
The Relation Between Words and Definitions in Combined
Word-Sentence Space

June 23, 2021

Abstract
Methods for learning vector space representations
of words have yielded spaces which contain seman-
tic and syntactic regularities. These regularities
mean that vector arithmetic operations in the la-
tent space represent meaningful and interpretable
relations between words. These word vectors have
been so successful in capturing such relations, as
well as transfer between domains almost seamlessly,
that they have become central in the foundation of
modern natural language processing.

There have been multiple proposals for extend-
ing these methods to sentences and documents, as
well as entirely new approaches based on modern
sequence models. So far, none of these methods
have demonstrated the same kind of widespread
applicability as word vector methods, instead be-
ing constrained to a single domain. The question
that emerges is then whether these document vec-
tor methods yield spaces with the same kind of reg-
ularities as are observed in the word vector models.

This work focusses on whether these spaces en-
code a particular relation, that between a word and
its definition. Since most of these methods allow
only for a conversion from sentence to vector and
not the reverse, the problem has been phrased as a
ranking problem over a set of candidate words. In
the strict case where the relation is assumed to be
linear as with the word vectors this yields a model
which ranks the correct vector first 26.6% of the
time, with a median rank of the correct answer of
19 out of 2000 options. Relaxing this requirement
and using a 3 layer Multi Layer Perceptron yields
an improvement in this metric, predicting 37.8%
correct, and improves the median rank to 3. The
performance of these models suggests that words
and sentences can be naturally thought of as occu-

pying a single space.
The results in this work suggest that it may be

possible to generate correct definitions of words in
a way that comes very close to being unsupervised,
needing only a mean difference between words and
definitions. When this was attempted, however, the
decoder ended up converging to a fixed output.

1 Introduction
Vector representations of words are a foundational
element of most modern approaches in varous tasks,
such as information retrieval (Galke, Saleh, and
Scherp 2017), sentiment analysis (Yu et al. 2017),
document classification (Kusner et al. 2015), and
question answering (Zhou et al. 2015), where they
are used as the input features for more complex
models. Much of the early research relied only on
angles or distances between vectors as a way to ex-
amine and report the quality of their models.

However, recently a new evaluation method has
been introduced which takes the entire vector dif-
ference between embeddings into account. The first
ones to introduce this idea were Mikolov, Yih, and
Zweig 2013 who demonstrated that word vectors
could be used to solve analogies. These analogies
took the form of equations such as ”king” - ”man”
+ ”woman”, where each word is replaced by its re-
spective word vector, which results in a vector very
close to that of ”queen”, examples of this can be
seen in figure 1. By designing their word embed-
ding model to perform well on this task they man-
aged to correctly answer 40% of the analogies they
created, provided in a dataset named SemEval-2012
Task 2 questions.

This work was improved upon by Pennington,
Socher, and Manning 2014 who examined the

1

Figure 1: GloVe vectors contain linear substructures that capture the relations between words, figures
from Pennington, Socher, and Manning 2014.

properties a model must have to create linear
directions of meaning. They make a case for
global log-bilinear regression models, and propose
a least-squares model which is trained on global
word co-occurrence counts. The resulting vectors,
which they call Global Vectors (GloVe), achieve a
75% accuracy on the aforementioned word analogy
dataset, as well as improving on results in word sim-
ilarity and named entity recognition benchmarks.

Word vectors stand as one of the most
widespread and successful cases of transfer learn-
ing, single models often being used across vastly dif-
ferent domains. However, many natural language
processing (NLP) tasks do not concern themselves
with words but rather sentences and documents.
Therefore, ever since word vectors have shown to
be successful in pushing forward the state of the
art in NLP, there has been research into the possi-
bility of extending such techniques to sequences of
words. Such techniques include word vector sum-
marization, in which a document vector is created
by averaging over the word vectors in the docu-
ment. Lately, however, much of NLP has moved
to the Transformer architecture, which is in essence
a feed-forward architecture that has attention lay-
ers which allow for routing information horizon-
tally across the sequence. A particular Transformer
named BERT (Devlin et al. 2018) is often used as
a starting point for many NLP tasks. BERT is
trained to reconstruct sequences of text in which
some words have been masked out, predicting these
masked words is what forces BERT to encode the
structure of language. The set of tasks for which

BERT is used includes the creation of sequence em-
beddings. Sentence-BERT (Reimers and Gurevych
2019) for example uses pre-trained BERT networks
(Devlin et al. 2018) to create sentence embeddings.

While words and sentences are usually consid-
ered separate entities, it is possible to think of
them as part of a single continuum. In encoding
schemes such as the Huffman encoding (Huffman
1952) the most common messages are assigned the
shortest codes, doing so minimizes the average mes-
sage length. In language too, the most common
words are short while uncommon words are longer
on average. But what happens in a language when
a message becomes too rare to express even in a
long word? Such messages are expressed in sen-
tences. The cutoff point between words and sen-
tences varies between languages, with some lan-
guages allowing for the construction of very long
words where others prefer sentences. In light of
this it is possible to consider character sequences of
any length, from the shortest words to the longest
documents, to be part of the same space. If this
is the case, then an embedding method that maps
such sequences into a continuous space may also
show the same kind of linear directions of meaning
as those observed in word vectors.

This work examines the degree to which sev-
eral document embedding techniques are capable
of solving a specific analogy: that between words
and their definitions. The main observations that
are made are i) that all examined document embed-
ding methods are significantly better than chance,
ii) that document embedding methods have gotten

2

better at this task in recent years, and iii) that all
document embedding methods still perform quite
poorly at this task leaving significant room for im-
provement. The performance of these models also
suggests that words and sentences can be naturally
thought of as occupying a single space.

2 Related Work
2.1 Word Vectors
A defining feature of the language models used
in deep learning is their high-dimensional continu-
ous vector representation of words. Such language
models (Bengio et al. 2003; Schwenk 2007) convert
words into real-valued vectors using a lookup ta-
ble, allowing them to be used as input features for
neural networks. The GloVe algorithm has been
designed specifically for the purpose of creating lin-
ear directions of meaning (as in figure 1). It does
this by using a learning objective that ensures the
following equality holds as well as possible:

e(wi−wj)
Twk ≈ p(i|k)

p(j|k)
(1)

where i, j, and k are words in the corpus, wi the
word vector associated with word i, and p(i|k) be-
ing the probability that word i occurs in the context
of word k. This probability p(i|k) is the smoothed
co-occurrence count of words i and k in the train-
ing data set. Smoothing is performed to ensure
that p(i|k) > 0, which accounts for the possibility
of word co-occurrences that are not recorded in the
data. Fixing this relation between the three word
vectors empirically results in an embedding space
that has the desired linear structures.

The GloVe algorithm works by first randomly ini-
tializing two word vectors w and w̃ and two biases
b and b̃ for each word in the corpus. The word
coocurrence counts are aggregated into a matrix
Xi,j which contains the amount of times word i oc-
curs in the context, a fixed width window, of word
j. Then the embedding vectors are optimized using
AdaGrad until they converge, using the following
optimization objective:

L =

V∑
i,j=1

f(Xi,j)(w
T
i w̃j + bi + b̃j − logXi,j) (2)

where V is the number of words in the corpus,
and f(x) is a weighting function that satisfies three
conditions i) f(0) = 0, ii) it is non-decreasing, iii)
it is relatively small for large values of x. As a
result of empirical evaluation the GloVe authors
chose this function to be:

f(x) =

{
(x
100)

3
4 if x < 100

1 otherwise
(3)

This process yields two sets of word vectors, W
and W̃ which are then added ŵi = wi + w̃i in
order to obtain the final word vectors (section 4.2
of Pennington, Socher, and Manning 2014).

2.2 Transformers
The Transformer (Vaswani et al. 2017) is a neural
network architecture that processes an entire input
sequence in parallel, this is in contrast to recurrent
neural networks which process the input sequence
one step at a time. Transformer encoders consist
of a stack of self-attention layers interspersed with
fully connected layers. These self-attention layers
exist to route information from one part of the se-
quence to another, while the fully connected layers
transform the inputs.

Self-attention layers receive a sequence of inputs
xi,j , collectively represented as Xj , where i rep-
resents the position in the sequence and j is the
position in the layers of the transformer. This
input is transformed into a sequence of queries
Qj = XT

j W1,j , keys Kj = XT
j W2,j , and values

Vj = XT
j W3,j . These operations are performed

once for each head of the attention mechanism, af-
ter which the attention head is evaluated as follows:

Aj = softmax(
QT

j Kj√
dk

)Vj (4)

Where dk is the dimensionality of the key vec-
tors ki,j . The output of the attention head is then
added to the input sequence to create the next ac-
tivations Hj = Xj + Aj , all attention heads are
added here in parallel. After the evaluation of the
attention mechanism a fully connected layer is ap-
plied to allow for some extra information processing
Xj+1 = Hj+WFC,jHj . These two operations, the
self-attention layer and the fully connected layer,

3

are then applied another 11 times to obtain the out-
put sequence, which has the same length and dimen-
sionality as the input sequence. The parameters are
not shared between layers but they are shared for
each of the elements in the sequence. For this rea-
son Transformers can be seen as a generalization of
Convolutional Neural Networks where the kernel
is not restricted to a local area, but rather learns
which sequence elements are relevant at any point.

2.2.1 BERT

BERT (Devlin et al. 2018) is a transformer network
(Vaswani et al. 2017) which achieved state-of-the-
art results on several language processing tasks, in-
cluding the General Language Understanding Eval-
uation (GLUE) benchmark (Wang et al. 2018),
and the Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al. 2016). It was trained
on a large corpus of text using two unsupervised
tasks. The first task was masked language model-
ing in which a percentage of the tokens in the input
sequence is masked out, BERT is then tasked to
predict the masked tokens. In this prediction the
model can make use of both the information pre-
ceding as well as the information succeeding the to-
ken. This bidirectional nature of the model makes
it strictly more powerful than the unidirectional
alternatives. The second task was Next Sentence
Prediction (NSP) in which BERT is presented with
two sentences with the goal to predict whether the
second sentence succeeded the first sentence in the
corpus. This second task is particularly important
for tasks which require knowledge on the relation
between sentences, such as Natural Language Infer-
ence (NLI) and Question Answering (QA). BERTs
architecture consists of 12 (base) self-attention lay-
ers which contains 110 million parameters, or 24
(large) layers containing 340 million parameters,
and in each of the tasks is trained as a regres-
sion model. RoBERTa (Liu et al. 2019) showed
that making some modifications to the pre-training
protocol could improve the models overall perfor-
mance.

2.3 Sentence BERT
Because training a document embedding model
from scratch is expensive it is useful to take a trans-
fer learning approach. Finetuning a pretrained lan-

guage model allows levaraging the knowledge of lan-
guage already present in those models. This ap-
proach was taken by Reimers and Gurevych 2019
who used the afforementioned BERT as the basis
for a model, called Sentence-BERT (SBERT), that
achieved state-of-the-art results on common Seman-
tic Textual Similarity (STS) tasks. One of the chal-
lenges of using BERT in STS tasks is that find-
ing the semantic similarity of any pair of sentences
requires concatenating the two sentences and per-
forming a full evaluation of the BERT model, none
of this computation can be reused.

This means that in order to find the sentence
pair with the highest similarity n(n − 1)/2 evalua-
tions are required, where n is the number of sen-
tences. Instead SBERT evaluates each of the sen-
tences separately and uses the mean of the outputs
of each sentence as the vector embedding of the
sentence. These vector embeddings are then com-
pared using the cosine similarity, doing so reduces
the time complexity of the model from O(n2) to
O(n) while achieving the same performance.

To create a single vector from a sentence the out-
puts of the final layer of BERT are averaged. This
averaging of the output of BERT produces worse
sentence representations than averaging GloVe vec-
tors. BERT therefore has to be finetuned before it
can be used for this task. The finetuning process
involves the use of a dataset containing labeled sen-
tence pairs. Each of the two sentences in the sen-
tence pair is separately encoded by using BERT
and its outputs are mean pooled. The two vectors
are then compared by computing the cosine similar-
ity between them. The optimization process drives
sentences considered ’semantically similar’ in the
dataset closer together while driving those that are
considered dissimilar further apart. This finetuned
BERT model is called Sentence-BERT or SBERT.

3 Creating and Evaluating
Sentence Vectors

This section highlights the models that are being
examined, as well as the criteria used in this ex-
amination. Conceptually, this section can be split
into three parts. First, section 3.1 explains how the
sentence embeddings are created. Second, sections
3.2 and 3.3 detail how these embeddings are evalu-

4

ated and how words and their definitions are associ-
ated. Finally, section 3.4 covers a method which is
used to attempt to recover the text from the embed-
dings. Together these three steps form a pipeline
that could take a definition as an input, use the de-
scribed methods to first create an embedding, then
to predict the embedding of the associated word,
and then decode this embedding to obtain the text
of the word.

3.1 Creating Sentence Vectors
GloVe vectors are only created for words, but they
are used in one of the most popular ways of cre-
ating sentence vectors. The most straightforward
process for creating sentence vectors is to compute
an unweighted average of the word vectors of the
words in the sentence.

This means that the word vectors belonging to
the words in the word-definition pairs are simply
reinterpreted as a single-word sentence vector. The
definition consisting of m words, whose word vec-
tors are individually labelled wi, are then converted
into a single vector s by averaging them, as follows:

s =
1

m

m∑
i=1

wi (5)

This vector s is taken to represent the sentence
as a whole.

Sentence-BERT already performs this averag-
ing procedure internally. Therefore transforming
the word, definition pairs into sentence vectors is
done by separately passing the word and definition
through SBERT.

3.2 Evaluation of Linear Directions
of Meaning

Word vector representations are known to have
many interesting structures contained in them. A
key property of word vectors is that they tend to
contain linear relations between concepts in a way
that transfers between words (as seen in figure 1).

The question is then whether similar structures
exist in sentence vectors. To this end the pairs
of words and definitions were transformed to word
vectors for words wi and sentence vectors for defi-
nitions si, with i ∈ [1, n].

If there does exist a linear relation between the
words and definitions, then the difference vector di

between the word vector wi and the definition vec-
tor si of its definition would be roughly the same
for all these pairs. In other words:

di = wi − si (6)
with ∥di − dj∥ < ε for all i, j (7)

For this to be the case the length of the differ-
ence vectors separating words from their definitions
should be the same too, and different from that of
random word vector pairs.

| ∥di∥ − ∥dj∥ | < ε for all i, j (8)

Additionally, all these difference vectors should
be pointing in the same direction. This can be
measured by comparing the difference vectors to
the mean difference vector d̂ using the cosine simi-
larity.

d̂ =
1

n

n∑
i=1

di (9)

3.3 Predicting Words from Their
Definitions

If the relation between word vectors and their as-
sociated definition vectors is similarly encoded in a
linear direction in the document vector space, then
the mean difference vector can be interpreted as
containing the concept “the definition of”. Adding
this mean difference vector to the definition vectors
would then approximately yield the word vectors.
This means that:

wi ≈ si + d̂ (10)

Because the embeddings obtained from SBERT
can not be turned back into words, the evaluation
of the prediction accuracy is done by selecting the
word whose word vector has the highest cosine sim-
ilarity with the predicted word vector.

While word and sentence vector models are of-
ten designed specifically to have linear directions

5

of meaning, it is possible that such models have ad-
ditional nonlinear structure. In order to uncover
these structures, and to improve performance, a
nonlinear regression model is used. This nonlinear
regression model (NRM) is trained to predict the
difference vector between the word and definition
vectors as in the following formula:

w = s+NRM(s) (11)

This word vector w is then tested against the
ground truth ŵ using the cosine embedding loss.

3.4 Recovering Text from the Em-
beddings

So far it has been explained how it is possible to
produce an embedding vector from a piece of text,
and how to associate the embedding vectors of a
word and its definition. Unfortunately, such an as-
sociation requires that both the words and their
definitions are already known. This leads to the
question of whether the text can somehow be re-
covered from these embedding vectors. If this were
possible then it would potentially enable the gener-
ation of a word from its definition and vice versa.

This would require a model capable of generat-
ing text from such an embedding e, estimating the
distribution:

p(wn+1|e, w1, ..., wn)

Where wi represent the words in the text. While
such decoder models are hard to come by in modern
natural language processing, much work has been
dedicated to a related model type. Causal Lan-
guage Models (CLM) predict the probability of the
next word in a sequence without relying on some
embedding, in other words they approximate the
following distribution:

p((wn+1|w1, ..., wn)

Such CLMs have also proven to be very adapt-
able through finetuning and have therefore been
used as a basis for many applications. Perhaps,
then, it could be possible to finetune a CLM model
to perform the task of decoding a sentence embed-
ding vector.

For this purpose GPT-2 was chosen. Normally
the input GPT-2 receives consists of a sequence of

vectors each representing a word or word segment,
this input is then used to predict the next word or
word segment in the sequence. In this case, how-
ever, the first element of each input sequence given
to GPT-2 is the embedding e of the full text cre-
ated using SBERT. GPT-2 is then finetuned to re-
produce the text that SBERT used to create the
embedding e.

4 Experiments
4.1 Evaluation
To facilitate the aim of examining the relation be-
tween words and their definitions an english dic-
tionary was used as a source for word-definition
pairs1. The data is cleaned by first removing all
punctuation, a After removing the word-definition
pairs which contain words not available in the
GloVe model this dictionary yielded a set of n =
10161 pairs of words and definitions. These word-
definition pairs form the primary way of evaluating
the ability of the various models to encode higher
level concepts. Each of the models is used to pre-
dict both words from their definitions as well as
the inverse. To ensure that the results are stable
the prediction is done using 5 fold cross-validation,
the reported results are the average of these. This
means that the models are evaluated on 2123 word-
definition pairs. To determine whether a prediction
of a word vector is correct, the predicted word vec-
tor is compared to the word vectors for each of the
words in the validation set. If the word vector that
is closest to the predicted word vector corresponds
to the correct word, then the prediction is consid-
ered correct. The same holds for the reverse, where
definition vectors are predicted from the word vec-
tor belonging to the defined word. This is naturally
extended to correct-at-k which considers whether
the correct vector is in the top k closest vectors.

4.2 Training details
The GloVe vectors used and are included in the
gensim package for python2.

The 3 layer MLP used in conjunction with the
embeddings generated by the pretrained trans-

1https://github.com/adambom/dictionary
2https://radimrehurek.com/gensim/

6

https://github.com/adambom/dictionary
https://radimrehurek.com/gensim/

Correct at 1 5 10 median rank MCS MSE
Mean difference vector GloVe 50d 7.9± 0.65% 15.8± 1.4% 20.4± 1.6% 175± 17 0.34± 0.25 0.38± 0.18
Mean difference vector GloVe 100d 11.0± 0.4% 19.3± 1.2% 23.7± 1.3% 148± 11 0.27± 0.22 0.21± 0.10
Mean difference vector GloVe 200d 15.7± 0.9% 26.0± 0.9% 31.8± 1.0% 81± 7 0.26± 0.19 0.16± 0.06
Mean difference vector GloVe 300d 17.7± 1.1% 28.6± 1.1% 33.7± 1.4% 68± 9 0.27± 0.17 0.14± 0.04
GloVe 300d 3.8± 0.4% 6.8± 0.5% 8.4± 0.5% 423± 16 0.06± 0.21 0.17± 0.05
RoBERTa base NLI STSb 768d 22.8± 1.0% 34.6± 0.4% 39.5± 0.7% 38± 3 0.42± 0.19 0.55± 0.18
3 layer NN + RoBERTa base NLI STSb
768d

28.7% 42.5% 48.5% 11 0.49 0.36

distilRoBERTa base paraphrase 768d 26.6± 0.9% 39.4± 0.9% 44.7± 1.1% 19± 2 0.43± 0.14 0.11± 0.03
3 layer NN + distilRoBERTa base para-
phrase 768d

37.8% 52.2% 58.6% 3 0.44 0.07

Table 1: Percentage of words correctly predicted from their definition vectors through various methods.
Followed by the median rank of the correct answer, and three distance metrics between the prediction
and the answer, Mean Absolute Error (MAE), Mean Cosine Similarity (MCS), and Mean Squared Error
(MSE). 2000 words were available to choose from.

former models has a total of 163600 parameters as a
result of the input and output layers containing 768
dimensions and the two hidden layers having 100 di-
mensions each Each of the hidden layers of the MLP
uses the ReLU activation function. This MLP was
trained on the word-definition pair dataset with a
80-20 train-test split. To compare the predicted
output of the network with the ground truth, mean
squared error loss was used. The training consisted
of 100 epochs with a learning rate of 0.0001 using
the AdamW optimizer included in PyTorch.

Finetuning GPT-2 was done on the same dataset,
the input was modified as described in section
3.4. The finetuning consisted of 10 epochs with
a learning rate of 0.0001 using the AdamW opti-
mizer included in PyTorch. GPT-2 was separately
finetuned on a much smaller set of only 10 word-
definition pairs for 100 epochs with a learning rate
of 0.0001 using AdamW.

4.3 Results
The results of predicting the word vector from the
definition vector can be found in table 1. The
GloVe model serving as a baseline shows significant
improvement as the dimensionality of the model in-
creases. This improvement, from 7.96% correct-at-
1 and a median rank of the correct answer of 175 to
a 17.71% correct-at-1 and a median rank of 68 does,
however, show that the word-averaging approach of
GloVe seems to have diminishing returns for higher

dimensionality. It can also be seen that within this
model the Mean Absolute Error (MAE) and Mean
Squared Error (MSE) show the same pattern of im-
provement, both decreasing as the dimensionality
goes up, as the correct-at-1 and median rank. A
similar pattern of improvement can be seen in the
Mean Cosine Similarity (MCS) which gets closer to
the optimal point of 1 as the dimensionality of the
embedding increases.

Comparing instead the two transformer-based
document embedding models it can be seen that
the kind of pretraining that is done has a signifi-
cant impact on performance even if the dimension-
ality of the models is the same. Again the MAE
and MSE mirror this improvement, while the MCS
doesn’t seem to be useful. Since the neural network
was trained to maximize the cosine similarity be-
tween prediction and ground truth it was expected
to see an improvement of performance on this mea-
sure. Significant improvement in all metrics can
be made by using a 3 layer fully connected neural
network to predict the difference vector from the
sentence vector. This leads to the observation that
there appears to be additional nonlinear structure
in the embeddings that can be exploited.

The results of the inverse task, that of predict-
ing the definition vector from the word vector, can
be found in table 2. What immediately stands out
is the improvement in performance seen for GloVe
vectors, having a 2.34% improvement for the 50 di-

7

Correct at 1 5 10 median rank MCS MSE
Mean difference vector GloVe 50d 10.3± 0.70% 20.1± 1.3% 25.6± 1.4% 113± 10 0.53± 0.20 0.38± 0.18
Mean difference vector GloVe 100d 14.2± 1.0% 24.9± 0.6% 30.4± 0.7% 99± 3 0.53± 0.17 0.21± 0.10
Mean difference vector GloVe 200d 19.5± 0.9% 31.8± 1.1% 36.9± 1.1% 54± 5 0.42± 0.18 0.16± 0.06
Mean difference vector GloVe 300d 21.3± 1.1% 33.8± 1.4% 38.8± 1.5% 44± 7 0.32± 0.19 0.14± 0.04
RoBERTa base NLI STSb 768d 22.1± 0.6% 33.8± 1.0% 38.7± 0.7% 41± 5 0.39± 0.20 0.55± 0.18
3 layer NN + RoBERTa base NLI STSb
768d

33.0% 50.0% 57.4% 4 0.54 0.33

distilRoBERTa base paraphrase 768d 26.6± 0.9% 39.4± 0.9% 44.7± 1.1% 19± 2 0.43± 0.14 0.11± 0.03
3 layer NN + distilRoBERTa base para-
phrase 768d

37.2% 53.2% 59.7% 3 0.48 0.07

Table 2: Percentage of definitions correctly predicted from their word vectors through various methods.
Followed by the median rank of the correct answer, and three distance metrics between the prediction
and the answer, Mean Absolute Error (MAE), Mean Cosine Similarity (MCS), and Mean Squared Error
(MSE). 2000 words were available to choose from.

mensional model and a 3.38% improvement for the
300 dimensinoal model. These improvements are
mirrored by an increase in the MCS, while the MAE
and MSE remain the same due to the symmetry
between this task and the previous one. The fact
that the GloVe based approaches perform better
on this inverse task is somewhat surprising. In fact
since definition vectors are the average of a group
of word vectors, and since definitions often contain
the same words (such as ’the’), it would be expected
that definition vectors are closer together and there-
fore more difficult to predict. For the trasformer
based models, in contrast, there does not appear
to be much of a difference in performance on this
inverse task. While the median correct-at-k and
median rank measures do not seem to be impacted
much, there is a significant decrease in the MCS.

4.3.1 GloVe Vectors

Taking a more in depth look at the relations
between word vectors and definition vectors cre-
ated using Glove, it can be seen in figure 2 that
the lengths of the difference vectors are relatively
tightly clustered as would be expected from the fact
that the models perform reasonably well. Some-
what surprising is that these vectors do not appear
to all point in the same direction, only having a
few difference vectors that have a greater than 0.7
cosine similarity with the mean difference vector.

Figure 3 further shows that the cosine similarity
between a word vector and its definition vector is

Figure 2: The distribution of the lengths of the
difference vectors (top), and the cosine similarity
between the individual difference vectors and the
mean difference vector (bottom), for 300 dimen-
sional GloVe vectors

8

Figure 3: The cosine similarity between a word vec-
tor and its definition vector (top) , and between a
word vector and a random definition vector (bot-
tom), for 300 dimensional GloVe vectors.

Figure 4: t-SNE plots of the embeddings created
using GloVe. The top plot shows the embeddings
as they are generated, while the bottom plot shows
10 pairs where the mean difference vector has been
added to the sentences.

slightly greater than that between a word vector
and a random definition vector. Strangely enough
this pattern is not visible when comparing the eu-
clidean distance between these two vectors.

These points are further demonstrated by the t-
SNE plot of the embeddings. Which shows that
while these embeddings form somewhat distinct
clusters for the words and sentences, these clusters
merge into one when the mean difference vector
is added to the sentence embeddings. It can also
be seen that the cluster for sentences is slightly
smaller than that for words, which is the result
of the averaging of the individual vectors in the
sentences. Note however, that the fact that the
sentence embeddings are shorter does not impact
the accuracy of the predicions seen in tables 1 and
2, since the predictions use cosine similarity which
does not take the length of the vector into accounts.

9

Figure 5: Plotting the length of the difference be-
tween a word vector and the sentence vector repre-
senting its definition (top), and the difference be-
tween a word vector and a random sentence vector
(bottom). Using the model distilRoBERTa.

Figure 6: The cosine similarity between the indi-
vidual difference vectors and the mean difference
vector (top), and the cosine similarity between a
word vector and its definition vector (bottom). Us-
ing the model distilRoBERTa.

4.3.2 Sentence-BERT

When examining the relation between word embed-
ding and definition embedding it became immedi-
ately clear that there was a much clearer relation in
these embeddings than those created using GloVe.
In figure 5 this can be seen from the fact that the
difference vectors between correct word-definition
pairs have a different distribution than that be-
tween random word-definition pairs.

In figure 6 it can be seen that the cosine similar-
ity between the individual difference vectors and
the mean difference vector is fairly low. This is
somewhat surprising given that the use of this mean
difference vector nonetheless leads to the best per-
formance for predicting both the word vectors from
their definition vectors as well as the reverse. On
the other hand, the distribution of cosine similarites
between the word vectors and their definition vec-
tors is clearly positive for distilRoBERTa, contrast
this with the same plot for GloVe (figure 3) where
the vectors have significantly lower cosine similar-

10

Figure 7: t-SNE plots of the embeddings created
using the distilRoBERTa paraphrase model. The
top plot shows the embeddings as they are gener-
ated, while the bottom plot shows 10 pairs where
the mean difference vector has been added to the
sentences.

ity.
Similar to how the t-SNE plot showed somewhat

distinct clusters for the words and sentences, this
pattern also holds for the distilRoBERTa embed-
dings. And again the clusters merge into one once
the mean difference vector is added to the sentence
embeddings. The improvements the MLP made in
prediction accuracy can be seen in figure 8.

4.4 Finetuning GPT-2

Unfortunately, the results of finetuning GPT-2 do
not show any ability to learn to make use of the
embedding vector to recover a piece of text. In-
stead the finetuning process seems to have caused
the model to learn to ignore this embedding. This
leads the model to either generate random entries
from the set of text sequences it was finetuned on,
or to generate the same sequence each time. Exam-
ples of this behaviour can be seen in 3.

Figure 8: The cumulative percentage of predictions
correct at the given rank for distilRoBERTa and
distilRoBERTa with MLP

Input Output
Diploblastic Bahaism
Defigure Bahaism
Lombard Bahaism

Table 3: Examples of outputs generated by GPT-2.
In each case, the input was embedded using SBERT
after which GPT-2 was given the task of generating
text given said embedding. In this case the model
ended up generating the same output each time.

5 Conclusion
This work explores the relation between words and
their definitions in the embedding spaces of vari-
ous sentence embedding techniques. In doing so
it is shown that these embedding techniques cre-
ate embedding spaces in which words end up lying
close to their definitions. Nonetheless the words
and sentences still make up separate but somewhat
overlapping clusters. By adding the mean differ-
ence vector between the two clusters it is possible
to predict, with reasonable accuracy, the embed-
ding vector of the word from the embedding vector
of the definition and vice versa. This makes it pos-
sible to pick the correct word for a definition from
a pool of thousands of candidates. The best mod-
els for other sentence embedding tasks are also the
models that perform best at embedding words and
their definitions in such a way that these predic-
tions can be made at the highest accuracy. Despite
the good performance these models have when sim-
ply using their embeddings and mean differences,
significant improvement in prediction accuracy can

11

be achieved by training a 3 layer neural network
to predict the difference vector for each word def-
inition pair. Since the best performing model has
a prediction accuracy of 37.8% and a median rank
of 3, a lot of further improvement can be made by
future sentence embedding methods.

The performance of these models suggests that
words and sentences can be naturally thought of
as occupying a single space. This is because if they
were best considered separate then such embedding
techniques would not place words and their defi-
nitions so close together and structured in such a
way that they can be easily associated with one
another. Future sentence embedding techniques
should make use of this fact in the same way that
word embedding techniques such as GloVe have
been designed to explicitly model the relations be-
tween words.

The attempt to finetune GPT-2 to to decode the
embedding vectors created by distilRoBERTa did
not ultimately pan out. It instead ended up con-
verging to outputting either unrelated text of a sin-
gle element of the input set, depending on how long
it was trained for. In encoder-decoder models the
encoder and decoder are usually trained together.
Should such a model be available, the results in
this work suggest that it may be possible to gener-
ate correct definitions of words in a way that comes
very close to being unsupervised, needing only a
mean difference between words and definitions.

6 Discussion
6.1 Hyperbolic Embedding Spaces
The creation of embeddings in machine learning
usually takes place in euclidean spaces. However,
embedding tree-like and hirarchical structures in
a euclidean space while maintaining the distances
between related concepts turns out to be very diffi-
cult. Hyperbolic space can, informally, be thought
of as the continuous version of the tree-like struc-
ture, and is therefore naturally capable of accomo-
dating such an embedding. In fact, it has been
demonstrated that any tree can be embedded in a
hyperbolic space while maintaining distances (Gro-
mov 1987). The use of hyperbolic spaces for cre-
ating word embeddings to embed the structure of
WordNet, which is a dataset containing hirarchi-

cal relations between words, has show that a 5-
dimensional hyperbolic space can better preserve
distances between words than a 200-dimensional eu-
clidean space (Nickel and Kiela 2017).

6.2 Violating Model Assumptions
While GPT-2 has been finetuned for various pur-
poses involving generation of text, reconstructing
text from an embedding generated by another
model appears to be a step too far. A possible
explanation for this outcome stems from some of
the most basic design principles of neural network
architectures.

Consider for example images. Regardless of
whether an object appears in the top left or the
bottom right of an image it should be seen as the
same. This translational symmetry in the data can
therefore naturally be captured in a model by us-
ing a convolutional layer, a layer that applies the
same linear transformation to each part of the im-
age. The inputs and outputs of a convolutional
layer have a translational equivariance as a result
of its design.

This relation between symmetries, parameter
sharing, and equivariance can be seen everywhere
in neural network design. Graph convolutional
networks make use of the permutation symmetry
present in the graphs by sharing the parameters
for each of the nodes, leading to an equivariance
between the graph and its embedding. Recurrent
neural networks make use of the temporal symme-
try present in sequence data, sharing parameters
for all sequence elements and creating an equivari-
ance between the input sequence and the hidden
state of the RNN.

This same temporal symmetry is assumed in
the data received by standard transformers, as evi-
denced by the fact that transformers share param-
eters for all sequence elements. Attempting to con-
dition such a transformer on the output of another
model by prepending a sequence embedding to the
input of the transformer violates the temporal sym-
metry that forms the basis for the design of the
model. This makes it exceptionally difficult for a
transformer to deal with, because by design each
sequence element is treated the same. For this rea-
son it is likely that finetuning a model like GPT-2
for such a task will result in failure.

12

References
Bengio, Yoshua et al. (2003). “A neural proba-

bilistic language model”. In: Journal of machine
learning research 3.Feb, pp. 1137–1155.

Devlin, Jacob et al. (2018). “Bert: Pre-training
of deep bidirectional transformers for lan-
guage understanding”. In: arXiv preprint
arXiv:1810.04805.

Galke, Lukas, Ahmed Saleh, and Ansgar Scherp
(2017). “Word embeddings for practical informa-
tion retrieval”. In: INFORMATIK 2017.

Gromov, Mikhael (1987). “Hyperbolic groups”. In:
Essays in group theory. Springer, pp. 75–263.

Huffman, David A (1952). “A method for the
construction of minimum-redundancy codes”. In:
Proceedings of the IRE 40.9, pp. 1098–1101.

Kusner, Matt et al. (2015). “From word embed-
dings to document distances”. In: International
conference on machine learning, pp. 957–966.

Liu, Yinhan et al. (2019). “Roberta: A robustly
optimized bert pretraining approach”. In: arXiv
preprint arXiv:1907.11692.

Mikolov, Tomáš, Wen-tau Yih, and Geoffrey Zweig
(2013). “Linguistic regularities in continuous
space word representations”. In: Proceedings of
the 2013 conference of the north american chap-
ter of the association for computational linguis-
tics: Human language technologies, pp. 746–751.

Nickel, Maximillian and Douwe Kiela (2017).
“Poincaré embeddings for learning hierarchical
representations”. In: Advances in neural informa-
tion processing systems, pp. 6338–6347.

Pennington, Jeffrey, Richard Socher, and Christo-
pher D. Manning (2014). “GloVe: Global Vectors
for Word Representation”. In: Empirical Meth-
ods in Natural Language Processing (EMNLP),
pp. 1532–1543. url: http://www.aclweb.org/
anthology/D14-1162.

Rajpurkar, Pranav et al. (2016). “Squad: 100,000+
questions for machine comprehension of text”. In:
arXiv preprint arXiv:1606.05250.

Reimers, Nils and Iryna Gurevych (2019).
“Sentence-bert: Sentence embeddings using
siamese bert-networks”. In: arXiv preprint
arXiv:1908.10084.

Schwenk, Holger (2007). “Continuous space lan-
guage models”. In: Computer Speech & Language
21.3, pp. 492–518.

Vaswani, Ashish et al. (2017). “Attention is all you
need”. In: Advances in neural information pro-
cessing systems, pp. 5998–6008.

Wang, Alex et al. (2018). “Glue: A multi-task
benchmark and analysis platform for natural
language understanding”. In: arXiv preprint
arXiv:1804.07461.

Yu, Liang-Chih et al. (2017). “Refining word em-
beddings for sentiment analysis”. In: Proceedings
of the 2017 conference on empirical methods in
natural language processing, pp. 534–539.

Zhou, Guangyou et al. (2015). “Learning continu-
ous word embedding with metadata for question
retrieval in community question answering”. In:
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the
7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pp. 250–259.

13

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

A Figures

Figure 9: In reading order: word vector length in GloVe 300d, definition vector length in GloVe 300d,
word vector length in distilROBERTa, definition vector length in distilROBERTa.

14

Figure 10: Plotting the length of the difference between a word vector and the sentence vector repre-
senting its definition for each of the models. In reading order from the top left: GloVe 50D, GloVe 100D,
GloVe 200D, GloVe 300D, RoBERTa STSb, distilRoBERTa paraphrase.

Figure 11: Plotting the length of the difference between a word vector and a random definition vector
for each of the models. In reading order from the top left: GloVe 50D, GloVe 100D, GloVe 200D, GloVe
300D, RoBERTa STSb, distilRoBERTa paraphrase.

15

Figure 12: Plotting the length of the difference between a word vector and a random different word
vector for each of the models. In reading order from the top left: GloVe 50D, GloVe 100D, GloVe 200D,
GloVe 300D, RoBERTa STSb, distilRoBERTa paraphrase.

Figure 13: Histogram of the cosine similarity between the individual difference vectors and the mean
difference vector. In reading order from the top left: GloVe 50D, GloVe 100D, GloVe 200D, GloVe 300D,
RoBERTa STSb, distilRoBERTa paraphrase.

16

Figure 14: Histograms of the cosine similarity between the individual difference vectors and the mean
word vector in the dataset. In reading order from the top left: GloVe 50D, GloVe 100D, GloVe 200D,
GloVe 300D, RoBERTa STSb, distilRoBERTa paraphrase.

Figure 15: Histograms of the cosine similarity between a word vector and the sentence vector representing
its definition. In reading order from the top left: GloVe 50D, GloVe 100D, GloVe 200D, GloVe 300D,
RoBERTa STSb, distilRoBERTa paraphrase.

17

Figure 16: Histograms of the cosine similarity between a word vector a random sentence vector. In
reading order from the top left: GloVe 50D, GloVe 100D, GloVe 200D, GloVe 300D, RoBERTa STSb,
distilRoBERTa paraphrase.

Figure 17: Histograms of the cosine similarity between a word vector a random different word vector.
In reading order from the top left: GloVe 50D, GloVe 100D, GloVe 200D, GloVe 300D, RoBERTa STSb,
distilRoBERTa paraphrase.

18

Figure 18: Amount of correct predictions at each rank for each model. In reading order from the top
left: GloVe 50D, GloVe 100D, GloVe 200D, GloVe 300D, RoBERTa STSb, distilRoBERTa paraphrase.

19

B Words Predicted from Definitions
The following are a number of words predicted from the given definitions. Predictions made by the model
3 layer NN + distilRoBERTa baseparaphrase. Of the displayed examples 50% were predicted correctly.

Truth Prediction Definition
nucleolar indecisively of or pertaining to the nucleolus of a cell
tost tost imp p p of toss
rearmost rearmost farthest in the rear last
foxhound foxhound one of a special breed of hounds used for chasing foxes
rescuer barque one who rescues
blooming barque the process of making blooms from the ore or from cast iron
cranny rudderless a tool for forming the necks of bottles etc
turkle prosecutable a turtle obs or illiterate
interspace interspace intervening space bp hacket
splotch splotch a spot a stain a daub r browning
drily analgesia see dryly thackeray
adulterate adulterate to commit adultery obs
onwards onwards onward
masonic prosecutable of or pertaining to freemasons or to their craft or mysteries
twelfth outward an interval comprising an octave and a fifth
coarctation moly a stricture or narrowing as of a canal cavity or orifice
renovator rankle one who or that which renovates foster
supercilium moly the eyebrow or the region of the eyebrows
tuna tuna the opuntia tuna see prickly pear under prickly
strich moly an owl obs spenser
friending friending friendliness obs shak
avenge adulterate to take vengeance levit xix 18
custodianship drily office or duty of a custodian
winrow moly a windrow
unsubstantial outward lacking in matter or substance visionary chimerical
turkeys drow turkish obs chaucer
fish fish a counter used in various games
surge sly to slip along a windlass
promisee promisee the person to whom a promise is made
fand moly imp of find spenser
daddy engineman diminutive of dad dryden
scuff scuff the back part of the neck the scruff prov eng ld lytton
squarely squarely in a square form or manner
ethologist ethologist one who studies or writes upon ethology
narrowness narrowness the condition or quality of being narrow
khanate khanate dominion or jurisdiction of a khan
dimensioned rudderless having dimensions r
spectrogram outward a photograph map or diagram of a spectrum
middy middy a colloquial abbreviation of midshipman
hoop moly the hoopoe see hoopoe
resister resister one who resists
transgressive transgressive disposed or tending to transgress faulty culpable

20

nodule prosecutable a rounded mass or irregular shape a little knot or lump
typology typology a discourse or treatise on types
deterrence deterrence that which deters a deterrent a hindrance r
ethel moly noble obs
potent potent a staff or crutch obs
compiler moly one who compiles esp one who makes books by compilation
illegally engineman in a illegal manner unlawfully
engineman engineman a man who manages or waits on an engine
rudderless rudderless without a rudder
botts botts see bots
prosecutable prosecutable capable of being prosecuted liable to prosecution
looby looby an awkward clumsy fellow a lubber swift
concurrently nucleolar with concurrence unitedly
racemate moly a salt of racemic acid
dow dow a kind of vessel see dhow
restitute restitute to restore to a former state r dyer
seche systemization to seek obs chaucer
negress negress a black woman a female negro
drow drow of draw obs chaucer
assailant assailant assailing attacking milton
indecisively prosecutable without decision
sheard sheard see shard obs
skinless concurrently having no skin or a very thin skin as skinless fruit
keg keg a small cask or barrel
hemi hemi a prefix signifying half
esox esox a genus of freshwater fishes including pike and pickerel
disablement disablement deprivation of ability incapacity bacon
ambassadorial moly of or pertaining to an ambassador h walpole
gleeful rudderless merry gay joyous shak
checker moly one who checks
laddie laddie a lad a male sweetheart scot
rankle rankle to cause to fester to make sore to inflame r beau fl
moly moly a kind of garlic allium moly with large yellow flowers called also golden

garlic
destin destin destiny obs marston
appear moly appearance obs j fletcher
analgesia moly absence of sensibility to pain quain
warmness warmness warmth chaucer
slotted friending having a slot
conclusory prosecutable conclusive r
outward outward external form exterior rso fair an outward and such stuff within shak
indictee indictee a person indicted
reinspect moly to inspect again
diuresis ethel free excretion of urine
steeplechasing moly the act of riding steeple chases
groove groove a shaft or excavation prov eng
beaver beaver an amphibious rodent of the genus castor

21

pelting pelting mean paltry obs shak
systemization systemization the act or process of systematizing systematization
curation centaur cure healing obs chaucer
male prosecutable see mal
sly sly slyly obs or poetic spenser
donator donator one who makes a gift a donor a giver
barque moly same as 3d bark n
emplace sheard to put into place or position to fix on an emplacement
centaur moly a fabulous being represented as half man and half horse
dreaminess curation the state of being dreamy
coon sheard a raccoon see raccoon
recommence hoop to commence again or anew

22

	Introduction
	Related Work
	Word Vectors
	Transformers
	BERT

	Sentence BERT

	Creating and Evaluating Sentence Vectors
	Creating Sentence Vectors
	Evaluation of Linear Directions of Meaning
	Predicting Words from Their Definitions
	Recovering Text from the Embeddings

	Experiments
	Evaluation
	Training details
	Results
	GloVe Vectors
	Sentence-BERT

	Finetuning GPT-2

	Conclusion
	Discussion
	Hyperbolic Embedding Spaces
	Violating Model Assumptions

	Figures
	Words Predicted from Definitions

