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Abstract. Turbulence is characterised by chaotic dynamics and a high-
dimensional state space, which make this phenomenon challenging to
predict. However, turbulent flows are often characterised by coherent
spatiotemporal structures, such as vortices or large-scale modes, which
can help obtain a latent description of turbulent flows. However, cur-
rent approaches are often limited by either the need to use some form
of thresholding on quantities defining the isosurfaces to which the flow
structures are associated or the linearity of traditional modal flow decom-
position approaches, such as those based on proper orthogonal decompo-
sition. This problem is exacerbated in flows that exhibit extreme events,
which are rare and sudden changes in a turbulent state. The goal of this
paper is to obtain an efficient and accurate reduced-order latent represen-
tation of a turbulent flow that exhibits extreme events. Specifically, we
employ a three-dimensional multiscale convolutional autoencoder (CAE)
to obtain such latent representation. We apply it to a three-dimensional
turbulent flow. We show that the Multiscale CAE is efficient, requiring
less than 10% degrees of freedom than proper orthogonal decomposition
for compressing the data and is able to accurately reconstruct flow states
related to extreme events. The proposed deep learning architecture opens
opportunities for nonlinear reduced-order modeling of turbulent flows
from data.

Keywords: Chaotic System · Reduced Order Modelling ·
Convolutional Autoencoder

1 Introduction

Turbulence is a chaotic phenomenon that arises from the nonlinear interactions
between spatiotemporal structures over a wide range of scales. Turbulent flows
are typically high-dimensional systems, which may exhibit sudden and unpre-
dictable bursts of energy/dissipation [2]. The combination of these dynamical
properties makes the study of turbulent flows particularly challenging. Despite
these complexities, advances have been made in the analysis of turbulent flows
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through the identification of coherent (spatial) structures, such as vortices [15],
and modal decomposition techniques [13]. These achievements showed that there
exist energetic patterns within turbulence, which allow for the development of
reduced-order models.

To efficiently identify these patterns, recent works have used machine learn-
ing [3]. Specifically, Convolutional Neural Networks (CNNs) have been used to
identify spatial features in flows [10] and perform nonlinear modal decomposi-
tion [7,11]. These works showed the advantages of using CNNs over traditional
methods based on Principal Component Analysis (PCA) (also called Proper
Orthogonal Decomposition in the fluid mechanics community), providing lower
reconstruction errors in two-dimensional flows. More recently, the use of such
CNN-based architecture has also been extended to a small 3D turbulent chan-
nel flow at a moderate Reynolds number [12]. The works highlight the poten-
tial of deep learning for the analysis and reduced-order modelling of turbulent
flows, but they were restricted to two-dimensional flows or weakly turbulent
with non-extreme dynamics. Therefore, the applicability of deep-learning-based
techniques to obtain an accurate reduced-order representation of 3D flows with
extreme events remains unknown. Specifically, the presence of extreme events
is particularly challenging because they appear rarely in the datasets. In this
paper, we propose a 3D Multiscale Convolutional Autoencoder (CAE) to obtain
such a reduced representation of the 3D Minimal Flow Unit (MFU), which is a
flow that exhibit such extreme events in the form of a sudden and rare intermit-
tent quasi-laminar flow state. We explore whether the Multiscale CAE is able
to represent the flow in a latent space with a reduced number of degrees of free-
dom with higher accuracy than the traditional PCA, and whether it can also
accurately reconstruct the flow state during the extreme events.

Section 2 describes the MFU and its extreme events. Section 3 presents in
detail the Multiscale CAE framework used to obtain a reduced-order represen-
tation of the MFU. The accuracy of the Multiscale CAE in reconstructing the
MFU state is discussed in Sect. 4. A summary of the main results and directions
for future work are provided in Sect. 5.

2 Minimal Flow Unit

The flow under consideration is the 3D MFU [9]. The MFU is an example of
prototypical near-wall turbulence, which consists of a turbulent channel flow
whose dimensions are smaller than conventional channel flow simulations. The
system is governed by the incompressible Navier-Stokes equations

∇ · u = 0,

∂tu + u · ∇u =
1
ρ
f0 − 1

ρ
∇p + νΔu,

(1)

where u = (u, v, w) is the 3D velocity field and f0 = (f0, 0, 0) is the constant
forcing in the streamwise direction, x; ρ, p, and ν are the density, pressure, and
kinematic viscosity, respectively. In the wall-normal direction, y, we impose a
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no-slip boundary condition, u(x,±δ, z, t) = 0, where δ is half the channel width.
In the streamwise, x, and spanwise, z, directions we have periodic boundary
conditions. For this study, a channel with dimension Ω ≡ πδ × 2δ × 0.34πδ is
considered, as in [2] with δ = 1.0. The Reynolds number of the flow, which is
based on the bulk velocity and the half-channel width, is set to Re = 3000, which
corresponds to a friction Reynolds number Reτ ≈ 140. An in-house code similar
to that of [1] is used to simulate the MFU, and generate the dataset on which
the Multiscale CAE is trained and assessed.

The extreme events in the MFU are quasi-relaminarization events, which
take place close to either wall. A typical evolution of the flow during a quasi-
relaminarization event is shown in Fig. 1(a–g). Time is normalized by the eddy
turnover time. During an extreme event, (i) the flow at either wall (the upper wall
in Fig. 1) becomes laminar (Fig. 1(a–c)); (ii) the flow remains laminar for some
time (Fig. 1(c–f)), which results in a larger axial velocity close to the centerline
(and therefore an increase in kinetic energy); (iii) the greater velocity close to
the centerline makes the effective Reynolds number of the flow larger, which
in turn makes the flow prone to a turbulence burst on the quasi-laminar wall;
(iv) the turbulence burst occurs on the quasi-laminar wall, which results in a
large increase in the energy dissipation rate; and (v) the flow close to that quasi-
laminar wall becomes turbulent again, which leads to a decrease in the kinetic
energy (Fig. 1(g)).

Fig. 1. (a–g) Snapshots of the Q-criterion isosurface (with value Q = 0.1) during an
extreme event, where Q = 0.5(||ω||2 − ||S||2), ω is the vorticity vector, and S is the
strain-rate tensor. (h) Evolution of kinetic energy, k, of the MFU. The red box indicates
the event whose evolution is shown in (a–g). (Color figure online)

These quasi-relaminarisation are accompanied by bursts in the total kinetic
energy, k(t) =

∫ ∫ ∫
Ω

1
2u · udxdydz, where Ω is the computational domain.

This can be seen in Fig. 1h, where the normalized kinetic energy, k̃ = (k −
min(k))/(max(k) − min(k)) is shown.

The dataset of the MFU contains 2000 eddy turnover times (i.e., 20000 snap-
shots) on a grid of 32 × 256 × 16, which contains 50 extreme events. The first
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200 eddy turnover times of the dataset (2000 snapshots) are employed for the
training of the Multiscale CAE, which contains only 4 extreme events.

3 Multiscale Convolutional Autoencoder

We implement a 3D convolutional autoencoder. It should be noted that we
only consider CNN-based autoencoder here and not other approaches such as
transformer-based ones (like in [4]) as the latter have not yet shown to be widely
applicable to dataset with a strong spatial based information (such as images or
flow dataset). A schematic of the proposed architecture is shown in Fig. 2.

Fig. 2. Schematic of the 3D multiscale convolutional autoencoder.

The three dimensional convolution autoencoder (CAE) learns an efficient
reduced-order representation of the original data, which consists of the flow
state u ∈ R

Nx×Ny×Nz×Nu , where Nx, Ny and Nz are the number of grid points,
and Nu = 3 is the number of velocity components. On one hand, the encoder
(blue box in Fig. 2) reduces the dimension of the data down to a latent state,
c, with small dimension Nc � NxNyNzNu. This operation can be symbolically
expressed as c = E(u;φE), where φE represents the weights of the encoder. On
the other hand, the decoder (green box in Fig. 2) reconstructs the data from the
latent state back to the original full flow state. This operation is expressed as
ũ = D(c;φD), where φD are the trainable weights of the decoder. We employ a
multiscale autoencoder, which was originally developed for image-based super-
resolution analysis [5]. We use here a multiscale autoencoder and not a standard
one as previous works [6,8] have demonstrated the ability of the multiscale ver-
sion in leveraging the multiscale information in turbulent flows to better recon-
struct the flow from the latent space. It relies on the use of convolutional kernels
of different sizes to analyse the input and improve reconstruction in fluids [8,14].
In this work, two kernels, (3 × 5 × 3) and (5 × 7 × 5), are employed (repre-
sented schematically by the two parallel streams of encoder/decoder in the blue
and green boxes in Fig. 2). This choice ensures a trade-off between the size of
the 3D multiscale autoencoder and the reconstruction accuracy (see Sect. 4). To
reduce the dimension of the input, the convolution operation in each layer of
the encoder is applied in a strided manner, which means that the convolutional
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neural network (CNN) kernel is progressively applied to the input by moving
the CNN kernel by (sx, sy, sz) = (2, 4, 2) grid points. This results in an output
of a smaller dimension than the input. After each convolution layer, to fulfill
the boundary conditions of the MFU, periodic padding is applied in the x and
z directions, while zero padding is applied in the y direction. Three successive
layers of CNN/padding operations are applied to decrease the dimension of the
original field from (32, 256, 16, 3) to (2, 4, 2, Nf ), where Nf is the specified num-
ber of filters in the last encoding layer. As a result, the dimension of the latent
space is Nc = 16 × Nf . The decoder mirrors the architecture of the encoder,
where transpose CNN layers [16] are used, which increase the dimension of the
latent space up to the original flow dimension. The end-to-end autoencoder is
trained by minimizing the mean squared error (MSE) between the reconstructed
velocity field, ũ, and the original field, u using the ADAM optimizer.

4 Reconstruction Error

We analyze the ability of the CAE to learn a latent space that encodes the flow
state accurately. To do so, we train three CAEs with latent space dimensions of
Nc = 384, 768, and 1536. The training of each CAE took between 8 and 16 h
using 4 Nvidia V100S (shorter training time for the model with the smaller latent
space). After training, the CAE can process 100 samples in 1.8 s to 5 s depending
on the dimension of the latent space (the faster processing time corresponding to
the CAE with the smaller latent space). We compute their reconstruction errors
on the test set based on the MSE. A typical comparison between a reconstructed
velocity field obtained from the CAE with Nc = 1536 is shown in Fig. 3. The
CAE is able to reconstruct accurately the features of the velocity field.

Fig. 3. Comparison of (a) the actual velocity magnitude (ground truth), (b) the CAE-
reconstructed velocity magnitude, (c) the root-squared difference between (a) and (b)
in the mid-y plane for a typical snapshot in the test set.

To provide a comparison with the CAE, we also compute the reconstruc-
tion error obtained from PCA, whose principal directions are obtained with the
method of snapshots [13] on the same dataset. Figure 4 shows the reconstruction
error. PCA decomposition requires more than 15000 PCA components to reach
the same level of accuracy as the CAE with a latent space of dimension 1536.
This highlights the advantage of learning a latent representation with nonlinear
operations, as in the autoencoder, compared with relying on a linear combination
of components, as in PCA.
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Fig. 4. Reconstruction error with a PCA-based method (blue) and the autoencoder
(yellow) for different dimensions of the latent space, Nc, or number of retained PCA
components, NPCA. The reconstruction error is computed as the mean squared error
between the reconstructed velocity field and the exact field, averaged over the test set.
(Color figure online)

The better performance of the CAE with respect to PCA is evident when we
consider the reconstruction accuracy for flow states that correspond to extreme
events, which we extract from the test set. Here, we define an extreme event
as a flow state with normalized kinetic energy above a user-selected threshold
value of 0.7. Hence, for the selected snapshots in the test set, the mean squared
error (MSE) between the reconstructed velocity and the truth is computed using
the CAE and PCA as a function of the latent space size. The resulting MSE is
shown in Fig. 5, where the CAE exhibits an accuracy for the extreme dynamics
similar to the reference case of the entire test set (see Fig. 4). On the other
hand, the accuracy of the PCA is lower than the reference case of the entire
dataset. This lack of accuracy is further analysed in Fig. 6, where typical velocity
magnitudes, i.e. the norm of the velocity field u, are shown for the mid-z plane
during a representative extreme event. The velocity reconstructed with the CAE
(Fig. 6b) is almost identical to the true velocity field (Fig. 6a). The CAE captures
the smooth variation at the lower wall indicating a quasi-laminar flow state in
that region. In contrast, the velocity field reconstructed using PCA (Fig. 6c)
completely fails at reproducing those features. This is because extreme states
are rare in the training set used to construct the PCA components (and the
CAE). Because of this, the extreme states only have a small contribution to the
PCA components and are accounted for only in higher order PCA components,
which are neglected in the 1536-dimensional latent space.

This result indicates that only the CAE and its latent space can be used
for further applications that requires a reduced-order representation of the flow,
such as when trying to develop a reduced-order model. This is also supported
by findings in [14] where it was shown that a similar CAE could be used in
combination with a reservoir computer to accurately forecast the evolution of a
two dimensional flow.
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Fig. 5. Reconstruction error on the extreme events flow states with PCA-based method
(blue) and autoencoder (yellow) for different dimensions of the latent space, Nc, or
number of retained PCA components, NPCA. The reconstruction error is computed
as in Fig. 4 but only on the flow state corresponding to extreme events. (Color figure
online)

Fig. 6. Comparison of (a) the velocity magnitude (ground truth), (b) the CAE-
reconstructed velocity magnitude, (c) the PCA-reconstructed velocity magnitude in
the mid-z plane for a typical extreme event snapshot in the test set.

5 Conclusion

In this work, we develop a nonlinear autoencoder to obtain an accurate latent
representation of a turbulent flow that exhibits extreme events. We propose
the 3D Multiscale CAE to learn the spatial features of the MFU, which exhibits
extreme events in the form of near-wall quasi-relaminarization events. The model
consists of a convolutional autoencoder with multiple channels, which learn an
efficient reduced latent representation of the flow state. We apply the framework
to a three-dimensional turbulent flow with extreme events (MFU). We show that
the Multiscale CAE is able to compress the flow state to a lower-dimensional
latent space by three orders of magnitude to accurately reconstruct the flow
state from this latent space. This constitutes a key improvement over principal
component analysis (PCA), which requires at least one order of magnitude more
PCA components to achieve an accuracy similar to the CAE. This improvement
in reconstruction accuracy is crucial for the reconstruction of the flow state dur-
ing the extreme events of the MFU. This is because extreme states are rare and,
thus, require a large number of PCA components to be accurately reconstructed.

The proposed method and results open up possibilities for using deep learning
to obtain an accurate latent reduced representation of 3D turbulent flows. Future
work will be devoted to physically interpreting the latent space discovered by
the Multiscale CAE, and learning the dynamics in this latent space.
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