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Abstract
Reducing the similarity of two ranked lists to a
single value proves to be useful in various fields
of research and industry, such as Information Re-
trieval and Recommender Systems, leading to the
introduction of several similarity measures. One
such measure is Rank-Biased Overlap and its vari-
ants, possessing qualities such as the ability to han-
dle incomplete rankings, non-conjoint ranking do-
mains and the graceful evaluation of ranking pairs
with tied items. Comparing the performance of
similarity measures, or comparing variants of a
single measure, requires the presence of ranking
data. In certain cases, generating synthetic rank-
ing data may be a more viable option than using
real data. However, a review of existing literature
reveals a lack of parametrisable synthetic ranking
algorithms. This paper introduces a novel method
to generate a pair of rankings where one can tai-
lor the conjointness of ranking domains, influence
the ranking overlap as a function of depth and tune
the presence of tie groups in a probabilistic manner.
The paper demonstrates the output of the algorithm
when varying the input parameters, verifying the
methods performance empirically and statistically.

Keywords
Rankings, rank-biased overlap, synthetic ranking
generation

1 Introduction
In the field of information retrieval, ranking algorithms play
an important role in presenting information that is most rel-
evant to users. These algorithms are found extensively in
search engines and recommender systems where items from
some domain need to be ranked. Objectively evaluating such
algorithms often involves comparing pairs of ranked items to
quantify the similarity of ranked lists, motivating the need for
robust and reliable rank similarity measures [5].

Webber et al. introduced Rank-Biased Overlap (RBO) as a
rank similarity measure with certain defining properties [5],
distinguishing it from other traditional similarity metrics such
as Pearson’s correlation and Kendall’s τ [3]. These proper-
ties include the ability to handle top-weighted and incomplete
ranking pairs (see Section 2.1 for formal definitions). Further-
more, RBO can offer a monotonically increasing lower bound
and monotonically decreasing upper bound of the final score
when evaluated on prefixes of the rankings.

Despite their widespread use in information retrieval -
Sharma et al. describe and review twelve distinct page rank-
ing algorithms [4] - the existing method for generating syn-
thetic rankings to test RBO and other rank similarity mea-
sures have certain limitations, particularly in the lack of flex-
ibility to tune certain parameters of the ranking such as the
conjointness of the domains and the presence of distributions
of ties.

In this paper, we consider the problem of synthetic rank-
ing generation and improving the current method proposed by

Corsi and Urbano in [1], while taking RBO’s unique prop-
erties into account. This paper will propose a new method
that allows researchers to tune various properties of rankings.
Henceforth, the R script src/simulate.R in the GitHub
repository julian-urbano/sigir2024-rbo 1 will be re-
ferred to as the ‘current synthetic ranking generation method’.

In designing a new synthetic ranking generation method,
the main research question - the current method to simulate
synthetic rankings is not tailored to RBO’s properties. How
can we adapt this simulation taking inspiration from RBO?
- will be addressed. To further break this down, the follow-
ing sub-questions will be directly answered - upon which the
basis of the improved ranking simulation algorithm can be
established.

• What are the limitations of the current synthetic ranking
generation method?

• How can the conjointness of the ranking domains be
tuned?

• How can the overlap of items in rankings be adjusted
given a probability function?

• How can the location and distribution of ties in a ranking
be varied?

In Section 2, the research background will be introduced,
firstly formalising the RBO measure and secondly provid-
ing an overview of the existing synthetic ranking genera-
tion method, identifying limitations. Section 3 will under-
line the methodology adopted to answer the sub-questions
raised and thus establish the skeleton of the final algorithm.
The final rank simulation algorithm will be formally defined
and explained in Section 3.5. The performance of the algo-
rithm will be presented in various forms in Section 4. The
reader will clearly be able to see the effects of tuning in-
put hyper-parameters to different values. Section 5 will note
the ethical considerations and responsible research measures
undertaken. The results presented in Section 4 will be thor-
oughly evaluated and discussed in Section 6. Finally, Section
7 will conclude the research undertaken and offer points of
improvement and future research.

To facilitate reproducibility and further research, the algo-
rithm developed in this paper is available on GitHub 2.

2 Background
2.1 Rank-Biased Overlap
Many existing measures view similarity between ranked lists
as a question of bi-variate correlation. Although in certain,
constrained scenarios these measures may be appropriate, it
is often the case that ranked lists do not satisfy these con-
straints. For example, it may be the case that the two rankings
do not come from conjoint domains. Furthermore, Webber et
al. note that researchers comparing ranked lists may also de-
sire a measure with the following properties [5]:

• top-weightedness: ranking overlap at earlier depths
should be favoured over overlap at later depths.

1https://github.com/julian-urbano/sigir2024-rbo
2https://github.com/somduttasinha/synthetic-ranking-generation
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• incompleteness: it may be the case that only a strict sub-
set of the entire domain is ranked, while the rest of the
domain remains un-ranked. The two subsets may also
be disjoint.

• indefiniteness: in certain cases where the domain is so
large such that the calculation of a measure based on
exhaustively evaluating the entire domain is computa-
tionally expensive, an evaluator may want the ability to
place a bound on the final value of the evaluation.

Webber et al. define a ranking with these properties as an
‘indefinite ranking’. They demonstrate that no existing rank
correlation technique can handle all three properties at the
same time.

The property of top-weightedness is addressed through a
parameter p, indicating the persistence of the evaluator [5].
A larger value of p means that items at lower ranks are given
more weight than when a smaller value of p is used. If p =
1, all items are given the same weight, if p = 0, only the
first item is considered from each ranking. The persistence
parameter p must be between 0 and 1.

To address the issue of non-conjointness, rather than con-
sidering rank similarity as a correlation, RBO is a direct ex-
tension of set overlap [5], where the overlap of two ranked
lists, S and L, at some depth d is the intersection of all items
observed in set S until d and all items in set L until d.
RBO uses the concept of ‘prefix-evaluation’ to achieve

bounds in the case of indefinite rankings. Given two pre-
fixes, a minimum bound RBOMIN and a maximum bound
RBOMAX can be computed by assuming that either the en-
tire unseen part is disjoint or fully conjoint respectively. Fur-
thermore, a point estimate RBOEXT can be found by assum-
ing that the observed agreement, Xd

d , in the seen part will not
change for the rest of the ranking. The rank-biased overlap of
two lists S and L is given by:

RBO(p) =
1− p

p

∞∑
d=1

Xd

d
pd (1)

where Xd is the size of the overlap between two ranked lists
S and L until depth d [5].

Webber et al. also consider the cases where the prefixes
are of different lenths and the presence of ties in the rankings.
This work is expanded by Corsi and Urbano in [1].

2.2 Current Synthetic Ranking Generation
Algorithm

Before introducing the simulation algorithm in the following
section, we briefly explore the existing algorithm introduced
by Corsi and Urbano in [1] and identify limitations in this
approach.

Corsi and Urbano’s approach works by first simulating a
pair of fully conjoint rankings. Ties are then introduced into
both rankings before being truncated to the user’s specified
length.

Simulating Conjoint Rankings
The ‘similarity’ of the rankings is governed by the tau pa-
rameter. A pair of rankings is synthesised by first simulating

two correlated vectors coming from a Gaussian copula where
the covariance is a function of tau [1].

Introducing Ties and Truncating Rankings
Ties are introduced into the ranking in the function
make ties by grouping items into tied ranks based on the
number of tie groups. This function takes a vector of scores,
x, desired number of tied items, n ties and number of tie
groups, n groups as input parameters. Firstly, the vector [1,
1, 2, 2, ..., n groups, n groups] is shuffled. This
vector corresponds to the group label that the input vector
scores will be assigned to. This vector is of size 2∗n groups
- this can be understood intuitively as at minimum, each tie
group should contain at least two items by definition. If
n ties is greater than 2 ∗ n groups, the group label vector
needs to be extended. This is done by sampling from the vec-
tor [1, 2, ..., n groups]. However this time, the sam-
pling is not done uniformly as equally-sized tie groups are not
realistic; instead, the vector is sampled according to a proba-
bility vector that is generated from a Dirichlet(q) distribution
where q is a n groups-length vector with each entry qi sam-
pled from a U(0, 1) distribution.

This vector is extended by adding labels for each unique
untied item. Finally, make ties allocates each score from
the input vector x into their assigned group.

The simulation algorithm finishes by assigning each score
a unique ID in the score2id function and truncating each
generated ranking to the desired length if required. A user
looking to introduce some level of disjointness to the rank-
ings can do so by truncating the generated rankings to len x
and len y while using scores of size n. Naturally, a large dif-
ference between the truncated lengths and the length of the
simulated scores, n, will lead to greater disjointness.

Algorithm Parameters
Corsi and Urbano’s algorithm allows the user to input the fol-
lowing parameters:

• len x and len y

• enforce ties

• n

• tau

• frac ties x and frac ties y

• n groups x and n groups y

If enforce ties is set to TRUE, the algorithm will repeat
until it is able to generate a pair of rankings which both have
ties. Furthermore, if a parameter is not provided, it is assigned
a random value.

Limitations
Although this algorithm is capable of tuning certain parame-
ters such as the desired correlation of the rankings, we imme-
diately notice that there is a lack of fine-grained control over
other aspects of the rankings. For example, the user cannot
precisely control the nature of ranking overlap as the depth
increases, nor can they dictate the distribution of ties. Addi-
tionally, the method’s reliance on random sampling and dis-
tribution parameters can lead to variability in the generated
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rankings, potentially making it challenging to replicate spe-
cific ranking structures or achieve desired ranking character-
istics consistently.

3 Constructing the Algorithm
The three key properties of ranking pairs identified were 1)
conjointness of ranking domains, 2) the nature of the overlap
between pairs of rankings and 3) the presence of ties in rank-
ings. In this section, we consider each of these properties
and incorporate the ability to tune them in the final ranking
simulation algorithm.

Broadly, the algorithm takes the following shape:

1. Generate the domains for the rankings S and L to be
drawn from using a and b, the size of each of the two
domains and jaccard similarity to influence the de-
gree of conjointness of the two domains.

2. Create the two rankings, S and L by iteratively sampling
from the domains created in (1). Sampling is not neces-
sarily uniformly random, but is instead influenced by the
input overlap probability function.

3. Introduce ties into the ranking by artificially selecting
sequences of items following the tie distribution func-
tions specified in the input.

3.1 Conjointness
One advantage of Rank-Biased Overlap as a rank similarity
measure over other measures such as Kendall’s τ [3] and Yil-
maz et al.’s variant τAP [6] is the ability to handle disjoint
domains [5]. The conjointness of two sets can be quanitfied
concretely using the Jaccard similarity index [2]. This is cal-
culated as a function J over two sets A and B.

J(A,B) =
|A ∩B|
|A ∪B|

(2)

To allow for the conjointness of the domains to be
tuned, the algorithm allows the user to input the desired
jaccard similarity as well as the size of the domains a
and b. By re-arranging (2), we can find the cardinality of the
required intersection and subsequently create two domains A
and B that have the desired Jaccard similarity. Let the sizes
of the two domains, |A| and |B| be a and b respectively:

|A ∪B| = a+ b− |A ∩B|
J(A,B)(a+ b− |A ∩B|) = |A ∩B|

J(A,B)(a+ b)− J(A,B)(|A ∩B|) = |A ∩B|
J(A,B)(a+ b) = J(A,B)(|A ∩B|) + |A ∩B|

|A ∩B| = J(A,B)(a+ b)

1 + J(A,B)
(3)

After finding the size of the intersection - we call this j, we
can generate three sets:

1. P = A ∩ B : prefix the character ‘i’ to all integers
from 0 to j − 1 inclusive such that we obtain the set
{‘i0’, ‘i1’, ..., ‘i(j − 1)’}

2. Q = A \ P : prefix the character ‘a’ to all integers from
0 to a − j − 1 inclusive such that we obtain the set
{‘a0’, ‘a1’, ..., ‘a(a− j − 1)’}

3. R = B \ P : prefix the character ‘b’ to all integers
from 0 to b − j − 1 inclusive such that we obtain the
set {‘b0’, ‘b1’, ..., ‘b(b− j − 1)’}

From these sets, we can form the domains, A and B from
which the rankings S and L will be drawn from respectively:

A = Q ∪ P

B = R ∪ P

3.2 Ranking Overlap
In Webber et al.’s paper introducing Rank-Biased Overlap,
the idea of ‘top-weightedness’ was discussed where the au-
thors assert that “the top of the list is more important than
the tail” [5]. As such, the RBO formula (1) rewards over-
laps at earlier depths as summands are weighted more than
summands at later depths. From this, we see that an interest-
ing case emerges where a ranking pair has agreements and
overlap weighted towards the start of the ranking. RBO
should evaluate the similarity of this ranking pair compara-
tively higher than a ranking pair where corresponding items
are dispersed throughout the ranking.

For other purposes, it may be useful for a ranking pair to
have a different overlap structure. For example, a researcher
looking to compare the robustness of different rank similarity
metrics when similarities are not observed until later rankings
can define a probability function which is biased towards later
depths (e.g. a scaled positive exponential function).

To accommodate for this, the algorithm allows the user to
define a function f that takes as input the depth d and the
domain size n. This function defines the probability of in-
creasing overlap. The function f should be defined over all
depths in the range [0, n)3. Furthermore, the range of f must
be [0, 1] as this constitutes a probability of increasing overlap.

In the algorithm at depth d, when sampling the sets A and
B to find the next elements to add to the rankings S and L at
position d, the function f is evaluated, yielding the probabil-
ity f(d) = α. With probability α, we force an increase in the
overlap between S and L.

Formally, at each depth d, we sample from the random
variable Gd, where Gd ∼ Bernoulli(α). The outcome of a
realisation of Gd determines the sampling strategy at d.

The overlap of two sets S and L can increase after choosing
new items s and l if one of the following cases occur:

s l

I item from L so far randomly sampled
II randomly sampled item from S so far
III random item r same item r
IV item from L so far item from S so far

Table 1: Four possible cases to increase ranking overlap

3Rankings are typically 1-indexed while the function can take
input values starting from 0. In the source code, the function is thus
evaluated at d− 1 for a given depth d
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We formalise these four cases using conventional set nota-
tion:

I. s ∈ (A \ S:(d−1)) ∩ (L:(d−1))

II. l ∈ (B \ L:(d−1)) ∩ (S:(d−1))

III. s = l = r ∈ (A \ S:(d−1)) ∩ (B \ L:(d−1))

IV. s ∈ (A \ S:(d−1)) ∩ L:(d−1) and l ∈ (B \ L:(d−1)) ∩
S:(d−1)

The probability of selecting each case is equal. This may
lead to an ‘unlucky’ situation where one of these four cases is
requested, but the set to sample from is empty. For example,
if case I is drawn at the very start of the ranking where d = 1,
L:0 is empty by definition so nothing can be drawn. In this
case, an item is drawn randomly from the ranking’s domain.

Certain default functions are provided in
src/standard functions.py. These include the ex-
ponential decay function, the scaled logarithmic function4

and the scaled standard normal probability density function5.
If these functions were not scaled, it is possible that the
probability output would never be large enough for the
algorithm to choose to increase overlap. Thus, to mitigate
this issue while maintaining the ‘shape’ of the function,
each function f is scaled by 1

maxd∈[0,n−1]f(d)
. From this, we

see that for some depth d′ for which f is maximum, the
algorithm will force an increase in overlap with probability
1.

Uniformly Random Rankings
Before introducing the exponential decay function, it is worth
considering the case where no overlap function is provided.
In this case, the rankings generated are simply random per-
mutations of the items in the given domain.

For conciseness, we will adopt the same notation used in
[5] and [1], presented in Table 2.

S, L Complete ranking as an ordered list
S:d A slice of S until and including the item at depth d
Xd Overlap size of S and L at depth d

Ad
Xd

d , the agreement at depth d

Table 2: Notation used in this paper

For some S and L, drawn as independent, random permu-
tations from some arbitrary n-sized domain D, we wish to
observe the behaviour of E [Ad] as d increases to n. The prob-
ability that some arbitrary item x is in S:d is d

n . The same is
true for L.

P(x ∈ S:d) = P(x ∈ L:d) =
d

n
(4)

As items are placed in S and L independently, we find that
the probability that x is in both S:d and L:d is given by:

P(x ∈ S:d & x ∈ L:d) =

(
d

n

)2

(5)

4f(d;n) = ln(d)
ln(n+1)

5f(d;µ, σ) = ϕ(d;µ,σ)
ϕ(µ;µ,σ)

Figure 1: Plot of average agreement Ad as d increases to the domain
size 1000 over 100 simulations. For reference, the linear function d

n
is also shown.

From (5), we can find the expected size of the overlap Xd:

E[Xd] =
∑
x∈D

(
d

n

)2

= n

(
d2

n2

)
=

d2

n
(6)

Finally, we can find an expression for the expected agree-
ment at depth d, Ad:

E[Ad] =
E[Xd]

d
=

d

n
(7)

To verify this empirically, we run the simulation algorithm
100 times with no overlap probability function f proved, and
plot the average agreement observed at each depth in Figure
1. For simplicity, we also choose to sample S and L from
fully conjoint domain of size 1000. We see that the hypothe-
sised expected agreement from Equation 7 is verified empiri-
cally.

Exponential decay
The user may want the rankings to have an alternative agree-
ments profile. As discussed earlier, it may be interesting for
researchers to simulate rankings where similarities between
pairs of rankings are observed at earlier depths. Intuitively,
this leads to the idea of a decaying overlap probability func-
tion f of the form f(d) ∝ e−d. Moreover, it is obvious that
the function should scale with the size of the domain n - it
should ‘spread out’ to span the entirety of the domain. Thus
we include a term k that should be a function of the domain’s
size n. With this, we have:

f(d;n) = e−
d
k

k = g(n)

The user has freedom in choosing an appropriate function
g. For example, one line of reasoning may decide that at some
fraction t of the entire ranking, the likelihood of increasing
overlap f(tn) should be some fixed probability ω.
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To illustrate this, let t = 1
4 and ω = 0.3. We have

f
(
1
4n

)
= 0.3.

f

(
1

4
n

)
= e−

n
4k = 0.3

−n

4k
= ln(0.3)

k =
−n

4ln(0.3)
(8)

Furthermore, we can parametrise this function to give the
user further flexibility with the degree of top-weightedness.
This is done by scaling the output of the exponential term
by a scale term θ where θ ∈ [0, 1]. This means that a user
looking for a high-degree of top-weighted agreements will
use an exponential function f with a value of θ close to 1.
The final form of the overlap probability equation is given in
(9), where k is given in (8).

f(d;n) = θe
−n
k (9)

In Section 4, we demonstrate that increasing θ leads to an
increase in RBO.

Analytical evaluation of the overlap function
A researcher developing their own overlap probability func-
tion may want to first predict the behaviour of its impact on
the rankings’ agreement with varying depth. To do this, this
section will develop an analytical method to approximate ex-
pected ranking agreement as a function of depth. For simplic-
ity, we assume that both S and L rank items from the same
domain D.

After observing an overlap Xd at depth d, we see that the
overlap at d+ 1 increases with probability f(d). However, it
is also possible that we draw an item randomly that causes an
increase in overlap. Let the expected increase in overlap with
these two cases be denoted by t1 and t2 respectively. Then,
we can find the expected overlap at d+ 1:

E[Xd+1] = E[Xd] + f(d)(t1) + (1− f(d))(t2) (10)

• t1: expected increase in overlap if we choose to increase
overlap ‘artificially’

• t2: expected increase in overlap if items are drawn ran-
domly

The expected increase in overlap if items are drawn ran-
domly, t2, is the probability of drawing an element for S from
L:d − S:d added to the probability of drawing an element for
L from S:d−L:d. It is trivial to show that these two quantities
are equal. At depth d, the total number of items from which
S can draw an item from is n−d. It follows that the probabil-
ity of drawing an item from L:d − S:d is 1

n−dE [|L:d − S:d|].
To find E [|L:d − S:d|]. we consider the probability that some
arbitrary item x is in L:d and in L:d ∩ S:d.

P(x ∈ L:d) =
d

n

P(x ∈ (L:d ∩ S:d)) =
d2

n2

P(x ∈ (L:d − S:d)) = P(x ∈ L:d)− P(x ∈ (L:d ∩ S:d))

P(x ∈ (L:d − S:d)) =
d

n
− d2

n2

P(x ∈ (L:d − S:d)) =
d

n

(
n− d

n

)
(11)

To find the expected size of L:d − S:d, we multiply (11) by
the size of the domain n. This gives us:

E[|L:d − S:d|] = d

(
n− d

n

)
(12)

From (12), we find that the expected increase in overlap as a
cause of drawing an item from L for S is d

n . This is the same
as the expected increase in overlap by drawing an item from
S for L. Overall, we find that the expected increase in overlap
if items are drawn randomly, t2 from (10), is 2d

n .

t2 =
2d

n
(13)

From Section 3.2, four ways to increase overlap were iden-
tified. Each case is chosen with equal probability. The ex-
pected increase for each case is:

I. 1 + d
n : we assume that the set (A− S:d) ∩ (L:d) has at

least one element. d
n is the expected increase in overlap

by randomly selecting an item for L.

II. d
n +1 : same as I, except we choose randomly for S and
increase overlap directly by choosing the item for L.

III. 1 − e−n(1− d
n )2 : this is the probability that the set (A −

S:d)∩(B−L:d) is non-empty. To do this, we first find the
expected size, γ, of the set E[|(A−S:d)∩(B−L:d)|]. We
then assume that the size of the set follows a Poisson(γ)
distribution. The probability that the set is non-empty is
calculated as 1− P(set is empty).

IV. 2: we assume that there exists at least one element from
S:d and L:d to add to the other ranking.

From this, we find that

t1 =
1

4

(
1 +

d

n

)
+
1

4

(
1 +

d

n

)
+
1

4

(
1− e−n(1− d

n )2
)
+
1

4
(2)

(14)
From (10), (13) and (14), the user can predict the shape

of their chosen agreement probability function. Because we
assume that each set from which we sample from contains
at least one item, we see that the analytical estimate of the
agreement will always be a strict overestimate of the true em-
pirically observed agreement. An example of this assumption
being invalid was explained earlier, where if case I was drawn
at the d = 1, the set to sample from, S:0 ∩ L:0, was empty.
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3.3 Introducing Ties
Ties are introduced to the ranking after two ‘dummy’ rank-
ings are created, S and L, which exhibit the desired conjoint-
ness and overlap properties, but do not yet contain ties, in the
add ties function.

The add ties function function takes as input a rank-
ing X of size n, the fraction of items that should be tied,
frac ties, number of tie groups num groups and the prob-
abilities vector probabilities. Once the two rankings
are created, num groups indices are selected from the vec-
tor [0, 1, ..., n-1], sampling according to the proba-
bility vector tie probabilities using the NumPy func-
tion np.random.choice(...)6. These indices determine
the starting indices of tie groups. This method ensures that
exactly num groups tie groups are generated. As a tie group
must contain at least two items, the selected start indices vec-
tor is adjusted if necessary to ensure that there is a gap of at
least 2 between successive indices.

The average tie group size is λ:

λ =
frac ties ∗ n
n groups

(15)

The size of a tie group is sampled from the random variable
T , where:

T ∼ Po(λ− 2) + 2 (16)

to ensure that a sampled tie group size is always at least 2.
In a given ranking X , we add items to tie groups by iterat-

ing through each depth d. If d matches a selected start index,
we sample T and assign it to j. We start a tie group and add
all items from Xd to Xd+j−1 inclusive.

On expectation, the number of tied items is E[T ] ∗
n groups. From (16), we see that E[T ] = λ. By rear-
ranging (15), we find that on average, the algorithm will tie
frac ties ∗ n items.

3.4 Input Parameters
• a and b: the length of the domains (and thus the full

ranking).

• len x and len y: if requested, the lengths that the full
rankings should be truncated to.

• jaccard similarity: the desired Jaccard similarity of
the domains.

• overlap probability function: a function f(d)
that associates each depth with a probability of increas-
ing overlap.

• tie probabilities x and tie probabilities y:
two vectors where each entry corresponds to the prob-
ability of starting a tie group at that index.

• frac ties x and frac ties y: the desired fraction of
tied items.

• n groups x and n groups y: the desired number of tie
groups.

6https://numpy.org/doc/stable/reference/random/generated/
numpy.random.choice.html

3.5 Algorithm
1. Generate two domains, A and B, using
jaccard similarity to determine the degree of
conjointness.

2. Initialise two empty vectors, S and L.
3. Iteratively populate S and L by sampling items

from their domains. The domain is dependent on
overlap probability function as explained in Sec-
tion 3.2.

4. Once S and L contain all elements from A and B re-
spectively, add ties to the rankings as demonstrated in
Section 3.3.

5. If required, truncate S and L to the desired length.

4 Results
To evaluate the effects of tuning the overlap probability func-
tion, we can plot the agreement Ad as depth d increases to the
domain size n.

For example, we look at the impact of using the two dif-
ferent exponential decay functions, f from (9), to influence
overlap probability. We show this using two different values
of θ, thus varying the degree of ‘top-weighted agreements’.
The simulation algorithm is run 100 times and the average
agreements at each depth is recorded and presented graphi-
cally in Figure 2.

Figure 2: Plot of average ranking agreements as depth varies using
two exponential decay functions with varying θ over 100 simula-
tions.

Furthermore, we can also evaluate RBOEXT on rankings
generated from varying θ. From the formulaic definition of
RBO, we expect that rankings where overlap is weighted to-
wards the start of the rankings should be ‘more similar’ than
rankings with overlaps spread throughout the ranking pair. To
confirm this, we run 100 simulations of the simulation algo-
rithm for each θ in [0.0, 0.2, 0.4, ..., 1.0] and plot
the mean RBOEXT for each θ. This scatter plot is shown in
Figure 3.

In Section 3.2, we developed an analytical method to pre-
dict agreement behaviour given a function f . To verify its
accuracy in predicting the actually observed empirical agree-
ment, we plot the predicted agreement along with the average
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Figure 3: Scatter plot with a 1 standard deviation error bar showing
the average RBOEXT with p = 0.95 as θ increases from 0.0 to
1.0. The mean is calculated from 100 simulations of the algorithm
generating rankings from a fully conjoint domain of length 1000.

of the empirical agreement when running the rank generation
algorithm (without ties) 100 times in Figure 4.

Figure 4: Plot of ranking agreement as depth increases. We can
clearly see that the analytical estimate provides a close prediction to
the empirically observed agreement when f is the Gaussian prob-
ability function centered at 200. For reference, the plot represent-
ing expected agreement between completely random rankings is also
shown.

The algorithm also allows the user to tune the distribution
of ties across the rankings, given a probability vector. To ver-
ify this behaviour, we can plot the number of tied items in
each ‘section’ of the ranking when varying the tie probabil-
ity function - Section 0 contains items between and including
depths 1 and 10, Section 1 contains items between depths 11
and 20 etc.

We can observe the effect of using different distributions
by counting the number of tied items in each section. Firstly,
we simulate a ranking (we use the generated S, the ranking
L is ignored), that has a uniform tie probability vector. We
simulate this 100 times and compute the average number of
tied items in each section. For reference, we run the simula-
tion with frac ties x = 0.6 and n groups x = 40. The
result is shown in the plot in Figure 5.

One may also choose to simulate a ranking where tie prob-

Figure 5: Plot of the average number of tied items in each 10-item
section of the ranking when ties are distributed uniformly over 100
simulations.

abilities are normally distributed around some depth d, with
some standard deviation σ dictating the extent to which tie
groups are spread out. Again, we run 100 simulations and
compute the average number of tied items per section. In
this case, we use a vector where probabilities are normally
distributed around depth d = 1500 with standard deviation
σ = 500. The plot is shown in Figure 6.

Figure 6: Plot of the average number of tied items in each 10-item
section of the ranking when ties are distributed normally over 100
simulations.

We conclude this section by noting the qualitative advan-
tages of the synthetic generation algorithm introduced in this
paper over the method developed by Corsi and Urbano in [1].

Firstly, the new method offers the user a much greater de-
gree of flexibility in shaping the distribution of ties within
the ranking. This may be useful when considering RBO ex-
trapolation for a ranking containing ties. In all three variants
introduced in [5] and [1], RBOEXT was calculated under
the assumption that there are no ties in the unseen part. For a
researcher looking to observe the implications if this assump-
tion is relaxed, it may be useful to simulate rankings where
ties occur after a certain depth l. As currently ties are created
in an ad-hoc manner, a user wishing to create a dataset con-
taining ties at specific positions may unsuccessfully run the
algorithm several times before obtaining a satisfactory pair of
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rankings.
Secondly, we see that this method of generating syn-

thetic rankings natively allows for generating disjoint rank-
ings given a desired jaccard similarity. This is in con-
trast to Corsi and Urbano’s method which inherently gener-
ates rankings from a fully conjoint domain where a user de-
siring some disjointness must truncate the ranking to a length
orders of magnitude lower than the size of the domain.

A key aspect missing from Corsi and Urbano’s algorithm
was the user’s lack of ability to influence the overlap struc-
ture of the generated ranking pairs beyond the tau parameter,
which can only determine the correlation of the two rankings
overall but cannot offer variation in the location of overlap
within the rankings. Using the proposed method, by sup-
plying an overlap probability function, the user can
easily influence the similarity of the two rankings as depth
varies.

5 Responsible Research
To ensure that results are reproducible, we note the inputs
that are used to generate each plot in Section 4. Furthermore,
all source code used and created in the process of research
is openly available and accessible. This includes the Jupyter
Notebook script 03-results.ipynb used to generate the re-
sults presented in Section 4.

This paper also contributes to improving the nature of fu-
ture research. Researchers looking to develop their own rank
similarity measures can use the method presented in this pa-
per to generate synthetic data, rather than using real datasets.
Using synthetically generated data as opposed to real data al-
leviates the risk of encountering any ethical and legal issues
such as privacy regulations and data protection laws.

In the interests of open and accessible science, all code was
managed using a version control system. Initially, the TU
Delft Computer Science department’s hosted GitLab instance
was used until the algorithm was complete. After that, the
entire source code has been moved to a public GitHub repos-
itory. Furthermore, the repository is licensed using the MIT
license, effectively allowing anyone to freely modify and dis-
tribute the software.

6 Discussion
Firstly, we analyse the plot presented in Figure 2. We expect
that an exponential decay probability function with large θ
should have a high level of agreement at earlier depths while
a function with a lower, non-zero θ will have a lower level of
agreement, but still greater than the expected level of agree-
ment a random permutation of the domain’s items. We see
that for θ = 1, the average agreement approaches 1.0 at a
very early depth, before decreasing gently to around 0.7 and
then again increasing back to 1.0. A similar behaviour is ob-
served when θ = 0.5, however the agreement peaks at just
under 0.6 at the start of the rankings. This plot reflects our
initial intuition.

In Section 2, we discussed that Rank-Biased Overlap
evaluates ranking pairs with top-weighted overlap more
favourably than a ranking pair where overlap is randomly

spread throughout. Thus, we expect the ranking pair in yel-
low (θ = 1) to have a higher RBO score than the ranking
pair in red (θ = 0.5). This is quantified more formally by
plotting RBOEXT for ranking pairs generated using the ex-
ponential decay function with varying θ. We also perform
a linear regression statistical test to test the null hypothesis
that there is no correlation between θ and RBOEXT using
the scipy.stats.linregress package 7. We get a p-value
of 3.9459 · 10−5, meaning we can reject this null hypothesis
with a reasonably high level of confidence.

Figure 4 displayed the average agreement observed be-
tween two rankings generated from a simulation where f
was the scaled Gaussian probability density function (in red)
along with its analytical estimate (in yellow). We see that
while the analytical estimate reveals the innate characteristics
observed empirically (deviation from agreement between the
‘control’ blue line) at exactly depth d = 200, it still over-
estimated the agreement significantly. This stems from the
assumption that there will always be at least one element in
each derived set for each of the four cases identified to in-
crease overlap.

Figures 5 and 6 demonstrate the effects of varying the tie
probability distribution. When the tie probability distribution
is uniform, we see that the bar plot showing the number of
tied items across each ranking section is uniform. On the
other hand, Figure 6 shows how the number of tied items
per ranking section varies when a normal distribution is used.
This plot shows the familiar normal distribution shape, peak-
ing at around section 150 as expected.

7 Conclusions and Future Work
In this paper, we introduced a novel method to generate a
pair of rankings parametrised by three key properties: do-
main conjointness, ranking overlap structure and the distribu-
tion of ties. We also discussed an analytical method for the
researcher to forecast the agreement of the synthetic rankings
S and L given their overlap probability function f .

Firstly, we critically analysed the existing ranking genera-
tion algorithm and identified certain limitations that could be
improved upon. We then thoroughly examined the method’s
ability to parametrise each of the key three ranking properties.

Using Jaccard simililarity as a domain conjointness param-
eter was a natural choice as its basis in set similarity offers
a logical connection to RBO’s view of ranking similarity
through the prism of set overlap rather than correlation be-
tween ordinal datasets. The user influences the nature of rank-
ing overlap through the overlap probability function:
a function f which takes as input the depth d and outputs a
probability f(d) of increasing overlap. Ties are introduced
once the base rankings have been created. The location of tie
groups are influenced by the tie probabilities vector.

Subsequently, we demonstrated the efficacy of the rank-
ing generation method quantitatively, through several plots
demonstrating that the algorithm performs as expected when
subjected to different inputs. We also highlighted some qual-
itative advantages of this method when compared to the algo-

7https://docs.scipy.org/doc/scipy/reference/generated/scipy.
stats.linregress.html
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rithm presented in [1]. Additionally, we noted the measures
taken to ensure that the research process was conducted in
a responsible manner, specifically discussing reproducibility
and the ethical implications of the work presented in the pa-
per.

In conclusion, this paper presents an algorithm allowing for
more fine-grained control over synthetically generated rank-
ing as compared to the method presented by Corsi and Ur-
bano in [1]. Researchers looking to develop new rank sim-
ilarity measures, or extend existing techniques, can use this
algorithm to generate ranking pairs exhibiting a variety of
characteristics, ranging from the degree of conjointness of the
domains to the presence and distribution of ties.

We finish this paper by recommending future points of im-
provements:

• currently the probability of selecting each case is equal,
this should be adapted to avoid a situation where an
empty set is being sampled.

• the analytical estimate can be improved to incorporate
the probability of a set being empty or not.

• the analytical formula was only developed for fully con-
joint domains. A more generalised formula should be
devised, taking into account the three parametrisable
properties discussed in the paper.

• the current method to introduce ties into the ranking
uses a Poisson distribution to determine the size of a tie
group. It is possible that this is too restrictive for the
user, who may wish to also have the ability to influence
the size of a tie group; in this case, we recommend a fu-
ture alteration to the algorithm to allow the user to input
a tie group size probability function.
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