
D
el

ft
U

ni
ve

rs
ity

of
Te

ch
no

lo
gy

Utilizing Machine
Learning for the
Prediction of the
Hysteresis Factor
in Lithium-Ion Batteries
Through Incorporation of Driving Cycles

Viviana Kleine

Utilizing Machine Learning
for the Prediction of the

Hysteresis Factor
in Lithium-Ion Batteries

Through Incorporation of Driving Cycles

by

Viviana Kleine

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Wednesday December 4, 2024 at 03:00 PM.

Student number: 5504953
Project duration: February 15, 2022 – December 4, 2024
Thesis committee: Prof. dr. P. Palensky, TU Delft, committee chair

Dr. J. L. Cremer, TU Delft, supervisor
Dr. ir. G. R. Chandra Mouli, TU Delft, supervisor
P. Gromotka Porsche Engineering Services GmbH, daily supervisor

Cover: Porsche AG / Rafael Kroetz and Luca Santini, Porsche Newsroom.
Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgments

First and foremost, I would like to extend my gratitude to my daily supervisor, Philipp Gromotka. His
unwavering support, insightful guidance, and continuous encouragement throughout the development of this
thesis have been invaluable. Philipp introduced me to embedded systems, patiently addressed my numerous
questions, and ensured that I gained a comprehensive understanding not only of what was directly related to
my thesis but also of the entire vehicle system.

I am also grateful to Thomas Rudolf, who dedicated time to helping me implement my machine learning
models and resolve any technical challenges I encountered. Furthermore, I thank Adrian Eisenmann, whose
feedback was instrumental in merging the realms of batteries and machine learning.

I would also like to express my appreciation to all the colleagues at Porsche Engineering I had the pleasure
of working with for their support, openness, and willingness to help. Being part of such a cohesive and
supportive team was a truly rewarding experience.

Moreover, my gratitude goes to my thesis committee at TU Delft, Jochen Cremer, Gautham Ram Chandra
Mouli and Peter Palensky, for their constructive feedback and expert advice, which have significantly con-
tributed to the refinement of my work. I am also thankful to the IEPG and DCE&S departments for their
practical advice and valuable suggestions.

A special thanks to my friends, family, and my partner for their endless encouragement, patience, and
motivation throughout my master’s degrees. Your unwavering support has been the cornerstone of my
success.

Viviana Kleine
Delft, November 2024

i

Abstract

The management of electric vehicle (EV) batteries involves accurately estimating their state-of-charge (SOC),
which indicates remaining usable energy. Precise SOC estimation extends battery life, increases usable
capacity, and enhances vehicle performance by allowing a greater depth of discharge without increasing
battery weight or size. Traditional SOC estimation via Coulomb counting accumulates errors and requires
correction using the Open-Circuit-Voltage (OCV). Modern silicon graphite anodes exhibit voltage hysteresis,
making accurate SOC determination difficult. Introducing a hysteresis factor, ranging from -1 to 1, helps
interpret OCV values within this hysteresis region.

This thesis proposes using a black box approach and machine learning models to predict the hysteresis
factor for SOC correction more accurately. The research aims to enhance SOC accuracy in real-world
EV environments, beyond laboratory settings. Improved SOC estimation through machine learning could
significantly advance battery management systems (BMS), yielding both economic and environmental
benefits by increasing EV efficiency. The study addresses the existing gaps in SOC estimation for voltage
hysteresis, considering the vehicle as a system by incorporating driving cycles, BMS technical limitations, and
cell chemistry. By improving EV reliability and efficiency, this research aims to promote broader acceptance
and contribute to a sustainable future in personal transportation.

The analysis indicates that the designed model performs well with relevant and comprehensive training
data, particularly from test bench data. However, there is room for improvement in generalising across more
dynamic driving cycles. Additional measurements are needed at various temperatures within that range to
improve the model’s performance across a broader temperature range. The study also found that sufficient
training data is crucial for optimal performance. Training a single model across multiple vehicle projects was
not feasible due to varying cell chemistries. GRU models, where the input time series signals were split into
intervals, were the most effective for predicting the hysteresis factor.

It has yet to be verified that the model can be applied to cells with higher silicon content and more pronounced
hysteresis. Additionally, the model did account for ageing effects. In the future, other labelling techniques,
such as the "stability criterion," could be included to improve the model’s performance. This criterion assesses
both the short-term and long-term stability of the SOC and capacity, respectively. Using this approach in test
fleets to further train the existing models could improve the models significantly. This could lead to better
predictions under varied conditions and with different cell types, ultimately improving the model’s effectiveness
for real-world applications.

ii

Contents

Acknowledgments i

Abstract ii

Nomenclature vi

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Conventional Approaches to Model Voltage Hysteresis in SOC Estimation 3

1.2.1 Models Considering Voltage Hysteresis . 3
1.2.2 Required Testing for Input Data . 3
1.2.3 Cell Types Used in Conventional Approaches . 4

1.3 Proposed Approach . 4
1.4 Research Questions . 5
1.5 Thesis Outline . 5

2 Fundamentals Battery Technology 6
2.1 Functionality of a Li-Ion Battery . 6
2.2 SOC Estimation . 6
2.3 Silicon in Li-Ion Batteries . 8
2.4 Voltage Hysteresis Phenomena . 8
2.5 Modeling Voltage Hysteresis . 9

3 Fundamentals Machine Learning 15
3.1 General Concepts of Machine Learning . 15

3.1.1 Supervised and Unsupervised Learning . 15
3.1.2 Machine Learning Pipeline . 16

3.2 Regression Models . 16
3.2.1 Linear Regression Model . 16
3.2.2 Extreme Gradient Boosting Model (XGBoost) . 17
3.2.3 Deep Learning Model . 18

3.3 Managing Uncertainty in Labels . 20
3.4 Quantile Regression . 22

4 Quantile Regression in the Prediction of the Hysteresis Factor 24
4.1 Approaches to Problem Solving . 24
4.2 Availability of Data . 25
4.3 Preprocessing of Input Data . 25

4.3.1 Preprocessing Pipeline . 25
4.3.2 Feature Selection . 27
4.3.3 Transformation to Model Input Data . 27

4.4 Distribution of Available Data . 30
4.5 Labelling . 33

4.5.1 Uncertainty Considerations . 33
4.5.2 Domain Knowledge Labelling . 33
4.5.3 Current Algorithm Labelling . 33

4.6 Machine Learning Models . 34
4.6.1 Selection of Suitable Models . 34
4.6.2 General Implementation Considerations . 34
4.6.3 Implementation of Quantile Regression in a Linear Regression Model and XGBoost . 35
4.6.4 Implementation of Quantile Regression in a Gated Recurrent Unit Model 36

iii

Contents iv

4.6.5 Estimating Required Memory . 39
4.6.6 Tuning Input Data . 40

5 Results 42
5.1 Overview Case Studies . 42
5.2 Evaluation Criteria . 42
5.3 Case Study 1: Attribute-Based Prediction with Simple Models 43

5.3.1 Description . 43
5.3.2 Results . 44

5.4 Case Study 2: Time Series Prediction with Neural Networks 46
5.4.1 Description . 46
5.4.2 Results . 47

5.5 Case Study 3: Interval Delta Prediction with Simple Models 48
5.5.1 Description . 48
5.5.2 Results . 48

5.6 Case Study 4: Interval Prediction with Simple Models . 49
5.6.1 Description . 49
5.6.2 Results . 50

5.7 Case Study 5: Interval Prediction with Neural Networks . 52
5.7.1 Description . 52
5.7.2 Results . 52

5.8 Case Study 6: Autoregressive Interval Prediction with Neural Networks 54
5.8.1 Description . 54
5.8.2 Results . 54

5.9 Evaluation of the Models . 56
5.10 Case Study 7: Generalisation Capability Assessment . 58

5.10.1 Description . 58
5.10.2 Results: Vehicle Model Generalisation . 58
5.10.3 Results: Driving Cycle Generalisation . 62
5.10.4 Results: Temperature Range Generalisation . 63

6 Discussion and Conclusion 65
6.1 Problem Statement and Proposed Approach . 65
6.2 Answering Research Questions . 65

6.2.1 Objective 1: Develop a black box model of the voltage hysteresis effect to determine
the hysteresis factor using driving cycles of EVs . 65

6.2.2 Objective 2: Perform an evaluation and comparison of different proposed black box
models to find the most suitable algorithm to determine the hysteresis factor in terms of
accuracy and implementability . 66

6.3 Interpretation of Results . 67
6.4 Limitations . 68

6.4.1 Label and Data Dependency . 68
6.4.2 Driving Cycles . 69
6.4.3 Hyperparameter Tuning and Model Selection Considerations 69

6.5 Outlook . 69
6.5.1 Variety in the Dataset . 69
6.5.2 Selection of Suitable Measurements and More Extreme Cell Chemistries 69
6.5.3 Alternative Labelling and Test Fleet Training . 70
6.5.4 Model Complexity and Computational Considerations 70
6.5.5 Ageing . 70
6.5.6 Autoregressive Training . 70

References 71

A Details on Machine Learning Fundamentals and Methodology 77
A.1 XGBoost Details on Mathematical Formulation . 77
A.2 Deep Learning Model Activation Functions . 78
A.3 Architectures of RNNs . 79

Contents v

A.4 Features of the Models . 80
A.5 Data Distribution of Vehicle Project B . 83

B Details on Results 85
B.1 Used Python Libraries . 85
B.2 Case Study 1 . 86
B.3 Case Study 2 . 87
B.4 Case Study 3 . 88
B.5 Case Study 4 . 89
B.6 Case Study 5 . 90
B.7 Case Study 6 . 91
B.8 Evaluation . 92
B.9 Case Study 7 . 94

B.9.1 Fine-Tuning . 94
B.9.2 Normalization According to Cell Datasheet . 94
B.9.3 Vehicle Model Generalisation . 95
B.9.4 Driving Cycle Generalisation . 98
B.9.5 Temperature Range Generalisation . 98

C Source Code and Flow Diagrams 102
C.1 Gated Recurrent Network Model . 102
C.2 Gated Recurrent Network Model With Additional GRU Layer 103
C.3 Gated Recurrent Network Model With Additional Linear Layer 103
C.4 Pinball Loss . 104
C.5 Autoregressive Training . 105
C.6 Autoregressive Testing . 108

Nomenclature

Abbreviations

Abbreviation Definition

BMS Battery management system
CART Classification and regression trees
CPU Central processing unit
DS Cell data sheet
ECM Equivalent circuit model
EIS Electrochemical impedance spectroscopy
EV Electric vehicle
GPU Graphic processing unit
GRU Gated recurrent unit
GITT Galvanostatic intermittent titration technique
HEV Hybrid Electric Vehicle
HPPC Hybrid Pulse Power Characteristic
LFP Lithium iron phosphate
Li Lithium
LMO Lithium ion manganese oxide
LTO Lithium titanate oxide
L1 Lasso (regression)
L2 Ridge (regression)
LSTM Long short-term memory
ML Machine learning
NCA Lithium nickel cobalt aluminium oxide
NMC Lithium nickel manganese cobalt oxide
OCP Open circuit potential
OCV Open circuit voltage
PCA Principal component analysis
RAM Random access memory
RNN Recurrent neural network
ROM Read-only memory
SEI Solid electrolyte interface
Si Silicon
SOC State-of-charge
UDDS Urban Dynamometer Driving Schedule
WLTP Worldwide Harmonised Light-Duty Vehicles Test Proce-

dure

Symbols

Symbol Definition Unit

a Factors [-]
b Bias [-]
bhn Bias vector between hidden and hidden layer at candi-

date hidden state gate
[-]

vi

Contents vii

Symbol Definition Unit

bhr Bias vector between hidden and hidden layer at reset
gate

[-]

bhz Bias vector between input and hidden layer at candidate
hidden state gate

[-]

Cb Battery capacity [Ah]
Cn Nominal capacity [Ah]
c Constant [-]
D Total number of decision trees [-]
δ Dropout variable [-]
fd Function representing the tree v [-]
Gj Parameters [-]
Hj Parameters [-]
Ht Hidden state at time step t [-]
i Current [A]
Ij Indices of data points corresponding to the jth leaf [-]
k Time step [-]
k1, k2 Factors [-]
m1,m2 Factors [-]
M(SOC) Maximum polarization of the SOC due to hysteresis [%]
o Output [-]
P Total number of samples [-]
p Parameters [-]
Q Charge throughput [A]
Qreleasable Releasable charge [Ah]
q Function mapping data points to leaves [-]
ri Threshold of i-th operator [-]
Rt Reset gate value at time step t [-]
sgn Sign function [-]
SOC State of charge [%]
t Time step [-]
T Total number of leaves [-]
u Input [-]
uocp Open circuit potential [V]
vh Hysteresis voltage [V]
vOCV Open circuit voltage [V]
w Weight [-]
Whn Weight matrix between hidden and hidden layer at can-

didate hidden state gate
[-]

Whr Weight matrix between hidden and hidden layer at reset
gate

[-]

Whz Weight matrix between hidden and hidden layer at up-
date gate

[-]

Win Weight matrix between input and hidden layer at candi-
date hidden state gate

[-]

Wir Weight matrix between input and hidden layer at reset
gate

[-]

Wiz Weight matrix between input and hidden layer at update
gate

[-]

Xt Input matrix at time step t [-]
xi Input vector for sample i [-]
yi Label for sample i [-]
ŷi Predicted value for sample i [-]
ξ Residual [-]
ϵρ Noise, noise function [-]

Contents viii

Symbol Definition Unit

α, β Slope parameters [-]
γ Factor for the rate of decay [-]
θ Electrode stoichiometry [-]
ψ Hysteresis factor [-]
τ Quantile [-]
∆SOC Change in SOC [%]
∆vh Range of hysteresis voltage [V]
ηb Battery efficiency [-]
ω Complexity [-]
H̃t Candidate hidden state at time step t [-]
Zt Update gate value at time step t [-]

List of Figures

1.1 Examples of OCV-SOC curves. 2
1.2 Summary of the literature research. 3
1.3 Summary of tests done to identify parameters related to the hysteresis phenomenon. 4
1.4 Summary of cell types. 4

2.1 Operation principle of discharging a Li-ion battery. 7
2.2 Stages of lithium insertion in graphite [32]. 8
2.3 Thevenin model [29]. 9
2.4 Hysteresis model using the relative charge throughput to obtain the minor hysteresis loop

according to Xie et al. [39]. 10
2.5 ECM for including the hysteresis voltage according to Baronti et al. [45] 12
2.6 ECM for including the hysteresis voltage according to Dong et al [46]. 12
2.7 ECM of the two-state hysteresis model according to Kim et al. [47]. 13
2.8 ECM of the model used by Antony et al. [48] . 13

3.1 Illustration of a LSTM cell [69]. 19
3.2 Illustration of a GRU cell [69]. 20
3.3 Tilted absolute value function ρ to obtain the τ -th quantile [84]. 22

4.1 Illustration of the segmentation of measurements into samples. 26
4.2 Overview of the preprocessing pipeline. 26
4.3 Options to have the same number of time steps with measurements of different lengths. . . . 28
4.4 Difference between time interval approach for two-dimensional and three-dimensional input. 30
4.5 Same test type in different measurements, denoted by the month the measurement was

recorded. The legend in (a) indicates which colour corresponds to which month. 30
4.6 Distribution of sequence lengths of measurements. 31
4.7 Average cell temperature vs normed OCV. 31
4.8 Minimum and maximum current of measurements with charge-only and discharge-only mea-

surements indicated by the black dotted lines. 32
4.9 Distribution of labels for different approaches. 33
4.10 Structure of batches for autoregressive training. 37
4.11 Comparison of non-autoregressive and autoregressive training. 38

5.1 Pinball losses for different configurations in Case Study 1 after selecting the most important
features. 44

5.2 Predicted median vs. label for the "all" configuration in the XGBoost model in Case Study 1 . 44
5.3 The extracted principal components and their respective explained variance for the 300 s

configuration. 45
5.4 Pinball losses for different configurations in Case Study 1 after performing PCA. 46
5.5 Predicted median vs. label for the 300 s configuration in the XGBoost model in Case Study 1 46
5.6 Pinball losses for different configurations in Case Study 2. 47
5.7 Predicted median vs label for the all-120 configuration in Case Study 2. 47
5.8 Memory usage for different configurations in Case Study 2. 48
5.9 Example reconstructed measurement for Case Study 3. 49
5.10 Pinball losses for different configurations for the linear regression and XGBoost models in

Case Study 4. 50
5.11 Predicted median vs label for the 60-2 configuration (XGBoost) in Case Study 4. 51
5.12 Pinball losses for different configurations in Case Study 5. 52
5.13 Predicted median vs label for the 600-240 configuration in Case Study 5. 53

ix

List of Figures x

5.14 Example reconstructed measurement for the 600-240 configuration in Case Study 5. 53
5.15 Memory usage for different configurations in Case Study 5. 54
5.16 Training and validation loss over number of seen batches for 100 epochs in Case Study 6. . . 55
5.17 Example reconstructed measurement for Case Study 6. 55
5.18 Comparison of the achieved pinball loss for the best configurations of each case study. . . . 56
5.19 Comparison of memory usage for the best configurations of each case study. 57
5.20 Comparison of the achieved score for the best configurations of each case study. 57
5.21 Comparison of different scenarios regarding the weight of the pinball loss. 58
5.22 Comparison of the pinball loss for different methods of using the model, trained on vehicle

project A, on vehicle project B. 59
5.23 Comparison of the pinball loss for different methods of using both projects to train the model. 60
5.24 Comparison of the pinball loss for different methods of using training a separate model for

vehicle project A. 61
5.25 Predicted median vs. label for the calibration measurements. 62
5.26 Measured hysteresis factor (black) and 600 s intervals (in blue). 63
5.27 Predicted median vs. label testing the out-of-temperature-range measurements with model A. 64
5.28 Predicted median vs. label for retraining the model with all temperature samples. 64

A.1 Illustration of the activation of an artificial neuron [51]. 78
A.2 Various architectures of RNNs [53]. 79
A.3 Distribution of sequence lengths of measurements for vehicle project B. 83
A.4 Average cell temperature vs normed OCV for vehicle project B. 83
A.5 Minimum and maximum current of measurements for vehicle project B. 84
A.6 Distribution of labels for different approaches for vehicle project B. 84

B.1 Tuned parameters for the configurations in Case Study 1 for both (a) linear regression and (b)
XGBoost models. 86

B.2 The top five features and their weight for different configurations. 86
B.3 Memory usage for different configurations of the linear regression (LinReg) and XGBoost

model in Case Study 1 (K-Features). 87
B.4 Memory usage for different configurations of the linear regression (LinReg) and XGBoost

model in Case Study 1 (PCA). 88
B.5 Predicted median vs label for Case Study 3. 88
B.6 Tuned parameters for the configurations in Case Study 4 for both (a) linear regression and (b)

XGBoost models. 89
B.7 Example reconstructed measurement for the "60-2" configuration of the XGBoost model in

Case Study 4. 89
B.8 Pinball losses for different configurations in Case Study 5 when training with 100 epochs. . . 90
B.9 Training and validation loss over number of seen batches for 1000 epochs in Case Study 6. . 91
B.10 Predicted median vs label for the "600-240" configuration in Case Study 6. 92
B.11 Comparison of the achieved pinball loss for the average of configurations of each case study. 92
B.12 Comparison of memory usage for the average of configurations of each case study. 93
B.13 Comparison of the achieved score for the average of configurations of each case study. . . . 94
B.14 Reconstructed measurement for vehicle project B for autoregressive and non-autoregressive

testing. 96
B.15 Predicted median vs label for Case Study 7 after retraining the model with both data sets

without considering the cell datasheet. 97
B.16 Example reconstructed measurement when retraining the model with project A and B without

considering the cell datasheet for Case Study 7. 97
B.17 Reconstructed dynamic measurement for different GRU model configurations. 100

List of Tables

4.1 Different approaches and resulting case studies. 24
4.2 Relevant features according to different hysteresis models. 27
4.3 Time series attributes and their mathematical formulation. 29
4.4 Parameters to be tuned and their respective tuning range for the linear regression model. . . 35
4.5 Parameters to be tuned and their respective tuning range for the XGBoost model. 35
4.6 Parameters to be tuned and their respective tuning range for the GRU model. 38
4.7 Aspects of input data to modify. 40

5.1 Overview of all case studies. 42

A.1 Features used for the three-dimensional input in the time series approach (Case Study 2). . 80
A.2 Features used for the two-dimensional input in the time interval approach when predicting the

change in the hysteresis factor (Case Study 3). 81
A.3 Features used for the two-dimensional input in the time interval approach (Case Study 4). . . 81
A.4 Features used for the three-dimensional input in the time interval approach (Case Study 5 and

6). 82

B.1 Used Python libraries and their respective version. 85
B.2 Tuned parameters for the configurations in Case Study 2. 87
B.3 Used XGBoost parameters for Case Study 3. 88
B.4 Tuned parameters for the configurations in Case Study 5. 90
B.5 Optimal number of epochs for Case Study 5. 91
B.6 Parameters for the configurations in Case Study 6. 91
B.7 Sensitivity analysis of different case studies for three different scenarios. 93
B.8 Fine-tuned parameters for the configurations in Case Study 5. 94
B.9 Normalization of the input data according to the cell datasheet. 95
B.10 Tuned parameters for the new models for both projects in Case Study 7. 96
B.11 Tuned parameters for the models for data set B in Case Study 7. 98
B.12 Results for different configurations for training a model for vehicle project B. 99
B.13 Fine-tuned parameters for the temperature generalisation analysis in Case Study 7. 101

xi

1
Introduction

1.1. Background and Motivation
Batteries are one of the key components of electric vehicles (EVs). Central to the management of these
batteries is the estimation of their state-of-charge (SOC), which offers an indication of the remaining usable
battery energy. This combined with the overall efficiency of the vehicle and user driving behaviour determines
the remaining range of the EV. Effective SOC estimation is crucial as it directly influences the performance of
electric vehicles. In fact, with a more precise SOC estimation, the SOC boundaries set to protect the battery
from ageing can be wider as the required buffer for SOC uncertainty is smaller. This allows for a greater
depth of discharge and thus greater usable capacity.

The increased usable capacity of the battery offers several benefits. It can be used to achieve greater range
without increasing battery weight or size, or it can be utilised to reduce the overall weight and size of the
battery, thus lowering the cost of EVs. Considering the average battery pack price for EV applications in
2022, which was $138 per kWh [1], and assuming a battery capacity of 100 kWh, increasing the depth of
discharge by 2% SOC can result in a cost reduction of $276.

If this additional 2% SOC is used to extend the vehicle’s range, at an electricity consumption of 19.8 kWh/100
km (comparable to the Porsche Macan Electric), it will result in an increase of approximately 10 km in range.
While this may seem insignificant at first glance, original equipment manufacturers (OEMs) are continually
striving to improve their range, a critical indicator of vehicle performance for consumers. An additional 10 km
may be crucial, as it can increase the range from, for example, 495 km to 505 km, making the latter more
appealing to customers ("value attribution" surpassing key thresholds, such as 500 km). Therefore even
small boosts in range can make EVs more attractive, especially considering that range anxiety remains a
primary concern for potential EV buyers [2].

Traditionally, SOC has been estimated through a method known as Coulomb counting. However, given this
method’s tendency to accumulate errors over time, a corrective measure after each driving cycle is required
to ensure accurate SOC values. A driving cycle refers to a ’fixed schedule of vehicle operation’ [3]. It includes
both charging and discharging operations, individually or in combination, at various vehicle speeds, including
0 km/h. This correction utilises the Open-Circuit-Voltage (OCV), the equilibrium voltage observed under
zero-current conditions. Cell manufacturers provide reference tables that map the OCV to a single SOC
value. An example of this is visualised in Figure 1.1a. After completing a driving cycle and allowing the
battery sufficient time to relax to meet open-circuit conditions, the measured OCV can be utilised to refine the
estimated SOC value.

To improve cell performance, novel cell technologies, specifically silicon graphite anodes, are increasingly
being utilised in automotive applications [4]. Due to their high energy and power density, these advanced
cells enable longer vehicle ranges and faster charging times. For instance, a silicon lithium-ion cell from the
manufacturer Amprius claims to offer a 76% improvement in vehicle range [5]. It is important to note that
range is influenced by several other factors beyond cell capacity, including driving behaviour, overall vehicle
efficiency, and other external conditions.

1

1.1. Background and Motivation 2

(a) Example of an OCV-SOC curve. (b) Example of an OCV-SOC curve with voltage hysteresis.

Figure 1.1: Examples of OCV-SOC curves.

Despite these advantages, silicon lithium-ion cells have certain drawbacks, one of which is their pronounced
voltage hysteresis. This means that the OCV-SOC behaviour changes depending on the direction of charge.
While this effect also occurs in other commercially available Li-ion chemistries, it is often much smaller
and can usually be neglected. During voltage hysteresis, it is observed that the OCV curve for charging
consistently is above the counterpart for discharging, a phenomenon that is clearly illustrated in Figure 1.1b.
This disparity leads to difficulty in determining the exact SOC value corresponding to a given OCV value.
For instance, when examining Figure 1.1b, it becomes apparent that at an OCV of 3.50mV, the SOC could
conceivably range from 9% to 19%, as represented by the pink arrow. This variation is dependent on the
cell’s most recent history regarding charging and discharging. As the cell manufacturer only provides tables
for discharging and charging cycles, and not for partial cycles that include both charging and discharging,
accurately correcting SOC becomes challenging. This difficulty arises because the cell’s history during
realistic driving behaviour often includes partial cycles, such as those resulting from regenerative braking.

To overcome this limitation, a hysteresis factor is introduced. This factor, which can take any value within the
continuous range from -1 to 1, offers a quantifiable means of interpreting SOC values within the hysteresis
region. A factor of 1, representing the left point on the pink arrow as depicted in Figure 1.1b, corresponds
to the SOC according to the charging curve. Conversely, a factor of -1 aligns with the right point of the
pink arrow and corresponds to the SOC according to the discharging curve. All values between -1 and 1
are distributed linearly, spanning the space of the pink arrow between the two curves. There are currently
not many methods to accurately predict the hysteresis factor in silicon lithium-ion cells that are practically
applicable [6]. Existing SOC correction methods work effectively for standard battery chemistries but are less
reliable when applied to more extreme cell types, such as those with high silicon content.

This thesis proposes to use a black box machine learning approach to predict the hysteresis factor for
SOC correction accurately. The motivation for this research is two-fold. First, there is a need to improve
the overall accuracy of SOC estimation. Additionally, this work aims to enable SOC correction for more
extreme cell types, such as silicon lithium-ion cells, by developing methods that are not only accurate but
also practical for use in real-world EV environments, beyond controlled laboratory settings. The successful
implementation of the machine learning models and the improvement in SOC estimation accuracy could lead
to significant advancements in battery management systems as better estimates could provide both economic
and environmental benefits by improving the overall efficiency of electric vehicles. Furthermore, enabling
the use of more extreme cell technologies could lead to significant improvements in vehicle performance or
substantial reductions in cell costs.

This research aims to bridge the existing gap in SOC estimation methods in the battery management system
(BMS) for voltage hysteresis in silicon graphite cells. Therefore, it will consider the vehicle as a system,
taking driving data, technical limitations of the BMS and cell chemistry into consideration when designing the
algorithm. By contributing to the reliability and efficiency of EVs, this work aspires to pave the way for broader
acceptance and a more sustainable future in personal transportation.

1.2. Conventional Approaches to Model Voltage Hysteresis in SOC Estimation 3

1.2. Conventional Approaches to Model Voltage Hysteresis in SOC
Estimation

In prior work, various models have been developed to include hysteresis voltage when estimating the SOC.
This section will provide a brief overview of different models that consider voltage hysteresis, followed by a
discussion of the required testing for these models and the cell types used in conventional approaches. A
more detailed summary of the conventional models can be found in section 2.5.

1.2.1. Models Considering Voltage Hysteresis
Generally, the presented models that consider hysteresis in the open circuit voltage can be divided into
three categories: equivalent circuit models, physics-based models and machine learning-based models. The
distribution of relevant literature among these categories is presented in Figure 1.2. The works highlighted in
pink also take minor loop measurements into account. This means that partial (dis)charging cycles, which do
not start at 0% SOC and end at 100% SOC, are also included.

Figure 1.2: Summary of the literature research.

Equivalent circuit models like the Thevenin model incorporate hysteresis through various methods, such as
defining a hysteresis factor to blend charge and discharge OCV curves, or using more advanced techniques
like the Roscher model, which incorporates additional parameters into the (dis)charging equation to determine
the hysteresis factor. Physics-based models focus on modelling the anode’s open circuit potential, with Gao
et al.’s work isolating the hysteresis factor based on delithiation and lithiation processes. Machine learning
models utilize algorithms like random forests or Long-Short Term Memory (LSTM) networks to predict the
hysteresis factor, although some approaches, such as those by Li et al., face practical applicability challenges.
Each model aims to improve the accuracy of SOC estimations under hysteresis, with varying degrees of
complexity and data requirements. A detailed description of each model can be found in section 2.5.

1.2.2. Required Testing for Input Data
According to the surveyed literature, special tests are required for the identification of the hysteresis param-
eters. Figure 1.3 shows a summary of the findings regarding which tests were used. The majority uses
constant current pulse tests. Here the OCV is measured in small SOC steps (e.g. 4% [7]) at a constant
current. Between each step is a defined rest period ranging from 1h to 4h. Most did these measurements to
obtain the major loop hysteresis voltage. Only some of them, marked in pink also considered the minor loop,
by adjusting the tests and starting or ending at different SOC points, rather than completely charging and
discharging the cell. Furthermore, these specialised tests are very time-consuming [8] and thus expensive.
While the electrochemical impedance spectroscopy does allow to also to learn more about the battery’s state
than the measured current, temperature and voltage, it is difficult to implement this in an online vehicle [9].
Only a few also considered using driving cycles as their input data. Therefore, it is questionable whether the
rest of the models also work well for realistic driving cycles.

1.3. Proposed Approach 4

Figure 1.3: Summary of tests done to identify parameters related to the hysteresis phenomenon.

1.2.3. Cell Types Used in Conventional Approaches
Lastly, the conventional models also used different types of cells in their research. In Figure 1.4 the different
cathodes (in blue) and anodes (in green) that were used can be seen. While the majority did not specify the
anode used, they were likely graphite anodes as those are the most common. Their share in anodes for
lithium-ion batteries in 2022 was around 70% [10]. The figure also shows that only very little research has
been done regarding voltage hysteresis models for silicon graphite anodes.

Figure 1.4: Summary of cell types.

1.3. Proposed Approach
This work aims to formulate a black box model to predict the hysteresis factor. It will use available data from
vehicle test benches to train on real vehicle data instead of measurement data under lab conditions. This
test bench data comprises signals measured by the BMS such as current, voltage and cell temperature.
Data for two vehicle projects is available, each project varying in cell chemistry. Moreover, the objective
includes identifying a model capable of operating within the BMS, which requires a less complex model due
to the BMS’s limited computing capabilities. Furthermore, this thesis will address the uncertainty of the SOC
estimation. So far, in literature during SOC estimations, the "measured" (actually estimated) SOC was always
taken as ground truth. This work will consider the uncertainty that comes with these "ground-truth" SOC
labels. To build the black box model, measurement data is properly prepared and then used to train and
test the suitable machine learning models. These models are then compared to rate their performance and
understand the limitations of each model within this specific application. Finally, the best-performing model is
tested for its generalisation capacity.

1.4. Research Questions 5

1.4. Research Questions
There are two main objectives in this work, with each having its respective research questions.

Objective 1: Develop a black box model of the voltage hysteresis effect to determine the hysteresis
factor using driving cycles of EVs

1. Can a regression machine learning model accurately predict the hysteresis factor given the computa-
tional constraints of a battery management system?

2. Can quantile regression indicate the confidence of the predicted hysteresis factor on a given dataset of
driving data?

Objective 2: Perform an evaluation and comparison of different proposed black box models to find the
most suitable algorithm to determine the hysteresis factor in terms of accuracy and implementability

3. Which is the best model according to priorly defined evaluation criteria?

4. Can a single algorithm be effectively trained to determine the hysteresis factor across different vehicle
projects while maintaining high accuracy?

1.5. Thesis Outline
This thesis first explores the necessary background knowledge in battery technology and machine learning.
The chapter on battery technology provides an overview of the functionalities of lithium-ion batteries, discusses
silicon lithium-ion batteries, and explains the voltage hysteresis phenomena on a chemical level.

The section on machine learning background covers general concepts, including types of tasks and the
pipeline. It then examines different relevant regression models, giving an overview of their principles. A more
detailed explanation of the relevant deep learning model is provided due to its complex nature. This section
also addresses the origins and impact of label uncertainty, as well as methods for managing it.

Then, the methodology for conducting quantile regression to predict the hysteresis factor is explained.
This includes a discussion of the available data, data preprocessing, labelling, and the selection and
implementation of suitable machine learning models.

The following chapter presents the results of the case studies. It describes the tests and models, evaluates
them, assesses the generalisation capacity of the models, and discusses the feasibility of implementing a
battery control unit.

The final chapter comprises the discussion and conclusion. It revisits the problem statement and proposed
approach, interprets the results of the thesis, and addresses the research questions. This chapter also
highlights the study’s limitations and suggests directions for future research.

2
Fundamentals Battery Technology

Batteries are a form of electrochemical energy storage. Lithium-ion (Li-ion) batteries have already been
established in automotive applications due to their power and energy density, their rapid decrease in costs
over the past decades and the political goals to reduce CO2. The demand for automotive Li-ion batteries
increased more than 680% from 80.7 GWh in 2017 to 550 GWh in 2022 [10].

This chapter aims to provide the fundamental knowledge of battery technology. First, the general functionality
of a lithium-ion battery is presented. The chapter then discusses various methodologies for SOC estimation.
Subsequently, the role of silicon in Li-ion batteries and its effects on performance are presented. Subsequently,
the chapter provides an overview of the hysteresis phenomena observed in batteries, alongside theories
proposed to explain its underlying mechanisms. Finally, the conventional methods to model hysteresis are
summarized.

2.1. Functionality of a Li-Ion Battery
The operation principle of a Li-ion battery is depicted in Figure 2.1. Typically, a Li-ion battery comprises two
electrodes: an anode and a cathode. For simplicity, this work refers to the anode as the electrode where an
oxidation reaction occurs during discharging. Typical materials in automotive applications for the electrodes
are graphite for the anode [11] and lithium ion manganese oxide (LMO), lithium nickel cobalt aluminium oxide
(NCA), lithium nickel manganese cobalt oxide (NMC) and lithium iron phosphate (LFP) cathodes [12] These
electrodes are separated by an electrolyte and a separator. The electrolyte functions as a medium to facilitate
the movement of ions, whereas the separator prevents short circuits by obstructing the electron flow and
enables the flow of ions between the electrodes. Additionally, both electrodes are externally connected to
enable the flow of electrons.

During charging, a power supply is connected to the external circuit, thereby forcing the cathode to release
electrons. The released electrons move through the external circuit to the anode. Simultaneously, the Li-ions
deintercalate from the cathode and move through the electrolyte towards the anode, where they then together
with the electron change the oxidation state of the transition metal. With this chemical process, the external
electrical energy can be stored in the battery. During discharging, a load is connected to the external circuit,
causing electrons to move from the anode to the cathode due to the different electrochemical potentials of
the electrodes, thereby releasing electrical energy. Meanwhile, the positively charged Li-ions deintercalate
from the anode Li-ions can then move through the electrolyte to be stored in the cathode[13].

2.2. SOC Estimation
The State-of-Charge (SOC) of a battery is one of its defining state variables. Alongside additional system
attributes, the SOC serves as an indicator of the battery’s residual energy capacity, enabling assessments of
its remaining range and overall ageing status. Therefore, errors in SOC estimating can lead to unexpected
performance limitations and permanently harm the battery through over- or under-charging [14].

Generally, the SOC is defined as follows [15] with Cb being the actual battery capacity:

6

2.2. SOC Estimation 7

Figure 2.1: Operation principle of discharging a Li-ion battery.

SOC =
Qreleasable

Cb
· 100%. (2.1)

Considering that the change in SOC can also be expressed as the fraction of the change in released capacity
to the rated capacity, the SOC can also be defined as follows [15]:

SOC(t0 +∆t) = SOC(t0)−
∫ t0+∆t

t0
i(t) dt

Cb
· 100%. (2.2)

SOC Estimation Using Coulomb Counting
Coulomb counting is a method that can be used to calculate the remaining capacity and thus change in SOC
by adding up the charge or discharge throughput over time (see Equation 2.2)[14]. The major drawback of
using Coulomb counting is that it accumulates errors over time, whether that is from measurement equipment,
errors in Coulombic efficiency (influences Cb) or the neglect of self-discharging processes [16]. This error
accumulation is proportional to the duration of operation [14]. Correction is not feasible, as this method
operates as an open feedback loop [17]. Additionally, its accuracy depends on the correctness of the initial
SOC, SOC(t0) [14].

SOC Estimating Using Open Circuit Voltage Measurements
In order to increase SOC accuracy, the OCV can be used to correct the SOC after each driving cycle. Current
pulse tests can be used to create look-up tables. These tables, typically provided by the cell manufacturer
in automotive applications, map each SOC to an OCV value, allowing for SOC correction once the OCV
is measured [18]. However, accurate OCV measurements require open circuit conditions, necessitating
a relaxation period for the voltage to stabilise at its steady-state value. The duration of this relaxation
process can vary significantly depending on the battery chemistry [17]. Consequently, the OCV method
cannot continuously estimate SOC in real time. Instead, it serves as a supplementary technique to Coulomb
counting, helping to correct its dynamic estimation [17].

2.3. Silicon in Li-Ion Batteries 8

2.3. Silicon in Li-Ion Batteries
Silicon has gained significant popularity as an alternative to graphite anodes [10], due to the limited energy
density of graphite anodes. In 2022, silicon-graphite anodes comprised approximately 30% of the market
share [10]. Numerous automobile manufacturers have announced plans to integrate silicon technology into
their batteries [4].

The practical highest achievable lithiated phase of bulk silicon at ambient temperature is Li15Si4, corre-
sponding to a current practical capacity of 3579 mAh/g [19]. In comparison, graphite only offers a practical
capacity of around 350 mAh/g [20]. This higher energy density enables a reduction in weight and an increase
in range. Additionally, silicon electrodes facilitate faster charging [21]. Silicon is one of the most abundant
elements in the Earth’s crust and is environmentally friendly, potentially making silicon anode batteries more
cost-effective and reducing supply chain issues [22, 19].

Despite their advantages, bulk silicon anodes have not reached widespread adoption. The great disadvantage
of bulk silicon is that it pulverises during charging. This is caused by fluctuations in volume, namely a volume
expansion and in turn compression of up to 280% during lithium insertion [19]. Due to this pulverisation, the
electrodes lose contact with the current collector, lowering the conductivity and the Solid Electrolyte Interface
(SEI) accumulates [23] leading to increased internal resistance [24] and thus losing capacity with cycling.

Instead, blended silicon graphite anodes are used. A variation of this is nano-structured silicon. These
nanoparticles are dispersed between graphene sheets. They have the advantage that they can be dispersed
onto light-weight carbon, thus no additional structures are needed which can increase the weight while
simultaneously being stable enough to handle the volume changes [25]. However, due to their graphite
content, these electrodes have lower capacities (around 1000-1500 mAh/g under lab conditions [26, 27]).

2.4. Voltage Hysteresis Phenomena
Voltage hysteresis refers to a phenomenon where the potential of an electrode during delithiation is higher
than during lithiation at the same stoichiometric lithium content, leading to the cell voltage being higher during
charging than during discharging. It is a load-history dependent variation of the OCV curves [28], meaning
that the charge and discharge curves of the OCV do not overlap [29]. This impacts the SOC determination
as the OCV-SOC relationship is used for SOC correction (OCV method) [29]. The OCV-SOC curves derived
from full battery cycles (0% SOC to 100% SOC) are also termed major hysteresis loops [30], while partial
cycles result in minor hysteresis loops, which are bounded by the major hysteresis loop [29].

Voltage Hysteresis in Graphite Anodes
This hysteresis phenomenon is visible for electrode materials that undergo a two-phase transition [28],
such as lithiated graphite. Due to these two-phase transitions, there are wide potential plateaus during the
lithiation/delithiation process as shown in Figure 2.2 [28]. During two-phase transitions, one phase grows at
the expense of the other without changing phase compositions. Adding silicon to the graphite anode only
enhances this hysteresis phenomenon [6, 31].

Figure 2.2: Stages of lithium insertion in graphite [32].

Ongoing research aims to understand the underlying causes of hysteresis. One theory is that open circuit
voltage (OCV) hysteresis originates from thermodynamic effects. Lithium insertion into particles in the

2.5. Modeling Voltage Hysteresis 9

electrode occurs at different rates. This is because the electric contact to the electrode of particles differs,
meaning that particles with better electric contact are more likely to be charged or discharged. In addition,
there are differences in the contact with the electrolyte, thus the ionic contact. When lithium is inserted,
the concentration of lithium ions in the pores of the electrode decreases since they are absorbed by the
active particles. In order to reach particles closer to the inside of the electrode, the ions propagate within the
pores, from the surface toward the inside. However, lithium insertion at the surface is more favourable, due to
lower ionic conductivity on the inside region. The overall electrode potential considers all individual particles,
thus this may differ from the potential of a single particle undergoing lithiation [33, 28]. When considering
a lithium-ion insertion, which occurs between two specific phases, this thermodynamic effect implies that
although the total number of particles in each phase remains constant during both charging and discharging,
the spatial distribution of these particles within the electrode can differ. This difference in distribution leads to
varying electrochemical potentials during the charging and discharging processes.

Voltage Hysteresis in Silicon Anodes
There are multiple explanations for the more pronounced hysteresis in cells which contain silicon. Sethuraman
et al. [34] stress the correlation between mechanical stress from the volume expansion and voltage hysteresis
namely that the compressive pressure lowers the silicon electrode potential while tensile stress elevates
it. According to Chevrier et al. [35] the voltage hysteresis can be traced back to the energy required to
break the silicon bonds. According to Jiang et al., [36] the pronounced hysteresis results from asymmetric
reaction pathways. Specifically, if lithium insertion exceeds a critical threshold—when the lower cutoff voltage
drops below 0.05 V vs. Li/Li+—the charging pathway differs significantly from the discharging pathway.
During charging, the phase transitions proceed sequentially from amorphous silicon (a− Si) to amorphous
lithium-silicon alloy (a−LixSi), and further to the final phase of lithium-rich amorphous silicon (a−Li15Si4).
If the voltage threshold is surpassed, an additional phase, a− Li15+δSi4, forms at the end. However, during
discharging, particles do not revert through the same phases. Instead, they transition from a composite phase
of crystalline lithium-rich silicon and excess lithium (c− Li15+δSi4 + δLi) directly to a− LixSi, bypassing
the intermediate phases encountered during charging.

2.5. Modeling Voltage Hysteresis
This section presents existing models to model voltage hysteresis. Generally, the models can be divided into
three categories, equivalent circuit models, physics-based models and machine learning models.

Hysteresis Voltage in Equivalent Circuit Models
There have been multiple attempts to include hysteresis in SOC estimations. One way is to determine the
hysteresis factor, ψ, which determines the fraction of the charge and discharge OCV-SOC curve in the actual
OCV-SOC curve:

uOCV (SOC) =
1 + ψ

2
· uOCV,ch(SOC) +

1− ψ

2
· uOCV,disch(SOC). (2.3)

A hysteresis factor of -1 indicates that the actual OCV is equal to the discharge OCV and 1 signals that it
is equal to the charge OCV. There are also derivations from this definition, where the hysteresis factor is
defined between 0 and 1 [37], however, the principle remains the same. This hysteresis voltage can then be
used in equivalent circuit models, like the Thevenin model depicted in Figure 2.3.

Figure 2.3: Thevenin model [29].

2.5. Modeling Voltage Hysteresis 10

One approach is to assume a hysteresis factor of 0.5, effectively averaging the charge and discharge open-
circuit voltages (OCV). This automatically reduces the maximum error due to hysteresis by 50%. However, a
method this simple cannot frame the hysteresis effect correctly, leading to significant errors [38].

Another approach is a zero-state hysteresis model, where the hysteresis factor switches between the values
0 and 1, depending on the sign on the current,

θ(t) =

1 if i(t) > ψ,
0 if i(t) < −ψ,
ψ(t− 1) if |i(t)| ≤ −ϵ.

(2.4)

with ϵ being small and positive. However, this model does not consider the history of the current and is thus
limited in accuracy [30].

Others have introduced additional parameters for the hysteresis factor, which were determined with parameter
identification. One of these models is by Roscher et al. [37] and is defined as follows:

ψ(t) = k1 ·
∫
m1 · i(t)
Cn

dt+ k2 ·
∫
m2 · i(t)
Cn

dt. (2.5)

Note that the hysteresis factor is scaled between 0 and 1. The factor itself, ψ, is defined in Equation 2.5.
Here, The hysteresis factor depends on the parameters k1, k2, m1, and m2, which were previously identified
using specialised cell tests. Note that in Equation 2.5, the normalisation factors k1 and k2 add up to 1 and
the integrals range between 0 and 1. After scaling the hysteresis factor to lie between -1 and 1, it can be
applied to the OCV equation shown in Equation 2.3.

Figure 2.4: Hysteresis model using the relative charge throughput to obtain the minor hysteresis loop according to Xie et al. [39].

Xie et al. [39] also developed a model for determining the OCV under hysteresis, defining the voltage
difference that allows the estimation of minor hysteresis loops from the major loops (see Figure 2.4). This
approach is similar to Roscher’s model [37]. However, instead of defining a hysteresis factor, the transition
between major hysteresis loops is determined by the charge throughput Q relative to the battery’s capacity
Qh,max:

∆vh,discharge = ∆vh,discharge,max · Q

Qh,max
,

∆vh,charge = ∆vh,charge,max · Qmax −Q

Qmax
.

(2.6)

2.5. Modeling Voltage Hysteresis 11

They assume the hysteresis voltage depends only on charge throughput and not on temperature.

Ko et al. [40] defined the OCV similarly to Roscher [37] to determine the minor hysteresis loop. However,
they describe the charging (α) and discharging (β) loops separately:

vOCV (SOC,α) = α · vOCV,charge + (1− α) · vOCV,discharge,

vOCV (SOC, β) = β · vOCV,charge + (1− β) · vOCV,discharge.
(2.7)

The slope parameters α and β, which can take any values between α0 to αn and βn to β0, respectively, are
iteratively defined as:

αk = α0 −
∫ k

0

ηb(αn − αn− 1) · ib,k,charge
(∆nSOC −∆n−1SOC) · Cn

dt,

βk = β0 −
∫ k

0

ηb(βn − βn− 1) · ib,k,discharge
(∆nSOC −∆n−1SOC) · Cn

dt.
(2.8)

In this definition, Cn represents the battery capacity, ηb is the battery efficiency, and ib,k,(dis)charge is the
charge or discharge current. This model, combined with an extended Kalman filter and a Thevenin model,
was used to estimate the SOC. The data for fitting the parameters was obtained through meticulous pulse
charge and discharge tests. This hysteresis model was established only for the 20% SOC window, assuming
that at higher SOCs, the OCV will always follow the major loops.

Xie et al. [41] adopted the same assumption about the OCV voltage as Roscher [37]. However, they explicitly
defined the hysteresis factor as being independent of any parameters to be fitted:

ψk = ψk−1 −
(
ik ·∆T η

Cn
· 1
a

)
. (2.9)

The hysteresis factor can be directly calculated using only the battery capacity Cn, the current at timestep k
ik, the battery efficiency η, the sampling period ∆T , and the accumulation of SOC a. Their definition, as
shown in Equation 2.9, applies to values of ψ between 0 and 1

To include the history of the current, a one-state hysteresis model was proposed by Plett et al. [30]. In this
model, the hysteresis factor is not explicitly defined, instead, a hysteresis voltage, which can then be used in
an ECM, is defined. The dynamics of the hysteresis voltage are given by the differential equation,

duH
dSOC

= γ · sgn
(
dSOC(t)

dt

)
·
(
M(SOC,

dSOC(t)

dt
)− uH(SOC, t)

)
. (2.10)

Note, that this differential equation is given in SOC and not time. M(SOC, dSOC(t)
dt) is the maximum

polarisation caused by hysteresis. The constant γ tunes the rate of decay and needs to be determined
with parameter identification. Using this model in combination with a Kalman filter to estimate the SOC did
result in a lower estimation error than using the zero-state model [30]. This model has been the basis for
other research regarding continuous SOC estimation with ECMs and Kalman filters under consideration of
hysteresis [7, 42, 43, 44].

Baronti et al. [45] introduced another model for the hysteresis voltage, where the total OCV voltage is
comprised of the average OCV voltage (average of the charge and discharge OCV curve) and the hysteresis
voltage defined as

duH
dSOC

= γ · sgn
(
dSOC(t)

dt

)
· vH + γ

M(SOC)

2
. (2.11)

The model can be seen in Figure 2.5. Here M(SOC) denotes the difference between the charge curve and
the discharge curve of the major hysteresis loop.

2.5. Modeling Voltage Hysteresis 12

Figure 2.5: ECM for including the hysteresis voltage according to Baronti et al. [45]

Another model for the hysteresis voltage was defined by Dong et al. [46], which is similar to that of Baronti in
Equation 2.11 [45], however, with a minus sign in the first term:

duH
dSOC

= −γ · sgn(dSOC(t)
dt

) · vH + γ
M(SOC)

2
. (2.12)

Figure 2.6: ECM for including the hysteresis voltage according to Dong et al [46].

Note that in both models, Dong and Baronti, γ is determined to be greater than 0. The OCV (UOC in
Figure 2.6) is a 5th polynomial in dependence of the SOC with parameters that need to be fitted. All
parameters of the model, including γ, were identified online with an invariant-imbedding method. The
estimated SOC, determined with a multi-state estimator, had an error margin of +/- 2%.

A two-state model was introduced by Kim et al. [47]. They split the OCV voltage in charge and discharge
OCV, which was realised by the addition of diodes in the ECM. This split is shown in the ECM in Figure 2.7.
In the differential equation for the OCV,

duOCV,k

dxk
=

[
duOCV (SOC)

dSOC
0

0 −1

]
, (2.13)

where xk is the state vector at step k, which is comprised of the SOC at k+1 as well as the voltage difference
at step k + 1. Using an extended Kalman filter based on the ECM, they predicted the OCV. However, their
resulting SOC estimation error was up to 5% and the cell temperature was not considered.

2.5. Modeling Voltage Hysteresis 13

Figure 2.7: ECM of the two-state hysteresis model according to Kim et al. [47].

Figure 2.8: ECM of the model used by Antony et al. [48]

Antony et al. [48] used the ECM seen in Figure 2.8. The major loop charge and discharge OCV are multiplied
by correction factors α and β, respectively:

α =
Qcharge

Cb,avg
,

β =
Qdischarge

Cb,avg
.

(2.14)

These factors consist of the charge or discharge throughput divided by the average capacity. Their results
show a mean average error of up to 7.5mV.

Zhou et al [29] considered the hysteresis directly in the OCV voltage. They use a Thevenin Model (see
Figure 2.3). Their differential equation model is defined as:

duOCV

dSOC
=

duOCV,charge

dSOC
+ ηb(uOCV,charge − uOCV) if dSOC

dt > 0,
duOCV,discharge

dSOC
+ ηb(uOCV − uOCV,discharge) if dSOC

dt ≤ 0.
(2.15)

The model adjustment coefficient η needs to be parameterised by analyzing a large number of minor and
major loop tests. The voltages uOCV,charge and uOCV,discharge refer to the voltage (curve equation) of the
major hysteresis loop. In this model, temperature is not considered as an influence on hysteresis.

Yu et al. [49] proposed a superimposed asymmetric hysteresis model. The OCV voltage is modelled by
superimposing multiple asymmetric play operators, each noted by the index i. Each play operator is defined
as:

uOCV,i(k) = max(a · ub(k)− ri,min(a · ub(k), uOCV,i(k − 1))). (2.16)

2.5. Modeling Voltage Hysteresis 14

ub(k) denotes the input at step k and ri is the threshold of the i-th operator. a and b are parameters that
were found using specialised tests such as Hybrid Pulse Power Characteristic (HPPC) and Galvanostatic
Intermittent Titration Technique (GITT). Then the overall OCV voltage can be determined:

uOCV (k) =

n∑
i=1

wi · uOCV,i(k). (2.17)

The weight wi of each play operator i is then found by minimising the error in the OCV estimation. This led to
a maximum error of 17mV.

Physics Based Models
Gao et al. [6] created a physics-based model to determine the half-cell open circuit potential (OCP) of the
anode. This is relevant as the OCV is the OCP of the anode subtracted by the OCP cathode and it thus
allows to model the hysteresis solely for the anode. They define the anode OCP as follows:

uanodeOCP (θanode) = ψuanodeOCP,de(θ
anode) + (1− ψ)uanodeOCP,li(θ

anode), (2.18)

where uanodeOCP,de is the anode OCP during delithiation and uanodeOCP,li during lithiation and with ψ being the
hysteresis factor. θ is the electrode stoichiometry. The concept is similar to that of Roscher [37], however
applied to only the OCP instead of the OCV. The hysteresis factor ψ was then found by minimising the model
estimations of the OCV with the actual OCV under GITT tests (least squares problem). To get estimations,
Equation 2.18 was incorporated into a pseudo-2-dimensional model of a battery. Their approach does not
consider different temperatures. Depending on the SOH level, their smallest predicted OCV error was 6.182
mV.

Machine Learning Based Methods
Li et al. [50] used a random forest algorithm to determine the OCV used for SOC correction under the effect
of hysteresis. They collected OCV-SOC data, to predict the actual SOC/OCV curve (a curve in between the
charge and discharge curve). However, the authors themselves declared that their results are not practically
applicable.

Xu et al. [8] uses a Long-Short Term Memory model to learn the OCV under hysteresis. They define the
hysteresis voltage similarly to Equation 2.3, however, the LSTM then learns to predict the hysteresis factor ψ
between 0 and 1. They use the battery current and voltage of each charging counting time as input. The
LSTM therefore has an input size of 2 and a size of 5 in their hidden layer. After the linear layer, the output is
sent through a sigmoid function to ensure an output value between 0 and 1. However, the model was only
trained with the results of 3 HPPC tests in total and the used labels have values of either 0 (discharging) or 1
(charging).

3
Fundamentals Machine Learning

This chapter explores the fundamental principles of machine learning, which is a subset of artificial intelligence.
According to Sarker [51], machine learning aims at "using data or past experience to automate analytical
model building". This indicates that the ultimate goal is to automatically learn a relationship between input
and output with available data or experience without having to explicitly program the rules. Therefore Machine
Learning is a very suitable tool for problems with high dimensional data, such as fraud detection or image
and speech recognition [52].

This chapter introduces essential machine learning concepts, starting with a brief overview of supervised and
unsupervised learning and the machine learning pipeline. Then, it discusses different regression models,
including linear regression, XGBoost, and deep learning. The chapter concludes by addressing uncertainty
in labels and the use of quantile regression for capturing variability in predictions.

3.1. General Concepts of Machine Learning
This section provides a brief overview of the fundamental concepts in machine learning. It begins with an
introduction to the two most relevant types of learning: supervised and unsupervised learning, followed by a
description of how a structured machine learning workflow is organised through a machine learning pipeline.

3.1.1. Supervised and Unsupervised Learning
Within machine learning, the type of learning can be classified into supervised learning and unsupervised
learning [53], with other types existing but excluded from this discussion due to their irrelevance to this work.
In supervised learning, the objective is to learn a function that accurately maps input to output using a training
set of data where input-output pairs are given. The respective output of each input is also referred to as label
[54]. Typically, supervised tasks are regression (prediction of a continuous numerical value based on the
input vector [53]) or classification problems [55] (prediction of a value out of a set of discreet values [53]). If
no labels are given, such as in clustering tasks, unsupervised learning is applied [55]. Weakly supervised
learning can be considered a mixed form between supervised and unsupervised learning. Usually, weakly
supervised learning is separated into three different categories [56]:

• Incomplete supervision: The majority of the available training data is unlabelled and only a small
subset of labelled data is available. A reason for this can be, for example, high costs to obtain labels,
such as labelling that needs to be done manually.

• Inexact supervision: In this case, only course-grain labels are available as it is not possible to
determine the exact ground-truth value.

• Inaccurate supervision: Here, some labels which are given might not be accurate and, thus do not
hold ground-truth values. This can be due to errors in the labelling process.

15

3.2. Regression Models 16

3.1.2. Machine Learning Pipeline
The machine learning pipeline is an automated workflow of preparing, training, testing and validating machine
learning models and is part of academic and industry best practices for reproducibility.

The following steps are an essential part of the machine learning pipeline [57]:

1. Data preprocessing: This step includes the collection of sufficient data to ensure generalization
within the scope of the model’s application. This can be done, for example, using measurements or
available databases. Data preprocessing also includes the cleaning of data, as there might be missing
values values, or the data might be inconsistent. Moreover, the data preprocessing step includes
the transformation of data. Examples include the normalisation or standardisation of data, which is
necessary because different features may have varying scales and machine learning frameworks
require normalised or standardised feature inputs [58]. At last, the data has to be split into a training,
test and validation set.

2. Feature design: This step includes feature engineering. It means that new features can be created for
the model or existing features can be transformed. It also involves feature selection; identifying which
features are relevant to the model. Moreover, this also includes feature extraction, which describes the
process of transforming raw data, for example, data which is in Hex decimal into numerical features.
This increases the performance of the model as the model often performs better than with the raw data
[59].

3. Model development: The model development includes the selection of the model, which is discussed
in more detail in subsection 4.6.2. It also includes the training and validation of the model. This can
be done either offline, by providing a batch of training data beforehand, which will then be used all at
once to train the model, or online, when the full dataset is not available at the beginning and the best
predictor will be updated as more data becomes available. In this work offline learning is applied, as all
the measurement data is already available. Lastly, all relevant hyperparameters of the chosen model
should be optimised [57].

3.2. Regression Models
Regression models are designed to map the input variables to continuous output variables [60]. These
models can vary in complexity from rather simple linear regression models to gradient boosting models to
neural networks. This section will provide a concise overview of these three distinct models, delving into their
assumptions, their capabilities, and their limitations.

3.2.1. Linear Regression Model
The objective of linear regression is to construct a hyperplane that best approximates a set of scattered data
points. This dataset is formally defined as a set of tuples (xp, yp)

P
p=1, where each xp is a column vector with

a length of N of sample p, which is the number of features. Linear regression assumes linearity between the
inputs xp and the labels yp By employing the equation for a hyperplane, the associated loss function can be
written as the minimisation of the squared differences between the hyperplane’s predictions and the actual
labels yp. This least squares cost function is defined as [61]:

min
b,w

P∑
p=1

(ẋTp w − yp)
2. (3.1)

With ẋp defined as encompassing the unit vector as the first element, and then the input vectors x1 to xP ,
the minimisation of this convex function is achieved through the solution of w∗ [61],

w∗ = (

P∑
p=1

ẋpẋp
T)−1

P∑
p=1

ẋp
T yp. (3.2)

However, as solving forw∗ is numerically expensive, the problem is typically approached with gradient descent.
This iterative technique starts with an initial weight matrix w0 and progresses by repeatedly adjusting w as
can be seen in Equation 3.3, where α is the step length. With these iterative steps, this method gets closer to

3.2. Regression Models 17

a stationary point, thus a (local or global) minimum of the objective function g. The weight matrix at iteration
k, denoted as wk, is updated until the procedure either reaches a predefined number of iterations or the
norm of the gradient ∇g(wk) becomes small enough [61]:

wk = wk−1 − αk∇g(wk−1). (3.3)

The step length αk is crucial as it must be small enough to prevent overlooking the minimum, yet sufficiently
large to ensure the computational feasibility of the method. Nevertheless, it is important to note that gradient
descent does not assure convergence to the global minimum [61].

3.2.2. Extreme Gradient Boosting Model (XGBoost)
XGBoost is a library designed to optimise and extend gradient boosting for supervised learning problems [62].
It builds upon the gradient boosting algorithm [63] and uses decision tree ensembles, specifically regression
and classification trees (CART). A decision tree consists of nodes, leaves ("endpoints" of the tree) and
branches, aiming to determine a classification rule to divide the training data into homogeneous subsets. At
each node, a test based on the sample’s features is done. Each outgoing branch of the node represents a
possible test outcome, leading to another node or leaf. Leaves indicate which subset the input belongs to
and thus do not have any outgoing branches [64].

Unlike class-based decision trees, CARTs contain a scalar score in the leaves. In practice, multiple trees are
used to improve performance, with the overall score being the sum of scores from individual trees, defined as
follows:

ŷi =

D∑
d=1

fd(xi), (3.4)

where ŷi is the predicted value for sample i, D is the number of trees, and fd is a function representing each
tree [62]. The model is trained by optimising an objective function defined as [62],

obj(Θ) =

n∑
i=1

l(yi, ŷi) +

D∑
d=1

ω(fd), (3.5)

where l(yi, ŷi) is the loss function and ω(fd) is the complexity function (for details see section A.1) which
serves as regularisation.

XGBoost uses an additive strategy to learn the tree functions. Instead of learning all trees simultaneously,
the trees are learned one by one, with each tree improving upon the previous one (for more details see
section A.1), where ŷ(t)i describes the output at time step t [62]:

ŷ
(t)
i =

t∑
d=1

fd(xi) = ŷ
(t−1)
i + ft(xi). (3.6)

The optimal tree structure is found by evaluating the gain of splitting leaves. The gain,

Gain =
1

2
[

G2
L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

HL +HR + λ
]− γ, (3.7)

comprises the score of the left new leaf, the right new leaf and the original leaf (for details see section A.1). If
the gain is negative, the leaf is not split [62].

3.2. Regression Models 18

3.2.3. Deep Learning Model
Deep learning, a subset of machine learning, is deployed when conventional machine learning architectures
fall short of capturing the intricacies of a problem. This is particularly evident in tasks such as recognising
speech or recognising objects, where the algorithm has to learn a function in a high-dimensional space [53].

Their architecture, which mimics the cognitive processes of the human brain, enables them to represent
exceedingly complex functions by employing an increasing number of layers [53]. When the amount of data
increases, deep learning demonstrates higher efficiency compared to traditional machine learning models
[51].

The following things need to be considered before designing a model for deep learning [51]

• Data dependency: Deep learning often performs badly when the available dataset is too small.
Therefore a lot of data is needed to achieve the desired performance

• Hardware dependencies: Deep learning requires high computational power, making GPUs more
suitable than CPUs due to their efficiency for these tasks.

• Feature engineering process: Extracting features from available raw data often takes less time and
effort than traditional ML models

• Model training and execution time: Deep learning training is slower due to many parameters but
quicker in testing compared to traditional ML models.

• Interpretability: Deep learning lacks transparency as a black box model, making result traceability
difficult compared to more interpretable traditional models.

Feed Forward Neural Network
The feed-forward model derives its name from the flow of information from the input to in-between computa-
tions towards the output with no feedback connections from the output back to the input or the in-between
computations [53]. There are three types of layers, namely the input layer, the hidden layer and the output
layer, each consisting of neurons. Every neuron of one layer is connected to every neuron of the next layer,
making the network fully connected. While there is only one input and output layer, there can be multiple
hidden layers and choosing the number of hidden layers, thus deciding on the depth of the network requires
experience and tuning [65].

In addition, there are other attributes of the network’s architecture that have to be considered, namely the
number of layers and the width of each layer, so the amount of neurons also referred to as hidden units per
layer. These two attributes, depth and width also interact. Deep networks need fewer units per layer and
fewer parameters to reach the same network capacity but are in turn more difficult to optimise. The optimal
architecture must be chosen by manually adjusting according to the error of the validation set [53].

Another consideration is the type of hidden unit. The type refers to the activation function g of the neuron. An
illustration of this can be seen in Figure A.1. This function makes it possible for the network to also learn
non-linear functions. The most common types of units are listed in section A.2 [53].

The learning process requires two fundamental mechanisms, forward propagation and backpropagation, to
minimise the loss function effectively. Forward propagation involves the transmission of initial data from the
input through the hidden layers to generate the output. Conversely, backpropagation entails the reversal of
this information flow, where the computed loss from the output stage is relayed backwards throughout the
network and thus enables the computation of gradients. These are instrumental for optimising connection
weights via algorithms such as Stochastic Gradient Descent during the network’s training phase [53].

Recurrent Neural Network
Using recurrent neural networks (RNNs) has become a common practice when processing sequential input
data as they are designed for this input data [66]. The three different design patterns for the architecture of
RNNs can be found in section A.3.

As explained for feed-forward networks, RNNs also use backpropagation, referred to as backpropagation in
time, as backpropagation is done on the unfolded graphs (examples of which can be seen in Figure A.2)[67].

3.2. Regression Models 19

RNNs face two major challenges: The first one is exploding or vanishing gradients. When gradients propagate
through many layers, they typically vanish or, in rare cases, explode [68]. RNNs repeatedly compose the
same function [53]:

h(t) =WT ∗ h(t−1) = (W t)T ∗ h(0). (3.8)

Note that this is a simplified representation without non-linear activation functions or x inputs. This nesting
leads to highly non-linear behaviour. This can be further simplified by representing W as an eigenvalue
decomposition with an orthogonal Q matrix [53]:

h(t) = QT ∗ Λt ∗Qh(0). (3.9)

Eigenvalues Λ raised to the power of t show that values less than 1 approach 0 as t increases, while values
greater than 1 grow rapidly. As illustrated in Equation 3.9, only elements of h(0) aligned with the largest
eigenvector significantly influence h(t) [53].

The second challenge is a direct consequence of the first: The weights given to long-term interactions are
exponentially smaller than those given to short-term interactions [68]. Consequently, the gradient of long-term
interactions is exponentially smaller than that of short-term interactions, resulting in a slower learning process
for long-term dependencies [53].

Gated RNNs Gated RNNs are a special form of RNNs designed to address the challenges of exploding/-
vanishing gradients and the small weights for long-term interactions. Their core idea is to create pathways
through time with stable derivatives. The weights of these pathways can vary at each time step, allowing the
network to keep prior information and selectively forget it when no longer useful [53, 8]. Gated RNNs excel in
learning when to forget [53]. There are two notable types of gated RNNs, namely long short-term memory
and gated recurrent units.

Long Short-term Memory (LSTM) In a long short-term memory (LSTM) network, self-loops create paths
through time with stable gradients. The weight of the self-loop is gated, controlled by another hidden unit,
and thus not fixed. An illustration of an LSTM cell is shown in Figure 3.1. LSTMs contain three gates: the
input gate determines if an input feature is accumulated into the state; the forget gate controls the self-loop
weight; and the output gate controls the cell’s output. All gates use a sigmoid non-linearity, the input unit,
however, can use any squashing non-linearity. LSTMs have demonstrated strong performance in learning
long-term dependencies [53].

Figure 3.1: Illustration of a LSTM cell [69].

3.3. Managing Uncertainty in Labels 20

Gated Recurrent Units (GRU) Gated recurrent units are similar to LSTMs in terms of functionality. However,
unlike LSTMs, there are only two gating units instead of three (see Figure 3.2). The update gates act as leaky
integrators that can choose to copy, ignore or replace the current state with a new target state [69]. These
gates help capture the long-term dependencies [53] The reset gates control which part of the state influences
the next target state. Compared to LSTMs, GRUs have the advantage of being computationally faster [69].

Figure 3.2: Illustration of a GRU cell [69].

The mathematical formulation of a GRU for time step t is as follows [70]:

Rt = σ(Wir ·Xt +Whr ·Ht−1 + bhr) (3.10)

Zt = σ(Wiz ·Xt +Whz ·Ht−1 + bhz) (3.11)

H̃t = tanh(Win ·Xt + bin +Rt ◦ (Whn ·Ht−1) + bhn) (3.12)

Ht = (1− Zt) ◦ H̃t + Zt ◦Ht−1 (3.13)

(3.14)

Note that the first two equations describe the formulations for the two gates, the reset gate Rt and the update
gate Zt. The last two equations then define how to determine the candidate hidden state H̃t and the hidden
state Ht. Xt is the input vector with dimensions (input size, 1). Thus the weight matrices which describe the
weights between the input and hidden layer (Wig with g being the respective gate/hidden state candidate
gate), have dimensions (hidden size, input size). If it is the first GRU layer in the network, the input size
corresponds to the size of features, similarly, the input size for the second layer (denoted by l = 2) would
correspond to the hidden size of the first layer. Hence, Xt in Equation 3.10 to Equation 3.12 would be
H

(l−1)
t · δl−1. The dropout variable δl−1 is a Bernoulli random variable which is zero with the probability

defined in the parameter dropout during the initialisation of the model.

The weights connecting the hidden layers are denoted by Whg and have dimensions (hidden size, hidden
size). bhg and bin denote the bias vector. The Hadamard product is represented by the symbol ◦, while σ
denotes the sigmoid function.

3.3. Managing Uncertainty in Labels
In real-world scenarios, the quality of training data is often imperfect due to the difficulty of obtaining reliable
and high-quality data. Poor data quality may arise from unknown features, unknown feature values, or
incomplete, incorrect, or inconclusive data [71]. In order to develop a robust machine learning mode, these
uncertainties have to be managed.

Uncertainty in machine learning can be categorised into aleatoric uncertainty and epidemistic uncertainty.
Aleatoric uncertainty also referred to as statistical uncertainty arises from the inherent variability or random-
ness in the data, including noise that cannot be reduced by obtaining additional data. In contrast, epistemic
uncertainty, also known as systematic uncertainty, stems from a lack of knowledge that can be reduced
through the acquisition of more data or information[72].

3.3. Managing Uncertainty in Labels 21

Imperfect learning occurs when the quality of the training data is poor, or the quantity of training samples
is insufficient [71]. If labels are not available for every sample, resulting in a dataset that contains a certain
percentage of labelled and a certain percentage of unlabelled data, this is referred to as semi-supervised
learning [73]. If the labels are noisy and their quality is compromised, then this is referred to as weakly
supervised learning [56].

There are two types of noisy labels in regression data. The first one is referred to as additive noise and can
be described by,

y = yTrue + ϵ, (3.15)

where yTrue is the ground truth label and ϵ is the noise drawn from a normal distribution and thus independent
of the input [74].

The second type is referred to as instance-dependent noise and can be defined as,

ỹ = ρ(x), (3.16)

with x being the input and ρ being a noise function which depends on the input [74].

There has been research on addressing the challenges posed by noisy data. Chang et al. [71] aimed to
improve the performance of machine learning models that train with noisy input data by imitating the human
learning process during the training phase. This is done by changing the way imperfect data is represented,
namely by introducing a certainty weight that denotes the reliability of each sample based either on statistical
information or assignments by experts.

Hartono et al. [75] proposed a neural network ensemble algorithm that learns to exclude erroneous samples
and effectively handles training sets containing such errors.

Bekker et al [76] introduced an additional layer in neural networks, allowing the network to learn not only its
parameters but also the noise distribution for a classification problem. They assume that ground-truth labels
are superimposed with noise generated by an unknown noise channel. By modelling the transformation from
true labels to noisy labels, the network learns the associated parameters.

Wang et al. [77] developed a deep neural network architecture that improves the performance of models
that are trained on noisy labels and tested on clean labels. The application is a sentiment classifier, which
contains two specific layers, one of which is a noise transition layer to handle the input noise, similar to Bekker
et. al [76], and one to predict which ones are clean labels.

Another approach is to exclude the imperfect labels during preprocessing. However, this may not always be
possible [78].

There are three common approaches to learning with noisy labels. The first approach involves employing
a robust loss function that includes regularisation. The second approach involves estimating the noise by
assuming a probability distribution function. However, this method requires a sufficient number of ground-truth
labels for validation or assumptions about the data and information about the noise. The third approach
is noise correction. Initially, the model learns simple relationships and predicts accurately. By generating
pseudo-labels, such as probabilistic labels, and training on them, it is suggested that this can correct the
noisy labels [79].

Imperfect data is not the only issue that can impact an algorithm’s performance; problems in the model
training process, such as underfitting, overfitting, insufficient training data, incorrect model selection, and
suboptimal hyperparameters, can also reduce performance. Various techniques can be applied to address
these issues. A few common examples are listed below.

• Data augmentation: This technique helps address issues related to insufficient training data or
unevenly distributed data. By transforming the input data (e.g., rotating or reflecting images), a
more abundant and diverse training dataset can be created. This approach is often utilised in image
classification [80].

3.4. Quantile Regression 22

• Lasso (L1) and Ridge Regression (L2): These techniques are used to avoid overfitting, where the
model learns the training data and its details too well, resulting in poor generalisation on the test set.
Both methods minimise the model’s complexity alongside the loss. In Lasso regression (L1), this is
achieved by adding a penalty term representing the absolute value of the sum of coefficients, regulated
by the hyperparameter lambda, which can reduce certain feature weights to zero and thus perform
feature selection. Lasso regression effectively eliminates multicollinear features entirely. In Ridge
regression (L2), the penalty term is the squared sum of coefficients without performing feature selection
[81].

• Early stopping: This method also prevents overfitting by stopping the model training process early,
namely when the validation error starts increasing again or remains constant. This ensures that the
model does not overlearn the details of the training data [81].

• Hyperparameter tuning: This process optimises the model parameters, which are crucial for the
learning stage. Several methods can implement this, with randomised search being one example. In this
method, parameter configurations are generated from a given parameter range, and the configuration
with the lowest validation error is selected [82].

3.4. Quantile Regression
Quantile regression can be used to quantify the aleatoric uncertainty in a model’s prediction [83], thereby
estimating the level of confidence in the prediction. Instead of predicting a singular value, quantile regression
allows for the prediction of an interval of the respective value.

Thus, quantile regression aims to determine conditional quantile functions based on covariates (features).
Unlike least squares regression, which estimates the conditional mean, quantile regression estimates the
conditional quantile [84]. By predicting an interval rather than a singular value, quantile regression provides a
way to quantify the uncertainty in a model’s predictions. This is particularly useful for managing the various
uncertainties encountered in the machine learning pipeline, from uncertainties in the data, such as noisy
labels, to uncertainties in the model itself.

A quantile refers to a segment of a dataset. For example, in a dataset, the 0.5 quantile (median) divides
the data in a way that half the points are above and half are below the quantile. Similarly, the 0.1 quantile
indicates that 10% of the data points are below this value and 90% are above. In general, the τ -th quantile
means that a proportion τ of the dataset is smaller, and a proportion (1− τ) is larger [84].

The loss function for quantile regression minimises the sum of absolute residuals. This is achieved by
ensuring an equal number of positive and negative residuals. Asymmetrically weighting the absolute residuals
enables the prediction of other quantiles. The optimisation problem can be defined as follows:

min
∑

ρτ (yi − ξ). (3.17)

The function ρτ (see Figure 3.3) takes the weighted absolute value of yi − ξ [84].

Figure 3.3: Tilted absolute value function ρ to obtain the τ -th quantile [84].

3.4. Quantile Regression 23

Similarly, the conditional quantiles can be defined, where ξ(xi, β) describes the residual as a parametric
function depending on the feature xi and the parameter β [84]:

min
∑

ρ(yi − ξ(xi, β)). (3.18)

Quantile regression provides a robust method for managing the aleatoric uncertainties in the data. By
quantifying the uncertainty, the predictions become more informative and robust to the imperfections in the
data. However, quantile regression does not handle the uncertainties arising from model selection, parameter
selection, or missing knowledge (epistemic uncertainty). It is only a data-driven technique.

4
Quantile Regression in the Prediction of the

Hysteresis Factor

This chapter will examine the methodology used to predict the hysteresis factor using quantile regression.
It will start by introducing the different approaches to the problem and discussing the availability of data.
Afterwards, the preprocessing of input is explained in greater detail, mentioning the preprocessing pipeline,
feature selection and the transformation to the actual input data. Then, the distribution of the available data
is presented. Next, the data labelling process is discussed, followed by a section on the relevant machine
learning models. This section explains which models were chosen and the reasoning behind their selection.
It will further explain the implementation of the chosen models, how the size of the models was estimated
and how the model input data was tuned.

4.1. Approaches to Problem Solving
Different approaches are taken to solve the problem of determining the hysteresis factor based on driving
profiles. Each methodology is distinguished by the method of hysteresis factor determination, the form of the
input data, and the machine learning model employed. An overview of the approaches and the respective
resulting case studies is provided in Table 4.1.

Since the SOC correction only occurs after the cell voltage has stabilised, the hysteresis factor only needs
to be determined at that point. Therefore, intermittent determination of the hysteresis factor might suffice.
Alternatively, the hysteresis factor can be determined quasi-continuously. This involves determining the factor
in regular intervals e.g., every minute.

Table 4.1: Different approaches and resulting case studies.

24

4.2. Availability of Data 25

The input data can take various forms:

1. Time series attributes, which summarise the time series.

2. The entire time series

3. Intervals resulting from splitting the time series

More details can be found in subsection 4.3.3. At last, the approaches differ in the type of model that is used.
subsection 4.6.1 will elaborate on the model choice in greater detail.

4.2. Availability of Data
The data used to train and test the models is taken from a test bench. The test bench enables testing on
a battery system level in a dedicated climate chamber, ensuring that measurements can be executed with
precision. For each test case, the starting conditions, such as the start SOC or the temperature are fixed.
Furthermore, each test description also provides the testing process. This could for example be that the
battery should be charged with a current of 1C until the SOC reaches 90%. It is important to know that while
a lot of different test cases are available, not all of them are suitable as training or test data. For a test case
to be considered, the cells need to be able to relax within the measurement (thus zero-current for a certain
period). Whether this relaxation time is included or not is specified in the test description and can be verified
by reading one of the measured signals from the BMS. This signal switches to true when the relaxation
conditions, indicate the start of SOC correction.

In these test bench measurements, an existing algorithm is used in the BMS to correct the SOC. This
algorithm determines the hysteresis factor based on the charge throughput and a manually calibrated
parameter. However, this algorithm also has a margin for error and thus can also correct the SOC with a
+/- 3% SOC precision.

4.3. Preprocessing of Input Data
In this section, the preprocessing pipeline will be introduced. Following this, the feature selection will be
explained in greater detail. In addition, information will be given about the transformation of the input samples
to 1-dimensional and 2-dimensional samples. At last an overview of the distribution of data is given.

4.3.1. Preprocessing Pipeline
The first step of the pipeline is extracting the signals from the raw data. This raw data is available in an mf4
file format [85], which can be read in Python using the asammdf library [86]. Using a predefined dictionary
which maps the names of the signals to the actual signals for each vehicle project, the relevant signals can be
extracted. It is important to note that even within a single-vehicle project, a signal may be known by different
names due to evolving naming conventions. This is addressed by iteratively searching through a list of known
names for each signal. If signals cannot be found or recreated, the measurement is skipped and no sample
is generated.

Due to varying sampling times of the signals, their number of elements differs. To ensure that they have
cohesive timestamps, the desired sampling rate is set. New timestamps are then generated, starting at
zero and extending to the end of the original measurements. The sampling rate is adopted from the signal
"measuring" the hysteresis factor, namely 10 Hz. These timestamps are used to linearly interpolate the
signals.

The next step is the conversion of signals, if necessary, such as converting voltage signals from mV to V.
This ensures uniformity in units, whether the signals are used directly or as input to calculate more complex
features.

Certain signals might not always be available in all measurements. In this case, the missing signals are, if
possible, generated. For example, the current and time signals can be used to calculate the net integrated
current. If generating a signal is not feasible, a warning is given and the measurement as a whole is skipped
due to missing signals.

In the next step, the extracted signals are segmented. One split begins either at the very start of the
measurement or after the SOC correction is completed (if a measurement starts with a relaxation period) and

4.3. Preprocessing of Input Data 26

it ends when the next SOC correction occurs. If the current in one split is 0 for the whole time, the split is
ignored. This process is illustrated in Figure 4.1.

Figure 4.1: Illustration of the segmentation of measurements into samples.

After segmenting the measurements, each of the splits can be labelled. The data of each split is then saved
in a Parquet format [87], which minimises memory usage. The entire preprocessing pipeline is depicted in
Figure 4.2.

Figure 4.2: Overview of the preprocessing pipeline.

4.3. Preprocessing of Input Data 27

Table 4.2: Relevant features according to different hysteresis models.

4.3.2. Feature Selection
To identify the relevant features influencing the hysteresis factor, a literature review was conducted, and
internal experts at Porsche Engineering were consulted.

An overview of the introduced models and their respective signals that are part of the models can be found
in Table 4.2. Furthermore, it should be noted that a lot of the models used further artificial parameters,
which were identified with methods such as HTTP tests. Therefore, these parameters, and thus the models,
indirectly depend on the current and SOC), as they were used to determine the parameters. Additionally,
because of the definition of Coulomb counting, the SOC is also influenced by the current. From Table 4.2 it
becomes evident that current is a significant factor and cell voltage may also play an important role.

Features influenced by the hysteresis factor and thus the current algorithm, such as SOC and capacity, were
not considered, to minimise the influence of the existing algorithm. As the OCV hysteresis curves in the
literature models were only used when the model predicted the OCV voltage (serving as a starting point
for subsequent calculations of the change in voltage), they were not considered as this work determines
the hysteresis factor directly. Instead, the previous hysteresis factor was considered. "Previous" refers to
the hysteresis factor determined at the end of the last measurement, indicating the hysteresis factor at the
beginning of the ongoing measurement.

Additionally, as some models from the literature indirectly considered temperature by performing parameter
identification under different temperature conditions (see Figure 1.2), cell temperature was also included as a
feature.

Therefore, the following signals were considered as potential features:

• Current

• Cell voltage

• Cell temperature

• Previous hysteresis factor

Note that current refers to the battery current as this should be approximately equal to the current going
through the cell. Furthermore, the cell voltage and cell temperature measurements are taken from the first
cell of the battery pack.

4.3.3. Transformation to Model Input Data
Each Parquet file from the preprocessing pipeline contains the time series corresponding to a specific
measurement. Note that each measurement may differ in length. If the active period of a measurement, so
the pre-relaxation period, was under 10 s, the measurement was not considered. Depending on the problem

4.3. Preprocessing of Input Data 28

approach (see Table 4.1) taken, the model input format varies. The following subsections will explain the
transformation process in greater detail.

Once the input data is transformed into the right format, all features are linearly normalised to be in a
range between -1 and 1 using a MinMax normalisation. For the two-dimensional input data, the scikit-learn
MinMaxScalar [88] was used. For three-dimensional input data, a custom scaler based on the MinMaxScaler
was utilised to accommodate the normalisation of the entire time series for each sample and feature. Scaling
accelerates convergence [89] and features with different scales, such as the hysteresis factor which naturally
cannot exceed 1 and the integrated current which is significantly larger can be regarded as equally important
by the models [90].

Time Series Attributes
This approach is specifically for simpler models. Since these models are capable of processing only one-
dimensional features and not entire time series, the idea is to describe the time series using specific attributes.
Python libraries like TSfresh [91] can be used to extract time series characteristics. However, the extracted
characteristics were limited for two main reasons: an excessive number of features and suitability to run on
an electronic control unit.

As these time series characteristics must be determined for every relevant signal, the number of total features
increases not only with the number of characteristics but also with the number of signals. Furthermore, not
all characteristics are suitable for BMS implementation. Many characteristics require variables, such as the
standard deviation of the time series, which can only be determined if the entire time series is available.
Given that the battery management system does not have a lot of RAM, long time series, especially those
with a high sampling rate, cannot be stored. Instead, it is better to capture these variables using a counter,
such as the mean, where one counter sums all values and another counter keeps track of the number of
values during runtime.

The final chosen characteristics can be seen in Table 4.3. Note that x1 refers to the first element of the
time series and n is the last active element of the time series thus the last element before the start of the
relaxation period. ñ refers to the last point of the entire time series, thus the time step immediately before
SOC correction. As different time horizons can be chosen (e.g. the whole time series, the last 10 active
minutes, etc.) the start point m can vary.

Time Series
As neural networks can handle two-dimensional input features such as time series, it was possible to supply
the complete time series to the model. However, the time series resulting from preprocessing could not
immediately be used due to their high sampling rate which would result in too many timesteps for the network
to process and for the BMS to save. Furthermore, the training process required the input to have the same
number of time steps for each sample.

One option was to standardise the length of all time series, for instance, by considering only the last 10
active minutes, as illustrated in Figure 4.3a. Alternatively, different sampling rates could be employed,
meaning that the interval between timesteps would be longer for longer measurements and shorter for shorter
measurements, as depicted in Figure 4.3b. Both options result in the same number of elements per sample.
All features are listed in section A.4.

(a) Option 1 of time series features: All samples (blue) have the same
length.

(b) Option 2 of time series features: All samples (blue) may have different
lengths

Figure 4.3: Options to have the same number of time steps with measurements of different lengths.

4.3. Preprocessing of Input Data 29

Table 4.3: Time series attributes and their mathematical formulation.

4.4. Distribution of Available Data 30

Time Intervals
Another approach is to split the whole time series into time intervals. For the simple models, which require
two-dimensional features (one dimension for samples and one for features), the interval between t− 1 and
t can be described by the signal values at t, and the change in the signal and the average of the signal
within the interval. Additionally, if the time horizon expands beyond the interval, previous periods can also be
considered. This is shown in Figure 4.4a.

When supplying data to neural networks capable of handling time series input, the data can be structured in
three dimensions (time, feature and sample). In this case, it is possible to input the entire time series between
t − 1 and t. In addition to selecting the interval size, it is also possible to adjust the sampling rate of the
signals within that interval. Given that each sample is more complex (containing an entire time series) than in
the two-dimensional interval approach, past intervals are not directly considered. If a 5-minute interval and
the preceding interval are to be considered, the interval size can be set to 10 minutes. An illustration of this,
with a sampling rate of 8 elements per interval, is provided in Figure 4.4b. An extensive list, explicitly listing
all features used for the interval approach can be found in section A.4. As each interval can be seen as a
sample, each interval also requires its own label.

(a) Time interval for two-dimensional input. (b) Time interval for three-dimensional input.

Figure 4.4: Difference between time interval approach for two-dimensional and three-dimensional input.

4.4. Distribution of Available Data
After properly preprocessing the input data, it was possible to examine the data distribution to assess its
diversity. It is important to note, that there is a predefined set of test cases as mentioned in section 4.2. For
the initial training, a vehicle project with 10 months of testing data was selected, referred to as "vehicle project
A". The same type of test may be done multiple times, sometimes even in the same month. While the current
profile and other parameters are similar there are minor differences. Figure 4.5 provides an example of this.

(a) Temperature vs open-circuit voltage (normed). (b) Current profiles.

Figure 4.5: Same test type in different measurements, denoted by the month the measurement was recorded. The legend in (a)
indicates which colour corresponds to which month.

Figure 4.5 shows five measurements, all of the same test type, denoted by the month in which the measure-
ment was taken. Note that the first two measurements are from the same month. Figure 4.5a illustrates
minor variations in temperature between the months, with the temperature ranging from 27.1◦C to 28◦C. The
OCV was normalised based on the maximum and minimum values specified for the cell. Figure 4.5b displays
the current profiles applied in the measurements. As seen, the measurements differ in length and start of
the current pulse. While the overall current profile remains consistent, the measurements are shifted in time,
each with a different pre-pulse period and some containing a small pulse in the opposite direction at the start.

4.4. Distribution of Available Data 31

It was decided to utilise all available data, even if some measurements are similar, to ensure sufficient training
data and to account for the subtle differences in the various measurements of the same test.

Figure 4.6 illustrates the lengths of each measurement, including the inactive period, known as the relaxation
time. The measurement lengths vary significantly, ranging from just a few hours to over 200 hours. The
average length is 30.42 hours. Note that these lengths correspond to the active period and the relaxation
period. Long measurements result from multiple pulses with rest periods in between. However, relaxation
conditions are not met during these intermittent rest periods but are only met at the end of the measurement.

Figure 4.6: Distribution of sequence lengths of measurements.

Figure 4.7 shows the distribution of the average cell temperature versus the measured OCV scaled according
to the minimum and maximum values (cut-off voltages) specified for the cell.

Figure 4.7: Average cell temperature vs normed OCV.

4.4. Distribution of Available Data 32

There are relatively few measurements near the minimum cut-off voltage. The cut-off voltages vary with
temperature, and in this case, the lowest cut-off voltage, defined for high temperatures, is used. At 20◦C,
the lower cut-off voltage would be higher. It can be seen that the majority of measurements fall within a
temperature range of 20◦C to 35◦C. This range also corresponds to the predominant use case for typical
customer applications. For this reason, it was decided to limit the samples used for the initial training to this
temperature range.

Figure 4.8 displays the minimum and maximum charging current of each measurement. Since each
measurement includes a relaxation period, the minimum current will be negative, representing the discharging
current, while the maximum current will be positive, corresponding to the charging current. The horizontal
black line indicates a maximum current of 0A, meaning that measurements on this line only have a negative
current and are thus discharging experiments. Similarly, the black vertical line indicates a minimum current
of 0, which means that measurements on this line are charging experiments. There is a significant number
of charging experiments. Approximately 49% of the measurements lie on the charging line, while 30% lie
on the discharging line. The majority of charging experiments reach a maximum current of about 150A,
which corresponds to a charging power of up to 120kW. Measurements exceeding -800A in minimum current
indicate high power use, such as fast acceleration.

Figure 4.8: Minimum and maximum current of measurements with charge-only and discharge-only measurements indicated by the
black dotted lines.

Figure 4.9a displays a bar plot of the labels if each measurement is taken as a sample (as done in the time
series attributes and time series approaches). The majority of labels are clustered around the extremes of -1
and 1. This is logical given that most test cases end with either significant charging or discharging, which
drives the hysteresis factor to these extreme values. In real-world scenarios, the hysteresis factor is also
likely to be at these points. However, the intermediary space must be covered as well. For instance, in a
test case where the vehicle undergoes regenerative braking and then immediately parks, resulting in the
measurement ending with neither extreme charge nor discharge.

If the measurements are further divided into intervals (as done in the time interval approach), the majority
of labels still cluster around the extremes, as shown in Figure 4.9b. However, there are now more samples
available in the intermediary space. Note that Figure 4.9b was created for a dataset where each interval has
a length of 10min. These plots also demonstrate that the time interval approach yields a significantly higher
number of measurements.

More information about the second available vehicle project, vehicle project B, can be found in section A.5.

4.5. Labelling 33

(a) Each measurement is one sample. (b) Each measurement interval is one sample.

Figure 4.9: Distribution of labels for different approaches.

4.5. Labelling
Since the algorithm’s objective is to predict the hysteresis factor, each sample must be labelled with the
"true" hysteresis factor. However, as the hysteresis factor is defined by the charge and discharge OCV curve
(SOC/OCV look-up) given by the cell manufacturer, the measured OCV and the estimated SOC, the ground
truth hysteresis factor is unknown. There are two different methods of obtaining labels for the hysteresis
factor: Domain knowledge labelling and current algorithm labelling.

4.5.1. Uncertainty Considerations
Samples cannot simply be labelled without considering the uncertainty of the SOC. As mentioned in
section 1.3, the SOC cannot be measured since it is not a physical quantity itself but rather the result
of accumulated charge and discharge in relation to the capacity of the cell. Given an accurately determined
cell capacity, minimal measurement equipment errors, and relatively short measurement durations, Coulomb
counting can provide a reasonable approximation of the true SOC. However, these conditions are not always
met outside of a laboratory setting. Furthermore, for cells exhibiting voltage hysteresis determining the true
SOC after relaxation of the cell using the SOC/OCV look-up tables is not feasible as these are not unique for
each OCV value anymore. Therefore the aim was to find the best labels possible, recognizing that these are
not ground truth values. Instead, the labels are assumed to contain instance-dependent noise. Therefore this
is a problem of inaccurate supervision. Two methods of labelling are used. For samples eligible for domain
knowledge labelling, the noise is expected to be minimal to non-existent and for samples relying on current
algorithm labelling, the noise level is higher, influenced, for instance, by the length of the measurement.

4.5.2. Domain Knowledge Labelling
In this case, the label is determined based on known characteristics of the signals. If during one measurement
the cell is either exclusively charged or exclusively discharged for at least 70% delta-SOC, the hysteresis
factor can be definitively labelled as 1 or -1. This is because a hysteresis factor of 1 corresponds to the value
of the charging curve (which was obtained by incrementally charging the battery) and -1 corresponds to the
discharging curve (which was obtained by incrementally discharging the battery). The minimum charging hub
of 70% delta SOC was set based on prior hysteresis measurements of the cells done by Porsche. These
measurements analysed the amount of charge necessary to transition from the charge curve to the discharge
curve and vice versa.

4.5.3. Current Algorithm Labelling
An existing algorithm, which determines a hysteresis factor based on the current throughput is currently in
use in the BMS. Within this algorithm a parameter is used that must be calibrated for every vehicle project,
thereby making the process time-consuming.

By using the signal that corresponds to the continuously determined hysteresis factor, a value between -1
and 1 that is sampled every 0.1 s, it is possible to obtain the label for the samples.

4.6. Machine Learning Models 34

4.6. Machine Learning Models
This section provides a detailed discussion of the machine learning models employed in this work. First,
it will elaborate on the selection process, explaining the reasoning behind the chosen models. Then, the
implementation details for each model are described in depth. Following this, the estimation of the model
size is addressed. Finally, the tuning of the input data will be discussed.

4.6.1. Selection of Suitable Models
Due to the time constraints of this work, it was decided to compare three different types of models. The
models were categorised into two categories, the "simple models" referring to models which can only process
two-dimensional inputs, and the neural network models, which can process three-dimensional inputs.

For the simple models, various options are considered such as linear regression models, polynomial
regression models, (extreme) gradient boosting models decision tree models and random forests. After
careful consideration, a linear regression model and an XGBoost model were chosen. The linear regression
model is advantageous due to its simplicity, which ensures feasibility for implementation in the battery
management system (BMS), where computational power is limited. Furthermore, the determined weights are
straightforward to interpret, which in turn makes it easy to identify the most relevant features. An existing
implementation of quantile regression in the scikit-learn package further supports its use. Generally, a linear
regression model provides a robust baseline.

The second selected model is the XGBoost model. This model typically performs well with larger datasets
which is necessary for the "time interval" approach. Unlike the linear regression model which assumes
linearity in its parameters, XGBoost can also learn non-linear relations, allowing for the modelling of more
complex interactions. Moreover, there is also an existing implementation of quantile regression for this model.

Finally, a more complex model, a neural network, was chosen. Given the nature of time series data as input,
models such as a GRU or an LSTM are intuitively suitable. A GRU was chosen for this work. GRUs have
fewer parameters to train compared to LSTMs because the input and forget gates are combined. This also
leads to faster training time. The reduced number of parameters is also beneficial for implementation in the
BMS, considering its memory constraints.

4.6.2. General Implementation Considerations
Before training the models, the available samples must be split into a training set, a validation set (used for
tuning) and a test set (used for evaluating the tuned model). In this work, an 80/10/10 split was chosen.

Special attention was paid to the splitting of the "time interval" datasets to maintain the integrity of individual
measurements. It was essential to keep the intervals of the same measurement together and know the order
of intervals. This avoids the fragmentation of the measurement, where one interval of it might be in the test
set and one might be in the train set.

Preserving this chronological context is beneficial for subsequent testing phases. There are two different ap-
proaches for testing: a non-autoregressive approach and an autoregressive approach. In non-autoregressive
testing, each interval within a measurement is tested independently which means the resulting hysteresis
factor from one interval does not influence the next. This means that the feature "previous hysteresis
factor" is given by the test dataset. In contrast, the autoregressive approach is more realistic for practical
implementation in the BMS. The hysteresis factor determined in the previous interval serves as the feature
"previous hysteresis factor" for the subsequent interval.

Given that measurements vary in length and, consequently, the number of time intervals, the 80/10/10 split
refers to the division of measurements, not individual samples. For the other approaches, each sample
corresponds to a measurement and the splitting process is thus more straightforward.

In all models, the 0.05, 0.5 and 0.95 quantiles were determined. This allows the analysis of the upper and
lower tail of the distribution as well as the median value. The median value, in particular, is most useful for
implementation in the BMS, as it can be a good approximation of the hysteresis factor.

4.6. Machine Learning Models 35

Table 4.4: Parameters to be tuned and their respective tuning range for the linear regression model.

Table 4.5: Parameters to be tuned and their respective tuning range for the XGBoost model.

4.6.3. Implementation of Quantile Regression in a Linear Regression Model and
XGBoost

For both simple models, existing implementations of quantile regression were used as a foundation. This
section will outline the procedures for training, tuning, and testing these models.

Implementation Training Routine
For the linear model, scikit-learn’s QuantileRegressor [92] was used. This is a linear regressor which aims
to minimise the pinball loss for a given quantile α. Additionally, L1 regularization is inherently built into this
model. For each quantile, a separate model has to be trained. After initializing the QuantileRegressor with
optimal parameters found during tuning and the respective quantile, the regressor can be fitted to the training
dataset.

The same is done for the XGBoost model [93]. However, the training data needs to be presented as a
QuantileDMatrix object. Similarly to the linear regression model, the booster can then be trained for the
respective quantile using the optimal parameters.

Implementation Tuning
The tuning of the simple models was done using scikit-learn’s RandomizedSearchCV class [82]. Since linear
regression only has one parameter to be tuned, namely the L1 regularization, only a single parameter was
optimised. The parameter grid was defined between 0 and 1 in increments of 0.001 (see Table 4.4). Given
that the linear regression model is fairly slow with large datasets the number of parameter settings to be
sampled was set to 10. The default cross-validation strategy of 5 was chosen, meaning the input data is split
into 5 and in each iteration, one of these five folds is chosen as a validation set. The performance metric is
then the average over the results of all of these 5 combinations. Note that for tuning the chronological order
of intervals in the time interval approach was disregarded.

For the XGBoost model, more parameters could be tuned. Table 4.5 lists each parameter and its respective
range. After initializing the booster for the respective quantile, with 2000 boosting rounds and an early
stopping criterion of 10 rounds, the random search is done over the parameter grid. This early stopping
criterion was also later used when training.

It is important to note that this tuning method may not guarantee optimal results due to its non-deterministic
nature. The minimal validation loss is identified using non-autoregressive testing due to time limitations. This
is particularly relevant for time interval methods as for the remaining approaches, non-autoregressive and

4.6. Machine Learning Models 36

autoregressive testing yield comparable results.

Implementation for a Custom Testing Routine
For the "time attributes" and "time series" approach, the model was evaluated post-training by determining
the 0.05, 0.5, and 0.95 quantiles and calculating the corresponding pinball loss. Additionally, the predicted
median was plotted against the actual labels for each sample. Note that in these approaches, each sample
corresponds to one measurement.

For the time interval approach, a custom testing routine was designed to also consider the chronology of
samples belonging to the same measurement. First, the model was tested non-autoregressively. This means
the test routine iterated through all samples of a measurement, predicting the quantiles using the respective
trained regressors, and accumulating the overall loss before averaging it. The quantiles were then plotted
over time. This process was repeated for all measurements in the test dataset.

The autoregressive test routine iterated through all samples of one measurement, accumulating the loss. In
this process, the resulting hysteresis factor of the previous interval was used to overwrite the feature "previous
hysteresis factor" for the next interval. As before, the results for each quantile were plotted over time.

4.6.4. Implementation of Quantile Regression in a Gated Recurrent Unit Model
The following subsection explains the implementation of the quantile regression model in a GRU. It differenti-
ates between a non-autoregressive training approach and an autoregressive training approach, addresses
the model tuning, and describes the testing process. The GRU model was implemented using the neural
network library PyTorch because it offers flexible tools to build neural network architectures.

Implementation Of A Non-autoregressive Training Routine
To train the GRU model a loss function must be specified. As there are no ready-to-use implementations of
the quantile regression available in PyTorch itself, the TensorFlow implementation [94] of the pinball loss was
modified to fit into the PyTorch framework. The implementation of Equation 3.18 is as follows:

L =
1

N

1

|Q|

N∑
i=1

∑
α∈Q

max {α · (ytrue,i − ypred,i), (α− 1) · (ytrue,i − ypred,i)} . (4.1)

Note that α represents the tensor of quantiles to be determined with dimensions (number of quantiles,). ytrue
is the tensor containing the labels with shape (batch size, 1) and ypred is the tensor containing the predictions
made by the model with dimensions (batch size, number of quantiles). N represents the total number of
batches and Q describes the set of quantiles to be determined. Therefore the overall loss L is determined by
summing the loss for each batch element and quantile.

After defining the loss function, the rest of the training loop can be implemented. The optimised parameters
for the model are loaded and the model is initialised. The model consists of a certain number of GRU
layers and a linear output layer. Finally, the output of the model is transformed using a tanh function to
ensure predictions remain within the boundaries of -1 and 1. The source code for the model can be found
in section C.1. Furthermore, the criterion needs to be specified using the custom pinball loss function from
Equation 4.1 and the optimiser must be initialised with the corresponding optimal learning rate. Adam was
chosen as the optimiser due to its efficiency especially when dealing with large datasets [95]. The training
and validation datasets are put into DataLoaders, which split the data into batches. When the batches are
loaded from the DataLoader it is also ensured that their order is randomised. The batches contain a fixed
number of samples.

For each epoch and each training batch, the model is trained in a forward pass. Next, the loss is computed
using the predictions from the forward pass. Then, the gradients of all optimised parameters are reset. In the
next step, the backward pass is executed, determining the gradients of the loss with respect to the model
parameters. The final step is to update the parameters based on those that minimise the loss. For each
epoch, the model is also evaluated on the validation set.

This training approach is referred to in this work as non-autoregressive training because each sample is
treated individually. When the input data is in the form of time intervals, this ultimately leads to each interval
being shuffled. Consequently, the model is not trained consistently on complete measurements which would

4.6. Machine Learning Models 37

involve a certain number of intervals in a specific order. Additionally, the intervals do not influence one another
as they are treated completely independently.

Implementation of an Autoregressive Training Routine
If the input is in the form of time intervals, the non-autoregressive training may cause issues for the following
reasons. In real-life applications, for certain time intervals, the hysteresis factor would be predicted. This
factor is then used as an input for the next interval since the previous hysteresis factor is a feature. Thus,
errors might propagate, especially if the model is trained in a way that does not account for the fact that
previous errors affect the loss of later intervals.

To overcome this, an autoregressive training routine was implemented based on the general idea of loss and
gradient accumulation. Typically gradient accumulation is used when computational sources are limited, as
accumulation over multiple batches has the same effect as taking greater batch sizes, which requires more
memory [96]. In this case, the idea is to accumulate the gradients and loss over an entire measurement, thus
only resetting the gradients and updating the model parameters at the end of a measurement instead of after
each interval. This approach aims at maintaining the connection between intervals of the same measurement,
rather than reducing memory usage.

Similar to non-autoregressive training, the model must be initialised with the optimal parameters, and the
criterion and optimiser must be set before actual training. The first major difference lies in the training
DataLoader. In non-autoregressive training, samples were randomly placed into batches, which the model
then trained on. In this case, as illustrated in Figure 4.10, each batch is ensured to contain intervals from a
certain number of measurements (determined by the batch size). Furthermore, to maintain consistency of a
measurement, the intervals of the measurement are in their original order (see blue boxes in Figure 4.10).
During training, the algorithm iterates through the intervals of a batch, starting with the first interval and ending
with the last. All measurements within a batch must have the same length to enable parallel processing.
Therefore, shorter measurements are padded with zero values (see the dark blue box in Figure 4.10). The
corresponding labels for these padded intervals are set to -2, a value that is outside the range of possible
hysteresis factor values. Based on the labels, a mask is created for each batch. If the label is outside the
possible range (i.e. -2), the mask ensures that these padded intervals are not considered for the total loss of
the measurement.

Figure 4.10: Structure of batches for autoregressive training.

For each batch, the training algorithm iterates through the intervals (for multiple measurements in parallel).
Similar to non-autoregressive training the forward pass is executed. The loss for the interval is then calculated
using the mask, the labels, the predictions from the forward pass, and the length of the actual measurement
(excluding padding) to normalise the interval loss. The measurement loss, which accumulates the total loss
over the whole measurement is updated and used to do backpropagation. Finally, the predicted hysteresis

4.6. Machine Learning Models 38

Table 4.6: Parameters to be tuned and their respective tuning range for the GRU model.

factor is used in the next iteration to overwrite the "previous hysteresis factor" feature in the input. If the end
of a measurement is reached, the model parameters are updated and the gradients and loss are reset.

An illustration of the difference between auto-regressive and non-autoregressive training is shown in Fig-
ure 4.11. The figure demonstrates how the two training approaches differ in terms of when the model is
updated and how, in the autoregressive approach, the intervals are interconnected.

Figure 4.11: Comparison of non-autoregressive and autoregressive training.

Tuning of the GRU
To tune the PyTorch GRU the Ray Tune tool was used. The framework was adapted from the example given
by PyTorch [97]. Table 4.6 displays the parameters of the GRU to be tuned. Prior to the actual tuning, the
ASHAScheduler was initialised to specify that the loss should be minimised. This scheduler helps with the
allocation of computational resources during tuning by terminating, pausing and closing trials as well as
modifying the hyperparameters of an active trial [98]. The number of tested configurations was set to 25 and
the number of epochs in the test runs was limited to 10 to ensure time-efficiency.

Do note that this tuning approach may not yield optimal results as it is not a deterministic process. Also, the
optimal results are found by checking the minimal validation loss which is obtained with non-autoregressive
testing (this matters for the time interval approaches, for the other approaches non-autoregressive testing
and autoregressive testing are the same).

Implementation Of Testing Routine
The implemented testing procedures were done similarly to the simple models. In the case of the series
approach, the model was used to make predictions for the test set. These predictions were then used to
determine the test loss and to plot the median values against the labels.

4.6. Machine Learning Models 39

For the interval approach, both non-autoregressive and autoregressive testing routines were implemented.
The actual implementation is very similar to that of the simple models, with the primary distinction being that
the training data is now three-dimensional rather than two-dimensional.

4.6.5. Estimating Required Memory
Given the importance of memory requirements in evaluating the feasibility of implementing the models in
the BMS, this section explains how these requirements were determined. Note that it is assumed that the
models are trained offline, before implementation in the BMS. Consequently, the memory needed is only that
required to obtain the hysteresis factor during testing, where the test sample size is one, corresponding to a
single BMS receiving signals from the vehicle. It is assumed that each parameter and variable has a size of 4
bytes (32-floating point). Also, note that the mathematical operations used to determine intermediate results
are saved in the cache and thus do not consume RAM.

Linear Regression Model
Estimating the size and memory requirements for the linear regression model during vehicle application is
relatively straightforward. According to Equation 3.1, the hysteresis factor is determined by,

ψ = ω0 + x1 · ω1 + x2 · ω2 + ...+ xN · ωNfeatures
. (4.2)

Note that xi is the value for feature i. The trained weights wi can be stored in ROM, as they are once trained
and subsequently applied:

ROM = 4byte ·Nfeatures. (4.3)

The required RAM has to store the actual output ψ and the inputs xi, thus N+1 objects:

RAM = 4byte · (Nfeatures + 1). (4.4)

XGBoost Model
The prediction of the XGBoost model is defined as,

ψ = ψ̂init + η · ˆres1 + . . .+ η · ˆresn (4.5)

Here ˆresi represents the predicted residual of tree i and η denotes the learning rate. Each tree comprises a
certain number of nodes Nnodes (which are used to compare the input of feature x, with a threshold, thereby
enabling traversal through the tree). Additionally, each tree has a number of leaves Nleaves. The number of
leaves and nodes for each tree can be extracted using the built-in dumping function of XGBoost [99].

All static parameters can be stored in ROM, including the initial hysteresis factor ψ̂init, the learning rate as
well as the node thresholds and the leaf values for every tree:

ROM = 4byte · (2 +
Ntrees∑
i=1

Ni,leaves +Ni,nodes). (4.6)

In RAM, the predicted residuals ˆresi for each tree need to be stored. Moreover, the inputs for the trees which
consist of Nfeatures elements and the final prediction of the hysteresis factor ψ must also be stored:

RAM = 4byte · (Ntrees +Nfeatures + 1). (4.7)

4.6. Machine Learning Models 40

Table 4.7: Aspects of input data to modify.

GRU Model
The size of the GRU models was estimated using the library torchinfo [100]. This library provides a model
summary which estimates the required parameter size, corresponding to the ROM estimation. Furthermore,
it determines the input size and the memory needed for the forward and backward pass of a given input. For
this purpose, a test tensor was formulated simulating a single sample (as it would be in a BMS). These two
estimates can then be summed up for the RAM estimation. It is assumed that the memory required for the
backpropagation is small enough to be neglected since only the forward pass is relevant for the test process.

4.6.6. Tuning Input Data
In addition to tuning the machine learning model parameters, the input data can also be modified and
optimised. The various possibilities for different approaches are presented in Table 4.7. The first row
describes the frequency, indicating how often the hysteresis factor should be determined. For the time
attribute and time series approach, this is not tunable as the hysteresis factor is only determined once,
namely at the end of the measurement, before the relaxation period. For the time interval approaches a
range between every 10 s to every 600 s was chosen.

The second row describes the considered time horizon. For the first two approaches, this can vary from a
minute up to the entire time series. For the interval approaches, the time horizon is directly connected to the
frequency; for example, determining the hysteresis factor every 10 minutes results in a time window of 10
minutes. For the relatively less complex two-dimensional approach, the previous and the previous two time
periods can be considered, meaning that the maximum time horizon here is 30 minutes. This was not done
for the three-dimensional approach due to the increased complexity associated with using the entire time
series as input. Thus, the time horizon for the three-dimensional approach is limited to 10 minutes.

The frequency and time horizon ranges were considered using the following considerations:

1. The hysteresis factor only needs to be determined once per measurement (corresponding to a driving
cycle), specifically after the relaxation period when the SOC is corrected. From a practical vehicle
standpoint, there is no need for higher frequencies. However, due to the BMS’s memory limitations, it
is infeasible to store long time series, especially at a high sampling rate. Therefore, shorter intervals
result in shorter time series that need to be stored.

2. There is no definitive answer from the literature regarding the required time horizon to determine the
hysteresis factor. While the majority of papers do not specify the exact time horizon (often referring to
"recent" history), it is very likely that the considered time horizon is short. As the cell is relaxed between
the current pulses, which would mark the end of a measurement in this work, it is assumed that the
active periods are rather short.

3. It is also very likely that the specific time horizon is directly connected to the exact cell chemistry,
such as the silicon content in the anode. Therefore, the time horizon needs to be specified by the cell

4.6. Machine Learning Models 41

manufacturer, which is currently not the case.

4. Schmitt et al. [101] discusses the memory requirements of their model in greater detail. In their model,
the memory (and the change in memory) depends on the rate of change of SOC. Large (dis)charge
currents fill the memory more quickly resulting in a shorter time horizon to be regarded compared to
small (dis)charge currents where the time horizon would be longer. However, no concrete numbers can
be extracted from that paper. Additionally, since the framework used in this work works with time as a
dimension and not the change in SOC as in Schmitt’s framework, a specific time value is required.

The last row in the table describes the sampling rate. For the two-dimensional models, the original rate after
preprocessing is used, which corresponds to 10 Hz (the original sampling rate of the hysteresis factor signal).
Resampling is unnecessary as the input will be transformed into attributes anyway. For the three-dimensional
input approaches, where entire time series are fed into the model, resampling is needed to accommodate
longer time series. The maximum number of elements per time series can range between 10 and 240
elements. This range should enable the GRU to operate efficiently (also considering that the size of the
model and thus the required memory increases with the number of time elements) while simultaneously
being detailed enough to represent the signal’s progression accurately.

5
Results

This chapter presents the results of the different case studies. First, it gives an overview of all the case studies
and explains the evaluation criteria used. It then investigates each case study, presenting the respective
results. After analysing the first six case studies, the results will be used to evaluate the proposed models.
Once this evaluation is complete and the most suitable model is selected, an additional case study will
examine the generalisation capacity of the chosen model.

5.1. Overview Case Studies
An overview of all case studies can be found in Table 5.1. Note that the first six case studies aim to identify
the best model, while Case Study 7 focuses on evaluating the generalisation capacity of the selected model.
Thus Case Study 7 is only conducted after comparing the previous case studies.

Table 5.1: Overview of all case studies.

All case studies were conducted on a 64-bit Windows computer equipped with an Intel(R) Core(TM) i9-10920X
CPU operating at a base speed of 2.5GHz. The computer has 128GB of DIMM RAM and two NVIDIA RTX
A5000 GPUs, each with a total GPU memory of 87.55GB. All models were implemented in Python using
the framework from the libraries scikit-learn, XGBoost, and PyTorch. The specific Python libraries and their
respective versions used can be found in Table B.1. To ensure reproducibility, the seed was set to 0 for all
random processes (e.g., splitting datasets into train/test/validation sets, initialising the hidden state of the
GRU models, etc.).

5.2. Evaluation Criteria
To evaluate the results of the different methods, two main aspects were considered: accuracy of the model
prediction and required memory usage.

The training time was not considered because model variations that require excessive training time were

42

5.3. Case Study 1: Attribute-Based Prediction with Simple Models 43

excluded due to time constraints. This factor is also less critical, as the models are assumed to be trained
offline before being implemented in the BMS and used in a vehicle.

The amount and type of required input data were not directly considered. They are included indirectly as it
is indirectly part of the accuracy score, the pinball loss. If a model requires more data, it will be apparent
through a higher pinball loss. All training data was obtained from a test bench, making it the only type of
training data available, thus preventing an evaluation of different training data types.

If the actual implementation of the algorithm in the BMS was within the project’s scope, execution time during
live operation could be measured. However, since this was not included, execution time was not considered
a criterion.

The accuracy of the prediction was measured using the pinball loss (see Equation 4.1) of the test set. A pinball
loss of 0.01 was set as the baseline to normalise the achieved pinball losses of the models. Therefore, a
model crossing this threshold would lead to a negative pinball score thus lowering the overall score. Accuracy
was deemed the most critical element, and thus, a weight of 70% was assigned, selected to ensure that only
highly accurate models achieve a high score.

The other crucial aspect is memory usage due to the computational constraints of the BMS. The aim is to
disqualify models with very high accuracy but infeasibly high memory usage for BMS implementation. Ideally,
memory usage should be as low as possible since various algorithms are implemented in the BMS, which
compete for computational resources. The memory usage is split into ROM usage and RAM usage. ROM
refers to non-volatile memory used for permanent storage, while RAM refers to volatile memory used for
temporary storage of data that the system accesses while executing the algorithm.

As a reference for the BMS, a microcontroller with a maximum ROM of 10MB and RAM of approximately
1.5MB was used. Note that vehicle projects vary in the type of controller used and the amount of memory
allocated for other algorithms. Additionally, there is ongoing development to use dedicated controllers with
greater computational power for more complex algorithms (such as ML algorithms) that are not safety-
relevant. If a function is safety-relevant, the controller has to fulfil certain requirements which ultimately limit
its computational resources. This work assumes the algorithm should be implemented in one of the regular
controllers with limited computational power. It is assumed that 3% of the total ROM (0.3MB) would be
available for the algorithm and that 7% of total RAM (0.1MB) would be available. Based on this, the ROM and
RAM requirements of each model are normalised.

The final score is then calculated as follows:

score = 0.7 · 0.01− Ltest

0.01
+ 0.15 · 0.3− rROM

0.3
+ 0.15 · 0.1− rRAM

0.1
(5.1)

Ltest denotes the pinball loss of the test set and rROM and rRAM denote the required ROM and RAM
according to the model size estimations subsection 4.6.5.

5.3. Case Study 1: Attribute-Based Prediction with Simple Models
5.3.1. Description
In this case study, the input data was in the form of time series attributes, resulting in a two-dimensional
matrix with one dimension for the samples and the other for the features. This matrix was then used as
input for a linear regression (LinReg) model and an XGBoost model. A list of the input features can be
found in Table 4.3. The features listed there were extracted for the current, cell voltage and cell temperature
signal. These features were extracted from the current, cell voltage, and cell temperature signals. Due
to the substantial number of features generated for each signal, and considering that only approximately
600 samples were available, the number of features needed to be reduced to mitigate the suspected high
collinearity in the input matrix. An example would be that the average of all temperature values is the same as
the average of all positive temperature values since the temperature range was set between 20 ◦C and 35◦C.
To address this, feature selection was performed using SelectKBest [102] which identified the most significant
features, thereby eliminating redundant or non-important ones. As a scoring function the "f-regression" [103]
was used, which calculates the F-statistic and p-value for the cross-correlation between each feature and
label. Alternatively, a dimensionality reduction with principal component analysis (PCA) [104] was done.
PCA is a statistical technique that reduces data dimensionality by transforming the original features into

5.3. Case Study 1: Attribute-Based Prediction with Simple Models 44

a smaller set of uncorrelated components that capture most of the data’s variance [105]. There are four
different configurations for the input data (see Table 4.7). The time horizon, which specifies the period over
which the features are calculated, varied across the entire time series (“all”) and the last 10 minutes (600 s),
5 minutes (300 s), or 1 minute (60 s). Each configuration is denoted by its respective time horizon.

5.3.2. Results
K Most Important Features
After adjusting the input data to include only the top five features (for details see section B.2), the linear
regression (purple) and XGBoost(dark blue) models were run. The tuned hyperparameters can be found in
section B.2. Figure 5.1 illustrates the pinball loss for different configurations of both the XGBoost and linear
regression models. It can be observed that the XGBoost model slightly outperformed the linear regression
model. However, for both models, the pinball loss is greater than the threshold set at 0.01. In section B.2 a
comparison of the required ROM and RAM can be found, both of which are unproblematic.

Figure 5.1: Pinball losses for different configurations in Case Study 1 after selecting the most important features.

Figure 5.2: Predicted median vs. label for the "all" configuration in the XGBoost model in Case Study 1

5.3. Case Study 1: Attribute-Based Prediction with Simple Models 45

Figure 5.2 presents a comparison between the predicted median and the actual labels for the best-performing
configuration, namely the "all" configuration of the XGBoost model. Ideally, all points are on the dotted line.
There are notable outliers (pink) around the hysteresis factor upper and lower boundaries. Due to the small
test set size (around 60 samples), a few outliers will significantly increase the average of the pinball loss.
Furthermore, it can be seen that the models do not predict the hysteresis factor accurately. This is likely
because the chosen features do not describe the chemical processes in the cell well enough. The time series
data is too simplified to effectively learn the relationship with the training data. Consequently, this case study
will investigate PCA for reducing the time series to attributes.

Principal Component Analysis
The selection of the number of components N, so features, was determined by the cumulative sum of
explained variance, ensuring that N is chosen such that the N features account for 80% of the variance. This
implies that the new features, N, should collectively capture 80% of the original dataset’s structure while
maintaining that each feature is uncorrelated with the others. This threshold was not set higher as the amount
of features should be limited due to the small dataset with around 600 samples.

Figure 5.3: The extracted principal components and their respective explained variance for the 300 s configuration.

Figure 5.3 presents a plot of the new features, denoted by a number between 1 and 7, and their respective
explained variances for one example configuration. The pink line represents the cumulative sum of the
explained variances. It is evident that the first three features already account for over 50% of the variance.

Using this new input with the reduced features, the linear regression model and XGBoost model were run.
The details of the optimal parameters can also be found in section B.2. The results for the pinball loss for
the models across all configurations are illustrated in Figure 5.4. Like before, all configurations cross the
threshold set at 0.01. While the performance of the linear regression model is similar to that of the K most
important features, the XGBoost performance degraded, thus suggesting that this method is more unsuitable
for XGBoost. Note, that both approaches, K features and PCA, do not meet the accuracy standard.

Figure 5.5 depicts the predicted median versus the actual labels. Note that this plot is from the 300 s
configuration which performed best (see Figure 5.4). As already seen in Figure 5.4, the pinball losses for
PCA are higher due to more outliers (pink). In this case, the outliers are present not only at the boundaries, 1
and -1, but also in between. The results for memory requirements can be found in section B.2. However,
both ROM and RAM were below their thresholds.

The chosen features are not sufficiently descriptive. Similarly to previous observations, the model fails
to effectively learn the relationship between input and output, thereby rendering the attributes approach
infeasible for the available data.

5.4. Case Study 2: Time Series Prediction with Neural Networks 46

Figure 5.4: Pinball losses for different configurations in Case Study 1 after performing PCA.

Figure 5.5: Predicted median vs. label for the 300 s configuration in the XGBoost model in Case Study 1

5.4. Case Study 2: Time Series Prediction with Neural Networks
5.4.1. Description
In this case study, the input was in the form of time series resulting in a three-dimensional structure: one
dimension for the sample, one for the feature, and one for the time steps. The used features can be found
in Table A.1. This input data was then used to train a GRU model. The third column of Table 4.7 shows
the different possible input configurations. As shown, the hysteresis factor is determined only once per
measurement, specifically right before the SOC correction. The considered time horizon can vary from the
entire time series ("all") to merely the last active minute. Active means that the cell has not started relaxing
yet. The number of elements per time series varies between 240 and 10 elements. A naming convention was
established where the digit before "-" indicates the time horizon and the the digit after denotes the number of
elements. For example, 60-240 corresponds to a configuration with the last active 60 s, where each time
series has 240 elements.

5.4. Case Study 2: Time Series Prediction with Neural Networks 47

5.4.2. Results

Figure 5.6: Pinball losses for different configurations in Case Study 2.

The tuned parameters for each configuration can be found in section B.3. The pinball loss results are
presented in Figure 5.6. The configuration using the entire time series with 120 elements achieved the lowest
pinball loss and thus performs best in this category. Interestingly, within the same time horizon of the last
active minutes results in the same pinball loss, regardless of the number of time steps. This is likely because
the models have the same parameters (see section B.3). This could also be caused by the low number of
samples and the model not being able to learn the relation properly. Therefore, it would not be able to learn
the differences arising from different sampling rates. The fact that the all-120 and all-240 configurations do
not have the same test loss could be attributed to the overall length of the time series being consistent in
other configurations (600 s, 300 s or 60 s). In these two cases, the time series differ in length (see Figure 4.6).
Regardless of the configuration, the pinball loss exceeds the set threshold of 0.01.

Figure 5.7: Predicted median vs label for the all-120 configuration in Case Study 2.

It should be noted that even though the all-120 configuration scores best, the pinball loss is still relatively
high. This is illustrated in Figure 5.7, which shows significant outliers (pink), especially for labels that are

5.5. Case Study 3: Interval Delta Prediction with Simple Models 48

not at -1 or 1. This is likely due to the distribution of labels (see Figure 4.9a). The model had more data to
learn the extreme points and less to learn labels that lie between the boundaries. Additionally, the number of
samples is likely too small to train the model adequately. More samples, especially those with labels between
the extremes, would be required to improve performance.

The memory usage for ROM and RAM is shown in Figure 5.8a and Figure 5.8b. It should be noted that if
the input size is very small (e.g., 10 time steps), the RAM usage is less than 0.01 and is thus depicted as 0
due to the precision of the torchinfo summary output. The configurations with a time horizon of 300 s and
those that consider the entire time series ("all") have the largest ROM usage. As ROM scales with the model
parameters and these configurations have a greater hidden size (32 instead of 16), they require more ROM.

RAM usage scales, among other factors, with the number of time steps, as this increases the input size and,
consequently, the memory required for the forward pass. Therefore it is evident that the more timesteps are
taken into account, the greater the required RAM. Both RAM and ROM are well within the computational
limits of the BMS.

(a) Required ROM. (b) Required RAM.

Figure 5.8: Memory usage for different configurations in Case Study 2.

5.5. Case Study 3: Interval Delta Prediction with Simple Models
5.5.1. Description
In this case study, rather than predicting the absolute value of the hysteresis factor, the change in the
hysteresis factor is predicted. This is achieved using the interval approach, where the time series is divided
into smaller samples. This approach is first applied to an XGBoost model due to its higher performance in
Case Study 1. Each label is calculated by subtracting the hysteresis factor of the previous interval from that
of the current interval. Unlike other case studies, in this case, the previous hysteresis factor was not included
in the features, thus eliminating the feedback loop (see autoregressive training and testing in subsection 4.6.3
and subsection 4.6.4) that would usually occur in the interval approach. The complete list of features and their
mathematical formulations can be found in Table A.2. In the tested input configuration, the hysteresis factor
was determined every 60 s, and the past two time periods were considered as well. The hyperparameters
can be found in section B.4.

5.5.2. Results
The achieved average pinball loss of this trained model was 0.2364 with a required ROM of 0.18 MB and
RAM of 0.01 MB. The loss was calculated by determining the hysteresis factor for each interval by adding
the predicted change in the hysteresis factor to the previous hysteresis factor. Note that apart from the
first interval, the previous hysteresis factor is based on the previous delta predictions. This makes the

5.6. Case Study 4: Interval Prediction with Simple Models 49

loss comparable with that of the other case studies and corresponds to how the BMS would determine the
hysteresis factor. The high loss is further reflected in the comparison between the predicted median hysteresis
factor (obtained using the same method) and the actual hysteresis factor, as illustrated in section B.4.

Figure 5.9 presents an example measurement for this case study, with time on the x-axis and the hysteresis
factor on the y-axis. This plot was generated by reconstructing the measurement from its interval predictions,
applying the previously mentioned method to derive the absolute hysteresis factor from the change in the
hysteresis factor.

Figure 5.9: Example reconstructed measurement for Case Study 3.

The plot demonstrates that, over time, the predicted quantiles significantly deviate from the actual labels. This
deviation is particularly pronounced when the hysteresis factor changes, corresponding to a label between
but not including -1 and 1, likely due to fewer labels in this range. Early errors in delta predictions accumulate
over time. In this case, the incorrect prediction of a more moderate increase in the beginning resulted in a
consistent offset throughout the measurement.

This case study indicates that the previous hysteresis factor could be crucial to predict the change in the
hysteresis factor, suggesting that the determination of the hysteresis factor is an autoregressive problem.
Without including the previous hysteresis factor as input, the model appears to "blindly" predict changes in
the hysteresis factor, disregarding its boundaries of -1 and 1, which can be seen in the second half of the
measurement in Figure 5.9. This will remain a problem of this approach, thus no other input configuration or
types of models were tested.

5.6. Case Study 4: Interval Prediction with Simple Models
5.6.1. Description
In this case study, the performance of the simple models with the time interval approach was evaluated.
Unlike the previous case study, where the change of the hysteresis factor was used as a label, the labels
here represent the actual hysteresis factor at the end of each interval. The input data is two-dimensional,
thus the time series are reduced to one-dimensional features. The list of features and their mathematical
formulation can be found Table A.3. Note that these features were determined for the current, cell voltage
and cell temperature signal. The input configuration (see Table 4.7) can vary based on the length of the
period during which the hysteresis factor is determined, ranging from every 10 s (XGBoost) or 60 s (linear
regression) to every 600 s, as well as the length of the time horizon. The linear regression model was not
tested for a 10 s configuration due to the high number of samples of this configuration and the long training
time. The time horizon varies from considering only the current interval to including up to the last two intervals.

5.6. Case Study 4: Interval Prediction with Simple Models 50

A naming convention was introduced where the number before the "-" indicates the period, and the number
after the "-" indicates the time horizon. Note that a time horizon of none corresponds to only the current
interval being considered, thus not including any past intervals.

5.6.2. Results
The results for the pinball loss for different configurations for the linear regression model can be seen in
Figure 5.10a. Similarly, the pinball loss for various configurations of the XGBoost model is displayed in
Figure 5.10b. For both models, the pinball loss decreases when past intervals are taken into account.
Specifically, the reduction in pinball loss when considering the past two intervals as opposed to just the last
interval is significantly smaller for the linear regression model.

(a) Pinball losses for different configurations for the linear regression model in Case Study 4.

(b) Pinball losses for different configurations for the XGBoost model in Case Study 4.

Figure 5.10: Pinball losses for different configurations for the linear regression and XGBoost models in Case Study 4.

5.6. Case Study 4: Interval Prediction with Simple Models 51

It is also apparent that when past intervals are considered, the pinball loss is below the set threshold of 0.01,
thus making the models feasible in terms of accuracy. Notably, this does not apply to the configurations with
only a 10 s interval (only done for the XGBoost model). This could be either due to insufficient tuning of the
corresponding models or due to the interval size being insufficient to capture the hysteresis phenomenon.
There is also a peak in pinball loss for the 60-none configuration which is most likely due to hyperparameters
(specifically the lambda parameter) of this model configuration.

The lowest pinball loss for both models could be achieved when considering the last two intervals and with
an interval size of 60 s. This suggests that a time horizon of in total 180 s improves the model predictions
when compared to a time horizon of merely 30 s (10-2 configuration). Additionally, the worse performance in
the 300-2 and 600-2 configurations might indicate that greater periods of determining the hysteresis factor
may be unsuitable as too many details would get lost when transforming the time series to one-dimensional
features. Moreover, it can be observed that the XGBoost model generally outperforms the linear regression
model, suggesting that the linear model cannot effectively learn the complex relationship between input and
output.

Figure 5.11 shows the predicted median versus the label for the XGBoost 60-2 configuration, which achieved
the lowest loss. While some significant outliers (pink) are present, the overall performance surpasses the
one observed when considering the time attributes in Case Study 1, as shown in Figure 5.5. An example
reconstructed measurement for the XGBoost 60-2 configuration can be found in section B.5, which verifies
the increase in performance compared to Case Study 3.

Figure 5.11: Predicted median vs label for the 60-2 configuration (XGBoost) in Case Study 4.

5.7. Case Study 5: Interval Prediction with Neural Networks 52

5.7. Case Study 5: Interval Prediction with Neural Networks
5.7.1. Description
In this case study, similar to Case Study 4, the interval approach is used. However, a GRU model was trained
instead of a simple model. The input features, namely the current, voltage and temperature signal and their
respective derivatives as well as the previous hysteresis factor were in the form of time series. The complete
list of the features can be found in Table A.4. The input configuration could vary based on the frequency
of hysteresis factor determination, i.e., how often the hysteresis factor is determined, ranging from every
10 seconds to every 10 minutes. Additionally, the sampling rate of the time series could be adjusted. This
rate varied between 10 elements per time series and 240 elements per time series. For reference, see also
Table 4.7. A naming convention was introduced where the number before "-" indicates the period and the
number after "-" indicates the sampling rate. Each configuration was first run for 100 epochs.

5.7.2. Results
The tuned parameters, including the optimal number of epochs, can be found in section B.6. The different
pinball losses for the configurations can be found in Figure 5.12. The pinball loss ranges from 0.1 to
approximately 0.003, achieving the lowest pinball loss of all the case studies so far. Looking at Figure 5.12 it
is difficult to find a clear pattern a clear pattern between pinball loss and input configuration. Generally, the
models perform best with a time horizon of 600 s. The lowest pinball loss was achieved with a sampling rate
of 240 elements per time series.

Figure 5.12: Pinball losses for different configurations in Case Study 5.

This may suggest that shorter time horizons do not allow the model to adequately learn the details of the
input signals necessary to predict the hysteresis factor. It is noteworthy that this configuration performs the
best despite having the smallest sample size, approximately 10000 samples. However, since the second
lowest loss was achieved with a 300-second horizon and the shortest sampling period of 10 elements per
time series, it is not possible to conclusively state that more or fewer elements per time series lead to better
or worse results. Small differences between configurations, like the 600-240 and 300-10 configuration can
also be explained by non-optimal tuning or could be based on the test set itself, i.e. that for this particular test
set, which is used on both configurations, the 600-240 configuration marginally scores better, while it may be
the other way around with another test set.

The predicted median for the 600-240 configuration is shown in Figure 5.13. There are greater outliers (pink)
when the label is between -0.5 and 0.5. This could be due to fewer samples with labels within this area since
the majority of samples are approximately -1 and 1 (see Figure 4.9b).

5.7. Case Study 5: Interval Prediction with Neural Networks 53

Figure 5.13: Predicted median vs label for the 600-240 configuration in Case Study 5.

An example of a measurement reconstructed from intervals, with the previous interval prediction used as
input for the next interval, is shown in Figure 5.14. The model correctly predicts the progress of the hysteresis
factor. Although there are minor deviations from the actual label (e.g., from 13000 s onward), these remain
within an acceptable range. The figure also shows that the quantiles enclose the actual label, except for a
brief period of around 16500 s. Additionally, the upper and lower quantiles are very close to one another
when the hysteresis factor is -1 for 8000 s, indicating that the model can predict the extreme points (-1) well.

Figure 5.14: Example reconstructed measurement for the 600-240 configuration in Case Study 5.

The required memory usage is depicted in Figure 5.15a and Figure 5.15b. The required ROM is the same for
models with the same parameters (hidden size and GRU layers). The 600-x and 300-x configurations have a
required ROM of 0.01 MB, which is below the critical ROM threshold of 0.3. Also, the other configurations
fall below this threshold. Figure 5.15b illustrates the influence of the sampling rate on required RAM. As
explained in section 5.4, the required RAM scales with the number of time steps. The RAM value for the 60-2
configuration is above the threshold of 0.1 MB. However, the other configurations are unproblematic. It is
worth noting that, due to the resolution of the torchinfo summary function, memory usage below 0.01 MB is
shown as 0 (as observed in the 10-x configurations).

5.8. Case Study 6: Autoregressive Interval Prediction with Neural Networks 54

(a) Required ROM. (b) Required RAM.

Figure 5.15: Memory usage for different configurations in Case Study 5.

5.8. Case Study 6: Autoregressive Interval Prediction with Neural Net-
works

5.8.1. Description
The last tested model was a GRU model with the input being formatted as intervals similar to Case Study 5.
However, the difference lies in the training methodology. Unlike in Case Study 5, the different intervals of
a measurement remained connected throughout the training process. This is described in greater detail in
subsection 4.6.4. This approach aimed to determine whether the prediction error could be reduced by training
the model in a way that acknowledges the influence of earlier errors on later intervals. In the previous case
study it could be seen that the test error was smaller for non-autoregressive testing than for autoregressive
testing (see comparison of autoregressive and non-autoregressive training in subsection B.9.3). Therefore,
this was done to see if autoregressive training would improve this.

Due to the extended training time for this training approach, only one configuration was tested, with parameters
taken from the tuned parameters of the corresponding model in Case Study 5. As observed there, the input
configuration with a time horizon of 600 s and a sampling rate of 240 elements per time series resulted in the
best results. Note that the batch size was increased to 128 samples per batch and the learning rate was
adjusted from 0.0013 to 0.01 to account for the slower training.

5.8.2. Results
The achieved test loss after 100 epochs was 0.041, which is worse than the one achieved in Case Study
5. After analysing the train and validation loss over the number of seen batches, shown in Figure 5.16, it
becomes apparent that the model might not have had enough epochs to train adequately.

Therefore, the model was retrained with 1000 epochs, resulting in a test loss of 0.0047. Although this loss is
still higher than the loss achieved in Case Study 5 (0.0031), it represents a significant improvement compared
to the previous experiment. The corresponding comparison between the label and the predicted median can
be found in section B.7.

5.8. Case Study 6: Autoregressive Interval Prediction with Neural Networks 55

Figure 5.16: Training and validation loss over number of seen batches for 100 epochs in Case Study 6.

Additionally, when examining the predictions for a single measurement as displayed in Figure 5.17, it can
be observed that the upper and lower quantiles are slightly wider compared to the results of Case Study 5
(Figure 5.14), which is in line with the higher test loss in this case study.

Figure 5.17: Example reconstructed measurement for Case Study 6.

The performance in terms of loss of this model is slightly worse than that of Case Study 5. This could be due
to numerous reasons. In this training approach, the optimiser step, so the parameter update, is only done at
the end of a measurement rather than for every sample. This results in fewer optimiser steps being taken. If
the learning rate is too small, the optimiser steps might be too small to get to the minimum of the loss function.
On the other hand, if the learning rate is not too large, the optimiser might skip the minimum. Therefore, the
learning rate could be further tuned to find an optimal value. However, due to the long training time with many
epochs, this was beyond the scope of this work. Fewer optimiser steps also lead to this training approach

5.9. Evaluation of the Models 56

requiring more epochs than in Case Study 5. Further increasing the number of epochs could potentially
decrease the training loss as well. The progress of the train and validation for 1000 epochs can be seen in
section B.7. It is also possible that for autoregressive training, the GRU model, this input configuration and
the respective parameters might not be optimal. However, due to the prolonged training time, other models
as well as separate tuning of the input configuration and model parameters were not feasible.

5.9. Evaluation of the Models
The best model configuration of each case study is compared in terms of pinball loss, ROM and RAM in
Figure 5.18 and Figure 5.19. It becomes clear that the interval approach (Case Study 4, 5 and 6) worked best.
This suggests that for this problem, where the input is in the form of long time series (»1h) time series, it is a
feasible strategy to split these time series into smaller intervals before processing them. This approach also
has the advantage of providing more samples for training, which is particularly beneficial for more complex
models like the GRU and available measurements are limited.

Figure 5.18: Comparison of the achieved pinball loss for the best configurations of each case study.

It can be seen that Case Study 5 is at the forefront in terms of both pinball loss and memory requirements.
To further quantify this, the score (Equation 5.1) was determined for the best configuration of each case study
and is depicted in Figure 5.20. According to this Case Study 5 performs best and thus makes it the most
suitable candidate for the next steps.

To compare the case studies beyond the best configuration, the same plots for the average across all
configurations can be found in section B.8. It becomes clear that Case Study 5, on average, scores higher
than all other case studies (which also have multiple configurations), indicating that its performance is less
susceptible to the configuration of the input data and it generally predicts the hysteresis factor more accurately.

5.9. Evaluation of the Models 57

(a) Required ROM. (b) Required RAM.

Figure 5.19: Comparison of memory usage for the best configurations of each case study.

Figure 5.20: Comparison of the achieved score for the best configurations of each case study.

To provide further insight into the robustness of this choice, a sensitivity analysis was done to check whether
the weights of the score would influence which model was picked. Three different scenarios were regarded.
The base scenario describes the loss being weighted at 70% and the memory being weighted at 30%. The
memory was not separately split because ROM and RAM should be equally important regardless of the
scenario. The lower scenario is when the loss is weighted at only 50% and the upper scenario is when the
score is almost exclusively weighted just on the loss, namely at 95%. The results of the sensitivity analysis
for case studies 4 to 6 can be seen in Figure 5.21. The y-axis depicts the derivation in loss (absolute number)
compared to the base scenario. Note that the first three case studies are not depicted as their scores will
remain negative due to their high pinball loss. It can be seen that the order remains the same regardless
of the scenarios. A detailed overview of all case studies and their percentage change for each scenario
compared to the base scenario can be seen in Table B.7.

5.10. Case Study 7: Generalisation Capability Assessment 58

Figure 5.21: Comparison of different scenarios regarding the weight of the pinball loss.

Figure 5.21 also shows that if the pinball loss is weighted less the score reduces compared to the base
scenario, while it increases if it is weighted more, this is likely because the normed loss is greater than the
normed memory requirement (thus reducing the loss and increasing the normed memory requirement by the
same % will in total still lead to reduction of the score).

Note that due to the limited tuning rounds and the boundaries set by the model input tuning, the selected model
and configuration may not necessarily be the best possible configuration. However, given the constraints
formulated in this work, it is the most suitable one.

5.10. Case Study 7: Generalisation Capability Assessment
5.10.1. Description
In this case study, the previously selected model from Case Study 5 is utilised and assessed for its generali-
sation capability which refers to the ability of a model to learn general rules from specific data and apply them
to new, unseen data. Without generalisation, machine learning models would merely memorise data, limiting
their prediction ability. It is important to note that generalisation capacity was not a selection criterion in the
initial model selection, as the requirements for assessing this capacity were beyond the scope of this work.
Consequently, the chosen model may not exhibit optimal performance in terms of generalisation. Moreover, it
is assumed that the core characteristics of the problem remain unchanged thus no reconfiguration of the
input data format is needed. The generalisation capability is evaluated across three specific aspects:

1. Vehicle model generalisation: How well does the selected model perform on a different vehicle project?

2. Driving cycle generalisation: How well does the selected model perform on new driving cycles?

3. Temperature range generalisation: How well does the model perform for data outside of the initial set
temperature range?

5.10.2. Results: Vehicle Model Generalisation
So far, models have been trained using data from vehicle project A. Now, vehicle project B is introduced and
utilised for testing. It is important to note that both vehicle project A and vehicle project B are fully electric
vehicles. However, the type of cell used in each project differs. Consequently, the cell chemistry and electrical
cell specifications may vary slightly. For both vehicle projects, test bench data is available, containing mostly
similar test types (i.e., driving cycles) as those present in dataset A, but in different quantities and with slight
variations in details.

5.10. Case Study 7: Generalisation Capability Assessment 59

The case study can be divided into three approaches:

1. Testing dataset B with a model trained solely on dataset A

2. Testing datasets A and B with a model trained on both datasets.

3. Testing dataset B with a model trained solely on dataset B

The aim is to determine which of these approaches performs best in terms of pinball loss.

Testing B With a Model Trained Solely on A
After preparing the data in a similar manner to vehicle project A, using the same scaler, the pinball loss results
were higher than in Case Study 5, with a pinball loss of 0.04055 (averaging to 0.0219 when considering
the respective loss of testing with model A). Detailed analysis of the measurements identified two potential
issues:

1. Unseen tests: In vehicle project B, certain tests were conducted that were not performed for vehicle
project A. Consequently, the model has not encountered these types of tests during training. In a
specific measurement, where this is the case (shown in Figure B.14a), an initial faulty prediction of the
hysteresis factor seems to cause a significant deviation between prediction and label. When adjusting
the testing routine to correct the hysteresis factor to the "true" value at the start of every interval, the
model’s performance improves notably and can better follow the curve (Figure B.14b).

2. Different cell chemistry: The bad initial prediction and other slightly off predictions could also result
from the different cell chemistry in vehicle project B. Currently, the data of B is normalised like the data
of A, even though the maximum and minimum voltage of each cell differs. Therefore, even for the same
test, the voltage and current profiles may appear different.

To overcome the issues mentioned in point two, the normalisation strategy was changed and adapted, so that
each cell was normed according to its cell datasheet. More details about this can be found in subsection B.9.2.

In Figure 5.22, it is evident that the performance remains poor, with a test loss for vehicle project B of about
0.0649 (corresponding to an average loss for vehicle projects A and B of 0.0338). This result is actually
worse after individual normalisation. While the considerations make sense from a physical perspective, the
processes within the neural network are not interpretable, meaning the model might use the signals in a way
that is not logical to humans with background knowledge of cell chemistry. Furthermore, when normalising
with the datasheet, current, integrated current, and voltage are set according to the minimum and maximum
of the datasheet, which might mean that the full span of possible values is not captured in the training dataset.
This results in a range of values between -0.5 and 0.8 instead of the ideal -1 to 1.

Figure 5.22: Comparison of the pinball loss for different methods of using the model, trained on vehicle project A, on vehicle project B.

5.10. Case Study 7: Generalisation Capability Assessment 60

As mentioned before, not all test types from vehicle project B have been conducted on vehicle project A. As a
result, the trained model might encounter driving profiles it has not seen in its training dataset.

Another, likely the most significant factor contributing to the decreased performance, is the different nature
of the cell in vehicle project B. The previously trained model does not work well since it was trained on a
different cell (cell A). Therefore, the next step will be to assess the performance in terms of loss when the
model is trained on both vehicle projects.

Training the Model With Both Vehicle Projects
In this case, the model was retrained using both vehicle projects. Three different configurations were tested:

1. Completely retrain a new model without considering the cell datasheets (DS), using only the respective
minimum and maximum values in the combined dataset during normalisation.

2. Completely retrain a new model considering the cell datasheets (DS) and the respective minimum and
maximum values in the combined dataset during normalisation.

Figure 5.23 illustrates the pinball loss for different normalisation approaches. These include not normalising
according to the cell datasheet (reusing the initial scalar from vehicle project A) and normalising according to
the cell datasheet. For the latter, the scalar is created from the merged dataset (with minimum and maximum
values based on both datasets). It should be noted that the results presented have been fine-tuned (see
subsection B.9.1) and reflect the optimal number of epochs determined by the validation loss (for details see
Figure B.9.3).

Figure 5.23: Comparison of the pinball loss for different methods of using both projects to train the model.

In Figure 5.23, the loss for model A (blue dotted line) represents the loss obtained when testing model A
with its own test data. The average value is depicted due to minor differences in the losses between using
cell datasheet normalisation and not using it. In all scenarios, the test data included data from both vehicle
projects.

It is evident that the lowest loss (approximately 0.0076) was achieved when the data was normalised not
using the cell datasheet. However, the difference between normalising with the datasheet and without it
is minimal, namely 0.0076 and 0.0088. This difference is likely due to the current, integrated current and
voltage being normalised according to the minimum and maximum values in the cell datasheet, which do not
span the full range (as explained at the beginning of this section).

5.10. Case Study 7: Generalisation Capability Assessment 61

Training each Vehicle Project With Its Own Model
In this approach, it was investigated whether performance would improve if a model was trained specifically
for vehicle project B. Three different configurations were tested:

1. Further training model A with data from project B (normalised according to the datasheet).

2. Creating a new model based on data from vehicle project B (normalised only according to the min/max
of signals).

3. Creating a new model based on data from vehicle project B (normalised according to the cell datasheet).

To further train the model, the initial model A (where the input was normalised according to the cell datasheet
of A, as well as the minimum and maximum of signals from dataset A) was used. The data from project
B was prepared in a similar fashion, utilising cell datasheet B and normalising the other signals according
to the minimum and maximum of dataset A. Various learning rates were tested. Ideally, if the projects are
somewhat similar, a small learning rate should be used to avoid "unlearning" what was previously learned
with project A. Conversely, if the projects differ significantly, larger learning rates would be necessary. In this
case, a learning rate of 0.001 (within the same range as the initial learning rate) was employed, as it yielded
the lowest pinball loss. Additionally, it was varied whether the entire model A was retrained or if the existing
layers of model A were frozen and only a linear or GRU layer on top was trained. Further details, including
the tuned hyperparameters of model B, can be found in section C.2, section C.3 Figure B.9.3.

Figure 5.24: Comparison of the pinball loss for different methods of using training a separate model for vehicle project A.

Figure 5.24 illustrates the pinball loss for the three different configurations. The purple bar represents the
loss for project B only, while the dark blue bar denotes the average loss for both projects. All four models
achieve pinball losses below the threshold set at 0.01. The pinball loss for data B (purple) varies only slightly,
with the highest loss occurring when the model is further trained with model A. Given that the learning rate
and the number of epochs used to achieve this test loss (the lowest loss among the options tested) are quite
high (learning rate around 0.001 and 89 epochs), this may indicate that the two cells are too different to
be trained with the same model. Additionally, it is evident that for all model options, the loss for data B is
significantly higher than the loss achieved for data A (dotted blue line). This discrepancy could be attributed
to the availability of data, as less than 70% of the data for project A was available for project B. Therefore, it is
expected that if more data were available, the model performance would also improve.

5.10. Case Study 7: Generalisation Capability Assessment 62

5.10.3. Results: Driving Cycle Generalisation
To test the hypothesis that the model generally does not perform well with unseen types of driving cycles,
vehicle measurements from the calibration engineers were utilised. These measurements correspond to
various driving cycles, ranging from high-speed driving cycles at the test ring in Nardo, Italy, to driving cycles
between locations in Germany. It is important to note that some of these measurements have an average
temperature outside the temperature range with which the model was initially trained.

Figure 5.25: Predicted median vs. label for the calibration measurements.

In Figure 5.25, it is evident that the GRU model with the 600-240 configuration does not perform well on
vehicle measurements, irrespective of whether the temperature is within the original training range or not. The
average pinball loss is 0.03807, with the highest loss being 0.14757. The poor performance cannot be solely
attributed to samples with temperatures outside the initial training range, as indicated by the green and pink
markers in Figure 5.25. Notably, when the starting hysteresis factor deviates significantly from the subsequent
hysteresis factor (anticipated after 600 s according to the chosen interval size), the predictions tend to drift
from the start. This observation raises the question of whether the model choice, despite achieving the lowest
loss in Case Study 5, is truly optimal, particularly for shorter, more dynamic driving cycles. The larger interval
sizes (e.g. 600 s) might be problematic, as the hysteresis factor can change dramatically within that time
frame.

To illustrate this, the "measured" hysteresis factor used for labelling is depicted in Figure 5.26 with the
original sampling period of 0.1 s. Note that this measurement corresponds only to the currently implemented
algorithm and is not a physical quantity. The blue markers indicate where the 600 s intervals would end
and start. It can be seen that, for the first interval, the hysteresis factor decreases from an initial value of
approximately -0.75 to -0.93.

First, the 60-120 model, which has a 10 times smaller interval size and resulted in only a slightly higher loss
(0.003567 compared to 0.003176) in Case Study 5, was used to test the new driving cycles. This resulted
in an average loss of 0.02760 with a maximum loss of 0.06263. Although the overall loss is slightly lower,
the average loss remains above the threshold. Interestingly, the highest loss is significantly reduced (from
0.14757 with the 600 s interval to 0.06263). The 300-120 configuration, i.e. an interval size of 300 s, which
also performed well in Case Study 5, was also tested, yielding results comparable to the 600 configurations
(average loss of 0.04718 with a maximum loss of 0.15808). A comparison of all three models using the same
measurement is provided in subsection B.9.4.

5.10. Case Study 7: Generalisation Capability Assessment 63

Figure 5.26: Measured hysteresis factor (black) and 600 s intervals (in blue).

These results suggest that using a smaller interval size might be beneficial when more dynamic measurements
are available in the dataset. However, Case Study 5 would need to be repeated with a suitable, more diverse
dataset to confirm this.

In general, while the 60-120 configuration performs better, especially in reducing large pinball losses in
measurements, the achieved loss for many measurements still exceeds the threshold of 0.01 (as indicated by
the average loss). This suggests that regardless of the model configuration (e.g., smaller or larger interval
size), a dataset with more diverse and dynamically changing driving profiles is needed. Most of the test
bench tests are only-charge or only-discharge tests, and if a more dynamic driving cycle is included, it is
usually the same set of a few standardised driving cycles.

Additionally, it is possible that the algorithm used to label the data performs worse under very dynamic
conditions. After observing measurements such as Figure 5.26, it is questionable whether the hysteresis
factor would actually have such steep slopes, especially in the second half of the measurement starting
around 3700 s. The main issue with the machine learning model seems to be that the slopes are not
predicted correctly. The predicted gradient appears flatter than the actual label. To test this hypothesis,
more in-depth measurements from the cell would be needed to analyse the gradient behaviour in dynamic
situations, independent of the currently implemented algorithm which was used for labelling.

5.10.4. Results: Temperature Range Generalisation
In the previous section, there were many samples that were outside the original trained temperature range,
so it was decided to also examine the effect of temperature on the model’s performance. To do this,
measurements from project A were taken, specifically those that were previously excluded due to being
outside the temperature range. Generally, these measurements have similar driving cycles as the initial
training set. This indicates that the datasets are comparable, however, conducted at different temperatures.

First, it was verified whether the currently trained GRU model (600-240 configuration) could be applied to
temperatures outside the 20-35◦C range. The resulting label vs. median plot is shown in Figure 5.27. The
overall average test loss in this case is 0.04144, which is more than 10 times higher than the previously
achieved test loss with samples within the range. This confirms that the initially trained model is sensitive to
changes in temperature. Therefore, in practice, it would not be recommended to apply the initially trained
model to situations outside of the temperature range.

5.10. Case Study 7: Generalisation Capability Assessment 64

Figure 5.27: Predicted median vs. label testing the out-of-temperature-range measurements with model A.

Next, it was evaluated whether the model could be retrained to include all samples, regardless of temperature.
The tuned hyperparameters are detailed in subsection B.9.5. The predicted median vs. label plot is shown
in Figure 5.28. The performance does decrease compared to the training where only temperatures in the
20-35◦C range were considered, with the pinball loss increasing from 0.003176 to 0.00472. Notably, the
greatest outliers originate from samples within the 20-35◦C range. This could also be due to the split of
training and test data; if certain types of driving cycles were not included in the training set but only in the test
set due to random selection.

Figure 5.28: Predicted median vs. label for retraining the model with all temperature samples.

Moreover, it appears that samples below 20◦C (in green) tend to have greater errors (distance to the ideal
diagonal line) than samples above 35◦C (in pink). It is important to note that during the training, validation,
and test split, it was ensured that samples in each temperature bin (green, blue, and pink in Figure 5.28)
were equally distributed among the train, test, and validation sets. Further tuning of the learning rate and
the number of epochs could potentially enhance the performance of the retrained model A. Additionally, the
model could be improved by providing more samples outside of the initial temperature range to achieve a
more even data distribution.

6
Discussion and Conclusion

This chapter analyses and interprets the research findings and revisits the problem statement formulated in
chapter 1. The insights derived from the results address the initially posed research questions regarding
the development and evaluation of various black box models to determine the hysteresis factor from driving
cycles. The discussion highlights the effectiveness and practical feasibility of these models, emphasising
their accuracy and implementability. Additionally, the limitations encountered during the research are
acknowledged, and an outlook on potential future studies and applications based on the findings is given.

6.1. Problem Statement and Proposed Approach
The SOC estimation of batteries is crucial for battery management in EVs as it directly affects vehicle
performance and possible range. More precise SOC estimation allows for decreased safety margins in SOC
boundaries, enhancing battery usability by permitting greater depth of discharge. This results in increased
range or reduced battery size and weight, potentially lowering EV costs. Traditional SOC estimation methods,
like Coulomb counting, lack accuracy therefore corrective measures based on OCV are necessary. However,
novel silicon graphite anodes exhibit significant voltage hysteresis and complicate OCV-based corrections.
This thesis uses machine learning models to address SOC estimation challenges posed by voltage hysteresis.
The objective is to formulate a data-driven model for hysteresis factor prediction, accounting for the technical
limitations of BMS and vehicle use cases. Improvements in SOC estimation and enabling the use of new
cell types, such as silicon graphite anodes, are expected to yield both economic and environmental benefits,
advancing the efficiency and acceptance of EVs.

This thesis formulates a black box model to predict the hysteresis factor using driving cycles. The data taken
from multiple vehicle projects includes signals measured by the BMS such as current, voltage, and cell
temperature. The objective is to identify a model that can operate within the computational constraints of
the BMS. Additionally, the thesis addresses the uncertainty in SOC estimation, acknowledging that existing
literature often assumes the "measured" SOC as ground truth without considering its inherent uncertainty.
Through preparation, training, testing, and comparison of various machine learning models, the study aims to
evaluate their performance and limitations.

6.2. Answering Research Questions
6.2.1. Objective 1: Develop a black box model of the voltage hysteresis effect to

determine the hysteresis factor using driving cycles of EVs
Can a regression machine learning model accurately predict the hysteresis factor given the computa-
tional constraints of a battery management system?
This research question aims to assess the viability of using machine learning regression models to predict
the hysteresis factor within the operating limits of a battery management system. Various models of differing
complexity were designed, ranging from linear regression to XGBoost to a gated recurrent unit (GRU)
neural network. Three general approaches were explored: transforming the initial input signal into attributes,
maintaining them as time series, and splitting them into smaller intervals. The last approach offered the most

65

6.2. Answering Research Questions 66

promising results as it led to the lowest pinball loss and thus the highest accuracy.

While some models demonstrated the capability to achieve the memory requirements, not all of the model
configurations were successful. This indicates that not only the model itself but also the configuration of
input data plays a critical role. For instance, albeit being the most complex model tested, the GRU models
generally performed well in terms of memory requirements. However, if the hyperparameter of the models,
such as the number of hidden units or number of hidden layers is too high, the memory thresholds would be
exceeded. Similarly, the number of features (for Case Study 1) and the number of considered time steps (for
Case Study 2, 5 and 6), both of which result from the input configuration, are directly linked to the required
memory.

Can quantile regression indicate the confidence of the predicted hysteresis factor on a given dataset
of driving data?
This research question addresses the uncertainty of the labels and whether it is possible to effectively manage
it with quantile regression. If the implemented algorithm used for labelling does not introduce variation in
the data, the resulting quantiles will not aid in determining confidence levels. In such cases, the resulting
quantiles will differ from the median only due to errors in the model itself due to incorrect quantile predictions.

To illustrate this further, consider a hypothetical scenario where the feature space is one-dimensional with
Feature 1. If the currently implemented algorithm, which was used for labelling, predicts the hysteresis
factor consistently for Feature 1, there should be minimal noise in the input data for the machine learning
algorithm to learn from. However, due to the higher dimensionality of the feature space, particularly given that
depending on the case study the input signals are time-series, it is assumed that there is noise in the input
data. This assumption is further supported by the current algorithm’s inconsistent performance, meaning that
its accuracy fluctuates and only the maximum error is known. This noise can then be considered through
the use of quantile regression, which provides a means to examine the variability and uncertainty within the
predicted values.

Based on observations from the reconstructed measurements in Case Study 5, the most successful among
the case studies examined, the quantile range is relatively narrow, suggesting limited variability in the input
data. As previously noted, a larger gap between the lower and upper quantiles may also indicate model
inaccuracy for these two quantiles. The limited range aligns with the expected maximum error of the current
algorithm, which is within acceptable bounds. Consequently, it is questionable whether quantile regression
offers significant practical benefits in this context.

Ideally, quantiles could help assess the confidence level in the predicted hysteresis factor. For instance, if the
upper and lower quantiles are widely separated, this could suggest high noise levels at the given operating
point, indicating that the available labels are not adequately representative. In such cases, the information
provided by the quantiles might guide a decision to not adjust the SOC and instead wait for the next driving
cycle.

6.2.2. Objective 2: Perform an evaluation and comparison of different proposed black
box models to find the most suitable algorithm to determine the hysteresis
factor in terms of accuracy and implementability

Which is the best model according to priorly defined evaluation criteria?
The aim of the research question is to establish criteria through discussions with stakeholders that provide a
basis for comparing designed models. The selected model can subsequently be utilised for the following
research question, which focuses on the comparison of vehicle models.

The selected criteria consist of two components: pinball loss, which measures the accuracy of the model’s
predictions, and memory requirements, divided into ROM and RAM. For both components, thresholds were
established to normalise the achieved values. Specifically, the pinball loss was normalised to a maximum of
0.01. If the achieved loss exceeds this threshold, it would contribute as a negative addend in the calculation
of the total score. The threshold value of 0.01 was chosen based on experiments, as loss values above this
threshold correspond to a level of accuracy infeasible for practical use. The thresholds for ROM and RAM
were set at 0.3 MB and 0.1 MB, respectively. These values are set based on a real battery control unit and
an estimation of the available free memory for the algorithm.

The configuration of the input data played a significant role in the model’s performance. Specifically, whether

6.3. Interpretation of Results 67

the input is in the form of attributes, the entire time series or time intervals, was critical. In this study, the
interval-based approach consistently yielded the best results across different types of models. The details of
the input configuration, such as the interval size and the sampling rate of the input signal, also proved to be
important for the simple models, but less important for the GRU models. The comparison of case studies
showed that a GRU model, with interval input, performed best. In this case, the best configuration was that of
an interval length of 600s and 240 elements per time series. Do note that the differences in loss between the
configurations were comparatively small.

The memory requirements were considered secondary, as the differences between models in terms of
memory usage were less significant compared to the differences in loss performance.

Finally, a sensitivity analysis was conducted. The analysis confirmed the previous model choice across all
scenarios, including the base scenario, one where the loss was weighted more than 70%, and one where it
was weighted less.

Can a single algorithm be effectively trained to determine the hysteresis factor across different vehicle
projects while maintaining high accuracy?
This question aims to investigate whether a single model can be trained and subsequently applied across
various vehicle projects that utilise different cell chemistries. The primary advantage of such a model would
be the elimination of the need for retraining, thereby potentially extending its applicability to vehicle projects
where acquiring training data and labels is particularly challenging.

However, Case Study 7, which involved two different vehicle models, revealed that the performance of
a universally trained model is significantly compromised. This performance reduction is likely due to the
variations in cell chemistries, which influence the determination of the hysteresis factor. While the approach
of training a separate model for each vehicle project worked best, the approach of further training an existing
model for a new vehicle project resulted in a comparable pinball loss.

Given the data-driven nature of the employed method, it is understandable that differing datasets would affect
the model’s generalisation capability. Furthermore, extensive testing on a wide variety of cell types would be
required to confidently assert the universal applicability of the model. In this study, only two cell types were
examined, which is insufficient to generalise the findings across different cell chemistries.

6.3. Interpretation of Results
The analysis reveals that the black box model performs effectively when the training data is relevant and
comprehensive. Specifically, the model trained with test bench data showed robust performance for tests
conducted on the test bench (evident in Case Study 5). Previous studies employing machine learning to
model hysteresis, such as those by Li et al. and Xu et al. [50, 8], did not sufficiently verify model performance
outside laboratory settings. In contrast, this work is based on driving cycles, which provide a more realistic
framework. While others have used driving cycles in their validation processes [42, 30], they still rely on
constant current pulse tests to calibrate parameters [106], using driving cycles only for additional validation.
This study, however, directly employs driving cycles to train the model parameters, offering a key advantage
from an industry perspective. The required measurement data is already available, as it is used to calibrate
other algorithms, eliminating the need for dedicated test benches for constant current pulse tests. Therefore,
this approach provides a practical alternative to conventional Kalman filters, provided that labelling the training
samples is feasible (e.g., through predictions from another algorithm or using the "stability criterion", which is
further discussed in section 6.5).

In this work, the model’s ability to generalise across different driving cycles needs improvement, as highlighted
in Case Study 7. This raises the question of whether models that have not been validated using driving
cycles (see Figure 1.4) can generalise sufficiently for practical use in vehicles. Even studies that do validate
using driving cycles [42, 30] often rely on a single driving cycle, such as the "Hill Route" from the First Group
Millbrook Fuel Economy Trial [42], where the authors acknowledge that their error may increase with more
dynamic cycles, or the urban dynamometer driving schedule (UDDS) cycle [30]. While these cycles cover
light-duty electric vehicle driving conditions, this work encompasses a broader range of driving cycles, better
reflecting real-world conditions and sports car-specific behaviour (i.e., non-urban driving).

Moreover, these previous studies [42, 30] focus on (mild) hybrid electric vehicles (HEVs), which have smaller
battery capacities compared to fully electric vehicles (EVs), potentially reducing the impact of hysteresis.

6.4. Limitations 68

Additionally, HEVs exhibit different charging and discharging patterns during driving cycles, as the internal
combustion engine can recharge the battery during operation.

To improve model performance across a wider range of conditions, this work identifies the need for additional
measurements, particularly at extreme temperatures. Case Study 7 also emphasizes the importance of
sufficient training data, as demonstrated by the poorer performance of the model trained on vehicle project B
compared to vehicle project A, which had more than 1.5 times the amount of measurement data.

This study also found that training a single model across multiple vehicle projects did not yield the same
performance as models trained separately for each project, likely due to differences in cell chemistries. This
finding aligns with Barai et al. [7], who reported significant variations in hysteresis behaviour across different
cell types. The most promising approach for predicting the hysteresis factor using BMS signals was identified
as a GRU model, combined with splitting the initial time series signals into intervals.

From the industrial perspective is it interesting that the memory requirements suggest that simple machine
learning models could be implemented in the BMS. However, the decision to use machine learning for
hysteresis factor prediction hinges on the availability of training data and the effort required to obtain it.
Currently, the machine learning-based hysteresis factor prediction does not outperform the existing algorithm.
Looking forward, with potential advancements in extreme cell designs necessary to stay competitive in the
EV market, the calibration limits of the current algorithm may be reached. Machine learning could serve as
a viable alternative, necessitating a dedicated test bench for data generation and a shift from the current
algorithm to Coulomb counting. This shift would require minimised current error, a correct start SOC, and
a well-learned capacity—feasible in a test bench setting across various driving cycles and temperatures.
Furthermore, real driving cycles should also be provided to the model, which may be much more difficult to
label. This is further discussed in the limitations and outlook.

These advanced cell designs are crucial to achieving greater ranges and faster charging which are key
expectations for high-performance vehicles. Moreover, mature extreme cell designs could allow for smaller,
cost-saving batteries while maintaining the same range.

For society, the potential for greater vehicle ranges addresses range anxiety—a significant barrier to EV
adoption, especially in regions lacking charging infrastructure. While Porsche vehicles optimise performance,
other Volkswagen Group vehicles might prioritise cost reduction. Should the cost savings from smaller
batteries be passed on to consumers, EVs could become more attractive. Thus, extreme cell designs could
foster greater EV adoption, supporting the mobility transition necessary to reduce greenhouse gas emissions.
Accurate hysteresis factor prediction is also vital for precise state-of-health estimation, which is crucial for the
second-hand market. In the US and European Union, the state-of-health estimation must have an accuracy
of up to 5%, obliging manufacturers to meet this standard for market eligibility [107, 108].

6.4. Limitations
6.4.1. Label and Data Dependency
To ensure optimal performance, it is necessary that the labels used in the model are accurate (enough). It
is important to note, that the designed model can only be as good as its labels. Therefore, if a currently
already implemented algorithm is used, the model’s prediction cannot be better than the algorithm’s prediction.
However, what this designed black box model can deliver is additional information such as the lower and
upper quantiles.

The necessity of sufficient training data was evident in this study; the model showed better performance
with a total of 800 measurements (approximately 12,000 samples in vehicle project A) compared to 500
measurements (around 7,000 samples in vehicle project B). Additionally, it is important to recognize that this
methodology relies on the OCV curves for charging and discharging provided by the cell manufacturer, which
have been assumed to be accurate. Notably, both tested vehicle models incorporate only a negligible amount
of silicon in their cells. Therefore, expanding the input dataset to include cells with higher silicon content is
necessary to validate whether this methodology works for these cell types as well.

6.5. Outlook 69

6.4.2. Driving Cycles
The designed black box model performs exceptionally well with driving cycles that were included during
the training phase. Given that the tests were predefined, they showed high accuracy with charging and
discharging cycles, as well as some mixed charge-discharge driving cycles. However, performance may
degrade with other driving cycles. The model has been trained exclusively on measurements taken at average
temperatures between 20 and 35◦C and it was shown that the performance decreases when training on the
full range of temperatures, likely due to fewer measurements being available outside of this range.

6.4.3. Hyperparameter Tuning and Model Selection Considerations
The tuning process involved stochastically chosen parameters, limited to a maximum of 25 configurations.
For the XGBoost model, early stopping was implemented after 10 rounds, while the GRU model was run for
either 10 or 30 epochs, depending on whether it was for initial tuning or fine-tuning. Most importantly, the
tuning process selected the best parameters based on validation loss. However, due to time constraints,
the validation loss was based on a non-regressive loss, which is especially significant for the time interval
approaches. Given more time or greater computational resources, it would be beneficial to adapt the tuning
functions to utilise a custom validation loss calculation that accounts for the connections between intervals,
where the last prediction serves as input for the next prediction.

Further improvement in tuning could be achieved through a separate study employing a more robust
hyperparameter tuning strategy, such as Bayesian Optimisation, which may enhance the model’s performance.
During model selection, it was assumed that the model excelling in terms of both loss and memory efficiency
would be the most suitable for vehicle comparison. However, this assumption may not hold universally and
should therefore be considered cautiously.

6.5. Outlook
6.5.1. Variety in the Dataset
To improve the model’s performance, it is essential to diversify the input data. This may include data from
a designated test bench that conducts current pulse tests. While these profiles may not closely resemble
typical customer scenarios, they yield more accurate Coulomb counting SOC measurements. Additionally,
incorporating data from prototype vehicles, such as test results from calibration engineers, would be beneficial.
From an industry standpoint, this data is as readily accessible as the test bench data. Since the selected
interval approach, thus the continuous determination of the hysteresis factor does not require a relaxation
period at the end of the measurement, the absence of relaxation periods in these vehicle measurements
is not an issue. However, it is crucial to ensure that these vehicle measurements are sufficiently "clean" to
be used as training data. This means that the calibration engineers may not change any of the essential
parameters. Thus, preparing this data might require more expert involvement to filter out the unusable
measurements (due to parameters being set to "wrong" values for certain test cases).

In the work, only measurements were considered where the cell can also relax. As mentioned above, it is
also possible to include measurements without relaxation periods in the interval approach. This increases the
size of the training dataset as more test bench measurements, and thus a greater variety of driving cycles,
are suitable for training. This mix of data should provide a diverse input for the machine learning model to
learn from.

6.5.2. Selection of Suitable Measurements and More Extreme Cell Chemistries
This methodology so far has been shown to work on cells with a very low amount of silicon and thus also
a small amount of hysteresis. It would be necessary to verify if the methodology also holds with cells with
greater hysteresis. A greater amount of hysteresis might also cause issues in one of the prerequisites for the
methodology though, namely the labelling. The greater the hysteresis, the more difficult it may be to find
"good-enough" labels to use. Unfortunately, this work indicated that it is not possible to use a model trained
on another vehicle project and apply it to a new one. If this was the case, no labels for new vehicle projects
would be required.

6.5. Outlook 70

6.5.3. Alternative Labelling and Test Fleet Training
An alternative labelling approach is the "stability criterion," which has two main components: a long-term and
a short-term component. The short-term component assesses the stability of the SOC. Depending on the
duration of the active period, a qualitative decision can be made regarding the plausibility of the corrected
SOC. For instance, it is questionable if a 7% correction is made to the SOC after only a 5-minute active period,
which would mean that the Coulomb counting result is 7% off. To apply this method effectively, appropriate
thresholds must be established in advance, and it is critical to account for measurement conditions (e.g.,
active period length, confidence in initial SOC, etc.).

The second component is the stability of the battery’s capacity. Capacity is estimated only when the SOC
change during the driving cycle is sufficiently large. The BMS re-estimates the current capacity based on the
corrected SOC. Over time, a gradual decrease in capacity due to ageing effects is expected. Inaccuracies in
the SOC can lead to errors in the capacity estimation, often observable as irregular fluctuations in capacity
over time. Examples of this are an increase in capacity and a sudden, drastic decrease.

Since this labelling method is less quantifiable than the one based on the current algorithm, a practical
strategy would be to initially train a baseline model using the current algorithm, even if it is not fully accurate.
This model could then be implemented in a test fleet, where it would be further tuned using the stability
criterion, which can be used even with more extreme cell types. This step is essential to ensure the algorithm
can be used in the production software and thus be implemented in customer vehicles.

6.5.4. Model Complexity and Computational Considerations
In the future, it might also be possible to train more complex models due to developments in control units in the
car. For instance, putting non-safety relevant functions on another control unit, which has more computational
power, or establishing a connection with a remote PC, doing the calculations there and then sending the
results back to the car. This would probably be problematic for the interval approach though due to timing
constraints and potential connectivity issues.

6.5.5. Ageing
It would also be interesting, if enough data is available, to train the model also considering ageing. The effect
of ageing on hysteresis is still an ongoing research topic. One possible approach for incorporating ageing
effects is to introduce an ageing factor that modifies the charge and discharge curves originally provided
for new cells by the manufacturer. This approach, however, assumes that ageing does not influence the
hysteresis factor itself, such as the rate at which the cell transitions between charge and discharge curves.

6.5.6. Autoregressive Training
Autoregressive training was done in Case Study 6 in order to include the autoregressive nature of the problem
in the training process. In this work, this approach was not further followed due to limited time and because
the results did not indicate a strong improvement. However, it could be seen that when the model trained on
project A was applied to project B, an initial wrong prediction offsets later predictions throughout the whole
measurements Therefore, it could be interesting to check if an autoregressive model, after tuning it a bit more
in terms of learning rate and number of epochs, may have better generalisation capacity because it might be
better at stopping these "drift-offs".

References

[1] Veronika Henze. Lithium-ion Battery Pack Prices Rise for First Time to an Average of $151/kWh. Dec.
2022. URL: https://about.bnef.com/blog/lithium-ion-battery-pack-prices-rise-for-
first-time-to-an-average-of-151-kwh/.

[2] Menaka Samant et al. EY Mobility Consumer Index 2022 study. Tech. rep. EY, 2022.

[3] Tim J. Barlow et al. A reference book of driving cycles for use in the measurement of road vehicle
emissions. Tech. rep. Transport Research Laboratory, 2009.

[4] Andrew Evers. Why Porsche, Mercedes and GM are betting on silicon-anode batteries. 2022.

[5] Amprius. SiMaxxTM Enables Superior Energy Density for High-Performance Applications. URL:
https://amprius.com/technology/.

[6] Yizhao Gao et al. “Determination of half-cell open-circuit potential curve of silicon-graphite in a
physics-based model for lithium-ion batteries”. In: Applied Energy 349 (Nov. 2023). ISSN: 03062619.
DOI: 10.1016/j.apenergy.2023.121621.

[7] Anup Barai et al. “A study of the open circuit voltage characterization technique and hysteresis
assessment of lithium-ion cells”. In: Journal of Power Sources 295 (July 2015), pp. 99–107. ISSN:
03787753. DOI: 10.1016/j.jpowsour.2015.06.140.

[8] Zhicheng Xu et al. “Improving the state of charge estimation of reused lithium-ion batteries by abating
hysteresis using machine learning technique”. In: Journal of Energy Storage 32 (Dec. 2020). ISSN:
2352152X. DOI: 10.1016/j.est.2020.101678.

[9] Lin Wang et al. “Application of electrochemical impedance spectroscopy in battery management
system: State of charge estimation for aging batteries”. In: Journal of Energy Storage 57 (Jan. 2023).
ISSN: 2352152X. DOI: 10.1016/j.est.2022.106275.

[10] International Energy Agency (IEA). Global EV Outlook 2023: Catching up with climate ambitions.
Tech. rep. 2023. URL: www.iea.org.

[11] Hao Zhang et al. Graphite as anode materials: Fundamental mechanism, recent progress and
advances. Apr. 2021. DOI: 10.1016/j.ensm.2020.12.027.

[12] Yuan-Li Ding et al. “Automotive Li-Ion Batteries: Current Status and Future Perspectives”. In: Electro-
chemical Energy Reviews 2.1 (2019), pp. 1–28. DOI: 10.1007/s41918-018-0022-z.

[13] Da Deng. “Li-ion batteries: Basics, progress, and challenges”. In: Energy Science and Engineering
3.5 (Sept. 2015), pp. 385–418. ISSN: 20500505. DOI: 10.1002/ese3.95.

[14] Kong Soon Ng et al. “Enhanced coulomb counting method for estimating state-of-charge and state-of-
health of lithium-ion batteries”. In: Applied Energy 86.9 (Sept. 2009), pp. 1506–1511. ISSN: 0306-2619.
DOI: 10.1016/J.APENERGY.2008.11.021.

[15] Shijie Tong, Matthew P. Klein, and Jae Wan Park. “On-line optimization of battery open circuit voltage
for improved state-of-charge and state-of-health estimation”. In: Journal of Power Sources 293 (June
2015), pp. 416–428. ISSN: 03787753. DOI: 10.1016/j.jpowsour.2015.03.157.

[16] Tarun Huria et al. “High Fidelity Electrical Model with Thermal Dependence for Characterization
and Simula-tion of High Power Lithium Battery Cells”. In: 2012 IEEE International Electric Vehicle
Conference. 2012, pp. 1–8. DOI: 10.1109/IEVC.2012.6183271.

[17] Lei Pei, Rengui Lu, and Chunbo Zhu. “Relaxation model of the open-circuit voltage for state-of-charge
estimation in lithium-ion batteries”. In: IET Electrical Systems in Transportation 3.4 (2013), pp. 112–
117. ISSN: 20429738. DOI: 10.1049/iet-est.2013.0020.

[18] Hao Yang et al. “Online parameters identification and state of charge estimation for lithium-ion
capacitor based on improved Cubature Kalman filter”. In: Journal of Energy Storage 24 (Aug. 2019).
ISSN: 2352152X. DOI: 10.1016/j.est.2019.100810.

71

https://about.bnef.com/blog/lithium-ion-battery-pack-prices-rise-for-first-time-to-an-average-of-151-kwh/
https://about.bnef.com/blog/lithium-ion-battery-pack-prices-rise-for-first-time-to-an-average-of-151-kwh/
https://amprius.com/technology/
https://doi.org/10.1016/j.apenergy.2023.121621
https://doi.org/10.1016/j.jpowsour.2015.06.140
https://doi.org/10.1016/j.est.2020.101678
https://doi.org/10.1016/j.est.2022.106275
www.iea.org
https://doi.org/10.1016/j.ensm.2020.12.027
https://doi.org/10.1007/s41918-018-0022-z
https://doi.org/10.1002/ese3.95
https://doi.org/10.1016/J.APENERGY.2008.11.021
https://doi.org/10.1016/j.jpowsour.2015.03.157
https://doi.org/10.1109/IEVC.2012.6183271
https://doi.org/10.1049/iet-est.2013.0020
https://doi.org/10.1016/j.est.2019.100810

References 72

[19] William McSweeney, Hugh Geaney, and Colm O’Dwyer. “Metal-assisted chemical etching of silicon
and the behavior of nanoscale silicon materials as Li-ion battery anodes”. In: Nano Research 8.5
(May 2015), pp. 1395–1442. ISSN: 19980000. DOI: 10.1007/s12274-014-0659-9.

[20] Haipeng Zhao et al. “Modification of natural graphite for lithium ion batteries”. In: Solid State Sciences
10.5 (May 2008), pp. 612–617. ISSN: 12932558. DOI: 10.1016/j.solidstatesciences.2007.10.
017.

[21] Jun Lee et al. “Silicon Anode: A Perspective on Fast Charging Lithium-Ion Battery”. In: Inorganics
11.5 (May 2023). ISSN: 23046740. DOI: 10.3390/inorganics11050182.

[22] Prachi Patel. The Age of Silicon Is Here. . . for Batteries. 2023. URL: https://spectrum.ieee.org/
silicon-anode-battery.

[23] Yang He et al. “Progressive growth of the solid–electrolyte interphase towards the Si anode inte-
rior causes capacity fading”. In: Nature Nanotechnology 16.10 (Oct. 2021), pp. 1113–1120. ISSN:
17483395. DOI: 10.1038/s41565-021-00947-8.

[24] Jinglei Lei et al. “Characterization of SEI Layers on LiMn2O4 Cathodes with In Situ Spectroscopic
Ellipsometry”. In: Journal of the Electrochemical Society 152.4 (2005). ISSN: 00134651. DOI: 10.
1149/1.1867652.

[25] Jeong K. Lee et al. “Silicon nanoparticles-graphene paper composites for Li ion battery anodes”. In:
Chemical Communications 46.12 (2010), pp. 2025–2027. ISSN: 13597345. DOI: 10.1039/b919738a.

[26] Rui Huang and Jing Zhu. “Silicon nanowire array films as advanced anode materials for lithium-ion
batteries”. In: Materials Chemistry and Physics 121.3 (June 2010), pp. 519–522. ISSN: 02540584.
DOI: 10.1016/j.matchemphys.2010.02.017.

[27] Candace K. Chan et al. “Solution-grown silicon nanowires for lithium-ion battery anodes”. In: ACS
Nano 4.3 (Mar. 2010), pp. 1443–1450. ISSN: 19360851. DOI: 10.1021/nn901409q.

[28] Michael A. Roscher, Oliver Bohlen, and Jens Vetter. “OCV Hysteresis in Li-Ion Batteries including
Two-Phase Transition Materials”. In: International Journal of Electrochemistry 2011 (2011), pp. 1–6.
DOI: 10.4061/2011/984320.

[29] Wenlu Zhou et al. “SOC Estimation Based on Hysteresis Characteristics of Lithium Iron Phosphate
Battery”. In: Machines 10.8 (Aug. 2022). ISSN: 20751702. DOI: 10.3390/machines10080658.

[30] Gregory L. Plett. “Extended Kalman filtering for battery management systems of LiPB-based HEV
battery packs - Part 2. Modeling and identification”. In: Journal of Power Sources 134.2 (Aug. 2004),
pp. 262–276. ISSN: 03787753. DOI: 10.1016/j.jpowsour.2004.02.032.

[31] Philip Kargl et al. “Investigation of voltage and expansion hysteresis of Si-alloy-C/NMC622 pouch cells
using dilatometry”. In: Journal of Power Sources 548 (Nov. 2022). ISSN: 03787753. DOI: 10.1016/j.
jpowsour.2022.232042.

[32] Qiang Liu et al. “Kinetically Determined Phase Transition from Stage II (LiC12) to Stage i (LiC6) in
a Graphite Anode for Li-Ion Batteries”. In: Journal of Physical Chemistry Letters 9.18 (Sept. 2018),
pp. 5567–5573. ISSN: 19487185. DOI: 10.1021/acs.jpclett.8b02750.

[33] Wolfgang Dreyer et al. “The thermodynamic origin of hysteresis in insertion batteries”. In: Nature
Materials 9.5 (2010), pp. 448–453. ISSN: 14764660. DOI: 10.1038/nmat2730.

[34] Vijay A. Sethuraman et al. “In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon”. In:
Journal of The Electrochemical Society 157.11 (2010), A1253. ISSN: 00134651. DOI: 10.1149/1.
3489378.

[35] Vincent L. Chevrier and Jeff R. Dahn. “First Principles Studies of Disordered Lithiated Silicon”. In:
Journal of The Electrochemical Society 157.4 (2010), A392. ISSN: 00134651. DOI: 10.1149/1.
3294772.

[36] Yang Jiang et al. “Voltage Hysteresis Model for Silicon Electrodes for Lithium Ion Batteries, Including
Multi-Step Phase Transformations, Crystallization and Amorphization”. In: Journal of The Electrochem-
ical Society 167.13 (Oct. 2020), p. 130533. ISSN: 0013-4651. DOI: 10.1149/1945-7111/abbbba.

[37] Michael A. Roscher and Dirk Uwe Sauer. “Dynamic electric behavior and open-circuit-voltage modeling
of LiFePO 4-based lithium ion secondary batteries”. In: Journal of Power Sources 196.1 (Jan. 2011),
pp. 331–336. ISSN: 03787753. DOI: 10.1016/j.jpowsour.2010.06.098.

https://doi.org/10.1007/s12274-014-0659-9
https://doi.org/10.1016/j.solidstatesciences.2007.10.017
https://doi.org/10.1016/j.solidstatesciences.2007.10.017
https://doi.org/10.3390/inorganics11050182
https://spectrum.ieee.org/silicon-anode-battery
https://spectrum.ieee.org/silicon-anode-battery
https://doi.org/10.1038/s41565-021-00947-8
https://doi.org/10.1149/1.1867652
https://doi.org/10.1149/1.1867652
https://doi.org/10.1039/b919738a
https://doi.org/10.1016/j.matchemphys.2010.02.017
https://doi.org/10.1021/nn901409q
https://doi.org/10.4061/2011/984320
https://doi.org/10.3390/machines10080658
https://doi.org/10.1016/j.jpowsour.2004.02.032
https://doi.org/10.1016/j.jpowsour.2022.232042
https://doi.org/10.1016/j.jpowsour.2022.232042
https://doi.org/10.1021/acs.jpclett.8b02750
https://doi.org/10.1038/nmat2730
https://doi.org/10.1149/1.3489378
https://doi.org/10.1149/1.3489378
https://doi.org/10.1149/1.3294772
https://doi.org/10.1149/1.3294772
https://doi.org/10.1149/1945-7111/abbbba
https://doi.org/10.1016/j.jpowsour.2010.06.098

References 73

[38] Loic Lavigne et al. “Lithium-ion batteries aging motinoring througth open circuit voltage (OCV) curve
modelling and adjustment”. In: ICINCO 2016 - Proceedings of the 13th International Conference
on Informatics in Control, Automation and Robotics. Vol. 1. SciTePress, 2016, pp. 57–67. ISBN:
9789897581984. DOI: 10.5220/0005961400570067.

[39] Jiale Xie et al. “Estimating the state-of-charge of lithium-ion batteries using an H-infinity observer
with consideration of the hysteresis characteristic”. In: Journal of Power Electronics 16.2 (Mar. 2016),
pp. 643–653. ISSN: 15982092. DOI: 10.6113/JPE.2016.16.2.643.

[40] Younghwi Ko and Woojin Choi. “A new soc estimation for lfp batteries: Application in a 10 ah cell (hw
38120 l/s) as a hysteresis case study”. In: Electronics (Switzerland) 10.6 (Mar. 2021), pp. 1–14. ISSN:
20799292. DOI: 10.3390/electronics10060705.

[41] Shuyu Xie et al. “State-of-Charge Estimation of Lithium-Ion Battery Based on an Improved Dual-
Polarization Model”. In: Energy Technology 11.4 (Apr. 2023). ISSN: 21944296. DOI: 10.1002/ente.
202201364.

[42] Ryan Rolt et al. “Full battery pack Modelling: An electrical Sub-Model using an EECM for HEV
applications”. In: SAE Technical Papers. Vol. 2019-April. April. SAE International, Apr. 2019. DOI:
10.4271/2019-01-1203.

[43] Yanxin Xie et al. “Improved lumped electrical characteristic modeling and adaptive forgetting factor
recursive least squares-linearized particle swarm optimization full-parameter identification strategy for
lithium-ion batteries considering the hysteresis component effect”. In: Journal of Energy Storage 67
(Sept. 2023). ISSN: 2352152X. DOI: 10.1016/j.est.2023.107597.

[44] Minkyu Kwak et al. “Parameter Identification and SOC Estimation of a Battery under the Hysteresis
Effect”. In: IEEE Transactions on Industrial Electronics 67.11 (Nov. 2020), pp. 9758–9767. ISSN:
15579948. DOI: 10.1109/TIE.2019.2956394.

[45] Federico Baronti et al. “Experimental analysis of open-circuit voltage hysteresis in lithium-iron-
phosphate batteries”. In: IECON Proceedings (Industrial Electronics Conference) (2013), pp. 6728–
6733. DOI: 10.1109/IECON.2013.6700246.

[46] Guangzhong Dong et al. “Online state of charge estimation and open circuit voltage hysteresis
modeling of LiFePO4 battery using invariant imbedding method”. In: Applied Energy 162 (Jan. 2016),
pp. 163–171. ISSN: 03062619. DOI: 10.1016/j.apenergy.2015.10.092.

[47] Jonghoon Kim et al. “OCV Hysteresis Effect-based SOC Estimation in Extended Kalman Filter
Algorithm for a LiFePO 4 /C Cell”. In: 2012 IEEE International Electric Vehicle Conference, IEVC 2012.
2012, pp. 1–5. DOI: 10.1109/IEVC.2012.6183174.

[48] A. Johnson Antony and Kamakshy Selvajyothi. “A comparative performance analysis of electrical
equivalent circuit models with the hysteresis effect of lithium iron phosphate batteries”. In: International
Journal of Green Energy (2023). ISSN: 15435083. DOI: 10.1080/15435075.2023.2258216.

[49] Peng Yu et al. “Study of hysteresis voltage state dependence in lithium-ion battery and a novel
asymmetric hysteresis modeling”. In: Journal of Energy Storage 51 (July 2022). ISSN: 2352152X. DOI:
10.1016/j.est.2022.104492.

[50] Wenyun Li et al. “Exploring the Hysteresis Effect in SOC Estimation of Li-ion Batteries”. In: Journal
of Physics: Conference Series. Vol. 2456. 1. Institute of Physics, 2023. DOI: 10 . 1088 / 1742 -
6596/2456/1/012023.

[51] Iqbal H. Sarker. “Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications
and Research Directions”. In: SN Computer Science 2.6 (Nov. 2021), pp. 1–20. ISSN: 26618907. DOI:
10.1007/S42979-021-00815-1/FIGURES/11.

[52] Christian Janiesch, Patrick Zschech, and Kai Heinrich. “Machine learning and deep learning”. In:
Electronic Markets 31.3 (Sept. 2021), pp. 685–695. ISSN: 14228890. DOI: 10.1007/S12525-021-
00475-2/TABLES/2.

[53] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. URL: https:
//www.deeplearningbook.org/.

[54] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques. Elsevier, 2012.
ISBN: 978-0-12-381479-1. DOI: 10.1016/C2009-0-61819-5.

https://doi.org/10.5220/0005961400570067
https://doi.org/10.6113/JPE.2016.16.2.643
https://doi.org/10.3390/electronics10060705
https://doi.org/10.1002/ente.202201364
https://doi.org/10.1002/ente.202201364
https://doi.org/10.4271/2019-01-1203
https://doi.org/10.1016/j.est.2023.107597
https://doi.org/10.1109/TIE.2019.2956394
https://doi.org/10.1109/IECON.2013.6700246
https://doi.org/10.1016/j.apenergy.2015.10.092
https://doi.org/10.1109/IEVC.2012.6183174
https://doi.org/10.1080/15435075.2023.2258216
https://doi.org/10.1016/j.est.2022.104492
https://doi.org/10.1088/1742-6596/2456/1/012023
https://doi.org/10.1088/1742-6596/2456/1/012023
https://doi.org/10.1007/S42979-021-00815-1/FIGURES/11
https://doi.org/10.1007/S12525-021-00475-2/TABLES/2
https://doi.org/10.1007/S12525-021-00475-2/TABLES/2
https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
https://doi.org/10.1016/C2009-0-61819-5

References 74

[55] Iqbal H. Sarker. “Machine Learning: Algorithms, Real-World Applications and Research Directions”.
In: SN Computer Science 2.3 (May 2021), pp. 1–21. ISSN: 26618907. DOI: 10.1007/S42979-021-
00592-X/FIGURES/11.

[56] Zhi Hua Zhou. “A brief introduction to weakly supervised learning”. In: National Science Review 5.1
(Jan. 2018), pp. 44–53. ISSN: 2053714X. DOI: 10.1093/nsr/nwx106.

[57] IBM. What Is a Machine Learning Pipeline? | IBM. URL: https://www.ibm.com/topics/machine-
learning-pipeline.

[58] 6.3. Preprocessing data — scikit-learn 1.4.1 documentation. URL: https://scikit-learn.org/
stable/modules/preprocessing.html.

[59] Feature Extraction Explained - MATLAB & Simulink. URL: https://de.mathworks.com/discovery/
feature-extraction.html.

[60] Vladimir Berikov and Alexander Litvinenko. “Solving weakly supervised regression problem using
low-rank manifold regularization”. In: ArXiv abs/2104.06548 (Apr. 2021). URL: http://arxiv.org/
abs/2104.06548.

[61] Jeremy Watt, Reza Borhani, and Aggelos Katsaggelos. Machine Learning Refined: Foundations,
Algorithms, and Applications. 2nd ed. Cambridge University Press, 2020. DOI: 10.1017/9781108690
935.

[62] XGBoost. Introduction to Boosted Trees. URL: https://xgboost.readthedocs.io/en/stable/
tutorials/model.html.

[63] Jerome H. Friedman. “Greedy Function Approximation: A Gradient Boosting Machine”. In: The Annals
of Statistics 29.5 (2001), pp. 1189–1232. ISSN: 00905364,21688966.

[64] John R. Quinlan. “Induction of Decision Trees”. In: Machine Learning 1 (1986), pp. 81–106. DOI:
https://doi.org/10.1007/BF00116251.

[65] Daniel Svozil, Vladimir Kvasnieka, and Jie Pospichal. “Introduction to multi-layer feed-forward neural
networks”. In: Chemometrics and Intelligent Laboratory Systems 39 (1997), pp. 43–62. DOI: 10.1016/
S0169-7439(97)00061-0.

[66] Larry Medsker and Lakhmi C. Jain. Recurrent Neural Network: Design and Applications. 1st ed. CRC
Press, Inc., 1999. ISBN: 0849371813. DOI: https://doi.org/10.1201/9781003040620.

[67] Paul J. Werbos. “Backpropagation Through Time: What It Does and How to Do It”. In: Proceedings of
the IEEE 78.10 (1990). ISSN: 15582256. DOI: 10.1109/5.58337.

[68] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training Recurrent Neural
Networks”. In: ArXiv (Nov. 2012). DOI: https://doi.org/10.48550/arXiv.1211.5063. URL:
http://arxiv.org/abs/1211.5063.

[69] Aston Zhang et al. Dive into Deep Learning. Cambridge University Press, 2023. DOI: https://doi.
org/10.48550/arXiv.2106.11342. URL: https://D2L.ai.

[70] PyTorch. GRU. URL: https://pytorch.org/docs/stable/generated/torch.nn.GRU.html.

[71] Kuo-Chin Chang, Tzung-Pei Hong, and Shian-Shyong Tseng. “Machine Learning by Imitating Human
Learning”. In: Minds and Machines 6.2 (May 1996), pp. 203–228. ISSN: 1572-8641. DOI: 10.1007/
BF00391286. URL: https://doi.org/10.1007/BF00391286.

[72] Eyke Hüllermeier and Willem Waegeman. “Aleatoric and epistemic uncertainty in machine learning:
an introduction to concepts and methods”. In: Machine Learning 110.3 (Mar. 2021), pp. 457–506.
ISSN: 15730565. DOI: 10.1007/s10994-021-05946-3.

[73] Xiaojin Goldberg. “Introduction to semi-supervised learning”. In: Synthesis Lectures on Artificial
Intelligence and Machine Learning 6 (June 2009), pp. 1–116. ISSN: 19394608. DOI: 10.2200/
S00196ED1V01Y200906AIM006.

[74] Hwanjun Song et al. “Learning from Noisy Labels with Deep Neural Networks: A Survey”. In: IEEE
Transactions on Neural Networks and Learning Systems 34 (2023), pp. 8135–8153. URL: https:
//github.com/songhwanjun/Awesome-Noisy-Labels..

[75] Pitoyo Hartono and Shuji Hashimoto. “Learning from imperfect data”. In: Applied Soft Computing
Journal 7.1 (Jan. 2007), pp. 353–363. ISSN: 15684946. DOI: 10.1016/j.asoc.2005.07.005.

https://doi.org/10.1007/S42979-021-00592-X/FIGURES/11
https://doi.org/10.1007/S42979-021-00592-X/FIGURES/11
https://doi.org/10.1093/nsr/nwx106
https://www.ibm.com/topics/machine-learning-pipeline
https://www.ibm.com/topics/machine-learning-pipeline
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
https://de.mathworks.com/discovery/feature-extraction.html
https://de.mathworks.com/discovery/feature-extraction.html
http://arxiv.org/abs/2104.06548
http://arxiv.org/abs/2104.06548
https://doi.org/10.1017/9781108690935
https://doi.org/10.1017/9781108690935
https://xgboost.readthedocs.io/en/stable/tutorials/model.html
https://xgboost.readthedocs.io/en/stable/tutorials/model.html
https://doi.org/https://doi.org/10.1007/BF00116251
https://doi.org/10.1016/S0169-7439(97)00061-0
https://doi.org/10.1016/S0169-7439(97)00061-0
https://doi.org/https://doi.org/10.1201/9781003040620
https://doi.org/10.1109/5.58337
https://doi.org/https://doi.org/10.48550/arXiv.1211.5063
http://arxiv.org/abs/1211.5063
https://doi.org/https://doi.org/10.48550/arXiv.2106.11342
https://doi.org/https://doi.org/10.48550/arXiv.2106.11342
https://D2L.ai
https://pytorch.org/docs/stable/generated/torch.nn.GRU.html
https://doi.org/10.1007/BF00391286
https://doi.org/10.1007/BF00391286
https://doi.org/10.1007/BF00391286
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.2200/S00196ED1V01Y200906AIM006
https://doi.org/10.2200/S00196ED1V01Y200906AIM006
https://github.com/songhwanjun/Awesome-Noisy-Labels.
https://github.com/songhwanjun/Awesome-Noisy-Labels.
https://doi.org/10.1016/j.asoc.2005.07.005

References 75

[76] Alan Joseph Bekker and Jacob Goldberger. “Training deep neural-networks based on unreliable la-
bels”. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2016, pp. 2682–2686. DOI: 10.1109/ICASSP.2016.7472164.

[77] Hao Wang et al. Learning with Noisy Labels for Sentence-level Sentiment Classification. Tech. rep.
2019, pp. 6286–6292.

[78] Uri Alon et al. “Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays”. In: Proceedings of the National Academy of Sciences
of the United States of America 96.12 (1999). ISSN: 00278424. DOI: 10.1073/pnas.96.12.6745.

[79] Hao Chen et al. “Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise
Label Configurations”. In: ArXiv (May 2023). DOI: https://doi.org/10.48550/arXiv.2305.
12715Focustolearnmore. URL: http://arxiv.org/abs/2305.12715.

[80] Agnieszka Mikołajczyk and Michał Grochowski. “Data augmentation for improving deep learning in
image classification problem”. In: 2018 International Interdisciplinary PhD Workshop, IIPhDW 2018.
Institute of Electrical and Electronics Engineers Inc., June 2018, pp. 117–122. ISBN: 9781538661437.
DOI: 10.1109/IIPHDW.2018.8388338.

[81] Jacob Murel and Eda Kavlakoglu. What is regularization? 2023. URL: https://www.ibm.com/
topics/regularization.

[82] scikit-learn. RandomizedSearchCV. URL: https://scikit-learn.org/stable/modules/genera
ted/sklearn.model_selection.RandomizedSearchCV.html.

[83] Haleh Akrami et al. “Beta quantile regression for robust estimation of uncertainty in the presence of
outliers”. In: ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2024, pp. 7480–7484. ISBN: 2309.07374v1. DOI: 10.1109/ICASSP48485.
2024.10445867.

[84] Roger Koenker and Kevin F Hallock. Quantile Regression. Tech. rep. 4. 2001, pp. 143–156.

[85] ASAM. ASAM MDF. URL: https://www.asam.net/standards/detail/mdf/wiki/.

[86] asammdf’s documentation. URL: https://asammdf.readthedocs.io/en/latest/intro.html#
contributing-support.

[87] Apache Software Foundation. Reading and Writing the Apache Parquet Format. URL: https://
arrow.apache.org/docs/python/parquet.html.

[88] scikit-learn. MinMaxScaler. URL: https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.MinMaxScaler.html.

[89] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift”. In: ArXiv abs/1502.03167 (Feb. 2015). DOI: https://doi.org/
10.48550/arXiv.1502.03167.

[90] Vinod Sharma. “A Study on Data Scaling Methods for Machine Learning”. In: International Journal for
Global Academic & Scientific Research 1.1 (Feb. 2022). DOI: 10.55938/ijgasr.v1i1.4.

[91] Maximilian Christ et al. tsfresh. URL: https://tsfresh.readthedocs.io/en/latest/index.
html.

[92] scikit-learn. QuantileRegressor. URL: https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.QuantileRegressor.html.

[93] XGBoost. Quantile Regression. URL: https://xgboost.readthedocs.io/en/latest/python/
examples/quantile_regression.html.

[94] TensorFlow. tfa.losses.pinball_loss. URL: https://www.tensorflow.org/addons/api_docs/
python/tfa/losses/pinball_loss.

[95] Diederik P Kingma and Jimmy Lei Ba. “Adam: A Method for Stochastic Optimization”. In: ArXiv (2014).
DOI: https://doi.org/10.48550/arXiv.1412.6980.

[96] Zimeng Huang et al. “Measuring the Impact of Gradient Accumulation on Cloud-based Distributed
Training”. In: Proceedings - 23rd IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing, CCGrid 2023. Institute of Electrical and Electronics Engineers Inc., 2023, pp. 344–354.
DOI: 10.1109/CCGrid57682.2023.00040.

https://doi.org/10.1109/ICASSP.2016.7472164
https://doi.org/10.1073/pnas.96.12.6745
https://doi.org/https://doi.org/10.48550/arXiv.2305.12715Focustolearnmore
https://doi.org/https://doi.org/10.48550/arXiv.2305.12715Focustolearnmore
http://arxiv.org/abs/2305.12715
https://doi.org/10.1109/IIPHDW.2018.8388338
https://www.ibm.com/topics/regularization
https://www.ibm.com/topics/regularization
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://doi.org/10.1109/ICASSP48485.2024.10445867
https://doi.org/10.1109/ICASSP48485.2024.10445867
https://www.asam.net/standards/detail/mdf/wiki/
https://asammdf.readthedocs.io/en/latest/intro.html#contributing-support
https://asammdf.readthedocs.io/en/latest/intro.html#contributing-support
https://arrow.apache.org/docs/python/parquet.html
https://arrow.apache.org/docs/python/parquet.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://doi.org/https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.55938/ijgasr.v1i1.4
https://tsfresh.readthedocs.io/en/latest/index.html
https://tsfresh.readthedocs.io/en/latest/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.QuantileRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.QuantileRegressor.html
https://xgboost.readthedocs.io/en/latest/python/examples/quantile_regression.html
https://xgboost.readthedocs.io/en/latest/python/examples/quantile_regression.html
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/pinball_loss
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/pinball_loss
https://doi.org/https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/CCGrid57682.2023.00040

References 76

[97] PyTorch. Hyperparameter tuning with Ray Tune. URL: https://pytorch.org/tutorials/beginne
r/hyperparameter_tuning_tutorial.html.

[98] Ray Tune. Tune Trial Schedulers (tune.schedulers). URL: https://docs.ray.io/en/latest/tune/
api/schedulers.html.

[99] XGBoost. Introduction to Model IO. URL: https://xgboost.readthedocs.io/en/stable/
tutorials/saving_model.html.

[100] PyPI. torchinfo. URL: https://pypi.org/project/torchinfo/.

[101] Jakob Schmitt, Ivo Horstkötter, and Bernard Bäker. “A novel approach for modelling voltage hysteresis
in lithium-ion batteries demonstrated for silicon graphite anodes: Comparative evaluation against
established Preisach and Plett model”. In: Journal of Power Sources Advances 26 (Apr. 2024). ISSN:
26662485. DOI: 10.1016/j.powera.2024.100139.

[102] scikit-learn. SelectKBest. URL: https://scikit- learn.org/stable/modules/generated/
sklearn.feature_selection.SelectKBest.html.

[103] scikit-learn. f_regression. URL: https://scikit-learn.org/stable/modules/generated/sklea
rn.feature_selection.f_regression.html#sklearn.feature_selection.f_regression.

[104] scikit-learn. PCA. URL: https://scikit-learn.org/stable/modules/generated/sklearn.
decomposition.PCA.html.

[105] Michael Greenacre et al. “Principal component analysis”. In: Nature Reviews Methods Primers 2.1
(2022). ISSN: 26628449. DOI: 10.1038/s43586-022-00184-w.

[106] Gregory L. Plett. “Extended Kalman filtering for battery management systems of LiPB-based HEV
battery packs - Part 3. State and parameter estimation”. In: Journal of Power Sources 134.2 (Aug.
2004), pp. 277–292. ISSN: 03787753. DOI: 10.1016/j.jpowsour.2004.02.033.

[107] Code of Federal Regulations. § 86.1815-27 Battery-related requirements for battery electric vehicles
and plug-in hybrid electric vehicles. 2024. URL: https://www.ecfr.gov/current/title-40/
chapter-I/subchapter-C/part-86/subpart-S/section-86.1815-27.

[108] United Nations Economic Commission for Europe. United Nations Global Technical Regulation No. 22.
2023. URL: https://unece.org/sites/default/files/2023-01/ECE_TRANS_180a22e.pdf.

https://pytorch.org/tutorials/beginner/hyperparameter_tuning_tutorial.html
https://pytorch.org/tutorials/beginner/hyperparameter_tuning_tutorial.html
https://docs.ray.io/en/latest/tune/api/schedulers.html
https://docs.ray.io/en/latest/tune/api/schedulers.html
https://xgboost.readthedocs.io/en/stable/tutorials/saving_model.html
https://xgboost.readthedocs.io/en/stable/tutorials/saving_model.html
https://pypi.org/project/torchinfo/
https://doi.org/10.1016/j.powera.2024.100139
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html#sklearn.feature_selection.f_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html#sklearn.feature_selection.f_regression
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://doi.org/10.1038/s43586-022-00184-w
https://doi.org/10.1016/j.jpowsour.2004.02.033
https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-86/subpart-S/section-86.1815-27
https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-86/subpart-S/section-86.1815-27
https://unece.org/sites/default/files/2023-01/ECE_TRANS_180a22e.pdf

A
Details on Machine Learning Fundamentals

and Methodology

A.1. XGBoost Details on Mathematical Formulation
The complexity function fd contains the tree structure as well as the leave scores, which will be needed to
determine the prediction ŷi [62]:

fd(x) = wq(x), w ∈ RT , q : Rd → 1, 2, ..., T , (A.1)

where the vector w represents leaf scores, q represents a function mapping data points to the corresponding
leaves, and T represents the total number of leaves [62].

The tree fd is chosen as the one that minimises the objective function (based on Equation 3.5) at time step t
using the defined outcome at the respective time step [62]:

obj(t) =

n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + ω(fd) + c, c ∈ R. (A.2)

Minimising the objective function Equation A.2 for a given structure q(x) and the complexity defined as

ω(f) = γT +
1

2
λ

T∑
j=1

w2
j (A.3)

results in the optimal value for the leave values w,

w∗
j = − Gj

Hj + λ
, (A.4)

and the corresponding value of the objective function,

obj∗ = −1

2

T∑
j=1

G2
j

Hj + λ
+ γT, (A.5)

which assesses the performance of the mapping function q(x).

77

A.2. Deep Learning Model Activation Functions 78

The parameters Gj and Hj with Ij containing the indices of data points belonging to the j-th leaf [62] are
defined as:

Gj =
∑
i∈Ij

∂
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i)

Hj =
∑
i∈Ij

∂2
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i)

(A.6)

A.2. Deep Learning Model Activation Functions
The principle of the activation function is depicted in Figure A.1. The three most common types of activation
functions are:

• Rectified linear units (ReLU) with activation function g(z) = max{0, z}: Being similar to linear
units, these functions are easy to optimise. However, their gradient-based learning is constrained to
instances with zero activation. Nonetheless, the generalisations, such as absolute value rectification,
leaky ReLU, or parametric ReLU, can yield gradients across the entire domain, ensuring learning
capability in all scenarios [53].

• Logistic sigmoid with activation function g(z) = σ(z): These functions were used mostly before the
adoption of rectified linear units. They tend to saturate across a wide range of their domain and exhibit
significant sensitivity when the input variable approaches zero. Generally, their use is discouraged
because their widespread saturation makes gradient-based learning difficult [53].

• Hyperbolic tangent with activation function g(z) = tanh(z): Like logistic sigmoid functions, these
hyperbolic tangent functions were also mostly used before the adaption of rectified linear units. They
are related to logistic sigmoid because of the relation tanh(z) = 2σ(2z)− 1, however, they typically
perform better than the logistic sigmoid functions [53].

Figure A.1: Illustration of the activation of an artificial neuron [51].

A.3. Architectures of RNNs 79

A.3. Architectures of RNNs
There are three different design patterns for the architecture of RNNs [53]:

• RNN that produces an output at each time step and has recurrent connections between hidden
units Figure A.2a): Time sequence x is transformed to output o, which, in this case, is also a sequence.
The training label y is then used to determine the loss L. The weight matrix U parameterises the
connections between input and hidden layer and the connections between hidden layers are defined by
weight matrixW . Lastly, the inter-layer connections from the hidden layer to the output are characterised
by the weight matrix V .

• RNN that produces an output at each time step and has recurrent connections between output at
one time step to hidden units at next time step (Figure A.2b): In this configuration, the architecture
focuses on transmitting only the output, o, to the subsequent layer. This design implies a limitation in
the RNN, as o may not adequately represent all the state information required if the label or training
target must encompass all the state’s attributes. Despite this limitation, the benefit of this RNN structure
is that it is a more straightforward training process due to the decoupling of temporal dependencies.
Consequently, it allows for parallel training, meaning for each time step the gradient can be calculated
separately.

• RNN that produces an output for the entire sequence and has recurrent connections between
hidden units (Figure A.2c): In this architecture, the model does not compute the output o and the
corresponding loss L at each time step. Like in the first RNN design, the weight matrixW parameterises
the connections between hidden layers, streamlining the process.

(a) Unfolded graph of an RNN that produces an output at each time step
and has recurrent connections between hidden units.

(b) Unfolded graph of an RNN that produces an output at each time step
and has recurrent connections between output at one time step to hidden

units at the next time step.

(c) Unfolded graph of an RNN that produces an output for the entire
sequence and has recurrent connections between hidden units.

Figure A.2: Various architectures of RNNs [53].

A.4. Features of the Models 80

A.4. Features of the Models
This section discusses the features used in various models. Table A.1 outlines the features used for the time
series approach. The variables tstart and tend represent the initial and final time steps considered, marking
the beginning and end of the active period. Each feature is a time series.

Table A.1: Features used for the three-dimensional input in the time series approach (Case Study 2).

A.4. Features of the Models 81

Table A.2 lists the features utilised in the interval approach for predicting the change (delta) of the hysteresis
factor. Each feature is a scalar value.

Table A.2: Features used for the two-dimensional input in the time interval approach when predicting the change in the hysteresis factor
(Case Study 3).

Table A.3 lists the features employed in the interval approach for predicting the hysteresis factor. Each feature
is represented as a scalar value. Notably, unlike Table A.2, the previous hysteresis factor is included as a
feature in this approach.

Table A.3: Features used for the two-dimensional input in the time interval approach (Case Study 4).

A.4. Features of the Models 82

Table A.4 illustrates the features used in the interval approach. Each feature is presented as a time series.
The variables t− 1 and t denote the start and end of each interval, respectively.

Table A.4: Features used for the three-dimensional input in the time interval approach (Case Study 5 and 6).

A.5. Data Distribution of Vehicle Project B 83

A.5. Data Distribution of Vehicle Project B
This section discusses the data distribution of the second vehicle project, vehicle project B. Figure A.3
presents the distribution of the sequence lengths for the measurements associated with vehicle project B. It
is observable that, in contrast to vehicle project A, the average sequence length is significantly extended,
measuring 47.4 hours as opposed to 30.35 hours.

Figure A.3: Distribution of sequence lengths of measurements for vehicle project B.

Figure A.4 illustrates the average cell temperature plotted against the normalised open-circuit voltage (OCV).
It is important to note that, due to the differing cell types, the minimum and maximum OCV values are
different to those of vehicle project A. The figure indicates that, similar to vehicle project A, the majority of
measurements fall within the range of 20 to 35◦C

Figure A.4: Average cell temperature vs normed OCV for vehicle project B.

A.5. Data Distribution of Vehicle Project B 84

Figure A.5 depicts the minimum and maximum current for each measurement. The overall distribution closely
resembles that of vehicle project A. Most measurements align along the vertical dotted line, corresponding to
charging measurements, as the minimum current is 0, indicating no discharging occurs. There were 265
charging measurements and 127 discharging measurements, the latter aligning with the horizontal dotted
line. Notably, the smallest minimum current in Project B is around 700A, which is greater than that of Project
A, where the discharging current exceeds 800A. This discrepancy arises due to the differing cell types used
in the vehicle projects, with Project A allowing for a higher discharging current.

Figure A.5: Minimum and maximum current of measurements for vehicle project B.

The distribution of labels is shown in Figure A.6. This distribution is comparable to that of vehicle project
A, where the majority of measurements correspond to labels -1 or 1. This trend can be traced back to the
significant number of only-charging and only-discharging experiments.

Figure A.6: Distribution of labels for different approaches for vehicle project B.

B
Details on Results

This chapter presents additional information about the results of the case studies described in chapter 5.
The detailed breakdown includes the Python libraries used and details each case study. These details may
include tuned hyperparameters, additional performance metrics and their description and evaluation. This
additional information serves to improve the reproducibility and understanding of the presented results.

B.1. Used Python Libraries
This section lists the Python libraries and their respective versions used in the case studies.

Table B.1: Used Python libraries and their respective version.

85

B.2. Case Study 1 86

B.2. Case Study 1
Figure B.1a and Figure B.1b present the tuned hyperparameters for various configurations of the linear
regression and XGBoost models.

(a) Tuned parameters for the configurations for the linear regression model in Case Study 1.

(b) Tuned parameters for the configurations for the XGBoost model in Case Study 1.

Figure B.1: Tuned parameters for the configurations in Case Study 1 for both (a) linear regression and (b) XGBoost models.

Figure B.2: The top five features and their weight for different configurations.

Figure B.2 displays the five most important features and their respective weights as determined by the trained

B.3. Case Study 2 87

linear regression model. Note that in Figure B.2 different configurations are compared, each denoted by
their time horizon. It is evident that across all four configurations, the sum of current values and the last
value of the cell voltage consistently rank among the top five features. There may be significant variations in
the weights of the features. For instance, in the "60" configuration (represented in blue), the differences in
feature weights are more pronounced. Conversely, in the "all" configuration (depicted in green), the weights
of the features are more closely aligned. This could either indicate that the configuration plays an important
role when selecting the features of this case study or that the simple models are just too inconclusive and
thus variations in the configurations should not be interpreted too much as the overall model loss is above
acceptable levels regardless of the configuration.

For the K-best features selection approach, memory requirements are illustrated in Figure B.3.

(a) Required ROM. (b) Required RAM.

Figure B.3: Memory usage for different configurations of the linear regression (LinReg) and XGBoost model in Case Study 1
(K-Features).

For the Principal Component Analysis (PCA) approach, memory requirements are depicted in Figure B.4.

B.3. Case Study 2
The tuned hyperparameters for Case Study 2 are presented in Table B.2.

Table B.2: Tuned parameters for the configurations in Case Study 2.

B.4. Case Study 3 88

(a) Required ROM. (b) Required RAM.

Figure B.4: Memory usage for different configurations of the linear regression (LinReg) and XGBoost model in Case Study 1 (PCA).

B.4. Case Study 3
Table B.3 presents the tuned hyperparameters for the XGBoost model in Case Study 3.

Table B.3: Used XGBoost parameters for Case Study 3.

The comparison between the predicted medians and the actual labels is illustrated in Figure B.5. The
significant pinball loss of 0.236421737 is evident as numerous samples substantially deviate from the ideal
line (represented by the black dotted line). Additionally, many predictions exceed the theoretical hysteresis
bounds of -1 and 1, with prediction values ranging from -5 to 4.5.

Figure B.5: Predicted median vs label for Case Study 3.

B.5. Case Study 4 89

B.5. Case Study 4
The tuned hyperparameters for the linear regression and the XGBoost model of Case Study 4 are presented
in Figure B.6a and Figure B.6b, respectively.

(a) Tuned parameters for the configurations for the linear regression model in Case Study 4.

(b) Tuned parameters for the configurations for the XGBoost model in Case Study 4.

Figure B.6: Tuned parameters for the configurations in Case Study 4 for both (a) linear regression and (b) XGBoost models.

Figure B.7: Example reconstructed measurement for the "60-2" configuration of the XGBoost model in Case Study 4.

Figure B.7 represents a reconstructed measurement in Case Study 4 using the 60-2 configuration with the

B.6. Case Study 5 90

XGBoost model. The quantiles closely follow the actual labels. However, minor deviations can be observed in
dynamic regions, particularly around 1800 s and between 140000 s and 170000 s.

B.6. Case Study 5
Table B.4 depicts the tuned parameters for the configurations in Case Study 5. Note that these parameters
are found after testing 25 (random, but with the random seed set) hyperparameter combinations and that the
validation loss was only evaluated for 10 epochs as tuning with the larger data sets such as the interval size
10 configurations would otherwise be infeasible.

Table B.4: Tuned parameters for the configurations in Case Study 5.

Apart from the tuned parameters the number of epochs also influences the performance of the models.
Therefore it was checked if the models should be stopped early if the validation loss would not improve any
further. This avoids overfitting the training data set. Figure B.8 shows the loss when training for 100 epochs,
without early stopping. The figure suggests that the "60-240", "10-10" and "60-60" configuration models are
likely to overfit.

Figure B.8: Pinball losses for different configurations in Case Study 5 when training with 100 epochs.

After analysing the validation loss during training, the optimal number of epochs can be found in Table B.5.
Note that the maximum number of epochs was set to 100 due to time constraints when training the models.

B.7. Case Study 6 91

Table B.5: Optimal number of epochs for Case Study 5.

B.7. Case Study 6
The parameters for Case Study 6 are listed in Table B.6. Note that these parameters have not been tuned
due to the long training time required for this model. Consequently, the optimal parameters from Case Study
5 were used, except for a different learning rate.

Table B.6: Parameters for the configurations in Case Study 6.

Figure B.9 illustrates the training and validation loss over 1000 epochs. It is evident that the initial training
phase with 100 epochs, which corresponds to 500 seen batches during training, was insufficient, as a
significant reduction in validation loss is observed after 100 epochs. The noticeable fluctuations, particularly
around 1700 seen batches, can be attributed to the random variations inherent to stochastic optimisation
methods such as the Adam optimiser and the variability in the quality of batches, as some batches may be
"worse" than others.

Figure B.9: Training and validation loss over number of seen batches for 1000 epochs in Case Study 6.

B.8. Evaluation 92

Figure B.10 depicts the predicted median versus the label. The majority of samples are very close to the
ideal diagonal line. The most significant outliers, with the greatest distance from the ideal line, occur when
the label is between -0.75 and 0.75. This could be due to the distribution of labels, specifically that there are
fewer training samples in this range. It is also noteworthy that underestimations are farther from the ideal line
compared to overestimations.

Figure B.10: Predicted median vs label for the "600-240" configuration in Case Study 6.

B.8. Evaluation

Figure B.11: Comparison of the achieved pinball loss for the average of configurations of each case study.

Figure B.11 illustrates the average pinball loss across different case studies. In comparison with Figure 5.18,
which depicts the pinball loss for the best configuration, it is evident that GRU models (Case Studies 2, 5,
and 6) generally outperform others. Notably, Case Study 3 exhibits the worst performance, with a pinball loss
at least double that of the second-worst case study. The other simpler model case studies (Case Studies 1
and 4) show comparable loss values.

B.8. Evaluation 93

Case Study 4 demonstrates a significant sensitivity to its configurations and hyperparameters, as shown by
its superior performance in the best configuration compared to Case Study 1 but the comparable performance
to Case Study 1 in the average pinball loss. Conversely, Case Study 5, which also employs the interval
approach but with a GRU model, appears less sensitive to configuration variations, maintaining a low average
pinball loss of 0.0096, with the best configuration achieving a loss of 0.0032. On average, Case Study 6
performs the best; however, this is because it was tested with only one configuration, meaning that the
average loss is identical to the best configuration.

(a) Required ROM. (b) Required RAM.

Figure B.12: Comparison of memory usage for the average of configurations of each case study.

The memory requirements are depicted in Figure B.12. Notably, Case Study 3 exhibits the highest ROM
requirements, attributed to the XGBoost model’s extensive number of nodes, leaves, and trees. Specifically,
the median model alone comprises 931 trees, 14876 leaves, and 13945 nodes.

Furthermore, GRU models generally demand higher RAM on average, due to the memory needed for the
forward pass through the neural network. Despite these variations, all configurations remain below the set
thresholds for ROM and RAM, which are 0.3MB and 0.1MB, respectively.

The achieved score, reflecting the average of configurations for each case study, is presented in Figure B.13.
Similar to Figure 5.20 which presented this for the best configurations, the first three case studies yield a
negative score due to their high pinball loss. As illustrated in Figure B.11, the pinball loss of Case Study 4 is
highly dependent on the configuration. This dependency results in the best configuration achieving a positive
score (ranking among the top three case studies), while the average of configurations yields a negative score.
Consistent with previous observations on pinball loss, the GRU models generally exhibit better performance,
with Case Study 6 performing the best on average.

Table B.7: Sensitivity analysis of different case studies for three different scenarios.

Table B.7 provides detailed information on the sensitivity analysis, including the exact weight for each scenario
and the percentage change compared to the base scenario for each case study. The scenarios significantly
impact the first three case studies due to their high pinball loss. In contrast, Case Studies 4 to 6 exhibit only
gradual changes.

B.9. Case Study 7 94

Figure B.13: Comparison of the achieved score for the average of configurations of each case study.

B.9. Case Study 7
B.9.1. Fine-Tuning
In the first step, it was checked whether increasing the complexity of the model would significantly impact its
performance. For that reason and to find more optimal parameters for the model, the model of Case Study
5 was re-tuned. As it was previously seen, the minimum number of layers was set to 2. After testing the
impact of increasing the number of layers, it was found that increasing the layers beyond 3 would yield only a
very small decrease in loss while increasing the required memory. Furthermore, the dropout parameter was
tuned (with values between 0 and 0.5). The tuning was done for 30 epochs and 25 different hyperparameter
configurations were checked.

After re-tuning and checking the optimal number of epochs, the optimal parameters were found as described
in Table B.8. This corresponds to the hyperparameters that were previously found in Case Study 5, thus no
improvement by increasing the number of layers or varying the dropout parameter could be made.

Table B.8: Fine-tuned parameters for the configurations in Case Study 5.

Note that these fine-tuning settings were used for all tuning done in Case Study 7.

B.9.2. Normalization According to Cell Datasheet
To prepare the data so that the model that was trained with vehicle project A could also be tested with vehicle
project B, the input data was normalized in a different way to account for the differences in cells according to
the cell datasheet. Table B.9 shows how each feature was normed in both datasets. Note that the current
was priorly normed into a c-rate,

c-rate =
I

Q
, (B.1)

using the respective nominal capacity of the battery. The integrated current was also put relative to the
battery’s capacity. Furthermore, the voltage was normed according to the cut-off voltages in the datasheet.
As current and integrated current, once normed to the stated minimum and maximum values, reached values
very close to -1 and 1 (thus the whole span of possible (integrated) current), the voltage did not reach the

B.9. Case Study 7 95

Table B.9: Normalization of the input data according to the cell datasheet.

whole span, namely, the measurements did not come very close to the lower cut-off voltage. This is due to
the temperature range set. To reach the lower cut-off voltage the internal resistance of the cell has to be very
high, this is achieved at low temperatures (which are excluded in this work).

B.9.3. Vehicle Model Generalisation
Testing B With a Model Trained Solely on A
Figure B.14 shows the resulting reconstructed measurement when using the model, which was trained
with vehicle project A, to test vehicle project B. The upper figure depicts autoregressive testing (using the
previous prediction as input for the next) and the lower non-autoregressive testing (every interval is treated
independently, thus every interval starts with the correct hysteresis factor given by the label of the previous).
It can be seen that the initial wrong prediction leads to a great error. The model does not seem to be able to
recover from this error. This figure also shows how dependent the model is on its previous prediction, as all
other features are the same between the two training approaches.

B.9. Case Study 7 96

(a) Autoregressive testing.

(b) Non-autoregressive testing.

Figure B.14: Reconstructed measurement for vehicle project B for autoregressive and non-autoregressive testing.

Training the Model With Both Vehicle Projects
The tuned hyperparameters of the two models can be found in Table B.10.

Table B.10: Tuned parameters for the new models for both projects in Case Study 7.

First, it was tested to retrain the model, not considering the different cell datasheets of the vehicle project.
Thus, the data of the two projects was merged and then normed by the respective minimum and maximum of
each feature. Note that in this case, the different current/voltage limits as well as the capacities were not
considered.

B.9. Case Study 7 97

The model was then also re-tuned with the new set of input data. This resulted in the same tuning parameters
as before (see Table B.4). The resulting test loss is 0.008, worse than the one achieved for only training and
testing with vehicle project A, but still below the threshold set at 0.01. The predicted median versus label plot
can be seen in Figure B.15. There are more outliers, especially if the label of the hysteresis factor is in the
middle of its range.

Figure B.15: Predicted median vs label for Case Study 7 after retraining the model with both data sets without considering the cell
datasheet.

In Figure B.16 it can be seen that the predicted median generally follows the labels, however with deviations.
Especially the slope does not seem to be estimated correctly. This could also be seen in the previous
experiment where the vehicle B data was applied to the already trained model. The upper and lower quantiles
are also wider.

Figure B.16: Example reconstructed measurement when retraining the model with project A and B without considering the cell
datasheet for Case Study 7.

B.9. Case Study 7 98

Training each Vehicle Project With Its Own Model
An overview of the chosen four models and their tuned parameters can be found in Table B.11.

Table B.11: Tuned parameters for the models for data set B in Case Study 7.

The detailed results of the tuning process are shown in Table B.12. Note that only a limited amount of possible
configurations are tested. However, the tested configurations show that the models, where every layer was
retrained generally performed better than the ones where the layers of model A were frozen and an additional
GRU and linear layer was added to the model and then trained on data set B. Also, it can be seen that if an
extra layer is added and trained, the models without cell datasheet normalisation perform better than the
ones with. Overall, however, their performance is rather poor.

B.9.4. Driving Cycle Generalisation
In Figure B.17 the reconstructed measurement (the same as in Figure 5.26) for three different model
configurations are displayed. The configurations differ in interval size. Hence, the 60-120 configuration
captures more details than the 600-240 configuration. Additionally, note that due to the absence of relaxation
times at the end of the measurements, the data is "cut off" at the last complete interval. Normally, if relaxation
times were included, as done in the test bench measurements, the start of the relaxation time would be used
to complete the last interval. Consequently, the lengths of the measurements may vary slightly. While the
overall trend of the measurements is somewhat maintained, there are significant deviations. Specifically, it
seems like the predictions struggle to capture the hysteresis factor due to the steep gradient of the label. For
instance, the peaks of the hysteresis factor, such as the one around 2300 s, are often not fully reached.

B.9.5. Temperature Range Generalisation
Table B.13 provides an overview of the tuned parameters used to test the temperature range generalisation
of the model. This corresponds to the initial parameters of the model.

B.9. Case Study 7 99

Table B.12: Results for different configurations for training a model for vehicle project B.

B.9. Case Study 7 100

(a) GRU model with 600-240 configuration.

(b) GRU model with 300-120 configuration.

(c) GRU model with 60-120 configuration.

Figure B.17: Reconstructed dynamic measurement for different GRU model configurations.

B.9. Case Study 7 101

Table B.13: Fine-tuned parameters for the temperature generalisation analysis in Case Study 7.

C
Source Code and Flow Diagrams

C.1. Gated Recurrent Network Model
1 """
2 GRURegressionModel is a PyTorch neural network module designed for regression tasks

using Gated Recurrent Units (GRUs).
3

4 Attributes:
5 - input_size (int): The number of input features.
6 - hidden_size (int): The number of features in the hidden state of the GRU.
7 - num_layers (int): The number of recurrent layers in the GRU.
8 - output_size (int): The number of output features.
9

10 Methods:
11 - __init__(self , input_size , hidden_size , num_layers , output_size): Initializes the

network layers.
12 - forward(self , x): Defines the forward pass of the model. It initializes the hidden

state , passes the input through the GRU and a linear layer , and finally applies the
tanh activation function to limit the output between -1 and 1.

13 """
14

15 import torch.nn as nn
16 import torch
17

18 class GRURegressionModel(nn.Module):
19 def __init__(self , input_size , hidden_size , num_layers , output_size , dropout =0):
20 super(GRURegressionModel , self).__init__ ()
21 self.hidden_size = hidden_size
22 self.num_layers = num_layers
23 self.gru = nn.GRU(input_size , hidden_size , num_layers , batch_first=True ,

dropout=dropout)
24 self.fc = nn.Linear(hidden_size , output_size)
25

26 def forward(self , x):
27 h0 = torch.zeros(self.num_layers , x.size (0), self.hidden_size).to(x.device)
28 out , _ = self.gru(x, h0)
29 out = self.fc(out[:, -1, :])
30 # Apply tanh function to the output to limit it between -1 and 1
31 out = torch.tanh(out)
32 return out

102

C.2. Gated Recurrent Network Model With Additional GRU Layer 103

C.2. Gated Recurrent Network Model With Additional GRU Layer
1 """
2 GRURegressionModelExtendedGRULayer is a PyTorch neural network module designed as an

extension of an existing GRU -based regression model. This model stacks an
additional GRU layer and a linear output layer on the original model for enhanced
predictive capability.

3

4 Attributes:
5 - original_model (GRURegressionModel): The original GRU -based regression model to be

extended.
6 - additional_hidden_size (int): The number of features in the hidden state of the

additional GRU layer.
7 - output_size (int): The number of output features.
8

9 Methods:
10 - __init__(self , original_model , additional_hidden_size , output_size): Initializes the

extended network layers and incorporates the original model ’s GRU layers.
11 - forward(self , x): Defines the forward pass of the extended model. It involves

initializing the hidden states , processing the input through the original and
additional GRU layers , followed by a linear layer and applying the tanh activation
function to limit the output between -1 and 1.

12 """
13 import torch.nn as nn
14 import torch
15

16 class GRURegressionModelExtendedGRULayer(nn.Module):
17 def __init__(self , original_model , additional_hidden_size , output_size):
18 super(ExtendedGRURegressionModel , self).__init__ ()
19 self.hidden_size = original_model.hidden_size
20 self.num_layers = original_model.num_layers
21

22 self.gru = original_model.gru
23 self.additional_gru = nn.GRU(original_model.hidden_size , additional_hidden_size

, batch_first=True)
24 self.fc = nn.Linear(additional_hidden_size , output_size)
25

26 def forward(self , x):
27 h0 = torch.zeros(self.num_layers , x.size (0), self.hidden_size).to(x.device)
28 out , _ = self.gru(x, h0)
29

30 h1 = torch.zeros(1, x.size (0), self.additional_gru.hidden_size).to(x.device)
31 out , _ = self.additional_gru(out , h1)
32

33 out = self.fc(out[:, -1, :])
34 out = torch.tanh(out)
35 return out

C.3. Gated Recurrent Network Model With Additional Linear Layer
1 """
2 GRURegressionModelExtendedLinearLayer is a PyTorch neural network module designed as an

extension of an existing GRU -based regression model. This model adds an additional
linear layer followed by the final linear output layer for enhanced predictive

capability.
3

4 Attributes:
5 - original_model (GRURegressionModel): The original GRU -based regression model to be

extended.
6 - additional_hidden_size (int): The number of features in the hidden state of the

additional linear layer.
7 - output_size (int): The number of output features.
8

9 Methods:
10 - __init__(self , original_model , additional_hidden_size , output_size): Initializes the

extended network layers and incorporates the original model ’s GRU layers.
11 - forward(self , x): Defines the forward pass of the extended model. It involves

initializing the hidden states , processing the input through the original GRU layer
, followed by an additional linear layer with a ReLU activation , and finally the
output layer with a tanh activation function to limit the output between -1 and 1.

C.4. Pinball Loss 104

12 """
13 import torch.nn as nn
14 import torch
15

16 class GRURegressionModelExtendedLinearLayer(nn.Module):
17 def __init__(self , original_model , additional_hidden_size , output_size):
18 super(ExtendedLinearRegressionModel , self).__init__ ()
19 self.hidden_size = original_model.hidden_size
20 self.num_layers = original_model.num_layers
21

22 self.gru = original_model.gru
23 self.additional_fc = nn.Linear(original_model.hidden_size ,

additional_hidden_size)
24 self.final_fc = nn.Linear(additional_hidden_size , output_size)
25

26 def forward(self , x):
27 h0 = torch.zeros(self.num_layers , x.size (0), self.hidden_size).to(x.device)
28 out , _ = self.gru(x, h0)
29

30 out = self.additional_fc(out[:, -1, :]) # Apply the additional linear layer
31 out = torch.relu(out) # Activation function
32

33 out = self.final_fc(out) # Final output layer
34 out = torch.tanh(out) # Activation function for output
35 return out

C.4. Pinball Loss
1

2 def pinball_loss_tensors(y_pred , y_true , tau_tensor):
3 """ Computes the pinball loss between ‘y_true ‘ and ‘y_pred ‘ in PyTorch.
4 Source: https :// www.tensorflow.org/addons/api_docs/python/tfa/losses/pinball_loss
5

6 loss = maximum(tau * (y_true - y_pred), (tau - 1) * (y_true - y_pred))
7

8 Args:
9 y_true: Ground truth values with shape (batch_size , 1)

10 y_pred: The predicted values with shape (batch_size , num_quantiles)
11 tau_tensor: Tensor containing the to be predicted quantiles with shape (

num_quantiles ,).
12

13 Returns:
14 pinball_loss: Scalar tensor representing the pinball loss.
15 """
16 if tau_tensor.shape [0] != y_pred.shape [1]:
17 raise ValueError(f"The␣size␣of␣the␣first␣dimension␣of␣tau_tensor␣(shape:␣{

tau_tensor.shape})␣must␣be␣equal␣to␣the␣second␣dimension␣of␣y_pred␣(shape:␣
{y_pred.shape}).")

18

19 delta_y = y_true - y_pred
20 loss = torch.maximum(tau_tensor * delta_y , (tau_tensor - 1) * delta_y)
21 return torch.mean(loss)

Start

Initialize model, optimizer, criterion, and variables

Create measurement batches

Split batch by time interval

Iterate through each epoch

Iterate through every train batch

Initialize measurement_lossIs this the last epoch?

Iterate through time intervals

Overwrite previous hysteresis factor
if not first interval

Not first interval

Predict using model

First interval

Calculate and accumulate loss

Backpropagate and update
model if last interval

Last interval

Update previous hysteresis factor

Not last interval

Next batch

No

Return model and tensor shape

Yes

End

C.5. Autoregressive Training 105

C.5. Autoregressive Training
Flow Diagram for Training Autoregressively

Start

Initialize lists:
- Data groups (dataframes with measurements)
- Measurement indices (to identify measurements)

- Lengths of each measurement in batches

Are there enough measurements left for a full batch?

Randomly select measurements for the batch
and remove them from the list

Yes

Combine these remaining measurements

No

Gather the selected measurements

Count how many samples
each selected measurement has

Store the length of each batch

Combine the selected measurements into one group

Ensure that each measurement in the group
have the same length by padding

Add the combined group to
the list of grouped measurements

Count rows and pad as needed

Add the final group to the list

Return the list of grouped measurements
and batch lengths

End

C.5. Autoregressive Training 106

Flow Diagram for Randomly Grouping the Measurements Into Batches

Start

Initialize empty list to save final tensors

Iterate through each batch

Get the sorted list of all measurement IDs

Split batch DataFrame by clustering rows of the same sample (interval) together

Iterate through each interval DataFrame

Get sorted list of measurement IDs of that interval DataFrame

Do the sorted measurement IDs match between batch and time interval?

Raise ValueError

No

Process interval DataFrame to tensors

Yes

Add tensors to tensor list of batch

Is this the last interval DataFrame?

No

Add batch tensors to tensor list

Yes

Is this the last batch?

No

Return list of tensors clustered in batches

Yes

End

C.5. Autoregressive Training 107

Flow Diagram for Ensuring the Batches Are Aligned in Terms of Time Intervals

Start

Initialize variables

Iterate through each sample in test data

Is this the first sample of the measurement?

Set initial hysteresis factor for first sample

Yes

Is a new measurement starting?

No

Save results from the previous measurement

Yes

Use the previous prediction as input

No

Initialize loss and predictions for new measurement

Prepare test sample and label

Make prediction and calculate loss

Prepare test sample and label

Update previous prediction to be used as input

Update loss and predictions for the current measurement

Is this the end of the samples?

No

No

Save final results of the last measurement

Yes

Return overall results

End

C.6. Autoregressive Testing 108

C.6. Autoregressive Testing
Flow Diagram for Testing Autoregressively

	Acknowledgments
	Abstract
	Nomenclature
	Introduction
	Background and Motivation
	Conventional Approaches to Model Voltage Hysteresis in SOC Estimation
	Models Considering Voltage Hysteresis
	Required Testing for Input Data
	Cell Types Used in Conventional Approaches

	Proposed Approach
	Research Questions
	Thesis Outline

	Fundamentals Battery Technology
	Functionality of a Li-Ion Battery
	SOC Estimation
	Silicon in Li-Ion Batteries
	Voltage Hysteresis Phenomena
	Modeling Voltage Hysteresis

	Fundamentals Machine Learning
	General Concepts of Machine Learning
	Supervised and Unsupervised Learning
	Machine Learning Pipeline

	Regression Models
	Linear Regression Model
	Extreme Gradient Boosting Model (XGBoost)
	Deep Learning Model

	Managing Uncertainty in Labels
	Quantile Regression

	Quantile Regression in the Prediction of the Hysteresis Factor
	Approaches to Problem Solving
	Availability of Data
	Preprocessing of Input Data
	Preprocessing Pipeline
	Feature Selection
	Transformation to Model Input Data

	Distribution of Available Data
	Labelling
	Uncertainty Considerations
	Domain Knowledge Labelling
	Current Algorithm Labelling

	Machine Learning Models
	Selection of Suitable Models
	General Implementation Considerations
	Implementation of Quantile Regression in a Linear Regression Model and XGBoost
	Implementation of Quantile Regression in a Gated Recurrent Unit Model
	Estimating Required Memory
	Tuning Input Data

	Results
	Overview Case Studies
	Evaluation Criteria
	Case Study 1: Attribute-Based Prediction with Simple Models
	Description
	Results

	Case Study 2: Time Series Prediction with Neural Networks
	Description
	Results

	Case Study 3: Interval Delta Prediction with Simple Models
	Description
	Results

	Case Study 4: Interval Prediction with Simple Models
	Description
	Results

	Case Study 5: Interval Prediction with Neural Networks
	Description
	Results

	Case Study 6: Autoregressive Interval Prediction with Neural Networks
	Description
	Results

	Evaluation of the Models
	Case Study 7: Generalisation Capability Assessment
	Description
	Results: Vehicle Model Generalisation
	Results: Driving Cycle Generalisation
	Results: Temperature Range Generalisation

	Discussion and Conclusion
	Problem Statement and Proposed Approach
	Answering Research Questions
	Objective 1: Develop a black box model of the voltage hysteresis effect to determine the hysteresis factor using driving cycles of EVs
	Objective 2: Perform an evaluation and comparison of different proposed black box models to find the most suitable algorithm to determine the hysteresis factor in terms of accuracy and implementability

	Interpretation of Results
	Limitations
	Label and Data Dependency
	Driving Cycles
	Hyperparameter Tuning and Model Selection Considerations

	Outlook
	Variety in the Dataset
	Selection of Suitable Measurements and More Extreme Cell Chemistries
	Alternative Labelling and Test Fleet Training
	Model Complexity and Computational Considerations
	Ageing
	Autoregressive Training

	References
	Details on Machine Learning Fundamentals and Methodology
	XGBoost Details on Mathematical Formulation
	Deep Learning Model Activation Functions
	Architectures of RNNs
	Features of the Models
	Data Distribution of Vehicle Project B

	Details on Results
	Used Python Libraries
	Case Study 1
	Case Study 2
	Case Study 3
	Case Study 4
	Case Study 5
	Case Study 6
	Evaluation
	Case Study 7
	Fine-Tuning
	Normalization According to Cell Datasheet
	Vehicle Model Generalisation
	Driving Cycle Generalisation
	Temperature Range Generalisation

	Source Code and Flow Diagrams
	Gated Recurrent Network Model
	Gated Recurrent Network Model With Additional GRU Layer
	Gated Recurrent Network Model With Additional Linear Layer
	Pinball Loss
	Autoregressive Training
	Autoregressive Testing

