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Chapter 6

The raindrop size distribution – the unknown
that holds everything together

Marc Schleiss1, Timothy H. Raupach2 and Alexis Berne3

6.1 Introduction

The raindrop size distribution (DSD) is a statistical description of the number and
size distribution of raindrops within a specified volume of air. DSDs play a central
role in radar remote sensing and are essential for understanding the scattering and
absorption of electromagnetic radiation as it travels through the air and interacts with
falling rain. They form the mathematical backbone for linking radar observations
to physical quantities such as rainfall intensities, liquid water content, and kinetic
energy. Yet, in most remote sensing applications, the DSD in the target volume is
likely to be unknown. Therefore, parameterized DSD models have been created to act
as substitutes for direct measurements when observations are unavailable, incomplete,
or impractical. Over time, a large number of models have been proposed, each with
their own intricacies and constraints. Understanding these mathematical constructs
and the assumptions behind them is essential for interpreting radar measurements and
improving quantitative rainfall estimation.

The most widely used DSD models to date are the exponential, the gamma,
the lognormal and the generalized gamma distribution (which includes the Weibull
distribution as a special case). For each model, different special cases, normalized for-
mulations or constrained versions exist. The literature on the topic is vast and rather
overwhelming. Therefore, we thought that it is valuable to summarize the essence
of the work in a few pages, by compiling a list of the most common models, their
properties, and their usage across disciplines, with a special focus on weather-radar-
related applications and numerical weather prediction. Due to the enormity of the
task, the list we provide is far from complete. For example, non-parametric models
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and other, more empirical ways of describing DSDs will not be considered. Never-
theless, what follows probably represents the largest and most detailed compilation of
available DSD models in a single publication to date. By effectively summarizing the
information scattered across hundreds of publications and decades of research using
consistent notations and units, we hope to make it easier for others to understand the
logic behind different DSD representations and help them select the most appropriate
representation for a given task.

The rest of this chapter is structured as follows. Section 6.2 introduces the DSD,
its statistical moments, and related bulk variables. Section 6.3 introduces the basic
principles behind parametric DSD modeling and draws up an inventory of the most
common models and their key mathematical properties. Section 6.4 addresses the
issue of DSD normalization and presents the mathematical frameworks for single,
double, and multi-moment normalization of DSDs. Section 6.5 briefly summarizes
the role played by DSDs in weather radar together with some techniques for retrieving
DSDs from polarimetric radar observations. Section 6.6 provides a brief overview of
how DSDs are represented in numerical weather prediction models, with some notes
and caveats. Conclusions and recommendations for future developments are given in
Section 6.7.

6.2 The DSD and its statistical moments

The main motivation for studying raindrop size distributions is that most rainfall-
related variables can be written as weighted combinations of the statistical moments
of the DSD. Essentially, if we know the DSD, then we can calculate any rainfall
variable of interest using its moments. In this section, we introduce, mathematically,
the DSD, its moments, and variables defined using DSD moments.

The raindrop size distribution
The raindrop size distribution N (D) (mm−1 m−3) is the concentration of raindrops
of diameter D (mm) per unit volume of air. We write

N (D) = NT f (D), (6.1)

where

NT =
∫ ∞

0
N (D)dD (6.2)

is the total number concentration of raindrops (m−3) and f (D) (mm−1) is a

probability density function for the drop diameters such that
∫ ∞

0
f (D) = 1 and

P[D ≤ x] =
∫ x

0
f (D)dD where P is the probability operator.
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By convention, what we refer to as the raindrop diameter D is actually the diam-
eter of a sphere with the same volume as the raindrop – the “equivolume diameter.”
This convention is important since larger raindrops are oblate, owing to the aerody-
namic forces acting on them [1–3]. It is also important to note that the raindrop size
distribution as defined above only describes the average conditions in a specified
volume of air. In reality, the local concentrations of raindrops, their positions, and
sizes all fluctuate over space and time [4–7]. The DSD should, therefore, be seen
as a probabilistic summary of the average (i.e., the expected) raindrop size distribu-
tion over a large number of unit volumes. For weather-radar-related applications, this
assumption is reasonable because radar sampling volumes are generally much larger
than one cubic meter.

Statistical moments of the DSD
The nth-order moment Mn (mmn m−3) of the DSD is defined as

Mn =
∫ ∞

0
DnN (D)dD. (6.3)

Combinations of weighted moments of the DSD give rainfall properties of inter-
est. Different moments are used in different contexts. For example, the zeroth-order
moment is the total number concentration NT (m−3), while the first-order moment
is related to the mean drop diameter. For visibility studies (e.g., optical extinction),
the second-order moment is the most relevant [8]. The liquid water content (LWC) is
linked to the third-order moment, and the rainfall rate is approximately proportional
to the 3.67th-order moment [9] via (6.11). The kinetic energy is roughly proportional
to the fifth-order moment [10], and microwave backscatter (e.g., radar reflectivity) is
equal to the sixth-order moment in the Rayleigh scattering regime [11]. Most radar
remote-sensing applications rely heavily on higher-order moments of the DSD, while
microphysical processes in rain, such as collisional drop breakup, coalescence, and
evaporation, also depend on lower-order moments [12–15]. Higher-order moments
are more sensitive to the concentration of large drops than lower-order moments. This
is why a few large drops will affect rain rate and radar reflectivity substantially, while
having very little impact on the mean drop diameter and drop number concentration.

It is important to note that for simplicity, in this chapter, the raindrop diameter
integration limits are assumed to be 0 to ∞, so any truncation of the size distribution
between a lower drop diameter limit Dmin and upper limit Dmax is ignored. In reality,
there are clear physical limits on how small or large raindrops can become [16,17].
For example, thermodynamic calculations show that raindrops with diameters below
0.1 mm usually cannot fall much more than 100–200 m before evaporating [18,19].
On the other hand, the larger a raindrop becomes, the more likely it is to collide
with other drops and break up into smaller pieces [17]. Very large raindrops with
diameters above 10 mm are so hydrodynamically unstable that they spontaneously
break up due to aerodynamic forces, even in laminar air flows [17]. In turbulent
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conditions, the forces acting on raindrops tend to be stronger, which explains why the
vast majority of raindrops have diameters smaller than 5 mm [20]. One study [20]
showed that only 0.4% of more than 775,000 one-min raindrop spectra at 17 locations
contained drops with diameters larger than 5 mm, with tropical locations accounting
for most of those. Another fact that should be pointed out is that most commercially
available DSD sensors have some form of limitation on the minimum and maximum
drop sizes that can be measured [21,22]. For example, an experiment [22] in which
a commonly used optical disdrometer was collocated with a higher-resolution sensor
showed that the optical disdrometer was not properly capturing the “drizzle mode,”
i.e., the drops with D< 0.5 mm. This discovery led to the introduction of more general
functional forms for modeling the DSD that properly model the drizzle mode [23],
as well as new techniques to “reconstruct” the full DSD from measurements made
by DSD sensors in which truncation precludes accurate representations of the small-
est drops [24]. Truncation of the DSDs at the lower or upper ends of the spectrum
owing to instrumental limitations, and discretization effects owing to limited resolu-
tion and size binning, are serious issues that affect the calculation of DSD moments
to varying degrees depending on the moment order and the nature of the truncation or
binning [16,25,26]. However, since these limitations are highly specific to the given
sensor, we decided not to consider them here.

In the following sections, we describe the different types of variables that can be
calculated from the DSD: state variables, which describe the properties of raindrops
in a fixed volume of air; flux variables, which describe raindrops arriving at a surface
(Figure 6.1 illustrates the difference between state and flux variables); and variables
that describe a “characteristic” raindrop size.

6.2.1 State variables

State variables describe the properties of raindrops in a fixed volume of air
(Figure 6.1). In this section, different state variables are introduced by ascending
order of DSD moment.

Total number concentration
The total number concentration of raindrops NT (m−3), as previously defined in
(6.2) is

NT =
∫ ∞

0
N (D)dD = M0. (6.4)

The total number concentration plays a crucial role in the study of microphysical
processes such as collisional drop growth, breakup, and evaporation [14,15]. Typical
values of NT are in the order of 100–1,000 m−3 but can exceed 104 m−3 in heavy
rain [27]. In general, NT tends to increase with rainfall intensity. However, peak
raindrop concentration values are not necessarily associated with the highest rainfall
rates [28,29] and large concentrations of small drops (D < 0.7 mm) can also be found
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State variables:
N(D): raindrop size distribution
NT: total number concentration

LWC: liquid water content

k: specific attenuation

Z: radar reflectivity

Flux variables:
Nsurface(D): surface DSD

R: rain rate

U: kinetic energy

Characteristic sizes:
Dmean: mean drop diameter

Da: effective diameter

Dm: mass-weighted mean diameter

Dmed: median drop diameter

D0: median-volume diameter

Figure 6.1 Schematic illustrating the conceptual differences between the types of
DSD variables. State variables describe the raindrops within a volume
of air, like those inside the yellow box in this diagram. Characteristic
sizes describe the “characteristic” size of the raindrops in the DSD
volume. Flux variables describe raindrops arriving at a surface, such
as those crossing the green surface shown here.

in drizzle [23]. Accurately measuring NT is challenging and substantial bias can be
introduced in NT estimates owing to instruments’ small sampling surfaces and small-
drop truncations of the size spectra [30–32]. Consequently, many experts nowadays
prefer to work with a less sensitive concentration-related variable Nw, which is based
on the notion of normalized drop size spectra (see Sections 6.4, (6.32) and (6.34) for
more details).

Liquid water content
The liquid water content LWC (g m−3) is

LWC = πρW

6,000

∫ ∞

0
D3N (D)dD = πρW

6,000
M3, (6.5)

where ρW ≈ 1 g cm−3 is the density of liquid water.



252 Advances in weather radar, volume 2

Liquid water content is an important parameter that influences the dynamical
structure and radiative characteristics of clouds [33]. In clouds, it is dependent on
cloud type, cloud-based temperature, and cloud vertical extent, and often correlates
well with flux variables such as the rainfall rate [34]. In rain, typical values of LWC
range between 0.1 g m−3 in stratiform rain and 0.5 g m−3 in cumulus clouds [35]
and 1–3 g m−3 in severe thunderstorms [36]. However, over short-time scales, values
exceeding 10 g m−3 in extreme precipitation and tropical cyclones have been measured
[37,38].

Specific attenuation
The specific attenuation k (dB km−1) of a microwave signal traversing a uniform
rainfall field with a given DSD is

k = 1

ln (10)

∫ ∞

0
σE(D)N (D)dD, (6.6)

where σE(D) (cm2) is the extinction cross-section of a raindrop of diameter D.

Specific attenuation is of paramount importance for the calculation of path-
averaged attenuation of electromagnetic radiation transmitted across terrestrial links
[39] as well as for performing attenuation correction in radar and satellite-based
remote-sensing applications [40–42]. For terrestrial links, specific attenuation is often
assumed to be a power law of the rainfall intensity [43]. In general, σE(D) depends
on the wavelength of the electromagnetic signal and the temperature of the drop. The
general theory for how to calculate σE(D) using electromagnetic scattering theory is
beyond the scope of this chapter. However, three particular cases can be distinguished:
when the wavelength of the signal is comparable to the raindrop diameter, extinction
cross-sections can be calculated using Mie scattering [44]. When the raindrops are
much smaller than the wavelength, Rayleigh scattering can be assumed [45]. And, in
the limit where the raindrop diameters greatly exceed the wavelength (e.g., as is the
case for optical signals), σE(D) is equal to twice the geometric cross-section and k
becomes proportional to the second-order moment of the DSD [46].

Radar reflectivity factor
The effective radar reflectivity factor Z (mm6 m−3) in the Rayleigh limit (i.e., large
wavelength, without attenuation) is given by

Z =
∫ ∞

0
D6N (D)dD = M6. (6.7)

The radar reflectivity factor Z is the sixth-order moment of the DSD [47]. Because
it can span a huge range of magnitudes, from 0.001 mm6 m−3 in fog up to several
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million mm6 m−3 in extremely heavy rain [48], it is common to express it in decibels
(dB) of Z , also known as dBZ, calculated as 10 log10 (Z). Note that the definition
above is a purely theoretical quantity that assumes perfect calibration, Rayleigh scat-
tering, no attenuation, no shielding and no anomalous propagation, and is, therefore,
independent of any actual radar property.

6.2.2 Flux variables

Flux variables describe the properties of rainfall over a unit surface area. Fluxes are
different from state variables such as NT , LWC, and Z in the sense that they do not
solely depend on the number concentration and size distribution of raindrops but also
on the rate at which raindrops of a given size arrive at the surface. Consequently, the
fall velocity v(D) of raindrops with respect to their diameter must also be considered
[49,50]. This is a vast and important topic that goes well beyond the scope of this
chapter. For the sake of simplicity, we will assume that the average fall velocity v(D)
(in m s−1) of a raindrop with diameter D (in mm) can be reasonably well approximately
by a power law, such that

v(D) = avDbv , (6.8)

where av > 0 (m s−1 mm−bv ) and bv > 0 (unitless) are two positive coefficients [51].
In fact, the power-law model is the only functional form that leads to a power-law
relationship between rainfall rate and reflectivity, as is commonly assumed [27].
Commonly accepted values for standard conditions of temperature and pressure are
av = 3.778 m s−1 mm−0.67 and bv = 0.67 [39]. Additional corrections for the changing
air density and temperature with height can be made [49,52]. Note that the power-
law model above only describes the theoretical fall velocity of a drop in still air,
which, according to [53], should be reached after a relatively short fall distance in
the order of 10 m. In reality, the fall speeds of individual drops frequently change
due to microphysical processes such as drop coalescence, breakup and evaporation.
For example, several studies show that intermediate-sized raindrops can fall up to
an order of magnitude faster than expected [54,55]. The vertical wind speeds and
turbulence of the air also play a crucial role [56].

DSD at the surface
The DSD at the surface, over a unit time interval and measurement area is

Nsurface(D) = v(D)N (D) ≈ avDbv N (D). (6.9)

The vast majority of weather-radar-related studies use the traditional definition
of the DSD in a unit volume (Equation (6.1)). However, because raindrops of differ-
ent sizes fall at different velocities, the DSD in a unit volume of air will be different
from the DSD seen by a fixed observer on the ground. As long as the fall veloci-
ties of the raindrops are known, the volume and surface representations of N (D) are
perfectly interchangeable. However, in practice, going from one representation to
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another inevitably introduces some additional uncertainty owing to the fact that the
actual fall speeds of raindrops can substantially deviate from theoretical relationships.
For example, fall speeds depend on local wind patterns including updrafts and down-
drafts, as well as pressure and temperature [52,54,56]. For some applications, it may
be beneficial to directly model the DSD at the surface using marked point processes
and inter-drop arrival time distributions [57,58]. These methods only consider the
sizes and arrival process of raindrops at the surface, from which all relevant fluxes
can be computed independently of any assumptions about drop velocities. It is worth
noting that the most common type of sensor for measuring drop size distributions, the
optical disdrometer, actually measures the surface DSD. The measurements are then
transformed back to a unit volume using the measured fall velocities of each drop or
a theoretical fall velocity model as in (6.9). Sensors capable of directly estimating
the DSD in a three-dimensional volume exist and avoid this issue, but are techno-
logically challenging and to date have mostly been used for studying snow and ice
particles [59–63].

Rainfall rate
The rainfall rate R (mm h−1) is the average flux of water through a unit area

R = 6π10−4

∫ ∞

0
D3N (D)v(D)dD. (6.10)

If raindrop fall velocities are assumed to follow a power law (6.8) with av = 3.778
and bv = 0.67, then

R ≈ 6π10−4av M3+bv

≈ 0.0071 M3.67. (6.11)

Equation (6.11) shows that the rainfall rate R is approximately proportional to
the DSD’s moment of order 3.67, which makes it closely related to the liquid water
content. Rainfall rate is the main quantity of interest in hydrological sciences and
quantitative precipitation estimation using weather radar [64–67]. Typical rainfall
rates at the hourly time scale are <0.1 mm h−1 in drizzle [68], up to 2.5 mm h−1

in light rain, up to 10 mm h−1 in moderate rain, up to 50 mm h−1 in heavy rain,
and ≥50 mm h−1 in extremely intense rainfall [69]. However, there is no commonly
agreed-upon standard for classifying rain rates, and each meteorological agency uses
slightly different definitions depending on the local climatology. Distributions of R
are heavily skewed and approximately lognormal or gamma, but strongly depend on
the local climatology, aggregation time scale and type of event [70–72]. Because the
fall velocity of raindrops varies with altitude [50], the value of R for a given DSD also
varies with altitude. This dependence on altitude makes the definition of rain rate in
(6.11) somewhat ambiguous. To avoid this issue and compare rain rates in weather
radar data on a fair basis, rates are often calculated for ground level by assuming a
fixed fall-velocity model that is independent of height [73].



The raindrop size distribution 255

Kinetic energy
The kinetic energy flux density U (J m−2 s−1) is

U = π

12
ρW 10−6

∫ ∞

0
D3v(D)3N (D)dD. (6.12)

Assuming drop fall velocities follow a power law (6.8) with av = 3.778 and bv =
0.67, and assuming ρW = 1 g cm−3, we have

U ≈ π

12
ρW 10−6a3

vM3+3bv ≈ 14.12 · 10−6M5.01. (6.13)

Kinetic energy plays a crucial role in understanding soil erosion, soil loss and
sediment transport [74–78], as well as in monitoring and predicting the erosion of
wind-turbine blades used in wind energy production [79,80]. Kinetic energy of rainfall
may also play an important role in the growth and development of vegetation. For
example, the authors of [81] showed that the immune system of Arabidopsis thaliana
activates itself against pathogens in response to impacting raindrops. The Arabidopsis
response is mechanic, meaning that the raindrops need to impact with a certain energy
to trigger a response [81].

6.2.3 Characteristic sizes

When comparing and summarizing DSDs, it is often useful to consider the “character-
istic” raindrop size. Depending on the application, different characteristic sizes may
be of interest. Quantities such as the mean drop diameter and median drop diameter
are natural choices. However, they may not be the best characteristic size descriptors
for radar-related applications [48,82]. For this reason, other sizes related to higher
moments or ratios of moments have been defined.

Weighted mean drop diameters
Weighted mean drop diameters are ratios of successive moments of the DSD. For
example, the mean drop diameter Dmean (mm) is the ratio between the first- and
zeroth-order moments of the DSD, such that

Dmean = 1

NT

∫ ∞

0
DN (D)dD = M1

M0
. (6.14)

The area-weighted mean drop diameter Da (mm), also known as the “effective
diameter,” is

Da =

∫ ∞

0
D3N (D)dD

∫ ∞

0
D2N (D)dD

= M3

M2
. (6.15)
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A commonly used characteristic diameter is the mass- (or volume-) weighted mean
drop diameter Dm (mm), which is written

Dm =

∫ ∞

0
D4N (D)dD

∫ ∞

0
D3N (D)dD

= M4

M3
. (6.16)

Typical values for Dm range between 0.5 mm and 4.0 mm, with average values
around 1 mm [35,83,84].

Median drop diameters
The median drop diameter Dmed (mm) is the diameter that divides the population
of drops in half by size, such that half of the drops are smaller and half are larger
than Dmed. We write

2
∫ Dmed

0
N (D)dD =

∫ ∞

0
N (D)dD. (6.17)

Median drop sizes can also be derived for higher-order moments of the DSD. For
example, the median-volume diameter D0 (mm) divides the DSD such that half of
the liquid water content is due to drops with diameters greater than D0 [8], such
that

2
∫ D0

0
D3N (D)dD =

∫ ∞

0
D3N (D)dD. (6.18)

Similar definitions of Dmed and D0 based on the DSD seen by a fixed observer at
the surface are also possible [27] but are less commonly used.

Weighted mean drop diameters and median drop diameters provide similar informa-
tion and are closely linked [9]. The advantage of weighted moments such as Dm is that
they are slightly easier to calculate in practice, since disdrometers often bin the drop
counts into different diameter classes. This discretization means that median drop
diameters can only be determined using interpolation, which introduces additional
uncertainty compared to an integration over the whole size spectrum.

6.3 Parametric DSD models

DSD models require abstraction and simplification. In practice, this means identify-
ing, selecting, and summarizing relevant aspects of the rainfall process. The properties
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that are the most relevant may vary from one application to another, which explains
why most DSD models are heavily task-driven: they were developed with a certain
objective in mind. Examples of tasks that use DSD models include quantitative esti-
mation of precipitation from weather radar, microphysical retrievals, radar attenuation
correction, stochastic simulation of rainfall time series, and numerical weather predic-
tion. The diversity of these tasks means that the “best” DSD models are not necessarily
the ones that provide the best fit to the data, but the ones that work in practice and
are useful for understanding the problem at hand. Quantitative radar-rainfall retrieval
algorithms, for example, often adopt rather simplistic parametric DSD models with
one or two degrees of freedom. There are two main reasons for this. First, radars can
only measure a small number of DSD moments (see Section 6.5.3), which limits the
number of parameters that can be estimated. Second, radar measurements are subject
to stochastic noise and various types of biases [66,85]. Fitting complex models to
noisy data is bad practice, which explains why simple DSD models are often the
best choice in operational settings. Simple low-dimensional models may not be as
good as more complex models at reproducing the large diversity of possible DSD
shapes that can exist, but they are substantially more robust to noise and less prone to
overfitting.

It is experimentally and theoretically well established that the different micro-
physical processes that control the evolution of raindrop size distributions (e.g.,
collisional growth, breakup and evaporation) tend to produce roughly unimodal, pos-
itively skewed distributions [86–89]. However, more complex, multi-modal DSDs
associated with transitional regimes and mixed-phase precipitation have also been
observed [87,90,91].

When choosing a model, one should take into account that substantial differences
may exist between the measured and actual shapes of DSDs, owing to instrumental
effects/limitations, random sampling effects and environmental conditions such as
wind and turbulence. For example, optical disdrometers are notoriously bad at mea-
suring small drop diameters below 0.3 mm which is a serious problem during light
rain and drizzle and may cause lower order moments to be affected by substantial
biases [22,24]. As a result, it is often very difficult to objectively decide which model
amongst many candidate models provides the best fit to the data.

6.3.1 Inventory of common DSD models

The most common parametric models for representing DSDs are the Exponential [92],
the Gamma [9,25], the Lognormal [93], and generalized Gamma [94,95] models.
Less common choices include the Weibull [96], the Beta [97], and the Johnson SB
[98] models. Flashcards describing the most-popular DSD models are shown below,
together with their key mathematical properties. Each model is summarized on a single
page, which restricts our treatment to only the most essential properties. Nevertheless,
we believe that providing such an overview, using consistent notations and units is
of great value to the community. Figures 6.2 and 6.3 show example shapes for the
models presented in this section.
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Figure 6.2 Example of DSD models (on a linear scale) with parameters chosen to
show different possible shapes for each model. “G. gamma” stands for
the generalized gamma model, which can have very different shapes
from the other models depending on its parameters. See the flashcards
for each model for descriptions and units of parameters.
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Figure 6.3 As in Figure 6.2, but with a logarithmic y-axis to show details of
differences at the larger drop end of the spectrum
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Exponential

N (D) = N0 exp ( −�D)

Parameters: intercept N0 (mm−1 m−3), slope � (mm−1).

Explanations: the simple exponential DSD model proposed by Marshall and
Palmer (MP) in 1948 [92] is the most-cited in radar meteorology and still used
today. It provides a good approximation of average DSDs over large measurement
volumes [99] using a small number of parameters with clear, physical interpreta-
tions.

Moments:

Mn = N0
� (n + 1)
�n+1

Mn

Mm
= �(n + 1)

�(m + 1)
�m−n

State variables:

NT = N0

�
LWC = N0πρW

1000�4
Z = 720N0�

−7

Characteristic sizes:

Dmean = 1

�
Da = 3

�
Dm = 4

�
Dmed = ln (2)

�
D0 ≈ 3.67

�

Fluxes:

R ≈ 6π10−4avN0
�(4 + bv)

�4+bv
≈ 0.105

N0

�4.67

U ≈ π

12
ρW 10−6a3

vN0
�(4 + 3bv)

�4+3bv
≈ 14.12 · 10−6N0

�(6.01)

�6.01

Notes: if N (D) is exponential and v(D) = avDbv , then Nsurface(D) is gamma with
concentration aV N0, shape bV and slope�. The original model [92] is a particular
case of an exponential DSD with a fixed concentration parameter N0 = 8,000
(mm−1m−3) and only one free parameter �. The slope of such a DSD depends
solely on R. Using a graph paper, MP found that � = 4.1R−0.21 [92], which is
only slightly different from the theoretical relation � = 4.23R−0.21 obtained by
assuming v(D) = 3.778D0.67 [51].
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Gamma

N (D) = N0Dμ exp ( −�D)

Parameters: slope � (mm−1), shape μ (-), concentration N0 (m−3 mm−1−μ).

Explanations: the gamma distribution [9] is the most popular DSD model in use
today. The shape parameter μ provides additional flexibility over the exponential
model, which leads to better fits at high temporal resolutions and in convective
rain [100,101].

Moments:

Mn = N0
�(μ+ n + 1)

�μ+n+1

Mn

Mm
= �m−n � (μ+ n + 1)

� (μ+ m + 1)

State variables:

NT = N0
� (μ+ 1)
�μ+1

LWC = N0
πρW

6000

� (μ+ 4)
�μ+4

Z = N0
�(μ+ 7)

�μ+7

Characteristic sizes:

Dmean = μ+ 1

�
Da = μ+ 3

�
Dm = μ+ 4

�

Dmed ≈ μ+ 1

�

(
1 − 1

9(μ+ 1)

)3

D0 ≈ μ+ 3.67

�

Fluxes:

R ≈ 6π10−4avN0
�(μ+ 4 + bv)

�μ+4+bv
≈ 0.0071N0

�(μ+ 4.67)

�μ+4.67

U ≈ π

12
ρW 10−6a3

V N0
�(μ+ 4 + 3bV )

�μ+4+3bV
≈ 14.12 · 10−6N0

�(μ+ 6.01)

�μ+6.01

Notes: when μ = 0, the gamma model reduces to an exponential. For positive
μ, the DSD is concave down on a plot of ln N (D) vs D and rapidly falls to zero
for larger values of D. For negative μ, the DSD is concave upward with a larger
spread [9]. If N (D) is gamma and v(D) = aV DbV , then Nsurface(D) is gamma with
intercept aV N0, shape μ+ bV and slope �. Based on empirical evidence, some
studies have suggested a deterministic relationship betweenμ and�. For example,
the authors of [102,103] recommend � = 0.0365μ2 + 0.735μ+ 1.935.
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Generalized gamma

N (D) = NT�

(
μ+ 1

c

)−1

c�μ+1Dμ exp (−(�D)c)

Parameters: generalized shape μ > −1, slope � > 0, coefficient c > 0.

Explanations: the generalized gamma [95,104] is popular and fits well to a wide
variety of particle distributions including those of cloud droplets and ice particles.
c can be tuned to improve the fit in a plateau region and tails [23,24].

Moments:

Mn = NT

(
1

�

)n �
(
μ+1+n

c

)
�
(
μ+1

c

) Mn

Mm
= �m−n �

(
μ+1+n

c

)
�
(
μ+1+m

c

)
State variables:

LWC = NT
πρW

6000�3

�
(
μ+4

c

)
�
(
μ+1

c

) Z = NT

�6

�
(
μ+7

c

)
�
(
μ+1

c

)

Characteristic sizes:

Dmean = 1

�

�
(
μ+2

c

)
�
(
μ+1

c

) Da = 1

�

�
(
μ+4

c

)
�
(
μ+3

c

) Dm = 1

�

�
(
μ+5

c

)
�
(
μ+4

c

)
Fluxes:

R ≈ 6π10−4aV NT

(
1

�

)3+bV �
(
μ+bV +4

c

)
�
(
μ+1

c

) ≈ 0.0071NT

(
1

�

)3.67 �
(
μ+4.67

c

)
�
(
μ+1

c

)

U ≈ πρW a3
V NT

12 · 106

(
1

�

)3+3bV �
(
μ+3bV +4

c

)
�
(
μ+1

c

) ≈ 14.12

106

(
1

�

)5.01 �
(
μ+6.01

c

)
�
(
μ+1

c

)
Notes: the distribution reduces to gamma when c = 1, exponential when c = 1
and μ = 0, and Weibull when c = μ+ 1. [23] showed that c ≈ 2.5 is the most
common value. If N (D) is a generalized gamma and v(D) = aV DbV , then Nsurface(D)
is a generalized gamma with shape μ+ bV , slope �, coefficient c, and intercept
(NT av)/�bV� ((μ+ 1 + bv)/c) [� ((μ+ 1)/c)]−1.
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Lognormal

N (D) = NT√
2πσD

exp

[
−1

2

(
ln (D) − μ

σ

)2
]

Parameters: μ ∈ R and σ > 0, the mean and standard deviation of ln (D).

Explanations: the lognormal assumes that ln (D) has a Gaussian distribution.
The lognormal distribution has the advantage of being stable with respect to
power transformations, which means that the surface DSD is also lognormal.
This property, together with the close link to the Gaussian distribution, makes it
particularly appealing for stochastic simulation.

Moments:

Mn = NT exp
(

nμ+ 1

2
n2σ 2

)
Mn

Mm
= exp

(
(n − m)μ+ 1

2
(n2 − m2)σ 2

)

State variables:

LWC = πρW

6000
NT exp

(
3μ+ 9

2
σ 2

)
Z = NT exp

(
6μ+ 18σ 2

)

Characteristic sizes:

Dmean = exp
(
μ+ 1

2
σ 2

)
Da = exp

(
μ+ 5

2
σ 2

)
Dm = exp

(
μ+ 7

2
σ 2

)

Dmed = exp (μ) D0 = exp
(
μ+ 3σ 2

)

Fluxes:

R ≈ 6π10−4avNT exp
(

(3 + bv)μ+ (3 + bv)2σ 2

2

)

≈ 0.0071NT exp
(
3.67μ+ 6.73σ 2

)

U ≈ π

12
ρW 10−6a3

vNT exp
(

(3 + 3bv)μ+ 1

2
(3 + 3bv)2σ 2

)

≈ 14.12 · 10−6NT exp
(
5.01μ+ 12.55σ 2

)

Notes: for a lognormal, Nsurface(D) is also lognormal with parameters
μsurface = bV (μ+ ln (aV )) and σsurface = bVσ .
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Weibull

N (D) = NTμ�
μDμ−1 exp [− (�D)μ]

Parameters: shape μ ≥ 0, rate � > 0.

Explanations: while the Weibull can provide good fits to individual DSD
spectra [105,106], studies have shown that overall, its goodness of fit tends to
be slightly inferior to the gamma and lognormal models [107]. As a result, this
model is less common in the literature about DSDs.

Moments:

Mn = NT

�
(

1 + n
μ

)
�n

Mn

Mm
= �m−n

�
(

1 + n
μ

)

�
(

1 + m
μ

)

State variables:

LWC = πρW

6000
NT

�
(

1 + 3
μ

)
�3

Z = NT

�
(

1 + 6
μ

)
�6

Characteristic sizes:

Dmean =
�
(

1 + 1
μ

)
�

Da =
�
(

1 + 3
μ

)

��
(

1 + 2
μ

) Dm =
�
(

1 + 4
μ

)
��(1 + 3

μ
)

Dmed = ln (2)
1
μ

�
D0: no closed-form expression

Fluxes:

R ≈ 6π10−4aV NT

�
(

1 + 3+bV
μ

)
�3+bV

≈ 0.0071NT

�
(

1 + 3.67
μ

)
�3.67

U ≈ π

12
ρW 10−6a3

V NT

�
(

1 + 3+3bV
μ

)
�3+3bV

≈ 14.12 · 10−6NT

�
(

1 + 5.01
μ

)
�5.01

Notes: when μ = 1, the distribution reduces to an exponential.
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6.4 Normalized DSD models

DSD normalization is a useful technique that makes it possible to analyze and com-
pare the shape of two DSDs that do not have the same moments or characteristic
drop diameters [108,109]. The idea behind normalization is that most DSDs look
rather similar to each other in terms of their shape, which means it should be possible
to approximate them with the help of a single template distribution and a few key
moments (e.g., NT , LWC, Z), allowing most of the DSD variabilities to be explained
by variation in the chosen key moments. This hypothesis is supported by empir-
ically observed power-law dependencies between different moments of the DSD,
such as in Z–R, D0–R, and LWC–R relationships [47,73,96,110], and through the-
oretical arguments, such as the existence of “equilibrium DSDs” in microphysical
simulations, in which drop coalescence is perfectly balanced out by drop breakup
[86,88].

Generally speaking, the two main approaches to normalization are: (a) methods
that assume a functional form for the DSD, such as an exponential or gamma distri-
bution and (b) methods that do not impose any functional form. The earliest attempts
at normalization assumed fixed parametric DSD shapes and used a single normal-
izing factor such as the concentration parameter N0, median volume diameter D0,
or exponential slope � [25,73]. In the well-known single-normalization of Sempere
Torres et al. [111], the rain rate (roughly the 3.67th-order moment of the DSD) raised
to a fixed power acts as a scaling function for the drop size. However, it was soon
discovered that a single moment and template distribution are, in general, insufficient
to fully capture all the natural variability of DSDs, with different templates required
for stratiform and convective rain [112]. At least a second moment was necessary
to reduce the scatter and collapse the observed distributions into a single, compact
form. As a result, more general DSD normalization procedures that involve two,
three, or more moments and do not make any assumptions about the functional form
of the DSD shape were developed [104,109,113,114]. Figure 6.4 shows an example
of varying DSDs being “collapsed” into less variable forms by the double-moment
normalization of Lee et al. [104].

Normalization starts with the observation that from a mathematical point of view,
any DSD is uniquely defined by the (infinite) sequence of its statistical moments M0,
M1, M2, . . . . Normalization assumes that only a handful of these moments are nec-
essary to approximate all the others and, consequently, the entire distribution. For
example M3 and M4 were used by [108], while M2, M3, and M4 were used by [113],
and M0, M1, M2, and M3 by [115]. How many moments to use, their orders, and how
to combine them when expressing DSDs is still up for debate, and different com-
binations are possible depending on the application. However, not all combinations
are equally good [116]. The science behind normalization is not yet settled and more
research is needed to fully understand the consequences of choosing one approach over
another.
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Figure 6.4 An example of the “collapsing” effect of DSD normalization. Panel (a)
shows gamma DSDs with varying parameters (N0 from 50 to 300 in
steps of 50, μ equal to −1, 0, or 1, and � equal to 1, 2, or 3).
Panel (b) shows the double-moment normalized [104] versions

of the same DSDs, with g(x) = N (D)/
(

M (j+1)/(j−i)
i M (i+1)/(i−j)

j

)
,

x = DM 1/(j−i)
i M−1/(j−i)

j and i = 3 and j = 6. The normalized DSDs
clearly exhibit much lower variability compared to the original ones.

The most straightforward way to build a normalized DSD model is to divide
the drop size D in (6.1) by a characteristic drop diameter Dc (mm) to render it
dimensionless [117]. This leads to

N (D) = Ncg

(
D

Dc

)
, (6.19)

where Nc (mm−1 m−3) is a characteristic number concentration that depends on the
choice of Dc and g is a distribution function called the “template distribution.” Using
this notation, and setting x = D

Dc
(-), the moments of the normalized DSD are

Mn = NcD
n+1
c

∫
x

xng(x)dx = NcD
n+1
c ξn, (6.20)

where

ξn =
∫

x
xng(x)dx. (6.21)
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Next, we choose a reference moment Mi of interest and express the characteristic
number concentration Nc as a function of it, such that

Nc = Mi

Di+1
c

ξ−1
i . (6.22)

This expression leads to a normalized DSD for a given reference moment Mi,
characteristic drop diameter Dc, and distribution g:

N (D) = Mi

Di+1
c

ξ−1
i g

(
D

Dc

)
. (6.23)

The characteristic diameter Dc can be the mean drop diameter Dmean, the median
volume diameter D0, the mass-weighted mean drop diameter Dm, or any other quantity
that has units of mm. The reference moment can be the drop concentration (M0), liquid
water content (M3), reflectivity (M6), or any other moment of interest. The template
distribution can be a simple parametric model (e.g., exponential, gamma) or any
non-parametric model that fits the data. In some formulations [104], the template
g is chosen such that ξi = 1, which simplifies the expression for Nc in (6.22). The
downside of this approach is that it is slightly less general, since it makes the template
function dependent on choice of the reference moment Mi.

One important consequence of (6.22) is that the characteristic drop diameter Dc

must be a power law of the reference moment Mi.

Dc =
(

Mi

Ncξi

) 1
i+1

(6.24)

Equations (6.19)–(6.24) form the mathematical basis for understanding single-
moment and multiple-moment normalization techniques. For example, in the single-
moment normalization framework by [111], the characteristic drop size is Dc = M β

i ,

which leads to Nc = M 1−β(i+1)
i ξ−1

i = M α
i where α = 1 − β(i + 1) − ln (ξi)

ln (Mi)
. More

generally, if we assume that the characteristic drop diameter Dc =
(

Mj

Mi

) 1
j−i

depends

on two reference moments Mi and Mj, we get the double-moment normalization
framework of Lee et al. [104].

The flashcards on the next pages summarize the most common normalization
frameworks and provide some examples of special cases that are worth mentioning.
In an effort to be as consistent as possible and use common notations throughout the
chapter, we had to make some small changes to the notations commonly used in the
literature. For example, we use g() to denote any generic template function, ξn for the
nth-order moment of the template function, Dc for the characteristic drop size, and
Nc for the intercept parameter, notwithstanding that in particular formulations and
publications, the specific definitions and notations of g(), ξn, Nc, and Dc can change.
For example, in the double-moment normalization framework, the template function
is often denoted as h().
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Single-moment normalization

N (D) = M α
i g(M−β

i D) = Ncg

(
D

Dc

)

Explanations: The DSD is written as a function of a generic shape function g,
a single reference moment Mi, and two scaling coefficients α,β ∈ R [111,118].
The variable x = M−β

i D is a single-normalized drop diameter. The shape function
g can be empirical (parameter free), or any parametric model.

Moments:

Mn = M α+β(n+1)
i ξn

Mn

Mm
= M β(n−m)

i

ξn

ξm

where ξn =
∫ ∞

0
xng(x)dx.

Self-consistency constraint: α + β(i + 1) = 1 (assuming ξi = 1)

Property: All moments of the DSD are linked through a power law:

Mn = a(n, m, i,β)M b(n,m,i,β)
m

with b(n, m, i,β) = 1 + β(n − i)

1 + β(m − i)
and a(n, m, i,β) = ξn

ξ
b(n,m,i,β)
m

.

State variables:

NT = M α+β
i ξ0 LWC = πρW

6000
M α+4β

i ξ3 Z = M α+7β
i ξ6

Characteristic sizes:

Dmean = M β
i

ξ1

ξ0
Da = M β

i

ξ3

ξ2
Dm = M β

i

ξ4

ξ3

Notes: the special case i = 3.67 leads to the original formulation [111] in which
the normalizing variable is the rain rate R:

N (D) = Rαg(R−βD)

with α + 4.67β = 1 and Z = ξ6R1+2.33β . The limiting case where α = 1 and β = 0
leads to a number-controlled equilibrium DSD [88] in which N (D) = Mig(D) and

Z = ξn

ξm
R.
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Double-moment normalization

N (D) = M (j+1)(j−i)
i M (i+1)(i−j)

j g

(
D

Dc

)
= Nc g

(
D

Dc

)

with Dc =
(

Mj

Mi

) 1
j−i

and Nc = M (j+1)(j−i)
i M (i+1)(i−j)

j .

Explanations: The DSD is written as a combination of a generic shape function
g(), concentration Nc and double-moment normalized drop diameter Dc [104].
The normalizing moments i and j do not necessarily need to be consecutive.
The two-moment normalization schemes capture more variability in slope and
intercept than single-moment normalization at the expense of a higher number of
parameters and higher model complexity.

Moments:

Mn = NcD
n+1
c ξn where ξn =

∫ ∞

0
xng(x)dx

Self-consistency constraints: ξi = ξj = 1

Property: All moments are linked to each other through a power-law:

Mn = N
m−n
m+1

c M
n+1
m+1

m ξnξ
−(n+1)

m+1
m .

The relationship above is independent of the shape of the DSD and forms the
theoretical justification for the observed power-law relationship between different
moments of the DSD, such as reflectivity and rain rate [108].

Characteristic sizes:

Dmean = Dc
ξ1

ξ0
Da = Dc

ξ3

ξ2
Dm = Dc

ξ4

ξ3

Notes: when i = 3 and j = 4, we have Dc = Dm and Nc = M 5
3 M−4

4 = M3D−4
m

which leads to the original formulation proposed by [108]. Studies show that
around 80% of the DSD variability can be captured using two moments [114].
Moreover, g(x) can reasonably be assumed static for practical purposes, at least
in stratiform rain, with some important caveats [116]. However, a single template
function remains insufficient to fully capture all the small-scale variability in the
DSD, such as the formation of bi-modal distributions [113,119].
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General N -moment normalization

f (D) = Ncg

(
D

Dc

)

where Dc is a characteristic drop size that is a function of N different moments of
N (D), and Nc is a normalized intercept [114] as in (6.22).

Moments: Any moment Mn is approximated by a power-series with J terms using
N normalizing moments Mi1 , . . . , MiN , such that

Mn ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

J∑
j=1

ajn

N−1∏
k=1

(
Mik+1

Mik

)bkjn

if N ≥ 2

J∑
j=1

ajnM
bjn
i if N = 1

where ajn and bkjn are estimated from the data. J = 1 is often chosen since otherwise
estimating optimal coefficients is complicated. For J = 1, we have:

Mn ≈

⎧⎪⎨
⎪⎩

an

N−1∏
k=1

(
Mik+1

Mik

)bkn

if N ≥ 2

anM bn
i if N = 1

.

Characteristic drop sizes: the dimensional constraints needed to derive expres-
sions for Dc for any value of N are available [114]. For N ≥ 3, there are multiple
ways to define Dc that lead to dimensional consistency.

N = 1 N = 2 N = 3

Dc ∝ M
1

i1−3
i1 Dc ∝

(
Mi2

Mi1

) 1
i2−i1

Dc ∝
(

Mi1

Mi3

Mi2

Mi3

) 1
i1−2i2+i3

More generally, for any even value of N , with N ≥ 4, we have:

Dc ∝
N/2∏
k=1

M
1
c

i2k−1

N/2∏
k=1

M
− 1

c
i2k

with c =
N/2∑
k=1

i2k−1 −
N/2∑
k=1

i2k .

For every odd value of N with N ≥ 5, we have:

Dc ∝
1
2 (N−1)∏

k=1

M
1
c

i2k−1

1
2 (N−3)∏

k=1

M
− 1

c
i2k

M−2/c
iN−1

with c =
1
2 (N−1)∑

k=1

i2k−1 −
1
2 (N−3)∑

k=1

i2k − 2iN−1.
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6.4.1 Particular cases in DSD normalization

In this section, we highlight some particular cases for single-moment, double-
moment, and N -moment normalization.

6.4.1.1 Single-moment normalization
In single-moment normalization [111], special cases arise when the template distri-
bution used is the exponential model or gamma model.

Exponential model: if the template distribution is the exponential model, such that
g(x) = N0 exp (−�x), the self-consistency constraint implies that

N0 = �i+1

�(i + 1)
, (6.25)

and therefore the normalized DSD is

N (D) = M α
i

�i+1

�(i + 1)
exp

(
−�M −β

i D
)
. (6.26)

This equation means that the single-moment normalized version of an exponential
DSD is an exponential in which the concentration parameter is fully determined by
the slope � of the template distribution, the reference moment Mi and the scaling
exponent β.

Gamma model: if the template distribution is the gamma model, such that g(x) =
N0xμ exp (−�x), then the self-consistency constraint implies that

N0 = �μ+i+1

�(μ+ i + 1)
, (6.27)

and the normalized DSD is

N (D) = M α
i

�μ+i+1

�(μ+ i + 1)

(
M −β

i D
)μ

exp
(
−�M−β

i D
)

, (6.28)

which is another gamma distribution where the concentration parameter depends on
the reference moment Mi, power β, and slope �.

6.4.1.2 Double-moment normalization
In double-moment normalization [104], special cases arise when the template distri-
bution is the exponential, gamma, and generalized gamma.

Exponential model: if g(x) = N0 exp (−�x), the self-consistency constraint ξi =
ξj = 1 implies that

� =
(
�(j + 1)

�(i + 1)

) 1
j−i

and N0 = �i+1

�(i + 1)
,
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and the normalized DSD is:

N (D) = Nc

�(i + 1)

(
�(j + 1)

�(i + 1)

) i+1
j−i

exp

[
−
(
�(j + 1)

�(i + 1)

) 1
j−i D

Dc

]
. (6.29)

In particular, if i = 3 and j = 4, we get Dc = Dm and Nc = M 5
3 M−4

4 = M3D−4
m and

N (D) = M3

6D4
m

44 exp
(

−4
D

Dm

)
= 256 · 103 LWC

πρW D4
m

exp
(

−4
D

Dm

)
, (6.30)

N (D) = Nw exp
(

−4
D

Dm

)
, (6.31)

with

Nw = 256 · 103 LWC

πρW D4
m

. (6.32)

Gamma model: if g(x) = N0xμ exp (−�x), the self-consistency constraint implies

� =
(
�(μ+ j + 1)

�(μ+ i + 1)

) 1
j−i

and N0 = �μ+i+1

�(μ+ i + 1)
,

and the double-moment normalized gamma DSD is

N (D) = NcN0

(
D

Dc

)μ
exp

[
−
(
�(μ+ j + 1)

�(μ+ i + 1)

) 1
j−i D

Dc

]
. (6.33)

In particular, if i = 3, j = 4, and Dc = Dm, we get � = �(μ+ 5)

�(μ+ 4)
= μ+ 4 and

N (D) = Nwf (μ)
(

D

Dm

)μ
exp

[
−(μ+ 4)

D

Dm

]
, (6.34)

with Nw as in (6.32) and

f (μ) = 6

256
(μ+ 4)μ+4

�(μ+ 4)
. (6.35)

These equations for the double-normalized DSD with the gamma and exponential
models show that the intercept parameter Nw of a double-normalized gamma DSD
with i = 3 and j = 4 can be interpreted as the concentration of a double-moment nor-
malized exponential DSD with similar liquid water content [25,104,108]. The clear
physical interpretation of Nw and the fact that its units do not depend onμ are why it is
usually preferred over N0 [48]. Moreover, studies have shown that Nw varies by “only”
approximately 3–4 orders of magnitude compared with the 6–7 orders of magnitude
for N0 [85,108]. Since normalization by Dc = Dm is the most common in the liter-
ature, (6.34) is often referred to as “the normalized gamma model” [108,120,121].
It is widely used in the ground-based radar and satellite remote-sensing communi-
ties and, notably, has been adopted by the Global Precipitation Measurement (GPM)
Dual-Frequency Precipitation Radar (DPR) algorithm [84,122,123].
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Generalized gamma model: if we have

g(x) = NT

�
(
μ+1

c

)c�μ+1xμ exp [−(�x)c] ,

and ξi = ξj = 1 then we must have
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�
(
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c

)
�
(
μ+1+i

c

)
] 1

j−i

and NT = �
(
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c

)
�
(
μ+1+i

c

)�i.

Therefore, the normalized DSD is

N (D) = cNc
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In particular, if i = 3 and j = 4, we get:

N (D) = cM3

D4
m�
(
μ+4

c

)
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μ+5
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)
�
(
μ+4
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(
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]c}
. (6.37)

6.4.1.3 General N -moment normalization
Special cases in general N -moment normalization involve specific values of N , the
number of normalizing moments, while the number of terms in the power series is
kept at J = 1 [114].

N = 1 and J = 1: if a single moment Mi1 = Mi is known, then Dc = cM
1

i−3
i , where

c ∈ R is some constant. To have equivalence with the single-normalization frame-

work in which Dc = M β
i , one must have c = M

β− 1
i−3

i . Moreover, any moment Mn

will be approximately related to the reference moment Mi by a power law of the form
Mn ≈ anM bn

i . This is very similar to the single-moment normalization framework in

which Mn = ξn

ξ
1+β(n−i)
i

M 1+β(n−i)
i . In fact, the two frameworks will be perfectly equiva-

lent if an and bn are chosen such that an = ξn

ξ
1+β(n−i)
i

M 1+β(n−i)−bn
i . The main difference

is that in the general N -moment normalization framework, the parameters an and bn

are fitted to the data instead of being determined by the reference moment, which
means that the constraint above might not necessarily be satisfied.
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N = 2 and J = 1: if two moments Mi1 = Mi and Mi2 = Mj are known, the
characteristic drop size is

Dc =
(

Mi2

Mi1

) 1
i2−i1

,

and

Mn = an

(
Mi2

Mi1

)bn

= anDbn(j−i)
c ,

which is identical to the two-moment normalization if an = Ncξn

(
Mj

Mi

) n+1
j−i −bn

.

N = 3 and J = 1: if three moments Mi1 , Mi2 and Mi3 are known, we have

Dc =
(

Mi1

Mi3

Mi2

Mi3

) 1
i1−2i2+i3

,

and

Mn = an

(
Mi2

Mi1

)b1n
(

Mi3

Mi2

)b2n

= anM 1−b1n
i1 M b1n−b2n

i2 M b2n
i3 .

6.5 DSDs and weather radar

The DSD provides statistical information about the raindrops contained in a volume
of air, and consequently, about the targets illuminated by a radar beam. Therefore, the
DSD plays a key role in weather radar. In this section, we briefly review how the DSD
influences quantitative rainfall estimation in weather radar and how the additional
information provided by polarimetric and Doppler radar can be used to estimate DSDs.
This section is intended to be a brief summary rather than an exhaustive review of the
existing literature on the topic.

6.5.1 Radar variables

In the early days, weather radars mostly consisted of single-polarization, single-
frequency systems. The main variable associated to such a conventional system is the
radar reflectivity factor Z , as defined in (6.7). If the radar has Doppler capability, the
mean Doppler velocity, its standard deviation and possibly the full Doppler spectrum
can also be used to provide information about radial wind speeds. Nowadays, many
weather radars have polarimetric (i.e., dual-polarization and Doppler) capabilities,
collecting additional radar variables that can be used for rainfall estimation and DSD
retrieval. Below, the most common variables provided by a single-frequency, polari-
metric weather radar are listed, together with their expressions as a function of the
DSD. For a more detailed description of polarimetric radar, the reader is referred
to [48,85].
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Radar reflectivity at horizontal/vertical polarization
Equation (6.7) provides the theoretical reflectivity factor Z in the Rayleigh limit
associated with a given DSD. However, in the general case (i.e., including the non-
Rayleigh scattering regimes), the radar reflectivity at horizontal (Zh) and vertical
(Zv) polarizations (in mm6m−3) are defined as:

Zh = 106 λ4

π5|K |2
∫ ∞

0
σbh(D)N (D)dD, (6.38)

and

Zv = 106 λ4

π5|K |2
∫ ∞

0
σbv(D)N (D)dD. (6.39)

whereλ (cm) is the radar signal wavelength, K (–) is the dielectric factor and σbh(D)
and σbv(D) (cm2) are the backscattering cross sections of a drop of diameter D at
horizontal and vertical polarizations (e.g. [48,85]).

Note that in the Rayleigh regime, σbh/v(D) is proportional to D6

λ4 with a factor related to
the non-sphericity of raindrops [85, Equation (5.1)], which makes the above equation
consistent with (6.7).

Differential radar reflectivity
The differential radar reflectivity ZDR (dB) is defined as

ZDR = 10 log10

(
Zh

Zv

)
= 10 log10

⎛
⎜⎜⎝

∫ ∞

0
σbh(D)N (D)dD

∫ ∞

0
σbv(D)N (D)dD

⎞
⎟⎟⎠ . (6.40)

Since N (D) = NT f (D), the differential reflectivity depends on the shape of the DSD,
but not on the number concentration of drops. At non-vertical incidence angles, ZDR is
positive for oblate particles such as raindrops, negative for prolate particles, and zero
for spherical particles. This makes it a very useful variable for retrieving information
about the (reflectivity-weighted) axis ratio of raindrops, characteristic drop sizes and
orientations [124].

Copolar cross-correlation coefficient
The copolar cross-correlation coefficient ρhv (–) is defined as

ρhv =

∣∣∣∣∣∣∣∣∣

∫ ∞

0
S∗

hh(D)Svv(D)N (D)dD

[∫ ∞

0
S2

hh(D)N (D)dD
∫ ∞

0
S2

vv(D)N (D)dD

]0.5

∣∣∣∣∣∣∣∣∣
, (6.41)
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where Shh(D) and Svv(D) (cm) denote the backscattering amplitudes in the
horizontal/vertical polarization and ∗ is the complex conjugate operator.

Although ρhv is not directly related to rainfall estimation, it is sensitive to particle
axis ratio and shapes and can therefore be very useful for identifying regions with
mixed precipitation types, such as a combination of rain and ice [125]. Low values of
ρhv are often indicative of heterogeneous hydrometeor types in the sampling volume,
or the presence of non-meteorological scatterers.

Specific differential phase shift
The specific differential phase shift on propagation Kdp (◦km−1) is defined as

Kdp = 18λ

π

∫ ∞

0
�[Fhh(D) − Fvv(D)]N (D)dD (6.42)

where �[Fhh/vv(D)] (cm) denotes the real part of the forward scattering amplitude
in the horizontal(vertical) polarization [48].

The specific differential phase shift Kdp is influenced by the concentration, shape, and
orientation of drops. Because Kdp is retrieved from a phase measurement, it has several
interesting advantages over amplitude measurements, including a higher immunity to
additive noise [126]. Compared to reflectivity, Kdp, therefore, tends to be relatively
unaffected by radar miscalibration, attenuation, and partial beam blockage. The main
disadvantage is that calculating Kdp requires significant signal processing and spatial
averaging to filter out noise, which can be challenging in low-to-moderate intensity
precipitation (due to limited phase variations).

6.5.2 Rain rate retrieval from radar

The rain rate R (6.10) is a variable of interest for many hydrological and natural hazard
applications. Since the early days of weather radar, it has been empirically established
that Z (in mm6 m−3) and R (in mm h−1) appear to be linked by a power law [92], such
that

Z = aRb. (6.43)

The famous Marshall–Palmer relationship is given by Z = 200R1.6 [127]. However, a
variety of different values for the prefactor a and exponent b have been proposed in the
literature. For example, Battan [47] lists 69 different sets of prefactors and exponents.
The different DSD normalization frameworks (see Section 6.4) also contributed to
establishing different power law models for linking Z to R. The single-moment nor-
malization framework gives an explicit link between the prefactor a and the sixth-order
moment of the normalized DSD template g(x), as well as between the exponent and the
normalization parameter β [64]. The double-moment normalization framework gen-
eralizes this approach by providing explicit links between the parameters a and b, on
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the one hand, and the two chosen reference moments and double-moment-normalized
DSD template g(x), on the other hand.

Various rainfall estimation algorithms for polarimetric radar measurements have
also been proposed. The literature on this topic is vast and an exhaustive review
is beyond the scope of this chapter. The studies by Bringi and Chandrasekar [48]
and Chen and Chandrasekar [128] provide a good overview of the most common
techniques. The latter distinguishes between four main types of (power-law) estimators
known as R(Zh), R(Zh, ZDR), R(Kdp), and R(Zdr , Kdp) with each estimator having its own
advantages and disadvantages depending on rain rate, type of rain, radar resolution,
calibration, and measurement uncertainties. For example, at X-band, Zh and ZDR are
known to be severely affected by attenuation which makes Kdp a good choice for
estimating rainfall rates in heavy rain. In light rain, on the other hand, ZDR and Kdp

will be of little use for rain rate estimation as they approach zero.

6.5.3 DSD retrieval from radar

Thanks to the additional variables provided by polarimetric radars, it becomes possi-
ble to retrieve information about the DSD in the atmosphere. Retrievals based on the
reflectivity factor at horizontal polarization, differential reflectivity, and specific dif-
ferential phase are the most common choices because of their natural links to raindrop
concentrations, sizes, and shapes. However, since the number of available indepen-
dent radar variables is limited, relatively simple parametric DSD models with two or
three degrees of freedom must be assumed (see Section 6.3.1). For example, if the
exponential distribution is used, N0 and� can be retrieved from Zhh and ZDR [9,124].
Zhang et al. [102] proposed a retrieval based on two moments Zh and ZDR and a
gamma DSD model where μ and � are constrained by a deterministic relationship.
However, similar to the Z–R relationship, μ–� relationships are known to fluctu-
ate with rainfall type and climatology [129,130], which adds additional uncertainty
and modeling errors during the retrievals. Alternatively, N0, μ and� can be obtained
directly from Zh, ZDR and Kdp by solving a system of three nonlinear equations. Three-
parameter retrieval methods based on Zh and ZDR and Kdp exist for the normalized
gamma model [82,120] and for the double-moment normalization based on a gener-
alized gamma distribution [131,132]. Methods that use ZDR or Kdp must contend with
noise in these variables during light rain [120,131,133].

According to Huang et al. [134], there has not yet been any comprehensive study
about the added value of including Kdp in DSD retrievals. One of the challenges in
retrieving DSDs from polarimetric radar is that most radar quantities relate to high-
order moments of the DSD (e.g., 4.6 for Kdp and 6 for Z) [132], which introduces a lot
of uncertainties for the lower-order moments. ZDR is an exception to this because it
relates to a characteristic size (i.e., the ratio between the seventh- and the sixth-order
moment [132]) and is, therefore, independent of concentration. However, because
it involves two high-order moments and is difficult to measure and calibrate accu-
rately, ZDR often cannot be used to precisely retrieve the lower-order moments of the
DSD either. Nevertheless, progress has been made in lower-order moment estimation
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through the use of climatological parameters for the generalized gamma distribution
used with the double-moment normalized DSD [132].

In recent years, several interesting data-driven retrieval methods based on
machine learning or non-linear mappings between radar observables and DSDs have
also been proposed [135–139]. These methods, when combined with estimates of
natural variations for a given input, can provide non-parametric, probabilistic DSD
retrievals and associated confidence intervals. Data-driven methods are an intriguing
alternative to parametric DSD retrievals as they make fewer (or different) modeling
assumptions and can handle the non-linearity of the involved equations at a relatively
low computational cost. However, they require large amounts of data for proper train-
ing and suffer from the same intrinsic limitations as parametric methods (i.e., limited
information about low-order moments in radar observations and large measurement
uncertainties).

The Doppler spectra obtained from vertically pointing radars also provide valu-
able information on the size, shape, and fall velocity of precipitating particles, which
can be used to retrieve the raindrop size distribution. Several DSD retrieval methods
for vertically pointing radars at various frequencies have been developed and evalu-
ated [60,140,141]. Most retrieval methods exploit the fact that the terminal velocities
of raindrops tend to be well constrained by their diameters (see (6.8)). The shape
and width of the Doppler spectrum (i.e., the distribution of spectral reflectivity as a
function of the radial velocity) at vertical incidence can, therefore, be used to retrieve
empirical drop size distributions. The method assumes negligible (or known) vertical
wind speeds, and limited turbulence.

Finally, it should be mentioned that other, more elaborate DSD retrieval methods
that require special types of radars or measurements have been proposed, such as
double frequency [142], triple frequency [143], and/or Doppler power spectra [144].
These methods go beyond the scope of this chapter.

6.6 DSDs in numerical weather prediction models

Atmospheric models such as those used for numerical weather prediction (NWP) are
run at application-specific spatial resolution, which is referred to as the grid spac-
ing. Atmospheric processes that occur on scales smaller than the grid spacing are
called “sub-grid” processes, and their effects must be accounted for using a mod-
elling scheme that parameterizes the process effects. For example, most atmospheric
models are run at grid spacings at which individual convective cells are not resolved;
yet the sub-grid effects of convection are important and must be parameterized using a
convection scheme [145,146]. Likewise, microphysics schemes parameterize the sta-
tus and physical effects of particles present in the atmosphere, such as cloud particles,
raindrops, and snowflakes. While recent increases in computing power have allowed
for some processes, like convection, to sometimes be explicitly modeled without the
use of parameterizations, microphysics schemes are still required for NWP, simply
because there are far too many particles in the atmosphere to explicitly model them
all with available computational power [147].
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Microphysics schemes use models of the size distributions for the different types
of particles they represent, including for representing the DSD and correspondingly
the rain properties in the model. The job of a microphysics scheme is to keep track
of these particle size distributions and use “process rate equations” to determine how
the size distributions change in response to physical processes [147]. For the DSD,
these processes include drop coalescence, collisions, evaporation, and drop breakup
[17,147]. In this section, we briefly discuss some of the broad issues surrounding
treatment of DSDs in model microphysics schemes, citing just some of the many
specific scheme implementations that are available. For a more complete examination,
the reader is referred to recent reviews [147–149].

Microphysical parameterizations can be broadly divided into bulk, bin, and
Lagrangian schemes. The majority of microphysical parameterizations today are
bulk schemes [148,150], in which the DSD is represented by a small number of
key DSD moments that describe bulk DSD properties, such as drop mass or num-
ber, and the DSD is assumed to follow a simple parametric form such as the
exponential or Gamma distribution, the properties of which depend on the values
of the chosen DSD moments [147]. The first such schemes were “one-moment,”
in that they modeled DSDs using predictions of a variable related to a single
DSD moment, typically the particle mass which is proportional to the third-order
moment [147]. In one-moment schemes [150–152], other DSD model compo-
nents, such as number concentration, are kept fixed. As an example, in a scheme
that uses the exponential DSD model, it is common to allow the slope parame-
ter to vary while assuming a constant concentration parameter [151]. One-moment
schemes are computationally efficient, but contain strong assumptions that can intro-
duce errors into DSD representations [153]. More complex “two-moment” schemes
[154–157] use predictions of two quantities, typically the particle mass and particle
concentration, and allow for more realistic DSD parameterization [147,149,153].
More recent schemes use predictions of three [158–162] and even five [163]
moments.

In contrast to bulk schemes, spectral or bin microphysics parameterizations
[164,165] explicitly model the DSD using discrete bins of raindrop size. Bin schemes
are computationally expensive and mostly used for idealized studies of microphysical
processes [147,148]. Because they are assumed to have less uncertainty than bulk
schemes, bin microphysics schemes are often used to provide benchmark results with
which to test other schemes [166,167]. However, it should be noted that given the dif-
ficulty in actually observing microphysical processes for comparison with bin or bulk
schemes, there is a lack of evidence that bin schemes consistently perform better than
bulk schemes [147]. A third and more recently developed scheme type is Lagrangian
microphysics schemes [168,169], in which “super particles” that represent a popula-
tion of actual particles are followed through the flow while their properties, including
their number, are tracked; sampling from these super particles can then provide an
estimate of the DSD [147]. Lagrangian schemes have similar computational expense
as bin schemes [147,170], but have the advantage over bin schemes that they are
not affected by “broadening” of particle distributions caused by numerical diffu-
sion [171]. Overall, the choice of which microphysics scheme type and complexity to
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use is heavily dependent on the fidelity required for the application and the available
computational power.

Microphysics process rate equations are used to represent modeled microphysi-
cal processes. The equations used depend on the type of scheme, but, in all cases, the
rates depend on particle size [148]. The main processes that are modeled for the DSD
include droplet nucleation, in which drops form around cloud condensation nuclei;
droplet growth, which occurs via vapor diffusion and releases latent heat; drop colli-
sions, which can lead to coalescence and drop breakup; and sedimentation, the “falling
out” of raindrops [148]. Microphysics schemes are notoriously complex and uncer-
tainties exist in their components, from the representation of particle distributions to
the process rate equations [147,148]. For the DSD, a particularly challenging area of
uncertainty is the parameterization of raindrop coalescence and breakup [147]. Micro-
physical uncertainties are compounded by difficulties in observing microphysics
processes, whether in the laboratory, in situ, or using remote-sensing techniques such
as radar [147]. When it comes to radar, studies that estimate microphysical proper-
ties either using polarimetric data [26,131,132,136,172,173] or vertically pointing
Doppler radar [174–176] are of particular use in linking observations to specific
microphysical processes [177–179] although uncertainties make quantifying process
rates from radar data challenging [147].

6.7 Conclusions and future directions

Being able to characterize the number and sizes of raindrops is useful in many fields,
including meteorology, hydrology, agriculture, and telecommunications. Drop size
distributions, which contain this information, are the result of many different physical
processes, including drop coalescence, aggregation, breakup, and evaporation. In the
turbulent environment inside a storm, DSDs are constantly changing and evolving,
and exhibit great natural variability. DSDs thus come in a wide variety of shapes
and forms, and vary from storm to storm, over the duration of a storm, with height,
wind properties, and local climatology. No simple model can adequately capture
all possible cases and finding the right balance between goodness-of-fit and model
complexity can be challenging. In this chapter, we have introduced the DSD and
its properties, summarized the most-popular parametric DSD models in use today,
discussed normalized DSD models, and given an overview of the use of the DSDs in
weather radar and microphysics schemes. While writing this chapter, we identified
several outstanding issues related to the measurement, modeling and usage of DSDs
in remote sensing and numerical weather prediction. To conclude the chapter, here we
briefly summarize our main findings together with some recommendations for future
progress on this important subject.

In terms of measurements, it is clear that we need more precise disdrometers
capable of accurately measuring DSDs in a unit reference volume, both near the
ground and the aloft. These disdrometers should have the ability to measure DSDs
at small temporal scales over large sampling resolutions, without restrictions on the
lower/upper drop diameter that can be resolved. A large sampling area is needed to
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reduce measurement uncertainties during low rainfall rates, ensure that the largest (and
rarest) raindrops are sampled as well as possible, and increase the spatial representa-
tiveness of DSDs for remote-sensing applications [180]. A high temporal resolution
is needed to study microphysical processes and better quantify the space–time vari-
ability of rain. The ability to resolve all drop sizes, including very small ones, is
crucial for reducing measurement biases and uncertainty when analyzing, fitting and
comparing parametric DSD models [22]. In addition to the existing sensors, new
3D video disdrometers capable of directly measuring the DSD in a given volume of
air by taking a three-dimensional snapshot should be developed. Directly measuring
the DSD inside a volume instead of inferring it from surface measurements is tech-
nologically challenging but would be very valuable for remote-sensing applications.
Such 3D sensors would provide a more direct and substantially more accurate way
to estimate state variables such as number concentrations, liquid water content, and
reflectivity without having to make any assumptions about the fall velocities of rain-
drops. This last point is particularly important, as accurately measuring fall velocities
of raindrops at the surface is difficult and, usually, many drops with abnormally small
or large fall velocities need to be discarded during data processing [54,181].

In terms of DSD modeling, there are different improvements that can still be
made. The first is to consider models that explicitly take into account the lower
and upper bounds on the physically possible drop diameters. These bounds have
been deliberately ignored in this chapter. However, it is clear that the truncation
of the spectrum between Dmin and Dmax significantly affects the calculation of DSD
moments. In addition to being truncated, most disdrometer data also tend to be binned,
which further complicates the problem and detrimentally impacts modeling, fitting,
and normalization of DSDs. Models that better accommodate these issues should be
considered. However, we note that more elaborate and precise models come at the
cost of greater mathematical complexity and lower practical usefulness since often,
no closed-form solutions will be available. Consequently, such models should only
be considered for specific applications where a more detailed description of the DSD
is needed. If, on the other hand, the primary goal is to only reproduce a few key bulk
quantities such as liquid water content, rainfall rates, or reflectivity factor without
consideration for actual DSD shapes, additional complexity may not be necessary or
desirable.

In terms of DSD normalization, the open question remains: what is the minimum
amount of information (i.e., degrees of freedom) required to adequately describe the
natural variability of the DSD? For example, double-moment normalization attempts
to approximate any DSD using two of its moments and a template function g(x) which
is assumed to be universal and invariant. If this assumption holds, the implications
are profound, because then two DSD moments would contain enough information to
retrieve the entire DSD and all its moments. Given that some DSD moments are easier
to measure than others, this idea is attractive, and it has been tested for retrieval of the
DSD from radar data [131,132] and for correcting DSDs measured by instruments
that truncate the distribution [24]. However, the assumption requires the template
function to be invariant with respect to time, spatial scale, height, type of rain, and
so on. While there are encouraging results that suggest the assumption may hold
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well enough for practical purposes [116], one has to be aware of the fact that some
DSD variability remains uncaptured, even after double-moment normalization [116].
More work is needed to understand and explain the reasons behind this remaining
variability, and develop new normalization techniques that are both accurate and
practical to implement.

Despite the many advances that have been made in numerical weather modeling,
microphysics schemes still sometimes rely on empirical thresholds and simplified
assumptions [147,182]. There also remain important gaps in physics knowledge that
affect representations of the DSD in weather models; in particular regarding uncer-
tainties in quantifying raindrop coalescence and breakup [147] and in the effects of
aerosols [148]. These uncertainties are compounded by the difficulties inherent in
observing microphysical processes [147]. Advances in observations of microphys-
ical processes could lead to better-constrained rate equations. The development of
new techniques such as Lagrangian approaches to microphysics parameterization
and schemes that incorporate a measure of uncertainty should be encouraged [147].
We highlight that the use of DSD normalization in microphysics schemes shows
promise [114,183] and should be further investigated.

Acronyms and abbreviations

dB decibels
DPR dual-frequency precipitation radar
DSD drop size distribution
GPM global precipitation measurement (mission)
LWC liquid water content
MP Marshall and Palmer
NWP numerical weather prediction
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