎏ,ፏ, 𝜀ᎎ,ፒ and 𝜀ᎏ,ፒ
have the same power spectrum and are uncorrelated. Then PSD

ኻ
ኼ (𝜀ᎎ,ፏ − 𝜀ᎎ,ፒ) =

√2PSD
ኻ
ኼ (𝜀ᎎ), where PSD

ኻ
ኼ represents the square-root of power spectrum operator

and 𝜀ᎎ represents the stochastic error along all cross-boresight axes. Applying the
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Figure 5.3: Fitted harmonic model (left), fit residuals (right). SC error estimates along the roll axis
(top), pitch (middle) and yaw (bottom). Models were fitted using 300 complex Fourier coefficients. The
residuals show random error, showing that the fitted harmonic models adequately describe observed
patterns in SC error estimates (Fig. 5.1). Units are mrad.
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operator PSD
ኻ
ኼ to Eq. (5.10) yields,
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. (5.19)

Notice that, similarly to the harmonic component, the presence of gaps in the
SC error estimates requires the power spectrum to be up-scaled by the ratio ፍ

ፋ .
Eq. 5.19 yields the power spectra of stochastic errors along the primary SC bore-

sight axis (𝜀᎐,ፏ), the secondary SC boresight axis (𝜀᎐,ፒ) and all the cross-boresight
axes of both SCs (𝜀ᎎ). The ARMA models fitted to each component of the stochastic
SC error are shown in Fig. 5.4.

The standard deviation of each SC error component is shown in Table 5.1. We
see that the accuracy of the cross-boresight axes is similar for different months and
for different satellites. Moreover, the standard deviation of the harmonic SC errors
is higher than the standard deviation of the stochastic SC errors.

Generating a realization of stochastic SC errors along all the individual axes of
both SCs is a matter of generating realizations of the fitted ARMA models. The
error along the primary and secondary SC boresight axis is described by the ARMA
models 𝜀᎐,ፏ and 𝜀᎐,ፒ, respectively. As for the cross-boresight axes, we assume their
accuracy to be similar. Therefore, we use different realizations of ARMA model 𝜀ᎎ
for each cross-boresight axis: 𝜀ᎎ,ፏ, 𝜀ᎎ,ፒ, 𝜀ᎏ,ፏ, 𝜀ᎏ,ፒ.

Figure 5.4: Spectra of fitted ARMA models and

PSD
Ꮃ
Ꮄ of stochastic SC error estimates of GRACE-A

during 2006/02. Red refers to the cross-boresight
component (᎒ᎎ), blue to the secondary SC bore-
sight error (᎒᎐,ፒ) and green to the primary SC bore-
sight error (᎒᎐,ፏ). The solid lines represent the peri-
odogram estimates of the square root power spec-
tral density of stochastic SC error estimates. These
have been smoothed to reduce noise in the high
frequency part of the spectrum. The dashed lines
represent the ARMA models fitted to each compo-
nent. They have orders (100,0), (93,0) and (95,0)
for the cross-boresight, primary SC boresight and
secondary SC boresight, respectively.

5.4. Analysis of attitude error propagation
In this section we analyse how attitude errors introduce errors in the APC of KBR
measurements. The APC 𝜆 is defined as the projection of the vector pointing
from the CoM to the antenna phase centre onto the line-of-sight (LOS) direction
(Fig. 5.5),

𝜆 =∥ p ∥ cos(𝜃), (5.20)
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where p is the relative position of the antenna phase centre with respect to the
satellite’s CoM, and 𝜃 is the angle between p and LOS, i.e., the inter-satellite
pointing angle.

Figure 5.5: Illustration of antenna phase centre correction to KBR data. KBR system measures ᖣ, the
distance between the antenna phase centres of the two GRACE satellites. The range  between the two
CoMs is obtained by adding the APC of each satellite to the KBR measurement,   ᖣ ዄ ᎘ፀ ዄ ᎘ፁ. The
inter-satellite pointing angles ᎕። represent the angles between vectors p። and the LOS, where i=A,B for
GRACE-A and GRACE-B, respectively.

In the presence of attitude errors, the orientation of the antenna phase centre
vector pፈ in the IRF is determined inaccurately and the inter-satellite pointing angle
𝜃 is perturbed. Let us introduce the noisy quantities �̃� = 𝜃 + 𝜀᎕ and �̃� = 𝜆 + 𝜀᎘,
where we assume that 𝜀᎕ and 𝜀᎘ are normally distributed errors, in the pointing
angle and APC, respectively. Linearisation of the APC around the nominal inter-
satellite pointing angle yields

𝜎᎒᎘ =∥ p ∥ sin(𝜃) 𝜎᎒᎕ , (5.21)

where 𝜎᎒᎘ and 𝜎᎒᎕ is the standard deviation of the errors in the APC and inter-
satellite pointing angles, respectively.

The inter-satellite pointing angle is actively controlled by the attitude and or-
bit control system (AOCS). GRACE AOCS is designed to keep these angles below
𝜃 < 4mrad (Herman et al., 2004). In this range, sin(𝜃) can be approximated by
𝜃. Furthermore, we assume APC errors of both satellites to be uncorrelated and
identically distributed, so that considering the contribution of both GRACE-A and B,
yields the standard deviation

𝜎᎒᎘ = √2 ∥ p ∥ 𝜃 𝜎᎒᎕ . (5.22)

Eq. (5.22) shows that the impact of attitude errors increases proportionally to i) the
distance between the antenna phase centre and the CoM and ii) the inter-satellite
pointing angle 𝜃.

The distance between the antenna and the CoM is ∥ p ∥≈ 1.5m for both satel-
lites. As will be shown in Section 5.5.1, the accuracy in the determination of the
inter-satellite pointing angle is better than 𝜎᎒᎕ < 170μrad. Considering a worst-
case scenario, according to Eq. (5.22), the corresponding standard deviation of the
error in inter-satellite ranges is 𝜎᎒᎘ = 1.4μm. The KBR accuracy is 10 μm (Kang et
al., 2006), which means that the standard deviation of the attitude errors is about
7 times smaller than the standard deviation of the noise in the KBR ranging data.
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On the other hand, the standard deviation alone does not provide a comprehensive
understanding of propagated attitude errors. One should also analyse how the er-
ror is distributed over the spectrum. There might exist frequency bands at which
the impact of attitude errors is more substantial than in average.

5.5. Error propagation
In this section we analyse to what extent SC errors contribute to the overall error
budget of GRACE time-varying gravity field models. Section 5.5.1 describes the
propagation of SC errors into satellite attitude data. The impact of data gaps in
the SC time series is discussed in Section 5.5.2. In Section 5.5.3 the propagation
of attitude errors into inter-satellite accelerations is discussed. In Section 5.5.4 we
discuss the likely impact of degraded attitude control. Finally, in Section 5.5.5 we
show how SC errors propagate into GRACE gravity field solutions.

5.5.1. Propagation of SC errors into satellite attitudes
In the presence of multiple SCs, it is necessary to compute an estimate of the
satellite attitude from all available measurements. A description of the official com-
bination method used by JPL can be found in Romans, 2003 and S.-C. Wu et al.,
2006. In Appendix B, this method, originally developed for attitude quaternions, is
re-written in terms of direction-cosine matrices.

A summary of the official procedure for combining SC measurements for GRACE
is (S.-C. Wu et al., 2006):

1. Compute the small angle difference Δ𝜀𝜀𝜀ፂᎥ between both SC measurements, cf.,
Eq. (5.6)

2. The optimal correction to the first SC measurement is computed, cf., Eq. (B.7),
as

𝜀𝜀𝜀opt = (ΛΛΛፂኻ +ΛΛΛፂኼ)
ዅኻΛΛΛፂኼΔ𝜀𝜀𝜀ፂᎥ, (5.23)

where the information matrix ΛΛΛፂ። for each SC in the C-frame is defined as

ΛΛΛፂ። = R፱(±135°)Cዅኻ። R፱(∓135°), (5.24)

and the error variance-covariance matrix C። for a single SC is defined as,

C። = [
1 0 0
0 1 0
0 0 𝜅ኼ

] 𝜎ኼ, (5.25)

with 𝜎ኼ being the variance of the errors along the SC cross-boresight axes and
𝜅 = 8 is the ratio between the standard deviation of errors along the boresight
and the cross-boresight axes (Romans, 2003). It can be shown that

(ΛΛΛፂኻ +ΛΛΛፂኼ)
ዅኻΛΛΛፂኼ =

1
2 [
1 0 0
0 1 −𝜆
0 −𝜆 1

] , (5.26)
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where

𝜆 = 𝜅ኼ − 1
𝜅ኼ + 1.

3. Compute the optimal satellite attitude Rፂፈ,opt, cf., (B.8).

Figure 5.6: Propagated SC errors into
GRACE-A attitude during 2006/05/01.
Red line depicts hypothetical situation
where both SCs are always active. Blue
line takes into account periods in which
one of the SCs is inactive.

The results of applying this SC measurement combination to synthetic realiza-
tions of SC errors for the months 2006/02 and 2006/05, are shown in Table 5.2.
The red line in Fig. 5.6 shows the corresponding satellite attitude errors during one
day of 2006/02. From Table 5.2, we conclude that the pitch and yaw angles of the
satellite attitudes are less accurately determined than the roll angles. Errors in the
satellites attitudes are therefore not isotropic.

5.5.2. Quantifying the impact of SC data gaps
There is a relatively large amount of gaps in the SC data (see Table 5.2). Gaps
reduce the quality of attitude determination. The SC combination procedure de-
scribed in Section 5.5.1 can only be applied when both SCs provide data. When
one of the SCs is inactive, the data from the other SC are used to determine the
attitudes. We quantify the impact of SC data gaps by comparing two error propa-
gation scenarios; in one scenario both SCs are assumed to be constantly active and
in the other we use real SC time series to flag time instants where one of the SCs
is inactive.

Figure 5.6 shows the SC error propagation for both scenarios. It can be seen
that, during periods in which only one SC is available, errors in the pitch and yaw
angles are amplified by an order of magnitude. The roll angles are only slightly
worse during single SC operation. Table 5.2 shows the overall standard deviation
of satellite attitude errors with and without data gaps. Obviously, the existence of
gaps in the SC data severely affects the accuracy of the attitude determination. For
instance, during the month of 2006/05, the presence of data gaps amplifies the
error level in the pitch and yaw angles by a factor of 4.
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Table 5.2: Standard deviation of satellite attitude errors in μrad. Depicted two error propagation sim-
ulations; one which assumes both SCs are always active (nominal) and another where L1A SC data is
used to flag periods when one of the SCs is inactive (gaps). ᎒ᎎ, ᎒ᎏ and ᎒᎐ represent errors in the roll,
pitch and yaw satellite attitude angles, respectively.

μrad GRACE-A GRACE-B
Gaps Nominal Gaps Nominal

% gaps 22% 21%
2006/02 𝜀ᎎ 17 16 18 17

𝜀ᎏ 65 29 70 30
𝜀᎐ 63 28 80 29

% gaps 44% 48%
2006/05 𝜀ᎎ 17 15 20 17

𝜀ᎏ 101 27 119 31
𝜀᎐ 104 26 122 29

From Table 5.2, we can also conclude that the anisotropy of the errors in the
satellite attitudes is accentuated by the amount of gaps in the SC data. Determi-
nation of the roll-axis direction is the least accurate, due to the worse accuracy of
the pitch and yaw angles. Regarding the month of 2006/05, we can state that the
attitude accuracy of GRACE satellites is better than √2 ⋅ 120 = 170μrad. This value
might be exceeded in other months, possibly with larger amounts of SC data gaps,
not considered in this paper.

5.5.3. Propagation of attitude errors into inter-satellite accel-
erations

ISA are derived from inter-satellite ranges by means of numerical double differen-
tiation. For details about the methodology, we refer to Liu et al., 2010. To quantify
the impact of SC errors in terms of ISA, we compute the difference between the
so-called reference ISA residuals and the perturbed ISA residuals.

The reference ISA residuals are obtained as the difference between the observed
ISA and the modelled ISA. The modelled ISA are computed with state-of-the-art
force models, which comprise the static gravity field model DGM-1S (Farahani et
al., 2013), the corresponding mean monthly gravity field solution DMT-2 (data pro-
cessing details in Farahani, 2013), tidal model EOT11a (Savcenko et al., 2012),
the model of non-tidal mass-redistribution in the atmosphere and oceans AOD1B
RL05 (Flechtner et al., 2014a), L1B RL02 products, and other tidal and relativistic ef-
fects. Because the monthly gravity field solution is included in the background force
model, all known signals are removed from the reference ISA residuals. Therefore,
we consider the remaining unknown ”signal”, i.e. the reference ISA residuals, as
an estimate of the total error in GRACE data. Notice that the DMT-2 solutions are
filtered (or regularized) to prevent propagation of data noise. This is the reason
why the reference ISA residuals are not zero when the DMT-2 solution is included
in the background force model.

As compared to DMT-1, a number of improvements are applied in the production
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of DMT-2. Firstly, an accurate stochastic description of noise is obtained in the
frequency domain on a monthly basis using ARMA models. Usage of these models
allows for a proper frequency-dependent data weighting at the inversion stage.
Furthermore, it facilitates an accurate computation of covariance matrices of noise
in estimated spherical harmonic coefficients, which are used when unconstrained
monthly solutions are subject to a statistically-optimal Wiener filter (Klees et al.,
2008; Liu et al., 2010). Secondly, data prior to the inversion are subject to an
advanced high-pass filtering, which uses a spatially-dependent weighting scheme,
so that the low-frequency noise (which is caused by inaccuracies in satellites’ orbits,
Ditmar et al. (2012)) is primarily estimated based on data collected over areas with
minor mass variations, e.g., oceans and deserts. On the one hand, this efficiently
suppresses the noise and, on the other hand, preserves mass transport signals in
data. Thirdly, DMT-2 benefits from the usage of the release 2 of GRACE level-1B
data. Finally, latest background force models are taken into account when the
DMT-2 model is produced.

To compute the perturbed ISA residuals, we generate synthetic SC errors and
propagate them into satellite attitude errors. They are added to the measured satel-
lite attitudes resulting in a custom SCA1B satellite attitude product. Furthermore,
the generated attitudes are used to compute the corresponding KBR APC, resulting
in a custom KBR1B ranging product. The perturbed ISA residuals are computed by
the same procedure as the reference ISA residuals, but making use of the custom
SCA1B and KBR1B products. The differences between the two ISAs reflect the im-
pact of the synthetic SC errors, and provide an upper bound of the impact of SC
errors in terms of ISA and later on in terms of monthly gravity field solutions.

Because both ISAs use real GRACE data, they contain real SC errors, which are
present in the L1B data products. In fact, the perturbed ISA residuals contain SC
errors twice; from the GRACE L1B data products and from the synthetic SC errors
we add to the data. However, taking the difference between the reference and
perturbed ISA residuals will cancel the real SC errors common to both, leaving only
the impact of the synthetic SC errors.

Figure 5.7 shows the PSD
ኻ
ኼ of ISA errors, without any data gaps. The contribu-

tion of SC errors is flat up to 3mHz, where double differentiation starts to amplify
the high frequency noise. The stochastic error component is dominant in the fre-
quency range above 10mHz; the harmonic component is dominant in the frequency
range 3-10mHz. Overall, in terms of RMS, the total SC error accounts for 7% of
the total noise.

In Section 5.5.2 we analysed the impact of SC data gaps on the attitude product.

We have seen that SC data gaps cause non-stationary errors, for which the PSD
ኻ
ኼ

is not a suitable representation. Therefore, to present the impact of SC data gaps

in terms of PSD
ኻ
ኼ , we compare two stationary total SC error realizations: full data

gaps, where one SC is always inactive, and zero data gaps, where both SCs are
always operational. They represent the upper and lower bounds on the impact of
data gaps in ISA and are shown in the left plot in Fig. 5.8. Notice that the zero
data gaps total SC error realization is the same as in Fig. 5.7. In the worst case
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Figure 5.7: PSD
Ꮃ
Ꮄ of errors in inter-

satellite accelerations during 2006/05.
Depicted are the total error (black), the
harmonic SC error (red), the stochas-
tic SC error (green) and the total SC
error (blue). No SC data gaps are con-
sidered.
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Figure 5.8: PSD
Ꮃ
Ꮄ of ISA during 2006/05. Left: total error (black), total SC error in the absence of data

gaps, (blue), total SC error with full data gaps (green). Right: depicted is total error (black) and total
SC error without SC data gaps (blue) in 2003/04, month with very degraded attitude control.

scenario, i.e. full data gaps, the SC error is a factor of 5 larger when compared to
the SC error in the absence of SC data gaps.

5.5.4. Impact of degraded attitude control
The inaccurate inter-satellite pointing causes errors in the APC 𝜀᎘, cf., Eq. (5.22).
These errors are proportional to the absolute value of the inter-satellite pointing
angle 𝜃, which is controlled by the AOCS. The GRACE AOCS is designed to keep the
inter-satellite pointing angle below 4mrad (Herman et al., 2004).

The left plot of Fig. 5.9 shows the inter-satellite pointing angle for both satellites
during 2006/02. It can be seen that, most of the time, the satellites are kept
pointing to each other to within 4mrad. However, there is a period of a few hours,
where inter-satellite pointing angles of both satellites exceed this level by up to an
order of magnitude. During this period, errors in the APC are also amplified by an
order of magnitude (cf., Eq. (5.22)) resulting in a degradation of the inter-satellite
ranging quality.

An assessment of the impact of degraded attitude control requires an answer to
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Figure 5.9: Left: Inter-satellite pointing angle during four days in 2006/02. GRACE-A is shown in blue
and GRACE-B in red. Apart from the highlighted episode, the AOCS keeps the inter-satellite pointing
angle below 4mrad. Right: Histogram of inter-satellite pointing angles for GRACE-A (blue) and GRACE-
B (red) during 2006/05 (solid line) and 2003/04 (dashed line). Black dashed line represents the AOCS
inter-satellite pointing angle threshold. Attitude control is noticeably worse during 2003/04.

the question of how often periods of degraded attitude control occur in the GRACE
time series. We define degraded attitude control by the condition ᎕ፀዄ᎕ፁ

ኼ > 4mrad.
Then, we compute the fraction of degraded attitude control measurements for each
month in the GRACE time series. Table 5.3 summarizes the results.

Obviously, episodes of degraded attitude control happen frequently. During
2005/12, 5.3% of the measurements suffer from degraded attitude control. This is
expected since, during this month, a satellite swap manoeuvre took place, which
certainly affected the alignment of the satellites. More importantly, it can be seen
that 2010/06 and months between 2003/02 and 2003/05 suffer from particularly
bad attitude control.

To assess the impact of attitude errors on ISA in the worst case scenario, we have
selected 2003/04, a month with particularly degraded attitude control performance.
This choice is supported by the right plot of Fig. 5.9, where the histograms of inter-
satellite pointing angles of 2003/04 are compared with the ones of 2006/05, a
month with nominal performance of the attitude control.

We perturb the input data with realistic SC errors without SC data gaps and

compute the differences observed in ISA in terms of PSD
ኻ
ኼ . The results are shown

in the right plot in Fig. 5.8. SC errors in the presence of degraded attitude control
increase by a factor of 5 when compared to a month with nominal attitude control,
e.g. 2006/05.

We hypothesize that the peaks in the PSD
ኻ
ኼ of the total error in 2003/04, partic-

ularly in the frequency range above 3mHz, are likely caused by the combination of
SC errors and degraded attitude control. However, it can be seen that the propa-
gated SC errors for this month are both smaller, and present a different pattern of
peaks with respect to the observed total error. The discrepancy in the magnitude
could be explained by noticing that we simulated SC errors without taking into ac-
count possible gaps in SC data during this month. In the worst case scenario, as
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Table 5.3: Fraction of measurements with degraded attitude control within each month in the period
2003-2010 in percentages. Degraded attitude control condition is defined as sum of inter-satellite point-
ing angles in excess of 8mrad.

Jan Feb Mar Apr May Jun
2003 1.81% 81.19% 87.13% 96.67% 43.05% 0.01%
2004 0.11% 0.35% 0.41% 1.38% 5.32% 0.41%
2005 0.20% 3.16% 0.64% 0.06% 1.16% 0.06%
2006 1.16% 0.86% 0.02% 0.07% 0.02% 0.03%
2007 0.01% 0.68% 0.11% 1.01% 0.06% 1.51%
2008 0.25% 2.19% 0.81% 0.62% 0.62% 0.41%
2009 1.19% 1.57% 2.72% 1.67% 1.28% 3.08%
2010 1.04% 1.47% 1.78% 1.33% 2.01% 21.02%

Jul Aug Sep Oct Nov Dec
2003 0.44% 0.38% 1.24% 0.37% 0.99% 1.36%
2004 0.48% 0.87% 1.68% 0.36% 0.38% 1.56%
2005 0.02% 0.03% 0.54% 0.27% 0.49% 5.29%
2006 0.06% 0.24% 0.29% 1.08% 0.04% 0.01%
2007 0.10% 0.03% 0.07% 0.13% 0.55% 0.26%
2008 1.26% 0.81% 2.76% 1.05% 1.76% 1.79%
2009 1.19% 1.98% 1.32% 0.89% 0.93% 2.71%
2010 3.13% 1.22% 1.06% 2.80% 0.88% 0.53%

seen in the left plot of Fig. 5.8, SC data gaps might increase ISA errors by a factor
of 5. Regarding the discrepancy in the peak pattern, notice that the collection of
peaks in the frequency range 3-10mHz represents the harmonic SC error, which
was modelled on the basis of 2006/05 L1A SC data. This may explain the overall
different shape of the spectra in this range.

5.5.5. Propagation into gravity field solutions: preliminary re-
sults

In this section, we propagate SC errors into monthly gravity field solutions in order
to get an idea about their magnitude and the spatial pattern.

GRACE ISA are contaminated with a relatively strong noise in the range of low
frequencies (below 1mHz or 5 cpr). Before gravity field inversion and in order to
eliminate this noise, we apply the same high-pass filter used in the production of
DMT-2 model. We refer to Section 5.5.3 and Farahani (2013) for more details about
this filter.

The results are presented in terms of equivalent water height (ewh) degree
amplitudes in Fig. 5.10. It shows the total error during 2006/05 as well as total
SC errors obtained with and without taking into account the real gaps in the SC
data of this month. In the presence of SC data gaps, SC errors increase by a
factor of 5-6 independently of the spherical harmonic degree. The plot also shows
the total SC errors with no data gaps during the month of 2003/04, a month with
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degraded attitude control. In this case, SC errors are amplified by a factor of 3
up to spherical harmonic degree 40, and by a factor of 6 above it, as compared to
2006/05. Fig. 5.11 shows various error components propagated into gravity field

Figure 5.10: Propagated errors in the
form ewh of degree amplitude spec-
trum. Depicted are the total er-
ror (black), the SC error with no
gaps (red) and SC error amplified by
real gaps in the SC data (green) dur-
ing 2006/05. Also depicted is SC error
with no gaps in 2003/04 (blue), month
with degraded attitude control.

solutions in the spatial domain. All the solutions were post-processed by applying
a Wiener filter (Klees et al., 2008; Liu et al., 2010) in order to stay more consistent
with procedures for mass transport modelling from GRACE data. Fig. 5.11(a) shows
the total error in 2006/05 as a filtered monthly gravity field solution. Figs. 5.11(b)
and (c) present the SC errors in 2006/05 with and without taking into account gaps
in real SC data, respectively. SC data gaps increase noise in the filtered gravity field
solution by a factor of 5. In terms of RMS, both SC error realizations account for
about 18% and 80% of the total error, respectively.

Fig. 5.11(d) shows the total error in 2003/04 as filtered monthly gravity field
solution. Fig. 5.11(e) shows SC errors with no gaps in 2004/03. Comparing the
RMS of the SC error solution in 2003/04 with the corresponding solution of 2006/05
(middle-left) allows one to conclude that degraded attitude control amplifies SC
errors by a factor of 3. In terms of RMS, total SC errors in 2003/04 account for
31% of the total error.

The propagated SC errors in Fig. 5.11 are particularly high at places with sig-
nificant geophysical signal, e.g., Greenland, Alaskan Glaciers, West Antarctica, etc.
However, one should not wrongly conclude attitude errors themselves are signif-
icantly stronger at these regions. Larger propagated errors in these regions are
caused by the use of the Wiener-filter to regularize the monthly gravity field solu-
tions. The Wiener filter is defined based on the covariance matrix of known mass
transport signal over an extended period of time. As a consequence, the filter is
more aggressive in regions with small mass transport signal while it is more permis-
sive in regions with large mass transport signal. Fig. 5.11 then shows how attitude
errors propagate into Wiener filtered monthly gravity field models.

In Figs. 5.11(b), (c) and (e), SC errors propagate as horizontal stripes, a pattern
already seen along the boresight axes of the SC error estimates, cf., Fig. 5.1. This
finding is consistent with the results presented in Horwath et al., 2011. Similar
horizontal stripes can also be observed in the total error solution of 2003/04. This
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supports the conclusion that SC errors may be a significant error source in the
gravity field solution of 2003/04.

5.6. Conclusions
We showed that the accuracy of the SCs cross-boresight axes is about 23 μrad which
is close to the expected maximum of 24 μrad. In both satellites, the accuracy of
the primary boresight axis is significantly worse compared with the secondary SC
boresight axis. The ratio between the accuracy of the cross- and boresight axes
matches the expected value of 8, if we consider the secondary SC boresight axes. If
we consider the primary SC boresight axis, than this ratio is higher, indicating that
errors are stronger along these axes. The SCs on board GRACE-A and GRACE-B
have about the same accuracy except for the primary SC boresight axes, where
GRACE-A is less accurate.

We observed two distinct types of error in SCs on board GRACE, i.e., random and
harmonic. Harmonic errors are highly correlated with the satellite’s true anomaly,
indicating that they are caused by the environment of the satellite and not by the SC
instruments themselves. We applied a custom estimation method to extract both
components from a time series containing large amounts of clustered gaps. Con-
sidering different months, satellites and SCs, we showed that harmonic errors have

a higher standard deviation than stochastic errors. In terms of PSD
ኻ
ኼ of ISA, the

stochastic error has a flat spectrum up to 10mHz. The harmonic error is dominant
in the frequency range 3-10mHz.

SC errors alone account for about 18% of the total error in terms of filtered
gravity field solutions. We showed that these errors are amplified in the presence
of gaps in the SC data and during periods of degraded attitude control. Under these
conditions, SC errors may become significant contributors to the error budget of
GRACE.

We showed that pitch and yaw errors are amplified by gaps in the SC data,
which increase the anisotropy in the accuracy of the satellite attitudes. In terms of
RMS of filtered gravity field solutions, we showed that gaps in real SC data amplify
SC errors by a factor of 5. This factor might even be larger for months with bigger
amount of gaps in the SC data.

For the period 2003 to 2010, we identified several months with degraded perfor-
mance of the attitude control system: 2010/06, 2005/12 and 2003/02 till 2003/05.
A particularly bad month is 2003/04 when propagated attitude errors are amplified
by a factor of 3 in terms of RMS of filtered gravity field solution. In this monthly
solution, SC errors account for 31% of total error without considering any gaps
in the SC data. The similarity between the spatial patterns of the two solutions
suggests that this number is, in reality, even higher. This shows that a degraded
performance of the attitude control system might have a significant impact on the
quality of monthly GRACE solutions.
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Figure 5.11: Propagation of errors into Wiener filtered monthly gravity field solutions in mm equiv-
alent water height (ewh). a) total error in 2006/05 (RMS=6.1 mm ewh). b) SC errors in 2006/05
without considering SC data gaps (RMS=1.1 mm ewh). c) SC errors taking real SC data gaps
into account (RMS=4.9 mm ewh). d) total error in 2004/03, month with degraded attitude con-
trol (RMS=9.6 mm ewh). e) SC error without SC data gaps amplified by degraded attitude control
(RMS=3.0 mm ewh). To enhance the visibility of propagated SC errors, the colorbar of middle and
bottom plots differs from the top plots.
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5.7. Discussion: attitude determination errors and
future satellite gravimetry missions

Throughout this paper we assumed that SC errors are observed in the difference
between the SC measurements, which only contain the differential SC error. Errors
common to both SCs are not observed. In fact, in this sense, we do not model the
complete SC error, but only the differential part. However, it should be noticed that
common SC errors are likely of less concern. There could be two types of com-
mon SC errors: time-invariant (static) common errors and time-variable (dynamic)
common errors. Static common errors are eliminated by calibration of the attitude
system with on-ground and in-flight manoeuvres, such that they are of no concern.
Regarding dynamic common errors, one should keep in mind that each SC is an
independent instrument making independent measurements; there is no obvious
reason as to why their measurements should have a significant common error.

To compute the SC error estimates we make use of the QSA1B product specifying
the relative attitude between each SC and the SRF. Despite of being accurately
measured on-ground and calibrated with in-flight manoeuvres, the QSA1B product
is not error-free. However, errors in the QSA1B are not fundamentally different
from SC errors, and they are implicitly considered in the SC error estimates.

In this publication, we follow the methodology developed by Liu et al. (2010)
to compute monthly gravity field solutions from GRACE ISA. Other methodologies
exist, which instead make use of range and/or range-rate data. We propose, how-
ever, that our results are relevant independently of the chosen methodology. In
one way or another, all methodologies use some form of KBR data, all contaminated
by errors in the geometric correction. The conversion of ranges into range-rates
or range-accelerations can be represented in the frequency domain as a multiplica-
tion with 𝑖𝜔 and −𝜔ኼ, respectively. Therefore, the signal-to-noise ratio at a given
frequency would be the same for any type of observable. Furthermore, we employ
a statistically-optimal inversion scheme, which takes the dependence of noise on
frequency into account. Consistent results must be achieved for alternative method-
ologies, as long as they employ statistically-optimal inversion schemes, no matter
whether ranges, range-rates, or range-accelerations are used as input (Ditmar et
al., 2004).

Reducing errors in the attitude product of GRACE and future satellite gravimetry
missions could be achieved by including information provided by the accelerome-
ters on board the satellites. The accelerometers are able to measure the rotation
of the proof mass. These measurements can be combined with SC data, poten-
tially leading to improvements in attitude data in the high-frequency part of the
spectrum. A similar approach has already been applied in the GOCE mission for the
fusion of attitude data collected by the star camera and the gradiometer instruments
(Frommknecht et al., 2011; Siemes et al., 2019; Stummer et al., 2011, 2012). It
should be investigated, however, whether information collected by the accelerom-
eters is accurate enough to substantially reduce noise in the attitude products.

Errors in the roll angle are not critical for the purposes of gravity field modelling.
The opposite is true for errors in the pitch and yaw angles, which have a large
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impact on the antenna phase centre correction. We have shown that the accuracy
in the determination of the pitch and yaw angles is worse than that of the roll angle.
Furthermore, pitch and yaw errors are amplified by gaps in the SC data, while the
errors in roll are only slightly worse. This leaves space for an optimization of SC
arrays in future low-low satellite-to-satellite tracking (ll-SST) gravity missions, so
that the maximum accuracy for pitch and yaw angles is maintained even in the
periods when only one SC is operational. An example of how this setup could look
like is shown in Fig. 5.12. Because the roll angle determination is not critical, both
(less accurate) boresight axes are oriented in the x-axis direction ensuring the full
accuracy of both SC’s for the determination of the much more critical pitch and yaw
angles.

Figure 5.12: Possible SC configuration based on
the single fact that roll angle determination is not
critical for gravity field recovery. Blue represents
x-, green represents y- and red represents z-axis,
the least accurate boresight axis.

The cause of the harmonic error component in the SC measurements is not
known to us. Further progress in SC design and data processing may reduce this
error, which will also improve the accuracy of the satellite attitude determination.
Reducing the harmonic error may improve the signal-to-noise ratio in the range of
3-10mHz, where most of information about time-variable gravity signal is located.
In this frequency range, no other sources of errors have yet been identified. Un-
derstanding and mitigating all sources of error in this range is of interest both for
GRACE and future satellite gravity missions.

In our analysis we focused on the propagation of SC errors through the geomet-
ric correction of the KBR data. In the context of GRACE, this is likely the most critical
way in which these errors propagate into estimates of the time-varying gravity field.
In the context of future gravity missions, it is expected that they will make use of
laser interferometers to measure inter-satellite ranges. The proposed architecture
for the laser interferometer of GRACE-FO places the virtual measurement point at
the position of the accelerometer proof mass (Sheard et al., 2012). Such an archi-
tecture is insensitive to SC errors as it does not require a geometric correction at all.
However, in view of a higher overall accuracy of GRACE-FO, additional studies may
be required to understand the propagation of attitude errors through the GNSS data
and through the orientation of the non-gravitational accelerations. Then, a proper
understanding of SC errors and how they propagate into the attitude are necessary.
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A fter the end of the GRACE mission, its error budget remained incomplete. In
previous studies, which addressed the error budget of the GRACE mission in the

context of the RRC approach (Ditmar et al., 2012; Encarnação, 2015), the authors
could not identify the sources of the observed noise in the GRACE data in the fre-
quency range between 1 and 9mHz. In this chapter, I will finally close the GRACE’s
error budget. I will describe an error model applicable to the GRACE mission, I
will highlight the most important error contributors, and I will compare the total
synthetic errors with observed errors in real GRACE observations. In Section 6.1, a
prediction of the error budget of the GRACE mission is shown.

The GFOmission has been launched recently and, the first reports indicate that i)
the accuracy of the laser ranging instrument has exceeded the expectations (Abich
et al., 2019) ii) the accelerometer instrument on-board GRACE-D satellite is show-
ing poor performance. The performance is so poor, that the data it collects have to
be discarded and replaced by data transplanted from the other GFO satellite (Webb
et al., 2019). Looking into the future, beyond the GFO mission, one wonders what
more can be achieved on the basis of the GRACE platform, i.e. by continuing to
replicate the GRACE-mission with updated hardware. In Section 6.2, I will pre-
dict the errors of future GRACE-type missions and I will compare them with the
performance of GRACE.

Finally in Section 6.4, the concluding remarks of this chapter are gathered.

6.1. GRACE error budget
In order to investigate the error budget of the GRACE mission, real orbits of the
GRACE satellites during 2006/02 were used as reference for the simulation. By using
these orbits, I compare the synthetic realizations of errors to the observed errors
of the GRACE mission in the same period (Section 6.1.4). The general overview of
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Figure 6.1: General overview of simulated errors in the GRACE mission in terms of inter-satellite ac-
celeration. The total instrumentation error (TIN) and the total temporal aliasing error (TAL) are shown
against the ESM mean monthly signal (SGN). The total error (TOT) is the sum of instrumentation and
temporal

the simulation procedure is documented in Chapter 4.

In Figure 6.1, a general overview of simulated errors in the GRACE mission in

terms of PSD
ኻ
ኼ of inter-satellite accelerations is shown. The plot shows the total in-

strumentation error (TIN) and the total temporal aliasing error (TAL) in comparison
with the ESM mean monthly signal (SGN). The signal is above the total error only in
the 0.8 to 6mHz frequency range. In this frequency range, temporal aliasing errors
are dominant above 1.5mHz, while instrumentation errors are dominant below this
frequency.

6.1.1. Instrumentation errors in GRACE data
Instrumentation errors are shown in detail in Figure 6.2. The dominant error source
up to 2mHz is a combination of positioning and accelerometer error. Above 5mHz,
the ranging error becomes dominant.

6.1.2. Temporal aliasing errors in GRACE data
Temporal aliasing errors are presented in detail in the right panel of Figure 6.3. Over
the whole spectrum, the atmosphere and ocean de-aliasing model error (AOD) is
slightly larger than the other errors. Ocean tide model error (OTE) is slightly larger
than the dynamic mass transport signal (TMP) over the whole spectrum.
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Figure 6.2: PSD
Ꮃ
Ꮄ of simulated instrumentation errors for GRACE in terms of inter-satellite accelerations.

See Table 4.3 in page 74 for the explanation of the used acronyms.

6.1.3. Comparison of total simulated error with observed noise
in GRACE data

In the left panel of Figure 6.4, I show a prediction of total errors in GRACE’s inter-
satellite accelerations during 2006/02, as well as the observed total errors during
the three consecutive months in 2006 in terms of inter-satellite accelerations. De-
picted real data errors are the inter-satellite acceleration residuals at a third data
processing iteration. The DMT-2 monthly gravity field model is estimated at the sec-
ond iteration, therefore, the leftover residuals at the third iteration, are interpreted
as an estimate of total error in the data.

The considered error model, despite its simplicity, does a remarkable job at re-
producing the features of the observed noise in the data. The observed peak around
0.2mHz is captured by the positioning error. While the accelerometer and position-
ing errors are similar in magnitude, this peak is not observed in the accelerometer
error. The combination of accelerometer and positioning errors is in-line with the
observed total error until about 0.8mHz. Above this frequency, the AOD error be-
comes dominant, explaining the total error up to about 5mHz. At this point, the
ranging error becomes dominant and closely matches the observed total error.

This plot shows a very good agreement between the predicted errors and the
observed ones in most of the spectrum. The noise observed in the frequency range
between 1 and 9mHz, with previously unknown origin (Ditmar et al., 2012), is now
explained by a combination of positioning, acceleration, AOD and ranging error
(cf. Section 4.2). Regarding the frequency range below 1mHz, Ditmar et al. (2012)
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Figure 6.3: PSD
Ꮃ
Ꮄ of simulated temporal aliasing errors for GRACE errors in terms of inter-satellite accel-

erations. See Table 4.3 in page 74 for the explanation of the used acronyms.

concluded that these errors are caused by inaccuracies in the reference orbits. While
that is indeed the case, it is now shown that these inaccuracies are caused by the
propagation of accelerometer and positioning noise into the computed reference
orbits.

Despite the simple error model considered, it is now possible to capture the
features present in the real data, provided that we take into account the indirect
effect propagation of the considered error sources.

In conclusion, the good agreement between the considered error model and
the observed total noise in real GRACE data shows that, in the context of the RRC
approach, GRACE’s error budget is complete.

6.1.4. Propagation of errors into gravity field solutions
The right panel of Figure 6.4 shows the DV curve for each instrumentation error
propagated into a gravity field solution. In addition, I present the corresponding
ESM mean mass transport signal in 2006/02. One can see that all error sources are
orders of magnitude larger than the signal in terms of DV. This is not unexpected;
it is known that unregularized solutions of the GRACE mission suffer from large
North-South striations. There are two causes for the appearance of these striations:
large amplitude of low-frequency errors and the anisotropic sensitivity of the GRACE
mission.

Figure 6.2 shows that positioning and accelerometer errors in terms of inter-
satellite accelerations are predominant in the low-frequency part of the spectrum
(below 5mHz). This low-frequency noise in the time domain will cause geograph-



6.1. GRACE error budget

6

109

 0.01  0.1  1  10  100

10
-9

10
-8

10
-7

10
-6

2006/01 2006/02 2006/03 Predicted

0 20 40 60 80 100 120

Degree

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

[m
m

 g
e
o
id

]

RNG =0.8 m SCA =20,80,80urad

ACC =1nm/s 2 POS =3cm

TIN SGN

Figure 6.4: In the left panel, predicted total noise for 2006/02 is compared with real observed noise in

the months from 2006/01 to 2006/03 in terms of PSD
Ꮃ
Ꮄ of inter-satellite accelerations. The right panel,

shows the contribution of instrumentation errors propagated into DV (solid) and CDV (dashed) error per
degree. See Table 4.3 in page 74 for the explanation of the used acronyms.

ically adjacent regions in the East-West direction to exhibit random errors. This in
turn leads to large estimated East-West gravity gradients in the solutions resulting
in great amplification of observation errors on sectorial coefficients, especially at
the higher spherical harmonic degrees.

On top of this noise amplification, the anisotropic sensitivity of the GRACE mis-
sion leads to uneven amplification of noise in different directions. An example of
this can be seen in Figure 6.5, where ocean tide model errors are propagated into
a mean monthly solution. Even though ocean tide model errors (OTE) are smaller
than the mass transport signal (ESM) in terms of inter-satellite accelerations (see
Fig. 6.3), the corresponding errors in terms of gravity field solutions are amplified
well above the signal. Additionally, notice that there are no similarities between
tidal model errors as plotted in Figure 4.1 and the corresponding mean monthly
solution.

All these aspects are well known in GRACE data processing and, therefore, the
solutions are typically filtered or regularized in order to maximize the signal-to-noise
ratio.

Regularization procedure
In order to obtain useful results from the GRACE solutions, one must regularize
them. The regularized solutions in this thesis are computed using the optimal fil-
tering approach (Klees et al., 2008). In this approach, the filter is designed by
including information about the mass transport signal in the form of its signal co-
variance matrix. Then, the filtering is formally equivalent to a regularization (Klees
et al., 2008). This effectively stabilizes the solutions by suppressing noise, particu-
larly, in the regions and spatial scales where no mass transport signal is expected.
The regularization procedure is linear in terms of the observation data. Therefore,
each error source can be regularized individually to build a regularized error budget.

For this thesis, I have computed the signal covariance matrix using a set of
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Figure 6.5: Unregularized solution based on the ocean tide model errors for the GRACE mission. An
example of noise amplification due to the anisotropic sensitivity of the mission. In order to better depict
the vertical stripes, the solution has been cropped to maximum SH degree 60.

monthly mean mass transport estimates computed on the basis of the ESM mass
transport signal within the period contemplated by the model, i.e., from 1995 to
2006.

The impact of regularization applied can be tuned by scaling the signal covari-
ance matrix as desired. This scaling is performed by changing the regularization
parameter, which can be thought of as the ratio between the average total vari-
ance of noise in the data and average signal variance. In the simulations realm,
the regularization parameter allows one to fine-tune the performance of a given
mission. In the leftmost column of Table 6.1, a breakdown of global RMS of errors
for the GRACE mission in terms of unregularized solutions is shown. This column
shows very large RMS values for all error sources, reflecting the large amplification
of errors in the unfiltered solutions.

Different regularization parameters will result in a different breakdown of er-
rors in terms of global RMS. In Figure 6.6, an overview of the global error RMS
for different regularization parameter values is shown. When no regularization is
applied, the errors are orders of magnitude larger than the mass transport signal.
As the amount of regularization increases, noise is increasingly suppressed at the
expense of filtering out some of the mass transport signal. This is shown by the
regularization bias error curve increasing with regularization parameter.

By applying different values of the regularization parameter, one finds the opti-
mal point, where the total error is minimized. At this point, increasing the amount
of regularization no longer leads to a performance gain, as the increase in regular-
ization bias becomes larger than the corresponding decrease in the sum of all other
error sources. Unfortunately, in the considered simulation, the maximum perfor-
mance point occurs when the total error matches the level of the mass transport
signal. In other words, the lowest level of total error is obtained when the filter
suppresses everything. That means that under the considered set-up, no useful
information can be obtained from the GRACE mission. This result is presented to
show that the level of low-frequency errors in terms of inter-satellite accelerations
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Table 6.1: Breakdown of GRACE’s error budget in terms of global RMS in units of mm ewh for ፥max  ኻኼኺ.
From left to right, the second column presents unfiltered solutions; the third columns shows the noise
reduction after high-pass filtering of inter-satellite accelerations; the fourth column shows error budget
after regularizing the solutions with the ESM signal covariance matrix; the fifth column shows the lowest
RMS error when both high-pass filtering and regularization procedures are employed.

High-pass Filter 7 3 7 3
Regularization 7 7 3 3

RNG 7933.33 7298.35 4.68 9.27
SCA 2147.96 2018.89 0.92 1.93
ACC 34773.10 7885.55 7.56 3.77
POS 65745.58 8759.58 12.84 3.46
TIN 74453.11 13636.15 17.68 11.05
AOD 162641.85 7466.21 106.00 4.24
OTE 5767.05 5249.99 3.68 4.56
TMP 161215.49 5302.84 105.91 3.26
TAL 322840.42 12593.05 211.97 8.26
FLT 7 1059.13 7 9.14
REG 7 7 34.84 30.31
TOT 345056.49 20176.64 216.96 35.71
SGN 65.29 65.29 65.29 65.29

in the GRACE mission is so overwhelmingly high that regularization alone is not
sufficient to extract useful information.

High-pass filtering of inter-satellite accelerations
In order to prevent low-frequency errors in inter-satellite acceleration data from
dominating the solutions, a high-pass filter with a cut-off frequency of ≈2 cpr
(0.4mHz can be applied to those data. This frequency was selected as a good
compromise between the introduced signal distortion and the corresponding over-
all error reduction. The high-pass filter computes the Fast Fourier Transform (FFT)
of the observations, sets to 0 all frequency components below the cut-off frequency
and computes the Inverse FFT (IFFT) to obtain the filtered signal.

The left panel of Figure 6.7 shows PSD
ኻ
ኼ of instrumentation errors after applying

the high-pass filter. As expected, one can see that all errors in the low-frequency
part of the spectrum have been significantly reduced compared to to their unfiltered
counterparts, which are shown in Figure 6.2. Obviously, there is a price to pay; as
a result of the filtering procedure, the mass transport signal is distorted as well,
i.e., a new error source has been introduced due to the filtering procedure. This
can be seen in the left panel of Figure 6.8. The gravity field signal is removed at
frequencies below 0.4mHz and above that it is left unchanged.

The right panel of Figure 6.8 shows instrumentation errors propagated into DV
per degree. In comparison with Figure 6.4, the overall level of instrumentation
errors is significantly lower. Especially the dominant positioning and accelerometer
errors are smaller at all SH degrees.
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Figure 6.6: Errors in regularized solutions of the simulated GRACE mission as a function of regularization
parameter. In the left panel, errors for the GRACE mission with no high-pass filtering applied. In the right
panel, errors for the GRACE mission after high-pass filtering has been applied to remove low-frequency
errors in terms of inter-satellite accelerations. Only relative values of the regularization parameter are
shown with the value 1 being defined at the minimum total error.
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Figure 6.7: PSD
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Ꮄ of inter-satellite accelerations. Instrumentation errors for the GRACE (left) and

FGT (right) missions after high-pass filtering of the inter-satellite accelerations. See Table 4.3 in page 74
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Figure 6.8: The left panel presents noise-free observations (SGN) simulated on the basis of the ESM
signal along with the distortion (FLT) introduced by the high-pass filtering procedure. In the right panel,
DV (solid) and CDV (dashed) of instrumentation errors in GRACE data after high-pass filtering of the
inter-satellite accelerations. See Table 4.3 in page 74 for the explanation of the used acronyms.

In the top-left panel of Figure 6.9, a general comparison of instrumentation and
temporal aliasing errors is shown in terms of DV error per degree. In addition, this
plot presents the error introduced by the high-pass filtering procedure, which is the
dominant error source up to SH degree 6 in terms of unregularized solutions and a
considerable error up to SH degree 20, above which is becomes comparatively small.
While the filtering error is a considerable error source below SH deg 20, this however
should not be bluntly interpreted as a deficiency of the data processing approach.
The filtering error reflects the intrinsic trade-off of any filtering procedure: when
errors in the low-frequency part of the spectrum are reduced, the signal at these
frequencies is reduced as well. The second column of Table 6.1 shows that, despite
the fact that the filtering introduces a new error source, the RMS values of all other
error sources have been dramatically reduced, leading to a net reduction of total
errors in the solutions.

Appropriateness of units in SH solutions of gravimetry missions
Standard in the literature of satellite gravimetry is the use of DV plots in units of
geoid height. In Chapter 8, I will use DV plots and global RMS values of SH solutions
as metrics to compare the performance of future missions. In doing so, I found that
geoid height units are not appropriate for this purpose.

So what is the appropriate metric to evaluate the performance of future satel-
lite gravimetry missions? I propose that the appropriate metric is to consider the
quantities typically considered by the end users of gravimetry data. Mass anomalies
are the most relevant quantity to them and, in the rest of the thesis, I will opt for
considering SH solutions in terms of ewh.

To motivate this choice, consider the relation presented in Eq. 2.6 relating the
SH coefficients in terms of ewh with geoid heights. On the basis of this relation,
a SH solution in terms of geoid height can be stated as a smoother version of the
corresponding solution in terms of ewh. This can be explained by the 2𝑙 + 1 term
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Figure 6.9: DV (solid) and CDV (dashed) errors per
degree of total instrumentation (TIN), total tempo-
ral aliasing (TAL) and filtering (FLT) errors in the
GRACE data after high-pass filtering of the inter-
satellite accelerations in terms of geoid heights
(top-left panel) and ewh (bottom-left panel). In
the bottom-right, simulated errors sources for the
FGT mission.
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in the denominator of the relation between the two quantities, which considerably
dampens the high SH degrees. As a consequence of this damping, typical SH
solutions in terms of geoid height will have a global RMS value which is determined
by the very low SH degrees. I propose that it is unreasonable to benchmark future
gravimetry missions solely regarding their performance in the very low SH degrees.
Even more so, since future satellite gravimetry missions are expected to significantly
improve on the spatial resolution of current ones. Therefore, I concluded that it
is unreasonable to analyze SH solutions in terms of geoid height and I decided to
deviate from the standard practice in the literature.

The bottom-left panel of Figure 6.9 shows once more the general comparison
of instrumentation and temporal aliasing errors for the GRACE mission, but now
in units of ewh. A comparison with the left plot in the same Figure (in terms of
geoid height) highlights the differences between the considered units. For example,
consider the CDV of the input mean mass transport signal (SGN) on the right panel
in terms of geoid height. Notice how the CDV curve becomes flat at about SH
degree 10. This confirms that the global RMS value in terms of geoid height is
determined by the first 10 SH degrees. On the other hand, the CDV curve never
becomes flat in the case of ewh units. This means that the contribution of the very
high SH degrees is also taken into account when computing the global RMS value
of these solutions.



6.1. GRACE error budget

6

115

0 20 40 60 80 100 120

Degree

10 -2

10 -1

10 0

10 1

10 2

[m
m

 e
w

h
]

TIN TAL REG TOT SGN

FLT

0 20 40 60 80 100 120

Degree

10 -2

10 -1

10 0

10 1

10 2

[m
m

 e
w

h
]

TIN TAL REG TOT SGN

FLT

Figure 6.10: DV (solid) and CDV (dashed) of errors for the GRACE (left) and FGT (right) missions in
terms of regularized solutions. See Table 4.3 in page 74 for the explanation of the used acronyms.

Propagation of errors into regularized gravity field solutions
Having shown the positive impact of the high-pass filtering procedure in terms of
unregularized solutions, I proceed with the analysis of the error budget of GRACE
in terms of regularized solutions. The presented solutions have been obtained after
iterating the regularization parameter in order to minimize the total error. The total
error as a function of the applied regularization parameter for the GRACE mission
with high-pass filtering is shown in the right panel of Figure 6.6.

The left panel of Figure 6.10 shows the prediction of instrumentation (TIN),
temporal aliasing (TAL), high-pass filtering (FLT) and regularization (REG) errors
in the optimally filtered gravity field solutions during 2006/02 in terms of DV error
per degree. Most noticeable differences compared to unregularized solutions are
much lower magnitudes of all the errors, smaller than the signal of interest at all SH
degrees, as well as a decrease in the error magnitudes with increasing SH degree.
The largest error up to SH degree 10 is the high-pass filtering error. Above this
degree, the regularization bias becomes dominant. The plot also shows that total
temporal aliasing and total instrumentation errors are for all degrees smaller that
the regularization bias.

A breakdown of the error budget in terms of global RMS of regularized solutions
is shown in the rightmost column of Table 6.1. Here, it is shown that the largest
error is the regularization bias (30 mm ewh). The high-pass filtering error (9 mm
ewh) is also a considerable error source, at the same level of both instrumentation
(11 mm ewh) and temporal aliasing errors (8 mm ewh).

At this point, it is important to discuss the obtained results in order to pre-
vent possible misinterpretations. While it is a fact that the regularization error in
terms of global RMS is the largest error source, it is not correct to state that the
performance of the GRACE mission is limited by the applied regularization. The
regularization procedure has been applied and optimized to yield the minimum to-
tal error, as was shown in the right panel of Fig. 6.6. Therefore, the performance
of GRACE is still limited by the amount of temporal aliasing and instrumentation
errors, which would be much larger without regularization. The same remark is
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also valid for the high-pass filtering error.
Table 6.1 shows that the regularization and high-pass filtering procedures yield

lower total error. A comparison between the last two columns in this table reveals
that the high-pass filtering procedure reduced the level of instrumentation errors
from 18 to 11 mm ewh. Even greater reductions can be seen for the level of tem-
poral aliasing errors, which go down from 212 to 8 mm ewh. These improvements
come at the expense of a new filtering error source with a magnitude of 9 mm
ewh. While being a considerable error source in the budget, the filtering error is an
acceptable price to pay for the corresponding increase in the signal-to-noise ratio.
Similar comparison between the third and last column in the table reveals that the
regularization procedure reduces the level of errors by orders of magnitude. And
again, the introduced regularization bias of 30 mm ewh, which is the largest error
source, brings massive error reductions to the otherwise unusable solutions.

In light of this argument, a more informed conclusion to this section is that
instrumentation errors (11 mm ewh), and more specifically, the ranging error (9
mm ewh) is the largest contributor to the total error (36 mm ewh) in terms of
global RMS. Temporal aliasing errors make nonetheless a considerable contribution
(8 mm ewh), the largest component being the ocean tide model errors (5 mm ewh).
All other considered errors are significantly smaller and do not limit the performance
of the mission.

In Section 5.5.5, a preliminary analysis of attitude errors in terms of regularized
gravity fields was presented. The discrepancy between the results presented in that
section and the error budget in Table 6.1 requires an explanation. In that section,
the global RMS in terms of regularized solutions for the considered month was 6.1
and 1.1 mm ewh for the total and star-camera errors, respectively. In Table 6.1,
these are 35 and 1.9 mm ewh for the total and star-camera errors, respectively.
Notice that the total error presented in this table includes the regularization bias
and high-pass filtering errors. However, these components are not visible in the
total error obtained from the inter-satellite acceleration residuals, as computed in
Section 5.5.5. Therefore, a fair comparison requires the regularization bias and
filtering error to be excluded. Then, a comparable total error can be obtained from
the combined total instrumentation (8.2 mm ewh) and total temporal aliasing errors
(11 mm ewh). This brings the total error from 35 down to √8.2ኼ + 11ኼ = 13.7 mm
ewh.

The remaining discrepancy between the presented numbers is explained by the
regularization filter applied to the data. In Section 5.5.5, a signal covariance matrix
based on the DMT-2b model was used as input for the regularization procedure.
On the other hand, from this Chapter forward, a signal covariance matrix based on
the ESM model is used for the same purpose. I adopted the ESM model since it is
better suited at benchmarking the performance of future satellite missions. It has
been designed to benchmark future satellite missions and it includes mass transport
signal at small spatial scales which current missions are likely not sensitive enough
to measure. Therefore, regularization based on the signal covariance matrix of the
DMT-2 solutions is more aggressive at removing noise from the data in comparison
with regularization based on the ESM model.
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Beyond the choice of a-priori gravity field model, I do not expect that a this
choice should significantly change the relative contributions of the errors sources.
Indeed, the 18% (1.1 of 6.1 mm ewh) star-camera error contribution to the total
error in Section 5.5.5 is similar to the 14% (1.9 of 13.7 mm ewh) presented here.

6.2. Future GRACE-type missions
In this section, I will predict the performance of future GRACE-type missions and
compare it with the results obtained for GRACE, taking into account the updated
instrumentation that may be used in the future.

Preliminary reports from the GFO mission showed that the LRI instrument has
exceeded the expected level of accuracy. On the other hand, it has also been
reported that the accuracy of the on-board accelerometer of GRACE-D satellite is
not meeting the requirements. With the GFO mission well underway, it is interesting
to look beyond GFO and into the future generations of ll-SST missions.

The recently launched GFO mission is, to a large extent, a replication of the
GRACE mission with updated hardware. Considering a scenario where future ll-SST
missions will keep replicating the original GRACE mission, one wonders what are the
performance improvements one may expect from such missions. In the following
sections, I will analyze the performance of a hypothetical future GRACE-type mission
(FGT) which replicates the original GRACE mission.

The GFO mission has been launched into similar orbits as the ones of the GRACE
mission. Therefore, I will assume that the FGT mission will also consider the same
orbits. Consequently, the FGT mission has the same along-track formation with the
same inter-satellite separation distance at GRACE.

Since the orbits are assumed to be the same, there is no difference between
the two missions in terms of temporal aliasing errors. Therefore, the FGT mission
differs from GRACE only in terms of its instrumentation errors. Those differences
are summarized in the instrumentation error scenarios presented in Table 4.1.

6.2.1. Analysis of errors in terms of inter-satellite accelera-
tions

The right panel of Figure 6.7 shows instrumentation errors for FGT mission in terms

of PSD
ኻ
ኼ of inter-satellite accelerations. A comparison with the corresponding errors

of the GRACE mission (in the left panel), shows an overall error reduction. The
total instrumentation error is dominated by positioning errors up to 10mHz and by
ranging errors from that frequency onwards. In the frequency range above 10mHz,
the instrumentation error is one order of magnitude smaller compared to GRACE
which is expected due to the much better performance of the LRI instrument w.r.t.
the KBR instrument (see Table 4.1 and Abich et al. (2019)).

The most significant reductions are due to the increased performance of the
FGT accelerometers and the laser ranging instrument. Furthermore, LRI data from
the FGT mission is also considered immune to star-camera errors, similarly to the
LRI data of the GFO mission. As a consequence, the total instrumentation error is
considerably lower that of the GRACE mission in the frequency range above 1mHz.
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Figure 6.11: Instrumentation errors in terms of DV (solid) and CDV (dashed) of unregularized gravity
field solutions for the GRACE and FGT missions in the left and right panels, respectively. See Table 4.3
in page 74 for the explanation of the used acronyms

However, below this frequency, the positioning error is equal for both missions,
which means that there is no significant reduction in this frequency range.

A comparison of the total instrumentation error alone with the ESM mean mass
transport signal shows a better signal-to-noise ratio for the FGT mission compared
to GRACE, especially in the 3 to 11mHz frequency range. However, the level of
temporal aliasing errors is equal to that of GRACE, and is now the dominant error
source.

6.2.2. Propagation of errors into gravity field solutions
Regarding the GRACE mission, instrumentation errors were found to be the major
contributor to the error budget of unfiltered gravity field solutions. A comparison
of instrumentation errors between the GRACE and FGT missions is shown in Fig-
ure 6.11. As expected, the FGT mission shows improvements in terms of individual
instrumentation errors. However, the positioning error remains at the same level
(compared to GRACE), which means that only an overall mild reduction of the total
instrumentation error is achieved. Furthermore, temporal aliasing errors are the
same as considered for the GRACE mission. These are shown in Figure 6.12. All
three components of temporal aliasing error show equal level, the AOD model er-
rors seem slightly larger than the other two from SH degree 70 onwards in terms
of DV.

A general overview of the errors for the FGT mission is shown in the bottom-
right panel of Figure 6.9 in terms of DV. A comparison with the corresponding plot
for the GRACE mission (bottom-left panel of Figure 6.9) shows that, for the FGT
mission too, the high-pass filtering error is the largest error up to about SH degree
16. Similarly, above SH degree 16, the total error results from a combination of
instrumentation and total temporal aliasing errors. It can also be seen that, despite
the better instrumentation assumed for the FGT mission, the total instrumentation
error is only slightly smaller. This is explained by the positioning error, the same as
considered for the GRACE mission.
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Figure 6.12: Temporal aliasing errors in terms of DV (solid) and CDV (dashed) of unregularized gravity
field solutions for the GRACE and FGT missions. See Table 4.3 in page 74 for the explanation of the
used acronyms

Regarding regularized gravity field solutions, the same optimization procedure
as the one in the case of GRACE was used. The regularization procedure was
iterated to yield the minimum total error. The right panel of Figure 6.10 shows the
results for the FGT mission in terms of DV of regularized solutions. The high-pass
filtering error is the largest error source up to SH degree 10. Above this degree
the regularization bias becomes dominant. A comparison with the corresponding
plot for the GRACE mission (in the left panel of Figure 6.10) reveals that the total
error and regularization bias are smaller for the FGT mission. Due to a reduction
of instrumentation errors in the data, a less aggressive regularization procedure
is required. As a consequence, one see that the contribution of temporal aliasing
errors to the error budget has increased compared to the GRACE mission. On
the other hand, above SH degree 40, the total instrumentation error has become
significantly smaller. Furthermore, above this degree, the total instrumentation
error becomes smaller than the total temporal aliasing error. This is in contrast
with the GRACE mission where the total instrumentation error was found to be
larger than the total temporal aliasing error above SH degree 40. This shows that,
after the regularization procedure, there is a significant improvement in the level of
instrumentation errors of the FGT mission.

In Table 6.2, a comparison between the error budget of the GRACE and FGT
missions in terms of global RMS of regularized solutions is shown. FGT shows a
reduction of instrumentation errors compared to GRACE. The total instrumentation
error goes down from 11.0 to 7.5 mm ewh. This is, for the most part, explained by
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the reduction in ranging error, from 9.3 to 0.9 mm ewh. Despite this remarkable
reduction of the ranging error, the total error shows only a relatively small reduction
of about 12%: from 35.7 to 31.5 mm ewh in terms of global RMS. Flechtner et al.
(2016) predicts an error reduction between 2-7% for regularized solutions of the
GFOmission compared to GRACE. The presented results for the FGTmission confirm
that a relatively small reduction of the total error is expected for missions which will
replicate the GRACE platform.

Input temporal aliasing (TAL) and positioning (POS) errors are equal for the
GRACE and FGT missions. The differences between these errors for the two mis-
sions (cf. Table 6.2) are explained by a different choice of the regularization pa-
rameter. The ratio between the regularization parameter of the FGT (7.8E-15) and
that of GRACE (6.7E-14) is about 9. A lower regularization parameter means that
a less aggressive regularization is required to minimize the total error. Therefore,
the POS and TAL errors show a relative increase in their contributions to the total
error. This is compensated by a relative decrease in the regularization bias (REG).
The regularization bias can be stated as the portion of the input mass transport
signal which is removed by the regularization procedure. The results obtained for
the FGT mission send a clear message. Future satellite gravimetry missions will
have to tackle, in the first instance, temporal aliasing errors.

Table 6.2: Comparison of individual error sources of regularized solutions for the GRACE and FGT mis-
sions in terms of global RMS [mm ewh]. See Table 4.3 for the explanation of the acronyms.

RNG SCA ACC POS TIN AOD OTE TMP TAL FLT REG TOT SGN
GRACE 9.27 1.93 3.77 3.46 11.05 4.24 4.56 3.26 8.26 9.14 30.31 35.71 65.29
FGT 0.86 7 0.91 7.50 7.46 8.73 6.62 6.01 14.09 11.31 23.99 31.53 65.29

6.3. Impact of indirect effect errors
As discussed in Section 4.6, it is likely that indirect effect errors affect existing ap-
proaches at gravity field recovery differently. However, it is outside the scope of this
thesis to quantify the impact of indirect effect errors across all possible approaches.
Therefore, I opted to consider a best-case scenario, where indirect effect errors are
excluded. I present an additional comparison between GRACE and FGT missions
in the simplified mode, i.e. excluding indirect effect errors. A comparison between
the simplified and complete mode results will allow an estimation of the impact of
indirect effect errors in the solutions of the considered satellite missions.

Excluding indirect effect errors is accomplished simply by computing reference
orbits which are not perturbed by any error source. As a consequence, position-
ing errors are automatically excluded from the error budget, since they can only
propagate into inter-satellite accelerations through the reference orbits. Regard-
ing other errors, their realizations are generated directly in terms of inter-satellite
accelerations instead of being used as inputs in the reference orbit computation.

Notice that there is no individual error source that accounts for indirect effect
errors. All considered error sources, with the exception of ranging errors, perturb
the computation of the reference orbits and, therefore, cause indirect effect errors.
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Table 6.3: Comparison of individual error sources of regularized solutions for the GRACE and FGT mis-
sions without considering indirect effect errors in terms of global RMS [mm ewh]. See Table 4.3 for the
explanation of the acronyms.

RNG SCA ACC TIN AOD OTE TMP TAL FLT REG TOT SGN
GRACE 10.86 2.41 1.70 11.20 4.39 4.23 2.30 6.99 7 29.07 32.48 65.29
FGT 1.06 7 0.46 1.19 9.48 5.75 5.57 13.25 7 23.39 27.05 65.29

When excluding indirect effect errors, inter-satellite acceleration observations
no longer suffer from large low-frequency errors. Therefore, the high-pass filter-
ing procedure is no longer required. The comparison in terms of global RMS of
regularized gravity field solutions follows the same procedure as previously; the
regularization parameter is tuned to yield the lowest total error for each mission.
The obtained results are presented in Table 6.3. A comparison of the presented
error budget with the third column of Table 6.1, where no high-pass filtering was
used either, shows that excluding the indirect effect results in a large reduction of
errors in unregularized solutions.

Comparing the error budget of the GRACE mission with (see Table 6.2) and
without indirect effect reveals that excluding indirect effect errors leads to total
error reduction from 35.7 down to 32.5 mm ewh. This shows that indirect effect
errors account for 9% of total error of the GRACE mission. Similar comparison for
the FGT mission, shows a reduction in the total error from 31.5 to 27 mm ewh,
meaning that indirect effect errors account for 14% of the total error.

Comparing the GRACE and FGT missions without indirect effect errors reveals
that the total errors of the FGT mission (27.0 mm ewh) shows a more pronounced
reduction of about 17% compared to GRACE (32.5 mm ewh).

It can also be seen that the level of temporal aliasing errors has increased from 7
to 13 mm ewh when the indirect effect is ignored. However, input temporal aliasing
errors are in fact equal for GRACE and FGT missions. The difference between
the output errors is again explained by the different choices of the regularization
parameter value. The better performance of the FGTmission instrumentation allows
for less aggressive regularization when minimizing the total error, which results in
an apparent increase in the level of total temporal aliasing errors.

6.4. Summary
In this chapter, I have used the noise models presented in Section 4.2 to predict the
error budget of GRACE and a future GRACE-type missions. The noise models for the
instruments of the GRACE mission were built using simple white-noise assumptions
and noise levels described in existing literature. Taking into account all the error
sources, I have presented the complete error budget of the GRACE mission. A very
good agreement is obtained between the simulated total errors and the total errors
observed in real GRACE data, in terms of inter-satellite accelerations. An important
finding is that errors in the frequency range between 1 and 9mHz are caused by a
combination of accelerometer, positioning, AOD and ranging errors.

In terms of regularized solutions, I have shown that instrumentation errors are
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the dominant error source in the gravity field solutions based on the GRACE mission.
Among them, ranging errors are the largest error source. Temporal aliasing errors
have a slightly lower magnitude.

I have shown that the high-pass filtering of inter-satellite accelerations and regu-
larization procedures are crucial to reduce the level of noise in the computed gravity
field solutions. I also showed that a large regularization parameter (which implies
a high regularization bias) is necessary to minimize the total error.

Having shown the error budget of the GRACE mission, I have analyzed the
performance of a hypothetical future GRACE-type mission. Such a mission, similarly
to the GFO mission, is assumed to follow the orbits and formation parameters of
GRACE. I have shown that, despite some improvements in the instrumentation
errors, the performance of the FGT mission will be only about 12% better than that
of GRACE in terms of global RMS in mm ewh. The results have also shown that
the performance of the FGT mission is limited by temporal aliasing errors, most
significantly by the AOD error.

An additional set of simulations where indirect effect errors have been excluded
showed that, under this specific setup, the FGT mission would perform 17% better
than GRACE. A comparison between the error budgets of both missions with and
without considering indirect effect errors showed that indirect effect errors for the
RRC approach account for between 9% and 14% of the total error in terms of global
RMS in mm ewh.

The presented results show that simply replicating the GRACE mission with up-
dated hardware will only lead to marginal improvements on the performance of
GRACE. Future ll-SST missions based on the GRACE platform will suffer from the
same anisotropic sensitivity, thus requiring filtering and regularization procedures.
Furthermore, replicating the GRACE mission does not improve in any way the level
of temporal aliasing errors which were shown to limit the performance of the FGT
mission. The future of ll-SST gravimetry lies in finding missions designs which can
effectively tackle both these issues. In Chapter 7, I will search for a set of mission
concepts with the potential to greatly improve the performance of the FGT mission.
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Assessing limitations of
ll-SST missions through
small-scale simulations

I n this chapter, I assess the limitations of different ll-SST concepts with the helpof small-scale simulations. These simulations use idealized ll-SST formations and
are designed to recover the Earth’s gravity field to relatively low maximum spherical
harmonic degree and over short periods of time. They are a quick way to explore
the performance limitations of several different ll-SST concepts.

In Section 7.1, general considerations about the design of satellite missions
are discussed. Looking into future, an overall reduction in the level of errors is
fundamentally important in order to push the performance beyond what is currently
achievable. In the following section, I make use of small-scale simulations in the
simplified mode in order to pinpoint the crucial design parameters that influence the
level of errors of a ll-SST mission. Section 7.3 is dedicated to spatial aliasing errors,
section 7.4 to spatial instability errors and, finally, Section 7.5 deals with temporal
aliasing errors

The final Section 7.6, is reserved for the conclusions of this chapter.

7.1. Satellite gravimetry mission design as a chal-
lenging optimization problem

The purpose of a satellite gravimetry mission is to map mass transport in the Earth’s
system. In order to select the best possible mission design, one may try to ap-
proach the problem as a general minimization problem to select the set of mission
parameters which will yield the best performance. However, traditional minimiza-
tion approaches over the full parameter space searching for the global minimum
are not feasible for several reasons.
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The major obstacle lies with the complexity of evaluating the performance of
a selected mission concept. A large computational effort is needed to realistically
evaluate the performance of a single ll-SST mission. One example of a Monte-Carlo
optimization is found in Wiese et al. (2011), for the optimization of a mission con-
sisting of two pairs of along-track satellites. The analysis was performed for a single
mission concept. This was only possible after greatly reducing the parameter space
to the three parameters deemed to be the most important. Even after that, the doc-
umented computational time used was large. Stepping back and contemplating the
variety of other possible missions concepts, in practice, excludes a similar optimiza-
tion approach. In order to tackle a larger variety of mission concepts, the necessary
approach is to further restrict the parameter space to the smallest possible set of
parameters.

There are many parameters to be defined. General parameters are: the maxi-
mum spherical harmonic degree 𝑙max up to which the solutions are computed; the
data accumulation period 𝑁፝; and the number of satellites 𝑁፬ in the mission. Ll-
SST missions require pairs of satellites to track each other; therefore, for each
chief satellite one must consider the six parameters that define its orbit (c.f. Sec-
tion 2.2.1). In addition, for each deputy satellite, one must consider the five forma-
tion parameters that define the formation (c.f. Section 2.2.3). When considering
multiple satellite formations, further parameters are required to define the relative
placement of the different formations in inertial space. Despite the already rather
complex set of parameters to consider, a further complication is that the total num-
ber of parameters is not fixed; e.g., it grows as additional satellites and formations
are added to the mission. In order to tackle the complexity of the parameter space,
my approach is to find appropriate constraints, which can be used to reduce the
parameter set to a minimum. In Section 7.1.1, I will detail those constraints.

A further complication is due to the fact that certain parameters with large impact
on the performance of the mission are tightly coupled: orbital inclination, satellite
altitude, data accumulation period and the maximum spherical harmonic degree
are all related to each other and greatly influence the performance of the mis-
sion. For example, both orbital inclination and satellite altitude define the ground
track geometry of the mission, which in turn plays a role in the spatial resolution
of the mission and the maximum spherical harmonic degree. On the other hand,
the maximum spherical harmonic degree is also determined by the data signal-to-
noise ratio, which in turn is influenced by the satellite altitude (again). At the same
time, different data accumulation periods include different amounts of measure-
ments, which influences the maximum spherical harmonic degree. These multiple
inter-dependency loops are not simple to unravel in the context of a minimization
problem.

After reaching a smaller set of parameters by means of reasoning or restricting
the design to certain desirable configurations, a second round of parameter exclu-
sion begins. This is done by looking at the simplest possible missions and finding
the minimal set of design parameters which play a crucial role in the performance
of the mission. Then, once it has been understood what are the relevant design
parameters, the analysis of more complex mission designs can be focused on a
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minimal set of parameters known to be critical to the mission performance.
A final difficulty is the lack of specific mission objectives leading to a difficulty

in defining appropriate performance metrics. For instance, Wiese, 2011 explains
how a mission oriented towards the monitoring of the hydrological cycle would give
preference to low-latitude regions disregarding all measurements over the polar
regions, thus rendering the mission useless for glaciology. In this thesis, I opt to
use global and regional RMS of total errors over a variety of regions as a simple
metric to compare the performance of different missions.

7.1.1. Constraining satellite gravimetry parameter space
As mentioned in the previous section, there are three general parameters: number
of satellites 𝑁፬, maximum spherical harmonic degree 𝑙max and data accumulation
period 𝑁፝.

Regarding the number of satellites, I will only consider missions consisting of 2
to 4 satellites. Ll-SST missions, such as GRACE and GFO, by definition require pairs
of satellites to track their inter-satellite range, so that a minimum of 2 satellites is
required. Three satellites arranged in a single formation can provide up to three
inter-satellite links, which may prove to be a valuable topology for satellite gravime-
try. Several publications have proposed missions consisting of 4 satellites arranged
in 2 formations, a topology which is argued to bring multiple advantages over the
single formation one (P. L. Bender et al., 2008; Wiese, 2011). Missions consisting
of more than 4 dedicated gravimetry satellites are less likely to be implemented due
to the associated high costs.

The other two parameters are intrinsically connected; it is well known that a
larger data accumulation period allows for collecting more data, which in turn has
the potential to increase the spatial resolution of the mission. I chose 𝑙max = 120,
a value which is a good compromise between the spatial resolution and compu-
tational time required to evaluate the performance of a mission. Having fixed the
maximum SH degree, data accumulation periods between 8- and 24-day periods
will be considered; I have found that there is a tendency for errors to grow large
below 8-day periods, while error reductions above 24-day periods seem to become
negligibly small.

Regarding the chief satellite of a formation, the six orbital parameters to con-
sider are: inclination 𝑖, semi-major axis 𝑎, eccentricity 𝑒, right ascension of the
ascending node Ω, argument of the perigee 𝜔 and true anomaly 𝜈. Regarding
the orbital altitude 𝑎, it is well known that lower satellite altitudes are extremely
beneficial for satellite gravimetry. Of course, the problem with too low altitudes
is exponentially increasing atmospheric drag, which severely impacts the mission
lifespan. GOCE was the first satellite mission to implement a drag-free propulsion
system, which allowed for maintaining a controlled orbital altitude at the expense
of fuel. This technology enables relatively low altitude orbits to be considered for
future ll-SST missions. However, depending on the selected data accumulation pe-
riod, the strictly lowest possible altitude may be less than optimal. This is because
repeat ground track orbits offer several advantages over otherwise non-repeat or-
bits. In Section 7.1.2 I will explain why I only consider repeat ground track orbits
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and in Section 7.1.3 I will explain how I selected the minimum possible altitude for
a satellite gravimetry mission to be 260 km. Regarding the altitude of any given
satellite mission in this thesis, the rationale is to chose the lowest-altitude repeat-
groundtrack orbit above the 260 km threshold that matches the selected data ac-
cumulation period in order to ensure the finest ground track coverage.

Regarding the eccentricity parameter, one may think of using an eccentric orbit
to achieve lower satellite altitudes compared to an equivalent circular orbit with the
same semi-major axis. However, this is unlikely to work for several reasons. Firstly,
in a general sense, a satellite in a very elliptical orbit will be at very different altitudes
during one revolution. This will lead to inhomogeneous measurement accuracy,
since lower altitude measurements have higher signal-to-noise ratio than higher
altitude ones. In turn, this likely leads to varying mission sensitivity at different
regional and spatial scales, which is an undesirable feature. Furthermore, in an
elliptical orbit, according to Kepler’s 2nd Law, the satellite experiences the largest
angular velocity in the vicinity of the perigee. This leads to two consequences;
on the one hand, the fraction of measurements made at lower altitude would be
relatively small, since the satellite rapidly flies over the orbital perigee. On the other
hand, the large velocities at low altitudes would severely increase the drag acting
on the spacecraft, with a consequent reduction of the mission timespan. Therefore,
there seems to be little use for elliptical orbits. In the further study, I will consider
only circular orbits.

Orbital inclination is important in defining the overall ground track geometry of
the mission. Non-polar inclinations introduce a gap around the poles with no ob-
servations. A low inclination will lead to a large polar gap. On the other hand, for
polar orbits all ground tracks converge to the poles, leading to a large concentration
of observations in these regions and a sub-optimal observation distribution. In the
satellite gravimetry literature, one finds that the main purpose of proposed lower-
inclined orbits is to introduce East-West information in along-track mission concepts
in order to mitigate the vertical striations error patterns, which are typical for these
configurations (P. Bender et al., 2003; Wiese et al., 2011). As will be shown in later
sections, different formation combinations will be used as a primary way to intro-
duce East-West information in a satellite gravimetry mission concept. Therefore, for
the most part I will make use of near-polar orbits with a 89.5° inclination. For the
mission concepts where it is likely that lower inclination orbits are beneficial, such
as the dual along-track mission in Section 8.4.1, the orbital inclination parameter
will also be taken into account in accessing the mission performance.

If orbits are circular, the argument perigee 𝜔 and the true anomaly 𝜈 are not
defined; in this case, the argument of latitude 𝑢 = 𝜔 + 𝜈 is normally introduced
(cf. Wiese et al. (2011)). Together, 𝑢 and Ω simply allow one to chose the latitude
and longitude of the satellite at the beginning of the data accumulation period.
Since the finest distribution of ground tracks will be ensured by using repeat orbits,
the starting location of the satellites should be irrelevant. The only reason why
one specific location could be better than any other can be attributed to a single
instance of the ensemble of possible signal and noise realizations. Assuming we
are concerned with the global performance of the mission, on average, any choice
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of the argument of perigee and RAAN is as good as any other. In the presented
mission concepts, I simply set the two parameters equal to 0°.

Regarding the deputy satellite in any satellite pair, there are only three config-
urations which are relevant, corresponding to the set of stable satellite formations,
i.e., the elementary satellite formations. Any satellite pair will be in either an along-
track, pendulum or cartwheel topology. Of the five formation parameters shown in
Section 2.2.3, along-track formations only require one parameter, the along-track
offset between the two satellites Δ𝑥. The pendulum formation only requires the
cross-track amplitude 𝐵 and the corresponding phase angle 𝛽. The cartwheel for-
mation only requires the radial amplitude 𝐴 and the corresponding phase angle 𝛼.
For all the formations, I will consider the maximum inter-satellite distance to be
200 km; this is the same nominal inter-satellite distance as the one of the GRACE
and GFO missions. This defines the aforementioned parameters as Δ𝑥 = 200 km,
𝐴 = 100 km and 𝐵 = 200 km. The 𝐴 = 100 km follows from the fact that, in a
cartwheel formation, the along-track and radial relative satellite motion is coupled,
such that along-track amplitude is twice the radial one. For the cartwheel mission,
the 𝛼 parameter can be used to define the orientation of the inter-satellite base-
line. With 𝛼 = 0°, it is oriented in the along-track direction over the Equator and
in the radial direction over the poles. For 𝛼 = 90°, it is vice-versa. For the pen-
dulum formation, there exists the choice of adding an along-track constant offset
between the two satellites. This configuration has been called in the literature an
advanced pendulum (Elsaka et al., 2013). This offset allows the pendulum configu-
ration to include some along-track information into its measurements. However, in
the following sections I will not consider advanced pendulums since their potential
advantages can be superseded by alternative mission concepts (see Section 8.2).
Regarding the 𝛽 parameter, which sets the phase of the pendulum oscillations, val-
ues which differ from 0° require a differential inclination between the two satellites
in the formation. While a formation with two orbits with slightly different inclina-
tions maybe stable over short periods of time, the differential inclination causes
differential orbital precession, which over time inevitably will break the formation
apart. Therefore, the 𝛽 parameter of the pendulum formations must be set equal
to 0°.

Regarding missions which consist of two formations, relevant parameters are:
the repeat periods of each formation, the right-ascension angle difference between
the orbital planes of the chief satellites ΔΩ, and the argument of latitude difference
between the two chief satellites Δ𝑢. Regarding the repeat periods of each formation,
they are already restricted to match the data accumulation period of the mission.
Therefore, both formations are already assumed to have the same repeat periods.
Iran Pour et al. (2013) showed an analysis of sub-Nyquist repeat-period orbits,
however, I opt not to look into this type of configurations. Choosing repeat periods
for the two formations that are different from the data accumulation period will have
a major disadvantage: a repeat period shorter than the data accumulation one will
result in a coarser than needed ground track coverage, while a longer one will not
fully complete within the data accumulation period, which will result in an uneven
ground track coverage and non-uniform coverage in each computed solution. On
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the other hand, two formations with different repeat periods could be useful to co-
estimate lower-degree shorter-period solutions in order to minimize the temporal
aliasing of the mission. However, as argued before, alternative parameterizations
of the gravity field are outside of the scope of this thesis. Finally, Δ𝑢 can be used
to adjust the relative latitude between the two chief satellites, while the ΔΩ can
be used to adjust the spacing between the ground tracks of both formations; in
practice, ΔΩ is used to interleave the ground tracks of one formation in-between
the ground tracks of the other. In Section 7.4.2, an analysis of the best way to
interleave formations’ ground tracks is presented.

As an outcome of this discussion, the parameter space of the satellite gravimetry
problem has been significantly reduced. There is only one general mission param-
eter to optimize, the data accumulation period 𝑁፝. Then, for each formation in the
mission, one can choose the type of formation: along-track, cartwheel or pendulum
and, when considering a cartwheel formation, the 𝛼 parameter. When considering
multiple formations, Δ𝑢 should also be investigated. Furthermore, if the consid-
ered inter-satellite baseline of the formations is aligned in the same direction (as in
e.g. the Bender mission), the orbital inclination of the additional formations may
be relevant as well.

7.1.2. Making the case for repeat ground track orbits
There are two characteristics of repeat-groundtrack orbits (RGO) which make them
desirable. Firstly, for an a-priori selected data accumulation period, the RGO with
the corresponding repeat period ensures the finest possible global coverage of the
Earth’s surface (Koop, 1993, page 58). Secondly, the geometry of RGOs is constant
in time, thus ensuring constant spatial resolution throughout the mission duration.

Despite their appealing characteristics, RGOs are by no means necessary to
provide a gravity field solution. Given that satellite gravimetry missions, in gen-
eral, require low altitudes, the presence of residual atmosphere causes significant
drag and, consequently, the satellites’ altitude decays over time, thus excluding the
possibility of passively maintaining a target RGO.

GOCE was the first satellite mission equipped with a drag-free propulsion system,
which maintained very low altitudes through the course of the mission. The ability
to control the altitude over the whole mission timespan opens the possibility of
using RGOs in future satellite gravimetry missions.

In the context of this thesis, one final motivation for the use of RGOs, is that
by ensuring the finest possible coverage, it is possible to exclude the ground track
geometry as one of the parameters limiting the performance of a given mission
concept. Due to their advantages and their likely use in the future, in this thesis,
all orbits are designed as RGOs.

7.1.3. Minimum altitude
It is a well-known fact that low-altitude missions are beneficial, especially for the
recovery of signals at high spherical harmonic degrees (Meissl, 1971). On the other
hand, the lower the satellite’s orbit, the larger the atmospheric drag acting on the
satellite with a severe impact on the mission timespan.
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In a previous study, Wiese (2011) considered a minimum altitude of 290 km.
This altitude was chosen on the basis of a requirement to achieve a mission lifetime
of 10 years. Looking into the GOCE mission, the drag-free propulsion was turned
on to keep a sun-synchronous orbit at an altitude of 254 km. The planned mission
lifetime of GOCE was 20 months during a solar minimum, when atmospheric drag
was relatively low. Towards the end of the GOCE mission, it was decided to lower
the satellite’s orbit in order to maximize the spatial resolution of the mission at the
expense of the potential mission lifetime. In May 2013, GOCE was lowered just
below 230 km, where it operated until the xenon propulsion fuel ran out in October
2013 (HSO-OEG) (2014).

The GOCE mission sets a lower bound on the scope of possible mission alti-
tudes of future ll-SST missions. It may make sense to trade-off mission lifespan
for performance improvements, just as was decided in the GOCE mission. Further-
more, on-going technological developments will likely make future drag compensa-
tion systems even more efficient, which is likely to alleviate the minimum altitude
requirement.

An analysis of the altitudes of different polar repeat orbits, presented in the
left panel of Figure 7.1, shows that an altitude of 290 km restricts the choice of
repeat-period orbits. For example, the 12-day repeat-period orbit at 280 km is
excluded, and the next possible 12-day orbit is at an altitude higher than 350 km.
This means that by imposing a minimum altitude of 290 km, the 12-day repeat
orbit is likely to perform worse than other repeat-period orbits. The same Figure
shows that selecting a minimum altitude of 260 km is much less restrictive for repeat
polar orbits above this value. Therefore, I select 260 km as the minimum altitude
threshold to be used in the simulations.

For any considered repeat orbit, as the orbital inclination decreases, the required
altitude decreases as well. As a consequence, lower inclinations bring many repeat
orbits below the minimum altitude threshold. This is shown, for an inclination of
72°, in the right panel of Figure 7.1. In this case, either the next available higher
altitude orbit has to be chosen or, alternatively, the inclination must be increased
to keep the satellite altitude above the minimum threshold.
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Figure 7.1: Possible altitudes of repeat period orbits for the inclination of 90° (left panel) and 72° (right
panel).
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7.2. Link between ll-SST formations and gradiome-
ter observables

In the following sections, I will use a simplified set of simulations in order to identify
the design parameters which limit the performance of ll-SST missions. The simpli-
fied simulations make use of gradiometer observations to analyze spatial aliasing,
spatial instability and temporal aliasing errors. Both ll-SST missions and gradiome-
ter instruments observe the same gravity gradients. Therefore, from a conceptual
point of view, a given ll-SST satellite pair is equivalent to a single-axis gradiometer
with a very long arm (M. Sharifi et al., 2005). On the other hand, simulating an
ideal gradiometer instrument is simpler because that requires only one orbit to be
calculated. Furthermore, the gradiometer instrument can be used to explore dif-
ferent combinations of gravity gradients without increasing the complexity of the
simulation. Therefore, information gathered from analyzing the performance lim-
its of the gradiometer instrument should provide valuable insights in the design of
ll-SST missions as well.

A gradiometer instrument oriented in the local horizontal reference frame in a
polar orbit is able to measure the xx, yy and zz gravity gradients. In this situation,
the x-axis points in the along-track direction and is approximately aligned with the
North-South direction, the z-axis points radially down and is aligned with the ver-
tical direction, and the y-axis completes the orthogonal coordinate system and is
approximately aligned with the East-West direction. The relation between different
ll-SST mission concepts and an ideal gradiometer instrument is rather straightfor-
ward. The along-track concept is normally aligned in the North-South direction,
such that the ll-SST observations collected will closely resemble the xx gradiome-
ter component. The orbital inclination of the along-track concept can be modified,
which will result in ll-SST data containing a combination of the xx and yy gradients.
The pendulum concept is normally oriented in the East-West direction, such that
its ll-SST observations map approximately to the yy gravity gradient. By adding an
along-track offset, the pendulum can be modified to include xx information in the
observations. Finally, the cartwheel formation collects ll-SST observations oriented
in the vertical plane; the observations oscillate between the xx and the zz gravity
gradient components.

In the following sections, I will compare the relative performance of missions
which consider different gravity gradients as observations. Based on the above
considerations, it will be possible to predict the relative performance of the corre-
sponding ll-SST formations.

7.3. Spatial Aliasing
In practice, computing a gravity field solution from a set of measurements requires
the choice of the maximum SH degree 𝑙max to be solved for. The mass transport
signal to be recovered from those observations is composed by an infinite number
of harmonics. The signal harmonics which are above the chosen 𝑙max will alias
into the solutions as spatial aliasing errors. In this section, I will show the relation
between spatial aliasing errors and the choice of 𝑙max, as well as the differences in
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these errors between different gradiometer components.
The ESM model, which is used in this thesis as the input mass transport signal,

is defined up to SH degree 180, while the bulk of the solutions computed will be
cropped at 𝑙max = 120. While the ESM model, unlike the real mass transport signal,
does not contain infinite harmonics, SH degrees between 121 and 180 suffice to
accurately represent the propagation of spatial aliasing errors.

Three different simulations are considered, each observing a single gradiometer
component: xx, yy or zz. These are considered in order to evaluate the impact
of spatial aliasing errors in each of the elementary formations. The considered
simulations are set on 319/201 repeat orbit at an altitude of 403 km repeat orbits
at an altitude of 275 km. The 20-day period was chosen as the minimum required
to compute SH solutions up to 𝑙max = 120.

The global RMS of spatial aliasing errors as a function of selected 𝑙max for each
simulation is presented in Table 7.1. For a selected 𝑙max, the input field is composed
of SH coefficients between 𝑙max+1 and 180. It can be seen that there are significant
differences between the considered simulations. The xx and yy simulations yielded
relatively large global RMS of spatial aliasing errors (between 12 and 18 mm ewh),
while the zz simulation yielded about an order of magnitude smaller errors (between
1 and 2 mm ewh). The yy simulation seems to be the worst of the three.

Figure 7.2 shows the DV of spatial aliasing errors with increasing 𝑙max. This
figure shows that the distribution of the spatial aliasing error over the SH degrees
is also quite different for the considered gradients. While the xx gradient shows
an exponential increase with SH degree, the spatial aliasing error of the yy and zz
gradients is almost completely confined to the largest few SH degrees considered,
as shown by the sharp increase of the plotted curves close to 𝑙max.

Table 7.1: Global RMS of spatial aliasing errors for different choice of ፥max [mm ewh]. First column shows
the considered input SH degrees and the second column shows the selected ፥max. Remaining columns
on the table show global RMS of spatial aliasing errors for the considered gradiometer simulations.

Input 𝐿max xx yy zz
41 to 180 40 12.37 12.52 1.85
61 to 180 60 14.12 17.17 2.12
81 to 180 80 12.57 14.89 1.67
101 to 180 100 12.81 14.81 1.46
121 to 180 120 13.45 14.55 1.57

Notice that, in general, the global RMS of spatial aliasing errors does not de-
crease monotonically with higher 𝑙max. From the presented results, it seems that this
error is constant with some random fluctuations. This finding is counter-intuitive.
By increasing 𝑙max, the number of harmonics in the aliased signal decreases and
therefore one expects the corresponding spatial aliasing error to become smaller.
To illustrate why this happens, I selected as input a constant portion of the ESM
signal between SH degrees 121 and 140 and computed the corresponding spatial
aliasing errors for different choices of 𝑙max for all three simulations. The results are
1319 revolutions in 20 nodal-days, cf. Section 2.2.2
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Figure 7.2: Spatial aliasing errors for the xx (top), yy (middle) and zz (bottom) simulations for different
choice of ፥max.
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plotted in Figure 7.3 and they are consistent across all three considered simula-
tions. For relatively low 𝑙max, say 40 to 80, the input signal (between SH 121 to
140) triggers a negligible level of spatial aliasing errors. However for 𝑙max = 120,
immediately below the minimum SH of the considered input, the spatial aliasing
error is now significantly larger than before. Similar behavior can be observed in
Figure 7.2 by comparing the DV curves for consecutive 𝑙max. For example, by com-
paring the range of SH degrees 0 to 40 corresponding to 𝑙max = 40 and 𝑙max = 60,
one can see that spatial aliasing errors for the latter are significantly smaller than
the former. This happens because, for 𝑙max = 60, the range of SH degrees between
41 and 60 is no longer a part of the input fields. As a consequence, the level of
spatial aliasing errors in the range between SH degree 0 and 40 goes down.

These results show that spatial aliasing errors are caused by the portion of
the input signal corresponding to the SH degrees which are immediately above the
selected 𝑙max. Alternatively, one can say that input signals at SH degrees larger than
𝑙max + 𝑁, where N is about 10, will not cause any significant spatial aliasing errors
in the solutions. In turn, this explains why, an increase in selected 𝑙max, which by
definition reduces the power of the aliased signal, does not lead to a corresponding
decrease in the global RMS of the spatial aliasing error.

Comparing the evolution of spatial aliasing errors with increasing 𝑙max for the
different simulation in Figure 7.3 reveals another relevant aspect in the choice of
𝑙max. The different 𝑙max curves of spatial aliasing errors of the yy simulation (for
most SH degrees) overlap each other. The solution computed between SH degrees
10 and 30 does not change as a consequence of selecting higher 𝑙max. This makes
sense; given the same input signal, the output solution is not expected to change.
However, one can see for xx simulation, that spatial aliasing errors, between any
range of SH degrees, become larger with higher 𝑙max. This illustrates the ampli-
fication of errors when solving a system of linear equations which becomes more
ill-conditioned with increasing 𝑙max. These spatial instability errors are another im-
portant aspect to consider in the choice of 𝑙max; they will be further analyzed in
Section 7.4.

In conclusion, spatial aliasing errors are significantly smaller for the zz compared
to the yy or xx gradients. This means that, in principle one expects both along-track
and pendulum missions to be rather sensitive to spatial aliasing errors. Considering
that the observations provided by a cartwheel missions are partly oriented in along
the radial direction means that they may be less sensitive to these errors compared
to the other two concepts.

Furthermore, it was shown that spatial aliasing errors are mostly caused by the
input signals immediately above the chosen 𝑙max. Since the magnitude of the input
mass transport signal decreases slowly (in mm ewh) with increasing SH degree, it
is beneficial to choose higher 𝑙max.

In general, the bulk of the spatial aliasing error is confined to the few largest
considered SH degrees. This behavior is even more pronounced for the yy and
zz gradients. While choosing large 𝑙max may not significantly decrease the global
RMS of the spatial aliasing errors, it will ensure that this error is almost completely
allocated to the highest considered SH degrees which may be adequately filtered
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Figure 7.3: Spatial aliasing errors for the xx (top), yy (middle) and zz (bottom) formations for different
choice of ፥max caused by input signals between SH degrees 121 and 140 from the ESM model.



7.4. Improving spatial resolution

7

135

later on. The caveat exists however, that spatial instability errors are known to
increase with 𝑙max. Therefore, spatial instability errors must also be taken into
account in the choice of 𝑙max.

7.4. Improving spatial resolution
An increase in the spatial resolution is one of the desired improvements regarding
the performance of future satellite gravimetry missions. In theory, in order to im-
prove the spatial resolution of a mission all that is required is to compute a solution
up to higher 𝑙max. In practice, this is not possible. With increasing 𝑙max, the system
of linear equations to solve becomes ill-conditioned and a solution can no longer be
computed. However, even before this point is reached, the downward continuation
of the gravitational signal causes existing noise in the observations to be progres-
sively amplified until it becomes much larger than the signal to be recovered. Once
any source of noise in the data has been greatly amplified by this process, I refer to
these errors as spatial instability errors. This term refers to the increasing instability
of the solutions when solved up to an increasingly higher 𝑙max. The spatial resolu-
tion of any gravimetry mission is affected by spatial instability errors. I claim that
spatial instability errors are the best estimate of the spatial resolution of a mission.
In this section, I will analyze what are the design parameters which play a role in
mitigating these errors.

All simulations consist of a gradiometer instrument in a near-polar circular 31/2.
Due to the 31 equidistant equator crossings of the orbit, the Colombo-Nyquist rule
recommends the maximum degree of the solution to be 𝑙max < 31/2, meaning
that 𝑙max ≤ 15. To evaluate the spatial instability errors of each simulation, the
normal matrices are assembled up to a significantly higher degrees. The choice of
such short data accumulation period (and corresponding repeat orbit) is motivated
by keeping the maximum SH degree of the normal matrices required to push the
spatial resolution limits of the considered simulations below 𝑙max ≤ 120.

Spatial instability errors show up as an amplification of existing observation noise
when solutions are computed to a too high SH degree. Therefore, in order to
analyze the spatial instability errors, it is necessary to consider a noise source which
will trigger it. In this section, I consider gradiometer noise modeled as simple white

noise with a PSD
ኻ
ኼ of 1 × 10ዅ5 E/√Hz. This value has been chosen to be smaller

than the mean mass transport signal (in the frequency range below 6mHz), as
one expects from a real ll-SST dataset. In the following sections this value plays
no special role, since all conclusions will be based on a comparison of the spatial
instability errors for different simulations affected by noise of the same level. All
other errors sources are disregarded, including temporal aliasing errors.

To ensure a better comparability of the results, the same noise realizations are
used in all simulations. Furthermore, for each simulation in this section (unless oth-
erwise stated), the reported results are the aggregate of an ensemble of 9 different
noise realizations. When presenting SH models, the aggregation of the different
error realizations is done by computing the RMS error per SH coefficient. On the
other hand, when presenting maps of errors, the aggregation is done by computing
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the RMS per grid node.
Regarding the considered mass transport signal, it is the average of the HIS

component of the ESM model over the 2 first days in May 2006 propagated into
the gravity gradients along the 31/2 repeat orbit, which is considered in all the
simulations. The selected time period has been randomly chosen, having no special
significance. Furthermore, the mass transport signal in this section is plotted only to
provide context of how strong errors are compared to a typical signal. Depending on
the maximum inversion degree of the current simulation, the input mass transport
signal will be consistently cropped to rule out spatial aliasing errors. Figure 7.4
shows a comparison of spatial instability errors with the typical mass transport

signal in terms of PSD
ኻ
ኼ of xx gravity gradients. In this plot, the input mass transport

signal has been cropped to SH degree 40, which explains the sharp decay in signal
at roughly 6mHz.

7.4.1. Single formation
Single gradiometer component
To begin with, I present three simulations, each using a single gradiometer compo-
nent as the observable, i.e., only the xx, yy or zz gradients are observed at a time.
In this way, I investigate whether the choice of the observable orientation plays a
role in the spatial resolution of the mission.

By considering a single gradiometer component and inverting the data up to
an increasingly high SH degree, one can analyze the evolution of spatial instabil-
ity errors as a function of 𝑙max. The results for the xx component are shown in
terms of DV in the right plot of Figure 7.4. Here one can see that errors gradually
increase with increasing 𝑙max. Between 𝑙max 30 and 40, the DV of the computed
solution jumps several orders of magnitude. Beyond 𝑙max = 40, the normal ma-
trix becomes ill-conditioned and solutions can no longer be computed. Notice that
the considered plot does not conform to the Colombo-Nyquist rule (similar findings
reported by (Visser et al., 2012)), which recommends a maximum 𝑙max = 15; in
fact, the plot shows that one may easily double 𝑙max to 30 without introducing large
spatial instability errors. Next, one may wonder whether there are significant differ-
ences between inverting observations of different gradiometer components. Two
additional simulations were considered using the yy and zz gravity gradients. The
solutions computed up to 𝑙max = 30 are shown for each simulation in Figure 7.5.
The zz gradient yields significantly lower errors for all SH degrees compared to the
other two components. The xx gradient is just slightly lower than the yy up to SH
degree 10, above which the yy gradient shows lower errors than xx. In terms of
cumulative error, the xx gradient is slightly worse than yy.

Spatial instability errors for the three components are also shown as maps in
Figure 7.6. The plot confirms that the zz gradient suffers from relatively low noise.
The yy gradient shows a horizontal striation error pattern in the latitude range
between −45° and 45°. The xx gradient suffers from the strongest noise, which
shows up as a vertical striation pattern, being particularly pronounced around the
±45° latitudes.

The presented results clearly show that the zz gradient is less sensitive to spa-
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Figure 7.4: Left panel: a comparison of mass transport signal and introduced gradiometer white noise in
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tial instability errors and conversely has the potential to deliver the highest spatial
resolution.

Multiple gradiometer components
When considering the design of future ll-SST satellite missions, observables from
different formations and/or different satellite pairs can be combined. Therefore, it
is important to understand how spatial instability errors depend on different com-
binations of observables.

In the following sections, I will consider the xz gradiometer component in ad-
dition to the previous three. Despite the fact that there is no correspondence be-
tween the xz-gradient and a stand-alone ll-SST configuration, the inclusion of the
xz gradient will lead to a few interesting findings which are relevant for satellite
gravimetry in general. With the addition of the xz gradiometer, there are 6 possible
combinations of 2 observables (xx+yy, xx+zz, xx+xz, yy+zz, yy+xz, and zz+xz), 4
combinations of 3 observables (xx+yy+zz, xx+yy+xz, xx+zz+xz, yy+zz+xz) and 1
combination of 4 observables (xx+yy+zz+xz).

Let us start with the combinations of 2 observables. Figure 7.7 shows the evolu-
tion of spatial instability errors for the xx+yy combination. Here we see that, unlike
in the case of the single observable xx, spatial instability errors are below the mass
transport signal up to 𝑙max = 50, and only beyond 𝑙max = 70 do spatial instability
errors become orders of magnitude larger. This is a significant improvement over
the single-observable setup; the spatial resolution of the mission is effectively dou-
bled by the inclusion of another observable without any change of the ground track
geometry.

Next, we compare the spatial instability errors of all 6 possible combinations for
𝑙max = 60 (Fig. 7.8). All combinations show roughly similar performance, except for
xx+xz, which performs worse than the others.

Finally, we inspect the evolution of spatial instability errors for the xx+yy+xz
combination of three observables, shown in the left plot of Figure 7.9. It can be
seen that the spatial instability errors increase gradually; at 𝑙max = 50 they are
below the mass transport signal for all SH degrees, and at 𝑙max = 70, the cumulative
spatial instability error is about the same as the cumulative mass transport signal.

Having selected 𝑙max = 70, I compare all four combinations of three observ-
ables along with the single combination of four observables (Fig. 7.10). This is
an interesting plot, as it shows that all the considered combinations, including the
4-observable combination, suffer from approximately the same level of spatial in-
stability errors, except for the xx+yy+zz combination, which is orders of magnitude
worse. The plot is fully consistent with the properties of the gravity field; gravi-
tational potential is a harmonic function satisfying the Laplace’s equation, so that
each of the xx, yy and zz components can be written as a linear combination of the
other two. Therefore, the addition of the zz component to a xx+yy combination
does not yield any significant reduction of spatial aliasing errors. As a consequence,
the xx+yy+zz combination is in fact similar to a 2-observable combination. For the
same reason, the xx+yy+zz+xz combinations performs similarly to the 3-observable
combinations, xx+yy+xz, yy+zz+xz and xx+zz+xz, since they all share the same
amount of information.
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Figure 7.7: Evolution of spatial instability errors with increasing SH degree for the xx+yy combination.
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Figure 7.9: Evolution of spatial instability errors with increasing maximum SH degree for the xx+yy+xz
combination.
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Figure 7.10: Comparison of all three- and four- component combinations of gradiometer observables for
፥max  ኺ.
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The presented result shows that adding more information to the system effec-
tively increases the spatial resolution. This result is very important, since spatial
resolution is likely a major bottleneck in the performance of future satellite missions.
Spatial resolution is regarded as an unavoidable trade-off with temporal resolution
of the mission, e.g. (Reubelt et al., 2010). As a consequence, discussions about
improving spatial resolution are confined to either compromising the temporal res-
olution of a given mission or by launching additional satellites in order to reduce
the overall ground track spacing of the mission. The presented results show that
the spatial resolution of a mission is not uniquely determined by the ground track
geometry.

Knowing that additional observables improve the spatial resolution of a given
mission, one may also take advantage of this fact in the design of a mission in
order to improve improve its temporal resolution. For a given target spatial resolu-
tion, the addition of another source of information relaxes the requirement on the
data accumulation period, thus, potentially improving the temporal resolution. This
aspect will be analyzed in detail in Section 7.5.

Colombo-Nyquist rule and its numerous reformulations
Visser et al., 2012 proposed the reformulation of the Colombo-Nyquist maximum
solvable SH degree as

𝑙max = 𝑘𝑛፫ + 1, (7.1)

where 𝑛፫ is the number of satellite revolutions and k is the number of combined
observation types. To validate this idea, I compare the spatial instability errors
of three missions: a mission which collects a combination of three observables
xx+zz+xz over a time span of 2 days, a mission collecting a zz+xz combination
over a period of 3 days and one collecting only the zz component over a period of
6 days.

All three missions collect the same amount of data, since the product between
linearly independent observations and days of data is always equal to 6. The stan-
dard Colombo-Nyquist rule predicts 𝑙max = 15 for the xx+zz+xz on a 31/2 orbit,
𝑙max = 23 for the zz+xz on a 47/3 orbit and 𝑙max = 47 for zz scenario on a 95/6
orbit. According to Eq. 7.1, the maximum solvable SH degree should be about the
same for all the considered scenarios: 93, 94 and 95 for xx+zz+xz, zz+xz and zz,
respectively.

The corresponding spatial instability errors are shown in Figure 7.11 (in the left
plot, for 𝑙max = 60, and in the right plot, for 𝑙max = 90). Both plots show that
the three missions exhibit different levels of spatial instability errors. At 𝑙max = 60,
the 2-day xx+zz+xz mission already suffers from comparatively high errors, while
the 3-day zz+xz mission is also worse compared to the 6-day zz mission. The
discrepancies become even larger when considering 𝑙max = 90. The results show
that Eq. 7.1, while better than the original Colombo-Nyquist rule, is still inadequate
for predicting the spatial resolution of different missions.

In Figure 7.12, a search for 𝑙max was carried out to yield similar cumulative RMS
of spatial instability errors. Here we see that the 6-day mission is solved to degree
95, the 3-day mission to degree 70 and the 2-day mission to degree 50. I propose
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Figure 7.11: spatial instability errors for three missions with the same amount of data: a 2-day xx+zz+xz,
a 3-day zz+xz and a 6-day zz mission. Left plot: spatial instability errors for ፥max  ዀኺ. Right plot: the
same for ፥max  ዃኺ.

an improved empirical predictor for the maximum solvable degree of a satellite
mission:

𝑙max = 𝑛፫ . (1 +
𝑘 − 1
𝑐 ) , (7.2)

where c is a constant scaling factor. This predictor is valid under the assumption
that a repeat period orbit is used which matches the data accumulation period of the
computed solutions and that the k combined observables are linearly independent
sources of information.

What distinguishes this predictor from the previous ones is the realization that
the spatial resolution benefits from the addition of observation components, but
does not scale one-to-one with the number of observables or orbital revolutions. If
c = 1, then the expression simplifies to 𝑙max = 𝑛፫𝑘, which is close to Eq. 7.1. From
the presented results, c is found to be between 1.6 and 2. The latter value means
that an additional observable will increase the maximum SH degree by about half
of the number of satellite revolutions. A simpler way to state this is that the spatial
resolution of a 10-day mission collecting 2 observables is equivalent to a 15- or
16-day mission collecting 1 observable, and not to a 20-day mission collecting 1
observation as predicted Eq. 7.1.

Finally, it is important to state that such predictors are an oversimplification of
the gravity field recovery problem They are very useful for a preliminary analysis of
different satellite mission concepts but are no replacement for a proper assessment
of mission performance through simulation.

Even- and odd-parity repeat-period orbits
As it is already mentioned above, geometry of the ground tracks is an important
aspect determining the performance of a satellite gravimetry mission. A proof of
that is the degradation of GRACE solutions when the satellites’ orbits approach short
repeat periods (Klokočník et al., 2008; Weigelt et al., 2013). Weigelt et al. (2013)
noticed that, in some repeat orbits, the ascending tracks overlap the descending
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Figure 7.12: Spatial instability
errors for three missions with
same amount of data: a 2-day
xx+zz+xz, a 3-day zz+xz and a
6-day zz mission. The ፥max of
each curve has been selected as
to yield approximately the same
cumulative spatial instability er-
ror.
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tracks over the equator. This happens when the difference 𝛼 − 𝛽 is even, where
𝛼 is the orbit repeat period in days and 𝛽 is the number of satellite revolutions
in that period (see also Section 2.2.2). This type of orbits are said to be of even
parity, while orbits with no overlapping tracks over the equator are of odd parity.
For brevity I will call these orbits even orbits and odd orbits, respectively.

A good illustration of this phenomenon is provided in Weigelt et al. (2013) and
shown here as well in Figure 7.13. In the two left panels I present the ground tracks
of two orbits of a 3-day repeat period: the leftmost is for an even 47/3 and the
middle-left for an odd 46/3 repeat orbit. Despite the similar number of revolutions
within the repeat period, it can be seen that the even orbit has two times less
equator crossings than the odd one. This results in a significant degradation of the
ground track spacing when compared to the odd type.

Figure 7.13: Odd- and even-parity 3-day repeat orbits with different inclinations. The two panels on the
left depict 47/3 (even) and 46/3 (odd) repeat orbits with an inclination of 86.5°, respectively. The two
right panels depict the same, but now with an inclination of 89.5°. For the 86.5° orbits, the ground track
spacing of the even-parity orbit is noticeably worse than of the odd-parity one. The same is not true for
other orbit inclinations, as shown by the example of 89.5° orbit.
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One important detail missing in the analysis made by Weigelt et al. (2013) is that
the two considered orbits have an inclination of 86.5°. This is important, because
at this inclination, the East-West velocity of the satellites approximately matches
the Earth’s rotation speed, so that the ground tracks become meridional for the
most part of the orbit. For other inclinations, the resulting ground track geometry
is significantly different. In the two right panels in Figure 7.13, a similar pair of
orbits is shown, but with an inclination of 89.5°. Regarding the equator crossings
alone, the depicted orbits have the same characteristics: the even orbit has half of
the equator crossings of the odd orbit. However, when one regards the full latitude
domain, one sees that these two orbits are complementary; while the even orbit
has a two-times larger ground track spacing at the equator, it has half ground track
spacing at 30° S latitude.

In Figure 7.14, the spatial instability errors associated with the odd and even
orbit at 89.5° inclination are shown for the xx gravity gradient observable. The figure
reveals that the odd orbit shows an error reduction of about 50% with respect to
the even one between SH degrees 10 and 20. Nonetheless the difference between
them in terms of CDV at degree 40 is not significant.
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Figure 7.14: Averages of an ensemble of 9 realizations of spatial instability errors for odd and even parity
orbits at 89.5° orbital inclination in terms of DV and CDV.

Considering the minimum altitude threshold of 260 km (cf. Section 7.1.3), Ta-
ble 7.2 lists for each amount of nodal days 𝛼, the available repeat orbits until the
first odd one. Notice that the lowest altitude available orbit for the odd 𝛼 has even
parity. If one would assume that even-parity orbits are significantly worse than odd
ones, then for odd 𝛼 one would have to chose the next higher altitude repeat orbit.
This assumption would restrict odd 𝛼 to have about 20 km higher altitude orbits



7

146
7. Assessing limitations of ll-SST missions through small-scale

simulations

than necessary. In turn, this would probably result in a degradation of the perfor-
mance at odd 𝛼. Given the relatively minor differences found in terms of spatial
aliasing errors between even and odd orbits, I will use not only odd-parity orbits,
but also even-parity ones ensuring that the lowest altitude repeat orbit available
will be used.

Table 7.2: List of available repeat groundtrack orbits above 260 km in ascending altitude until the first
odd-parity orbit for each ᎎ between 8 and 16-days. ᎎ represents the nodal days and ᎏ the number of
satellite revolutions (cf. Section 2.2.2).

𝛼 𝛽 Parity Altitude [km]
8 127 odd 296

9 143 even 292
142 odd 323

10 159 odd 289

11 175 even 286
174 odd 312

12 191 odd 284

13 207 even 282
206 odd 304

14 223 odd 281

15 239 even 279
238 odd 298

16 255 odd 278

7.4.2. Multiple formations
Multiple-formation mission concepts, such as the Bender constellation (P. L. Ben-
der et al., 2008), are known from the literature (Elsaka et al., 2013; Wiese, 2011).
Additional formations can reduce spatial instability errors in two ways: firstly, by in-
creasing the amount of data collected in any time period and, secondly, by reducing
the size of the gaps between ground tracks.

Interleaving ground tracks of multi-formation missions
When adding a second formation with the same repeat orbit, it may be desirable to
design the ground tracks of the second formation to be interleaved with those of
the first one in order to improve the overall ground track spacing and, ideally, the
mission’s spatial resolution. Then, the question is how to correctly interleave the
ground tracks of multiple formations.

At the first glance, the answer is simple: shift the orbital plane of the second
formation by half of the longitude difference between adjacent groundtracks 𝛿𝜆.
More generally, the mission ground track spacing can be halved by shifting the
second formation by an arbitrary multiple plus a half of this difference.

However, as discussed in Section 7.4.1, there is a relevant aspect in which even
and odd repeat orbits differ. Regarding even orbits, the interleaving is straightfor-
ward; an even repeat orbit with 𝛽 revolutions will have 𝛽 unique equator crossings
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equidistantly spaced in the longitude domain. The ground track spacing is 𝛿𝜆 = ኼ
ᎏ .

Therefore, when adding the second formation, it is sufficient to shift its RAAN by

ΔΩ = (𝑘 + 12)𝛿𝜆 = (𝑘 +
1
2)

2𝜋
𝛽 , ∀𝑘 ∈ Z . (7.3)

For 𝑘 = 0, interleaved ground tracks are obtained with ΔΩ = 
ᎏ .

The question is how to handle odd orbits. The ascending and descending tracks
of odd orbits do not cross at the equator. There are 2𝛽 equidistant equator cross-
ings. The ground track spacing at the equator is now 𝛿𝜆 = 

ᎏ . Applying a

ᎏ shift

will cause the ascending ground tracks of one formation to overlap the descend-
ing ground tracks of the other formations, thus resulting in no reduction of the
equatorial ground track spacing. Thus, in order to interleave the groundtracks of
multi-formation missions in odd repeat orbits the relative shift is

ΔΩ = (𝑘 + 12)
𝜋
𝛽 , ∀𝑘 ∈ Z .

In Figure 7.15, two odd orbits with an inclination of 89.5° are plotted where two
different shifts have been applied. In the left panel, the second orbit is shifted by

ኼᎏ , so that the new equator crossings are interleaved with the first orbit ones. One
can see that, while the ground track spacing is indeed halved at the equator, at the
latitude of −30°, where the ground track spacing is the coarsest, the addition of the
second formation has not significantly improved the ground track spacing. If the
second formation is shifted by 

ᎏ , the descending ground tracks of one formation
overlap at the equator the ascending ground tracks of the other one, and the ground
track spacing at the equator does not change. However, the ground track spacing
at the coarsest location is now halved, resulting in a more uniform coverage overall.
Looking at Figure 7.15, and assuming that the groundtrack spacing at the equator
is not more important than at other latitudes, shifting odd orbits by 

ᎏ seems more
reasonable. This approach is also more convenient because one does not need
to consider whether the orbits are even or odd. In the next experiment, I invert
various combinations of synthetic data in order to quantify an improvement in the
spatial resolution (if any) offered by the 

ᎏ shift as compared to other options.
In the next section, spatial instability errors of the two alternative ways to shift

odd parity orbits will be analyzed in the context of multi-formation missions.

Added value of additional formations
It was shown in Section 7.4.1 that combining different observables in the same
formation effectively extends the spatial resolution of the mission. Now the question
is whether a further increase can be obtained when the same amount of data is
collected by distinct formations?

In general, a second satellite formation may improve the spatial resolution with
respect to a single-formation mission for two reasons: more data and denser
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Figure 7.15: Two odd repeat orbits
with interleaved ground tracks. The
first orbit is represented in black. The
second orbit, in red, is shifted by 

ኼᎏ
in the left panel, and by 

ᎏ in the right
panel. In the right panel, even though
the ground track spacing at the equa-
tor is not reduced, the overall geome-
try is more uniform.

groundtracks. It is trivial that more data is always beneficial. In previous sec-
tions, it was shown that it is also possible to design a single formation to acquire a
higher amount of data by measuring different gravity gradient components. There-
fore, I will isolate the added value of a second formation by keeping the amount of
data constant when comparing single- and dual-formation simulations. The base-
line mission is the yy+xz combination, which was shown in Figure 7.8 to be the
2-observable combination with the lowest spatial instability errors at maximum SH
degree 60. To keep the amount of data constant, the yy+xz combination will be
split in two different formations where one observes the yy and the other observes
the xz component.

Four simulations will be analyzed, all consisting of formations on 31/2 odd-repeat
orbits at an inclination of 89.5°:

• yy+xz: the baseline mission to compare improvements to.

• yy/xz: a dual-formation mission where the second formation is shifted by
𝜋/𝛽, which, given that the considered orbit is odd, causes the equatorial
ascending crossings of one mission to overlap the descending crossings of the
other mission. As previously discussed, despite increasing the overall ground
track density, this configuration does not decrease the equatorial ground track
spacing, cf. the right plot of Figure 7.15.

• yy/xz-itv: a dual-formation mission where the second formation is shifted by
𝜋/2𝛽, such that the overall equatorial ground track spacing is now halved, a
configuration similar to what is shown in the left plot of Figure 7.15.

• yy/xz-ovl: shifts the second formation’s ground tracks by 2𝜋/𝛽 in order to
overlap with the first formation’s ones, so that there is no change in the overall
ground track geometry relative to yy+xz.

A comparison of the spatial instability errors with the single-satellite yy+xz for-
mation at maximum SH degree 60 is shown in terms of DV and CDV in the left
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plot of Figure 7.16. Differences between the yy+xz and yy/xz-ovl simulations are
hardly visible. These small differences can be explained by an accumulation of nu-
merical errors during the numerical integration applied to compute the orbits. They
represent a minimum threshold for any reduction of spatial instability errors to be
meaningful in the context of ground track geometry design.

Regarding the yy/xz and yy/xz-itv simulations with improved ground track de-
sign, spatial instability errors are slightly smaller for both. The yy/xz is marginally
better below spherical harmonic degree 30, while yy/xz-itv is better above that de-
gree. Regarding the cumulative error, both configurations yield nearly the same
spatial instability errors. Overall, there seems to be no significant difference be-
tween the two configurations in terms of spatial instability errors.

The spatial instability error reduction shown by the improved ground track sim-
ulations is underwhelming. There is no significant reduction of spatial instability
errors which would allow for computing SH solutions up to a higher degree, thus
increasing the spatial resolution of the mission. The Colombo-Nyquist rule applied
to multi-formation missions (Reubelt et al., 2010) states that the maximum solvable
spherical harmonic degree 𝑙max = floor (᎑᎘ኼ ). Considering this rule, one could be
tempted to imagine that halving the equatorial ground track spacing would effec-
tively double the spatial resolution of the mission. This is true for multi-formation
missions which consider the same observable in all the formations. However, the
presented results show that the same is not generally applicable when different
observables are considered.
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Figure 7.16: Left panel: comparison of the best 2-observable single formation mission, yy+xz, with
three missions consisting of two formations observing the yy and xz components separately. Each of
the three considered 2-formation missions shifts the ground track of the second formation differently;
yy/xz ground track is shifted by ጂ  /ᎏ, yy/xz-itv by ጂ  /ኼᎏ and yy/xz-ovl by ጂ  ኼ/ᎏ. Right
panel: comparison of a single-formation mission collecting the yy+xz combination, a dual-formation
mission yy/xz, where the formations collect yy and xz observables respectively and a dual-formation
mission zz/zz, where both formations collect the same zz observable.

Type of observations
An additional simulation was performed to verify whether the improvements in spa-
tial resolution can be obtained by selecting different combinations of observations.
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The rationale is that, while on a single formation mission the only way to increase
the amount of collected information is to combine orthogonal components of the
gravity gradients, in multi-formation missions this limitation no longer applies. Tak-
ing into account that the zz observable has been shown to have the lowest spatial
instability errors in the single-observable set of simulations, cf. Figure 7.5, per-
haps a dual-formation mission where both formations observe the zz component is
capable of improving on the yy/xz dual formation.

The zz/zz simulation shares the same orbits as the previously presented yy/xz
simulation, so that the formation ground tracks are interleaved by ΔΩ = 𝜋/𝛽. The
comparison of the corresponding spatial instability errors is shown in the right plot
of Figure 7.16. It can be confirmed that the zz/zz mission reduces the level of spatial
instability errors. The observed improvement is even significantly larger than the
improvement obtained by interleaving the ground tracks of the yy+xz mission. This
shows that there is no need to ensure orthogonality of the collected observations in
multi-formation missions in order to maximize the amount of information collected.

7.5. Improving temporal resolution
The concept of temporal resolution is clear for satellite missions which use direct
observation methods, e.g. laser altimetry or radar. It is the amount of time between
the satellite visits over the same geographical region. This amount of time is defined
by design in the chosen satellite orbits. Temporal resolution in the context of a
satellite gravimetry mission is not as clearly defined. This is a consequence of the
fact that gravimetric measurements are not local in nature. Each measurement
carries information about the Earth’s gravity field as a whole and not only about the
local geographical region.

Typically, a global gravity field solution is computed on the basis of data collected
over a period of time. Temporal resolution can be defined as the amount of time
between computed solutions, i.e. temporal resolution is equal to the data accumu-
lation period. This is the definition proposed in the Heisenberg principle of satellite
gravimetry (Reubelt et al., 2010). For a repeat orbit 𝛽/𝛼, the temporal resolution
of the mission is defined as 𝐷time = 𝛼. However, I argue that this definition is not
useful in the design of satellite gravimetry missions. It does not take into account
several aspects which play a role in the quality of the recovered solutions:

• the amount of data collected: under this definition, multi-formation missions
would have the same temporal resolution as single-formation ones despite
collecting much more data.

• the distribution of measurements: there are infinite number of possible orbits
available to collect measurements and certainly some are worse than others.
Under this definition of temporal aliasing, all of these would have the same
resolution.

• the aliased error sources: the concept of temporal resolution is meaningless
in the absence of the mass transport processes which cause temporal aliasing
errors. The spatial distribution, temporal evolution of these processes and
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how they map into the observations drives the temporal resolution of the
mission.

Therefore, the design of a satellite gravimetry mission with enhanced tempo-
ral resolution requires a quantifiable definition of this concept. Conceptually, a
satellite constellation could continuously observe all geographic regions. Over any
pre-defined data accumulation period, it would allow one to perfectly recover the
mean field. As a consequence, there would be no temporal aliasing errors and such
a satellite network could be said to have an infinite temporal resolution. In any
realistic scenario, this is not feasible, the temporal resolution will always be limited.
Then, the mean field cannot be exactly recovered because temporal variations will
map into the solutions as temporal aliasing errors. I state that the best metric for
the temporal resolution of a mission is the level of temporal aliasing errors.

In Section 6.2, I have shown that temporal aliasing errors are one of the major
limiting factors to the performance of the GRACE and GFO missions. Similarly to
the analysis for the spatial resolution, I will use simulated gradiometer data to
investigate the mission criteria which may play a role in minimizing the level of
temporal aliasing errors.

The baseline mission has a 79/5 repeat orbit, polar inclination and an altitude
of 317 km, from which temporal aliasing errors are propagated up to SH degree
40, well within the Colombo-Nyquist limit, in order to avoid any spatial aliasing
issues. Temporal aliasing errors are caused by three components: dynamic mass
transport signal (TMP), ocean tide model errors (OTE) and atmosphere and ocean
de-aliasing model errors (AOD) (c.f. Section 4.2.2). The mean of the AOD and
OTE error (i.e., the static component of the error) is, in general, non-zero within
the data accumulation period of the mission. This static component, however, can
be recovered exactly and does not cause temporal aliasing errors. Therefore, I
subtract the static component from the input AOD and OTE errors. The TMP error
consists by definition of only the non-static component of the mass transport signal.

When dealing with time-variable phenomena, it is naive to focus the analysis on a
single period of time, since any conclusions made may be false if another period was
chosen. In order to present robust conclusions, in this section, with the exception
of 7.5.2, all temporal aliasing errors are an aggregate of 9 different error realizations
at randomly selected dates in the range between 1995 and 20062. Furthermore,
the set of randomly selected dates is consistently applied to all simulations. This
procedure ensures that the presented results are robust and not biased towards
specific date.

In the following sections, I will compare different missions in terms of their tem-
poral aliasing errors, using the simulation procedure presented in Chapter 4. I will
analyze the impact of different parameters onto temporal aliasing errors. First of all,
I will consider different gradiometer data components individually to check whether
significant differences in temporal aliasing errors exist. Next, I will analyze differ-
ent combinations of these components. Afterwards, the dependence of temporal

2this is the range spanned by the ESM mass transport model used in the simulations (Dobslaw et al.,
2014b)
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aliasing errors on the data accumulation period will be analyzed. Finally, multiple
satellite formations will be considered. I will analyze the added value of a second
formation, depending on the relative orbital shift and the type of observables used
in the constellation.

7.5.1. Single formation
Impact of different observables
A set of missions equipped with an ideal gradiometer instrument is considered,
differing by the gravity gradient component they observe: xx, yy or zz. The left
panel of Figure 7.17 shows a comparison of the total aliasing error between the
three considered gravity gradient observables. There are significant differences
between observables. The zz observable shows the least errors overall, especially
in the SH degree range from 10 to 30. The xx component is the best up to SH
degree 10, above which it grows to reach the highest levels, being the worst one
above SH degree 15. The yy observable shows relatively high errors below SH
degree 10 and relatively low errors above this degree. In terms of cumulative error
the observables can be sorted in increasing order as zz, yy and xx.

The right panel of Figure 7.17 shows the DV of each error source as recovered
from the zz component, the one with the lowest cumulative temporal aliasing error.
The plot reveals some interesting details. Firstly, it shows that TMP is the smallest
contributor. This means that the dynamic mass transport signal is negligible in
terms of temporal aliasing errors, at least at data accumulation periods of 5-days.

The remaining lines in the plot show that the total temporal aliasing error is
dominated by a combination of OTE and AOD errors with roughly equal magni-
tudes. What is remarkable about this finding is that, despite having similar error
magnitudes, OTE and AOD errors are differently distributed over the Earth. In par-
ticular, OTE errors are for the most part confined to a small fraction of the Earth’s
surface (c.f. Fig. 4.1).

A map comparing the spatial RMS of temporal aliasing errors as recovered by
the three considered observables is shown in Figure 7.18. Notice how temporal
aliasing errors are differently affected by the choice of observable. The overall er-
ror is much smaller for the zz- observable, being limited in geographical extent to
a few particular regions, such as the North Sea, the Baltic Sea and the Southern
Oceans. The yy observable also shows relatively small errors, although large local-
ized features can be seen at the northern Australian coast, the coasts of East Asia
and in the North Sea. As for the xx- observable, the geographical extent of the
error is much larger; it is predominant over the oceans, where it manifests itself
as the familiar vertical stripe pattern. Thus, the zz component seems to be less
sensitive to temporal aliasing errors.

Combination of gradiometer components
It is also interesting to analyze the sensitivity of different combination of observables
to temporal aliasing errors. In line with Section 7.4 dealing with spatial instability
errors, I will consider the xz observable in addition to xx, yy and zz. All combinations
of 2, 3 and 4 observables from the set xx, yy, zz and xz have been simulated, all
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Figure 7.17: Analysis of temporal aliasing errors as recovered in a simulation of gravity gradient observ-
ables with a DAP of 5 days. Left panel: DV of the total temporal aliasing error (TAL) for different gravity
gradient observables. Right panel: DV of different temporal aliasing error components as recovered by
the zz observable simulation in comparison with the mass transport signal (SGN). The plotted curves
are the aggregate of 9 different error realizations at randomly selected dates. The explanation of the
used acronyms can be found in Table 4.4 in page 75.

yielding very similar results. The four combinations with the lowest level of temporal
aliasing errors are shown in Figure 7.19. The plot shows that all combinations yield
practically the same level of temporal aliasing errors. This means that, beyond con-
sidering the single xx or yy observables, the combination of additional gradiometer
observables does not lead to a decrease in the amount of temporal aliasing errors
relative to the single zz observable. This finding contrasts with what was shown in
Section 7.4.1 where additional observables resulted in significant improvements in
the context of spatial instability errors. Remarkably, the combination xx+yy shows
the same level of errors as zz. This combination yields significant improvements
compared to the single-component xx and yy cases.

7.5.2. Data Accumulation Period
Temporal aliasing errors will differ depending on the length of the data accumulation
period (DAP). In this section, I will analyze the dependence of temporal aliasing
errors on the DAP.

Increasing the DAP will obviously result in a larger amount of observations col-
lected and, as a consequence, is likely to result in a reduction of temporal aliasing
errors at the expense of temporal resolution. However, the amount of data is not
the only relevant parameter that varies with the choice of DAP. There are at least
three other factors which play a role in the level of temporal aliasing errors. In
Section 7.1, I have restricted the orbits used in this study to have the same re-
peat period as the DAP. Therefore, by increasing the DAP, also the groundtracks
become denser and the distribution of measurements over time changes. Notice
that the time between revisits to the vicinity of a given geographic location is not
the same for repeat-groundtrack orbits corresponding to different DAPs. Secondly,
notice that the sources of temporal aliasing errors cannot be modeled as stationary
random errors. Therefore, one can not assume that these errors will average out
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Figure 7.18: Spatial RMS of temporal aliasing errors as recovered in a simulation of different gravity
gradient observables with a DAP of 5 days.
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Figure 7.19: Comparison of total temporal aliasing (TAL) errors for a selection of different combinations
of gravity gradient observables with a DAP of 5 days.

similarly as stationary errors will. Finally, the level of temporal aliasing errors in
the observations depends on the orientation and combination of observables of the
considered formation(s). Therefore, there is a possibility that a specific DAP may
consistently yield lower temporal aliasing errors. All these are relevant aspects that
play a role in the level of temporal aliasing errors, which motivates the study of
their dependence on the DAP.

I select as the baseline the 5-day zz-only single-component mission presented
previously, since that one has shown to have the lowest amount of temporal aliasing
errors among all the single-component scenarios. Several different mission times-
pans, between 5- and 40-day long, are considered in order to compare the resulting
temporal aliasing errors.

As shown in the right panel of Figure 7.17, AOD model errors and ocean tide
model (OTE) errors are the major contributors of the total temporal aliasing errors.
So, it is interesting to analyze how these two error sources evolve with longer DAPs.
The left panel of Figure 7.20 shows AOD errors for DAPs between 5- and 40-day
long. It can be seen that the level of AOD errors decreases monotonically with
longer DAP periods, although with a diminishing rate at the longer timespans. The
AOD error drops by about a factor of two between the 5- and 40-day DAP. A similar
behavior can be seen for the OTE error component, as shown in the right panel of
Figure 7.20. Not surprisingly, also the total temporal aliasing (TAL) error decreases
with the increasing DAP, as presented in the left panel of Figure 7.21. Increasing
the DAP from 5 to 15 days leads to a reduction in the the cumulative total aliasing
error at SH degree 40 from 8 to about 5 mm ewh (38%). Furthermore, increasing
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the DAP to 40 days further reduces the TAL error to ≈3.5 mm ewh (i.e., a total
reduction of 56%).
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Figure 7.20: Left panel: RMS of AOD errors for zz-only single-component missions with DAPs between
5 and 40 days. Right panel: the same for the OTE errors.
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Figure 7.21: Left panel: RMS of the total temporal aliasing (TAL) error for zz-only single-component
missions with different DAPs. Right panel: breakdown of TAL error for the mission with the longest DAP
of 40 days.

At the 5-day DAP, the total temporal aliasing error is mostly composed of the
AOD and OTE errors with similar magnitudes, as was shown in the right panel of
Figure 7.17. The breakdown of the total temporal aliasing error for the 40-day
timespan is shown in the right plot of Figure 7.21. Here, it can be seen that for the
40-day DAP, the OTE component is now slightly larger than AOD.

A breakdown of the of total temporal aliasing error in terms of spatial RMS map
(together with the error itself) is shown for the 40-day DAP in Figure 7.22. The
TMP component has been omitted, since not much information can be seen in the
spatial plot due to it’s relatively low magnitude. The regions which experience the
largest temporal aliasing errors for each of the considered components can be easily
identified. As shown previously, OTE is dominant in magnitude, with particularly
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high levels in specific coastal regions. The AOD component is the second largest
contributor, showing large magnitudes both in specific coastal regions and in large
regions in the open ocean (in particular, the Southern Ocean).
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Figure 7.22: Spatial RMS of an ensemble of 9 different realizations of TAL error components and the
entire TAL error for the zz-only single-component mission with the 40-day DAP.

Averaging Data Accumulation Periods
In the previous section, I found an overall reduction of temporal aliasing errors with
increasingly longer data accumulation periods. This is explained by the averaging
effect of the longer observation window. Now, let us assume that a relatively long
time period is split into N sub-intervals, so that gravity field solutions are recovered
for all of them and ultimately averaged. Then, an interesting question is: what is
the optimal N which yields the lowest level of temporal aliasing errors?
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I considered a timespan of 60 days and a set of simulations which consider the
zz gravity gradient component with 5, 10, 15, 20 and 30-day DAPs. These yield
a total of 12, 6, 4, 3 and 2 different solutions per set, respectively. Averaging the
solutions within a set results in a single temporal aliasing error realization for the
entire timespan. Because a set of solutions will be averaged for every DAP, in this
section, unlike the previous ones, only one error realization is considered in each
DAP instead of an ensemble of 9-realizations.

Figure 7.23 shows a comparison of the results for different DAPs. It shows that
temporal aliasing errors per degree become smaller for longer data accumulation
periods, although the differences between the resulting errors are not large. A
similar behaviour is observed for cumulative errors, with the average of 2 30-day
solutions showing the lowest value (3 mm ewh) and the average of 12 5-day solu-
tions showing the highest value (4 mm ewh).

In Figure 7.24, maps of the averaged sets of solutions for the 5-, 15- and 30-
day DAPs are shown, demonstrating a slight error reduction in the coastal areas of
Australia, Indonesia and East Asia with increasing DAP. The presented results show
that solutions computed with long DAPs yield lower temporal aliasing errors than
the average of a set of solutions computed with short DAPs spanning the same
period.
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Figure 7.23: Temporal aliasing errors for several sets of solutions with different data accumulation periods
averaged over a 60-day timespan.

7.5.3. Multiple formations
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Figure 7.24: Maps of averaged temporal aliasing errors over a period of 60-days. On top, the average
of 12 solutions with a 5-day DAP, in the middle the average of 4 solutions with a 15-day DAP and in the
bottom the average of 2 solutions with a 30-day DAP.
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Relative orbital shift
Introducing a second formation may improve the temporal resolution in comparison
with a single-formation mission. The second formation can revisit the same geo-
graphic region in-between the visits of the first one, thus improving the temporal
resolution. Recurring concepts in the literature on multiple satellite formations are
spatial and temporal shifts (Reubelt et al., 2010). Considering a mission consist-
ing of two formations, spatial shifts are intended to interleave the ground tracks of
the second formation with respect to the first one, with the intent of doubling the
spatial resolution of the combined constellation. In terms of temporal resolution,
temporal shifts are used to half the revisit time of the first formation. This is done
by keeping the same ground tracks and shifting the second formation in time by
half of the orbit repeat period.

Spatial and temporal shifts are based on the idea that the spatial and temporal
resolutions of satellite gravimetry missions are complementary and interchangeable,
such that we can use temporal and spatial shifts to engineer a satellite constellation
towards the target requirements. Spatial shifts were discussed in Section 7.4.2.

Time shifts, as I will proceed to illustrate, do not seem to be the best way
of improving the temporal resolution of the mission. The time-shift approach is
often considered in the literature, where it is used to halve the revisit time in order
to double the temporal resolution of the mission. Revisit time is defined as the
amount of time it takes the satellite to revisit the exact same geographic region;
let this definition be called exact revisit time. Consider now the similar concept of a
wide revisit time, i.e. the amount of time between the satellite coming, not exactly,
but in the vicinity of a previously visited region. Assuming wide revisit time is a
valid concept w.r.t. temporal resolution of a mission, then I can show that halving
the exact revisit time results in a sub-optimal temporal resolution.

As an illustration, let us consider the left panel of Figure 7.25. It shows the
equator crossings of two 63/4 repeat orbits, depicted in black and in red. The
”black” formation starts at 0∘ longitude and circles the earth for 4 days before
returning to the starting point. In order to half the exact revisit time of the first
formation, the second one (in red) should have a time shift of 2 days. Notice
that at 2 days, the first formation orbit crosses the 180∘ longitude, which should
then be set as the starting point of the second formation. This can be achieved
by rotating the orbital plane of the second formation by 180°. Notice in the left
panel of Figure 7.25 that the distribution of equator crossings is far from ideal. The
wide revisit time can be seen as the vertical distance between the dots contained
in a given longitudinal band. The first formation revisits every ≈ 20° longitudinal
band each half-nodal-day. The additional formation does not significantly improve
wide revisit time; it flies over the vicinity of any region very shortly after the first
formation, such that, during the remainder of the revisit cycle, this region remains
unobserved.

An arguably better way to improve the temporal resolution is to set the second
formation to revisit each longitudinal band within a quarter nodal day from the first
formation, thus halving the wide revisit time. This can be done by shifting the
RAAN of the second formation’s orbit to be perpendicular to the first one. In the
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Figure 7.25: Equator crossings for two 63/4 repeat orbits with a ጂ  180° on the left and ጂ  90° on
the right. The equator crossings of the first and second orbit are depicted in black and red, respectively.

right panel of Figure 7.25, the equator crossings for a mission with ΔΩ = 90° are
depicted, where the improvements in terms of wide revisit time can be clearly seen.

As it is shown in Figure 7.26, a simulation reveals that temporal aliasing errors
are indeed smaller when the orbital planes of the two formations are perpendicu-
lar. Consider the zz/xz-180 and zz/xz-90 missions, where two satellite formations
observe the zz and xz gravity gradient components, respectively. In the former
case, a relative orbital shift of ΔΩ = 180° is considered, and in the latter case,
ΔΩ = 90°. The DV plot of the RMS of 9 different total temporal aliasing error re-
alizations shows that the ΔΩ = 180° brings no significant improvement compared
to the single-formation scenario (legend zz+xz: TAL), while the ΔΩ = 90° shift
performs slightly better (≈15% in terms of CDV), especially below SH degree 20.

From this point, it is already possible to conclude that ΔΩ = 90° is better than
ΔΩ = 180°, however this becomes even more clearer in the next section, where the
zz/zz combination is also introduced.

The notion of wide revisit time may have profound impact in the design of
satellite orbits much beyond what I have considered in this thesis. Assuming wide
revisit time as valid concept, allows one to redefine what a repeat period orbit is in
the context of satellite gravimetry. This much less restrictive definition may allow
for greater freedom in the design of future satellite gravimetry missions.

In this section, I have illustrated the concepts of exact and wide revisit time
with the equatorial crossings of the considered orbits. In Section 7.4.2, I argued
that groundtrack spacing at equator is not more important than at other latitudes in
terms of mission coverage. However, on the one hand, notice that in this Section I
refer to the time difference between passes over the same equatorial crossing and
not about groundtrack spacing. Furthermore, I believe that similar analysis done
at other latitudes would yield similar conclusions.

Types of observables
Another aspect worth investigating is whether there is any advantage in the com-
bination of observations on missions with multiple formations. Notice that when
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Figure 7.26: Comparison of five different simulations in terms of DV spectrum of the RMS of 9 realizations
of temporal aliasing errors for 5-day repeat orbits. zz+xz is the single-formation mission observing the
zz+xz gravity gradient combination. zz/xz-180 is a two-formation mission where the first formation
observes zz and the second formation observes xz and is time-shifted by 2 days i.e., ጂ  180°. zz/xz-
90 is the same but now the second formation is on a perpendicular orbital plane, i.e., ጂ  90°. zz/zz-180
and zz/zz-90 scenarios similar to the previous two, but both formations observe the zz component.
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considering single-gradiometer observations, the zz component showed the low-
est level of temporal aliasing errors. So, one wonders if two formations observ-
ing the same zz component will exhibit lower errors in comparison with the best
two-observable combination zz+xz. The results are also presented in Figure 7.26.
Regarding ΔΩ = 180°, we see that, similarly to the results obtained for the zz/xz
scenario, there is only a marginal improvement w.r.t. the single-formation scenario
zz+xz. In the ΔΩ = 90° case, however, a clear reduction (≈40% in terms of CDV)
of temporal aliasing errors is shown.

Two conclusions can be drawn from the presented results. Firstly, that for both
considered combinations (zz/xz and zz/zz) ΔΩ = 90° shifts are better than ΔΩ =
180°. Secondly, that it is better to combine the best single observable twice (zz/zz)
than to consider the best two-observable concept (zz+xz). The zz/zz-90 simulation
shows that these two characteristics combined lead to a significant reduction of
temporal aliasing errors, while if they are independently considered (as in the zz/zz-
180 and zz/xz-90 scenarios) there are little to no improvements.

Optimizing relative orbital shifts of two- and three-formation missions
Building on the results presented in Section 7.5.3, the goal now is to find the relative
orbital shifts 𝛿Ω that minimize the temporal aliasing errors for missions consisting
of two and three satellite formations. In the context of two-formation missions,
in order to limit the domain of possible values, I consider only the values which
ensure that the ground tracks of the two formations are interleaved. The simula-
tions consist of two or three formations on a circular near-polar 79/5 repeat orbit
at an altitude of 317 km. All formations observe the zz gravity gradient. Given that
the considered repeat orbit is even, Equation 7.3 tells us that there are 79 unique
possibilities for interleaved ground tracks. Furthermore this number can further be
halved, by noticing the symmetry ΔΩ = 𝑋 = 2𝜋−𝑋, such that only values ΔΩ ≤ 180°
need to be considered.

From this reduced set of 40 possible ΔΩ parameters, I started by considering
every 3rd possible ΔΩ, for a total of 13 different simulations. Of this set, the two
simulations with the lowest temporal aliasing errors corresponded to ΔΩ ≈ 84° and
ΔΩ ≈ 98°. At this point, I considered two extra simulations corresponding to the
in-between values of 89° and 93°.

The obtained temporal aliasing errors are shown in the in Figure 7.27. Here,
the lowest errors found are for the ΔΩ ≈ 84° and 98°. The possible values of ΔΩ
in-between these two did not yield lower errors. The error for ΔΩ ≈ 180° is also
shown for comparison.

Based on the same considerations, I also analyzed temporal aliasing errors for
missions consisting of three formations. The task now is to search for the min-
imum error over two shifts ΔΩኻ and ΔΩኼ, which are defined as the orbital shifts
between the first and the second, and the first and the third formations’ orbital
planes, respectively. In order to reduce the domain of possible (ΔΩኻ, ΔΩኼ) pairs,
the following symmetries can be used. Two (ΔΩኻ, ΔΩኼ) pairs are equivalent when,

• Symmetry 1-3: the second plane is symmetric with respect to the plane lo-
cated in the middle of the first and third orbital planes
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Figure 7.27: DV (solid) and CDV (dashed) for a selection of 2-formation missions with different ጂ in
79/5 repeat orbits with the lowest temporal aliasing errors.

• Symmetry 1-2: the third plane is symmetric with respect to the plane located
in the middle of the first and second orbital planes

• Symmetry 2-3: the first plane is symmetric with respect to the plane located
in the middle of the second and third orbital planes

Let us start from the first case. It prescribes that it is sufficient to consider only
those positions of the third orbital plane that satisfy the condition ΔΩኼ > 2ΔΩኻ.
For instance, scenario (28°,42°) is symmetric to (14°,42°). This condition defines
the lower limit of ΔΩኼ. The second symmetry prescribes the upper limit for ΔΩኼ <
ጂኻ
ኼ + 180°: Finally, the third symmetry prescribes another upper limit for ΔΩኼ <
360 − ΔΩኻ. These symmetries and the resulting domain of three orbital plane
configurations is shown in the left panel of Figure 7.28.

Given the groundtrack spacing of ዃ
ኽዀኺ

∘
, I considered every other possible ΔΩኻ

and ΔΩኼ, yielding a total of 120 pairs. I computed the global RMS of total temporal
aliasing errors for 𝑙max = 40 for these 120 configurations and plotted them in the
right panel of Fig. 7.28.

Some insights can be gathered from this plot. The lower left and lower right
regions with ΔΩኻ < 50° seem to be less desirable. These correspond to config-
urations where the second orbital plane is relatively close to the first one. A few
configurations can be found which yield low temporal aliasing errors. They seem to
be scattered in the region 60° < ΔΩኼ − ΔΩኻ < 90°. The upper bound of this region
is consistent with the finding that two orbital planes should be nearly perpendicular
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Figure 7.28: In the left panel are presented the symmetries in the relative orientation of three orbital
planes and the minimum domain to be sampled. In the right panel, global RMS of total temporal aliasing
errors up to ፥max  ኾኺ for different relative orientation of three orbital planes [mm ewh].

to each other. The most promising area, with four adjacent configurations which
yield relatively low errors, is around (60°,120°). I considered all possible configura-
tions neighboring this point in addition to the previously considered ones. Table 7.3
shows the six configurations with the lower global RMS of temporal aliasing errors
with 𝑙max = 40. The (59.2°,118.5°) pair yielded the lowest error with a significant
difference compared to the other ones. This configuration is the closest to angles
(60°,120°), which corresponds to three vertical planes that equally trisect 3D space.
This is the configuration which maximizes the temporal resolution of the considered
configuration.

Table 7.3: Six configurations of three orbital planes with the lowest global RMS of total temporal aliasing
errors for ፥max  ኾኺ [mm ewh].

ΔΩኻ ΔΩኼ TAL
59.2° 118.5° 2.53
36.5° 118.5° 2.84
27.3° 100.3° 2.84
54.7° 127.6° 2.86
72.9° 145.8° 2.88
9.1° 82.0° 3.07

To close this section, one interesting way to present the discussed results is
to compare the obtained reductions in temporal aliasing errors from extending the
mission data accumulation period vs. the addition of satellite formations. In Fig-
ure 7.29, the improvements obtained after increasing the data accumulation period
from 5 to 40-days are compared to the best 2- and 3-formation missions at 5 days.
The plot reveals that the 5-day 2-formation mission results in a similar level of
temporal aliasing errors as a 40-day single-formation mission. Furthermore con-
sideration of a 3-formation mission leads to an additional reduction of about 35%
compared to the single formation 40-day mission (cumulative error at SH deg 40 is
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2.5 instead of 4 mm ehw).
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Figure 7.29: A comparison of total temporal aliasing errors for different mission in terms of DV.

7.6. Conclusion
In Section 7.1, parameters that make up a satellite gravimetry mission have been
discussed and a small set of the most relevant parameters has been defined.

Sections 7.3, 7.4 and 7.5 were dedicated to explore spatial aliasing, spatial in-
stability and temporal aliasing errors, respectively, using a set of small-scale simu-
lations. They were carried out using gravity gradient observations instead of ll-SST
observations. The rationale is that, conceptually, an ll-SST satellite pair is equivalent
to a gradiometer instrument with a very long arm. So, a link between different ll-
SST observations and the gravity gradients measured by a gradiometer instrument
could be made (cf. Section 7.2).

In Section 7.3, it was shown that xx and yy gravity gradients are more sensitive
to spatial aliasing errors than the zz. It was shown that, in general, spatial aliasing
errors are mostly determined by signals at the SH degrees immediately above the
selected 𝑙max. Since the mass transport signal slowly decays with increasing SH
degree (in terms of ewh), it is beneficial to choose relatively high 𝑙max. Furthermore,
it was observed that the bulk of spatial aliasing errors in the solutions is confined
to the few SH degrees just below 𝑙max. In turn, this also proves that selecting a
reasonably high 𝑙max coupled with adequate filtering should be effective at removing
spatial aliasing errors.

Spatial instability errors were discussed in Section 7.4. These errors arise as
existing noise in the data gets amplified in the computation of a gravity field so-
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lution. These errors limit the achievable spatial resolution in terms of maximum
spherical harmonic degree. In practice, spatial instability errors were evaluated by
inverting white noise realizations into gravity field solutions to increasingly higher
SH degrees. It was shown that, with increasing 𝑙max, spatial instability errors in-
crease by a limited amount for low values of 𝑙max, while above a certain threshold
they grow exponentially up to the point where the LS system of equations can no
longer be solved.

The described procedure has also lead to a number of other interesting results.
For a given DAP, the spatial resolution of a mission can be improved by considering
additional observables on a single-formation mission and/or by adding more satellite
formations. When considering a single gradiometer component, I have shown that
solutions could safely be computed up to the number of orbital revolution of the
repeat period orbit 𝑙፦ፚ፱ = 𝛽, twice of what is predicted by the Colombo-Nyquist
rule. Furthermore, not all gradiometer components yielded the same level of spatial
instability errors. The zz-component has shown a lower noise level in terms of
ewh per degree than the xx and yy components. I concluded, therefore, that zz
has the potential to deliver the highest spatial resolution. It was also found that
by combining more components within the same mission, its spatial resolution is
effectively improved far beyond the predictions made by the Colombo-Nyquist rule.
For instance, when two observables are combined, the spatial resolution of the
mission may be doubled. Combinations of three observables were shown to further
increase the spatial resolution compared to the two-observable case.

Visser et al. (2012) proposed a reformulation of the Colombo-Nyquist rule, pre-
dicting that the maximum SH degree of a mission is to be 𝑙max = 𝑘𝑛፫ + 1, where 𝑘
represent the number of observations combined in the gravity field inversion and 𝑛፫
represents the number of satellite revolutions in the DAP. To validate this expres-
sion, three simulations were considered for which the predicted 𝑙max was the same.
They were shown, however, to have significantly different levels of spatial instability
errors. This lead to the proposal of a new empirical predictor 𝑙max = 𝑛፫ (1 +

፤ዅኻ
 ),

where c is a constant between 1.6 and 2. At the same time, it is important to
state that such expressions are an oversimplification of the problem of gravity field
recovery and are no replacement for adequate simulations.

A distinction is made between even and odd repeat period orbits regarding
whether their ascending groundtracks overlap at the equator or not, respectively.
I have found only marginal differences between the spatial resolution of missions
which consider odd and even repeat period orbits. Therefore, I concluded that
both types of orbits are useful to consider in the design of future satellite gravime-
try missions. In practice, this meant that I could use the lowest available repeat
orbit above the selected 260 km minimum altitude threshold for all the DAPs I con-
sidered. This is relevant because, for DAPs with an odd number of days, the lowest
available repeat orbit is even. If the decision was made to avoid even parity orbits,
then all odd numbered DAPs would have to consider orbits roughly 20 km higher,
which would bias the odd numbered DAPs to yield relatively lower performance
than the rest.

Another way to increase the spatial resolution of a mission was to consider addi-
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tional satellite formations. In multi-formation missions, two aspects were identified
that may play a role in terms of spatial resolution: how to interleave groundtracks of
multiple formations and which observables are to be considered in each formation.
Different ways to interleave groundtracks of multi-formation missions were ana-
lyzed and it was shown that there are only marginal differences in terms of spatial
instability errors between them. Therefore, in the multi-formation missions consid-
ered in Section 8.4, I shift all multi-formation orbits according to Eq. (7.3), which
I showed to have a more homogeneous groundtrack spacing over all latitudes. Re-
garding the choice of observables, it was shown that two formations observing the
same zz component, yielded lower temporal aliasing errors than other combina-
tions. This finding will later be used in Section 8.6.

Examples can be found in the literature where a comparison of missions of dif-
ferent complexity disregards the potential of the more complex missions to achieve
higher 𝑙max. For example, Elsaka et al. (2013) and Wiese et al. (2009) compared
single- and two-formation missions up to the same 𝑙max and over the same DAP.
In light of the findings of this section, one could argue that such comparisons are
not fair. For a given DAP, concepts which combine multiple observables should be
able to compute solutions up to a higher SH degree than single-observable ones.
Alternatively, multi-observable concepts might be able to compute solutions up to
the same maximum SH over smaller DAPs. These considerations will be further
addressed in Chapter 8.

In Section 7.5, a similar analysis using small-scale simulations was carried out
in order to find the parameters that influence temporal aliasing errors. When con-
sidered individually, single-component gradiometer observations affect differently
the level of temporal aliasing errors. The zz gradient was shown to yield the lowest
level of errors, followed by yy and xx. A closer look into the zz component error
budget shows that the major contributors are a combination of AOD and ocean tide
model errors (OTE). The smallest error component is the dynamic mass transport
signal Given the substantially different geographic distribution of AOD and OTE er-
ror sources, it is interesting to notice that they yielded very similar magnitudes at
most SH degrees. Therefore, in order to significantly reduce the level of temporal
aliasing errors by better background models requires both OTE and AOD models to
be improved.

Starting with the zz component, the best single observable, simply combining
a greater number of observables was shown not to lead to any reduction in the
level of temporal aliasing errors. This finding is in contrast with what was shown
for spatial instability errors, which are significantly reduced by combining additional
observables, cf. Section 7.4. On the other hand, when I start from the xx or
yy component, the addition of another observable does lead to significant error
reductions. The xx+yy combination shows the same level of errors as zz, the best
single observable. In fact, the zz-component simultaneously yields the lowest level
of temporal and spatial instability errors. Previously, in Section 7.4.1, it was shown
that the xx+yy combination is equivalent to the zz-component. Given that no ll-
SST formation concept is capable of continuously observing the zz-component, the
equivalent xx+yy combination seems desirable. This finding will be applied in the
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design of future satellite missions in Chapter 8.
Another possible way to mitigate temporal aliasing errors is the addition of satel-

lite formations to the mission, as presented in Section 7.5. The most relevant pa-
rameter in this context is the relative RAAN ΔΩ describing the relative orientation of
the orbital planes. A search in the possible interleaved ground track configurations
of two-formation missions has shown that the lowest temporal aliasing errors cor-
responded to a ΔΩ = 98°, while similar search made for a three-formation mission
yielded ΔΩኻ = 62° and ΔΩኼ = 122°. These configurations hint at the idea that the
orbital planes of the intervening formations should be evenly distributed in space in
order to minimize temporal aliasing errors. I explain this finding as follows. Consid-
ering a single orbital plane, the satellites will visit (the vicinity of) a given location,
in average, every 12 hours. This is not enough to properly observe the dynamic
processes in the atmosphere and oceans. Considering 2 or 3 orbital planes, the av-
erage re-visit time reduces to 6 and 4 hours, respectively, so that atmospheric and
oceanic processes can be captured much better. It was shown that the addition of
satellite formations in the optimal way leads to a substantial reduction of temporal
aliasing errors. On the basis of this finding, two-formation missions presented in
Section 8.4 will be set in perpendicular planes. In Section 8.6, the orbital planes of
up to three formations will also be evenly distributed in space in order to minimize
temporal aliasing errors.
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I n this chapter, I design various ll-SST mission geometries (in line with the find-ings in the previous chapter) and assess their performance to select the best
candidate for the future ll-SST mission. As discussed in Section 4.6, the way in
which indirect effect errors propagate into observations and into gravity field so-
lutions likely depends on the considered functional model. Even if one assumes
that indirect effect errors affect all approaches, it is still unknown to what extent
each approach is affected. Therefore, I opted to disregard indirect effect errors in
order to present results which are not biased to any particular gravity field retrieval
algorithm. The simulations presented in this chapter were computed in the simpli-
fied mode (cf. Section 4.6) meaning that no indirect effect errors were taken into
account. The results presented in this manner may be interpreted as a best-case
scenario for future satellite missions.

In Section 8.1, I present the error budgets of a set of elementary ll-SST for-
mation configurations (cf. Section 2.2.3). Then, in Section 8.2, I discuss how the
findings in Chapter 7 can be used to design a set of advanced mission concepts. In
Section 8.3, three concepts for hybrid-formation missions consisting of three satel-
lites are presented. Afterwards, in Section 8.4, four mission concepts consisting of
4 satellites arranged in two formations are proposed. Similarly to the elementary
formations, the performance of these missions is presented and maximized over
the relevant set of parameters. The comparison between the missions presented
in the previous sections is deferred until Section 8.5, the missions with the lowest
errors from each of the considered concepts are compared both globally and over
a selection of regions where specific mass transport signals are expected to occur.

In Section 8.6, I focus on the mission concept which I found to be the most
desirable at the end of Section 8.5. Noticing that temporal aliasing errors set limit
on the performance of this mission, I show how to substantially improve the perfor-
mance of this mission concept by considering additional formations in up to three
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orbital planes which are evenly distributed in space. In Section 8.7, the conclusions
of this chapter are presented.

8.1. Elementary Satellite Formations
I begin by looking at the performance of the elementary satellite formations. Ac-
cording to the findings in Chapter 7 several predictions can be made about the
performance of the elementary satellite formations. Recall that the along-track
concept is (roughly) equivalent to the xx gravity gradient mission, the pendulum
concept to the yy gradient mission and the cartwheel concept alternates between
the xx and zz gradient missions (cf. Section 7.2). The gravity gradients could be
ranked in ascending magnitude of errors as zz, yy and xx both in terms of spatial
instability and temporal aliasing errors. Therefore, the along-track concept is ex-
pected to show a higher level of errors than the other two concepts. The cartwheel’s
inter-satellite baseline oscillates between alignment with the most desirable zz and
least desirable xx gravity gradient. Therefore, it is expected that it performs better
than the along-track, however, it is hard to predict whether it will outperform the
pendulum.

Temporal aliasing errors (as opposed to instrumentation errors) are likely to be
dominant in the error budget of the missions, as was shown for the GRACE and GFO
missions (cf. Chapter 6). When plotted on a map, the temporal aliasing error of
the along-track concept is expected to have a north-south striation pattern, while
that of the pendulum is expected to have some mild horizontal striations. Due
to the baseline orientation oscillations of the cartwheel mission, mild north-south
striations are expected in that case.

8.1.1. Along-Track
In order to tune the performance of the along-track mission concept, I start

from an analysis of its limitations. The considered baseline mission follows a po-
lar 255/16 repeat orbit at an altitude of 278 km. The top panel in Figure 8.15

(page 184) shows the corresponding PSD
ኻ
ኼ spectra of instrumentation and tem-

poral aliasing errors propagated into inter-satellite accelerations. Instrumentation
errors are very small and only become relevant in the high-frequency part of the
spectrum, above 10mHz. In Figure 8.1, total instrumentation and temporal alias-
ing errors are compared with the mass transport signal in terms of error per SH
degree. It is clear that temporal aliasing errors are the dominant error source for
all spherical harmonic degrees, being larger than the mass transport signal above
degree 30.

In the top panel of Figure 8.16 (page 185), a breakdown of the temporal aliasing
errors is shown. Here, it can be seen that the largest error source is the AOD model
error. This error source is dominant for all SH degrees above 40. Below degree 40,
the contributions of ocean tide model errors (OTE) and AOD errors are comparable.

The total temporal aliasing errors of the baseline along-track mission are shown
in terms of magnitude of SH coefficients in the top panel of Figure 8.17 (page 186).
The plot shows a vertical stripe, 30 SH orders wide, around the zonal coefficients,
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Figure 8.1: Temporal aliasing errors (TAL) and instrumentation errors (TIN) w.r.t. the mass transport
signal (ESM) for the baseline along-track mission in terms of DV of unregularized solutions.

with very low errors, while the remaining coefficients show relatively large errors.
This is because the along-track concept is sensitive to spatial variations in the north-
south direction and is fairly blind to variations in the cross-track direction. The map
of TAL errors in the top panel of Figure 8.18 (page 187) shows strong north-south
striations, a well-known error pattern of along-track missions, which highlights their
anisotropic sensitivity.

As discussed in Section 7.5, temporal aliasing errors can be minimized by in-
creasing the data accumulation period (DAP) of the mission. Figure 8.2 shows the
evolution of the total error with increasing DAP. It can be seen that temporal alias-
ing errors monotonically decrease with increasing DAP. Notice that the differences
in the cumulative total errors for the 16- and 24-day DAPs are very similar, so that
potential improvements of considering longer DAPs are likely negligible.

The error budget for a selection of DAPs for the along-track concept is shown
in Table 8.1 (page 188). It can be seen that the longer timespans reduce the total
error by an order of magnitude. However, even at the long timespans, the total
error is still much larger than the mass transport signal. The large level of errors
is explained by the anisotropic sensitivity of the mission and is consistent with the
north-south stripes observed in GRACE solutions.

In order to improve the performance of the mission, the regularization proce-
dure can be used to compute constrained solutions. The regularization procedure
was introduced in Section 6.1.4. In Figure 8.3, total instrumentation error (TIN),
total temporal aliasing error (TAL), regularization bias (REG) and total error (TOT)
are compared with the mean mass transport signal (ESM) for the baseline along-
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Figure 8.2: Total error (TOT) for a selection of along-track missions (AT) with increasing DAPs.

track mission. The total error is now below the mass transport signal at all SH
degrees, which is a great improvement compared to the unregularized solutions
(cf. Figure 8.1). The total error results from a combination of temporal aliasing and
regularization bias up to SH degree 60, and by the regularization bias alone above
SH degree 60.

The total temporal aliasing error for the regularized solution is shown as a tri-
angular plot in Figure 8.4. The previously large errors seen in the non-zonal coeffi-
cients of the unregularized solution (Figure 8.17 (page 186)) are now much smaller
due to the regularization procedure applied.

Figure 8.5 shows total temporal aliasing errors as a map in terms of regularized
solutions. A comparison of this map with the top panel of Figure 8.18 (page 187)
highlights the large reduction of the error features in the regularized solutions w.r.t.
to the unregularized case. Remaining error features can be identified as segmented
north-south stripes over South America, Central Africa, Northern Australia, South
East Asia and a few other locations.

Figure 8.6 shows the contribution of each temporal aliasing error source over
the South America. It can be seen that the major error features are caused by the
dynamic mass transport signal. This is interesting because this error source cannot
be reduced by improvements in existing background models.

One can also check how the total error evolves over different DAPs. This is
shown in Figure 8.7. It can be seen that after regularization, the total error remains
constant at different mission timespans. The difference between the 8-day and 24-
day repeat missions is negligible above SH degree 60, where the regularization bias
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Figure 8.3: Breakdown of errors for the 255/16 along-track mission in terms of DV of unregularized
solutions. The explanation of the used acronyms can be found in Table 4.4 in page 75.
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Figure 8.5: Map of total temporal aliasing error (TAL) for the 16-day along-track mission in terms of
regularized solutions.
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Figure 8.6: Temporal aliasing errors over the Amazon river basin for the 255/16 Along-Track mission in
terms of unregularized solutions. The explanation of the used acronyms can be found in Table 4.4 in
page 75.
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Figure 8.7: Total error (TOT) for the along-track mission with different DAPs in terms of unregularized
solutions. Also shown is the ESM signal for the 24-day DAP.

A breakdown of error budgets for a selection of DAPs in terms of global RMS for
the along-track missions is shown in Table 8.4 (page 189). It can be seen that total
error is fairly constant for all considered DAPs. The total error is always explained by
a combination of total temporal aliasing (TAL) error and regularization bias (REG).
For the short DAPs, the total error is dominated by the regularization bias (REG)
while for the longer DAP’s the total temporal aliasing (TAL) errors becomes larger
than REG.

Regarding the temporal aliasing errors, for the short DAPs below 16 days, TAL
is driven by equal contributions of OTE and AOD errors. For the longer DAPs above
16 days, TAL error is dominated by the dynamic mass transport signal (TMP). All
considered DAPs show a very similar performance, with the lowest total error being
found for the 16-day along-track mission (23 mm ewh).

8.1.2. Pendulum
The pendulum formation is defined by a pair of satellites in polar orbits that

slightly differ in their RAAN (cf. Section 2.2.3). The LOS is oriented in the east-west
direction and is relatively static in inertial space. The relative motion between the
two pendulum satellites is confined to the cross-track direction. From the equator
towards the pole, the satellites travel towards each other, meeting in close proximity
at the highest latitude point. At this point, the left and right satellites swap their
positions in the horizontal plane and start to drift away from each other up until the
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equator, where the cycle restarts.
In the vicinity of this point where the satellites swap their positions, large peaks

in the RRC are observed in perturb the gravity field recovery. To tackle this problem,
I defined a minimum inter-satellite distance threshold of of 40 km below which
measurements are flagged as outliers.

The baseline mission follows polar 255/16 repeat orbits at an altitude of 278 km

and a maximum inter-satellite distance over the equator of 200 km. The PSD
ኻ
ኼ of the

error sources for the pendulum mission are shown in the middle plot of Figure 8.15

(page 184). In the PSD
ኻ
ኼ plot, one can see that total temporal aliasing errors are

smaller (by roughly 50% between 1 and 10mHz) than the mean mass transport
signal.

The DV plot in Figure 8.8 shows that, up to SH degree 70, the performance of
the pendulum mission is limited by temporal aliasing errors and, above degree 70,
by instrumentation errors. From SH degree 80 onwards, instrumentation and total
errors become larger than the mass transport signal.
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Figure 8.8: General overview of errors in the 255/16 pendulum mission in terms of DV. The explanation
of the used acronyms can be found in Table 4.4 in page 75.

Looking into the total temporal aliasing errors, shown in the middle plot of Fig-
ure 8.16 (page 185), one can see that all errors are significantly lower in magni-
tude in comparison with the along-track mission errors shown top panel. The total
temporal aliasing error is explained by a combination of atmosphere and ocean de-
aliasing model (AOD) and ocean tide model (OTE) error up to SH degree 60. From
SH degree 60 on, the AOD error becomes the largest contributor. The dynamic
mass transport signal (TMP) is smaller than the other two errors.
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Instrumentation errors-per-degree are plotted in Figure 8.9. Here, it can be
seen that up to SH degree 40, the levels of accelerometer and ranging errors are
comparable. Above degree 40, ranging error becomes the largest instrumentation
error source.
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Figure 8.9: DV of instrumentation errors for the 255/15 pendulum mission. The explanation of the used
acronyms can be found in Table 4.4 in page 75.

In Table 8.2 (page 188) a breakdown of the error budget for the pendulum
mission at different DAPs is shown. In line with the previous plots, indeed ranging
errors are the largest error source. The overall level of errors is significantly smaller
than that of the along-track mission (cf. Table 8.1 in page 188).

Similarly to the along-track mission, total temporal aliasing errors are shown in
a triangle plot in the middle panel of Figure 8.17 (page 186) for the baseline 255/16
Pendulum mission. The triangular plot shows that the larger temporal aliasing er-
rors pile up in the near-zonal coefficients up to relatively high degrees. This error
pattern also reveals the anisotropic sensitivity of the pendulum formation which is
complementary to the one of the along-track mission. The orientation of the inter-
satellite baseline of the pendulum mission makes is rather insensitive to north-south
variations which are mostly described by near-zonal SH coefficients.

The along-track mission performance was significantly improved when the reg-
ularization procedure was introduced, therefore the regularization is applied in the
context of pendulum mission as well. The error budget of the baseline 255/16 pen-
dulum mission in terms of regularized solutions is shown in Table 8.5 (page 190).
Once regularization is applied, instrumentation errors drop dramatically, which par-
ticularly concerns ranging errors. Not only is the ranging error no longer dominant,
it is now a negligible error source. Temporal aliasing errors are dominant (apart
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from the regularization bias) and these are explained by a combination of AOD and
OTE errors with similar magnitudes.

As was shown in Section 7.5, extending the DAP of the mission is likely to reduce
temporal aliasing errors. Therefore, similarly to what was done for the along-track
mission, different DAPs were also considered for the pendulum mission. The cor-
responding results are also shown in Tables 8.2 (page 188) and 8.5 (page 190) in
terms of unregularized and regularized solutions, respectively. Considering unreg-
ularized solutions, the total error shows significant differences depending on the
DAP of the mission, especially at the shorter periods; the lowest level of cumulative
errors is about 120 mm ewh for the 351/22 pendulum mission. Regarding regu-
larized solutions, the differences in total errors between different DAPs are now
significantly smaller. The lowest total error is found for the 351/22 orbit with 19
mm ewh. The DV of the total error for the considered DAPs is shown in terms of
unregularized solutions in Figure 8.10, and regularized solutions in Figure 8.11.
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Figure 8.10: Total errors (TOT) of pendulum formation over different DAPs in terms of DV of unregular-
ized solutions.

8.1.3. Cartwheel
The cartwheel mission consists of a two-satellite formation where both satellites

are placed in similar, slightly eccentric orbits (cf. Section 2.2.3). By setting the two
orbits on the same orbital plane such that their relative argument of periapsis is
𝛿𝜔 = 180∘ , the relative motion of the satellites forms an ellipse. The aspect ratio
of this ellipse is fixed, but its size is defined by the eccentricity of the orbits.

As mentioned in Section 7.1.1, one of the parameters relevant for the cartwheel
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Figure 8.11: Total errors (TOT) of pendulum formation over different DAPs in terms of DV of unregular-
ized solutions.

mission is the formation phase angle 𝛼, which defines the LOS elevation angle over
the equator. A value of 𝛼 = 0° corresponds to the radial direction at the equator,
while a value of 𝛼 = 90° corresponds to the along-track direction. Similarly to
the previous sections, the baseline missions is on a 255/16 repeat orbit. Four
cartwheel formations with different 𝛼 values were simulated. Figure 8.12 shows
the LOS elevation angle as a function of latitude for each of the four considered
formations. The total errors are shown in Figure 8.13. Here, it can be seen that
the lowest total error is obtained for 𝛼 = 30°.

Having selected 𝛼 = 30°, I show an overview of the errors in terms of PSD
ኻ
ኼ of

inter-satellite accelerations in the bottom panel of Figure 8.15 (page 184). Here, it
can be seen that up to 10mHz, temporal aliasing errors are dominant, being lower
than the mass transport signal. Above this frequency, instrumentation errors be-

come dominant. Overall, the PSD
ኻ
ኼ errors in terms of inter-satellite accelerations

share similar features in all three elementary formations. The same errors propa-
gated into DV are shown in Figure 8.14. Temporal aliasing errors are dominant for
all SH degrees; they are below the mass transport signal up to SH degree 75.

A breakdown of temporal aliasing errors in terms of DV is shown in the bottom
panel of Figure 8.16 (page 185). Up to SH degree 40, the contribution of AOD
error and OTE errors is comparable. Above SH degree 40, the AOD error becomes
dominant. The dynamic mass transport signal (TMP) is small for all SH degrees.

Tables 8.3 (page 189) shows the error budget of the cartwheel mission for differ-
ent timespans in terms of global RMS of unregularized solutions. The table shows
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Figure 8.12: LOS elevation angle as a function of latitude (LOS elevation angle of 0° means that the LOS
is aligned with the local vertical direction, while 90° means aligning with the local horizontal one).
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Figure 8.13: Total error (TOT) for the 255/16 cartwheel formations with different phase angles ᎎ in
terms of DV.
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Figure 8.14: General overview of errors for the baseline cartwheel mission in terms of DV, with ᎎ  30°.
The explanation of the used acronyms can be found in Table 4.4 in page 75.

that the minimum total error is obtained at the longest considered timespan of 24
days. The dominant error for DAPs above and including 16-days is the AOD error.

Similarly to the previous sections, total temporal aliasing errors are also pre-
sented as a triangular plot in the bottom panel of Figure 8.17 (page 186). The
triangular plot shows that the cartwheel mission yields very low errors in the near-
zonal coefficients, similarly to the along-track mission, and also from fairly low errors
in the near-sectorial coefficients. The bulk of the AOD error piles up in the tesseral
coefficients above SH degree 60.

The map of total temporal aliasing errors in the bottom panel Figure 8.18 (page
187) shows a single prominent feature in the Southern Ocean close to 0° longitude,
as well as a meridional stripe pattern around both poles.

Table 8.6 (page 190) shows the error budget in terms of regularized solutions.
One can see that the difference between different timespans is now again much
smaller. The lowest total error is obtained for the baseline mission with a 16-day
repeat orbit. The total error is now explained by a combination of regularization
bias (13 mm ewh) and total temporal aliasing errors (16 mm ewq). In turn, the
total temporal aliasing error is no longer dominated by AOD; both AOD and OTE
errors have comparable levels, while the dynamic mass transport signal (TMP) is
smaller than those two.
8.1.4. Discussion
The error budget of the elementary satellite missions was presented in the previous
sections. Regarding spatial instability errors, the along-track mission is affected the
most. Remember spatial instability errors arise when solving an ill-posed system of
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Figure 8.15: Temporal aliasing errors (TAL) and instrumentation errors (TIN) w.r.t. to the mass transport

signal (ESM) in terms of PSD
Ꮃ
Ꮄ of inter-satellite accelerations for the 255/16 along-track (top), 255/16

pendulum (middle), and 255/16 cartwheel (bottom) missions.
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Figure 8.16: Breakdown of temporal aliasing errors in terms of DV for the 255/16 along-track (top),
255/16 pendulum (middle), and 255/16 cartwheel (bottom) missions. The explanation of the used
acronyms can be found in Table 4.4 in page 75.
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Figure 8.17: Triangular plot with the magnitude of SH coefficients of the total temporal aliasing error
source (TAL) for the 255/16 along-track (top), 255/16 pendulum (middle) and 255/16 cartwheel (bottom)
missions in terms of unregularized solutions.
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Table 8.1: Error budget of the along-track mission for a selection of DAPs in terms of global RMS [mm
ewh] solved to maximum SH degree 120. The explanation of the used acronyms can be found in
Table 4.4 in page 75.

AlongTrack 127/8 191/12 255/16 351/22 383/24
RNG 115.13 57.41 26.34 5.85 5.95
ACC 49.13 49.76 10.12 6.35 6.09
TIN 124.85 80.15 27.90 8.58 8.56

AOD 1867.54 1194.55 428.29 311.73 343.64
OTE 1310.50 324.18 74.51 84.86 91.30
TMP 759.47 482.84 170.31 117.74 139.37
TAL 2455.81 1257.89 474.68 354.37 385.43

SPT 27.13 26.41 12.20 12.85 12.68
TOT 2460.94 1262.14 475.01 355.92 385.65

ESM 62.78 62.14 61.36 60.12 59.70

Table 8.2: Error budget of the pendulum mission over a selection of DAPs in terms of global RMS [mm
ewh] of unregularized solutions solved to SH degree 120. The explanation of the used acronyms can be
found in Table 4.4 in page 75.

Pendulum 127/8 191/12 255/16 351/22 383/24
RNG 301.47 191.10 172.28 111.43 128.83
ACC 36.54 23.81 20.48 13.21 15.57
TIN 301.49 194.17 173.85 112.47 128.41

AOD 102.16 41.88 27.99 22.66 24.11
OTE 86.10 20.58 19.57 15.32 16.09
TMP 36.49 14.51 13.33 14.00 14.32
TAL 135.90 45.43 35.64 30.36 33.43

SPT 12.49 6.89 5.46 4.28 5.10
TOT 331.26 199.15 176.99 116.00 132.63

ESM 62.78 62.14 61.36 60.12 59.70
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Table 8.3: Error budget of the cartwheel mission with ᎎ  30° over a selection of DAPs in terms of
global RMS [mm ewh] of solutions solved up to SH degree 120. The explanation of the used acronyms
can be found in Table 4.4 in page 75.

Cartwheel 127/8 159/10 255/16 319/20 383/24
RNG 44.77 22.84 7.94 5.51 4.91
ACC 30.08 19.16 1.97 1.35 1.16
TIN 54.88 29.27 8.23 5.65 5.04

AOD 385.96 156.14 51.90 43.16 40.76
OTE 175.80 59.98 15.27 18.33 20.51
TMP 387.46 199.38 15.33 13.50 14.48
TAL 446.51 173.58 56.94 50.31 48.17

SPT 7.26 7.51 2.23 1.83 1.90
TOT 447.71 175.00 57.49 50.64 48.42

ESM 62.78 62.47 61.36 60.53 59.70

Table 8.4: Error budget of the along-track mission for a selection of DAPs in terms of global RMS
of regularized solutions [mm ewh] solved to maximum SH degree 120. The explanation of the used
acronyms can be found in Table 4.4 in page 75.

AlongTrack 127/8 191/12 255/16 351/22 383/24
RNG 0.67 0.57 0.65 0.61 0.59
ACC 0.21 0.21 0.19 0.19 0.19
TIN 0.69 0.61 0.67 0.64 0.61

AOD 6.62 7.19 6.92 7.70 7.56
OTE 6.95 7.79 7.65 8.55 7.61
TMP 4.92 7.18 8.70 12.56 15.40
TAL 10.93 12.92 13.57 17.00 18.69

REG 22.00 19.70 18.25 16.27 15.99
SPT 0.56 0.90 0.26 0.25 0.27
TOT 24.26 23.64 22.58 22.90 25.07

ESM 62.78 62.14 61.36 60.12 59.70
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Table 8.5: Error budget of the pendulum mission over a selection of DAPs in terms of global RMS of
regularized solutions [mm ewh] solved to SH degree 120. The explanation of the used acronyms can
be found in Table 4.4 in page 75.

Pendulum 127/8 191/12 255/16 351/22 383/24
RNG 0.55 0.70 0.68 0.72 0.84
ACC 0.32 0.33 0.30 0.30 0.33
TIN 0.63 0.76 0.73 0.77 0.89

AOD 7.41 6.94 6.62 6.52 6.92
OTE 6.51 6.22 6.59 7.86 7.68
TMP 3.32 3.56 4.18 5.89 7.03
TAL 10.50 9.77 10.27 12.04 13.01

REG 21.75 18.87 18.05 15.23 15.36
SPT 0.74 1.53 0.29 0.24 0.32
TOT 24.24 20.94 20.81 19.38 19.82

ESM 62.78 62.14 61.36 60.12 59.70

Table 8.6: Error budget of the cartwheel mission with ᎎ  30° over a selection of DAPs in terms of
global RMS of regularized solutions [mm ewh] solved up to SH degree 120. The explanation of the used
acronyms can be found in Table 4.4 in page 75.

Cartwheel 127/8 159/10 255/16 319/20 383/24
RNG 0.99 1.08 1.05 0.83 0.74
ACC 0.29 0.31 0.28 0.22 0.20
TIN 1.01 1.13 1.09 0.86 0.77

AOD 8.98 10.03 10.39 9.34 8.71
OTE 7.59 9.04 9.48 9.24 8.98
TMP 4.13 4.15 5.77 6.92 7.66
TAL 12.48 14.35 16.01 16.13 16.30

REG 17.30 14.71 12.69 11.94 11.90
SPT 0.54 0.99 0.35 0.31 0.30
TOT 21.46 20.52 19.87 20.11 20.34

ESM 62.78 62.47 61.36 60.53 59.70
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equations (cf. Section 7.4). Therefore, at the short DAPs, these errors are expected
to manifest with large magnitudes across all error sources, while the long DAPs are
expected to stabilize the solutions to yield relatively small spatial instability errors.
The along-track mission shows this behavior: large error magnitudes in all error
sources for the short DAPs compared with the long ones (cf. Table 8.1 in page
188). Similar reasoning leads to the conclusion that the cartwheel concept is more
sensitive to spatial instability errors than the pendulum concept.

Regarding the temporal aliasing errors, the along-track mission is also the most
sensitive to them. This can be concluded by comparing Tables 8.1 (page 188),
8.2 (page 188) and 8.3 (page 189) at the longest DAPs, where spatial instability
errors are minimal. For the 22-day DAP, for instance, temporal aliasing errors are at
the level of 355, 50 and 30 mm ewh for the along-track, cartwheel and pendulum
mission, respectively.

When the total temporal aliasing error (TAL) is plotted in terms of magnitude
per SH, the along-track and cartwheel formations show a similar error distribution
(cf. top and bottom panels of Figure 8.17 in page 186). There is a clear low-
error stripe in the near-zonal coefficients, while the remaining ones show larger
magnitudes. The cartwheel mission however shows significantly lower errors in
the near-sectorial SH coefficients. Also, the tesseral coefficients show somewhat
lower errors compared to the along-track concept. This is consistent with the fact
that the orientation of the inter-satellite baseline in the cartwheel concept oscillates
between the z and x directions. The error distribution of the zz gradient is more
homogeneous than of the xx. This likely contributes to the error reduction in the
tesseral and near-sectorial coefficients in the cartwheel case, as compared to the
along-track one. The pendulum concept, in the middle panel of the same figure,
shows a significantly different TAL error distribution, complementary to the one of
the along-track concept. There is a region of comparatively large errors around the
near-zonal SH coefficients, while the remaining ones show lower error magnitudes.

Plotting the TAL error on a map leads to similar conclusions. The along-track
concept suffers from large north-south striations (top panel of Figure 8.18) (page
187). The cartwheel mission, in the bottom panel, shows a significant reduction of
errors, which are fairly homogeneously distributed now; only at high latitudes, there
are some patches of visible north-south striation errors. A comparison between
the two maps illustrates the added value of the zz component observed by the
cartwheel formation. The pendulum TAL error map, in the middle panel, shows
a rather homogeneous error pattern with some east-west striations, though some
north-south stripes gather around the Southern Ocean. The presence of both north-
south and east-west stripes in the same map is interesting. I claim that it illustrates
two different error propagation mechanisms at play. The east-west stripes can be
attributed to the anisotropic sensitivity of the pendulum mission and the consequent
emergence of spatial instability errors. The north-south stripes are common in the
TAL error maps of all three considered formations. They are likely caused by a
relatively low accuracy of the AOD model in this geographic region.

The dominant error source for the along-track and cartwheel configurations is
the AOD error, while ranging error is the largest for the pendulum case. The total
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error for the cartwheel mission in the case of 24-day DAP (48 mm ewh, cf. Table 8.3
in page 189) is smaller than the corresponding errors for the along-track (386 mm
ewh, cf. Table 8.1 in page 188) and pendulum (133 mm ewh, cf. Table 8.2 in page
188) missions.

The presented results are consistent with the predictions made at the beginning
of Section 8.1 on the basis of the findings presented in Sections 7.4 and 7.5. From
the latter sections, it was concluded that both in terms of spatial instability and
temporal aliasing errors, the zz gravity gradient component is the most favourable,
while the xx is the least favourable one. The results presented above confirm
that the inclusion of ”oscillating” zz component, as it takes place in the cartwheel
mission, greatly improves the performance compared to the along-track mission.
Now, the elementary mission concepts can be ranked from best to worst as follows:
cartwheel, pendulum and along-track. Similar conclusions were also presented in
M. A. Sharifi et al. (2007) and Sneeuw et al. (2008), on the basis of a much simpler
set of simulations.

The differences between the considered formations, as discussed in the previous
paragraphs, become much smaller when regularization is applied. The regulariza-
tion procedure if very effective at reducing the level errors from all the considered
sources at the expense of introducing a regularization bias. This bias is the domi-
nant error above SH degree 40 for the along-track mission, and above SH degree
60 for the pendulum and cartwheel missions. The regularization bias is particularly
effective at reducing the ranging error in the pendulum mission, which makes it the
best one in terms of regularized solutions. The pendulum 351/22 (19 mm ewh)
has the lowest total errors, followed by the cartwheel 255/16 (20 mm ewh) and the
along-track 255/16 (23 mm ewh).

A final important caveat is that the presented results did not take the indirect
effect errors into account, as discussed in Section 4.6. Given that the cartwheel
mission was found to be very sensitive to indirect effect errors (cf. Section 3.7), it
is likely that the inclusion of those errors would change the relative performance of
the considered formations. Similar findings are reported in Encarnação (2015).

8.2. Advanced Mission Design
In the previous sections, I have shown the expected performance of the elementary
ll-SST formations. Taking into account the results obtained in Sections 7.4 and 7.5,
one can now map the likely ways in which the performance of the elementary
missions can be enhanced.

The performance of the along-track and cartwheel formations was limited by
temporal aliasing errors. The largest error source for the pendulum formations in
terms of unregularized solutions was the ranging error. Ranging errors will likely
be solved by new technological developments in the future decades. On the other
hand, the magnitude of temporal aliasing errors in future missions will depend on
significant developments of background models which will likely be a challenge.
Therefore I propose that mitigating temporal aliasing errors by way of mission de-
sign is likely the best way to enhance the performance of future missions. It was
shown in Section 7.5, that the best way to reduce temporal aliasing errors is to
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place additional formations on different orbital planes. This can be accomplished
with 4 satellites grouped into two different formations. Placing the two formations’
orbital planes perpendicular to each other was shown to minimize temporal aliasing
errors.

However, one may also consider missions consisting of 3 satellites grouped in
a single formation. For example, the Swarm mission has deployed a three-satellite
formations with a single launcher, which may result in a significant reduction of
mission costs compared to a dual-formation mission. In Section 7.5, it was shown
that considering different gradiometer components, the single zz observable al-
ready yielded the lowest level of temporal aliasing errors. The cartwheel mission
observations oscillate between xx and zz gravity gradient components. And, in-
deed, in Section 8.1.3 this concept was shown to result in the lowest level of errors
of the elementary set of satellite formations. However, the cartwheel configuration
is the most difficult to implement in practice due to the very dynamic inter-satellite
baseline orientation. At the same time, it was shown in Section 7.5.1 that the
xx+yy combinations yielded the same level of temporal aliasing errors as the single
zz observable. This means that for a single-formation mission, a combination of
along-track and pendulum observations is likely simpler to implement. Additionally,
because the direction of the cartwheel formation observations oscillate between xx
and the more desirable zz, the along-track + pendulum (AP) combination has the
potential to significantly reduce the level of temporal aliasing errors w.r.t. cartwheel,
since it observes the xx+yy combination almost continuously (except for the vicinity
of the poles). Finally, as was shown in Section 7.4.1, the AP combination is likely
to double the spatial resolution of the mission compared to the single-observable
cartwheel configuration.

While the AP combination seems desirable, there are other combinations which
could be taken into consideration. In the following sections, I will consider the
cartwheel configuration as a valid combination element, too. A point of concern is
that, among the elementary satellite formations considered, only the along-track
concept has been proven, while the cartwheel and pendulum concepts remain the-
oretical alternatives (particularly, the cartwheel one). Given that the cartwheel
configuration is particularly hard to implement, priority will be given, under other
conditions being equal, to combinations which do not include a cartwheel pair of
satellites.

Considering three satellites grouped into a single formation, the idea is to merge
any two possible elementary formations by selecting one satellite to simultaneously
take part in two formations. There are 6 different hybrid combinations: PP, AA, CC,
PA, PC and AC, where the letters P, A and C correspond to the pendulum, along-track
and cartwheel concepts, respectively. For example, the AA concept would consist of
three satellites co-linearly arranged in a north-south direction such that the middle
satellite takes part in both along-track formations. The most promising are the
PA and the CP concepts, since they combine ll-SST observations along orthogonal
orientations. The PA concept is a xx+yy combination, while the CP combines a
xx/zz oscillating component with the yy component. The AA and PP concepts are
the least interesting, since the additional satellite brings relatively little added value
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to the base elementary satellite formation. Similarly, the AC concept is also of little
interest since there is an overlap in the orientation of the measurements made
by the formation. The most interesting concepts are then the PA, which will be
named ”gamma” (proposed in Elsaka (2010) as GRACE-Pendulum-type), the CP,
named ”sigma”, and the CC, named ”delta” (proposed in Wiese et al. (2009) as
three-satellite cartwheel).

Regarding missions consisting of two elementary formations in different orbital
planes, there are again the same 6 possible combinations: P+P, A+A, C+C, P+A,
P+C and A+C. Similarly, the most promising are the P+A and C+P concepts, which
will be called ”dual gamma” and ”dual sigma”, respectively. Given that the cartwheel
mission was shown to have the best performance among the elementary satel-
lite formations, the C+C concept, consisting of two cartwheel formations might be
interesting as well. Because both formations collect observations which oscillate
between the xx and zz gravity gradients, the 𝛼 angles of the two participating for-
mations can be adjusted such that they collect orthogonal observations over all
latitudes. The C+C mission will be called ”dual cartwheel”.

The A+A concept combines two formations observing the xx- gravity gradient,
which is not the most desirable combination in light of what was found in Section 7.5.
This deficiency can be mitigated by lowering the orbital inclination of one of the
formations in order to introduce the yy-component into the combination. Such a
variant of the A+A concept has been proposed before; it is known as the ”Bender
mission” (P. L. Bender et al., 2008) and has been later refined in (Wiese, 2011).
This configuration will be called below ”dual along-track”.

On the other hand, the P+P and the A+C are the least interesting concepts
since they combine similar observations; the yy component is observed twice in
the P+P combination, while the A+C combines an oscillating xx/zz component with
another xx component. For these reasons, these concepts will not be taken into
consideration.

In the following sections, each of the concepts addressed above will be pre-
sented in detail and benchmarked.

8.3. Hybrid Formation Missions

8.3.1. Gamma

The gamma mission consists of a single formation with three satellites which can
be imagined as arranged in a Γ shape. The gamma mission can be thought of
as a 3-satellite combination of an along-track and pendulum formations. One of
the satellites is the formation leader taking part in the measurement of two range
observations made to the other two satellites. One of the observations is made in
the along-track direction, while the other one in the cross-track direction.

Taking as baseline the 16-day gamma mission, I show a general overview of the
errors of the mission in the top panel in Figure 8.23 (page 201). Temporal aliasing
errors are the dominant error source, becoming larger than the mass transport
signal at SH degree 100. A breakdown of temporal aliasing errors in the right panel
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of Figure 8.24 (page 202) shows that up to SH degree 60, the performance of the
mission is limited by a combination of ocean tide model (OTE) error and AOD error.
From SH degree 60 onwards, AOD becomes the largest error source.

Total temporal aliasing errors shown in the triangular plot in the top panel of
Figure 8.25) (page 203) shows a relatively homogeneous error distribution over
the SH coefficients compared to the elementary formations (cf. Figure 8.17 in page
186). In the form of a map, the error is presented in the top-left panel of Figure 8.26
(page 204), where I zoom in on the Amazon river basin. A north-south striation
pattern can still can be seen, but its magnitude is relatively low, as compared to
the elementary satellite formations.

Table 8.7 (page 200) presents the error budgets for the gamma mission over
different DAPs in terms of unregularized solutions. The gamma mission shows a
large improvement relative to the previously considered two-satellite missions. At
the longest DAP of 24 days, the gamma mission, with a total error of 22 mm ewh,
is significantly better than the elementary formations, with 386, 132 and 48 mm
ewh for the along-track, pendulum and cartwheel formations, respectively. At the
shortest 8-day DAP, the performance gap increases even further; the total error
of the gamma mission with a total error of 69 mm ewh, is at least 5x better than
the elementary formations, with 2460, 331 and 447 mm ewh for the along-track,
pendulum and cartwheel formations, respectively.

An unregularized recovery of mean mass transport signals up to d/o 120 with
sufficient accuracy over relatively short periods of 10 or even less days is possible
now. Even for the 127/8 gamma mission, the global signal-to-noise ratio (TOT
divided by ESM) is about 1, since the total error is roughly of the same magnitude
as the mass transport signal.

A good performance of the gamma mission can be explained as follows. On
the one hand, errors in the gamma mission are mitigated by the relatively high
spatial resolution, which is a consequence of combining multiple observations, as
was shown in Section 7.4. On the other hand, the performance of the gamma
concept is enhanced by the synergy between the pendulum and along-track pairs
of satellites; the along-track pair of satellites provides the observability of the zonal
and near-zonal coefficients, while the pendulum pair provides the observability of
the sectorial and near-sectorial ones.

Similarly to the previously considered mission concepts, an attempt to reduce
the temporal aliasing errors is done by considering different DAPs. In Figure 8.19, a
comparison of the total error for gamma missions for a selection of different DAPs is
shown in terms of unregularized solutions. There are small differences in the total
error up to SH degree 60 for the considered DAPs. At higher SH degrees, these
differences become larger, with the longer periods leading to smaller total errors.
Table 8.7 (page 200) shows the error breakdown of the gamma mission for the
considered DAPs. The longest considered mission with the 24-day DAP shows the
lowest total error of 22 mm ewh. Temporal aliasing errors are the largest contributor
for all the considered periods and of these, the AOD error is the largest component.

The regularization procedure was also applied to the gamma mission. A break-
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Figure 8.19: Comparison of the total error (TOT) over a selection of DAPs for the gamma mission in
terms of unregularized solutions.
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Figure 8.20: Comparison of the total error (TOT) over a selection of DAPs for the gamma mission in
terms of and regularized.
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down of the temporal aliasing errors is shown in that case for the 255/16 gamma
mission in Figure 8.21. It can be seen that, overall, the total temporal aliasing error
is explained by the combination of OTE and AOD model errors. OTE errors are
larger below SH degree 60, while AOD errors are larger above SH degree 80.
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Figure 8.21: Breakdown of temporal aliasing errors in DV for the 255/16 gamma mission in terms of
regularized solutions. The explanation of the used acronyms can be found in Table 4.4 in page 75.

A map of regularized total temporal aliasing error is shown in the top-right panel
of Figure 8.26 (page 204). In comparison with the unregularized version shown in
the top-left panel, the striation has been reduced. The reduction of errors due to
the regularization is, however, small in comparison with the elementary satellite
formations. This highlights the fact that the gamma concept displays very low
errors in terms of unregularized solutions so that a filtering or regularization of the
solutions complete to degree 120 may not even be required.

Figure 8.20 shows the evolution of the total error for a selection of DAPs in
terms of regularized solutions. While in the unregularized case, one could observe
noticeable differences between different DAPs at the SH degrees above 80, once
regularization is applied, the differences become fairly small.

The error budget for the gamma mission for different repeat orbits in the pres-
ence of regularization is shown in Table 8.10 (page 206). The difference in total
error for different DAPs is now much smaller than in the case of the unregularized
solutions. The total error for the longest 24-day mission (14 mm ewh) is no longer
significantly smaller than for the 16-day mission (also 14 mm ewh) or even for the
8-day mission (18 mm ewh).

8.3.2. Sigma
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The sigma mission is a three-satellite hybrid formation consisting of a chief satel-
lite taking part in both pendulum and cartwheel formations. The cartwheel pair of
satellites collects ll-SST raging data in the vertical plane, oscillating between the xx
and zz gradients, while the pendulum pair delivers ranging data in the orthogonal
yy-direction.

The general error DV plot, in the middle panel of Figure 8.23 (page 201), shows
that temporal aliasing errors are again the largest contributor to the error budget,
becoming larger than the mass transport signal around SH degree 100. The middle
panel of Figure 8.24 (page 202) shows a breakdown of temporal aliasing errors.
Here, one can see that up to around SH degree 60, temporal aliasing errors are
dominated by a combination of ocean tide model errors and AOD errors. From SH
degree 60 upwards, AOD model errors become the largest contributor.

The total temporal aliasing error is shown per SH coefficient in a triangular plot
in Figure 8.25 (page 203) and as a map over the Amazon river basin in the middle-
left panel of Figure 8.26 (page 204). The triangular plot demonstrates a fairly even
error distribution apart from a clear band with lower errors at the high-degree near-
zonal coefficients. The map shows some relatively large error features in the form
of short north-south stripes around the Amazon river basin.

Table 8.8 (page 205) presents an error breakdown for a selection of DAPs of the
sigma mission in terms of global RMS. The lowest total error is seen at the longest
24-day period (21 mm ewh), while the largest one at the shortest considered DAP
of 8-days (49 mm ewh).

In terms of regularized solutions, a map of the total temporal aliasing error over
the Amazon basin is shown in the middle-right panel of Figure 8.26 (page 204).
The regularization has removed some of the north-south striations, however the
magnitude of the largest features remains almost unchanged.

An overview of the temporal aliasing errors in terms of regularized solutions is
shown in Figure 8.22. Similar to the gamma mission, the overall total temporal
aliasing error is explained by a combination of ocean tide model (OTE) and AOD
model errors. OTE error is larger below SH deg 60, while AOD model error is larger
above SH degree 80.

The error budget for a selection of periods in terms of regularized solutions is
shown in Table 8.11 (page 206). In comparison with the unregularized solutions,
the errors are significantly smaller and the differences between errors for different
DAPs are small as well. The lowest error is found for the 22-day mission (13 mm
ewh) while the worst performance is found for the shortest considered period of 8
days (17 mm ewh).

8.3.3. Delta
The delta mission is a three-satellite extension of the cartwheel mission, pro-

posed in Wiese et al. (2009). In the traditional cartwheel concept, two satellites
follow a relative elliptical motion around the center of an ellipse. The two satellites
are placed on the ellipse at a 180° phase angle difference from each other. The
delta formation adds one more satellite to this configuration, such that now the
three satellites are placed at a 120° phase angle differences from each other. With
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Figure 8.22: Overview of temporal aliasing errors for the 255/16 sigma mission in terms of regularized
solutions [mm ewh]. The explanation of the used acronyms can be found in Table 4.4 in page 75.

the additional satellite, a total of three inter-satellite ranging links are considered
between the satellites. This configuration ensures that the zz, xx and xz gravity
gradients can be continuously resolved (Wiese et al., 2009).

The baseline delta mission, similarly to the previous sections is on a 255/16
repeat orbit. The virtual point in the middle of the formation is at an altitude of
278 km. The bottom panel in Figure 8.23 (page 201) shows an overview of the
errors for the delta mission in terms of error per degree. Temporal aliasing is again
the major error source. A breakdown of temporal aliasing errors, shown in the
bottom panel of Figure 8.24 (page 202) shows that a combination of AOD model
errors and ocean tide model errors is dominant up to SH degree 50. From SH
degree 50 onwards, the AOD model error becomes larger and dominates the error
budget.

In the bottom panel of Figure 8.25 (page 203), the magnitude of the total tem-
poral aliasing error is shown per SH coefficient for the baseline 255/16 delta mis-
sion. It can be seen that the band consisting of the near-zonal coefficients shows
lower errors than the rest of coefficients. Otherwise, the errors are fairly evenly
distributed.

The map of the total temporal aliasing error over the Amazon river basin is shown
in the bottom-left panel of Figure 8.26 (page 204). The error pattern is formed by
predominantly north-south stripes, although shorter and more curved than the ones
typically seen for the along-track concept (cf. top panel of Figure 8.18 in page 187).

Inspecting the error budget for the delta mission over different DAPs in terms
of unregularized solutions (Table 8.9 in page (page 205)), one can see that the
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lowest errors are obtained for the 22-day mission (26 mm ewh), while the shortest
considered 8-day period results in the largest error (93 mm ewh).

In the bottom-right panel of Figure 8.26 (page 204), a map of the total temporal
aliasing error for the 255/16 delta mission is shown over the Amazon river basin
for the case of the regularized solutions. There is a clear reduction in the number
and magnitude of the error features, as compared to the unregularized solution.
In Table 8.12 (page 207), the error budget of regularized solutions is presented for
different DAPs. As expected, there is a significant reduction of errors, compared
the unregularized case. The lowest error is obtained for the 22-day period (14 mm
ewh), while the highest one is again for the 8-day period (17 mm ewh).

Table 8.7: Error budget of the gamma mission over a selection of DAPs in terms of global RMS [mm
ewh]. The explanation of the used acronyms can be found in Table 4.4 in page 75.

Gamma 127/8 191/12 255/16 383/24
RNG 9.76 6.46 5.34 3.24
ACC 2.31 1.70 1.06 0.64
TIN 9.99 6.66 5.44 3.30

AOD 55.77 38.21 21.16 16.57
OTE 33.75 15.28 10.30 10.06
TMP 20.10 14.03 8.80 10.02
TAL 68.63 43.25 25.90 21.89

SPT 2.78 4.13 1.74 1.20
TOT 69.46 43.72 26.43 22.11

ESM 62.78 62.14 61.36 59.70

8.3.4. Discussion
In the previous sections I analyzed the performance of three hybrid satellite for-
mations. These formations were designed to combine ll-SST pairs of satellite with
differently oriented inter-satellite baselines. All considered hybrid formations have
shown significant performance improvements compared to the elementary forma-
tions. For the 24-day DAP, in terms of unregularized solutions, the global RMS of
total error for the hybrid missions was between 21 and 27 mm ewh, while it was
between 48 and 385 mm ewh for the elementary formations.

Overall, the performance of all hybrid formations is limited by temporal aliasing
errors. Looking at the longer DAPs, temporal aliasing errors for all hybrid formations
were found to be significantly smaller than those of the elementary formations. For
the 24-day DAP, temporal aliasing error of the hybrid formations was between 21
and 27 mm ewh, while it was between 33 and 385 mm ewh for the elementary
formations. This is consistent with the findings of Section 7.5.1, where it was shown
that any combination of observables should yield lower temporal aliasing errors that
either xx or yy gravity gradient alone.
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Figure 8.23: General overview of errors for the 255/16 gamma (top), 255/16 sigma (middle) and 255/16
delta (bottom) missions. The explanation of the used acronyms can be found in Table 4.4 in page 75.
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Figure 8.24: Breakdown of temporal aliasing errors for the 255/16 gamma (top), 255/16 sigma (middle)
and 255/16 delta (bottom) missions. The explanation of the used acronyms can be found in Table 4.4
in page 75.
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Figure 8.25: Magnitude of SH coefficients of the total temporal aliasing error (TAL) for the 255/16
gamma (top), 255/16 sigma (middle) and 255/16 (bottom) missions.
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Figure 8.26: Map of the total temporal aliasing error (TAL) for the 255/16 gamma (top), 255/16 sigma
(middle) and 255/16 delta (bottom) missions in terms of unregularized (left) and regularized (right)
solutions over the Amazon river basin up to ፥max  ኻኼኺ.
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Table 8.8: Error budget of the sigma mission over a selection of DAPs in terms of global RMS [mm ewh]
solved up to SH degree 120. The explanation of the used acronyms can be found in Table 4.4 in page 75.

Sigma 127/8 191/12 255/16 351/22 383/24
RNG 12.08 8.08 6.69 4.15 3.99
ACC 2.31 1.50 1.17 0.73 0.72
TIN 12.33 8.20 6.78 4.22 4.05

AOD 37.60 22.23 19.65 15.58 16.22
OTE 21.86 10.25 9.54 10.30 9.71
TMP 14.23 8.12 7.48 7.65 8.99
TAL 47.60 26.51 23.88 20.51 21.03

SPT 2.44 3.06 1.61 1.35 1.35
TOT 49.30 27.78 24.81 20.95 21.45

ESM 62.78 62.14 61.36 60.12 59.70

Table 8.9: Error budget of the delta mission over a selection of DAPs in terms of global RMS [mm ewh]
solved up to SH degree 120. The explanation of the used acronyms can be found in Table 4.4 in page 75.

Delta 127/8 191/12 255/16 351/22 383/24
RNG 11.20 6.14 4.57 2.90 2.78
ACC 3.38 2.02 1.22 0.80 0.76
TIN 11.68 6.52 4.77 3.01 2.88

AOD 76.33 43.81 26.77 20.79 20.92
OTE 43.17 14.18 10.37 12.33 13.41
TMP 24.89 15.06 9.81 9.80 11.47
TAL 92.00 48.63 31.05 25.84 27.28

SPT 3.81 5.10 1.65 1.28 1.27
TOT 92.68 49.28 31.51 26.04 27.41

ESM 62.78 62.14 61.36 60.12 59.70
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Table 8.10: Error budget of the gamma mission over a selection of DAPs in terms of global RMS of
regularized solutions [mm ewh]. The explanation of the used acronyms can be found in Table 4.4 in
page 75.

Gamma 127/8 191/12 255/16 383/24
RNG 0.73 0.83 0.98 0.65
ACC 0.22 0.24 0.23 0.18
TIN 0.75 0.87 1.00 0.67

AOD 6.10 6.53 6.91 6.05
OTE 6.93 7.55 7.11 6.41
TMP 3.64 4.18 4.66 6.97
TAL 10.38 10.95 11.21 11.18

REG 14.63 10.77 9.09 7.89
SPT 0.66 1.43 0.49 0.22
TOT 17.83 15.23 14.35 13.69

ESM 62.78 62.14 61.36 59.70

Table 8.11: Error budget of the sigma mission over a selection of DAPs in terms of global RMS of
regularized solutions [mm ewh] solved up to SH degree 120. The explanation of the used acronyms can
be found in Table 4.4 in page 75.

Sigma 127/8 191/12 255/16 351/22 383/24
RNG 0.99 1.27 1.20 0.96 0.94
ACC 0.28 0.31 0.29 0.23 0.22
TIN 1.04 1.31 1.23 0.98 0.96

AOD 6.63 7.32 7.21 6.22 6.37
OTE 6.70 7.45 7.01 7.31 6.55
TMP 4.19 4.25 4.39 5.29 6.54
TAL 10.86 11.36 11.25 11.07 11.18

REG 13.29 9.51 8.44 7.04 6.99
SPT 0.82 1.58 0.49 0.35 0.36
TOT 17.18 14.83 14.06 13.11 13.26

ESM 62.78 62.14 61.36 60.12 59.70
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Table 8.12: Error budget of the delta mission over a selection of DAPs in terms of global RMS of regu-
larized solutions [mm ewh] solved up to SH degree 120. The explanation of the used acronyms can be
found in Table 4.4 in page 75.

Delta 127/8 191/12 255/16 351/22 383/24
RNG 0.95 0.90 0.89 0.72 0.61
ACC 0.28 0.26 0.24 0.19 0.17
TIN 0.99 0.94 0.94 0.75 0.63

AOD 7.31 6.92 7.04 6.44 5.88
OTE 6.71 7.11 6.48 6.93 6.70
TMP 4.20 4.43 5.09 6.34 7.09
TAL 11.06 11.16 11.01 11.41 11.14

REG 13.76 11.46 9.71 8.24 8.85
SPT 0.60 1.50 0.52 0.48 0.40
TOT 17.39 15.86 14.82 13.93 14.29

ESM 62.78 62.14 61.36 60.12 59.70

The hybrid missions also yielded significantly lower spatial instability errors.
These can be estimated from the differences in the overall error level between
the shortest and the longest considered DAPs. The differences in the total er-
ror of the hybrid missions between 8 and 24-day DAPs in terms of unregularized
solutions were between 28 (sigma) and 65 mm ewh (delta). Regarding the ele-
mentary formations, these differences were found to be between 200 (pendulum)
and 2000 (along-track) mm ewh. This indicates that the spatial resolution of the
hybrid missions is significantly better than that of the elementary ones. In fact,
unregularized solutions of the hybrid formations at DAPs between 8 and 12 days
were shown to have a signal-to-noise ratio close to 1. High resolution (𝑙max ≥ 120)
gravity field solutions at short DAPs (≤ 10 days) may be possible for the considered
hybrid missions. Furthermore, due to the overall low level of errors, especially in
the larger considered DAPs, it was shown that the regularization procedure leads to
a relatively small error reduction and may even be considered optional. These im-
provements can be attributed to the synergy between two orthogonal observables
which was shown in Section 7.4.1 to approximately double the spatial resolution of
the mission.

At the shortest DAP considered (8 days) there are significant differences in the
total error between the three hybrid missions, in terms of unregularized solutions.
The delta mission has the highest level of total error (92 mm ewh, cf. Table 8.9),
followed by the gamma mission (69 mm ewh, cf. Table 8.7). The sigma missions
has the lowest level of errors (48 mm ewh, cf. Table 8.7). At the longest considered
DAP (24 days) the missions these differences in terms of total error are small, with
27, 22 and 21 mm ewh for the sigma, gamma and delta missions respectively.
The differences between the three missions are much smaller for the longest DAP



8

208 8. Comparison of satellite formations

compared to the shortest one. This indicates that the delta and gamma missions
suffer from a higher level of spatial instability errors w.r.t. the sigma mission.

For all three considered hybrid missions, temporal aliasing errors were found to
be dominant and of those, the AOD error was consistently the largest component.
Temporal aliasing errors were found to have similar structure in terms of magnitude
of SH degrees for all three hybrid missions. In terms of unregularized solutions,
when these errors are plotted over South America (Figure 8.26 in page 204), the
major errors features are also common to all three missions. Nonetheless, the
sigma mission, in the middle panel, seems to have the lowest errors. The gamma
mission, in the top panel, has comparatively higher errors in the southern part of
this region, while the delta mission, in the bottom panel, has larger errors in the
central part.

8.4. Dual-formation Missions
In Section 7.5, I have shown that a mission observing two gravity gradient compo-
nents in perpendicular orbital planes leads to a reduction of temporal aliasing errors
compared to a mission observing the same components from the same orbital plane.
Therefore, the performance of a single-formation mission may be enhanced by split-
ting it into two independent formations in different orbital planes. In the following
sections, the dual-formation missions will be presented and benchmarked.

In line with the findings of Section 7.5, the two formations will be placed in
nearly perpendicular orbital planes in order to minimize temporal aliasing errors. A
small deviation from perpendicularity is used to ensure that the ground tracks of
both formations are interleaved with each other, such that the overall ground track
geometry is sufficiently homogeneous.

8.4.1. Dual Along-Track
The dual along-track mission consists of two independent along-track satellite for-
mations. The Bender mission (P. L. Bender et al., 2008) is the most popular variant
of this configuration. The design parameters of the Bender mission have been op-
timized in Wiese (2011). Wiese proposed two along-track pairs at 13-day repeat
orbits, one polar pair and another one at a lower inclination of 73°.

The dual along-track concept is an attractive option as it relies on proven tech-
nology, already used for the GRACE and GFO missions. The addition of another
pair of satellites results in increased spatio-temporal resolution, while the lower in-
clination of the second pair orbit allows one to collect information in the east-west
direction. Regarding the inclination of the lower-inclined pair, there is a trade-off
between the isotropic sensitivity of the mission and the spatial coverage of the sec-
ond pair. Increasingly lower inclinations improve the east-west information content
but also increase the size of the polar gap where the inclined pair does not collect
observations.

As before, the 16-day DAP was chosen as a baseline. Similarly to the other
dual-formation concepts, the orbital planes of the two formations were set nearly
perpendicular in order to interleave their groundtracks. Figure 8.27 shows the im-
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pact of inclination of the lower-inclined pair on the total error per SH coefficient.
One can see significant differences between the error distributions over the SH co-
efficients. The 90° and 45° inclinations seem to have the highest errors. The 90°
inclination shows the same error pattern as the single along-track formation: very
low errors in the near-zonal coefficients and large errors in the remaining ones.
The 45° inclination shows very low errors in the near-zonal and near-sectorial coef-
ficients, and large errors in the remaining ones. The error pattern of the in-between
inclinations gradually shifts between these two configurations, where the 60° and
70° inclinations seem to have relatively low errors.

Figure 8.28 presents the same total error for different inclinations of the lower-
inclined pair, but now in terms of DV and CDV. The plots show that the total error
becomes smaller with decreasing inclination until 70°. Cumulatively, both 70° and
60° inclinations yield similar levels of errors. At the inclination of 60°, the total
error is larger between SH degrees 40 and 70 and slightly lower from degree 100
onwards, as compared to the inclination of 70°. Due to the better performance
between degrees 40 and 70, the 70° inclination seems more desirable. This is in
line with the findings of Wiese (2011), who concluded that the 73° inclination of
the lower-inclined pair delivers the best performance. In the rest of this section,
an inclination of 70° has been selected for the lower-inclined pair of the presented
dual along-track simulations.

A general overview of the errors for the selected 255/16 dual along-track mission
is shown in the top-left panel of Figure 8.29 (page 215). Temporal aliasing errors
are dominant at all SH degrees, becoming larger than the signal around SH degree
70. In the top-left panel of Figure 8.30 (page 216), a breakdown of the temporal
aliasing error is shown. Below SH degree 40 and above SH degree 80, temporal
aliasing is explained by a combination of AOD model error and ocean tide model
(OTE) error. Between SH degrees 40 and 80, AOD errors are the largest contributor.

The total temporal aliasing error for the selected 255/16 dual along-track mission
is shown as a triangular plot in the top-left panel of Figure 8.31 (page 217) and as a
map in the top-left panel of Figure 8.32 (page 218). In the triangular plot, one can
see that the total error is not fully homogeneous. Above SH degree 50, increased
errors are visible as two stripes between orders 15 and 30 and for near-sectorial
coefficients. The map shows a pronounced striation pattern over the Amazon river
basin, with a larger magnitude w.r.t. the gamma and sigma missions (cf. top and
middle panels of Figure 8.26 in page 204, respectively).

Table 8.13 (page 215) reports propagated errors in terms of global RMS. It
can be seen that the lowest total error is unexpectedly obtained for the fairly short
period of 10 days (43 mm ewh), while the worst performance is found at the 12-day
period (134 mm ewh).

The top-right panel of Figure 8.32 (page 218) shows the total temporal aliasing
error for the selected 255/16 mission in terms of regularized solutions. In com-
parison with the top-left panel, there is a clear reduction of the striation pattern.
In terms of regularized solutions, the performance of the dual along-track mission
is fairly homogeneous over all the considered DAPs (cf. Table 8.17 in page 220).
The best results are obtained for the 20-day period (13 mm ewh), while the worst
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Figure 8.27: The total error (TOT) in terms of magnitude per SH coefficient for 255/16 dual along-track
missions with different orbit inclination of the lower-inclined pair.
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Figure 8.28: The total error (TOT) in terms of DV and CDV for 255/16 dual along-track missions with
different orbit inclinations of the lower-inclined pair.

performance is observed again for the 12-day period (17 mm ewh).

8.4.2. Dual Gamma

The dual gamma mission consists of one along-track formation and one pendu-
lum formation set in two roughly perpendicular orbital planes. Taking the 255/16
dual gamma mission as a baseline, I present a general overview of the mission
errors in the top-right panel of Figure 8.29 (page 215). One can see that temporal
aliasing errors are the largest at all SH degrees. At SH degree 100, temporal alias-
ing errors become larger that the mass transport signal. In the top-right panel of
Figure 8.30 (page 216), a breakdown of temporal aliasing errors shows that AOD
model errors are the dominant source above SH degree 50. Below HS degree 50,
ocean tide model errors are as large as AOD model errors.

The total temporal aliasing error for the 255/16 dual gamma mission is shown as
a triangular plot in the top-right panel of Figure 8.31 (page 217) and as map over the
Amazon river basin in the upper-middle-left panel of Figure 8.32 (page 218). The
triangular plot demonstrates that temporal aliasing errors are fairly homogeneous,
apart from the low-error band at the high-degree near-zonal coefficients. The map
shows a set of short north-south stripes where the largest magnitude is observed
north of the equator.

Table 8.14 (page 216) shows the total error of the dual gamma mission in terms
of unregularized solutions for several DAPs. One can see that the lowest errors are
obtained for the 22-day DAP (22 mm ewh), while the largest error for the shortest
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8-day DAP (84 mm ewh).
In terms of regularized solutions, the total temporal aliasing errors over the Ama-

zon river basin are shown as a map in the upper-middle-right panel of Figure 8.32
(page 218). The large-error features are somewhat reduced in magnitude. Error
features over the oceans can hardly be seen now.

The error budget in terms of regularized solutions is shown for several DAPs in
Table 8.18 (page 220). It shows that the lowest total error is found at the 22-day
period (13 mm ewh) while the largest errors at the shortest 8-day period (18 mm
ewh).

8.4.3. Dual Cartwheel
The dual cartwheel mission combines two cartwheel formations in nearly per-

pendicular orbital planes. One important aspect in the configuration of the dual
cartwheel mission is the relative orientation of the inter-satellite baselines of the
two formations. While the inter-satellite baseline of one formation is oriented in
the along-track direction over the equator, the second formation is oriented radially,
such that both formations have roughly perpendicular baselines over all latitudes.
This ensures that the maximum information is collected with the dual cartwheel
concept.

Similarly to the results presented for the other mission concepts, a general
overview of the errors for the 255/16 dual cartwheel mission is shown in the bottom-
left panel of Figure 8.29 (page 215). The plot shows that the error budget of the
dual cartwheel mission is, similarly to the other mission concepts, dominated by
temporal aliasing errors. The total temporal aliasing error becomes as large as the
signal at around SH degree 90. The bottom-left panel of Figure 8.30 (page 216)
shows the breakdown of temporal aliasing errors. It can be seen that, above SH
degree 20, AOD model errors are the dominant error source, especially above SH
degree 40.

The triangular plot in the bottom-left panel of Figure 8.31 (page 217) shows
the magnitude of the total temporal aliasing error per SH coefficient. The dual
cartwheel mission has fairly low errors for all near-zonal coefficients up to SH order
15.

A map of the total temporal aliasing error over the Amazon river basin is pre-
sented in the lower-middle-left panel of Figure 8.32 (page 218). The error shows
a pattern of short north-south stripes, with the largest-magnitude features located
north of the equator.

A table with the error budget of the dual cartwheel missions for different DAPs
is shown in Table 8.15 (page 219). It demonstrates that temporal aliasing errors
dominate at all the considered timespans. In all the cases, AOD errors are the
largest contributor to the error budget, followed by ocean tide model error and the
dynamic mass transport signal. With increasing DAP, the total error decreases. The
lowest total error is obtained for the 24-day period (33 mm ewh).

Concerning regularized solutions, a map of the total temporal aliasing error over
the Amazon river basin is presented in the lower-middle-right panel of Figure 8.32
(page 218). The map shows a significant reduction of the error features compared
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to the unregularized solution, most of the large-magnitude ones being removed
almost entirely.

The error budget of regularized solutions is shown in Table 8.19 (page 221).
The level of errors is significantly reduced compared to the unregularized solutions.
The total error tends to decrease with increasing DAP. The lowest total error is
obtained again for the 22-day period (14 mm ewh), while the highest error for the
shortest, 8-day period (17 mm ewh). The total error differences between different
timespans are, however, much smaller, as compared to the unregularized solutions.
For instance, the performance of the 16-day mission is very close to that of the
22-day mission.

8.4.4. Dual Sigma

The dual sigma mission combines a cartwheel and a pendulum formation in dif-
ferent orbital planes. The cartwheel formation provides observations in the radial
and along-track directions, oscillating between the two, while the pendulum forma-
tion provides observations oriented in the cross-track direction. An overview of the
errors for the 255/16 dual sigma mission is shown in the bottom-left panel of Fig-
ure 8.29 (page 215). Once again, the largest error source is temporal aliasing error,
which is dominant for all SH degrees and becomes larger than the mass transport
signal at about SH degree 100. The breakdown of temporal aliasing errors is shown
in the bottom-right panel of Figure 8.30 (page 216). It shows that temporal aliasing
errors are explained by a combination of ocean tide model errors and AOD model
errors up to SH degree 60. From SH degree 60 onwards, AOD model errors become
the dominant source.

The magnitude of the total temporal aliasing error per SH coefficient is shown in
the bottom-right panel of in Figure 8.31 (page 217). The dual sigma mission has a
relatively even error distribution compared to other mission concepts. A low-error
stripe can be seen for the near-zonal coefficients, nonetheless the errors are fairly
low for other SH coefficients as well.

In the bottom-left panel of Figure 8.32 (page 218), the total temporal aliasing
errors over the Amazon river basin are shown in the spatial domain. The error pat-
terns shows short north-south stripes with the largest magnitude features located
to the north of the equator.

Table 8.16 (page 219), shows the error budget for a selection of DAPs for the
dual sigma mission. The lowest errors are obtained for the 22-day period (19.6 mm
ewh), which is slightly lower than for the 24-day one (20.2 mm ewh). The major
contributor for all considered intervals is the AOD model error.

Regarding regularized solutions, total temporal aliasing errors are shown over
the Amazon river basin in the bottom-right panel of Figure 8.32 (page 218). In
comparison with the unregularized solutions (bottom-left panel of the same figure),
there is, as expected, an overall reduction in the magnitude of the error features,
especially in the regions where no significant mass transport signal is expected, such
as the ocean. Still, some large-magnitude features remain visible in the regularized
solution.

Table 8.20 (page 221) shows the error budget for the dual sigma mission in
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terms of regularized solutions. The results are consistent with the ones obtained
for the unregularized solutions: the 22-day period exhibits the lowest total error
(12.0 mm ewh), which is slightly below the 24-day period (12.5 mm ewh). The
12-day period, despite being almost half as short as the 22-day period, shows a
total error of 14.0 mm ewh, which is only about 15% larger than in the 22-day
case. For the 22-day period, the largest single contributor to the error budget is
the regularization bias (6.7 mm ewh), which is nonetheless below the aggregate
total temporal aliasing error (10 mm ewh).
8.4.5. Discussion
In the previous section, four mission concepts consisting of two satellite formations
were presented. The dual along-track and dual cartwheel missions augmented
the corresponding single formation missions by adding a second formation of the
same type as the first one. Regarding the dual-along track mission, the second
formation was tilted by 70° in order to improve the observability of the east-west
variations of the gravity field. Similarly, the dual cartwheel mission was designed so
that the inter-satellite baselines of both cartwheel formations are (approximately)
perpendicular over all latitudes.

The dual along-track and dual cartwheel formations were successful at improv-
ing the performance of the corresponding single-formation mission. Curiously, the
dual along-track formation yielded the lowest level of errors in terms of unregu-
larized solutions for the relatively short 10-day DAP. Because the single formation
along-track mission suffered from such high degree of spatial instability errors, the
total errors of the dual along-track mission were found to be about one order of
magnitude smaller (cf. Tables 8.1 in page 218 and 8.13 in page 215 for the along-
track and dual along-track missions, respectively). Temporal aliasing errors were
the largest error source and of those, the AOD error was the largest component.
In terms of magnitude of SH coefficients, temporal aliasing errors were found to be
significantly more isotropic for the dual along-track mission. Nonetheless, despite
the large reduction of errors, the total temporal aliasing error plotted on a map still
showed a north-south striation pattern (cf. top-left panel of Figure 8.32 in page
218).

Similar remarks can be made about the improvements obtained by the dual
cartwheel mission compared to the single formation cartwheel. The sensitivity of
the dual formation configuration is more isotropic and as a consequence spatial
instability errors are significantly smaller at the shorter DAPs for the dual cartwheel
mission (101 mm ewh, cf. Table 8.15 in page 219) w.r.t. the single formation
cartwheel (447 mm ewh, cf. Table 8.3 in page 189). Further evidence of this can be
concluded from comparing the total temporal aliasing error in terms of magnitude of
SH coefficients. These errors, shown in the bottom panel of Figure 8.17 (page 186
for single formation cartwheel mission, are relatively high in the tesseral coefficients
above SH degree 40. On the other hand, the dual cartwheel formation shown in
the bottom-left panel of Figure 8.31 (page 217), shows a significant reduction of
errors in the tesseral and near-sectorial SH coefficients

One important aspect when comparing the dual along-track and dual cartwheel
with the along-track and cartwheel missions, respectively, is that the dual formation
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Figure 8.29: General overview of errors for the 255/16 dual along-track (top-left), 255/16 dual gamma
(top-right), 255/16 dual cartwheel (bottom-left) and 255/16 dual sigma (bottom-right) missions in terms
of DV and CDV. The explanation of the used acronyms can be found in Table 4.4 in page 75.

Table 8.13: Error budget of the dual along-track missions (70° inclination of the inclined orbit) over
a selection of DAPs in terms of global RMS [mm ewh] of solutions solved up to SH degree 120. The
explanation of the used acronyms can be found in Table 4.4 in page 75.

2AT 127/8 159/10 191/12 255/16 319/20 383/24
RNG 9.94 7.42 14.42 7.05 5.24 5.37
ACC 2.47 1.84 5.74 1.93 1.49 1.73
TIN 10.26 7.62 15.32 7.37 5.50 5.67

AOD 46.23 36.37 91.13 37.88 29.48 32.37
OTE 37.99 16.96 91.20 42.04 29.78 31.93
TMP 16.52 12.76 58.14 27.91 32.50 35.68
TAL 61.74 42.50 132.92 60.87 53.38 61.48

SPT 3.96 3.85 3.51 2.63 2.69 2.65
TOT 62.71 43.24 134.25 61.31 53.85 61.85

ESM 62.78 62.47 62.14 61.36 60.53 59.70
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Figure 8.30: DV and CDV of temporal aliasing errors for the for the 255/16 dual along-track (top-left),
255/16 dual gamma (top-right), 255/16 dual cartwheel (bottom-left) and 255/16 dual sigma (bottom-
right) missions. The explanation of the used acronyms can be found in Table 4.4 in page 75.

Table 8.14: Error budget of the dual gamma mission over a selection of DAPs in terms of global RMS
[mm ewh] solved up to SH degree 120. The explanation of the used acronyms can be found in Table 4.4
in page 75.

2Γ 127/8 191/12 255/16 351/22 383/24
RNG 10.57 6.88 5.29 3.18 3.17
ACC 2.55 2.16 1.06 0.64 0.63
TIN 10.85 7.14 5.40 3.24 3.23

AOD 64.89 41.30 22.41 16.99 17.43
OTE 46.83 19.56 9.68 9.94 9.45
TMP 21.23 14.02 8.64 8.92 10.35
TAL 83.13 46.71 26.31 21.57 22.36

SPT 3.03 5.23 1.81 1.35 1.34
TOT 84.11 47.46 26.93 21.83 22.68

ESM 62.78 62.14 61.36 60.12 59.70
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Figure 8.31: Magnitude of the total temporal aliasing error (TAL) per SH coefficient for the 255/16 dual
along-track (top-left), 255/16 dual gamma (top-right), 255/16 dual cartwheel (bottom-left) and 255/16
dual sigma (bottom-right) missions.
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Figure 8.32: Map of the temporal aliasing error (TAL) for the 255/16 dual along-track (top), 255/16
dual gamma (upper-middle), 255/16 dual cartwheel (lower-middle) and 255/16 dual sigma (bottom)
missions over the Amazon river basin in terms of unregularized (left) and regularized (right) solutions
up to ፥max  ኻኼኺ.
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Table 8.15: Error budget of the dual cartwheel mission over a selection of DAPs in terms of global RMS
[mm ewh] of unregularized solutions solved up to SH degree 120. The explanation of the used acronyms
can be found in Table 4.4 in page 75.

2C 127/8 191/12 255/16 351/22 383/24
RNG 9.43 6.51 5.27 3.21 3.14
ACC 2.84 2.03 1.42 0.90 0.90
TIN 9.83 6.81 5.45 3.34 3.27

AOD 67.36 46.25 38.25 28.20 27.33
OTE 63.38 12.02 8.74 11.56 12.56
TMP 26.20 13.85 9.94 10.78 12.13
TAL 100.54 49.81 40.81 32.96 32.86

SPT 2.06 3.11 1.83 1.52 1.52
TOT 101.10 50.56 41.23 33.13 33.05

ESM 62.78 62.14 61.36 60.12 59.70

Table 8.16: Error budget of the dual sigma mission over a selection of DAPs in terms of global RMS [mm
ewh] of unregularized solutions solved up to SH degree 120. The explanation of the used acronyms can
be found in Table 4.4 in page 75.

2𝜎 127/8 191/12 255/16 351/22 383/24
RNG 12.36 8.21 6.62 4.12 4.11
ACC 2.53 1.70 1.18 0.74 0.72
TIN 12.59 8.38 6.73 4.17 4.17

AOD 40.87 26.54 18.18 14.91 15.39
OTE 34.41 12.11 8.94 8.82 8.44
TMP 14.66 10.67 7.08 7.43 8.64
TAL 57.39 30.26 21.92 19.15 19.66

SPT 2.79 5.36 1.65 1.35 1.33
TOT 58.73 31.89 22.95 19.56 20.20

ESM 62.78 62.14 61.36 60.12 59.70
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Table 8.17: Error budget of the dual along-track missions (70° inclination of the inclined orbit) over a
selection of DAPs in terms of global RMS of regularized solutions [mm ewh] solved up to SH degree 120.
The explanation of the used acronyms can be found in Table 4.4 in page 75.

2AT 127/8 159/10 191/12 255/16 319/20 383/24
RNG 1.22 0.99 1.16 0.87 0.80 0.68
ACC 0.31 0.25 0.34 0.22 0.21 0.20
TIN 1.27 1.00 1.20 0.90 0.83 0.71

AOD 8.18 7.08 7.23 5.70 5.90 4.96
OTE 5.59 5.60 4.99 4.27 4.37 4.06
TMP 3.82 4.13 5.71 5.14 5.13 6.39
TAL 10.48 9.85 10.16 8.68 8.82 9.10

REG 11.34 11.38 13.17 11.58 10.02 11.05
SPT 1.10 0.76 0.67 0.31 0.45 0.29
TOT 15.63 14.99 16.67 14.52 13.46 14.42

ESM 62.78 62.47 62.14 61.36 60.53 59.70

Table 8.18: Error budget of the dual gamma mission over a selection of DAPs in terms of global RMS
of regularized solutions [mm ewh] solved up to SH degree 120. The explanation of the used acronyms
can be found in Table 4.4 in page 75.

2Γ 127/8 191/12 255/16 351/22 383/24
RNG 0.87 0.94 0.99 0.82 0.76
ACC 0.24 0.26 0.23 0.20 0.19
TIN 0.89 0.98 1.02 0.85 0.78

AOD 6.67 6.74 7.13 6.53 6.66
OTE 7.53 6.46 6.46 6.61 5.70
TMP 4.04 4.31 4.60 5.93 7.28
TAL 10.77 10.18 10.84 11.10 11.60

REG 14.30 10.35 9.02 6.98 7.19
SPT 0.83 2.56 0.55 0.29 0.31
TOT 17.91 14.54 14.12 13.17 13.70

ESM 62.78 62.14 61.36 60.12 59.70
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Table 8.19: Error budget of the dual cartwheel mission over a selection of DAPs in terms of global RMS
of regularized solutions [mm ewh] solved up to SH degree 120. The explanation of the used acronyms
can be found in Table 4.4 in page 75.

2C 127/8 191/12 255/16 351/22 383/24
RNG 1.12 0.93 0.84 0.66 0.61
ACC 0.31 0.27 0.23 0.18 0.18
TIN 1.17 0.96 0.87 0.68 0.64

AOD 7.32 6.89 6.16 5.90 5.67
OTE 4.45 4.53 4.07 4.14 4.17
TMP 4.18 4.35 4.71 6.18 6.81
TAL 9.74 9.56 8.82 9.57 9.65

REG 13.30 11.64 10.99 9.50 9.44
SPT 0.35 0.95 0.39 0.35 0.36
TOT 16.57 15.20 14.21 13.50 13.68

ESM 62.78 62.14 61.36 60.12 59.70

Table 8.20: Error budget of the dual sigma mission over a selection of DAPs in terms of global RMS of
regularized solutions [mm ewh] solved up to SH degree 120. The explanation of the used acronyms can
be found in Table 4.4 in page 75.

2𝜎 127/8 191/12 255/16 351/22 383/24
RNG 1.23 1.42 1.35 1.05 0.97
ACC 0.30 0.33 0.29 0.23 0.23
TIN 1.25 1.45 1.40 1.07 0.99

AOD 6.56 7.16 6.84 5.98 6.27
OTE 7.04 6.04 5.95 5.71 5.34
TMP 3.64 4.10 4.16 5.19 6.36
TAL 10.38 10.45 10.30 9.99 10.38

REG 13.24 9.12 8.22 6.72 6.69
SPT 0.83 2.51 0.56 0.38 0.37
TOT 16.98 14.01 13.17 12.04 12.51

ESM 62.78 62.14 61.36 60.12 59.70
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missions collect twice as many data as the single formation ones. Therefore, having
remarked on the improvements brought in by the second formation, it is not possible
from this comparison alone, to independently attribute the observed improvements
to the different orientation of the inter-satellite baselines in each formation and to
the additional data collected by the second formation.

Despite the improvements obtained by the dual along-track and dual cartwheel
missions, their performance did not surpass that of the single-formation hybrid mis-
sions. For the longest DAP of 24-days, the dual along track (61 mm ewh, cf. 8.13 in
page 215) and dual cartwheel (33 mm ewh, cf. 8.15 in page 219), were still signif-
icantly worse than the delta (27 mm ewh, cf. Table 8.9 in page 205), gamma (22
mm ewh, cf. Table 8.7 in page 200) and sigma missions (21 mm ewh, cf. Table 8.8
in page 205). This shows that the combination of orthogonal observables is more
desirable than repeating the same observable over interleaving groundtracks. It is
also interesting to notice that the delta mission, effectively a 3-satellite cartwheel
formations, was found to be significantly better than the dual cartwheel mission
with two independent cartwheel formations. The additional satellite in a single
cartwheel formation and the consequent larger amount of data gathered from the
three inter-satellite baselines of the delta mission proves to be more valuable than
an additional pair on interleaved groundtracks.

It was shown in Section 7.5.3 that two perpendicular orbital planes are effective
at reducing temporal aliasing errors. The comparison of the dual along-track and
dual cartwheel missions and the corresponding single formation may be consistent
with this finding, with the caveat that the dual formation missions collect twice the
data of the single formation ones. On the other hand, the dual gamma and dual
sigma (which collect the same amount of data as the single formation gamma and
sigma) did not significantly reduce the temporal aliasing errors of the corresponding
single formations mission. I propose that this is explained by the fact that when
orthogonally oriented observations are considered, as in the case of the gamma
and sigma concepts, they collect mutually complementary information. Therefore
it makes little difference whether these observation are placed in a single or in
a dual-formation configuration. Splitting orthogonal observables in two different
formations does not seem to be effective at significantly improving the performance
of the single-formation configuration.

Further evidence of this can be seen in the differences between the solutions of
the sigma and dual sigma missions. Both sigma and dual sigma missions yielded
the lowest total error at the 22-day DAP in terms of unregularized solutions. The
errors budgets of these two simulations are presented in Tables 8.8 and 8.16 for
the sigma and dual sigma missions, respectively. In terms of global RMS, the dual
sigma mission reduced the total error by about 1.4 mm ewh. In turn, this reduction
results from a small decrease of 0.7 mm ewh in terms of AOD errors and, more
significantly, by a 1.5 mm ewh reduction in terms of OTE. The difference between
the total error gravity field solutions of the 22-day sigma and dual sigma missions
should provide an illustration of the impact of splitting the sigma combination in two
different formations. These differences are shown in Figure 8.33. Major features
are gathered around the coastal areas where tidal model errors are the largest.
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However, the global RMS of the differences between the sigma and dual sigma
missions is about 12 mm ewh, a much larger value than the improvements obtained
by the dual sigma mission compared to sigma. This means that the differences
between the two missions do not represent improvements brought by the dual
sigma mission, they rather show the combined errors of the two missions.
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Figure 8.33: Difference between the total error of the dual sigma and sigma missions in terms of
unregularized solutions for the 22-DAP.

8.5. Comparison
In this Section, the best performing DAPs are selected to compare the previously
presented concepts. First, I will show a comparison of the elementary satellite
formations. Then, a comparison of three-satellite hybrid single-formation missions
is shown. Finally, a comparison of four-satellite mission concepts arranged in two
formations is discussed.

GRACE/GFO solutions are used by hydrologists, glaciologists and geophysicists
in different regions. Therefore, it is reasonable to compare the performance of
different missions over 10 selected geographical regions where mass transport sig-
nals of different origins occur. I made this choice such that both large and small
regions are considered at various (polar, mid- and equatorial) latitudes. Another
consideration taken was to include regions that are predominantly stretched in both
the east-west and north-south directions. The diversity of the geographical char-
acteristics in the set of chosen regions is important, as it allows me to pinpoint the
potential weaknesses in some of the considered concepts.

In the context of hydrology, I have selected four different regions. I consider the
Amazon and the Nile river basins, since these two rivers are the two longest rivers
on our planet. The Nile river basin is of further interest due to its predominantly
north-south orientation. I analyze also the Orinoco river basin in South America.
Being a neighbor of the Amazon river basin, it is not only smaller, but also has a out-
of-phase hydrological cycle. Finally, the Ob river in Siberia has also been selected
due to its higher latitude and a peculiar seasonal cycle driven by the accumulation
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and melting of snow.
In the context of glaciology, four regions have also been chosen. Antarctica

and Greenland have been selected as large ice-covered areas at high latitudes.
Furthermore, I zoom in on the Amundsen Sea Embayment in West Antarctica due
to its strong ice mass loss signal. Finally, the Alps have been selected as a small
mid-latitude region of interest.

Regarding solid earth applications, the region of Fennoscandia has been selected
due to the presence of strong glacial isostatic adjustment (GIA) signal there. The
Sumatra region has also been chosen due to the massive tectonic displacement
caused by the 2004 Sumatra-Andaman earthquake (Park et al., 2005), the largest
in recorded history.

In the following sections, regional RMS errors of mass anomalies for different
mission concepts will be presented in several tables. In these tables a simple scor-
ing system will be used to rank the considered missions in order to quantify the
performance of each mission concept relative to the other ones. When comparing
N missions, for each region of interest, the best performing concept is given a max-
imum score of 𝑁 − 1 points; the worst mission the minimum score of 0 points and
the remaining according to their rank. Adding up all the regional scores for a given
mission gives its total score. In this way, I make an attempt at providing an simple
measure of the overall performance of different mission concepts.

The best performing DAP will be selected for each mission. Notice that for a
given mission, the best DAP may be different for regularized and unregularized
solutions.

8.5.1. Single-formation missions
In Table 8.21, the regional RMS of the total error for the best three single-formation
missions are compared in terms of unregularized solutions. All three considered
mission concepts span similar DAPs, only the cartwheel’s DAP being slightly longer
with 24 days instead of 22. The table shows that the cartwheel mission is the best
performing mission. It yields the lowest errors in the majority of the considered re-
gions. Only over Fennoscandia and Greenland, the pendulum mission outperforms
the cartwheel one.

Two examples of large differences between the mission performances are the
Amazon and Greenland regions. A comparison of the total error over these regions
is shown in Figure 8.34 and 8.35, respectively. Figure 8.34 clearly shows that the
along-track mission’s solution is severely affected by north-south striations, while
the pendulum’s and cartwheel’s ones are much cleaner. A mild horizontal striation
pattern is seen for the pendulum mission. The cartwheel mission is clearly the best
over the Amazon river basin. However, this is no longer the case over Greenland, as
can be seen in Figure 8.35. Here, the along-track mission again shows the largest
errors, but now the cartwheel mission also suffers from significant north-south stri-
ations over the North Atlantic. The pendulum missions demonstrates relatively mild
and homogeneous horizontal striation pattern over the whole region, so that its per-
formance is the best among the three considered mission concepts. This could be
explained by a larger east-west variability of the temporal aliasing error sources in
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Table 8.21: Comparison of the total error in terms of regional RMS of mass anomalies for the best single-
formation missions over the regions of interest in terms of unregularized solutions [mm ewh] solved up
to SH degree 120.

Region Signal P|351/22 C|383/24 AT|351/22
Global 60.10 116.00 48.42 355.89

Amazon 150.97 101.52 41.94 556.09
Nile 176.69 88.58 49.05 209.72

Orinoco 96.74 136.35 42.09 921.00
Ob 70.01 108.07 56.03 182.64

Antarctica 40.48 105.04 83.38 334.46
Greenland 166.20 70.97 79.57 246.74

Amundsen S.E. 112.61 109.22 58.36 94.58
Alps 39.10 123.13 38.16 332.49

Sumatra 185.62 113.72 24.74 520.76
Fennoscandia 44.52 78.86 107.41 348.06

Score 12/22 20/22 1/22

this region, which are better captured by the pendulum mission.

P | 351/22 | TOT
−80˚ −70˚ −60˚ −50˚

C | 383/24 | TOT
−80˚ −70˚ −60˚ −50˚
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Figure 8.34: Total error as regional RMS of mass anomalies over the Amazon river basin for the pen-
dulum 351/22 (left), along-track 383/24 (middle) and cartwheel 383/24 (right) missions, in terms of
unregularized solutions [mm ewh].

Overall, taking into account all the considered regions, the cartwheel mission
has the best score with 20/22 points, the pendulum mission comes in second with
12/22, while the along-track is clearly the worst with 1/22 points (Table 8.21).

In terms of regularized solutions, the corresponding results are presented in
Table 8.22. As expected, the differences between the concepts are much smaller
in this case. Overall, the pendulum mission is now the one with highest score
17/22. The cartwheel is now second with 9/22 points, while the along-track, still
the worst, but now with 7/22 points, even outperforming the other two concepts
over Antarctica and the Amundsen Sea.
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Figure 8.35: Total error as regional RMS of mass anomalies over Greenland for the pendulum 351/22
(left), along-track 383/24 (middle) and cartwheel 383/24 (right) missions, in terms of unregularized
solutions [mm ewh].

Table 8.22: Comparison of total error in terms of regional RMS of mass anomalies for the best single
formation missions over different regions of interest in terms of regularized solutions [mm ewh] solved
up to SH degree 120.

Region Signal P|351/22 C|255/16 AT|255/16
Global 60.10 19.37 19.87 22.57

Amazon 150.97 39.38 24.50 45.56
Nile 176.69 20.71 24.33 41.46

Orinoco 96.74 28.26 25.62 53.95
Ob 70.01 26.46 43.50 32.30

Antarctica 40.48 17.90 19.16 15.44
Greenland 166.20 35.94 45.58 63.37

Amundsen S.E. 112.61 38.52 40.59 29.20
Alps 39.10 15.68 26.15 18.84

Sumatra 185.62 33.50 20.82 39.55
Fennoscandia 44.52 22.13 35.66 26.81

Score 17/22 9/22 7/22
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It is interesting to revisit the Amazon and Greenland regions to compare the
three missions again, but now in terms of regularized solutions. Over the Amazon
river basin, shown in Figure 8.36, the regularization procedure has lead to a signif-
icant decrease in the errors for all the missions. Their levels appears to be similar
for the along-track and pendulum formations; the along-track has a predominantly
north-south error pattern, while the pendulum formation predominantly east-west.
The largest errors in the pendulum case coincide with the Amazon river stream.
The error pattern of the pendulum mission is hardly distinguishable from the mass
transport signal in this region. Therefore, the regularization procedure dampens the
input signal and introduces the observed error in the form of regularization bias.
In comparison with the other two missions, the cartwheel shows the lowest total
error and a fairly even error distribution over the whole region.

P | 351/22 | TOT
−80˚ −70˚ −60˚ −50˚

C | 255/16 | TOT
−80˚ −70˚ −60˚ −50˚

AT | 255/16 | TOT
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−200.00 −100.00 0.00 100.00 200.00

mm ewh

Figure 8.36: Comparison of the total error (TOT) over the Amazon river basin for the along-track 255/16,
pendulum 351/22 and cartwheel 255/16 missions in terms of regularized solutions [mm ewh].

Regarding Greenland (Figure 8.37), the cartwheel and along-track missions yield
a similar error pattern. Both missions show north-south striations along the East
coast of Greenland. The along-track mission has comparatively large magnitude
striations and is noticeably the worst in this region. The similarity between the two
mission errors can be explained by the fact that as the cartwheel formation orbits,
the inter-satellite baseline shifts between the radial and along-track directions. The
baseline of the considered cartwheel mission, with a 𝛼 = 30∘ , is in the vicinity of the
along-track direction at high-latitudes (cf. Figure 8.12 in page 182). Nonetheless,
the presence of radial component in the cartwheel mission observations is seen to
significantly reduce the total error over this region. The pendulum mission shows a
slightly different error pattern, with multiple relatively large features in the southern
part of Greenland.

8.5.2. Hybrid-formation missions
Several single-hybrid-formation missions have been considered in the previous sec-
tions. In terms of unregularized solutions, the best performing scenarios were found
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Figure 8.37: Comparison of the total error over Greenland for the along-track 255/16, pendulum 351/22
and cartwheel 255/16 missions in terms of regularized solutions [mm ewh].

to be the 22-day delta, the 22-day sigma and the 24-day gamma missions. The re-
gional RMS values of the total error for these missions are shown in Table 8.23. For
a comparison, I have included also the best 2-satellite single-formation missions:
the 24-day cartwheel and the 16-day pendulum for unregularized and regularized
solutions, respectively. This helps in establishing the added value of a 3-satellite
hybrid-formation over a two-satellite one.

The results show that the sigma and gamma missions are the top performing
ones, with the sigma mission being the best. The sigma mission has the lowest total
error in the majority of the considered regions and gets a score of 30/33 points. The
gamma mission follows with 21/33 points, while the delta and cartwheel missions
fall considerably behind with 14/33 and 1/33 points, respectively. Expectedly, the
regional RMS values for the three hybrid formations are significantly lower than that
for the cartwheel mission. The results also show that the three considered hybrid
formations are all able to reduce the total error by a factor of at least 2 in terms of
global RMS of unregularized solutions, as compared to 2-satellite formations.

There are particularly large differences between the considered mission con-
cepts over the Nile river basin. The total errors over this region are shown in the
form of maps in Figure 8.38. It can be seen that the sigma mission yields the lowest
level of errors, slightly lower than delta, while the gamma and cartwheel missions
show comparatively high errors.

Table 8.24 presents the results of a similar comparison but now in terms of
regularized solutions. The relative performance of the missions is consistent with
what was found from the unregularized solutions. The sigma mission shows the
best performance with 26/33 points, followed by the gamma mission with 21/33
points. The delta and pendulum missions lag behind with 18/33 and 1/33 points,
respectively. It should be noticed, however, that the differences in the regional RMS
values between the considered missions are now much smaller. Furthermore, while
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Figure 8.38: Total error over the Nile river basin for the cartwheel 383/24, delta 351/22, gamma 383/24
and sigma 351/22 missions in terms of unregularized solutions [mm ewh].
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Table 8.23: Total error in terms of regional RMS of mass anomalies for the three hybrid formation
missions over different regions of interest in terms of unregularized solutions [mm ewh]. The cartwheel
(the best single-formation mission) is also included in the comparison for reference.

Region Signal C|383/24 Γ|383-24 Δ|351/22 𝜎|351/22
Global 59.68 48.42 22.11 26.03 20.94

Amazon 150.06 41.94 25.08 26.86 19.88
Nile 174.62 49.05 35.48 24.86 15.17

Orinoco 94.41 42.09 19.07 29.51 18.52
Ob 70.59 56.03 23.83 27.24 21.98

Antarctica 40.48 83.38 20.78 22.73 21.23
Greenland 166.54 79.57 30.60 28.92 28.65

Amundsen S.E. 112.31 58.36 19.08 17.20 19.01
Alps 38.38 38.16 20.40 30.44 18.25

Sumatra 185.86 24.74 18.98 27.30 23.92
Fennoscandia 42.86 107.41 32.07 42.95 31.59

Score 1/33 21/33 14/33 30/33

the total error was reduced threefold by the hybrid formation missions compared
to the cartwheel, that is no longer the case when considering regularized solutions.
The sigma mission has now a total error of 13 mm ewh, which about 32% better
than the 19 mm ewh error for the pendulum mission.

The largest difference between the hybrid formations in terms of the regional
RMS of the total error is again observed over the Nile river basin. The maps of
total error over this region are presented in Figure 8.39. Here, the gamma and
pendulum missions show relatively large errors, while the delta and sigma missions
result is much less prominent error features.

Regarding the analyzed hybrid-formation missions, the 22-day sigma mission
is the best option in terms of both regularized and unregularized solutions. The
gamma mission is a close second. The best overall performance of the sigma and
gamma missions may be attributed to the synergy in the inter-satellite ranging
directions exploited in the formations. Both the gamma and sigma missions collect
cross-track information from the pendulum inter-satellite link.

In Section 7.5.1, it was shown that the xx+yy combination was equally effec-
tive as the zz gradient alone at minimizing the level of temporal aliasing errors for
𝑙max = 40. Based on this finding, one would predict the gamma, sigma and delta
configurations to yield a similar magnitude of temporal aliasing errors. However
that is not the case. While the delta mission is able to fully resolve three gravity
gradient directions (zz, xx and xz), it seems that this is less desirable than the yy+xx
combination of the gamma mission or the alternating xx/zz+yy combination of the
sigma mission. One possible explanation for this discrepancy could be that the zz
gradient becomes less effective than xx+yy combination for SH degrees above 40
at mitigating temporal aliasing errors. Figure 8.40 shows DV plot of total temporal
aliasing errors for these three configurations. Temporal aliasing errors of the delta
configuration are slightly higher than gamma and sigma between SH degrees 40
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Figure 8.39: Total error over the Nile river basic for the pendulum 351/22, delta 351/22, gamma 383/24
and sigma 351/22 missions in terms of regularized solutions [mm ewh].
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Table 8.24: Total error for the best three satellite hybrid formation missions over different regions of
interest in terms of regularized solutions [mm ewh]. The cartwheel (the best single-formation mission)
is also included in the comparison for reference.

Region Signal P|351/22 Γ|383-24 Δ|351/22 𝜎|351/22
Global 60.10 19.37 13.69 13.93 13.11

Amazon 150.97 39.38 20.18 21.91 18.78
Nile 176.69 20.71 30.04 16.97 12.90

Orinoco 96.74 28.26 15.46 23.29 18.96
Ob 70.01 26.46 18.83 19.31 17.88

Antarctica 40.48 17.90 11.74 11.58 11.81
Greenland 166.20 35.94 26.06 20.51 19.53

Amundsen S.E. 112.61 38.52 21.43 17.54 18.76
Alps 39.10 15.68 11.44 13.83 13.17

Sumatra 185.62 33.50 18.40 20.67 24.37
Fennoscandia 44.52 22.13 21.17 21.41 19.51

Score 1/33 21/33 18/33 26/33

and 80, which supports this hypothesis.

8.5.3. Dual-formation Missions
Four different dual-formation missions have been presented in the previous sec-
tions. Of those, the 10-day dual along-track, 22-day dual sigma, 22-day dual
cartwheel and 22-day dual gamma missions have shown the lowest total error in
terms of global RMS of unregularized solutions. Results of a regional comparison
of these missions are presented in Table 8.25, along with the best performing 3-
satellite mission, the 22-day sigma formation. The best performance is obtained
for the 22-day dual-sigma mission with a score of 39/44. The dual sigma mission
has the lowest total error globally and in most regions of interest.

Despite consisting of only one satellite formation, the second best performing
mission is the single-formation sigma mission with a total score of 29/44. The
remaining mission concepts – the dual gamma, dual cartwheel and dual along-track
– get scores 24/44, 12/44 and 6/44, respectively. The dual along-track mission fares
the worst. It shows large errors in the equatorial regions (Amazon, Orinoco and
Nile river basins). This is not unexpected, since in these lower latitudes, the two
along-track pairs are nearly co-linear and, therefore, comparatively less capable of
observing spatial variations of mass anomalies in the east-west direction.

Maps of the total error over Antarctica for different mission concepts are shown
in Figure 8.41. This figure is quite interesting, as it reveals many typical features of
the considered missions. There is a clear polar cap region with larger errors for the
dual along-track mission; this is the region where the lower-inclined pair does not
collect any measurements. There is also a circular error feature around the pole
common to the dual gamma, dual sigma and sigma missions. This area corresponds
to when the satellites taking part in the pendulum pair swap their relative positions
in the formation. In this process, the inter-satellite baseline shrinks to nearly zero
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Figure 8.40: DV and CDV of the total temporal aliasing error for the sigma, gamma and delta missions
in terms of unregularized solutions.

Table 8.25: Total error in terms of regional RMS of mass anomalies for the best dual-formation missions
over different regions of interest in terms of unregularized solutions [mm ewh]. The sigma formation
(the best hybrid-formation mission) is also included in the comparison for reference.

Region Signal 𝜎:351/22 2Γ:351/22 2C:351-22 2AT:159/10 2𝜎:351/22
Global 60.10 20.94 21.82 33.12 43.23 19.56

Amazon 150.97 19.88 19.75 25.80 57.20 15.76
Nile 176.69 15.17 19.31 23.96 60.60 13.67

Orinoco 96.74 18.52 23.72 29.74 49.45 17.31
Ob 70.01 21.98 25.59 31.84 18.61 22.96

Antarctica 40.48 21.23 23.27 26.55 45.67 21.05
Greenland 166.20 28.65 27.74 35.01 57.55 28.84

Amundsen S.E. 112.61 19.01 20.34 16.21 78.94 17.59
Alps 39.10 18.25 21.19 39.35 22.76 17.03

Sumatra 185.62 23.92 21.55 22.17 75.61 16.32
Fennoscandia 44.52 31.59 32.18 43.63 36.17 28.88

Score 29/44 24/44 12/44 6/44 39/44
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not allowing inter-satellite ranging data to be collected (cf. Section 8.1.2). This
results in an increased error level, as shown in the plots. Finally, the dual cartwheel
mission shows a comparatively low errors in Antarctica compared to the other mis-
sions. This can be attributed to the synergy between the cartwheel pairs in the
formation, which collect orthogonal measurements over this region.
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Figure 8.41: Total error in terms of regional RMS of mass anomalies over Antarctica for the sigma 351/22,
dual sigma 351/22, dual gamma 351/22, dual along-track 319/20 and dual cartwheel 351/22 missions
in terms of unregularized solutions [mm ewh].

Next, I consider the total error in terms of regularized solutions. Table 8.26
shows its breakdown over the regions of interest for the considered missions. The
best performing mission is again the dual sigma mission with a total score of 34/44,
followed by the dual gamma mission with a score of 26/44. The single-formation
sigma mission now ranks third with a score of 24/44, which has dropped significantly
compared to the unregularized case. The dual cartwheel and dual along-track mis-
sions rank fourth and fifth with a score of 18/44 and 8/44 points, respectively. De-
spite the large differences in the scores, the differences in the regional RMS values
between the considered formations over several considered regions are relatively
small (often between 10% and 20%). Even the worst performing dual along-track
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Table 8.26: Total error in terms of regional RMS of mass anomalies for the best performing dual-formation
missions over different regions of interest in terms of regularized solutions [mm ewh]. The sigma
formation (the best hybrid-formation mission) is also included in the comparison for reference.

Region Signal 𝜎:351/22 2Γ:351/22 2C:383/24 2AT:159/10 2𝜎:351/22
Global 60.10 13.11 13.16 13.68 14.99 12.04

Amazon 150.97 18.78 18.74 23.52 28.46 15.33
Nile 176.69 12.90 12.38 23.45 27.60 11.08

Orinoco 96.74 18.96 22.88 23.91 25.87 16.91
Ob 70.01 17.88 20.18 23.43 13.07 18.74

Antarctica 40.48 11.81 11.91 11.08 13.19 11.72
Greenland 166.20 19.53 22.28 21.63 26.71 19.15

Amundsen S.E. 112.61 18.76 18.88 18.75 34.37 18.88
Alps 39.10 13.17 10.73 13.40 15.35 12.08

Sumatra 185.62 24.37 17.86 20.21 24.75 17.90
Fennoscandia 44.52 19.51 17.90 19.47 17.35 18.13

Score 24/44 26/44 18/44 8/44 34/44

mission shows the best performance in some of the considered regions.
It is interesting that the dual along-track mission is significantly better than all

others over Scandinavia and over the Ob river. Both of these locations are at about
the same 60° latitude. Since the inclination of the second along-track formation is
70°, at these latitudes, there is a greater density of observations (w.r.t. gamma) and
the inter-satellite baselines of both satellite formations are roughly perpendicular.
The total errors over the Ob are shown as maps in Figure 8.42. The dual along-track
mission shows the smallest magnitude features. The sigma, dual sigma and dual
gamma missions show a large positive magnitude feature with similar magnitudes,
while the dual cartwheel shows an error feature at the same location with opposite
sign.

It seems that the dual sigma mission is consistently the best at the low latitudes
while it is not at the higher latitude (except for Greenland). Similarly the sigma and
dual gamma missions seem to have a somewhat better performance (i.e. closer
to the mission with the lowest error) at low latitudes than in the higher latitudes.
This indicates a deficiency in the gamma and sigma concepts. The pendulum pair
considered these formations lacks sensitivity in the high latitudes. This is explained
as the inter-satellite distance shrinks with the increasing latitude up to a minimum
threshold where the pendulum observations are discarded.

8.5.4. Discussion
In the previous sections, several single- and dual-formation mission concepts were
presented and their performance was analyzed. In light of the obtained results
several considerations can be made.

Differences in the performance of the presented missions are most significant
in terms of unregularized solutions. The overall differences in terms of regular-
ized solutions are relatively small, the regularization bias becoming typically the
largest error type. In general, unregularized solutions, where a large difference in
the performance of different concepts was shown, are more useful to analyze the
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Figure 8.42: Total error in terms of regional RMS of mass anomalies over the Ob river basin for the
sigma 351/22, dual sigma 351/22, dual gamma 351/22, dual along-track 319/20 and dual cartwheel
351/22 missions in terms of regularized solutions [mm ewh].
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performance of a satellite mission as they are not biased towards the considered
gravity field model.

One important conclusion of the presented study is that the dual along-track
concept, often discussed in the literature, is greatly outperformed by all considered
single-hybrid-formation concepts (see Table 8.25). Moreover, it requires 4 satellites
arranged in 2 different formations, whereas sigma and gamma concepts require
only 3 satellites in a single formation. The potential cost reductions and superior
performance of the single-hybrid-formation concepts are two major advantages of
these concepts.

It was shown that dual gamma and dual sigma missions, designed to improve
the spatial and temporal coverage, result in only mild performance improvements,
as compared to the corresponding single-formation missions. Notice that both
gamma and sigma missions collect the same amount of measurements as dual
gamma and dual sigma. The only difference is that the dual missions consist of two
distinct formations, while the former combines both satellite pairs in a single for-
mation. The dual gamma mission showed a total error reduction of 1% compared
to the single-formation gamma mission (21.8 mm ewh instead of 22.1 mm ewh)
in terms of unregularized solutions. The dual sigma showed an error reduction of
7% compared to the single-formation sigma mission (19.6 mm ewh instead of 20.9
mm ewh). It is likely that the costs associated with the additional formation are not
worth the corresponding mild performance gain.

Overall, the best mission concepts can be ranked in order of their performance
as: (i) dual sigma, (ii) sigma, (iii) dual gamma and (iv) gamma missions. Both
sigma and dual sigma missions include a cartwheel formation, which is likely very
challenging to implement. On the other hand, even in terms of unregularized so-
lutions up to 𝑙max = 120, the best dual gamma mission performed only about 10%
worse than the best dual sigma mission, with a difference of only about 2 mm ewh
in terms of global RMS. Furthermore, as mentioned before, the single-formation
gamma mission is only 1% worse than the dual gamma formation. Thus, for a
small performance handicap of 11%, the gamma mission refrains from cartwheel
pairs of satellites (and their inherent complexity) and, at the same time, requires
only three satellites in a single formation (as opposed to four satellite arranged in
two formations). Therefore, the gamma mission sits in an attractive sweet spot
regarding complexity, performance and cost, representing a very promising con-
cept for future ll-SST missions. One final comparison is helpful at emphasizing the
performance level of the proposed gamma mission compared to existing missions.
The current GFO mission is an along-track type of mission; the best unregularized
solutions of the gamma mission (22 mm ewh) show a 95% reduction in total error
compared to the best along-track solutions (385 mm ewh). Even considering regu-
larized solutions, the gamma mission (13.6 mm ewh) still shows a 45% total error
reduction w.r.t. to corresponding along-track solutions (25 mm ewh).

The performance of most mission concepts shown is limited by the level of
temporal aliasing errors. This observation can also be interpreted from a different
perspective, i.e., that instrumentation errors play a relatively minor role. In turn,
this can be used to optimize the design of the presented missions in several ways.
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First, it may be possible to use relax the requirements on the accuracy of the rang-
ing and accelerometer instruments without compromising the performance of the
mission. This could allow for less expensive instruments and offset mission funds
for additional satellite platforms. Similarly, less demanding requirements may allow
miniaturization of these instruments in order to significantly cut on the launch costs
of the mission. The second way is to raise the satellites’ altitude in order to extend
the mission lifetime while maintaining comparable performance. This is possible
because the signal-to-noise ratio of instrumentation errors degrades as the satel-
lite altitude increases, and instrumentation errors are magnified in the computed
solutions. On the other hand, temporal aliasing errors are damped with altitude in
the same way as the signal itself, so that the signal-to-noise ratio does not change
with increasing altitude. Therefore, increasing the satellites’ altitude will only result
in an increase of instrumentation errors. Since the performance of most missions
is not limited by those errors, increasing the satellite altitude should not worsen
the obtained results up to the point where instrumentation errors become com-
parable. Allowing the satellites’ altitudes to raise up to this point will maximize
the mission lifespan without trading off the performance of the mission. Finally,
another interesting aspect is the possibility to reduce inter-satellite distances. In
general, shorter inter-satellite baselines increase the formation sensitivity to short-
wavelength signals. Instead of increasing the altitude of the mission to extend
the mission timespan, it may be feasible to observe mass transport signal at sig-
nificantly finer spatial scales compared to existing missions. This is more relevant
for the pendulum mission, where smaller inter-satellite distances will lead to lower
relative velocities which may facilitate an implementation of this concept from a
technical point of view. Regarding multi-formation missions, also it may also be
interesting to combine different inter-satellite distances in order to maximize the
bandwidth of the mission.

8.6. Beyond 4 satellites
One of the important findings of Section 7.5.3 was that placing satellite formations
arranged in near-polar orbital planes such that they equally divide 3D space seems
to lead to a minimum in terms of temporal aliasing errors. Given that temporal
aliasing errors limit the performance of most considered concepts, an important
question is whether this finding can be used to further improve the performance
of the resulting concepts. Up to this point all the considered concepts have been
limited to a maximum of 4 satellites which limits the number of formations and
corresponding orbital planes to 2. In this section, I will no longer restrict the maxi-
mum number of satellites to 4. Instead, I will consider a maximum of three orbital
planes and I will consider all the different ways of filling up these planes with along-
track (A), pendulum (P) and gamma (Γ) formations. I will consider the longest data
accumulation period with a 383/24 orbit.

The results are presented in Table 8.27. Two of the configurations in the table
were already addressed in previous sections. They are the gamma (Γ) (cf. Sec-
tion 8.3.1) and dual gamma (A/P) (cf. Section 8.4.2) concepts, respectively. The
A/A concept in the second row of the table corresponds to a dual along-track mis-



8.6. Beyond 4 satellites

8

239

Table 8.27: Comparison of several mission concepts consisting of up to three formations in three orbital
planes. The table shows different configurations of along-track (A), pendulum (P) and gamma (ጁ)
formations that can be used to fill up the three orbital planes. The first column shows the required
number of satellites. The next three columns of the table explain how the three orbital planes are filled
in. The last two columns show the total error in terms of unregularized and regularized solutions [mm
ewh] solved up to SH degree 120.

#s Ωኺ∘ Ωዀኺ∘ Ωኻኼኺ∘ TOT U. TOT R.
3 Γ 7 7 22.11 13.69

A A 7 61.85 14.42
4 A P 7 22.68 13.70
5 Γ A 7 23.03 13.94

Γ P 7 19.36 12.75
6 Γ Γ 7 19.52 12.64

A P A 20.34 10.98
P A P 15.64 10.39

7 Γ P A 15.10 9.88
8 Γ Γ A 15.08 9.59

Γ Γ P 13.24 8.87
9 Γ Γ Γ 12.68 8.34

sion with two along-track formations in near-polar orbits. It is slightly different from
the dual along-track mission presented in Section 8.4.1 since the second formation
of that one was on a 70° inclination orbit.

Overall, the table shows a tendency of a reduction of the total error with increas-
ing number orbital planes and satellites. There are nonetheless several exceptions
where increasing the number of orbital planes or the number of satellites does not
lead to a reduction of the total error. The best configuration is the Γ/Γ/Γ consisting
of three gamma formations in three different orbital planes. In terms of unregu-
larized solutions, it yields a total error of 12.7 mm ewh, which is 43% smaller than
that of the single-formation gamma mission (22.1 mm ewh). Perhaps, the most in-
teresting result shown in the table is the error reduction accomplished by the P/A/P
configuration. With 6 satellites arranged in three formations, this configuration
yields an improvement of 29% compared to the single formation gamma mission.
Such configuration is interesting because is relies on three independent elementary
formations and is significantly better than the alternative A/P/A configuration. I
interpret this finding as follows. Polar regions are problematic for pendulum forma-
tions. It is likely, however, that a single along-track pair is sufficient to adequately
sample these regions. Then, it is likely that the performance of missions with a
single along-track pair and multiple pendulums is significantly better compared to
configurations with more than one along-track pair.

A comparison of the total error RMS over different regions for the Γ, P/A/P and
Γ/Γ/Γ missions is shown in Table 8.28. The three considered missions clearly show
different performance levels. A map of the total error for each of the three missions
is shown over Greenland (Figure 8.43) and over the Amundsen Sea Embayment
(Figure 8.44). In both figures, one can see the incremental improvements brought
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in by the use of a more complex mission. The P/A/P mission is able to remove
some of the error features seen in the Γ mission, while Γ/Γ/Γ removes all major
error features seen in the other two concepts.

Table 8.28: Regional RMS of the total error (TOT) for the ጁ, P/A/P and ጁ/ጁ/ጁ missions on a 383/24 orbit
over different regions in terms of unregularized solutions [mm ewh].

Region Signal Γ P+A+P Γ+Γ+Γ
Global 59.68 22.85 15.63 12.67

Amazon 150.06 25.39 16.39 11.47
Nile 174.62 36.14 19.03 14.54

Orinoco 94.41 19.56 19.34 12.59
Ob 70.59 25.20 21.49 14.72

Antarctica 40.48 22.30 16.41 12.80
Greenland 166.54 32.53 25.42 18.04

Amundsen S.E. 112.31 21.18 15.67 8.18
Alps 38.38 20.92 15.58 16.28

Sumatra 185.86 19.09 18.11 13.45
Fennoscandia 42.86 33.43 24.86 20.87

Score 0/22 12/22 21/22

Gamma | TOT

−60˚
−45˚ −30˚

P+A+P | TOT

−60˚
−45˚ −30˚

G+G+G | TOT

−60˚
−45˚ −30˚

−170.00 −85.00 0.00 85.00 170.00

mm ewh

Figure 8.43: Comparison of total error (TOT) over Greenland for the ጁ, P/A/P and ጁ/ጁ/ጁ missions on a
383/24 orbit in terms of unregularized solutions [mm ewh].

Apart from showing the potential performance improvements of considering
larger missions, an interesting realization is that there is no requirement for, e.g.
the full Γ/Γ/Γ (or P/A/P) mission to be launched at once. Any presented configura-
tion may be launched and operated independently over time and even by different
organizations within an international venture. This idea also opens the door for a
long-term continuous mass monitoring system where various, e.g. Γ formations are
continuously launched to replace the ones reaching the end of their lifetimes.
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Gamma | TOT

−130˚ −120˚ −110˚ −100˚

P+A+P | TOT

−130˚ −120˚ −110˚ −100˚

G+G+G | TOT

−130˚ −120˚ −110˚ −100˚

−73.00 −36.50 0.00 36.50 73.00

mm ewh

Figure 8.44: Comparison of total error (TOT) over the Amundsen Sea Embayment for the ጁ, P/A/P and
ጁ/ጁ/ጁ missions on a 383/24 orbit in terms of unregularized solutions [mm ewh].

8.7. Conclusion
In this Chapter, a number of important findings have been documented. Initially,
only missions consisting of up to 4 satellites were considered, grouped in one or
two formations. The general mission objective was stated to be the recovery of
mass transport signals up to 𝑙max = 120 over DAPs between 8 and 24-days. The
orbits of the chief satellites were restricted to circular, near-polar, low-altitude re-
peat ground track orbits. Formation parameters were limited to three topologies:
along-track, pendulum and cartwheel, with maximum inter-satellite distances of
200 km. Dual-formation missions were designed with interleaved ground tracks at
near-perpendicular orbital planes in order to minimize temporal aliasing errors.

Then, by making a correspondence between the orientation of the inter-satellite
baselines in the elementary formations and the gravity gradient components ana-
lyzed in Sections 7.4 and 7.5, a number of missions consisting of combinations of
elementary ll-SST satellite pairs was proposed. A set of three-satellite hybrid forma-
tion missions was presented that included the gamma, delta and sigma missions.
The gamma mission is a single-formation mission consisting of an along-track and
a pendulum pair of satellites. The sigma mission is a combination of a cartwheel
and a pendulum pair. The delta mission is a three-satellite variant of the cartwheel
mission which is capable of continuously resolving three gravity gradient directions
(xx, xz and zz). In addition, a set of concepts consisting of two formations was
also presented: the dual along-track, dual sigma, dual gamma and dual cartwheel
concepts.

In Section 8.5, a comparison between all the proposed mission concepts was
presented. To that end, I selected a number of regions which are of interest in
different applications of satellite gravimetry. The setup with the lowest total error
was selected within each concept and benchmarked over the regions under consid-
eration. A simple scoring system based on the regional RMS of the total error was
used as a metric for the relative performance of each mission concept. A common
trait of most presented concepts was that their performance is limited by tempo-
ral aliasing errors. Starting with the elementary satellite missions, I showed that
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there are significant differences in the distribution and magnitude of errors. The
comparison between the elementary satellite formations showed that, in terms of
unregularized solutions, the 383/24 cartwheel mission (20/22 points) is the best,
being followed by the 351/22 pendulum mission (12/22 points) and the 351/22
along-track (1/22 points) scoring the worst.

The along-track concept yielded the largest amount of spatial instability and
temporal aliasing errors, while the cartwheel mission was the best. This shows that
the radial component of the measurements made by the cartwheel mission leads
to significant improvements w.r.t. the along-track mission. These findings were
found to be consistent with the results presented in Chapter 7. They show that the
yy gradient direction, and, preferably, the zz gradient directions are more desirable
than xx. These findings are also consistent with exiting literature on the topic (M. A.
Sharifi et al., 2007; Sneeuw et al., 2008).

Regarding the hybrid-formation missions, the 351/22 sigma mission was the
best one, both in terms of regularized (26/33 points) and unregularized (30/33
points) solutions, followed by the 383/24 gamma (22/33 and 22/33) and 351/22
delta (12/33 and 15/33) missions. The performance of all hybrid missions was
significantly better than all the elementary satellite formations. Regarding unreg-
ularized solutions, the 383/24 cartwheel mission only scored 2/33 points, while in
terms of regularized solutions the 351/22 pendulum only scored 3/33 points. Re-
garding the sigma and gamma mission, the higher performance of these concepts
is for the most part explained by synergy between the orthogonal baselines used
as observables of the formation and the consequent reduction in spatial instability
and temporal aliasing errors. The delta concept too showed large improvement
compared to the cartwheel mission. However, it failed to reach the performance
level of the other two hybrid formations.

The sigma mission, as the best performing one, was also benchmarked against
all dual formation missions, and the results were somewhat unexpected. While the
best mission overall was the 351/22 dual sigma (39/44 points), the single-formation
351/22 sigma (29/44) was shown to perform better than all other dual-formation
missions, in terms of unregularized solutions. However, the differences in terms of
global RMS of the total errors between the sigma (20.9 mm ewh) and dual sigma
(19.6 mm ewh) missions were small (7%, cf. Table 8.25). Similarly, the differ-
ences between the best gamma (22.1) and dual gamma (21.8 mm ewh) missions
were also small (1%). This leads to the conclusion that splitting the considered
orthogonal combinations in two orbital planes results in marginal improvements.
This can be explained by the fact that the orthogonal observations collect mutually
complementary information. As a consequence, it makes little difference whether
these observations are collected from a single or from two different orbital planes.

As argued in Section 8.5.4, the gamma mission seems hold the most poten-
tial, despite ranking worse than the dual sigma, sigma and dual gamma concepts.
It suffers from a performance handicap of 11%, 5% and 1% compared to the
dual sigma, sigma and dual gamma, respectively, but it avoids the complexities of
cartwheel formations. Furthermore, it requires only three satellites grouped in a
single formation, as opposed to 4 satellites grouped in 2 formations, as required by
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the dual sigma and dual gamma missions. I propose, therefore, that the gamma
mission is a very promising concept for future ll-SST missions. To highlight the
performance level of the gamma mission compared to existing ones, notice that
the current GFO mission is an along-track type mission. A comparison between the
total error of the gamma (22 mm ewh) and along-track (385 mm ewh) concepts
shows a error reduction of 95%. Even when regularized solutions are considered,
the gamma (13.6 mm ewh) yields a 45% error reduction w.r.t the along-track (25
mm ewh).

In the final Section 8.6, using the gamma mission as a starting point, I showed
the potential of extending the number of formations in different orbital planes to
three. I have shown that the Γ/Γ/Γ concept consisting of three gamma formations
reduces the total error by 43% compared to the single-formation gamma mission.
Furthermore, I have shown that the 6-satellite P/A/P1 configuration is also promis-
ing one, with rather high performance. It shows an error reduction of 29% w.r.t.
the single-formation gamma mission, and it manages to do so with only 6 satel-
lites instead of 9 satellites required for the best Γ/Γ/Γ. This concept only requires
three elementary formations without the likely complexities introduced by the Γ
formations.

The P/A/P (15.6 mm ewh) configuration is also significantly better than the
Γ/Γ (19.5 mm ewh) one, which also consists of 6-satellites (cf. Table 8.28). The
enhanced performance is likely explained by the better global observability provided
by the three orbital planes of the P/A/P configuration. Finally, the P/A/P concept
also showed significant improvements relative to an alternative A/P/A2 (20.3 mm
ewh) formation. One can conclude that pendulum formations are more valuable
than along-track ones, as long as one along-track formation is present to enhance
the constellation sensitivity to signals in the polar regions.

1pendulum/along-track/pendulum
2along-track/pendulum/along-track





9
Conclusion

The following sections gather the concluding remarks of this thesis. In Section 9.1,
a summary of the major findings in this thesis is presented and I answer the re-
search questions of this study. In Section 9.2, a number of recommendations are
presented.

9.1. Summary
In this thesis, I undertook the challenge of designing future ll-SST missions with the
potential to improve on the performance of the current ones. The approach that
I took was to find the performance limitations which current missions face and to
identify the mission parameters which can be used to overcome these limitations.
The major findings of the thesis are summarized in the next sections, each referring
to one of the research objectives outlined in Section 1.2.

9.1.1. Build a simulation tool and a realistic noise model to
assess the performance of satellite gravimetry missions

In order to study the performance of future missions through simulations, a simula-
tor was required. The existing software used to process GRACE data was available,
and my work focused on expanding it to generate and process all the required data
of any ll-SST mission. The major milestone in the development of this tool was
the validation of the noise model. This validation was based on its ability to cor-
rectly reproduce the errors of the GRACE mission. Another important motivation
existed to undertake this validation step. Our current understanding of errors in
the GRACE data time-series was not complete. Observed errors in the frequency
range between 1 and 9mHz in inter-satellite accelerations of the GRACE data were
not understood well. By comparing the simulated errors against errors in the real
data from the GRACE mission, I was not only able to ensure the validation of the
noise model, but also to close the existing knowledge gap. In turn, a better under-
standing of the errors in the GRACE data may lead to improvements to the quality
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of the gravity field solutions produced on their basis.
Undertaking this task meant that several research lines had to be pursued si-

multaneously in order to find explanation for the observed errors in GRACE data.
From this process, two different topics were identified which ultimately resulted in
two different chapters in this thesis: indirect effect errors and star-camera errors.

9.1.2. Describe and predict the propagation of indirect effect
errors

Indirect effect errors arise when force model perturbations are propagated via the
numerical integration into the reference orbits. This non-linear and non-local error
propagation mechanism had previously not been fully understood. In Section 6.3,
it was estimated that indirect effect errors account for 9% of the total error in terms
of global RMS in mm ewh, and that this number may increase to 14% for future
along-track type of missions.

In Chapter 3, the indirect effect error was formalized in the context of the RRC
approach. In the rest of that chapter, simple simulations were used to show how a
point mass perturbation maps into observations of different ll-SST concepts. It was
shown that the pendulum formation is the most resilient to indirect effect errors.
This is because, in the pendulum formation, the relative satellite motion is confined
to the inter-satellite baseline direction. Therefore, most of indirect effect errors
are monitored by the ranging sensors and can be corrected for. This is in contrast
with the along-track and cartwheel concepts. The along-track concept was shown
to be rather sensitive to these errors, while the cartwheel concept was found to
be the most sensitive one. The presented findings offer a complete picture of
what indirect effect errors are, how to compute them and why they matter. Those
findings represent a step forward in understanding indirect effect errors, while being
consistent with previous work (Encarnação, 2015).

9.1.3. Quantify the impact of star camera errors in the GRACE
data

Star cameras are space-borne instruments which compute the attitude of the space-
craft by measuring the positions of the stars and collating them with an on-board
catalog. In Chapter 5, I analyzed star-camera errors and their propagation into
inter-satellite acceleration measurements of the GRACE mission. Two distinct types
of star-camera errors were found in the data: harmonic and stochastic errors. Har-
monic errors were found to be highly correlated with the satellite’s true anomaly.
The contents of this chapter were originally published in Inácio et al. (2015). Later
on, Harvey (2016) showed that the documented harmonic errors were caused by
an error in the software used to process the star-camera data.

The analysis of the star-camera errors showed that the error levels of the star-
camera instruments are close to the nominal values. The ratio between the accuracy
of the cross- and boresight axes is within the expected value of 8, except for pri-
mary SC boresight axis where this ratio was found to be between 11.7 and 12.2μrad
for GRACE-A and 8.9 and 9.4μrad for GRACE-B. The SCs on board GRACE-A and
GRACE-B have about the same accuracy except for the primary SC boresight axes,
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where GRACE-A (158-164 μrad) is less accurate than GRACE-B (131-143 μrad). A
close-to-nominal error level of the star cameras meant that those errors did not
provide a significant contribution to the error budget in terms of gravity field solu-
tions. However, there were two issues with the potential to compound and amplify
existing star-camera errors: data gaps and periods of poor attitude control.

A data gap occurs when one of the star-camera instruments is blinded by a very
bright celestial body (i.e., the Sun or the Moon). During these periods, only one
star camera is active. As a result, the measured satellite attitudes are significantly
less accurate: the errors in measured pitch and yaw angles increase by up to a
factor of 4.

Both spacecraft are kept pointing at each other by the attitude and orbit control
system (AOCS). However, an analysis of the inter-satellite pointing angle showed
that, for a few months in the GRACE data series, the AOCS did not keep this angle
within the required values. It was found that, in the worst-case scenario, large inter-
satellite pointing angles can result in a magnification of the impact of star-camera
errors on computed inter-satellite accelerations by a factor of 5. The analysis of
star-camera errors in terms of regularized solutions of the GRACE mission revealed
that they may account for 18% of the total error. As argued, this figure may become
significantly larger in months with poor attitude control and/or with large amount
of single-star-camera activity. Unfortunately, star-camera errors alone could not
completely explain the observed errors in the GRACE data.

9.1.4. Explain the error budget of the GRACE mission
In Chapter 6, the noise budget of the GRACE mission was presented. The errors
were divided into instrumentation errors and temporal aliasing errors. The instru-
mentation noise model for GRACE was presented in Table 4.1. A comparison of the
total error with the observed errors in real GRACE data showed a good agreement
between the two. The total error in real GRACE data was explained by a combina-
tion of accelerometer errors and positioning errors up to the frequency of 0.8mHz.
From this point on, the AOD error becomes dominant up until about 5mHz, at which
point ranging errors become dominant.

An in-depth analysis of the error budget in terms of monthly gravity field so-
lutions followed. The importance of the high-pass filtering of inter-satellite accel-
erations and regularization of gravity field solutions in the mitigation of noise was
illustrated. Only by employing both procedures, it was possible to reduce noise in
the solutions with 𝑙max = 120 to a reasonable level. The dominant error in the
simulated GRACE solutions in terms of global RMS was the ranging error. Total in-
strumentation errors were found to be slightly larger than temporal aliasing errors.
Regularization bias and filtering errors were found to be large contributors to the
error budget of regularized solutions. It is important to notice that these errors are
not visible in real data processing. Furthermore, notice that the regularization bias
is for the most part determined by the high-resolution components of the input ESM
model which are not adequately observed by GRACE.



9

248 9. Conclusion

9.1.5. Quantify the performance of future GRACE-type mis-
sions

The GFO mission was recently launched and, apart from the new LRI and star-
camera assembly, it replicates for the most part the design of the previous GRACE
mission. Once the GRACE error budget was presented, it became interesting to
evaluate the potential of future GRACE-type missions (FGT) which are to replicate
GRACE. Assuming a conservative baseline for the performance of the instrumenta-
tion on future missions and the same simulation set-up as used in Sec. 9.1.4, I com-
puted the error budget of the FGT mission. Large improvements in the (assumed)
performance of the accelerometer and ranging sensors lead to a great reduction of
instrumentation errors. Temporal aliasing errors became dominant, and of those,
AOD model error was the largest component. Despite large improvements in the
instrumentation errors, the total error of the FGT mission was found to be only
12% smaller than in the case of GRACE. These results show that temporal alias-
ing errors place a limit on the performance of FGT missions. In the first instance,
this could mean that more accurate background models are required in order to
improve the performance of satellite gravimetry missions. However, it is not likely
that substantial improvements in background models will be readily attainable. The
fact that temporal aliasing errors are dominant sends a clear message that future
ll-SST missions will have to be designed in order to reduce these errors. In turn,
a new generation of satellite gravimetry missions will provide the required data to
improve the accuracy of existing background models.

Propagation of indirect effect errors into gravity field solutions is likely to de-
pend on the adopted functional model. In that case, the presented results could
be regarded as conditioned to the choice of methodology. On the other hand, a
comparison of indirect effect errors in all different functional models is beyond the
scope of this thesis. In order to address this issue, an additional comparison be-
tween the two missions was made where no indirect effect errors were considered.
This scenario implies a best-case scenario, where the impact of indirect effect errors
is reduced to zero. It was shown that the simulated GFO mission was 17% better
than GRACE in terms of global RMS. This comparison also revealed that indirect
effect errors, which account for between 9% and 14% of the total error, make a
relatively small contribution to the error budget.

9.1.6. Identify the set of mission design parameters that have
the largest impact on spatial and temporal aliasing er-
rors

Evaluating the performance of a multitude of different possible ll-SST mission con-
cepts is a computationally demanding task. Therefore, in Chapter 7, my approach
has been to reduce the complexity of the simulated missions to a minimum (ensur-
ing they are realistic nonetheless) in order to effectively study their performance
limitations. Any ll-SST satellite pair is conceptually the same as a gradiometer with
a very long-arm. Therefore, in Section 7.2, a correspondence was made between
different types of ll-SST missions and different components of a gradiometer in-
strument flying in a single satellite. This allowed for a set of simple gradiometer
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simulations to be carried out instead of more complex ll-SST simulations. To speed
up the computations, I considered short timespans and computed solutions up to
relatively small SH degrees. By systematically analyzing the performance limitations
of simple gravity gradient simulations, it became possible to infer how to design ll-
SST missions with the maximum potential performance. In this way, I could quickly
research the different errors that affect ll-SST mission data.

First, I looked at the propagation of spatial aliasing errors in different gravity
gradient components. Spatial aliasing errors were found to be dominated by signals
at the SH degrees that are immediately above the considered maximum degree
𝑙max. I have shown that there are significant differences in terms of spatial aliasing
errors between the different gravity gradient components. The zz gradient yielded
significantly lower errors than both xx and yy gravity gradients. Therefore, it is
expected that both along-track and pendulum formations suffer from larger spatial
aliasing errors than the cartwheel. Notice that the magnitude of the mass transport
signal decreases with increasing SH degree. Therefore, in order to minimize spatial
aliasing errors, a high 𝑙max is desirable. A caveat is that a too high 𝑙max will result
in a high level of spatial instability errors, which were afterwards analyzed.

Besides spatial aliasing errors, I have found that spatial instability errors also
limit the spatial resolution of the mission. Spatial instability errors are most pro-
nounced when a too high 𝑙max is chosen. When this happens, the set of linear
equations to be solved becomes ill-posed, and the existing noise in the data is
greatly magnified in the obtained solutions. In the considered simulations, I intro-

duced white noise in the gradiometer instrument with a PSD
ኻ
ኼ of 1 × 10ዅ5 E/√Hz

in order to trigger spatial instability errors in the solutions. It was shown that the
three considered gradiometer components (xx, yy and zz) yielded different error
levels. The zz component was found to be the one showing the lowest errors. Ad-
ditionally, it is was found that combining multiple components in a single formation
may double or almost triple the spatial resolution of the mission. This finding is very
important; it implies that the Colombo-Nyquist rule is not valid when combinations
of observations from the same formation are considered. Thus, a combination of
multiple observations in a single formation is an effective way to extend the spatial
resolution of a mission.

Finally, regarding single-formation missions, it was shown that there are no sig-
nificant differences in terms of spatial resolution for even and odd repeat period or-
bits. Repeat orbits with even parity are characterized by an overlap of the ascending
and descending groundtrack over the equator, whereas for odd orbits the ascend-
ing and descending tracks are interleaved over the equator. As a consequence,
even-parity repeat period orbits have larger distance between the groundtracks at
the Equator compared to odd-parity orbits. Because of this, it has been argued in
the literature that even repeat period orbits are less desirable as they result in a
lower spatial resolution compared to odd-parity ones. However, I have found no
supporting evidence for this claim. I have shown that the spatial resolution of even-
and odd-parity repeat orbits is actually similar. Consequently, when analyzing the
performance of satellite missions over different data accumulation periods (DAP),
I could always select the lowest altitude repeat orbit available irregardless of its
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parity. This was important regarding the odd DAPs (9, 11, 13 ... days), for which
the lowest altitude orbit available is of even parity. These DAPs would otherwise
suffer from a performance penalty from the need to select a comparatively higher
altitude odd-parity orbit.

Looking into missions consisting of two formations, I showed that interleaving
the groundtracks of multi-formation missions which consider different observables
does not significantly improve the spatial resolution of the missions. Additionally,
no significant differences were found either for different possible ways to interleave
groundtracks of multi-formations missions which consider different observables.

A similar setup was used to investigate the level of temporal aliasing errors.
For single-formation missions, it was shown that different gradiometer observation
components yielded different levels of temporal aliasing errors. Observation of the
zz component resulted in the lowest temporal aliasing errors; it was followed by
yy, while the xx component was found to be the worst. It was also demonstrated
that the xx+yy combination provided the same level of errors as the zz component
alone. Furthermore, it was shown that combinations of zz with other components
does not lead to a further error reduction.

Dependence of temporal aliasing errors on the DAP, which was set equal to the
orbit repeat period, was also analyzed. As argued in Section 7.5.2, for a given
DAP, temporal aliasing errors depend not only on the amount of data considered in
that DAP. Temporal aliasing errors will also depend on how the measurements are
distributed over the globe within the DAP, on the rate at which the non-stationary
temporal aliasing errors may average out and on the combination and orientation
of observables considered. Due to all the factors that play a role, I considered the
possibility that a given DAP could exist that would yield minimum temporal aliasing
errors. In general, it was found that longer DAPs are beneficial; no evidence was
found for the existence of a short DAP which would yield a relatively low amount
of temporal aliasing errors.

The temporal resolution of a mission is intrinsically linked to the concept of revisit
time. The revisit time is defined as the time interval between two passes over the
same geographic region. When two satellite formations are considered, the second
formation’s orbit may be time-shifted in order to half the revisit time. In turn, this
should double the temporal resolution of the mission. A time-shift is applied by
setting the second formation to pass over the same geographic region as the first
one at half of the repeat orbit period. Applying a time-shift to the orbit of the
second formation results in two nearly co-linear orbital planes. I have shown that
two formations observing the zz/xz combination in nearly co-planar orbital planes
did not lead to any error reduction compared to a single formation observing the
same zz+xz combination. I concluded that co-planar orbital planes are not effective
at improving the temporal resolution of a mission.

Unlike other direct measurement techniques (like radar altimetry or satellite im-
agery), gravimetry measurements are not local in nature. They carry information
about the Earth’s gravity field as a whole. Therefore I hypothesize that the concept
of exact revisit time, where the satellite formations are required to fly over ex-
actly the same location is of little use. Instead, I proposed a more flexible concept
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of wide revisit time where it is sufficient that the satellite formations fly over the
vicinity of the same location. On the basis of this concept, one can half the wide
revisit time by considering nearly perpendicular orbital planes. I have shown that
two satellite formations in nearly perpendicular orbital planes observing the same
zz/xz combination yielded lower temporal aliasing errors compared to the single
formation zz+xz combination and the zz/xz combination in two nearly co-planar
orbital planes. Similarly, the zz/zz combination in two near-perpendicular planes
was significantly better than the same combination in two nearly co-planar orbital
planes. Both results seem to confirm that the concept of wide revisit time is useful
and that two perpendicular planes are likely to maximize the temporal resolution of
missions consisting of two formations. In order to further confirm this hypothesis, I
proceeded to search the space of relative orientation of near-polar orbital planes to
find the lowest level of temporal aliasing errors. I considered missions consisting of
two and three formations, all of them exploiting the most desirable zz-gravity gra-
dient. I showed that, in order to minimize temporal aliasing errors, the polar orbital
planes of the considered formations must be arranged such that they equipartition
3D-space. Specifically, for two formations the orbital planes should be perpendic-
ular and for three formations the relative RAAN of the orbital planes should be set
≈60° apart.

Still considering two-formation missions, I showed that a zz/xz combination
of orthogonal observables split over two formations in near perpendicular orbital
planes does not lead to any significant reduction of temporal aliasing errors, com-
pared to the same combination collected from a single formation. This can be
explained by the fact that the orthogonal observations in a single formation are
able to collect mutually complementary information. Therefore, there is no added
value in distributing the observables over two different formations. A significant
reduction of temporal aliasing errors was achieved when the zz/zz combination was
considered by two formations in nearly perpendicular planes. Given that the zz-
gravity gradient was found to yield the lowest temporal aliasing errors of the single
gradient components, one can conclude that it is more desirable to combine mul-
tiple zz/../zz observables in multiple formations than to consider an equal number
of orthogonal components in a single formation.

The Heisenberg-like rule of satellite gravimetry (Reubelt et al., 2010) makes (at
least) two testable predictions for missions consisting of two formations: i) that
interleaving groundtracks of two formations should double the spatial resolution,
and ii) that a time-shift of the second formation should double the temporal res-
olution. I showed that splitting the combination yy/xz over two formations with
interleaved groundtracks yields the same spatial resolution as the single formation
yy+xz combination. Furthermore, in Section 7.5.3, I have shown that splitting the
zz+xz combination from a single formation into a two-formation mission, where a
time-shift is applied to the second formation, does not yield any significant reduc-
tion of temporal aliasing errors. On the basis of the arguments presented above, I
conclude that the Heisenberg-rule is inadequate to predict the spatial and temporal
resolutions of multi-formation missions.
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9.1.7. Compare the performance of a comprehensive set of mis-
sion concepts to identify the best candidate for next-
generation satellite gravimetry missions

In Chapter 8, I proposed a set of missions with the potential to deliver the highest
performance. I then benchmarked this set of missions in order to identify the most
promising concept for the next generation of ll-SST gravimetry missions.

At first, the proposed mission concepts were restricted to a maximum of 4 satel-
lites which were grouped into 1 or 2 formations in different orbital planes. The
satellite formations were placed in near-polar circular orbits, with a repeat period
between 8 and 24 days, and the lowest altitude above 260 km. The satellites in
the formations were placed with maximum inter-satellite distances of 200 km. The
assumed objective of the missions was to recover the mean mass transport signal
up to 𝑙max = 120 within the given DAP matching the repeat period of the orbit.

I started with the elementary satellite formations. The analysis of their error
budgets revealed significant differences between them. As expected, it was shown
that the along-track concepts are plagued by spatial instability errors and simultane-
ously suffer from relatively large temporal aliasing errors. In terms of unregularized
solutions, the cartwheel mission was found to be the best; it had 48 mm ewh as
opposed to 116 and 356 mm ewh in terms of global RMS of total error for the
pendulum and along-track, respectively The better performance of the cartwheel
configuration was attributed to the inclusion of measurements with a radial compo-
nent. In terms of regularized solutions, the pendulum (19.4 mm ewh) mission was
the best in comparison with the cartwheel (19.9 mm ewh) and along-track (22.6 mm
ewh) configurations. The good performance of the pendulum is explained by the
regularization procedure, which was very effective at reducing the large magnitude
of ranging errors affecting this configuration.

Next, various combined ll-SST concepts were introduced based on the findings
of the previous Chapter. I considered combining multiple observables in order to
significantly enhance the spatial and temporal resolution of the proposed missions.
Considering a single formation, I focused on the possible combinations of two or-
thogonal observables. Firstly, a set of three-satellite hybrid formations was consid-
ered: the gamma, sigma and delta missions. All these hybrid missions consist of
single three-satellite formations. In gamma and sigma missions, two elementary
satellite formations are combined with the chief satellite taking part in both. The
gamma mission consists of a pendulum and along-track combination, while sigma
combines a pendulum and cartwheel. The delta mission is a three-satellite exten-
sion of a cartwheel formation with three inter-satellite links considered between
the satellites. Considering two formations, I similarly considered combinations of
two observables split in two formations in nearly perpendicular planes. The set of
two-formation concepts proposed was: the dual along-track, the dual gamma, dual
cartwheel and the dual sigma. The dual along-track consists of two along-track
pairs where one of the pairs may have lower inclination. The most popular variant
of this concept is the Bender mission. The dual gamma and dual sigma missions
split the corresponding single formation mission in two different formations. Finally
the dual cartwheel mission considers two cartwheel formations where the inter-
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satellite baselines of both formations are defined to be perpendicular over all the
latitudes. For each considered mission concept, the corresponding error budget for
each considered DAP was presented.

It was found that, in general, temporal aliasing errors are the dominant error
source for most of these missions. Overall, the hybrid and dual formation missions
were able to reduce these errors by about 50% compared to the elementary satellite
formations. Furthermore, they yielded a total error reduction of about 70 to 80%
in terms of unregularized solutions at relatively short DAPs of 12 days or less. I
interpret this as a reduction of spatial instability error, which can be attributed to the
improved spatial resolution of the more complex missions. These results show that
the combination of two observables in these missions successfully lead to better
temporal and spatial resolution w.r.t. the single-formation ones. Better results
accomplished by the more complex concepts are a consequence of two factors:
the synergy between the combination of orthogonal observations and the inclusion
of observations aligned with the most desirable zz gradient (where applicable).

In Section 8.5, the best DAP for each concept was selected and general compar-
ison between all the considered mission concepts was presented. The comparison
was made over a selected set of regions where hydrological, glaciological and solid
earth phenomena are expected. The top four concepts were ranked in descending
order as follows: dual sigma, sigma, dual gamma and gamma. In terms of global
RMS of total errors in unregularized solutions they yielded 19.6, 20.9, 21.8 and 22.1
mm ewh, respectively, at similar DAPs of 22 and 24 days. The differences between
these four mission concepts are small and become even smaller when regularized
solutions are considered. Then, the performance of the two-formation missions is
only marginally better (between 1% and 6%) than that of single-formation ones.
This confirms the earlier findings that interleaving groundtracks of multiple forma-
tions which consider different observables does not lead to significant improvements
in the performance of the mission. Similarly, it also shows that splitting orthogo-
nal observables collected from a single formation over two formations in near-polar
perpendicular planes is not effective at reducing temporal aliasing errors.

Regarding the single-formation missions, the performance gap between the
sigma and gamma missions is only about 5%. The sigma mission relies on a
cartwheel pair of satellites, which are the most challenging to implement. Fur-
thermore, in line with the findings in Chapter 3, the cartwheel formation is very
sensitive to indirect effect errors, which were not taken into account in the com-
parison. At the same time, the gamma mission does not rely on cartwheel pairs of
satellites and consists of a single three-satellite formation, as opposed to the more
complex two-formation missions. It combines orthogonal observations oriented in
the xx and yy gradient directions, which greatly increases the isotropy of the mission
sensitivity and consequently extends its spatial resolution compared to the stand-
alone along-track and pendulum concepts. Additionally, the xx+yy combination
also ensures that the level of temporal aliasing errors is significantly reduced. For
all these reasons, I argued that the gamma mission, with a very small performance
penalty w.r.t. the sigma mission, is the right choice for the next generation of ll-
SST gravimetry missions. To set the performance level of the gamma mission in
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perspective, noticing that the current GFO mission is a along-track type mission, a
comparison between the total error of the gamma and along-track concepts shows
a error reduction of up to 95%.

Several of the analyzed mission concepts rely on cartwheel formations. How-
ever, there is an important caveat regarding the presented results. As previously
argued, no indirect effect errors were taken into account in the presented results
for these formations. As was shown in Chapter 3 (as well as in Encarnação (2015)),
cartwheel formations are extremely sensitive to indirect effect errors. At the same
time, pendulum formations are rather insensitive to them. This means that, for
those gravity field estimation approaches that are (particularly) sensitive to indirect
effect errors, the gamma concept is very likely to outperform the sigma mission.
More broadly, all the considered concepts which include cartwheel formations, i.e.,
the sigma, dual sigma, delta and dual cartwheel missions, are likely to limit the
applicability of many gravity field estimation approaches.

Recalling one of the findings in Section 7.5, placing three formations (all observ-
ing the zz gradient) in three polar orbital planes such that they trisect 3D space
leads to minimum temporal aliasing errors. Temporal aliasing errors were system-
atically found to be the limit in the performance of the analyzed missions. Since
the gamma mission is a combination of a pendulum and along-track satellite pairs,
I looked into different possible ways of distributing these formations in up to three
orbital planes. The results clearly showed the benefits of increasing the number of
optimally aligned orbital planes. The Γ/Γ/Γ, a constellation of three gamma missions
was able to reduce the total error (i.e., the level of temporal aliasing errors) by 43%
compared to the stand-alone gamma mission. The different combinations consid-
ered also revealed another interesting configuration. The P/A/P configuration with
two pendulum and one along-track formations is less complex and consists of three
less satellites than the Γ/Γ/Γmission. Nonetheless, the P/A/P combination yielded a
reduction of 29% in terms of temporal aliasing errors w.r.t. the stand-alone gamma
mission.

9.2. Recommendations
As was shown for most proposed future ll-SST mission concepts, their performance
is limited by temporal aliasing errors. I have analyzed several mission design op-
tions which I found to be effective in reducing the level of these errors. Nonethe-
less, the most obvious way to reduce these errors is to improve the corresponding
background models. However, significant improvements in the accuracy of back-
ground models are likely not readily available. In order to make that possible, a
larger quantity and quality of data is required. If a background model is expected
to be accurate in terms of mass anomalies, mass anomaly data, as measured by
satellite gravimetry missions, is the best input for that purpose. Therefore, satellite
gravimetry will likely prove to be indispensable in achieving those improvements.
Satellite gravimetry data should be used to observe and better understand the phys-
ical processes which will allow for a new generation of refined background models.
In turn, a new generation of background models will allow for large advances in
the accuracy of satellite gravimetry. Ideally, in the limit, gravimetric observations
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would be accumulated so quickly (daily?) that a temporal de-aliasing model would
no longer be required.

In the proposed mission concepts, I have consistently chosen an inclination of
89.5° for all near-polar orbits. From a limited analysis not preset in this thesis, I
have found some indication that slightly lower inclination values for near-polar orbits
may lead to a small performance increase. Therefore, I propose the performance
of the proposed concepts may be tweaked by searching for an optimal inclination
value. Similarly, regarding the dual along-track mission, I have assumed that setting
the near-polar orbital planes of the formations close to perpendicular is the most
desirable configuration in order to minimize temporal aliasing errors. While that has
been shown for near-polar orbits, it is not necessarily true when a lower-inclined
satellite pair is considered.

In Section 8.6, I have shown that three satellite formations in different polar
orbital planes, positioned such that they equipartition 3-D space, are successful at
mitigating temporal aliasing errors compared to the case with a lower number of
orbital planes. Then one may wonder if there are limits of this approach? How low
can temporal aliasing errors become with additional orbital planes? Unfortunately,
in this thesis I could not go beyond considering three orbital planes. The considered
input AOD and TMP error sources are modeled as 6-hour piecewise constant sets
of SH coefficients. Considering more than three orbital planes in this configuration
would mean that the satellite revisit time would be below the temporal resolution
of the models. Therefore, to assess the performance of missions which consider
more than three orbital planes requires background models defined with shorter
sampling intervals in order to provide realistic results.

One of the difficulties to implement a pendulum pair of satellites are the large
inter-satellite velocities that this formation experiences. Elsaka (2010) argues that
the magnitude of these velocities excludes the possibility of existing laser ranging
technology to measure the inter-satellite ranges. A possible way out is as follows.
Instead of a simple pendulum, one may consider a double pendulum arrangement,
where a central chief satellite takes part in two pendulum formations on either
side. In this configuration, the left pair has inter-satellite velocity in the opposite
direction and close in magnitude to the other pair. While the inter-satellite velocities
of a single pendulum pair is high, the differential velocity between the two pairs is
not. This may allow for some differential velocity measurements to be made within
the limitations of existing laser ranging technology. Of course, this idea requires
further elaboration.

The standard parameterization that is typically used in satellite gravimetry con-
siders a single set of SH coefficients up to 𝑙max which are estimated on the basis of
the data collected over the whole DAP. I propose that alternative parameterizations
should be considered as a way to effectively enhance the temporal resolution and
likely to improve the accuracy of the recovered fields. A couple of examples can
be used to illustrate this idea. An along-track pair of satellites continuously sam-
ples the near-zonal coefficients up to a high degree, while a relatively long DAP is
required in order to adequately sample the near-sectorial coefficients of the simi-
lar degree. In fact, it is well known that SH models can be solved for along-track
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missions to fairly large 𝑙max > 120 as long as the maximum order is truncated to
a sufficiently low value. Alternative parameterizations may consider solving some
subset of SH coefficient over DAPs shorter than the complete set of coefficients.
Such an approach has been previously shown to benefit the accuracy of the result-
ing gravity field models (Daras et al., 2017; Wiese, 2011). I propose that it can be
applied to other mission concepts as well, though this will require careful analysis.
It may be desirable to tune the selection of SH coefficients in the subset to the
particularities of a specific gravimetry mission. Such types of parameterizations are
likely to come with a new set of challenges. For example, it is not clear whether
signal will leak from some SH coefficients into the subset which is estimated more
frequently. Alternative parameterizations might even avoid SH coefficients entirely.
In the literature one readily finds gravity field solutions parametrized in terms of
mascons (Loomis et al., 2011). For specific applications, regional gravity field so-
lutions may yield better performance than the standard parametrization. Kalman
filters have been used to estimate daily gravity fields from GRACE data (Kurten-
bach et al., 2009); application of this technique to more sensitive missions may
yield even more accurate daily solutions. Lastly, one may consider applying neural
networks to the processing of satellite gravimetry data. These networks are at the
basis of the latest developments in the field of the artificial intelligence. They are
currently been applied to numerous scientific domains, sometimes with great suc-
cess. Therefore, my recommendation is to tailor the mathematical approaches and
algorithms to ensure the best performance of the future missions before they are
launched.

In this thesis, I have considered constellations consisting of up to 9 satellites.
There are ways to realistically extend the number of satellites beyond 9, though
these concepts are left for future studies. One idea is to offset the high costs of
a mission consisting of a large number of satellites by considering micro- or nano-
satellite platforms. These have considerably lower launch costs since they can be
launched in large quantities from a single booster. However, taking advantage
of this approach would require a paradigm shift in satellite development. Up un-
til now, satellite gravimetry instruments have been specifically built for a single
mission using cutting-edge technology. In order to target the small-satellite sec-
tor, the emphasis has to shift from developing state-of-the-art instrumentation into
miniaturization and replication of proven technologies. Another important aspect to
consider is that launching multiple satellites on a single booster is confines them all
to a narrow orbital region which may not be ideal in terms of temporal resolutions.
Certainly, the deployed satellites may be maneuvered into desired orbits, however
there are certainly various considerations which limit what is achievable.

On a similar note, it is also noteworthy to point out that the business of LEO
satellite launches has been experiencing a shift in the past few years. Multiple new
companies all over the world started operating in recent years whose entire busi-
ness model revolves around, substantially lowering the launch costs. In the past,
the extremely high costs associated with the launch of a scientific payload into LEO
meant that there would be a single opportunity for success. In turn, this meant
that a tremendous amount of resources was placed on the development, testing
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and preparation of a single spacecraft. Considering the shift towards lower costs
observed in recent years, it is important to consider the new opportunities offered
by the lower-cost access to LEO. Resources may be shifted towards building a larger
number of cheaper spacecraft, which may be advantageous for the field of gravime-
try. Specifically, this may allow for multiple satellite formations to be launched,
which was shown to significantly reduce the level of temporal aliasing errors. The
concept of wide revisit time, which leads to less strict orbital requirements, may
allow for multiple micro-satellite formations to piggyback on the boosters of other
missions. The performance of a sub-optimal orbital configuration of a large number
of micro-satellite formations may prove better than an optimal configuration of a
small number of large-satellite formations lifted in dedicated boosters.

An alternative approach is to design satellite gravimetry missions that rely on
non-dedicated satellites or constellations. Some work has been published in this
direction (Ditmar et al., 2009; B. C. Gunter et al., 2011). One noteworthy mon-
umental constellation is the upcoming SpaceX’s Starlink (Foust, 2019), which is
planned to have nearly 12000 LEO satellites. The sheer number of satellites only in
this constellation provides an exciting opportunity for satellite gravimetry. Assum-
ing that the satellites in this massive constellation will have some communication
link with the neighboring satellites and assuming that the elapsed time between the
neighboring satellites can be known with sufficient accuracy, it becomes possible
to compute the inter-satellite ranges between neighboring satellites. If that is the
case, then, in practice, a 12000 satellite ll-SST mesh constellation will be effectively
deployed potentially providing nearly continuous monitoring of the whole Earth’s
gravity field. Given the specific details of this (and other) upcoming constellations,
it remains to be shown what is their real potential for gravity field recovery.





A
Rotations

Relative orientations between two arbitrary reference frames can be defined as a
set of three consecutive rotations. Consider the roll angle 𝛼, the pitch angle 𝛽 and
the yaw angle 𝛾, denoting rotations around the x-, y- and z-axes, respectively. This
set of angles is also known as Cardan angles. I follow the zyx convention, stating
the order and the axis along which each of the intrinsic rotations is applied and I
define rotations to be active transformations. Let Rፚ, be the matrix which rotates
vectors from frame a into frame b, written as (Jekeli, 2001),

Rፚ = R፳(𝛾)R፲(𝛽)R፱(𝛼)

= [
cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

] [
cos𝛽 0 sin𝛽
0 1 0

− sin𝛽 0 cos𝛽
] [
1 0 0
0 cos𝛼 − sin𝛼
0 sin𝛼 cos𝛼

]

= [
cos 𝛾 cos𝛽 cos 𝛾 sin𝛽 sin𝛼 − sin 𝛾 cos𝛼 cos 𝛾 sin𝛽 cos𝛼 + sin 𝛾 sin𝛼
sin 𝛾 cos𝛽 sin 𝛾 sin𝛽 sin𝛼 + cos 𝛾 cos𝛼 sin 𝛾 sin𝛽 cos𝛼 − cos 𝛾 sin𝛼

− sin𝛽 cos𝛽 sin𝛼 cos𝛽 cos𝛼
] .

(A.1)
This type of matrix is known as direction cosine matrix (DCM). The DCM can

also be represented as a vectorial function R(𝜓𝜓𝜓), where 𝜓𝜓𝜓 ≡ [𝛼 𝛽 𝛾]ፓ is an axial
vector consisting of the ordered triple of Cardan angles representing the rotation
between two arbitrary frames. Axial vectors are not true vectors because they
do not fulfil all the properties of vectors. It can be shown however (Jekeli, 2001,
chap. 1) that for small rotation angles, axial vectors do behave like true vectors
and under this assumption it becomes possible to add, subtract and rotate small
rotation angles between different reference frames. Assuming that 𝜓 represents a
small angle rotation, Eq. (A.1), 𝑅(𝜓𝜓𝜓) can be approximated to,

RᎥᎥᎥ = [
1 −𝛾 𝛽
𝛾 1 −𝛼
−𝛽 𝛼 1

] = I−ΨΨΨ, (A.2)
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where,

ΨΨΨ = [
0 𝛾 −𝛽
−𝛾 0 𝛼
𝛽 −𝛼 0

]

The DCM, cf., Eq. (A.1) and (A.2), are orthogonal matrices, with the property
that,

Rፚ (Rፚ)
ፓ = I ⇒ Rፚ = (Rፚ)

ዅኻ = (Rፚ)
ፓ . (A.3)

Multiplication of a given vector vፚ defined in frame a with matrix Rፚ transforms
it to frame b,

v = Rፚvፚ , (A.4)

and for a given tensor Aፚ defined in frame a, the following operation also transforms
it to frame b,

A = RፚAፚRፚ . (A.5)

Consecutive rotations are achieved by successive multiplication of rotations ma-
trices, as seen in Eq. (A.1),

Rፚ = RR

ፚ . (A.6)



B
Optimal SC combination

In this Appendix, I formulate the combination of multiple SC measurements, on
board a single satellite. The result of this method is the set of Cardan angles
which minimizes the square differences w.r.t. all SC measurements. Furthermore,
this combination also takes into account the inherent anisotropy of the SC instru-
ments. This combination is originally presented in Romans (2003) in terms of atti-
tude quaternions.

In the presence of multiple SCs, one wishes to combine all measurements in an
optimal manner. Let 𝜀𝜀𝜀Ꭵ,opt be the set of small angle rotations which minimizes the
differences w.r.t. the errors in all SCs. It is obtained by minimizing the quadratic
error function 𝐽,

𝐽 =∑
።
(𝜀𝜀𝜀ፒ።Ꭵ,opt −𝜀𝜀𝜀

ፒ።
Ꭵ,።)ፓΛΛΛ።(𝜀𝜀𝜀

ፒ።
Ꭵ,opt −𝜀𝜀𝜀

ፒ።
Ꭵ,።), (B.1)

where 𝜀𝜀𝜀Ꭵ,። ≡ [𝜀ᎎ,። 𝜀ᎏ,። 𝜀᎐,።]
ፓ
is the vector representing the errors in the roll (𝜀ᎎ,።),

pitch (𝜀ᎏ,።) and yaw (𝜀᎐,።) angles in the rotation measured by the 𝑖-th star camera
and ΛΛΛ። is the inverse of the covariance matrix or information matrix,

ΛΛΛ። = Cዅኻ። (B.2)

Equation (5.5) shows that, for small measurement errors, the differential rota-
tion between any pair of SCs is linearly dependent on the error of each SC. This
allows us to write an expression for the errors in each SC w.r.t. a single one,

𝜀𝜀𝜀ፂᎥ,፣ = 𝜀𝜀𝜀ፂᎥ,ኻ − Δ𝜀𝜀𝜀ፂᎥ,ኻ፣ . (B.3)

Let ΛΛΛፂ። ≡ Rፂፒ። ΛΛΛ። R
ፒ።
ፂ be the information matrix rotated to the C frame. The cost

function can be written in the C frame as,

𝐽 =∑
።
(𝜀𝜀𝜀ፂᎥ,opt −𝜀𝜀𝜀ፂᎥ,።)

ፓ
ΛΛΛፂ። (𝜀𝜀𝜀ፂᎥ,opt −𝜀𝜀𝜀ፂᎥ,።) . (B.4)
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With N SC measurements, minimization of J would require the knowledge of the
errors 𝜀𝜀𝜀Ꭵ,። in each SC measurement. This knowledge is not available, so we must
tackle the problem differently using the differences between pairs of SC measure-
ments. Let us choose the first star camera, 𝑖 = 1, and making use of Eq. (B.3), one
can relate all SC errors to this one, so that the objective function becomes,

𝐽 =∑
።
(𝜀𝜀𝜀ፂᎥ,opt −𝜀𝜀𝜀ፂᎥ,ኻ + Δ𝜀𝜀𝜀ፂᎥ,ኻ።)

ፓ
ΛΛΛፂ። (𝜀𝜀𝜀ፂᎥ,opt −𝜀𝜀𝜀ፂᎥ,ኻ + Δ𝜀𝜀𝜀ፂᎥ,ኻ።) , (B.5)

where,

Δ𝜀𝜀𝜀ፂᎥ,ኻኻ = 0

Let 𝜀𝜀𝜀opt ≡ 𝜀𝜀𝜀ፂᎥ,opt − 𝜀𝜀𝜀ፂᎥ,ኻ, be defined as the optimal correction to the first SC mea-
surement. One can rewrite,

𝐽 =∑
።
(𝜀𝜀𝜀opt + Δ𝜀𝜀𝜀ፂᎥ,ኻ።)

ፓ
ΛΛΛፂ። (𝜀𝜀𝜀opt + Δ𝜀𝜀𝜀ፂᎥ,ኻ።) ,

= 𝜀𝜀𝜀optΛΛΛፂኻ 𝜀𝜀𝜀opt +∑
።ጽኻ
(𝜀𝜀𝜀opt + Δ𝜀𝜀𝜀ፂᎥ,ኻ።)

ፓ
ΛΛΛፂ። (𝜀𝜀𝜀opt + Δ𝜀𝜀𝜀ፂᎥ,ኻ።) . (B.6)

Minimization of the cost function 𝐽 w.r.t. 𝜀𝜀𝜀opt yields,

𝜀𝜀𝜀opt = −(ΛΛΛፂtotal)
ዅኻ ∑

።ጽኻ
ΛΛΛፂ። Δ𝜀𝜀𝜀ፂᎥ,ኻ። , (B.7)

where ΛΛΛፂtotal = ∑። ΛΛΛፂ። . It can be shown that the solution does not depend on the
choice of the camera w.r.t. which all errors are defined in Eq. (B.5).

The optimal combination of multiple SC measurements is then obtained by ap-
plying the optimal correction 𝜀𝜀𝜀opt to the measurement of the first one,

Rፂፈ,opt = R(𝜀𝜀𝜀opt) R̃ፂፈ,ኻ. (B.8)
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Nomenclature

3RC 3-point Range Combination

AOD Atmosphere and Ocean De-Aliasing Model Errors

AOD1B Atmosphere and Ocean De-aliasing Level-1B product

APC Antenna Phase Centre

CDV Cumulative Degree Variance

CHAMP CHAllenging Minisatellite Payload

DAP Data Accumulation Period

DMT Delft Mass Transport model

DV Degree Variance

ESM Earth System Model for Gravity Mission Simulation Studies

ewh Equivalent water height

FFT Fast Fourier Transform

FGT Future GRACE-type mission

GFO GRACE Follow-On

GOCE Gravity Field and Steady-State Ocean Explorer

GRACE Gravity Recovery And Climate Experiment

IFFT Inverse Fast Fourier Transform

IRF Inertial Reference Frame

ISA Average inter-satellite accelerations

KBR K-band ranging

KO Kinematic orbit

L1A Level-1 A

L1B Level-1 B

ll-SST Low-low satellite-to-satellite tracking
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LoS Line-of-sight

LRI Laser Ranging Instrument

NOI Synthetic ranging noise

OTE Ocean Tide Model Errors

PDO Purely Dynamic Orbit

PSD Power Spectral Density

RDO Reduced dynamic orbit

RGO Repeat ground track orbit

RRC Residual Range Combinations

SC Star-Camera

SGG Satellite gravity gradiometry

SH Spherical harmonic

SNR Signal-to-noise ratio

SRF Science Reference Frame
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